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Abstract

We study how the presence of multiple participation opportunities coupled with in-

dividual learning about payo¤s a¤ects the ability of agents to coordinate e¢ ciently in

global coordination games. Two players face the option to invest irreversibly in a project

in one of many rounds. The project succeeds if some underlying state variable � is positive

and both players invest, possibly asynchronously. In each round they receive informative

private signals about �, and asymptotically learn the true value of �. Players choose in

each period whether to invest or to wait for more precise information about �.

We show that with su¢ ciently many rounds, both players invest with arbitrarily high

probability whenever investment is socially e¢ cient, and delays in investment disappear

when signals are precise. This result stands in sharp contrast to the usual static global

game outcome in which players coordinate on the risk-dominant action. We provide a

foundation for these results in terms of higher order beliefs.
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1 Introduction

Coordination problems arise in a wide variety of economic situations. A typical example is

of a setting where the successful implementation of some socially bene�cial project depends

on whether enough agents participate. Such settings may lead to coordination failure, which

arises when a given group of agents fails to participate in the project despite the fact that it

is in their collective interest to do so.

The traditional theoretical analysis of coordination problems, where payo¤s are typically

assumed to be commonly known, has been plagued by the existence of multiple equilibria.

For a given payo¤ rule, there exists at least one equilibrium with coordination failure, and

one without. Such analysis is unable, therefore, to quantify the extent and relevance of

coordination failure, since it is not possible to assign probabilities across equilibria.

The recent literature on global games (Carlsson and van Damme [2], Morris and Shin

[17]) has made substantial progress in resolving the problem of multiplicity in the analysis

of coordination problems. This literature has identi�ed an important class of coordination

games, in which underlying payo¤s are observed with small amounts of idiosyncratic noise,

where the multiplicity of equilibria is eliminated. The �re�nement�thus achieved allows us

to quantify the extent of coordination failure, and indeed coordination failures do occur in

the unique equilibrium of the canonical global game. Whether coordination failure arises

depends on the payo¤s of the underlying complete information game. Roughly speaking,

agents are only able to coordinate on some risky action in the unique equilibrium of a global

game if that action is risk dominant, i.e., it is optimal for each agent to choose that action

in the underlying complete information game even when there is only a �low� probability

that his fellow players will choose that action.1 This can only happen if the bene�ts that

arise from the action conditional upon success are high relative to the cost of undertaking

it. Thus, the global games literature has negative implications for the ability of agents to

coordinate on socially bene�cial actions: only projects that involve �little strategic risk�will

be implemented in equilibrium. In all other cases, coordination failure will arise.

In this paper we evaluate how the incidence of coordination failure in global games is

a¤ected by the presence of multiple opportunities to participate between which players in-

dividually learn about the fundamental. The canonical global game requires that all agents

choose their actions simultaneously. To what extent would the incidence of coordination

failure change if we allowed for some asynchronicity in the actions of potential participants

1More precisely, equilibria of the underlying complete information game survive in the induced global game

only if they are p-dominant (Morris, Rob, and Shin [16]) for �low�p. Exactly how low p must be depends on

the structure of the game. In two player games, p-dominant equilibria for p < 1
2
survive. See Kajii and Morris

[14] for a generalization of this idea.
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in a coordination problem?

To be speci�c, consider a setting in which the success of a socially bene�cial investment

project depends on the total number of agents who invest over the course of T distinct periods.

Two players choose at which period (if any) to invest irreversibly, while observing noisy private

signals about the underlying state variable (�). At each period t, the information structure

is that of a canonical global game. We assume that agents privately learn the fundamental

� asymptotically: if the number of periods gets arbitrarily large, each agent�s cumulative

individual information becomes arbitrarily precise. The project succeeds if the fundamental

is good and each player invests in some period. Note that it is not necessary for success

that both players invest in the same period. This is, therefore, an asynchronous investment

game. The choice between early vs late investment is driven by a trade-o¤: early investment

generates higher payo¤s if the project succeeds, while late investors have more accurate private

information about payo¤s. As in a standard global game, we assume that there exist values

of � that make investment dominant (� � 1) or dominated (� � 0). To �x ideas, imagine

that 0 < � < 1 and the payo¤s are such that investing is not risk-dominant. This means that

if agents had to choose their actions simultaneously in some period, say T , and thus play a

static global game, then, in the limit as noise vanishes, coordinated investment could not be

supported as an equilibrium outcome, and coordination failure arises. To what extent will

the possibility of choosing actions asynchronously a¤ect the incidence of coordination failure?

We report the following results:

1. Coordination failure almost never arises in a su¢ ciently long asynchronous investment

game.

For any � > 0 and " > 0 there exists some T such that for any T � T , investment

succeeds with probability at least 1 � " in the asynchronous game with T periods

whenever � > �. Thus, in the limit as T !1; the project succeeds whenever � > 0. In
addition, as noise in observation vanishes (i.e., �t ! 0 for all t) there is also no delay in

investment: players successfully coordinate on implementing the project immediately,

thus achieving the social optimum.

2. The forces driving our results can be cleanly characterized in terms of higher order

beliefs in the asynchronous coordination game.

Building on the standard belief operators of Monderer and Samet [15], we construct

an asynchronous p-belief operator which is suitable for characterizing behaviour in our

asynchronous investment game. Using this operator, we show that by choosing su¢ -

ciently long asynchronous investment games, it is possible to generate adequate levels

of generalized approximate common knowledge (i.e., generalized common p-belief for
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arbitrarily high p) in order to support asynchronous coordination. The generalization

lies in allowing the required beliefs to be attained at di¤erent times.

If synchronous participation at the last round T was necessary for the success of the

project, then players invest only if, at T; they commonly p-believe in the standard

sense of Monderer and Samet [15], for su¢ ciently high p, that the fundamental allows

success. It is now well understood (see, for example, Morris and Shin [17]) that, however

small the private errors are, the global games information structure does not generate

common p-belief for p > 1
2 , and thus coordination fails whenever investment is not

risk-dominant. In our setting, players do not have to participate synchronously at T ,

but both players must participate eventually by period T for investment to succeed. In

such a situation, only a relaxed version of common beliefs is necessary for coordination.

