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Abstract 

Inferences consistent with “recognition-based” decision-making may be drawn for 

various reasons other than recognition alone. We demonstrate that, for 2-alternative 

forced-choice decision tasks, less-is-more effects (reduced performance with additional 

learning) are not restricted to recognition-based inference but can also be seen in 

circumstances where inference is knowledge-based but item knowledge is limited. One 

reason why such effects may not be observed more widely is the dependence of the effect 

on specific values for the validity of recognition and knowledge cues. We show that both 

recognition and knowledge validity may vary as a function of the number of items 

recognized. The implications of these findings for the special nature of recognition 

information, and for the investigation of recognition-based inference, are discussed. 
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Less-is-more effects without the recognition heuristic. 

1. Introduction. 

Investigations of the recognition heuristic (RH) typically involve participants 

making judgments about items about which they have limited knowledge, such as the 

relative sizes of cities in the USA. For example, a participant might be presented with the 

two cities San Diego and San Antonio and asked which is bigger. In the classic work of 

Goldstein and Gigerenzer (2002), it is assumed that the participant will guess if they 

recognize neither of the items, they will use whatever additional knowledge is available 

to make a decision if they recognize both of the items and, crucially, if they recognize 

only one of the items, they will choose this item as the larger without consulting any 

other cues or searching for further information (the Recognition Heuristic or RH). This is 

because items of larger size are more likely to be encountered, hence more likely to be 

recognized (the recognition-magnitude correlation). Recognizing one of the two items is 

thus a useful cue for choosing the recognized item. If both items are recognized, 

however, additional knowledge is needed to make the decision and such additional 

knowledge may be very limited. Recognition-driven inference can give rise to the less-is-

more effect (LiME), whereby individuals who recognize many of the items often perform 

worse than individuals who recognize fewer of the items (Goldstein & Gigerenzer, 2002). 

The LiME is a counter-intuitive finding, predicted to occur under given 

circumstances if the RH is applied (Goldstein & Gigerenzer, 2002; McCloy, Beaman & 

Smith, 2008). The counter-intuitive nature of the LiME prediction allows for a strong test 

of the RH and has been used as a rhetoric device to promote the heuristic (Borges, 

Goldstein, Ortmann & Gigerenzer, 1999; Gigerenzer, 2007; Schooler & Hertwig, 2005). 
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Evidence for the LiME has also been observed empirically (Frosch, Beaman & McCloy, 

2007; Goldstein & Gigerenzer, 2002; Reimer & Katsikopoulos, 2004) but, counter to this, 

failures to observe the effect have also been cited in attempts to refute the RH (e.g., 

Boyd, 2001; Dougherty, Franco-Watkins & Thomas, 2008; Pohl, 2006). At least as 

originally introduced, a LiME is a mathematical necessity (given certain assumptions) 

rather than a proof of recognition-based inference. Nevertheless, the consensus appears to 

be that the observation of a LiME implies that the recognition heuristic was employed 

(Pachur, Mata & Schooler, 2009), and that the use of knowledge will dilute or reduce the 

size of the LiME (e.g., Hilbig, Erdfelder & Pohl, 2010). Here we explore whether LiMEs 

are also mathematical necessities if those assumptions are altered somewhat – 

specifically if inference is no longer recognition-based but instead makes reference to 

some form of knowledge. 

LiMEs need not appear only when the RH is studied in isolation, but are predicted 

by formal models of knowledge-based inference if those models exploit the recognition 

principle. Gigerenzer and Goldstein (1996) used the appearance of the effect as part of 

their comparison of five integration algorithms with the Take The Best (TTB) algorithm 

(Gigerenzer & Goldstein, 1996; pp. 656-661). TTB and all of the integration algorithms 

were implemented such that, in each case, recognition was used as a cue if only one item 

was recognized (p. 657). Unsurprisingly, all six algorithms produced a non-monotonic 

relationship between recognition and correct inference (Gigerenzer & Goldstein, 1996, 

Figure 6). However, as we will demonstrate, LiMEs can be produced by knowledge-

based decision-making processes which use neither recognition-driven inference, nor the 

related speed-of-retrieval inference which Schooler and Hertwig (2005) have shown 
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produces similar advantageous effects for moderate over lesser forgetting rates. The first 

aim of this paper is to prove by analytical means that LiMEs can be produced by 

knowledge-based decision-rules. They are not unique to recognition-driven inference and 

cannot therefore be viewed as providing unconditional support for this hypothesis. Our 

second aim is to examine, using the basic framework developed, how both recognition 

and knowledge validities vary as a function both of the correlation between recognition 

and magnitude and the number of items recognized. 

 

1.1 Moderators of the recognition-magnitude correlation. 

In Goldstein and Gigerenzer’s original (2002) formulation of the RH, additional 

knowledge is only used as a tie-breaker to decide between two recognized items. When a 

single item is recognized, inference is purely recognition-driven. This aspect has aroused 

much interest and has proven controversial (Gigerenzer & Brighton, 2009; Hilbig & Pohl, 

2008; Hilbig, Pohl & Bröder, 2009; Newell & Fernandez, 2006; Newell & Shanks 2004; 

Pachur & Hertwig, 2006; Pachur, Bröder & Marewski, 2008; Pohl, 2006; Richter & 

Späth, 2006). In an alternative formulation, limited knowledge can be used even when 

only one item is recognized. This alternative formulation is worth examining because a 

number of accounts, generally favourable to the RH, have seemingly relaxed the criteria 

for its application. For example, Volz et al. (2006, p. 1935) conclude, on the basis of 

neuroimaging evidence that, “the processes underlying RH-based decisions go beyond 

simply choosing the recognized alternative”. Additionally, the discrimination index 

proposed by Hilbig and Pohl (2008) led them to conclude that a substantial number of 
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recognition-consistent choices were informed by further information other than 

recognition alone. 

