UNB

Universitat Autonoma de Barcelona

Albanese varieties of
non-Archimedean uniformized
varieties

lago Giné Vazquez

ADVERTIMENT. L’accés als continguts d’aquesta tesi queda condicionat a I'acceptacié de les condicions d’Us
establertes per la seglent lliceéncia Creative Commons: @ M) http://cat.creativecommons.org/?page_id=184

ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptacion de las condiciones de uso
establecidas por la siguiente licencia Creative Commons: @@@@ http://es.creativecommons.org/blog/licencias/

WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set

by the following Creative Commons license: @@@@ https://creativecommons.org/licenses/?lang=en




PhD Thesis

Albanese varieties of
non-Archimedean uniformized
varieties

by
Iago Giné Vazquez

Advisor:
Francesc-Xavier Xarles Ribas

Doctorat en Matematiques
Departament de Matematiques
Universitat Autonoma de Barcelona

Barcelona, 2017






Programa de doctorat en Matematiques.
Memoria presentada per aspirar al grau de Doctor en Matematiques per la
Universitat Autonoma de Barcelona.

Certifico que la present memoria
per a optar al grau de Doctor en
Matematiques ha estat realitzada per
en lago Giné Vazquez sota la meva
direccié.

Dr. Francesc-Xavier Xarles Ribas,
a Bellaterra (Cerdanyola del Valles),
maig de 2017.






Acknowledgements

Primer de tot, vull agrair al Xavier Xarles haver acceptat dirigir-me la
tesi -a més a més sense coneixer-me de res-, donar-me el projecte, i la seva in-
fatigable tasca de guia intel-lectual, a la manera d’un psicopomp matematic.
Sovint, la idea bona o la manera millor d’arribar a algun resultat ha sigut
seva, sempre m’ha explicat una i una altra vegada tot allo que jo li pregun-
tava fins que ho comprenia i també ha posat ordre al “totum revolutum”
que hi havia al meu cap en moltes ocasions. Aixi vaig arribar a entendre
moltes coses i a avancar quan em quedava encallat. Gracies també per totes
les signatures i els informes que ha omplert per fer el projecte de tesi, per
demanar les beques, per les successives memories que havia d’entregar aixi
com ara per depositar, a més de l'ajut que m’ha donat en general amb tots
els tramits per viatges i demés.

En segundo lugar, gracias a mi padre y a mi madre, porque es por quienes
yo he seguido este camino y he llegado hasta aqui. Y gracias a ellos y también
a mi hermana, abuelo/as y tios/as, tanto por la paciencia, como por creer
en mi, como por el soporte animico y material durante estos anos. Moitas
grazas! Moltes gracies!

Gracias a Celeste por el impulso que me ha dado este ultimo ano de tesis
y por la gran motivacién que ha supuesto. Gracias por esa energia que me
ha transmitido y que me ha permitido acabar la tesis. Muito obrigado!

Grazie mille a Piermarco Milione, companero de doctorado en buena me-
dida, por los animos y buenos consejos que me ha dado desde el comienzo,
por ser también una fuente de motivacién a menudo, y por todas sus aporta-
ciones. Gracias a él he trabajado més para preparar seminarios y explica-
ciones mutuas que me han llevado a comprender mejor muchas cuestiones
referentes a la tesis.

He podido hacer la tesis por los profesores que he tenido en la UB y por
lo que me ensenaron en la licenciatura, y también, claro, por los que tuve
en el instituto y lograron transmitirme el interés por las matematicas que
me llevo a estudiar esta carrera. Gracias a los que mas me han animado y
motivado, que también son con los que mas he aprendido. Gracies també als

111



professors del STNB i del Grup de Recerca a la UAB (o sigui, del Seminari
tropical) per acollir-me. Vull reconeixer també I’aportacié que van suposar
els comentaris i preguntes de la Pilar Bayer a les meves xerrades als STNB
de 2013 i 2016.

Gracies a la Roser Homs per I'ajut que m’ha donat sempre que li he
demanat, especialment referent a dubtes de catala, pero també en altres
temes. Gracies també pels anims que en tot moment m’ha donat. Gracies al
Narcis Banos per I'ajut amb el IXTEXI per les converses i intercanvis frikies que
hem mantingut durant aquests anys. Gracies també pels anims i converses
al Dani (i la Nuria), I’Adria, la Kaouthar, en Kiko, la Xesca (i I’Alex), la
Zaira, en Victor, la Julia, etc.

Gracies a les altres amistats (no matematiques) que he fet al llarg d’aquests
anys i que m’han ajudat a alliberar-me del tancament que suposa fer una tesi,
i més en aquest camp, escoltant, mirant, debatent i, en resum, aprenent.

I, de nou, moltes gracies, Xavier, per tot el suport, paciencia i optimisme
que sempre has tingut i que ha permes que arribéssim fins aqui.

v



Formal i1ssues

e Esta tesis ha sido posible gracias a la beca de Formacién del Profeso-
rado Universitario AP2010-5558 del Ministerio de Educaciéon, Cultura
y Deporte y los proyectos MTM2013-40680-P y MTM2016-75980-P del
Ministerio de Economia y Competitividad del Gobierno de Espana, y
gracias al proyecto nimero 2014 SGR 206 del Departament d’Economia
i Coneixement de la Generalitat de Catalunya.

e All the figures in this thesis were elaborated by the author.



vi



Contents

Introduction| ix
[Conventions| xvii
(1 Jacobians of graphs| 1
LI Tntroduction] . . . . . . . . . . . .. ... ... 1
(1.2 Discrete analytic tori] . . . . . . .. ... ... 3
(1.3 The Picard group and the discrete Jacobian of a graph| . . . . 7
(1.4  Computing the Jacobian of a graph| . . . . . .. .. ... ... 10
2 The Albanese torus of a finite metric graph) 21

[2.1 Graphs, their models and the topology on the ends of a tree] . 22
[2.2  Harmonic cochains on a graph and harmonic measures on a |

[ compactset] . . . . . ..o 34
[2.2.1 Harmonic cochains on a graph| . . . . . .. ... .. .. 34

[2.2.2 Harmonic measures on a compact set| . . . . . . . . .. 35

[2.2.3  Relating harmonic cochains with harmonic measures| . 37

[2.3  Harmonic integration on locally finite metric trees| . . . . . . . 38
2.4 'The Albanese torus of a finite metric graph via integration| . . 44

(3

The Abel-Jacobi map for Mumford curves via integration| 55

B Trees and Skeletons . . . . . . .. ... ... ... 57
[3.2  Theretractionmap| . . . . . . . .. ... ... ... ... ... 69
B3 The discrete crossratia . . . . . . . . .. ... L. 74
[3.4 Multiplicative Integrals| . . . . . .. ... ... ... ... ... 7
B.5  The Poisson Formulal . . . . . ... ... ... ... .. .... 84
[3.6  Schottky groups and their limit sets|. . . . . . . ... ... .. 90
(3.7 A peculiar symmetry| . . . ... 96
[3.8 Automorphic Forms|. . . . . . . ... 102
[3.9 'T'he Albanese variety and the Abel-Jacobi map| . . . .. . .. 112

£3.9.1 The abelian variety T/A| . . . . . .. .. ... .. ... 112

Vil



viil

[3.9.2  The isomorphism with the Albanese variety and the |

| Abel-Jacobimap| . . . ... ... 0oL 116
[4 The conjectural construction of the Albanese variety of a |
|  non-Archimedean uniformized variety| 123
.1 The Bruhat-Tits building (over a discrete valuation field)| . . . 124
(4.2 The open sets associated to the minimal edges ot %, . . . . . 132
[4.3  Properties for dimensiond =2/. . . . . ... .. ... ... .. 148
[4.3.1  On the rays in 4, and a number of consequences| . . . 148

[4.3.2  Open sets relations on an apartment and chamber- |

| convexity| . . . . .. ..o 153
[4.3.3 A basis from the edges on therays| . . . ... ... .. 159

[4.4  Harmonic cochains on %4, and its isomorphism with harmonic |

| measures on £ when d =2 and £ C P(V) is compact| . . . . . 164
[4.4.1 Harmonic cochainson %, . .. ... ... ... .... 164

[4.4.2  Relating harmonic cochains on %, and harmonic mea- |

[ sureson Ll . . . .. 167
4.4.3  The isomorphism #(L,7)y = Cy, (B, Z)| . . . . . .. 174

[4.4.4 Invariance of the harmonic cochains with respect to |

[ homotopy| . . . . . . . ... 186
[4.5 The construction of the expected Albanese variety of a non- |

[ Archimedean uniformized variety by a “eeneralized Schottky |
| group’ and some steps to prove that it is a torus when d = 2| . 189
{4.5.1 Integration on a compact set £ C P(V') and the ana- |

[ lytic reduction|. . . . . . . . . ... 189
[4.5.2  Generalized Schottky groups in PGL(V) . . . . . ... 193

[4.5.3  The conjectural Albanese variety and Abel-Jacobi map| 200

[4.5.4 "Towards a proof of the conjecture |2 when d = 2, I: har- |

monic cochains on the simplicial complex quotient of |

P, and an equivalent formulation of being an analytic |

torus for A(Xp) . . . . ..o oo 201

[4.5.5 Towards a proof of the conjecture [2] when d = 2, 1I: |

| the map ¢ has finite cokernell . . . . . . . .. ... .. 204
[> Conclusions and open questions| 209
(Bibliography| 217




Introduction

Along this thesis we give a conjectural construction of the Albanese va-
riety of a non-Archimedean uniformized analytic variety. The main idea we
use is that analytic varieties contain a certain topological structure called
skeleton over which one can develope a parallel theory in an easier way, and
then one can rise several results and constructions to the analytic variety.

For example, in dimension 1, the skeleton of an analytic curve is a metric
graph, and the Jacobian of the curve can be built filling the Jacobian of the
graph, as we show for Mumford curves in the chapters[2|and [3| (and as Baker
and Rabinoff show for more general curves in [BR15]). Further, the skeleton
of the uniformizing space of a Mumford curve coincides with the uniformizing
tree of the skeleton of the curve, and several results on the analytic space
can be reduced to results on its skeleton.

In general dimension and over a discrete field, the given variety degener-
ates to a certain simplicial complex which behaves as its skeleton, and the
uniformization space has a building by degeneration complex. In certain
cases there is a reduction map from the analytic space to its degeneration,
which generalizes the retraction to the skeleton.

Thus, some constructions and proofs on analytic varieties can be reduced
to constructions and proofs on combinatorial objects (or metric spaces, when
there are weights). With this frame, we did this thesis trying to get the
construction of the Albanese varieties from a study of the skeletons of the
given varieties.

Next, we present an historical account of the developments which lead to
this framework and to the objectives of this thesis.