Fix a probability of success p 2 (0; 1) su¢ cient to induce players to invest in period t.
Both players will invest by period T , if they both believe with probability p by period

T that the fundamental is good, they both believe with probability p by period T that

they both believe with probability p by period T that the fundamental is good...etc. We

refer to such an event as asynchronous common p-belief of event � > 0. This variation

of standard common belief turns out not to be very demanding in our setting.

To obtain some intuition for why asynchronous approximate common knowledge is at-

tained in long games, consider a game with in�nitely many rounds in which each player

asymptotically privately learns the fundamental. Then if the fundamental lies in some

open set G; all players will eventually p-believe G almost surely for any p < 1. This

makes event G p-evident in an asynchronous sense, which in turn implies asynchronous

common p-belief of G. The shortcoming of this line of argument is that it relies on

the assumption that the fundamental is asymptotically perfectly revealed to players.

It is thus not clear whether the argument extends to long but �nite games in which

some information about the fundamental remains uncovered. Existing results on static

global games show that there is an important discontinuity in the structure of stan-

dard common beliefs as information about the fundamental becomes in�nitely precise.

We �nd that such a discontinuity does not arise when the in�nite asynchronous game

is approximated by a sequence of �nite asynchronous games. Approximate asynchro-

nous common knowledge is attained even if small uncertainty about the fundamental

remains.

Our results suggest that allowing asynchronicity and private learning in coordination

problems may substantially reduce the extent of coordination failure in global games. In

addition to being of theoretical interest, our results are potentially widely applicable. For

example, consider the problem of foreign direct investment (FDI) into a newly liberalizing
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emerging market. Payo¤s from FDI depend on whether the emerging economy �takes o¤�,

which in turn depends on the amount of FDI. Thus, this is a coordination problem. In

addition, it may not matter precisely that all FDI takes place at the same time, but simply

that it occurs during the �rst several months to several years of the liberalization programme.

It is not uncommon for liberalization to be accompanied by government subsidies to early

investors. Yet, it is also likely that late investors will have better information about the

state of the underlying emerging markets. Thus, the class of stylized games outlined above

represents trade-o¤s that are not dissimilar to those outlined in this applied context. The FDI

example is not unique. Indeed, it may be reasonable to argue that several of the applications

studied to date using global games (e.g., currency crises, bank runs, �nancial contagion etc.2)

may well have an element of asynchronicity to them.

The rest of the paper is organized as follows. In section 2 we outline the model. Section 3

states our main result, while section 4 explains the e¢ ciency result in terms of asynchronous

common p-belief. Section 5 discusses the role of our main assumptions, considers potential

extensions, and concludes. Before proceeding to the main model, we �rst outline the related

literature.

1.1 Literature Review

Our analysis originated in the work of Dasgupta [5]. Dasgupta outlines conditions under

which the provision of the option to delay combined with private learning improves the ability

of agents to coordinate e¢ ciently in two-stage global games. We use elements of Dasgupta�s

modeling framework for an analysis of a di¤erent but related question. We do not compare

coordination outcomes in di¤erent �nite games; rather, we show that e¢ cient coordination

arises in the limit when players have many opportunities to act. Another example of a

dynamic global game with private learning can be found in Heidhues and Melissas [12].

The current analysis bears a general connection to models of information dynamics in

multi-stage global games (e.g., Chamley [3], Angeletos, Hellwig and Pavan [1]). In contrast

to our work, papers in this strand of the literature focus on learning from endogenously

generated public signals, and focus on the robustness of equilibrium uniqueness in global

games. We restrict attention to pure private information settings with a unique long-run

outcome, and focus on characterizing the (lack of) incidence of coordination failure.

Our explanation of the e¢ ciency result in terms of higher order beliefs builds on the work

of Monderer and Samet [15] and Morris and Shin [19]. The analysis is also related to the

work of Cripps, Ely, Mailath, and Samuelson [4]. These authors delineate general condi-

2See Morris and Shin [18]for currency crises, Goldstein and Pauzner [9] for bank runs, and Dasgupta [6]

and Golstein and Pauzner [10] for �nancial contagion.
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tions under which agents asymptotically attain approximate common knowledge via private

learning. The analysis of Cripps et al has important implications for long-run outcomes

in situations which can be divided into two distinct phases: agents learn privately in the

�rst phase, and attempt to coordinate synchronously in the second. We study situations in

which those two phases are merged together: players attempt to coordinate asynchronously

while they privately learn about payo¤s. Both papers study whether private learning leads

to approximate common knowledge. However, di¤erent concepts of approximate common

knowledge are relevant for ensuring successful coordination in synchronous and asynchronous

coordination games, because the payo¤-relevant events di¤er in these two types of games.

Cripps et al study standard common beliefs as de�ned in Monderer and Samet [15], while

we study an asynchronous form of common beliefs. The two concepts turn out to have very

di¤erent properties. In our model, private learning fails to deliver common knowledge in the

standard sense as studied by Cripps et al, but succeeds in delivering asynchronous common

beliefs. This explains why coordination failure arises in the synchronous coordination game

but does not arise in our asynchronous game.3

Gale [8] provides an elegant analysis of the extent of ine¢ cient delay in dynamic coordi-

nation games with complete information. He shows that ine¢ cient delay can be eliminated

when the period length becomes very small. While our main result implies e¢ cient delay-free

coordination in the limit as private signals become accurate, and thus bears a resemblance to

Gale�s, the situations considered and the arguments o¤ered are very di¤erent. Gale�s result

builds on backward induction based on the observability of past actions in a game of perfect

information, while we consider an asymmetric information setting in which players do not

observe each others�actions. Hörner [13] studies a model similar to that of Gale [8], and �nds

that patient players coordinate e¢ ciently when they receive a single noisy signal of payo¤s

prior to the play of the game.