The relationship (whether positive or negative) between the recognition of an item 

and its magnitude is clearly central to the RH. It works because, in the tasks to which this 

approach has been successfully applied, larger items are more prominent (more 

newsworthy, more important, etc.) than smaller items and this leads to larger items being 

more likely to be recognized.  However, if the question related to the relative size of pairs 

of birds and the single recognized item was a house-sparrow, the Recognized → Larger 

inference makes much less sense than when the same options are presented but the 

question relates to the relative population size of the two birds
1
. This highlights the fact 

that recognition actually correlates with prominence, which may not itself correlate with 

all forms of magnitude per se. The prominence-recognition correlation also may not hold 

– or at least, it may vary in size – if the items experienced as prominent vary between 

individuals. One potential moderating factor is sampling bias. The newspaper example 

given by Goldstein and Gigerenzer (2002) is a good case. In this example, it is suggested 

that a city may be recognized if it is frequently mentioned in a newspaper, and that a 

larger city is more likely to be so mentioned. The individual receiving the newspaper is 

implicitly assumed to be a fairly passive processor of the information contained within 

the newspaper. No consideration is given to the potential difference between an 

individual who actively seeks out a newspaper and one who does not, or to potential 

differences between choice of reading matter. These may have very different content 

(e.g., the New York Review of Books versus the National Enquirer), and each of which 

might be sought out, or passively encountered, to different degrees by different 

                                                 
1
 Thanks to Pete Bibby for this example 
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individuals or groups of individuals. Calculating the recognizability of a city from the 

relative frequency with which it is mentioned in any one publication may be misleading if 

applied to a group of individuals who disproportionately sample from another publication 

or from different sections of the same publication (e.g., the sporting pages versus the 

“style” section). Overall, biased sampling of this type may be good or bad for the 

performance of the heuristic, depending on whether a disproportionate number of “large” 

items are sampled, which would enhance the validity of recognition (e.g., a soccer fan 

will recognize more towns with premier league soccer teams) or whether sufficient 

“small” items are sampled to reduce the magnitude-recognition correlation (e.g., a golf 

fan will recognize more towns with famous golf courses, but such towns do not on the 

whole tend to be large in size). 

A basic premise in what follows is that, for any given individual, there are several 

subgroups of items which the individual is able to recognize and about which they may 

also have partial knowledge. This is particularly likely if they are local to the individual 

in some way or if they form part of a set of items of special interest to that individual. For 

example, the third author has observed anecdotally that the only German citizens of her 

acquaintance who reliably recognize the Yorkshire city of Leeds are football fans. 

Coincidentally, British citizens of her acquaintance show the same pattern for the 

Nordrhein-Westfalen city of Leverkusen. Hence, anecdotally at least, it appears that 

football fans and those uninterested in the game may have differential access to subsets of 

European cities. Special access to information regarding subgroups may also vary with 

the choice domain, a point which is easily confirmed using existing empirical data. For 

example, by-item analysis of data taken from an experiment by McCloy, Beaman, Frosch 
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and Goddard (in press) shows, when a group of 40 participants were asked to indicate 

which of a group of famous individuals they recognize, no significant effect of the gender 

of the participant on the overall recognition rate, F(1, 43) = 2.3, p = .14 but a significant 

effect of the reasons why the individuals  rose to fame (as either sports personalities, 

fashion and show-business professionals, rock stars or business people), F(3, 43) = 13.48, 

p < .001, and a significant interaction between this factor and the gender of the 

participant, F(3, 43) = 13.44, p < .001. Males recognized, on average, sports personalities 

78% of the time (females = 55%) and rock stars 75% of the time (females = 66%). In 

contrast, females recognized fashion and show-business professionals 57% of the time 

(males = 33%) and the two genders were both poor at recognizing business people, males 

= 16%, females = 11%. Thus, gender is a factor which provides, or at least contributes to, 

differential access to different subsets of rich and famous people. In what follows, we 

consider similar situations where, for an individual within the environment, there is no 

simple correlation between recognition and magnitude because subsets of the items are 

prominent for reasons unconnected to magnitude (e.g., the age, gender or special interests 

of the individual). 

 

2. Study 1: Models predicting the LiME 

To formally examine the appearance of LiMEs, we suppose a pool of N items, 

split into several subsets A, B, C, .... Within each subset the participant is able to 

recognize u, v, w,..., items, respectively. In a typical test of recognition-driven inference, 

the experimenter selects items quasi-randomly from the pool. Since the constraints on the 

experimenter are unknown, a random selection from N is assumed and the basic case 
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considered is where pairs of items are chosen, and the participant’s task is to say which is 

larger. For purposes of exposition attention is also restricted to situations in which there 

are just three subsets. The models can easily be extended to other cases (e.g., the 

participant is asked to choose between more than two items (Frosch et al., 2007; McCloy 

et al., 2008) and/or the pool is split into more than three subsets). 