A well known result on complex algebraic curves states that the uniformiz-
ing space of a hyperbolic curve is the upper half-plane with an structure of
analytic space. At the begining of the 1970s, Mumford proved in [Mum'72a]
an analogue result for a class of algebraic curves (those with totally degen-
erate reduction) defined over a p-adic field K changing the complex upper
half-plane by a rigid analytic space called p-adic upper half plane. In fact,
he proved that giving the curve is equivalent to give the uniformizing group
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(up to isomorphism in the respective categories). Thus, he starts with a
Schottky group I' C PGLy(K') (which generalizes the complex groups stud-
ied previously by Schottky to the non-Archimedean setting), he builds the
corresponding p-adic upper half plane Q. as the complement in P} of the
closure Lr of the set of fixed points of elements of I', as the analytification of
a formal scheme built through the subtree 71 of the Bruhat-Tits tree having
Lr as ends, and then, he obtains the curve as the quotient Cr = I'\ Q...

Then, Mumford proved in [Mum72b| that the Jacobians of these curves
are abelian varieties that can be expressed as rigid analytic tori. After those
works, Manin, Drinfeld, Gerritzen, van der Put and other authors found
explicit methods to build such Jacobians using p-adic theta functions and a
relation between these constructions and the theory of graphs, mainly involv-
ing the Bruhat-Tits trees and their quotients Gr = I'\ Tr in which degenerate
the Mumford curves. In the paper by Manin and Drinfeld [MD73] already
appear two pairings

(, )ep : T x I — K*

and
(, )r: Hi(Gr,Z) x Hy(Gr,Z) — 7

and the formula
'UK((fya 7/>EF) = (77 7,)F

which equals the valuation of the pairing on the Schottky group, which de-
fines the Jacobian of the curve and gives the called monodromy pairing by
Grothendieck, to the natural pairing on the edges of the graph. It is an
important step to show that the analytic object defined previously has a
polarization and therefore, it is algebraizable.

The construction by Mumford was taken up by Drinfeld in his study of
the moduly varieties of elliptic modules [Dri74], where he showed that the
space {dpa(xy which arise from the projective space of arbitrary dimension d
over a local field by removing all rational hyperplanes has a natural rigid
analytic structure of p-adic symmetric space by means of a reduction map to
the Bruhat-Tits building

r: Qﬂmd(K) — %(PGLC{<K))

Later Mustafin generalized this result and described a class of varieties of any
dimension generalizing the Mumford curves, built as the quotient of a more
general rigid analytic symmetric space {2, by a suitable hyperbolic subgroup
I' € PGL4(K). The construction of the symmetric space was done again as a
formal scheme with the structure given by a subbuilding %, of the Bruhat-
Tits building of PGLy4(K). Later, first Schneider and Stuhler in [SS91],
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and then de Shalit and Alon in [dSO01],[AdS02] and [AdS03] computed the
rigid de Rham cohomology of the Drinfeld p-adic symmetric spaces and their
quotient varieties I'\Qpa(x) by torsion-free, discrete, cocompact subgroups
' € PGL4(K), for which they are algebraic, in terms of the Bruhat-Tits
building. They introduce harmonic cochains on the Bruhat-Tits building
and harmonic measures on the spherical building at infinity (that, as a set
also can be seen as the K-points of a flag variety) to give different descriptions
of the rigid de Rham cohomology groups.

Further, Raskind and Xarles in [RX07a] and [RX07h] proved for these
p-adically uniformized varieties and other under the assumption of having
totally degenerate reduction that their cohomology verifies certain properties
which allow to develope a p-adic theory of intermediate Jacobians analogue
to the complex theory by Griffiths by means of a cohomological construction
of those, but not analytic as in the case of the Jacobians of Mumfrod curves.
The authors expected that such expected analytic construction could be done
by means of the description of the cohomology with harmonic measures pre-
viously mentioned. More recently, Wilke in [Willl] has given an analytic
construction of the Picard variety of certain rigid analytic varieties, which
he called totally degenerated, and that also generalize the Mumford curves
to any dimension.

In addition to that, new analytic tools for non-Archimedean geometry
have been devoleped through the last decades.

On one hand, new analytic theories have appeared, like the Berkovich
analytic geometry, related to the tropical geometry, or the adic geometry
introduced by Huber. These have better properties than rigid analytic theory
and, as a consequence, they produce stronger results. For example, while
rigid analytic spaces have a G-topology (since the original topology is totally
disconnected, so that it is almost useless), but not a (“good”) topology in
the usual sense, Berkovich spaces did, since they have “more points”.

On the other hand, Bertolini, Darmon, Dasgupta, Green and Longhi
among others (cf. [BDGO04], [Dar01],[Dar06], [Das04], [Das05], [Lon02]) have
developed a theory of multiplicative integrals which allow to give an analytic
construction of Stark-Heegner points (a certain class of p-adic points on mod-
ular elliptic curves), which are conjecturally global algebraic points, with the
hope of proving several cases of the Birch and Swinnerton-Dyer conjecture
(cf. [Dar06l §4]).

Both developments have dealt with Bruhat-Tits buildings and Jacobians
of Mumford curves or objects related to them. Indeed, the equality of pair-
ings described above have been studied and generalized in the context of
Berkovich geometry in [BR15, Thm.’s 2.3 and 2.9], and the reduction map
by Drinfeld has been generalized and reinterpreted as a retraction and as
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a tropicalization. Multiplicative integrals have been used to describe Jaco-
bians of Mumford curves over local fields, after and equality relating these
ones and theta functions in [Das04], and taking into account subtrees of the
Bruhat-Tits tree.

We make our thesis in this context. Its first goal is to build the Jacobian
of a Berkovich-analytic Mumford curve over any complete non-Archimedean
field using these recently introduced techniques. After introducing the theory
of harmonic measures, the Schottky groups and the Mumford curves with the
tools provided by Berkovich geometry we give the defining morphism of the
Jacobian

d
peb * e Hom (A (L,Z)8,Gprc) =T

i ][ d:p— ][ dp
Yp—p YP—p

and the prove that it is an abelian variety rests, mainly, in the equality
between the pairings and that they are positive definite. To do that, we
prove the isomorphism between the harmonic cochains on the tree associated
to I' and the harmonic measures on the ends of the tree and we build a
retraction map from the Berkovich upper half-plane to the tree, which is also
its skeleton.

On the way, we prove in all its generality some old claims of which we
did not find any other rigurous proof in the literature; we generalize several
definitions and results which were only stated for rigid analytic geometry or
when the base field is local. In particular, some of these results are impor-
tant theorems given in [GvdP80] or in [vdP92]. Moreover, we also reprove
for Mumford curves recent results of Berkovich geometry of curves mainly
appeared in [BPR13] and [BR15)], using the theory of harmonic measures,
related to the theories of harmonic cochains and of multiplicative integrals
by means of the Bruhat-Tits R-trees and subtrees of those. In particular, we
relate the Jacobian of the Mumford curve with the Jacobian of the skeleton
of the curve (that when the valuation is discrete it is known as its degenera-
tion graph, and that it is a tropical curve), the last Jacobian playing the role
of tropicalization of the first one, thanks, again, to the equality between the
graph and the monodromy pairings through the valuation map.
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, r
QLF CF V20 Hom(%(ﬁ, Z)O ) Gm,K) ~ JaC(OI‘)
fd (Fab)
rﬁr‘ rﬁp,r VK
) r
TelCr) Cr t»_ Hom(A(E(Tk(Lr)), Z)y, R) Jac(Gr).

[aw)

Our construction of the Jacobian of a Berkovich-analytic Mumford curve
can be useful to make even more explicit the description of such Jacobians
by trying to compute the defining lattices (that is, the periods) using the
multiplicative integrals (this is part of a common project with Piermarco
Milione). It also provides some hints to generalize it to higher dimension.
More specifically, a similar way can be followed to construct the Albanese
variety of a non-Archimedean uniformized variety.

The second goal of this thesis is to present a conjectural analytic con-
struction of the Albanese variety of a Mustafin uniformized variety (that is,
those algebraic non-Archimedean uniformized varieties by Mustafin) and to
give some steps in the proof when the dimension of this one is 2, following an
analogue process to the one employed for Mumford curves. Very little work
has been done until now on Mustafin varieties, beyond the uniformized by
the Drinfeld p-adic symmetric spaces and torsion-free, discrete, cocompact
subgroups I' C PGL4(K) on dimension greater than 1, and the same occurs
with the theory of harmonic cochains. They appear, almost always, with a
local base field and the total Bruhat-Tits building, as in the papers cited
above by Schneider, Stuhler, de Shalit and Alon. We introduce the construc-
tion identically to the given in dimension 1 with the generality that Mustafin
results allow, that is, under a complete, discrete valued field, and we show in
dimension 2 that the isomorphism between harmonic cochains and harmonic
measures, known in dimension 1 for any compact £ C P!(K) and in any
dimension d when £ are d + 1 points not contained in a hyperplane or when
L =PYK) and K is local, can be generalized. To get this, first we associate
to a compact set £ C P4(K) a chamber subcomplex %, of the Bruhat-Tits
building, which is a building for the construction of Mustafin, and we study
in detail the structure of the minimal 1-skeleton of %, in relation with £ by
means of the apartments of 4, and of the open sets associated to the edges
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as defined in [AdS02]. This structure let us to consider three important maps

—~ min

Stznm : Z[e@ﬁo] — Z[e_@ﬁl L

O™ LBy — LBry )

and —~ min —~ min
FlOWg : Z[@ﬁl ] — Z[%ﬁl ],
which have a key importance in such study.

In particular, we note that we introduce in dimension 2 a definition of har-
monic cochain on A, -through these three maps presented just above-, which
generalizes the harmonic cochains defined by de Shalit in the local, cocompact
case. This is one of the difficult points, since we are interested in harmonic
cochains on the minimal 1-skeleton of %, (more generally, we should take
into account the g-skeleton to relate to the corresponding intermediate Ja-
cobian), which is more directly related to the construction by Schneider and
Stuhler than to the given by de Shalit (cf. [SS91, Cor. 17 Rem. (2)] and
[dS01, §8.3]), but in a very different language. In addition, there is a third
construction by Garland in |Gar73] on the quotients of the building which
differs slightly with respect to the other (except for the harmonic cochains
on the chambers).

The contents of this thesis are organized as follows:

Chapter (1] is devoted to compute the discrete Jacobian of a graph using
concepts, tools or just ideas that are of great importance through the next
chapters, like are the Jacobian of a graph itself, the harmonic cochains on a
graph (cf. remark and one of the versions of the star map.

We start by giving the concept of graph and other related that ap-
pear along all the thesis, like the orientation of a graph and the opposite
edge. Then we introduce a suitable definition of principally polarized dis-
crete abelian variety which adapts the classical analytic definition, and we
study equivalent formulations. With it, we give the construction of the Jaco-
bian, for which we follow [BAIHN97], we relate it to the Jacobian of a graph
as presented in [BNO7] and we also mention the isomorphic dual construc-
tion of the Albanese torus in [KS0§|. Finally, we show two different ways to
compute such Jacobians following the works of de Shalit and Alon [dS01],
[AdS03], and Infante [Inf06].