2 Model

Two players i 2 f1; 2g play a joint investment game �T , with T 2 N. The game consists of
T rounds, all of which may take place within a �nite, possibly short time window. In each

round t 2 f1; : : : ; Tg, each player chooses one of the two actions ait 2 f0; 1g; we interpret
Action 1 as �invest�, and Action 0 as �wait�. Each player may invest in at most one round.

Investment is irreversible.4 The payo¤s depend on the action pro�les and the value of a

fundamental parameter � 2 R describing the characteristics of the project. The fundamental
3 In an earlier paper Ely [7] informally discusses the notion of asynchronous common belief, but only to

contrast it to the standard common belief which is the relevant concept for the problems he considers.
4We discuss the role of irreversibility and other robustness issues in the conclusion.

6



� is drawn before the �rst round according to an improper uniform distribution on R, and
remains �xed over all rounds.

The players do not observe the true value of the fundamental �; instead, they receive

private noisy signals of the value of � in every round. Speci�cally, each player i receives a

signal ex(i;t) = � + ~�t"(i;t) in round t, where the errors "(i;t) are drawn from N(0; 1) and are

independent across players and rounds. The standard errors ~�t are strictly positive for all t,

and the sequence (~�)1t=0 is �xed throughout independent of the value of T . Player i does not

observe the choices of player �i before the end of the game.
Players form their beliefs in each period about the true value of the fundamental through

Bayesian updating given their received signals. The resulting beliefs over � conditional on a

sequence (ex(i;t))tt0=1 are distributed as N(x(i;t); �2t ), where
x(i;t) =

Pt
t0=1 ex(i;t) 1~�2

t0Pt
t0=1

1
~�2
t0

;

and
1

�2t
=

tX
t0=1

1

~�2t0
:

We will refer to x(i;t) as the cumulative signal, and to �t as the cumulative standard error.

We assume that players asymptotically privately learn the true fundamental; that is,

lim
t!1

�t = 0: (1)

Note that, since each standard error ~�t is strictly positive, each cumulative standard error

�t is also strictly positive. Thus even though players learn the true fundamental in the limit

over all periods, some uncertainty remains in each round.

The success of the project is determined at the end of the game, based on the fundamental

� and the actions of the players:

� For � � 0, the project fails regardless of the players�actions.

� For � � 1, the project succeeds regardless of the players�actions.

� For 0 < � < 1, the project succeeds if and only if both players invest by round T ,

possibly asynchronously.

Each player�s payo¤ in the game depends on whether and in which round the player

invested, and whether the project succeeded. The payo¤s are

� 0 if the player never invests,
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� �tb if the player invests in round t and the project succeeds, and

� ��tc if the player invests in round t and the project fails,

where the parameters b and c are both strictly positive, and � 2 (0; 1).
The payo¤s in this game are consistent with a wide variety of applied settings. For

example, they can be easily understood in the context of the FDI example discussed in the

introduction. Future payo¤s from FDI are positive only if enough foreign �rms participate,

and the state of the domestic economy (�) is not too weak. Net bene�ts from successful

FDI participation decline for later participants due to declining subsidies from the emerging

market government. Net costs in the event of failure decline for late participants as well, due

to a smaller lock-in period for valuable resources.

We now proceed to analyze this game, and show the crucial role of asynchronicity and

asymptotic learning in eliminating coordination failure.

3 Analysis

The payo¤s outlined above imply two simple properties of the best response correspondence,

which we describe below in Lemmas 1 and 2. Our main results, in turn, can be fully stated

in terms of these two properties.

Lemma 1 There exists some p 2 (0; 1) such that, in any round t, waiting is the unique best
response for any type that believes the project will succeed with probability less than p.

Proof. The payo¤ to investing immediately is

�t (pb+ (1� p)(�c)) :

The minimum value to waiting is 0: Thus, p is de�ned by

�t
�
pb+ (1� p)(�c)

�
= 0;

or equivalently,

p =
c

b+ c
;

as needed. �

Lemma 2 There exists some p 2 (0; 1) such that, in any round t, investing is the unique
best response for any type that believes the project will succeed will probability greater than p.
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Proof. The payo¤ to investing immediately is

�t (pb+ (1� p)(�c)) :

The maximum value to waiting is �t+1b. Thus, p is de�ned by

�t (pb+ (1� p)(�c)) = �t+1b

or equivalently,

p =
�b+ c

b+ c
;

as needed. �
We note that 1 > p > p > 0. Finally, we observe that the existence of p < 1 implies that

however great the amount future information, any player will choose to invest immediately

if she is su¢ ciently optimistic.

In what follows, we simplify notation by treating p and p directly as parameters of the

game. We are now in a position to state our main results, which demonstrate the stark

di¤erence between synchronous and asynchronous coordination games. We begin with the

benchmark synchronous case.

3.1 The failure of coordination in the synchronous game

As a benchmark to compare our results to the existing literature on static global games,

consider the following static, synchronous version of the game �T . In the synchronous version,

which we label by �ST , for 0 < � < 1, the project succeeds if and only if both players invest

synchronously at round T . All other features remain unchanged. We show that for any � < 1

coordinated investment fails with arbitrarily high probability as long as T is big enough,

whenever p > 1
2 .

Proposition 1 Fix any p 2
�
1
2 ; 1
�
. For any � < 1 and " > 0 there exists some T such that

for any T � T , the project fails with probability at least 1� " in �ST whenever � � �.

This result is a consequence of results from the extant literature on static global games

(see Morris and Shin [17]), and so we only discuss the argument informally. The game played

at round T is a canonical static global game with signals x(1;T ) and x(2;T ) with precision �T .