 

2.1. The basic framework. 

Suppose, when presented with a two-alternative forced choice task, an individual 

recognizes from among the two alternatives i items from subset A, j items from subset B, 

and k items from subset C. On a given trial, only two items are presented, so i, j, k range 

from 0 to 2, with i + j + k ≤ 2. That is, the number of items recognized on any trial could 

vary from 0-2 for any of the three subsets but the total number recognized obviously 

cannot exceed the two items presented. pijk is the probability that this event occurs. pijk is 

obviously dependent on how many items the participant can recognize in each of the 

subsets, but is independent of the decision rule adopted. αijk is the probability of success, 

given the recognition of i, j and k items from their respective subsets. This parameter is 

dependent on the decision rule the participant adopts, and is the only thing which 

distinguishes the models. The overall probability of success P(u,v,w) is given by: 

 

P(u,v,w) = Σijk  αijk pijk  (1) 
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 Having outlined the basic framework, it is now possible to present the models. 

The RH model requires little introduction, the alternative against which it is to be 

compared we refer to as LINDA (Limited INformation and Differential Access). 

 

2.1.1. The Recognition Heuristic (RH) model. 

The distinguishing feature of the RH model is that the participant chooses the 

recognized item when only one item is recognized. So α000 = 0.5 (no item recognized, 

pure guess); α100, α010, and α001 reflect the success of the recognition heuristic (they 

should be greater than chance if the recognition heuristic has some validity, and should 

be quite large for the clearest LiMEs); α110, α101, α011, α200, α020, α002 reflect use of 

knowledge (two items are recognized, so additional knowledge is used to discriminate 

them; LiMEs should be clearest if these knowledge probabilities are close to chance). 

 

2.1.2. The Limited INformation and Differential Availability (LINDA) model  

 As the name implies, this model requires two basic assumptions: 

 

1. The limited information assumption. For each recognized item, the individual has 

relevant but limited information about its size (e.g. that the size is above the 

population median). For the sake of simplicity, this is presented as if it were 

criterion-based knowledge rather than inference from cues. However, recent data 

show little impact on the use (or non-use) of recognition-based inference when 

criterion knowledge is available (Hilbig et al., 2009). Reanalysis of data by Hilbig 

et al. (2009) also shows that – at least for the domain they examined (the size of 
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cities in Belgium) – participants showed something approximating median 

knowledge. Hilbig et al. recorded participants’ estimates of the populations of 

each of the cities they were asked to consider so it is possible to calculate, per 

participant, the probability that they correctly judged whether the city in question 

was above or below the sample median
2
. This information may not be totally 

reliable, and we use parameters pA, pB …. for the probabilities that information 

regarding a recognized item belonging to subsets A, B, …. is accurate. From 

Hilbig et al.’s data, participants were judging an item to be the correct side of the 

sample median on 69% of occasions on average (s.d. = 13%). In what follows, for 

the most part, we assume pA = pB = pA = 1 as this is the simplest case but varying 

this parameter (for example setting it to .7, or 70% of cases correct) only alters the 

magnitude of the effects observed and does not affect the general conclusions. 

2. The differential availability assumption. Some subsets are more accessible than 

others so that, for a given individual, more items may be recognizable within one 

subset than within another. Note that this does not necessarily imply no 

correlation between magnitude and recognition, but it allows the extent of this 

correlation to be manipulated by varying the relative recognizability of the 

subsets. 

 

The limited information assumption assumes that there is, at the least, some 

information available at the time of decision-making against which to evaluate the 

usefulness of choosing the recognized item in any given case. The reliability of this 

information may also vary. Either the information may be incorrect or (potentially) it may 

                                                 
2
 Thanks to Ben Hilbig for making these data available. 
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be misapplied in some way. For simplicity, these possibilities are both reflected in the 

value of a single parameter, as noted in assumption 1. The differential availability 

assumption states merely that, within any set, the items within some subsets are more or 

less recognizable than the items within some other subset. 

 

2.1.3 Numerical example 

For the LINDA model described above, consider the situation where the 

individual has what we will term median knowledge of items from pool N, i.e. they 

accurately know whether each recognized item is above or below median. Subset A 

includes items in the top quartile of the size distribution, subset B includes items in the 

second highest quartile of the size distribution, and subset C contains all the remaining 

items. The Appendix gives the derivations of explicit expressions for all the terms in 

equation (1). In the first example, it is assumed for purposes of exposition that median 

knowledge is perfect, i.e., that the median knowledge about a recognized item is accurate 

with no chance of error (pA = pB = pC = 1). This assumption is relaxed in later examples. 

In order to formally compare the RH model with the LINDA model, the models 

are designed to perform equally well when all items are recognized. In the current simple 

example, where u = v = 25 and w = 50 so the total number recognized, n = N= 100. The 

probabilities of a correct inference when recognizing 2 items in any of the possible 

combinations that may occur (e.g., 2 from u, or 1 from u and 1 from v, and so on) are 

given by the equations presented in sections 1 and 3 of the Appendix. LINDA’s 

performance with full recognition is the sum of these probabilities, which works out as 

0.7525, so in the RH model probabilities of success when both presented items are 
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recognized were also set to 0.7525. The size of the pool from which the test items are 

drawn is set at 100 but the same pattern of results is obtained for all large values of N. 