In the chapter [2] we introduce finite metric graphs, which are non other
thing than tropical curves, and we compute their Jacobian by means of their
universal coverings and the theory of harmonic measures and integration.
Further, we define harmonic cochains and relate them to harmonic measures
in such construction.
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After generalize the definition of graph given in the first chapter to weight
and metric graphs, we study the structure of the covering tree and its ends,
and then we introduce harmonic cochains, measures and integrals. In the
final section we start by giving the definition of the Albanese torus of a metric
graph by Caporaso and Viviani in [CV10)] in relation with the definition of the
discrete Albanese torus of a graph, and we compute it and the Abel-Jacobi
map by using the ideas of [BF1I], which relate them to a generalization of
the discrete Jacobian of a graph which we give in our chapter (1] for weighted
graphs. Finally, we show that we can compute the Albanese torus by means
of integration on the ends of the universal covering tree.

In chapter [3| we present Mumford curves, their Jacobians and their Abel-
Jacobi maps over any complete non-Archimedean field in the setting of
Berkovich analytic geometry, we reprove or also generalize in an original
way known results about them, as we remarked above in the explanation of
our first goal.

First, we construct the Bruhat-Tits R-tree as the skeleton of the Berkovich
projective line, we define the subtree Tx(L) associated to a compact set
L C PY(K) and we construct the retraction map r. : Qy — Tx(L). Then,
we define multiplicative integrals following Longhi in [Lon02] and we relate
them to the integration introduced in the previous chapter over the corre-
sponding tree, which allows that in the final section we prove the equality
between the monodromy pairing and the natural pairing on the edges of the
skeleton of the Mumford curve. To build the Mumford curve we also in-
troduce Schottky groups and reprove the results given by [GvdP80] in an
original way. Further, we define the map

g OQp) i — M(L,Z)

and we prove some properties of it, going further that in [vdP92], in addition
to the Poisson formula, which lead to the proof of the symmetry of the pairing
defining the analytic torus associated to the curve, and thus, to the fact that
it is indeed an abelian variety, and it is also useful to develope briefly a theory
of theta function with the objective of obtaining that the analytic torus is
indeed the Jacobian of the curve. Moreover, for this introduction of theta
function we also use and reprove some recent results of Berkovich geometry
appeared in [BPR13].

The last chapter is devoted to the second main objective of this thesis,
which consists, on one hand, in the conjectural construction of the Albanes
variety of a Mustafin uniformized variety over any dimension, and on the
other hand, on the proof of the isomorphism between harmonic measures
and harmonic cochains related to an arbitrary compact £ C P?(K).
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In fact, the construction of the Albanese variety is done in the last section,
from a generalitazion to higher dimension of Schottky groups, in the same
way that Mustafin does. The last one is done by means of asking to a
hyperbolic group I' € PGL4(K) that it and their associated complex %,
verify certain conditions. Previously, we start by defining the Bruhat-Tits
building over a complete, discrete valuation field and study some properties.
We construct the subcomplex A, associated to a compact £ and we study
it in relation with its minimal 1-skeleton, its points at infinity (£) and the
maps introduced above (the minimal star, the minimal differential and the
flow). Even if %, is not a building, it has some nice properties that we
present by means of its apartments, of the minimal edges, of the associated
open sets and of the points of £. Some technical details lead us to continue
our study on dimension 2, in particular, the definition of harmonic cochains,
as remarked above. With this tools, we can proof the main theorem of the
chapter, which is the isomorphism

C%ar(‘%£7 Z) = %(‘67 Z)O

when A, is a building of dimension 2. This allows to reduce the proof that the
defining map of the analytic variety associated to the Mustafin uniformized
variety is an analytic torus to the fact that the map

H,(T\%,.,7Z) — Hom(C}, (I\B,., Z),Z)

is injective.



Conventions

In this section I will give some definitions related to the notation employed
along this work.

The notation I will define over objects of certain categories, like groups
or vector spaces, works over the morphisms of the corresponding categories
too.

Along this work all fields will be commutative. For topological spaces,
compactness means quasi-compactness plus the Hausdorff property, and so
locally compact spaces are also Hausdorff by definition.

If H is an abelian group, following the standard notation for the extension
of scalars we will denote Hx := H ® K, where K is a field of characteristic
0, and the tensor product is taken over Z. In addition, for us the dual group
of an abelian group H will be

HY = Homy(H,Z).

Assume now V' is a vector space over a field K. Its dual will be denoted V*
in order to distinguish it of the dual as abelian group. The annihilator of a
vector subspace W C V is

W i={we Vwl)=0VYve W}

If R C K, alattice in V is a discrete subgroup A C V with rank equal to the
dimension of V as R-vector space, in particular, A = Z%™=(") " If moreover,
V has an inner product (, ), the dual of a lattice (with respect to the inner
product) is

AN ={zecV|(x,\) €ZY A},

which is also a lattice.

We shall denote by log the natural logarithm.

By a complete extension L|K over a complete base field K with absolute
value | - | we will refer to a field L containing K, complete with respect to an
absolute value | - |1, extending | - |.

xXvil
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For any x € K, r € Rxg, we consider the ball in the completion Cg := K
of the algebraic closure of K, B(xz,r):={y € Cx | |y — x| < r}.

Now, let K be any field, let V' be an n-dimensional K-vector space, and
denote by V* its dual, so Py = Proj(S*(V*)) is the projective space asso-
ciated to V', whose K-rational points correspond to the 1-dimensional sub-
spaces of V' (thus, with the traditional notation we have P(V) = Py (K)). We
also will consider the dual projective space Py« = Proj(S*(V')), whose K-
rational hyperplanes are in correspondence with the K-rational points of Py .
Given such a point z € P(V'), we denote by H, the corresponding hyperplane
in Py+. We will identify V' with S*(V'), and the field K with S°(V).

We will write G := PGL(V); it is naturally isomorphic to the group of
automorphisms of Py, as K-algebraic variety. It acts also on Py« by the usual
contragredient representation (if v € G, w € P(V*), then v - w :=wy™1).

xXviil



Chapter 1

Jacobians of graphs

By analogy with the classical case for complex algebraic curves one may
consider the Jacobians of finite graphs. These appear to us when we consider
the dual graph of the reduction of a curve over a p-adic field with totally
degenerate reduction.

Moreover, graphs are more simple objects than curves, and also than
metric graphs. It is because of this that we start studying them and their
Jacobians in order to get familiar with distinct notions and notations which
will appear with variations through this thesis.

First of all, we define a graph and some related notions which will appear
henceforth and which will be also generalized.

Second we introduce discrete analytic tori and principally polarized dis-
crete abelian varieties before compare different ways to compute them.

Then, we recall the construction of the Jacobian of a graph made in
[BAIHN97] and we show that it is a principally polarized discrete abelian
variety. We finish the chapter given two different constructions of the Jaco-
bians and proving that they are equivalent. The last recalls tools provided by
[Inf06, Ch. 3|, while the previous one remakes the construction made using
harmonic cochains in [AdS03], mainly in the section 4.2, for the 1-dimensional
case, but with integral coefficients.

1.1 Introduction

Definition 1.1.1. A graph (or undirected graph) G consists of a set V =V (Q)
of vertices, a set E = E(G), disjoint from V, of edges, and an incidence
function

Y:E—V®
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that associates to each edge of G an unordered pair of (not necessarily dis-
tinct) vertices of G (what is also called an unweighted undirected multigraph).
If the 2 wvertices are the same we shall say the corresponding edge is a loop.
If 2 edges have associated the same pair of vertices we shall say that they are
parallel edges.

A directed graph is a pair (V, E) of disjoint sets (of vertices and edges)
together with a map

sxt: FE—VxV.

We call s(e) the source vertex of e and t(e) its target vertes.

An orientation of an undirected graph G = (V,E) is a directed graph
G' = (V',E') such that V' =V, E' = E and

sxt: E—VxV

verifies V(e) = {s(e),t(e)} for any e. An oriented graph is a graph with an
orientation.

A graph G = (V,E) (in particular, an oriented graph) has associated
naturally a directed graph (V, E) where E = E(G) = E U E, which is the
union of two copies of E, and two maps

sxt:E—VxV and o:E—)E,

the last written as o(e) =: € and called the opposite of e, satisfying for each
e € E thate # e, ¢ = e and s(e) = t(e). In fact, the function o is given by
mapping an edge of a copy of E to the same edge in the other copy of E, and
both copies define oriented graphs with opposite orientations.

The genus of a graph is its genus as topological space, which will be denoted
9(G). The degree of a vertex v of G, d,, is the number of edges incident to
il.

For any graph G, we have a 2 to 1 map
E:F—F.

An orientation in G is given by one preimage in E(G) of each edge of E for
that map.



1.2 Discrete analytic tori

We need to know what kind of object are we looking for. Following the
analogy with the classical case, we know that Jacobians of complex curves are
principally polarized abelian varieties. Below we define a discrete analogue
of them.

Definition 1.2.1. A discrete analytic torus is a triple
(HI,O HO,I I HLO N HO,I)

where HY? and H*' are free abelian groups of the same rank (finite), v is an
injective morphism. A polarization in a discrete analytic torus is a morphism
v HYWY — HOY being injective and satisfying the conditions

PN (r(\) >0V A e HYO {0}
PN N) =N (W)Y AN € HY.

A discrete abelian variety is a discrete analytic torus which admits a polariza-
tion. A polarized discrete abelian variety is a discrete analytic torus together
with a polarization.

Definition 1.2.2. A principally polarized discrete abelian variety (from now
on, ppdav, for short) is a quadruple

(HY0,H" v : HY* — H' Q: Hy' x Hy' — R),

where HY? and H*' are free abelian groups of the same rank (finite), v is an

injective morphism, and () is an inner product such that HY% — g0 gnd
HoY¥ = o looking at HY° inside of H*' C Hﬂ%l by means of v.

Remark 1.2.3. Note that the fact that v is an injective morphism of abelian
groups of the same rank makes it to have finite cokernel. Further, the condi-

tion HMWO# — o1 implies that Q restricted to H™° takes values in Z.

The dimension of a discrete analytic torus or of a (principally polarized)
discrete abelian variety is the rank of the free abelian groups of its definition.

Definition 1.2.4. A morphism between two ppdav’s (H'°, H™ v, Q) and
(H' H™' v, Q") is a pair of group homomorphisms f°: HY* —s H'™

3



and f': HO' — H’O’l, such that the diagrams

1% 1 1
HLO0 HO.1 Hﬂ% w Hﬂ%

Q\\
fl,o f0,1 flgl % H%,l y

11,0 14 10,1 10,1 10,1
_
H H H R x H R

R

commute.

Remark 1.2.5. The last definition allows us speak of isomorphisms. Then
one also may see that giving an isomorphism class of ppdav’s is the same
that giving a matrix A with integer coefficients defining an inner product in
R™ (that is, symmetric and positive definite) up to multiplication by GL,(7Z).
From the ppdav we obtain A as a matriz representing Q in a basis of HO.
Reciprocally, one has H** := Z", the canonical lattice in R", H* = Z"#,
the dual lattice, and Q) the inner product defined by A.