The unique equilibrium of this game is characterized by a threshold, x�;T , such that players

invest if and only if their signals satisfy x(i;T ) � x�;T . A player observing the threshold signal
x(i;T ) = x�;T assigns probability 1

2 < p to the event that her opponent received a signal above

x�;T . This is a consequence of the Laplacian beliefs property of the global games information

structure discussed in Morris and Shin [17]. Unless the threshold player assigns probability
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almost p to the event � � 1, she strictly prefers to wait. Thus, the distance of the indi¤erence
point x�;T from 1 must be on the order of �T , and hence, as T becomes large and �T small,

x�;T approaches 1.

In order for coordination failure to occur in the synchronous game, it is not essential that

agents can invest only at round T . In fact, a similar result would hold in an alternative

benchmark game where agents are free to choose in which round to invest, but the project

succeeds only if they both end up investing in the same round.

In sharp contrast to these synchronous settings, we now show that coordination almost

never fails in the asynchronous game for � > 0.

3.2 The success of coordination in the asynchronous game

The following proposition establishes that, in the game with many rounds, both players are

likely to invest whenever the fundamental allows for success of the project (� > 0).

Proposition 2 Fix any p 2 (0; 1). Suppose that both players play serially interim undomi-

nated strategies. For any � > 0 and " > 0 there exists some T such that for any T � T , the
project succeeds with probability at least 1� " in �T whenever � > �.

Our central result follows from two core lemmas (3 and 4). The proof that follows consists of

three steps: First, we brie�y outline some notation. Second, we state the two main lemmas.

Finally, we argue that the main result follows from the lemmas.

Proof. Fix q 2 (p; 1). Denote the event that player i q-believes event E at t by B(i;t)q (E);

that is, B(i;t)q (E) =
�
x(i;t) j Pr(Ejx(i;t)) � q

	
. Denote by l�

�;q
t (�) the probability that the

player has q-believed that � > �� at least once up to and including round t:

l�
�;q
t (�) = Pr

0@ [
t0=1;:::;t

B(i;t)q (� � ��)

������ �
1A :

Let l�
�;q(�) denote limt!1 l

��;q
t (�). This limit exists because l�

�;q
t (�) is non-decreasing in t.

The following lemma demonstrates one important consequence of our assumption that

players asymptotically learn the true state. Such asymptotic learning guarantees that, when

the true state is ��, each player will, at least once during the course of an arbitrarily long

game, believe with arbitrarily high probability that the true state is not below ��.

Lemma 3 For all 0 < q < 1 and all �� 2 R: l��;q(��) = 1.

The formal proof is provided in the appendix. The main idea of the proof of Lemma 3

is the following: conditional on ��, the probability that a player q-believes � � �� is 1� q in
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each round, but with the complication that the posterior probabilities p(i;t) = Pr(� � ��jx(i;t))
are correlated across rounds. We will show, roughly, that beliefs across su¢ ciently distant

rounds t and t0 are approximately independent. The intuition for this is that if the amount

of information that a player receives between t and t0 is large relative to what she knew at t,

then the information at t has only a negligible impact at t0. For long games, we can choose a

long subsequence of rounds such that all rounds in the subsequence are su¢ ciently distant.

Hence the probability of q-believing � � �� in at least one of these rounds approaches one as
the number of rounds grows large.

Our next result shows that, in a su¢ ciently long (but �nite) game, whenever a given

player believes with probability strictly bigger than p that the fundamentals are such that

investment succeeds if both players invest, then that player will invest immediately.

Lemma 4 Suppose that both players play serially interim undominated strategies. For any

� > 0 and q 2 (p; 1), there exists some T such that for any T > T , player i invests in round
t of game �T if she believes at t with probability at least q that � � �.

Proof of Lemma 4. Let ��� be the in�mum of those � for which the statement holds. We

must show that ��� = 0. We proceed by a contagion argument. The statement clearly holds

for � � 1. The proof consists of showing that if the statement holds for all � > �� for some
�� > 0, then there exists " > 0 such that it holds for all � > �� � ". Thus we must have
��� = 0, for otherwise taking �� = ��� would give a contradiction.

Assume that the statement is true for all � > �� for some �� > 0. Then there exists some

T 00 such that in any game �T with T > T 00, player �i invests at t if she q�believes that
� > ��. Thus, whenever

S
t0=1;:::;T B

(�i;t0)
q (� > ��) is true, player �i will invest at some t in

the game �T . Fix some r 2
�
p
q ; 1
�
. Lemma 3 implies that there exists T 0 such that

l�
�;q
T 0 (�

�) > r:

The function l�
�;q
T 0 (�) is continuous. Therefore, there exists some " 2 (0; �

�) such that

l�
�;q
T 0 (�

� � ") � r:

Since l�
�;q
T (�) is non-decreasing in T and �, we have

l�
�;q
T (�) > r

for all T > T 0 and � > �� � ".
Now consider a game �T with T > max(T 00; T 0): Suppose player i q-believes at t that

� > �� � ". Since T > T 0; � > �� � " implies that l�
�;q
�i;T (�) � r: Since T > T 00, by hypothesis,
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player �i invests at t if she q�believes that � > �� at t. Thus, conditional on � > �� � "
the probability that player �i invests is no less than r. Therefore, at t, player i attaches
probability at least rq to the event that the project succeeds. Since rq > p, this implies that

player i invests at t. �
Our main result follows immediately from Lemmas 3 and 4. Fix � > 0 and " > 0. By

Lemma 4, there exists some T 0 such that each player invests in the game �T with T > T 0 if

she q-believes that � � �. By Lemma 3, there exists some T 00 such that for T > T 00, when

the fundamental is at least �, the probability that both players q-believe that � � � in some
round in �T is greater than 1� ". Taking T = maxfT 0; T 00g gives the result. �

Thus, in sharp contrast to the synchronous case, coordination failure arises with vanishing

probability in the asynchronous case as the number of rounds grows large. In addition, if, as

in the synchronous case, we let observation noise vanish, we get the even stronger implication

that there is no delay in successful coordination. This is a corollary of Proposition 2. To

make this idea precise, consider a family of sequences (��t)1t=1, where � > 0 is a scaling

factor, and (�t)1t=1 is some �xed sequence with strictly positive members converging to 0. We

will denote by �T (�) game with T rounds and noise parameters (��t)Tt=1.