The key prediction is the relation between the proportion of correct decisions (P in 

equation (1)) and n, the number of items in the pool the participant can recognize.  

To examine how these models interact with the recognition of items from 

different subsets, consider the cases where there is a close link between the recognition of 

items and the subsets from which they are drawn. The notation ABC means that items 

from subset A are all more recognizable than the items from subset B, which in turn are 

all more recognizable than the items from subset C. This strict ordering of recognition is 

obviously unrealistic but is useful to demonstrate relations between recognition and the 

properties of the two models and could easily be relaxed to allow some overlap between 

the recognition of items from different subsets. If this constraint is enforced, and the 

equations given in the Appendix calculated accordingly, then the results shown in Figure 

1 are obtained. 
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Figure 1. Proportion correct using LINDA and the RH for different orderings of subsets 

(and hence different recognition-magnitude correlations). ABC ordering is equivalent to a 

recognition-magnitude correlation of ρ = .919 and ACB ordering is equivalent to ρ = 

.306. 

 

Figure 1 shows the performance of LINDA and the RH model for two different 

magnitude-recognition orderings: ABC (items in the top quartile of the size distribution 

are most recognizable and items below median are least recognizable) and ACB (items  

in the top quartile are most recognizable, then items from below the median and finally 

items from the second quartile). ABC ordering corresponds to a strong magnitude-

recognition correlation (ρ = .919) and ACB ordering to a smaller, but still positive, 

correlation between magnitude and recognition (ρ = .306). The plausibility of such an 

ordering of recognition might be queried, but it is fairly easy to generate scenarios in 
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which particularly large items are most recognizable, then particularly small items. For 

cities, as already mentioned, the possession of a good golf course enhances its 

recognizability (in the UK: Carnoustie, Lytham St Annes, St Andrews, Sunningdale, 

Turnberry) but good golf courses are not, for the most part, associated with large cities 

because of the space they require. The ABC ordering produces effects we would expect 

from the literature. The RH model, using the recognition heuristic, shows the expected 

LiME, while the knowledge-based LINDA model shows a monotonic relation between 

proportion correct and number of recognizable items. 

The situation is quite different for the ACB ordering: here it is LINDA that 

produces an inverted-U shaped function and a LiME. LiMEs therefore cannot necessarily 

imply use of the recognition heuristic – even given a positive magnitude-recognition 

correlation – but may occur for other reasons. The inverted-U shaped functions that 

characterize the LiME indicate that a task becomes more difficult once the number of 

recognizable items passes a certain level. In the case of the RH model and the ABC 

ordering, this is because “easy” decisions (select the recognized item when only one item 

is recognized) are gradually outnumbered by “difficult” decisions (choose between items, 

both of which have been recognized) as the number of recognizable items increases. In 

the case of LINDA and the ACB ordering, moderate levels of recognition produce many 

easy decisions (discriminating a recognized item drawn from subset A from a recognized 

item drawn from subset C) but the decisions become more difficult when items of 

intermediate size, from subset B, begin to join the pool of recognizable items as the 

number of recognizable items increases. If the size of the LiME is defined as the 

maximum proportion correct minus the proportion correct when n = N (e.g., McCloy et 
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al., 2008) then the effect size for the RH and for LINDA is similar when LINDA has 

totally reliable information (for ordering ABC, RH effect size = .06, for ordering ACB, 

LINDA effect size = .06). The size of the effect is reduced if LINDA’s information is less 

reliable (e.g., if pA = pB = pC = 0.7, effect size for ordering ACB = .03) but increases if 

the assumption is made that LINDA has difficulty with discriminations when both items 

are recognized. 

In calculating LINDA’s predictions, we previously assumed no extra difficulty 

was involved in having to choose between two recognized items but this might not be 

realistic: choosing between two recognized items may, in some instances, be extremely 

difficult. An extreme version of this is shown in Figure 2. Here it is assumed that LINDA 

makes decisions in the way already outlined when only one item is recognized, but does 

not have the capacity to make a decision when both items are recognized, and so is 

obliged to guess. The situation resembles one outlined in Goldstein and Gigerenzer 

(2002, pp. 84-85) in which German participants were experimentally exposed to the 

names of US cities without being presented with any further information which might be 

of use, and is also comparable to Schooler and Hertwig’s (2005) ACT-R implementation 

of the recognition heuristic, which also assumed chance level performance when both 

items were recognized (Schooler & Hertwig, 2005, p. 614).  
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Figure 2: Proportion correct for the LINDA model when discrimination between two 

recognized items is at chance. The same calculations can be made for the RH but are not 

given here. A spreadsheet to simulate the RH was produced by McCloy et al. (2008) and 

can be used for calculating the RH’s predictions for situations corresponding to those in 

this Figure depicted for LINDA. The spreadsheet is available to download from 

http://www.personal.rdg.ac.uk/~sxs98cpb/philip_beaman.htm although note the 

calculations in this spreadsheet assume automatic application of the RH, even when 

recognition is not a good cue. 

 

Figure 2 shows clear LiMEs also appear for this version of LINDA. Interestingly, 

unlike the RH model, which requires quite large magnitude-recognition correlations to 

allow recognition validity to exceed knowledge validity, LINDA shows LiMEs for all 
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values of ρ, although the largest LiMEs occur for the largest values of ρ. No “recognition 

validity” parameter was built into LINDA a priori (although clearly the validity of 

recognition is to some extent reflected in the values of ρ) so these results are not subject 

to the criticism that it is trivial to show LiMEs if knowledge validity is set sufficiently 

low relative to recognition validity (McCloy et al., 2008). Once again, then, a knowledge-

based decision model produces LiMEs, and thus – once again – LiMEs are not a unique 

prediction of the RH model. 