Now, by means of the next equivalences, we shall see how the definition
of a ppdav completes the ones given before.

Theorem 1.2.6. Given H'Y°, H™' free abelian groups of the same rank
(finite), the following are equivalent.

a. There are v and Q such that (H*, H*', v, Q) is a ppdav.

b. There are an isomorphism and a bilinear map

P

0 = HO’IV, HYO « H0,1V <7 > 7
respectively, such that
NN = (N, p(\)) VAN € HYY  and
N w(N) >0V e HY {0}
c. There are an injective morphism and an isomorphism
F10c 14 H0,1’ Lo 1/’ HO,IV

12
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e Y(N)(v(N\) >0V X e HY {0}
e The diagram
HI,O v HO,l

(4 P

HO,IV 14 Hl,OV

commutes.

Proof. 1f we start with the ppdav and we want to prove b, we define ¢ as
follows:

Y(A) =Q(v(N), )V A e HY

We have 1(\) € H*'" since HY9% — %1 Tt is an isomorphism. In order to
prove that, take an w € H 0.1Y and tensor it by R, obtaining thus an element
of H]%l*. Since () is an inner product on H]%l, there exists a unique \ € Hﬂ%l
such that Q(\, ) = wr. Using wrjgo1 € HOY and H'% = H'0 we conclude
A € v(H"). This proves surjectivity, but also injectivity since w determines
WR.

Now we define the bilinear map by

(A w) = Q) (U @)Y A€ HY, we HOV

The map (, ) satisfies the required properties due to @) provides them. Fur-
ther, it induces the morphism

HLO

Al (\)

which coincides with v. To show this, we take an arbitrary element w € H 0.1V
and we note that for any A € H'°

by definition of ¥ and symmetry of Q).

We use the last idea to prove the reciprocal. Thus, we define v from (, ) by

O (H0,1V>V ~ 01

5



This definition means (A, w) = w(r()) for all A € H*® and w € H*'". Fur-
thermore, the properties of (, ) do easy to check that v is injective.
In order to define @) we first note that ¢ and (,) give a bilinear map
Q:HY x HYY — Z (Q(\,N) := (\,¢(X))). Further, we may tensor Q
and v with R getting

Qr

1,0 1,0 Ur
Hy” x Hy' ————17

1,0 0,1
Hyg Hy

Y

The map vg is a monomorphism (since R is Z-flat and v injective) of vector
spaces of the same dimension, and then an isomorphism. Thus we define @
as the composition

0,1 0,1
Hy™ x Hy

Then, by going through the vector spaces, vg, @ and @R, one may check
that @ is an inner product taking into account the properties of (, ), and
also that, by construction (of @ and v), Q) satisfies

Q) 1) =N (u)¥ A e HY, pe H*

This implies H"* C H 01% and HO CH L% Tn order to prove the equalities,
tensor ¢ with R. Then consider the following commutative diagram:

0,1
H]R
R |=

1,0 YR 0,1%
HR ~ H]R

1,0 w 0,1V
H ———H

Let A € HY'. Then Q()\,_) € HY". Saying \ € H' means that QA )
restricted to H%!' has image in Z. In this case, since v is an isomorphism,
there is an element \' € H"? with Q(v(\),.) = Q(), ) on H*'. The commu-
tativity of the diagram implies that these two maps coincide on Hﬂ%l. Then
A=v(N)in H inside H', thus HO'" = HY0,
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Now, dualizing the maps ¢ in the diagram we have

YR
0,1 1,0*
HY —— 2 Hy,
\Y
HO,l 77D Hl’ov

Let pu € HY7 iy HY'. This means that Q(vg(J), ) = vg* (1) € Hy" re-
stricted to H'® takes values in Z, that is, it belongs to HYY  As before,
there is an element z' € H®' such that " (y') coincides with the restriction
of Yr* (1) to H™Y therefore by the commutativity of the diagram we obtain
p=p € H* and then HYO# = o1

Now we will proof the equivalence between b and c¢. Assume b is satisfied.
We have already defined v from (, ) proving a. The properties are verified
straightforward from the ones given in b, for example

(@Y (v (A)) () = d(X) (X)) = (A (X)) = (X, 0(A)) = (A (v(N)) =
= @' X)) (A) VAN eHY

means that the square is commutative.
Let’s assume now c. We may define

e v/

HI,O % Hl,O
A N) = QA N) == (b (\) (v(N))
(,)

HI,O % HO,lv 7,
(A w)s (A w) = Qv (W)
The required properties are verified immediately from the ones that we have
via these definitions. O]

1.3 The Picard group and the discrete Jaco-
bian of a graph

Closely related to the Jacobian of a graph is the Picard group of a graph.
We define both below following [BAIHN97] and [BN07], and we compare
them.



Let G be a finite connected graph with its set of directed edges E(G).

Let C°(G,R) be the vector space of all real functions on V(G), and
let C'(G,R) be the vector space of all functions ¢ : £(G) — R such that
g(e) = —g(e) for all e € E(G). These are Euclidean spaces for inner products

defined by
(fi.f200= > filv
veV(Q)
and
91792 Z 91 92 Z gl 92
eEE(G) e€E(G

for all f1, f» € C°(G,R), g1,92 € C*(G,R). We have an exterior differential
d: C°(G,R) — C'(G,R) defined by

(df)(e) = f(t(e)) = f(s(e))

with its adjoint operator d* : C'(G,R) — C°(G,R) given by

= 2 gl Z gle) = D g,
ecE(Q) e€cE(G e€E(Q)
t(e)=v t(e):v s(e)=v
and thus a ”Laplacian operator”

A =dd:C°G,R) — C°(G,R)

We may restrict all these maps to the subgroups of integer functions C°(G, Z),
CY(G,Z). We identify the first with the free abelian group on V(G), the
group of divisors on G, Div(G) by means of f<+— Z f(v)v. Inside

veV(Q)
Div(G) we have the subgroup of degree 0 divisors

Div’(G) = { Z n,v | Z N, = 0}

veV(G) veV(G)
One sees that Im A C Div’(G) and defines the Picard group of G by
Pic’(G) := Div?(G@)/Im(A)

We note this coincides with the definition of Jacobian of a graph given in
[BNOT].



Next, we define the lattice of integral flows of the graph as
AY(G) = CY(G, Z) (| Ker(d")
and the first cohomology groups as
H'(G,R) = Coker (d : C*(G,R) — C'(G,R))
H'(G,Z) = Coker (d: C°(G,Z) — CY(G,Z))
Further, we have
CYG,R) = Ker(d*) ® Im(d) — Ker(d*)

If we restrict the projection of C'(G,R) onto H'(G,R) to Ker(d*) we get
an isomorphism, then we will identify H'(G,R) with Ker(d*). By def-
inition, we have A'(G) C Ker(d*). We consider its dual lattice inside of
Ker(d”) by (, )1 ker(a-): AY(G)*. From now on, we will denote the restriction

(s M Ker(a-) PY () looking at it as a bilinear form on HY(G,R). Tt is clear
that A'(G) C AY(G)#. We also have

H'(G,Z)— H'(G,Z) ®; R = H'(G,R)
and the isomorphism between Ker(d*) and H'(G,R) restricts to an isomor-

phism between A'(G)# and H'(G,7Z) ([BAITAN97, Prop. 3 (iii)]).
Gathering all this data, we obtain the next diagram:

C(G,R) = Ker(d*) @ Im(d) Ker(d*)
Hlé, R) ANG)#
H\(G,7) _
\J
CY(G,Z) / AYG) = Ker(d*) N CY(G, Z)

Definition 1.3.1. We define the (discrete) Jacobian torus of a graph G,
Jac(G), as the quadruple

(AY@), H'(G,Z), \N(G) — H(G,Z),(,): H(G,R) x H(G,R) — R)
where the map is given by the composition AY(G)—— A(G)* = HY(G,Z) .
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Once and for all, for us, the Jacobian of a graph will be its discrete
Jacobian.

Proposition 1.3.2. The Jacobian of a graph is a principally polarized dis-
crete abelian variety.

Proof. Since A'(G) and A*(G)* are lattices of the same vector space, they
are free abelian groups of the same rank, and so A*(G) and H'(G,Z). The
duality relations are shown in [BAIHNO7, Prop. 3 (iii)]. O

Proposition 1.3.3. The Picard group of a graph is given by the Jacobian,
since

Pic’(G) = HY(G,2)/H (G, Z)*
Proof. We have
HY(G,7)/H (G, Z2)* = AY(G)* /AN (G) =2 Pic®(G)

where the first isomorphism comes from the one between Ker(d*) and H' (G, R)
and the second is given in [BAIHN97, Prop. 7 (iii)]. O

Remark 1.3.4. Dually to the Jacobian we may define the (discrete) Al-
banese torus of G. One has Cy(G,R), Ci(G,R), H,(G,R), H\(G,Z) to-
gether with an inner product, then H,(G, Z)#. In this case we have that
H\(G,7Z) C H\(G,7Z)*, and moreover

Pic’(G) = H,(G,Z)* /H,(G, Z)

This is one of the goals of [KS08]. This is similar to the classical case, where
the Jacobian variety and the Albanese variety are isomorphic in dimension
1.

1.4 Computing the Jacobian of a graph

Now, we will look at another way which will let us to compute the Jaco-
bian of a graph, as we will prove.

The involved construction is studied in [dSO1] and [AdS03], which are
papers about a particular collection of p-adic varieties with totally degenerate
reduction, certain quotients of Drinfeld’s p-adic symmetric domains called p-
adically uniformized varieties. A small variation of the one dimensional case
is which gives the Jacobian.
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Let G = (V,E) be a finite connected oriented graph. Our goal is to
compute its Jacobian by means of harmonic cochains as defined by de Shalit.
In order to do that, we will reproduce in a simplified way and over the
integers the construction done in [AdS03, §4.2]. Actually, that construction
proceeds by considering the universal covering of G, is applied to it, and then
invariants for the covering group (that is, the fundamental group of G) are
taken. We skip all these steps and work directly over the graph, with the
same result.

First of all, for each vertex v, we have to enumerate the target vertices
of the (adjacent) edges which have v as source (s(e) =wv) in one to one
correspondence with them, even if there are coincidences among the vertices.
We denote these enumerated vertices by vy, va, . . ., v4,, and the corresponding
directed edges €7, e3,...,€ey € E(G) (s(e?) =v).