Corollary 1 For any � > 0 and " > 0 there exists some � > 0 and T such that for any � < �,
in any equilibrium of �T (�) with T > T , both players invest in round 1 with probability at

least 1� " whenever � � �.

What explains the stark di¤erence in outcomes in the synchronous and asynchronous co-

ordination games? One instructive way to interpret this di¤erence arises out of characterizing

the higher order beliefs of players in these games. We turn to such a characterization in the

next section.

4 Higher Order Beliefs

It is well-known that the coordination failure arising in static global games can be explained

by the lack of approximate common knowledge. The �nding that coordination failure does

not arise in our asynchronous global game indicates that some aspects of higher order beliefs

di¤er between synchronous and asynchronous global games. The current section is devoted

to examining this di¤erence.

First, we introduce notation for payo¤-relevant sets of fundamentals: �good fundamen-

tals,�G = (0;+1); and �upper dominance fundamentals�U = [1;+1). If � 2 G; the project
may succeed. If � 2 U , the project must succeed.

12



4.1 The synchronous case

We �rst informally review the well-known result for the static global game. Consider the

simple static game obtained when the dynamic game described in Section 2 has only one

round; that is, when T = 1. Correspondingly, for the remainder of this subsection we do not

superscript or subscript variables by t. The following discussion is based on Morris and Shin

[17].

Let Bip(E) denote the set of i�s types that assign probability at least p to the event E; for

types Bip(E) we say that i p-believes E. Let Bp(E) denote the pro�les at which both players

p-believe E.

To simplify the exposition, assume (for this subsection only) that investment of both

players is necessary for the project to succeed whenever � > 0, so that there is no upper

dominance region. Then the best response of each player is to invest if and only if she p-

believes both that the fundamental � is in G, and that the other player invests. Therefore,

investment is rationalizable only for types of player i that p-believe the following list:

� G,

� that player �i p-believes G,

� that player �i p-believes that player i p-believes G,

� etc.

Hence both players will invest only on the intersection\
k�1

h
Bp

ik
(G);

which is denoted by Cp(G) and called common p-belief of G.

However, common p-belief of G is di¢ cult to achieve in static global games. Suppose

p > 1
2 . In that case, player i p-believes G only if xi � x(1) = 0 + �F�1(p). But for common

p-belief of G, player i must also believe that the opponent�s signal exceeds x(1). This belief

occurs only if xi � x(2) = x(1) +
p
2�F�1(p). Continuing to higher orders of beliefs, we get

conditions xi � x(k) where x(k) = x(k�1) +
p
2�F�1(p) for all k > 1. Since F�1(p) > 0 for

p > 1
2 , the sequence x

(k) diverges to 1, and hence there is no state at which G is common

p-belief. Note that this argument holds for arbitrarily small �.

If we take a snapshot of our dynamic game at any round t, the information structure is

identical to that of the static global game with � = �t. Hence the common p-belief in the

above static sense is not achieved in any of the rounds of the dynamic game. This explains

the coordination failure described in Proposition 1 � the game studied there is essentially a

static game with � = �T , and the fact that �T decreases in T is irrelevant as long as �T > 0.

13



4.2 The asynchronous case

The discussion so far indicates that the di¤erence between the asynchronous and synchronous

games does not lie in the ability to generate standard common p-belief. In this respect private

learning does not help. The di¤erence must lie in the relevant concept of common beliefs

which characterize the set of types for which investment is rationalizable. The less restrictive

conditions under which the project succeeds in the asynchronous game lead to less demanding

belief operators and to a concept of common belief which is satis�ed at a large set of states.

4.2.1 De�nitions

In what follows, for convenience, we refer to the beliefs and actions of player i at date t as

the beliefs and actions of agent (i; t). Let � denote the set of possible fundamentals, and

X(i;t) the set of types of agent (i; t) for i 2 I = f1; 2g and t 2 f1; : : : ; Tg.5 The set of states
is the product ��i;t X(i;t).

We now de�ne relevant events:

� A �-event F� is a subset of �. Such events describe the fundamental, �.

� An (i; t)-event F (i;t) is a subset of X(i;t). Such events describe the type of agent (i; t).

� An i-event F i = �t�TF (i;t) is a list of (i; t)-events, with each member of the list de-
scribing the type of agent (i; t).

� A compound event F = F��
�
�i2IF i

�
is a list containing (i; t)-events for each i 2 f1; 2g

and t 2 f1; : : : ; Tg, together with one �-event.

We will abuse notation by identifying each �-event F� with the compound event F� ��
�i;tXt;i

�
, each product �i2IF i with the compound event ��

�
�i2IF i

�
, and so on.

We say that an i-event F i is eventually true (or holds eventually) if [t�TF (i;t) is true,
that is, if the true state lies in [t�TF (i;t).

For each player i we de�ne an operator �T;i(�) that maps each compound event F =

F� �
�
�(j;t)F (j;t)

�
to

�T;i(F ) � F� \

0@ \
j2Infig

0@[
t�T

F (j;t)

1A1A : (2)

The operator �T;i(�) has a useful interpretation. Suppose that the project succeeds only if
the fundamental lies in F� and all players invest by round T . Suppose that each agent (j; t)

5 In our simple setup � = X(i;t) = R for all (i; t).

14



invests only on the event F (j;t). Then �T;i(F ) is the event that the project succeeds by round

T , conditional on player i investing. Hence �T;i(F ) is the payo¤-relevant event for player i.

Next we de�ne relevant belief operators:

� The belief operator AT;(i;t)p (�) of agent (i; t) maps each compound event F to the set of
types of (i; t) that assign probability at least p to �T;i(F ); that is,

AT;(i;t)p (F ) = B(i;t)p

�
�T;i(F )

�
:

We refer to AT;(i;t)p (F ) by saying that agent (i; t) asynchronously p-believes F . Note

that AT;(i;t)p (F ) is an (i; t)-event.