 

2.2 Discussion. 

Whilst the RH and LINDA give LiMEs in different circumstances, the effects are 

produced for essentially the same reasons. When relatively few items are recognizable, 

the task is easier than when many items are recognizable. In the case of the RH model, 

when an intermediate number of items are recognizable the individual is more frequently 

confronted with the easy decision of selecting the one item recognized, and this position 

is reversed when many items are recognizable. For the LINDA model, performance for 

intermediate levels of recognition is good because the participant is often asked to make 

the easy discrimination between an item drawn from top quartile (subset A) and an item 

drawn from the bottom quartiles (subset C). Adding items from the second highest 

quartile (subset B), makes the task more difficult and leads to a drop in performance. 

Natural examples of highly recognizable subsets comprised of small items (C) are 

required to make this analysis plausible. In addition to the examples of cities with famous 

golf courses already mentioned, there are numerous remote towns famous for being 

inaccessible (and therefore necessarily small): Alice Springs, Lerwick, Machu Picchu and 
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Spitzbergen, and in other domains, e.g., the population sizes of various animal species, 

there are animals famous for being endangered (e.g., Giant Panda, Gorilla) which are 

more immediately recognizable than animal species with sustainable but by no means 

large populations. 

The fluency rule, discussed by Schooler and Hertwig (2005), also produces 

similar results to LINDA and, once again, for similar reasons. In the context of the 

fluency rule, the “less” of less-is-more refers to forgetting rates rather than recognition 

rates as in the RH. In that case, intermediate rates of decay allow for better discrimination 

between items than low rates of decay (items retrieved more quickly are presumed to be 

larger). This leads to the only other “knowledge” based LiME of which we are aware. 

Crucially, however, the fluency rule does not use or require further knowledge beyond 

the fact of fast retrieval. Thus, although it produces LiMEs of a kind, these are arguably 

recognition rather than knowledge-driven. Knowledge about the item itself is never 

consulted, only knowledge pertaining to the act of retrieval or recognition. Regardless of 

the validity of this argument, our results nevertheless suggest that LiMEs might be both 

more prevalent, and more difficult to ascribe to a single strategy, than previously 

assumed. LINDA demonstrates that LiMEs can occur for knowledge-based decisions and 

also that, when discrimination between two recognized items is sufficiently difficult, 

these effects can occur regardless of the recognition-magnitude correlation. 

 

2.3. Reasons for the elusiveness of less-is-more 

The above argument seems to imply that LiMEs should be observed empirically 

far more readily than seems to be the case. However, whilst the effect has been 
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empirically verified on some occasions (Borges, Goldstein, Ortmann, & Gigerenzer, 

1999; Frosch et al., 2007; Goldstein & Gigerenzer, 2002; Reimer & Katsikopoulos, 2004; 

Snook & Cullen, 2006) it has not been observed universally (Boyd, 2001; Pachur & 

Biele, 2007; Pohl, 2006). One reason for this may be that LiMEs occur in different 

situations for different reasons. Whilst it is possible to find a LiME under circumstances 

where a LINDA-like decision-rule might be operating, such an effect would be easier to 

discover if the magnitude-recognition correlation was moderate rather than large, and 

when the information was particularly reliable, or the discrimination between two 

recognized objects particularly difficult (see Figure 2). Consequently, it would be 

relatively easy to miss such an effect if the experimental situation was deliberately 

designed to maximize the magnitude-recognition correlation, as many have been (e.g., 

Pohl, 2006). There is a clear difference between a model showing a LiME “in principle” 

when all factors are under control and a LiME appearing in a standard experimental 

design which may be statistically underpowered to show a small LiME in a noisy 

environment. One way around this might be to partition subjects into groups based upon 

how much knowledge they appear to employ to inform nominally “recognition-based” 

inferences (using e.g., the methods developed by Hilbig and Pohl (2008) or Hilbig et al. 

(2009)). It might then be possible to examine whether the appearance or size of any 

LiME is negatively associated with knowledge used (as proponents of the RH might 

propose) or if the relation is more complicated (as LINDA would predict).  

A second and more interesting possibility is that insufficient attention has been 

paid to some of the parameters that need to be controlled for a situation to arise where 

LiMEs would be expected. For example, the key prerequisite of the LiME produced by 
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the RH is that recognition validity should exceed knowledge validity. Reliable 

manipulation of the recognition and knowledge validity parameters can be problematic, 

however. In Goldstein and Gigerenzer’s (2002) account, it is implicit that both 

recognition and knowledge validity are, or can be, independent of n, the number of 

recognizable items in the pool of items from which the stimuli are drawn. For example, 

Figure 2 (p. 79) of their account illustrates the LiME by holding recognition validity 

constant and varying knowledge validity and number recognized independently (between 

and within hypothetical individuals, respectively). This is important because n may not be 

under experimental control, hence a priori estimates of recognition and knowledge 

validities may be misleading. Later in their paper, Goldstein and Gigerenzer (2002, p. 80) 

acknowledge that, “recognition and knowledge validities usually vary when one 

individual learns to recognize more and more objects from experience” but they also 

appear to endorse the view that if multiple individuals are involved, who recognize 

different numbers of objects, it is possible that “each individual has roughly the same 

recognition validity” (Goldstein & Gigerenzer, p. 80). However in situations where the 

recognition-magnitude correlation is high, an individual who recognizes only a few items 

from the pool of items will mostly recognize very large items. Hence, on any given trial, 

a recognized item for that individual is likely to be larger than the unrecognized item. In 

contrast, an individual who recognizes more items from the pool will encounter more 

trials when the single item they recognize is not larger than the unrecognized item. 