To start with the construction, consider for any vertex and any (oriented)
edge the diagonal maps

_Av _Ae

7 7% 7 72

avlé<_a/u7...,_av) be'é(_be;_be)

and their corresponding products over all the vertices and (oriented) edges

of the graph G:

[[c-2
Z 7% 7———~ 72
vel;[G) vel\;([G eE]J;([G) eE]J;[G’)
(av)v — (—CLv, RN _av>v (be>e e (_bea _be)e

Note that since the products are finite, they are direct sums, and for example

H Z = Div(G

veV (G
Further, we are considering the factor Z% with base v, vy, ... , Vg, —1, that is,

the vertex v itself, and the enumerated vertices removing the last.
Next, we define other two morphisms for each vertex and (oriented) edge,

VA VA A Z

(€7 )i=0+dy—1 (¢} = CQ)i=12d,1 (a7, a3) ————a3 —af

11



and we take the products, as above:

H Zdv H Zdv 1

veV (G veV(G)

((Cf)i=0+drl)v (¢} = Q)i=12d,—1)o

%

H ——— 1] z
e€E(G e€E(Q)
(af, a2)e (a5 — af)e.

Here we think of Z* " with base e}, ey, ... e} ;.
To complete the structure we need, we define 3 morphisms more. The

first is
H z H z

veV (G ecE(G

(av>v > (at(e) - s(e))e

For the second morphism, first we have to inject the product over the vertices
v, V1, ...,04,~1, i0 the one adding the last vertex,

H % = 7o @ Zvy @ -+ - ® Lvg,.1— H ZPH = Lo & Loy @ - - - & Lo,
veV(G) vev(G)

((e)i=0sdy—1)o! ((¢])i=0+dy v

where
i=dy—1
U

Cq, = duCo — Z c;.

i=1
With this definition, we note the symmetry among the ¢; for i # 0, since,
if we change any of them by c; , the relation is also satisfied. For i > 1 we
may write ¢ = ¢, . With this notation we can define the next map:

H Zdqul H Z2

veV(G) ecE(G)

v t(e s(e
((Ci )i=0+dv)v — (Cs((e)) - CO( )7 CO( ) - Ct((e))>e

We denote the composition of these two maps 070, which is the second mor-
phism we were looking for.
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For the third morphism we proceed in a similar way. We start taking into
account the injection

1] z"'=z28e- - 0Ze \——— ] 2" =Ze{ - © Ze},
veV(G) vev(G)

((6)i=12dy—1)o! (6 )i=12dy )

where
dy—1

=->
1=1

As before, we remark the symmetry among the b;, in the relation. Consider

an edge e, assume that s(e) = v and ¢(e) = v'. There are 7 and j such that
v/ =v; and v = v}. We denote b} = b! = b5 and b = b = 019 (remember

that € is the opposite edge of e) The composition of the last map with

HZdv HZ

veV(G) eeE (@)

((by)i=1+du)v s (_bE _ b:(e))e

is, by definition, d'. We get together all these morphisms in the next diagram:

—A, )
0— o H 7 H( ) H Zdvi) H Zdv—1—>0

VeV (G) VeV (G) veV(G)

d° d° d!

—A, «
HZH( )HZ2 Ok Il z——o

e€cE(G) e€E(Q) ecE(G)
The exactness of the rows is clear and also the commutativity of the first
square. We check the commutativity of the second square:

d* (05 (((cf ) —0+ dv—l) )) dl(((C — C0)i=1dy—1) ) =
)

te e t(e se t

o5 (d - .40 —c:é;’)e o (@ 1>v>>e

We may write the results of the differents maps in terms of e forgetting i’s,
that is, it does not matter if some vertex is v,,, because of the symmetry
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before remarked. As a consequence of the snake lemma we get a morphism
v, which we can see in the next diagram:

0 0 0
0 Ker(d°) Ker(d°) Ker(d") ———
1[4, w0 ]
0 I z I z* II z+*—|—o0
veV(G) veV(Q) veV(G)
| | | )
4 o \ L l 4! \
(—A.) s
0—|— ] z 11 I z & Z 0
e€E(Q) e€E(Q) e€E(Q)
— Coker(d) Coker(d) —— Coker(d!) ————0
0 0 0

Definition 1.4.1. We define the de Shalit Jacobian of the graph G as the
triple

(Ker(d"), Coker(d°), v : Ker(d"') — Coker(d"))
and we denote it by Jac™(Q)

Theorem 1.4.2. There is a natural isomorphism between the de Shalit Ja-
cobian and the discrete analytic torus determined by the Jacobian of a graph,

Jac®(G) = (AYG), H\(G,Z),A\(G) — HY (G, 7)).
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In particular, the de Shalit Jacobian has a structure of ppdav isomorphic to
Jac(G), since we know that this discrete analytic torus admits a principal
polarization.

Proof.
Lemma 1.4.3. There is an isomorphism A'(G) = Ker(d").

Proof. First, we remark that the lattice of integral flows A'(G) is nothing
that the morphisms g : E(G) — Z such that g(€) = —g(e), and

> gle)=0

ecE(G)
t(e)=v

Z gle) =0.

ecE(Q)
s(e)=v

or, what is the same,

Second, we define a map
b:AG)— ] z*
veV(G)
by
((9)),), = gted).

The image of this map is in the kernel of d':

d* (b(g)), = —b(g9)2? — b(9):@ = —g(&) — gle) =0

Then we have b : A'(G) — Ker(d").
Take now an element of

Ker(d)c [ z*"' < ][ z*

veV(G) veV(Q)

If we look at it inside [] ¢y (q) Z%, we may write it ((bY)i=1-a,),. For any
oriented edge e, we consider the vertex s(e), then we have e = e; for some
i, and we define g(e) := bf(e). Similarly to the way as we proceed in the last
computation, we see that the condition of being in the kernel of d' implies
g(e) = —g(e) (g € C'(G,Z)), and the immersion

H Zduflg H Zdu7

veV(G) veV(Q)
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given by
dy—1

bsv = - Z bf?
=1

implies g € Ker(d"). It is clear that this construction is inverse to the map
b, so this is an isomorphism. O

Remark 1.4.4. The idea of this lemma is that these isomorphic groups are,
in some way, groups of harmonic cochains as defined by de Shalit, but over the
finite graph G. Indeed, if To — G is the universal covering of G with fun-
damental group T, Ker(d') coincides with CL_(Ta,Z)" = HO(T,CL, (Ta, Z))

as it appears in [AdS03, §4.2] up to that we specify a different tree and that
the group of values is Z.

We also have an isomorphism between Coker(d’) and H'(G,Z). This is
consequence of the 2 objects being cokernels of isomorphic morphisms, as we
proof below.

Lemma 1.4.5. There is an isomorphism of morphisms as described in the
next commutative square:

CG,7) CcYG,7)
= | Eoy =\ FEug
0
[[ 2—— 1] 2
veV(Q) e€E(G)

Proof. The isomorphisms are defined as

G, z)—Lo [z c@Gz Evp I1 z

veV(G) e€E(Q)

f (f () g! (9(e))e

We show the commutativity:

Evg(d(f)) = (f(t(e)) — f(s(e)))e = d°((f(v))y) = d"(Evv(f))
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Finally, we have to proof the commutativity of the square

A(G) HY(G,7Z)

=1 gEUE

Ker(d") Y Coker(d")

Take g € A'(G). The image in H'(G,Z) is g. Following

Evg(g) = (9(e)).

On the other hand, b(g) = (g(e});),- To finish we have to see its image by v.

)

To this end, we regard the definition of v. We take as antiimage of (g(ef)i)v
by the map 95, : H 7% —s H Z%~! the element defined through
veV(G) veV(G)
cyg =0

cdi=ge)),i=1+d,—1

After this, we compute . By means of the injection of HveV(G) Z% in
[Levie 74+ we get

Therefore

@(((¢ico-a,1),) = (9(), ~g(€))e = (~g(e). ~g(e))e

e

And this element has (g(e)). as antiimage by H (=A,). Then

v(blg)) = v((g(ei);),) = (9(e))e,

so the square commutes. O

To finish this chapter, we give another way to compute the Jacobian
which is implicit in [Inf06, Ch. 3].
Next we consider now the map
7E(G) d 7V(G)

—_—

e——>t(e) — s(e)
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and denote its kernel T, *(G) = Ker(d), the space of cycles of G. Likewise
we take into account the map

7V (@) d’ ZE(C)
Y e Y
e€E(Q) EE(G)
t(e)=v (e)=v

to define Ty (G) = Coker(d”), and we consider the composition

T () 25 T3 (G)

which will be called N. Together with this we dualize

7V(G) d’ 7E(G)

Ty (G)

to obtain the exact sequence

0 &)

V
(ZE(G))V d’ (ZV(G))V

Taking the dual bases to V(G) and to E(G) and the correponding isomor-
phisms we get a commutative diagram with exact rows

0 4G 7PCG 4 gv©)
V v % 4" v
0 T} (G) (Zz%9)" —F——(z"19)

where the commutativity of the second square comes from the fact that the
transpose of the matrix of 4’ in the given bases is the matrix of 4.

Theorem 1.4.6. The quadruple
(T7H(G), Ty (G), N : TTH(G) — Ty (G), T7H(G) — T3(G) )

satisfies the condition ¢ of Theorem then it is a ppdav which we will
call the Chow Jacobian of G and denote by Jac“™(G). Furthermore, we have

Jac(G) =2 Jac?" (@)
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Proof. The way of proving this theorem is the next. First we consider Jac(G),
which we know it is a ppdav by Proposition [1.3.2] Second, we have the map

AYG) HYG,7)"
At (A, D)

which together with the morphism A'(G) — H'(G,Z), applying Theorem
satisfies the condition ¢ of itself. Finally, the only thing rest to do is proving
the isomorphism between the Jacobians, that is, looking for two isomor-
phisms T, '(G) = AY(G), T, (G) = H'(G,Z) resulting in commutative dia-
grams:

T7H6) —N—— 1) T7(G) TG)
AY(@) HY(G,7) AY(@) HYG,7)"

where the horizontal arrows are the ones already given. Thus we will get all
the statements at the same time.

To define T, 1 (G) — AY(G), let > cer(q) Mee beacyclein T7HG) € ZE©
and associate to it the map ¢ defined by

me, if e € E(Q)
gle) = { —me, if e € B(G)

We can write in such a way any map of C*(G,Z). Note further that

d( Z mee) =0

e€cE(QG)

means the same that d*(g) = 0. Therefore, we can reverse the construction.
Thus we obtain a well defined map, which is an isomorphism. Actually we
get more, an isomorphism between ZZ(@ and CY(G,Z), which induces the
commutativity of the next diagram with exact rows

gve) 4 oEE) 7! 0
= o g

:
G,z —L oG, z) HY(G,7) 0
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Then, the commutativity of the first square follows immediately, since it is
the composition of the next commutative squares:

T3 (G)

~ Y Y

A (G —=CY G, 7) HY(G,Z)

Finally, let us denote the dual element in (ZE(G))V of an edge e by o,

(0c(e) =1, 0.(¢') =0 for ¢ # €). We want to prove the commutativity of

the second square. Let us take an element Z mee in T, 1. If first we

e€E(GQ)

follow the way of the left-down corner we get the associated map g € A'(G)

and (g,.) € H'(G, Z)V. Following the other way, we get Z Mede € Tolv.
e€cE(GQ)

Next, take any element n € H'(G,Z). We have n = h for some h € C*(G, Z),

and
(g.m) = (g, h) = > gle)h(e) = Y meh(e)

e€E(Q) e€E(Q)

by construction of g. On the other hand we compute

Z Mede Z he)e | = Z meh(e)

e€E(Q) e€E(G) ecE(Q)

The equality of the two last terms computed give the commutativity of the
square and finishes thus the proof. ]

Remark 1.4.7. Note that neither Jac®(G) nor Jac®"(G) depend on the
orientation E(G) on the graph. Indeed, they can be obtained from Jac(G) by
the corresponding isomorphisms, and the construction of the Jacobian does

not use E(G) but just E(G).