� The belief operator AT;ip (�) of player i maps each compound event to a list of (i; t)-
events, with each members describing, for some t, the types of (i; t) that asynchronously

p-believe F ; that is,

AT;ip (F ) � �t�TAT;(i;t)p (F ):

� The belief operator ATp (�) maps each compound event to a list of (i; t)-events, with each
member describing, for some (i; t), the types of (i; t) that asynchronously p-believe F ;

that is,

ATp (F ) � �i2IAT;ip (F ):

� The asynchronous common belief operator DTp (�) is de�ned (on compound events F )
by DTp (F ) �

T1
k=1

�
ATp
�k
(F ):

The interpretation of asynchronous common belief DTp (G) of a compound event G re-

sembles the interpretation of the usual static concept of common belief. The event DTp (G)

is a list of events, with each member describing for some agent (i; t) the types of (i; t) that

p-believe the following list:

� G,

� that player �i eventually p-believes G,

� that player �i eventually p-believes that player i eventually p-believes G,

� etc.

The interpretation of asynchronous common belief di¤ers from the interpretation of stan-

dard common belief on page 13 only in the insertion of the quali�er �eventually�. We now

proceed to utilize this concept of asynchronous common belief to delineate the set of types

for which investment is rationalizable in the asynchronous game.
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4.2.2 Rationalizability

In the �rst step, we formulate a su¢ cient condition for rationalizability of investment in

the dynamic asynchronous game in terms of rationalizability in a related simultaneous move

game. This will allow us to use the results on higher order beliefs in simultaneous move games

from Morris and Shin [19]. We refer to this associated game as the characteristic game, and

de�ne it as follows:

De�nition 1 The characteristic game ~�T is a simultaneous move game with 2T players
denoted by (i; t) for i 2 f1; 2g and t 2 f1; : : : ; Tg. The information structure generates

the same joint distribution of fundamentals and signals as in the asynchronous game: the

fundamental � is drawn according to an improper uniform distribution on R, and each player
(i; t) observes a signal x(i;t) � N(�; �2t ). Each player chooses an action from f0; 1g, which
we interpret as Not-Invest and Invest respectively. We say that the project succeeds either

if � � 1, or if � > 0 and for each i 2 f1; 2g, at least one of the players f(i; 1); : : : ; (i; T )g
invests. The payo¤ for player (i; t) for not investing is 0, and for investing is ~b if the project

succeeds, and �~c if the project does not succeed. The parameters ~b and ~c satisfy

p(~c;~b) = p(c; b):6

Note that players in the characteristic game are analogues of agents in the asynchronous

game. However, we continue to refer to player (i; t) in the characteristic game as agent (i; t),

and the collection (i; t)t as player i, as would be appropriate in the asynchronous game.

The asynchronous and characteristic games have the same number of agents. In the char-

acteristic game, investment is a best response for agent (i; t) if and only if she p(c; b)-believes

that project succeeds. In the asynchronous game, investment is a best response for agent

(i; t) if she p(c; b)-believes that project succeeds. Hence, rationalizability of investment in the

characteristic game is a su¢ cient condition for rationalizability of investment in the dynamic

game. We proceed to characterize the rationalizability of investment in the characteristic

game.

One technical complication we face is that our game is of common and not private values.

Players are sure of their own payo¤ parameters in private value games, and hence they su¤er

only from strategic uncertainty; this makes common beliefs directly applicable.7 In common
6Note that we require the probability of success that was su¢ cient for immediate investment in the asyn-

chronous game to be necessary in the characteristic game. It must then be the case that payo¤s in the

characteristic game are less favorable to investing than in the original asynchronous game. It is easy to check

that ~b = b� �b and ec = c+ �b works. Finally, note that since the characteristic game is static, p(~c;~b) = p(c; b)
is necessary and su¢ cient for investment.

7This is the reason why most of the higher order beliefs literature deals with private value games. In our

case the common value setup is dictated by the motive of private learning in our model.
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value games, players su¤er also from uncertainty over the fundamental, which requires a slight

modi�cation in the relevant belief operators. We introduce these modi�ed operators below

and use them to characterize the set of types for which investment is rationalizable. The

introduction of the modi�ed operators is only a technical step; later on, we identify su¢ cient

conditions for rationalizability of investment in terms of the unmodi�ed operators de�ned in

Section 4.2.1 above, and thereafter the modi�ed ones will not be needed.

De�ne the following operators:

� RT;(i;t)p (F ) � AT;(i;t)p ((F \G) [ U).

� RT;ip (F ) � �t�TRT;(i;t)p (F ):

� RTp (F ) � �i2IR
T;i
p (F ).

� QTp (F ) �
T1
k=1

�
RTp
�k
(F ):

The motivation for the operator RT;(i;t)p (�) is as follows: suppose agents (�i; t) invest at
types F (�i;t), and consider the compound event F = ��

�
�i;tF (�i;t)

�
. ThenAT;(i;t)p

�
F�i \G

�
[

U is the event that (i; t) asynchronously p-believes that the project succeeds if she invests,

since success occurs when the fundamental is good and all players eventually invest (F \G),
or when the fundamental is in the upper dominance region (U).

Proposition 3 (Morris and Shin [19]) Investment is rationalizable in the characteristic
game at type x(i;t) if and only if x(i;t) is an element of

R
T;(i;t)
p

�
QTp (G)

�
:

Proof. See Morris and Shin [19]. �
To obtain some intuition for Proposition 3, consider iterated deletion of actions which

are never best responses. After the �rst round of deletion, investment survives for types

A
T;(i;t)
p (G) = R

T;(i;t)
p (G). After the second round, investment survives for types

A
T;(i;t)
p

��
RTp (G) \G

�
[ U

�
= R

T;(i;t)
p

�
RTp (G)

�
:

After the third round, investment survives for types

A
T;(i;t)
p

���
RTp
�2
(G) \G

�
[ U

�
= R

T;(i;t)
p

��
RTp
�2
(G)
�
;

and so on.