It thus seems a priori unlikely that recognition validity can be independent of n, 

where n varies between individuals. Similarly, when both items are recognized and the 

individual is obliged to use their knowledge, an individual who only recognizes a few 
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items from the pool is likely to encounter items of a similarly large magnitude when both 

are recognized. Such items may be less discriminable than the pairs of items – drawn 

from a greater range of sizes – encountered by an individual able to recognize many 

items. Hence it also seems a priori unlikely that knowledge validity can be independent 

of n. 

To formally test the specific question of whether recognition and knowledge 

validities can be independent of n, it is possible to derive values associated with both 

recognition and knowledge validity and examine the effect of varying n upon these 

values. First, consider recognition validity. Goldstein and Gigerenzer (2002) present two 

computer simulations (pp. 80-82) that partially address this by varying recognition 

validity varied as a function of either n (number recognized) or N (the size of the pool 

from which the stimuli are taken). Their results, however, are presented only in terms of 

overall accuracy (the percentage or proportion of correct inferences calculated across all 

choices, including those informed by knowledge or the result of guesswork) rather than 

directly examining the effects upon recognition validity itself. Using the previously 

presented notation, the probability of being correct given that only one of the two 

presented items is recognized is as follows:  

 

(α100p100 + α010p010 + α001p001)/(p100 + p010 + p001)  (2) 

 

The probability expressed in this equation is obviously equivalent to recognition 

validity and can be calculated for both LINDA and the RH model according to the 

method outlined in the Appendix. Figure 3 shows recognition probabilities, conditional 
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on recognizing one item of a stimulus pair (i.e., “recognition validity”), for two versions 

of LINDA (high quality knowledge with pA = pB = pC =1, and low quality knowledge 

with pA  = pB = pC =0.7) and for the RH model. Note that for LINDA, the “recognition 

validity” represented by these graphs represents only the validity of recognition-

consistent inference because LINDA always uses some (albeit limited) knowledge, 

whereas for the RH model the values so expressed represent the validity of recognition-

driven inference. Three correlations (low, medium and high) between recognizability and 

size were obtained, as previously. 

 



 24 

 



 25 

Figure 3. Probability correct, given only one of two items are recognized according to 

recognition (RH) and knowledge-based (LINDA) models. This is equivalent to Goldstein 

and Gigerenzer’s (2002) concept of recognition validity for the RH model and to the 

validity of recognition-consistent inference for the LINDA model. The x-axis only runs 

from 10-90 items recognized (out of a possible 100) because the graph plots probability 

correct given that exactly one of the two presented items is recognized. 

 

As expected, the RH model’s performance when just one of the two items is 

recognized improves with ρ. This is also true for the high quality knowledge version of 

LINDA (pA = pB = pC =1) and the same effect is present but in a weaker form for the low 

quality knowledge version of LINDA (pA  = pB = pC =0.7). Crucially, the performance of 

both models varies with n. These results show formally that observed recognition 

validity, as assessed from actual performance, can vary according to other aspects of an 

individual’s knowledge. This effect is particularly marked for large ρ. Next, consider 

knowledge validity. Similarly to recognition validity, the conditional probability of a 

correct inference given that both items are recognized can be derived and is expressed in 

our notation as follows: 

 

(α110p110 + α101p101 + α011p011)/(p110 + p101 + p011)  (3) 

 

Figure 4 shows probabilities of correct inference, conditional on recognizing both 

items of a stimulus pair (knowledge validity), for LINDA, varying recognition-magnitude 

correlations. This is the high quality knowledge with pA = pB = pC =1, a lower quality 
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knowledge version with pA  = pB = pC =0.7 produces lower levels of performance overall 

but almost identical patterns in response to the same variations in n and ρ. Knowledge 

validity for situations in which the RH is the object of attention is often set at an arbitrary 

value (e.g., Goldstein & Gigerenzer, 2002; Schooler & Hertwig, 2005) but we would 

expect it to vary as a function of n and ρ for many knowledge-based heuristics, as it does 

for LINDA, although the specifics will depend upon the exact nature of the inference 

rule.

 

 

Figure 4. Probability correct, given both items are recognized, for LINDA as a function 

of n and ρ. This is equivalent to Goldstein and Gigerenzer’s (2002) concept of knowledge 

validity. 
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In conclusion, finding LiMEs is dependent not only upon identifying the decision 

rule and circumstances under which they are expected but also upon accurately 

estimating – or manipulating – n in order to obtain the recognition- and knowledge-

validity parameters required. Given this, it is perhaps less surprising than it initially 

appeared that such effects, which would appear to be a mathematical necessity, may 

sometimes be elusive when investigated empirically. 