20



Chapter 2

The Albanese torus of a finite
metric graph

Along this chapter we extend the notions studied in chapter [1| to metric
graphs and, then, we give a construction of the Albanese torus of a weighted
graph and the Abel-Jacobi map by means of measures on the ends of its
universal cover along sections [2.1] and

Caporaso and Viviani studied in [CV10] the Torelli theorem for tropical
curves by means of the identification of these ones with metric graphs and of
the Albanese torus of these graphs. Baker and Faber developed some tools in
[BET1] -where they also identify a tropical curve with a compact connected
metric graph of finite total length- to understand better the corresponding
Abel-Jacobi map, from their definition of the Jacobian of a weighted graph,
which generalizes the definition of the Jacobian of a graph we showed in the
chapter (1| from [BAIHN97]. In particular, they introduce a way to compute
the Albanese torus of a weighted graph by means of 1-forms.

First, we show some structural results on metric and weighted graphs and,
in particular, on trees. Then we study the ends of a tree as a topological
space (with open compact sets which generalize the ones defined in [Das05,
§2.3] and in [AdS02, §1.6] for certain discrete Bruhat-Tits trees). In the
next section we define harmonic measures and harmonic cochains and we
prove a canonical isomorphism between them, before introducing integrals
on compact sets, which we will use on the ends of the trees. Finally, we relate
the 1-forms in [BE11] with the harmonic cochains on a finite metric graph
and we rise them to its universal cover, we proof the isomorphism between
the I'-invariant harmonic measures and the abelianized of I', where it is the
fundamental group of the graph, and we conclude with a way to compute its
Albanese torus and its Abel-Jacobi map by means of the integration on the
ends of the universal cover tree.
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2.1 Graphs, their models and the topology
on the ends of a tree

First we will give the definitions of weighted and metric graphs and we will
show some essential properties of them. Then, we will introduce the classical
notions of rays and ends, in order to finish studying a natural topology on
the set of ends of an infinite tree.

Definition 2.1.1. A weighted graph & is a non empty set V = V(&) called
vertex set together with a directed edge set = E(®), a weight function

g : E —> R>0,
an edge assignment map
sxt:F—VxV

which makes correspond to each edge e a pair (s(e), t(e)), where s(e) is called
the source of e and t(e) the target of e, and a bijection

A

0:E— FE

verifying £(o(e)) = l(e), s x t(o(e)) = (t(e), s(e)), o(e) # e and o(o(e)) = e.
The edge o(e) is called the opposite of e and denoted by € (cf. [BFI1] and
[Ser8d)).

The valence of a vertex is the number of edges whose source is that vertex.

Definition 2.1.2. The topological realization of a weighted graph & is a
topological space G := |&| formed by vertices in correspondence with the
vertices of & and, for each e € E(&)/{e ~ o(e)}, by an homeomorphic copy
of the interval [0, {(e)], glued according to the structure of the weighted graph.

If it admits a distance, it is a metric space, so we call it a metric graph,
for which the length of their edges is given by the weight of the edges of &
(the same definitions and notations that we have for a weighted graph work
for a metric graph,).

Remark 2.1.3. This definition of metric graph includes the one stated in
[BF11), §3]. In fact, they are the same under the assumptions of compactness,
conectedness and finite valence everywhere. Thus, as we mentioned in the
beginning of this chapter, tropical curves will be implicit objects through it.

Remark 2.1.4. Note that, even though all the edges have a length in the
topological realization of a graph, it is not necessarily a metric space. Take,
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for example, the graph formed by two vertices v,v' and infinite edges e, be-
tween them in correspondence with the non-zero natural numbers, each of
them of weight % Then, we would define

AN . . . l .
o) = i (et =t {1 f =0

But a distance only can be zero between two points if they are the same, so
this is not a metric space.

Definition 2.1.5. Given a metric graph G, a model for it is any weighted
graph & such that G is obtained as its topological realization, that is G = |®)|.
A minimal model is one in which all the vertices have valence greater than 2.

Definition 2.1.6. Given two models &, &’ of a metric graph G and edges
e € E(®),¢ € E(&) such that |¢/| C e|, we say that they have the same
oritentation or they preserve the orientation if it is the same in R after the
homeomorphism p, : e| —= [0,£(e)] (which preserves the orientation by def-
inition, since pe(s(e)) < pe(t(e))).

Remark 2.1.7. For an edge e € E(QS), the topological realizations of edges
le| and |o(e)| give the same set in |&| but with opposite orientations.

Definition 2.1.8. A cycle in a weighted graph (resp. in a metric graph) is a
subgraph whose topological realization (resp. itself) is homeomorphic to S'.
A tree ¥ is a connected graph (weighted or metric respectively) without
cycles. This is equivalent to say that given two vertices v,v" € V(T), there
exists a unique set of edges P, . C E(CSZ) such that there is an homeomorphism
po | Pyw| — [0,7] C R werifying po(Jv]) =0 and po(|v']) = 7.
We will denote the path |P, | by [v,'].

By definition, other topological notions (like connectedness...) will apply
to a weighted graph if and only if they apply to its topological realization.

Let & = (V, E) be a weighted graph such that G = |&| is connected. As
in the definitions of tree, a path between two vertices v, v’ € V(&) is a set of
edges P C E(®) such that there is an homeomorphism pg : |[P| — [0,7] C R
verifying po(|v|) = 0 and po(|v|) = r. The difference is that for a graph we
can have many paths between two vertices. The length of a path P is

((P) = Le)

eeP

Let us denote by B, .+ the set of paths between two vertices v,v" € V(®).
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Proposition 2.1.9. Let & = (V, E) be a weighted graph such that G = |&|
is connected. If for all pair of different vertices v,v' € V' it satisfies

inf ¢(P) >0,
PE‘BU,U/

then G = |®| is a metric graph.
Proof. Given two different vertices v, v’ € |V| we define

d(v,v") = Pégf ,E(P), and otherwise d(v,v) = 0.

Any other point, which is inside an edge e, can be thought as a vertex of
valence two with the corresponding distances to the vertices of e, so the
distance function extends to all G.

By definition d(v,v") > 0 for all v,v" € G and it is a symmetric map. By
the hypothesis d(v,v") = 0 if and only if v = ¢/, so we only have to see the
triangle inequality:.

Since two paths between v and v/, and between v and v” respectively
extend to a path between v and v” if they do not cut through another path,
and otherwise allow to build a shorter path between v and v”, we get

div,v"y= inf ¢(P)< inf ¢(P)+ inf {(P)=d(v,v")+d('v")

Pvayv// P, PE‘;BU/)U//

v,V
as we desired. O]

Corollary 2.1.10. The topological realization of a weighted graph & = (V, E)
such that for all v,v" € V there are a finite number of paths joining them is
a metric graph. In particular, this is the case of trees and finite graphs.

Lemma 2.1.11. Let & a weighted graph given by the sets (V, E) of vertices
and edges respectively and let G := |B| be its topological realization. Let
p,p € G be two points connected for at least a path P C G between them,
so we have an homeomorphism p : P — [0, A\] C R such that p(p) = 0 and
p(p') =XN. Then P |V (®)| is finite.

Proof. Observe that if p is not the topological realization of a vertex of V,
then is inside |e| for an e € E and such that one of the connected components
of |e\ {p}| is inside P and the other has empty intersection with P; therefore,
we can extend P by |e| and assume that p = |vg| for vy € V, and identically
for p’. Now we get, |e|( P # 0 if and only if |e| C P.

For any edge e € E such that |e| C P take the image by p of the interior
of its topological realization; it is an open interval U, := p(|e|) = (ze — he, 2o+
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he) C [0,A]. For any |v| € |[V|( P different from p,p’, let e’ the edge such
that ¢(e”) = v and |e”| C P and e, the one such that s(e,) = v and |e,| C P.
Take the open interval U, := (p(|v|) —heo /2, p(|v])+he, /2) C [0, A]. For p take
the open U, := [0, h,/2) C [0, A}, and for p’ the open Uy = (A — gy jp, A].
Thus, we have

oAN=0,uJUu |J U.uU.

lelcP lleVin P

Since the interval is compact, we can make this covering with a finite number
of these open sets given by £’ C E, V' C V, both finite. But then we have
V'l = PN |V(&)| and we finish. O

In particular, given two vertices v,v" of a weighted tree ¥, we get that
[0, '] |V (%)] is finite. As a consequence, we can extend the length of the
edges of a tree given by the weight map to a metric on [%|

d: |3:] X \3:] —>R20

by d(v,v") =3 ..p ,{(e) and by “linearity”.

v,v

We will consider the free abelian group Z[E(®)] generated by the directed
edges of &.
Given a weighted graph &, the star of a vertex v, St(v), is the set of edges
of & with source v.
Let & = (V, E) be a weighted graph and $) be a finite weighted subgraph
of &. We define the star of the subgraph as

St($) == {e € E| s(e) € H,e & B(H)}
Note that this generalizes the definition of St(v) for a vertex v.

Definition 2.1.12. A ray in a weighted tree T is an infinite subtree whose
topological realization is homeomorphic to [0, 4+00) (so the condition of being
infinite is equivalent by the lemma to say that there are no v,v' € V(%T)
such that the ray is inside [v,v']), or equivalently, it is the tree generated by
an injective sequence of vertices, that is, an injective map N — V(%) such
that [vn—1,v,] O [n, Vpy1] = {vn} for all n > 1. Two rays are equivalent
iof they differ in a finite subgraph of the union, which is the same that their
intersection being another ray. An end of T is an equivalence class of rays.
Let us denote its set of ends by E(T).
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Proposition 2.1.13. Let T and T be two weighted trees such that | %] = |¥'|
(this is the same that having two models for a given metric tree). Then there
is a natural bijection £(F) = E(T).

Proof. Let [r] € £(%) be an end. Let us denote the homeomorphism of the
topological realizations by 7' : || — |¥|. Since |r| = T(|r]) C || = || is
infinite, there are no p,p’ € |¥'| such that T'(|r|) is contained in the path be-
tween p and p/, and then, there are no v,v" € V(¥') such that [v,v'] D T'(|r|).