The following lemma speci�es su¢ cient conditions for the events RTp (F ) and Q
T
p (F ) to

occur in terms of the events ATq (F ) and D
T
q (F ) for su¢ ciently high q.
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Lemma 5 Suppose q � p+1
2 and AT;(i;t)q (F ) � AT;(i;t)q (G). Then

(i) AT;(i;t)q (F ) � RT;(i;t)p (F );

and (ii) DTq (F ) � QTp (F ):

Proof. Since AT;(i;t)q (F ) � AT;(i;t)q (G), we have

AT;(i;t)q (F ) � AT;(i;t)q (F ) \AT;(i;t)q (G):

The right-hand side of this last expression is contained in AT;(i;t)2q�1 (F \ G), which is in turn
contained in RT;(i;t)2q�1 (F ). Since q � p+1

2 , we have 2q � 1 � p, and hence RT;(i;t)2q�1 (F ) �
R
T;(i;t)
p (F ). This proves part (i).

We now use part (i) to prove part (ii) of the lemma. The event DTq (F ) is contained in

A
T;(i;t)
q (F ). By part (i), DTq (F ) is contained in R

T;(i;t)
p (F ). Since this containment holds

for all (i; t), the event DTq (F ) is contained in R
T
p (F ). Furthermore, D

T
q (F ) is contained in

A
T;(i;t)
q

�
DTq (F )

�
, and hence also in AT;(i;t)q

�
RTp (F )

�
. Applying part (i) again gives contain-

ment in RTp
�
RTp (F )

�
= [RTp ]

2(F ). Continuing in this fashion, we obtain containment in

[RTp ]
k(F ) for any order k. �
We are now ready to state su¢ cient conditions for rationalizability of investment in terms

of the operators AT;(i;t)q (�) and DTq (�).

Proposition 4 Investment is rationalizable in the characteristic game for types of agent (i; t)
in

AT;(i;t)q

�
DTq (G)

�
(3)

for q � p+1
2 .

Proof. A su¢ cient condition for the event RT;(i;t)p

�
QTp (G)

�
to occur is for AT;(i;t)q

�
DTq (G)

�
to occur with q � p+1

2 . To see this, note �rst that A
T;(i;t)
q

�
DTq (G)

�
� A

T;(i;t)
q (G), so the

conditions of Lemma 5 are satis�ed with F = DTq (G). Hence we have

AT;(i;t)q

�
DTq (G)

�
� RT;(i;t)p

�
DTq (G)

�
� RT;(i;t)p

�
QTp (G)

�
;

where the second containment follows from part (ii) of Lemma 5 with F = G. By Proposition

3, investment is rationalizable for types of agent (i; t) in RT;(i;t)p

�
QTp (G)

�
. �

4.2.3 Characterization of asynchronous beliefs

Section 4.2.2 established su¢ cient conditions for rationalizability of investment in terms of

asynchronous common beliefs. In this section, we show that asynchronous common belief is

easily attained in su¢ ciently long games.
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Following Monderer and Samet [15], we say that E is an asynchronous p-evident event

(for T rounds) if E � ATp (E). The following proposition restates a result due to Monderer

and Samet [15], but in the asynchronous setting.

Proposition 5 A state ! lies in DTp (F ) if and only if there exists an asynchronous p-evident
event E containing ! such that E � ATp (F ).

Proof. See Monderer and Samet [15], Proposition 3. �
We use the characterization of asynchronous common beliefs from Proposition 5 to prove

the next result.

Proposition 6 For all r > q, there exists some T such that for all T � T ,

AT;(i;t)r (G) � AT;(i;t)q

�
DTq (G)

�
:

Proof. Let �T (F ) �
T
i �

T;i(F ). Recalling the de�nition of �T;i(�) from page 14, �T (F ) may
be interpreted as the event that F (i;t) is eventually true for each player i and F� holds.8

For �� = 0, Lemma 3 states that for all r < 1 and all � 2 G,

lim
T!1

Pr
�
�T
�
ATr (G)

��� �� = 1:
Denoting Pr

�
�T
�
ATr (G)

��� � = 0� by sT , we have
AT;(i;t)r (G) � AT;(i;t)r�sT

�
ATr (G)

�
because any type of agent (i; t) that assigns probability r to G assigns probability at least

r � sT to the event that G holds and the opponent eventually r-believes G.
Since r > q and sT ! 1 as T ! 1, the product r � sT exceeds q for su¢ ciently large T .

Hence we have

AT;(i;t)r (G) � AT;(i;t)q

�
ATr (G)

�
; (4)

and, since this holds for all agents (i; t), ATr (G) is an asynchronous q-evident event.

By Proposition 5, the event ATr (G) must be contained in D
T
q (G). Combining this with

(4) gives

AT;(i;t)r (G) � AT;(i;t)q

�
ATr (G)

�
� AT;(i;t)q

�
DTq (G)

�
;

as needed. �
Proposition 6 indicates that the su¢ cient conditions for rationalizability of investment

given above are not demanding when T is large. All that is needed is �rst-order r-belief of

G with r > p+1
2 , which is achieved for signals exceeding F

�1(r)�t. Investment is therefore

rationalizable for all positive signals except in a small neighborhood of 0 of size on the order

of �t.
8We apply the operator �T (�) only to compound events for which F� = �, and hence F� holds trivially.
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5 Conclusion

Static coordination games represent a useful abstraction for studying coordination problems

in the real world. However, the associated requirement of synchronicity in participation may

be a strong restriction: the outcomes generated in such models may not be good represen-

tations for real-world coordination problems where agents are able to participate at di¤erent

points of time and can learn about payo¤s while deciding when to participate. We illus-

trate the radical di¤erence between synchronous and asynchronous coordination problems

within the framework of global games. In canonical synchronous (one-shot) global games,

the risk-dominant equilibrium of the underlying complete information game is selected. Thus,

coordination failure is endemic in static global games: there exist a wide class of payo¤s for

which players fail to e¢ ciently coordinate in the unique equilibrium of the canonical global

game despite the fact that it is in their collective interest to do so. At the other extreme, we

introduce a class of enriched asynchronous global games where agents have an in�nity of op-

portunities to participate, while they asymptotically and privately learn the true payo¤s. In

such games, we show that equilibrium play ensures Pareto dominant outcomes. Coordination

failure is eliminated.