 

3. General Discussion 

 The aim of the current paper was not to present unequivocal support for LINDA 

as in some way a better, more accurate, or more comprehensive model of decision-

making than the RH, or to refute the RH as a model (indeed, it has proven far more 

productive than its underlying simplicity might lead one to believe). We have instead 

attempted to meet the rather more modest aim of giving an existence-proof that, 

generally, disentangling recognition from other forms of information is more difficult 

than it may first appear. In this context, LINDA is best viewed as an analytical tool to 

enable us to make these arguments in a mathematically rigorous way. The counter-

intuitive nature of LiMEs was previously viewed as providing a strong test of 

recognition-driven inference given that LiMEs are predicted by the RH. This position is 

weakened by the demonstration that LiMEs can easily be produced using a set of 

assumptions in which recognition-only inference plays no part.   

Criticisms of LiMEs as a means of promoting recognition-driven inference could 

perhaps be interpreted as an argument against the proposal that inference might 

sometimes be recognition-driven. It should be emphasized that this was not the intent. 
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Rather, we wished to provide a demonstration that findings which initially seem 

favorable to such a position may not necessarily be as conclusive as they first appear. The 

absence, as well as the presence, of LiMEs is also less informative than some have 

assumed (e.g., Boyd, 2001; Dougherty et al., 2008; Pohl, 2006), and for similar reasons. 

The recognition validities for both recognition-consistent and recognition-driven 

inferences are similarly dependent upon variations in n, which is not ordinarily under 

experimental control. For at least one form of knowledge-based inference (that of 

LINDA) knowledge validity itself is also a function of n. It is possible therefore that both 

published demonstrations of LiMEs and published failures to obtain such an effect 

employed different de facto recognition and knowledge validities than those assumed a 

priori. A positive contribution therefore is to suggest that future studies along these lines 

will need to take such factors into account. 

Finally, LINDA can be applied either in tandem or in opposition to the RH. For 

example, the rule “Apply knowledge (e.g., LINDA) if both items are recognized and 

apply the RH if only one item is recognized” is standard procedure for many heuristics 

(e.g., Gigerenzer & Goldstein, 1996, examined six different procedures that made use of 

the recognition principle when knowledge failed and only one item was recognized). 

However, “Apply LINDA whenever possible but if LINDA does not provide usable 

information for this item, apply the RH” is also a valid strategy and one which might 

prove superior if LINDA is particularly reliable. This latter statement reduces to the 

assertion that a minimal level of confirmation or refutation will be sought when only one 

item is recognized and that “mere” recognition will be employed only if and when this 
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minimal test fails to produce usable knowledge. This is consistent with recent data by 

Hilbig and Pohl (2008).  

In the current formulation, LINDA always has access to median knowledge for 

the recognized items (though this information may not always be correct). Other LINDA-

like models could be developed where some recognized items may not have median 

knowledge associated with them, although we do not go into detail about such items here. 

The key difference between LINDA and the recognition heuristic is that sometimes 

LINDA recognizes items which it believes are below median. This enables it to guess 

correctly, in situations where only one item is recognized, that the recognized item is the 

smaller of the pair. In contrast, provided the magnitude-recognition correlation is 

positive, the RH always guesses that the recognized item is larger (the converse also 

applies: where the magnitude-recognition correlation is negative, the RH will always 

guess that the recognized item is smaller whereas LINDA will sometimes know better). 

In circumstances where LINDA believes all the items it recognizes are above median, 

LINDA and the RH make identical predictions. There is nothing magical about using 

median knowledge in our modeling, it is simply a tractable way of characterizing limited 

information. Any model that has the property that it knows that some of the items it 

recognizes are small, but in general has very limited information, is likely to behave in a 

LINDA-like manner. 
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Appendix. 

 

1. Derivation of the values of pijk in Equation (1): 

A total sample of N = 100 items is assumed, of which n are recognized. n is 

systematically varied between 0-100 in all the studies reported here.  

u, v and w are the numbers of items recognized from each of the subsets A (comprising 

items only from the top quartile), B (second quartile) and C (below median). These can 

be used to calculate n. 

The probabilities associated with recognizing 0, 1 or 2 items from u, v and w on any 

given trial (pijk) can then be calculated as follows: 

 

Probabilities associated with recognizing none of the items from u, v or w: 

p000 = [(N – u – v – w)/N] x [(N – u – v – w – 1)/(N – 1)] 

 = (N – u – v – w)(N – u – v – w – 1)/[N(N – 1)] 

Probabilities associated with the recognition of only one item: 

p100 = [2u/N] x [(N – u – v – w )/(N – 1)] 

  = 2u(N – u – v – w)/[N(N – 1)] 

This is the probability that only one of the two items is recognized and it is in the 

top quartile (a member of u).  

Probabilities that the item recognized is from the second quartile, or is below the median, 

and that the other item is not recognized can be calculated by substituting v or w, 

respectively, for u in the first term, giving: 

p010 = 2v(N-u-v-w)/[N(N - 1)] 

p001 = 2w(N-u-v-w)/[N(N - 1)] 
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Probabilities associated with the recognition of both items: 

p110 = 2uv/[N(N-1)] 

(for u and v, so one item is in the top quartile and one item is in the second 

quartile) 

p101 = 2uw/[N(N-1)] 

p011 = 2vw/[N(N-1)] 

(as above, substituting v and w where appropriate) 

p200 = u(u – 1)/[N(N-1)] 

(where both items are in the top quartile, both are members of u)  

p020 = v(v – 1)/[N(N-1)] 

p002 = w(w – 1)/[N(N-1)] 

(as above, substituting v and w where appropriate). 