Write o/ : T(|r|) — [0,+00) and let po = p/~(0) € T(|r|) be the start-
ing point of this half-line. If it is not a vertex |vo| € |[V(¥')], it is inside
le| € |E(T)| such that |t(e)] € T(|r|) (because of the previous remark that
T(|r]) € [v,v]). Define then vy := t(e) € V(%'). Apply the same reasoning
to the half-line o'~ ([p(vg) + 1, +00) to get v; € V(T'), and so on, so we get
aray (vg,v1,va,...) in ¥ and an end in E(T').

Now we have defined the map £(T) — &(¥'). Similarly we have a
map in the opposite direction. Since the topological realization of the initial
ray and of the ray resulted of the composition of both maps coincide on the
topological realization of the tree, their intersection is infinite, so another ray,
therefore the composition is the identity and we get the claimed bijection. [J

Definition 2.1.14. We define a ray in a metric tree T' as the topological
realization of a ray in a model €. We say that two of them are equivalent if
their intersection is the realization of another ray in a model of T, and an
end of T is a class of rays in it. Let us denote its set of ends by E(T) = E(T).

By the previous proposition, this definitions are independent of the mod-
els chosen.

Definition 2.1.15. Let e be an edge of T. We define B(e) as the set of
ends in E(T) classes of rays v such that e C r and any homeomorphism

pr 17— [0,+00) preserves the orientation of e, that is, p,(s(e)) < pr(t(e)).

Note that we can do this definition for e an edge of a model of 7 and
B(|e]) = B(e) due to the previous definitions.

Proposition 2.1.16. These sets satisfy the next properties:
e Since T is a tree, E(T) = B(e) U B(€) for each edge e.

e After considering a model of T, for any vertex v its star gives rise to
another partition

ET)= || Ble.
)

e€St(v
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o Let e, e be edges of a model of T. Then

(= B(e) = B(€), if there is another model of T with
an edge € such that |el,|e'| C |e”|
preserving orientation

o(B(e)] ~ % #5(0)s() € o) e T

= B(¢') C Ble), if s(¢') € [t(¢'), s(e)] and s(e) & [t(¢),
{ # 0 and if [s(e), s(€)] is not an edge and
[ | & Ble),B(e") 7 s(e), s(¢') & [t(e), ()]

e In the last of the previous cases, for any end ¢ € B(e)(\B(e') there
exists an edge €’ such that € € B(e") C B(e) [ B(¢).

Proof. Given any ray in 7T, it is clear that we can make a unique equivalent
ray starting either by an edge e or by its opposite, so the first assertion
follows. We also can choose a unique equivalent ray starting by a given
vertex v, which determines the edge of St(v), thus, we get the second claim
too.

Next, we take two edges e, €” in T such that e C €” preserving the orien-
tation. Then, the inclusion B(e”) C B(e) is clear. But given a ray through e
(“well oriented”), since €” is an edge the ray always can be extended to an
equivalent ray through e”, so B(e) = B(e").

Now assume s(e), s(¢') € [t(e),t(e')]. Observe that any homeomorphism
p:[t(e), t(e')] — I C R, where I is a closed interval, reverses the orientation
of € with respect to e, so B(e) (B(e') = 0 by definition of these subsets of
ends.

Next, take s(e) € [t(e),s(€')], s(e') & [t(e),t(e')] and an end in B(e),
which can be given by a ray starting by s(e) and through t(e). Since
s(e) € [t(e), s(¢/)], we can extend the ray to an equivalent one starting by
s(e’), and s(e') & [t(e),t(e’)] implies that t(e’) belongs to the extended ray,
therefore, the end is in B(e’) too.

= B(e) C B(¢), Zfsge [t(e), s(e")] and s(¢') & [t(e), t(

t

Finally, assume that [s(e), s(¢’)] is not and edge and s(e), s(e’) & [t(e), t(¢')].

The first condition implies that there is a proper vertex v # s(e), s(e') in
[s(e), s(¢')], that is, a vertex in every model of T, therefore having valence
at least 3. Take the unique minimal path containing e and €', and so also
v. observe that if t(e) & [s(e), s(€')], then [t(e),t(e")][s(e),s(e)] = O, due
to the second condition, but this would have as a consequence that there
is a proper vertex in at least one of the edges, which cannot occur. Then
t(e),t(e’) € [s(e),s(e)]. Next, if [t(e’),t(e)] C [s(e), s(¢’)] preserving the ori-
entation and with ¢(e) # t(e’), a proper vertex in [s(e), s(e’)] should be in e
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or ¢’ which is also imposible Therefore we get [t(e),t(¢')] C [s(e), s(¢/)] and
v € [t(e), t(e')] necessarily. Since v has valence at least 3, there is a ray start-
ing at v whose class is in B(e) and B(e’), so the intersection is non empty.
Since [s(e), s(€’)] reverses the orientation of one edge with respect the other,
the intersection is neither B(e) nor B(¢'). Finally, and because of the same
reason, any end in the intersection is the class of a ray starting by v and
which does not pass through none of the edges €, ¢/, so through a third edge
¢’ belonging to the star of v. Reciprocally, any ray in this way belongs to
the intersection, so B(e”) C B(e) () B(€). O

Because of the last property, we can take the empty set with the sets
B(e) as the basis for a topology in £(7), which, from now on, will be the
considered topology there.

Given a tree 7 and an edge e in it, we denote by T2 and 72 to the
connected components of T\ é containing t(e) and s(e) respectively. Observe

that 70 = 72
Remark 2.1.17. We deduce a number of properties on the ends of the tree.

e The first property of the previous proposition implies that the sets B(e)
are open and closed.

e Along the first paragraph of the proof we have noted that there is a
bijection between the ends and the topological rays starting at a fixed
vertex.

e A continuous action of a group I' on T induces a continuous action of

I on &T).

e Note that given an edge e in T, the connected component T contains
rays representing exactly the ends of B(e). Thus, we get
B(e) = E(TH)) and B(e) = £(T©).

e

Therefore, all the properties of E(T) depending on hypotheses on T will

apply to the open sets B(e) while ) satisfy the same hypotheses.

Proposition 2.1.18. The topological space E(T) is Hausdorff.

Proof. Take two distinct ends ¢, € E(T).

Take a vertex vy in 7. If there is one edge e € St(uvg) such that e,&" € B(e)
take the vertex vy := t(e). Repeat this construction for v; to get v, and for v;
to get v;11. It has to be finite, since otherwise we would get a ray representing
both ends and they would be equal.
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So we can take a vertex v in 7 such that there are e,e¢’ € St(v) and
e € B(e) and ¢ € B(e'). Thus, we have disjoint open sets containing two
distinct ends for any couple of them. O

Lemma 2.1.19. Given three ends e,&', " € E(T), there ezists a unique ver-
tex v € T such that there are three edges e, e, e” € St(v) verifying € € B(e),
e € B(e) and £" € B(e").

Proof. Let us start proving the existence. As we proved in the previous
proposition, we can take a vertex vy with eg, e, € St(vg) such that e € B(eg)
and ¢ € B(ej). If there is no ¢” € St(vg) distinct of the other two whose
open set contain €”, this end is contained in B(ey) or B(ef,). We can assume
that €” € B(ep). Take v; = t(eg). Then e,&” are contained in B(e;), B(e”)
for e, €” € St(vy) \ {€g} and &' € B(ey). If e; # €’ we have find the vertex
we are looking for; otherwise, we repeat this reasoning with vy = t(e;) and
so on. Again as in the proof of the previous proposition, this process has to
be finite, since we are defining rays representing € and ” which are different,
and in the finite step we get the vertex v.

For any other vertex v’ # v, take the path [/, v] joining them. At least two
of the three edges e, €', ¢” are not in these path, therefore the corresponding
ends belong to the same open set of the edges of St(v'). O

Proposition 2.1.20. Let T = (V,E) be a model for T and let F C E
be a well oriented finite set of edges, meaning that it satisfies the following
hypothesis:

e it cannot exist an edge e of T and edges €',e" € F such that |¢'| C e,
preserving the orientation and |e”| C e reversing the orientation.

Take the source vertices of F, o := o(F) :={s(e)| e € F'} and denote by T,
the subtree generated by o. Then

1. The open sets {B(e)}eer are pairwise disjoint if and only if F () E(T,)
is empty, which means |F| C | St(%,)].

2. The equality U B(e) = E(T) occurs if and only if St(%,) C F.

ecF

Proof. We will show the claims by induction on the cardinal of vertices
n=#V(%,).

If n =1, then T, = {v} = o(F), F C St(v), the sets B(e) with e € St(v)
are pairwise disjoint and |_| B(e) = E(T) if and only if F' = St(v).

ecF
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Next, assume n > 1 and let v € 0 = o(F) be a vertex with valence 1
in ¥,. Consider the non empty set F, := {e € F| s(e) = v}, proper in F
since n > 1, and let e, be the edge of ¥, with target t(e,) = v. Then, if
F' .= (F\ F,)U{e,}, we get the next remarkable properties:

o 0':= (o \{v}) U{s(e)} = o(F),

e and #V(%,/) = n — 1, so we may apply the induction hypothesis on
F'.

o E(T,) = E(T,)\ {e, &}, 50

F'NE(T,) = (F\F)[)(E(T)\{e.}).

* St(Tor) = (5t(To) \ St(v)) U{ev}.

* St(To) = (St(Tor) \ {eu}) U (St(v) \ {ev}).

Suppose that F(E(%,) = 0. Therefore F'(VE(%,) = 0. Then, by
induction hypothesis, the open sets {B(e)}ccr are pairwise disjoint and, in
particular, B(e,) N B(e) = for all e € F'\ F,. Recall now that

Ble,)= || Bl

e€St(v)\ey

and that F, C St(v). But, e, and &, are edges of T,, so FﬂE(‘ZU) =10
implies that e,, e, ¢ F, and therefore we get that the sets {B(e)}ecr are also
pairwise disjoint.

Now assume that F()E(%,) # 0. Then, either F'(E(T,) # 0, or
F'NE(%,) =0 but

0# F()E(T) C {ew. e}

In this last case, F'(E(%,) = 0 and F(E(%,) C {e,, &}, when e, €
F, then B(e,) N B(e) # 0 for any e € F, # (). In the case €, € F, the fact
that e, € F" and so that B(e,) N B(e) = 0 for any e € F'\ F, (by induction
on F’), together with B(e,) = £(T) \ B(e,), implies that B(e,) N B(e) # 0
for any e € F'\ F,.

If F'(E(T,) # 0, the sets {B(e)}ecrr are not pairwise disjoint, and the
collection of sets {B(e)}ecr include the same except maybe B(e,), besides
the {B(e)}eeFv'

Therefore, if there are e, ¢’ € F \ F, such that B(e) N B(e') # () we get
the claim. Otherwise there is an ey € F'\ F, such that B(eg) N Ble,) # 0
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and e, € F. By definition of e, we have that s(e,) € [t(e,), s(eg)]. Then,
taking in consideration the proposition we get s(eg) € [t(ey),t(eg)]
(and B(eg) N B(e,) = Ble,) C Blep)), since otherwise we would have s(eg) €
[t(ey),t(eg)] and, as a consequence, B(eg) N B(e,) = 0.