In conclusion, it is useful to discuss the role of our major assumptions, and to consider

potential extensions. First, it is clear that though our analysis considers only two players,

our results extend immediately to any �nite number of players. Our core results, described

in Section 3, are phrased in terms of p and p, which do not depend on the number of

players. In explaining our results in terms of higher order beliefs in Section 4, we have used

de�nitions and notation that do not rely on the speci�c number of players (as long as the

set is �nite). However, phrasing the core analysis in terms of two-player games facilitates a

clean comparison to the static game in terms of risk dominance vs. Pareto dominance.

Second, irreversibility plays an important role in our analysis, and, more generally, in

the analysis of dynamic coordination games. The tendency towards e¢ ciency in our model

is related to the fact that we chose the e¢ cient rather than the ine¢ cient action to be

irreversible. This assumption is natural in the context of many applications, including the

leading example of foreign direct investment which we used to motivate our stylized model.

However, in other applications, alternative assumptions may be more appropriate. Had

we chosen di¤erently, that is, had we assumed that the project succeeds only if all players

choose to invest in all rounds, the project would always fail except in the upper dominance

region. The coordination outcome in dynamic coordination games is, therefore, sensitive to

the details of the dynamic setup. A deeper understanding of dynamic coordination problems

may pinpoint detailed changes in the design of coordination processes that could help to

avoid coordination failures. Our results provide a benchmark for such design exercises.
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Finally, while it is useful as a benchmark exercise to study the extreme cases in which

players learn nothing or everything during the play of the game, or when investment is

fully reversible vs irreversible, from an applied perspective it is of greatest interest to learn

about intermediate cases, i.e., about �nite-rounds asynchronous global games with individual

learning during which players learn something but not everything. These intermediate cases

remain interesting problems for future research.

6 Appendix

Proof of Lemma 3. For any in�nite sequence � = (t1; t2; : : :), let

l�
�;q(��; �) = Pr

0@ [
t0=t1;t2;:::

B(i;t
0)

q (� � ��)

������ ��
1A :

We have l�
�;q(��; �) � l��;q(��), so it su¢ ces to show that, for any " > 0, there exists some

sequence � for which l�
�;q(��; �) � 1� ".

Given " > 0, let x < �� be such that Pr(x(i;1) < xj��) < "(1� "). Let t1 = 1 and choose
each subsequent tk so that

Pr(x(i;tk) < xj��) < "k(1� "):

For this sequence t1; t2; : : :, we have

Pr(x(i;tk) < x for some kj��) < ":

Thus it su¢ ces to show that, as long as x(i;tk) � x for all k, there almost surely exists some
period tk in this sequence at which the player q-believes that � � ��. By the Borel-Cantelli
Lemma, it su¢ ces to show that for some � > 0 and some subsequence � of this sequence, the

player q-believes that � � �� with independent probability � in each period in � .
Player i q-believes in period t that � � �� as long as x(i;t)����t

> ��1(q), where �(�) denotes
the standard normal distribution function. Given that x(i;tk) � x, for t > tk, we have

x(i;t) =
�2t
�2tk
x(i;tk) + �2t

tX
s=tk+1

~x(i;s)

~�2s

� �2t
�2tk
x+ �2t

tX
s=tk+1

~x(i;s)

~�2s
:

Hence x(i;t)���
�t

> ��1(q) whenever

�2t
�2tk
x+ �2t

Pt
s=tk+1

~x(i;s)

~�2s
� ��

�t
> ��1(q): (5)
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Since
1

�2t
=

1

�2tk
+

tX
s=tk+1

1

~�2s
; (6)

we have 1
�t
= �t

�2tk
+ �t

Pt
s=tk+1

1
~�2s
, and the left-hand side of Inequality (5) may be rewritten

as

�2t
�2tk
x+ �2t

Pt
s=tk+1

~x(i;s)

~�2s
� ��

�t
=
�t
�2tk
x+ �t

tX
s=tk+1

~x(i;s)

~�2s
�

0@ �t
�2tk

+ �t

tX
s=tk+1

1

~�2s

1A ��
=
�t
�2tk

(x� ��) + �t
tX

s=tk+1

1

~�2s

0@Pt
s=tk+1

~x(i;s)

~�2sPt
s=tk+1

1
~�2s

� ��
1A

=
�t
�2tk
(x� ��)

+

 
�t

s
1

�2t
� 1

�2tk

!0@vuut tX
s=tk+1

1

~�2s

0@Pt
s=tk+1

~x(i;s)

~�2sPt
s=tk+1

1
~�2s

� ��
1A1A ;

where the last equality follows again from Equation (6). Inequality (5) is therefore equivalent

to

�t
�2tk
(x� ��) +

 
�t

s
1

�2t
� 1

�2tk

!0@vuut tX
s=tk+1

1

~�2s

0@Pt
s=tk+1

~x(i;s)

~�2sPt
s=tk+1

1
~�2s

� ��
1A1A > ��1(q):

The �rst term on the left-hand side of this inequality tends to zero as t grows large. The

second term is a product of two factors, the �rst of which tends to one as t grows large, and

the second of which is a standard normal random variable independent of the realizations

of all signals up to period tk. Therefore, for small enough � > 0, the inequality holds with

probability at least � when t is su¢ ciently large given �, q, x, and tk. We may therefore

construct the desired subsequence � by selecting su¢ ciently distant elements of the sequence

t1; t2; : : :. �
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