 

2. Parameters for the Recognition Heuristic model. These represent the calculated 

probabilities of success associated with recognizing 0, 1 or 2 items where the appropriate 

probabilities of recognizing 0, 1 or 2 items are given by the equations calculated in 

section 1 of this appendix. Overall performance of each of the strategies (the RH and 

LINDA) is then given by equation (1) 

 

Recognize none: 

α000 = 0.5 (Chance) 

Recognize one item (which happens to be in the top quartile, i.e., a member of u): 

α100 = 0.5 x (0.25N - u)/(N – u – v – w)  + (0.75N - v - w)/(N – u – v – w)  
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= (0.875N - 0.5u – v - w)/ (N – u – v – w) 

For recognition of members of v and w, the chances of success are similarly: 

α010 = 0 + 0.5 x (0.25N – v)/(N – u – v – w)]  + (0.5N – w)/(N – u – v – w)  

 = (0.625N – u – v – w)/ (N – u – v – w) 

The recognized item is in the second quartile. 

 

α001 = 0 + 0.5 x (0.5N – w)/(N – u – v – w) 

 = (0.25N – 0.5w)/ (N – u – v – w) 

The recognized item is below median. 

 

For all these cases which involve recognition of both items 

α110 = α101 = α011 = α200 = α020 = α002  

It is assumed knowledge can be used with a certain probability of success. This 

probability is chosen to make the LINDA and RH models “equivalent” in our examples, 

in the sense that they both produce the same probability of success when all items are 

recognized.  

 

3. Parameters for the LINDA model. These represent the calculated probabilities of 

success associated with recognizing 0, 1 or 2 items where the appropriate probabilities of 

recognizing 0, 1 or 2 items are given by the equations calculated in section 1 of this 

appendix. The means of deriving these equations is basic probability theory similar to 

that used to obtain the corresponding values for the Recognition Heuristic, although the 
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equations themselves are necessarily more complex and therefore explained in a little 

more detail. Overall performance of the LINDA model is given by equation 1. 

 

Recognize none: 

α000 = 0.5 

(Chance). 

 

Recognize one item: 

α100 =  pA[0.5 x (0.25N – u)/(N – u – v – w)] +  pA [(0.75N – v - w)/(N – u – v – w)] 

 + (1 – pA )[0.5 x (0.25N – u)/(N – u – v – w)] + 0 

       = [0.5 x (0.25N – u) +  pA (0.75N – v - w)]/(N – u – v – w)] 

The participant recognizes one item, which is from the top quartile. With probability pA  

they believe it to be above median and choose it.  

The first term is then the probability that the non-recognized item is also in the top 

quartile, times the probability of success (chance).  

The second term is the probability that the non-recognized item is in the second quartile 

or lower, times the probability of success.  

With probability 1 - pA  the participant believes the recognized item is below median, and 

so does not choose it.  

The third term is the probability that the non-recognized item is in the top quartile, with 

chance probability of being correct.  

The fourth term is the probability that the non-recognized item is in the second quartile or 

lower, with no chance of being correct.  
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The probability of choosing correctly if one item from u is recognized is the sum of these 

terms and the second line of the equation rewrites the calculation for overall probability 

of success into a more succinct form. The equations for choosing correctly when a single 

item from v or w is recognized take similar form:  

α010 = 0+ pB x 0.5 x (0.25N – v)/(N – u – v – w) + pB  x (0.5N – w)/(N – u – v – w)  

 + (1 – pB )(0.25N – u)/(N – u – v – w)  

+ (1 – pB ) x 0.5 x(0.25N – v)/(N – u – v – w) + 0 

= [0.375N – u – 0.5v + pB (0.25N + u –w)]/(N – u – v – w) 

The recognized item is in the second quartile (from v). With probability pB they believe it 

is above median. 

 

α001 = 0 + (1-pC) x 0.5 x (0.5N – w)/(N – u – v – w) + pC x (0.5N – u -v)/(N – u – v – w) 

 +  pC  x 0.5 x (0.5N – w)/(N – u – v – w) 

= [0.25N – 0.5w + pC (0.5N - u - v)]/(N – u – v – w) 

The recognized item is below median (from w). With probability 1- pC  the participant 

believes the item is above median. 

 

Two items are recognized. With reference to u,v,w, the possible combinations in which 

this might occur are: 110, 101, 011, 200, 020, 002. 

α110 = 0.5 x pA pB + pA (1 – pB ) + 0 + 0.5 x (1 – pA )(1 – pB) 

= 0.5 +0.5 pA  – 0.5 pB 
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Two items are recognized: one item is in the first quartile (from u) and the second item is 

in the second quartile (from v). With probability pA the participant believes the first item 

is above median and with probability pB they believe the second item is above median. 

 

α101 = 0.5 +0.5 pA  – 0.5(1- pC ) 

 = 0.5 pA  + 0.5 pC  

(As above, substituting 1-pC for pB) 

 

α011 = 0.5 pB  + 0.5 pC 

(As above, substituting pB for pA) 

 

α200 = α020 = α002 = 0.5  

Both items are from the same subset, and so cannot be distinguished, performance is 

chance. 