Take now an edge e; € F,. Assume first e; # €,. Then we obtain that
B(e1) C B(e,) C B(ep) and that the sets {B(e)}.ecr are not pairwise disjoint
as we wanted. To finish the proof of the the first equivalence, we just have
to deal with the case F, = {€,}. Since F' is well oriented, there is some
vertex of valence three in 7 between s(eg) and t(e,) (excluding them). Then
B(eo) N B(&,) # 0 by proposition [2.1.16]

Recalling the properties we have noted above, we get that St(%,) C F
implies St(%T,/) C F’, so, by hypothesis, U B(e) = &E(T). By definition, we

ecF’
know that each edge of F” is an edge of F' except at most e,, but we have

that St(v) \ {&,} C St(T,) C F and B(e,) = | | Ble), so

ecSt(v)\ey

E(T) = Ble) c | Ble) = £(T).

ecF’ eeF

Suppose that St(%T,) ¢ F. This means that there is an edge e € St(%,) \
F| in particular with s(e) € o = o(F'). We may assume that the vertex v we
chose above in order to apply the induction method is different from s(e). It
is clear that e € F”, and by the assumption e € St(%,), so St(%T,/) ¢ F’ and

L Ble) # &(T).
ecF’
Finally, as we have seen before, we have

UBe)= | Bleyu | Ble) c | Ble)uBle,) € | Ble) € E(T).
eck e€F\F, ecky, eck’ ecF’
]
Corollary 2.1.21. Let {e;};cr be a finite set of directed edges in T such that

the open sets B(e;) for i € I are pairwise disjoint. Then

UB(ei) = E(T) <= {ei}ier = St(T)

for the finite subtree T with source vertices {s(e;)}icr, or {e;}ier = {€1, €2}
existing an edge e in T such that e; C e and e; C €.

Proposition 2.1.22. Let T be a locally finite metric tree. Let Ey be a set
of edges of T such that E(T) = U,cg, Ble). Then, there is a finite subset
Ey C Ey such that E(T) =, Ble).

ecFy
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Proof. We assume that FEj is an infinite set.

If there is an e € Ej such that e € Ey we take Ey = {e, €}, so from now
on we assume there is no such an edge e.

Consider now the subgraph 7 \ .., €. It is a union of trees being its
connected components, indexed by a set which we will denote I:

T\E=T\{Je=UT.

ecky iel

If I is finite, then Ej is also finite. Thus, assume that I is an infinite set and
let us denote

Ef ={e € Ey| t(e) € T3},
E; ={e€ Ey| s(e) € T},

and

E;=E'UE; #0.

Observe that for e € Fy, e € E;" means that ¢(e) € T; and s(e) ¢ T;, which is
equivalent to say that 7; ¢ T (recall that 72945 the connected component
of T\ é touching t(e)).

Next, let us divide the rest of the proof in three different cases.

First, assume that there exists i € I such that there are edges e # ¢’ and
{e,¢'} C Ef. Then, ¢ € 719 and e € et/(e/), and therefore 75 ¢ 7?,(6/).
Thus,

E(T) = B(e) UB(e) = B(e) UE(T)) c Ble) UE(TA)) = B(e) UB(€),

so we take £y = {e, €'}.

In the second place, assume that there exists ¢ € I such that E; = 0.

It £(T;) # 0, there exists € € £(T;) and e € Ey such that ¢ € B(e). Then
e & E;; otherwise, e € E;, so T, C T and € € £(T;) ¢ £(T2) = B(e).
Consider the unique path connecting e with 7;. Since e € F;, there is a
unique edge €’ # e in this path, such that ¢’ € E; = E; , so e € 73(6/). The
fact that e € £(7;) N B(e) implies that 7; C T2 and T ¢ 729, Thus,

E(T) = B(e)UB() = B(¢) UE(TS))  B(e') UE(TI) = B(e') U Ble),
so we take £y = {e, €'}.

If £(7;) = 0, the tree 7; is finite, since T is locally finite, so the set
E, = E; = E; is also finite. For any j # i take the unique path connecting
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T, with 7;. As above, it contains an edge e; € E; such that 7, C ﬁ?(ej). Now,
we get that

ET)=||&Tm) c || &T9) = || B,

Jjerl ecFEy ecFEy

as we wanted.

Finally, assume that for all i € I, E;f = {e;}. Fix an ig € I. Let i; € [
be the index such that s(e;,) € 7;,. Note that e;, € £, so we have e;, # e;,.
Generally, let 4,1 € I be the index such that s(e;,) € 7;,,,. Consider the
ray defined by the sequence {t(e;, )}nen, which can be seen as

€jp U [S(Gio)vt(eil)] Ue;, U [S(Gil)’t(eb)] Ue;, U [S(elé)’t(elé)] Ueéi, U...

(observe that [s(e;, ), t(€;,.,)] C Ti.,., so the previous union is disjoint xcept
at the vertices). We are going to show that this end cannot be in any B(e)
for e € Ey, so we will get a contradiction from which we will deduce that this
case cannot occur.

Assume there exists e € Fy such that B(e) contains the previously built
end. Therefore, the ray starting at e and defining this end cuts 7; and
contains ¢; for all n € N big enough. Let us denote the edges in the inter-
section of this ray with Ey by f, consecutively starting from e, so fy := e
and for all n big enough e;, = fy(n), where m : N>y — N is an increasing
map. Therefore, there exists an m € N such that f,, has the same orienta-
tion of the ray (like fo) and f,,+1 has the opposite orientation (like any e;,
for any n big enough). Then, if ;) is the connected component between
fm and f,, + 1, both edges verify that ¢(f,),t(fm+1) € Tigm), and therefore,
Sy a1 € E;(rm), which contradicts the hypothesis that this set consists in a
unique element.

Summarizing, the end given by the sequence {t(e;,) }nen cannot exist, so
the third case, whose hypothesis is that each E; consists in a unique element,
does not occur. O

Corollary 2.1.23. If T is a locally finite tree, E(T) is compact, and in the
same way, all the open subsets B(e) are also compact.

Proof. The sets B(e) form a basis of open sets, so one only has to apply he
definitions and the previous proposition to conclude. O

Remark 2.1.24. Compact metric graphs are locally finite, and so their uni-
versal coverings. In particular, we may apply the previous corollary to the
universal covering trees of tropical curves seen as metric graphs.
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2.2 Harmonic cochains on a graph and har-
monic measures on a compact set

We give general definitions of harmonic cochains over any weighted graph
and of harmonic measures over a suitable compact set, and we prove the
isomorphism between the harmonic measures on the ends of a locally finite
metric tree and the harmonic cochains on that tree.

In the next chapter, given a compact subset £ C P!(K) we will build a
tree Tx (L), whose ends correspond to L, so we will be able to apply the
result to this tree, proving the assertion by van der Put in [vdP92, Ex. 2.1.1].

2.2.1 Harmonic cochains on a graph

Recall that a harmonic cochain is a morphism ¢ : Z[E(&))] — Z verifying
e ¢(é) = —c(e) for any e € E(®), and

. c( Z e) = 0 for any vertex v € V(®).

e€St(v)

We denote the set of harmonic cochains of & by Cl_ (&,Z).

Observe that, if we subdivide an oriented edge e in two oriented edges
e1 and ey, then the properties tell that any harmonic cochain verifies that
c(e1) = c(eg). Hence, given a (locally finite) metric graph and two arbi-
trary models for it, there is a canonical isomorphism between their harmonic
cochains, so we can define them for the metric graph G = ||, and we can

write Cl, (G, Z) := C} (6, 7).

har

Lemma 2.2.1. Let $ be a finite weighted subgraph of &. Then, any harmonic
cochain c satisfies c( Z e) = 0.
e€St(H)

Proof. First observe the following properties of stars:
St(H)UE®) =St(V($H) = | | St(v)
veEV(H)

Next note that an edge belongs to ) if and only if its opposite also do. Then,
taking into consideration the first equality of stars and the previous remark,
because of the first property of the harmonic cochains we get

c< Z e>: Z cle) = Z c(e)

e€St(H) e€St(H) eeSt(V($))
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and because of the second equality of stars and the second property of har-
monic cochains we finish as follows:

D, )= D

eeSt(V(9)) veV ($) eeSt(v)

2.2.2 Harmonic measures on a compact set

In order to get another point of view for the harmonic cochains we have
to define the harmonic measures on a suitable compact space. Previously we
will define distributions.

Remark 2.2.2. Let X be a Hausdorff topological space and assume that it
has a basis formed by open compact subsets (or similarly, every point has a
neighbourhood basis formed by compact open subsets). Then, it is clear that
X is locally compact, and it is also easy to check that it is totally discon-
nected. If X s a topological group locally compact and totally disconnected,
then the opposite implication is also true (what is usually called a locally
profinite group). In particular, these conditions are equivalent and satisfied
for subspaces of finite dimensional projective spaces over local fields.

Definition 2.2.3. Let X be a Hausdorff topological space and assume that
it has a basis formed by open compact subsets. Let C°(X,Z) be the space of
all Z-valued, compactly supported, locally constant functions on X. For any
abelian group A we call

D(X, A) = Hom(C(X, Z), A)
the space of A-valued distributions on X.

Lemma 2.2.4. With the previous hypotheses, any f € C°(X,Z) is a finite
linear combination of characteristic functions on open compact sets of X.

Proof. Since f has compact support, there exists a compact K C X such
that X \ K c f*({0}) and

= || F'{mp.

meZ\{0}

As the sets f~'({m}) are open, in this union only appear a finite set. But
these sets are closed contained in the compact I, so they are compact. Then

we get a finite sum
F=" 2 m™Xpimy
“t({m})cK
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Definition 2.2.5. Let X be a compact space such that the compact open
subsets form a basis for the topology. Given an abelian group A, an A-valued
measure @ on X is a function on the compact open subsets of X such that
applied to a finite disjoint union of compact open subsets is equal to the sum
of the images of these subsets. The set of A-valued measures on X is denoted

(X, A).

Proposition 2.2.6. With the same hypotheses from previous definition we
have an isomorphism of abelian groups

T:D(X,A) = #(X,A),

given by YT(f)U) = f(X,), where X,, € CX(X,Z) is the characteristic
function of U.

Proof. First of all we have to see that this map is well defined. Indeed, if U
is open and compact X, € C°(X,Z), and given disjoint open compact sets
U,Y C X we have

TNHUIY) = F(Xuww) = TXutXy) = FX)+H(Xy) = THUO)FTHV).

The injectivity is straightforward because of the lemma [2.2.4] In order to
prove that it is exhaustive we only have to define an f € D(X, A) by f(X,,) =
u(U) and extending by linearity, again by the lemma named just before.
Thus, we get clearly Y(f) = p. ]

Definition 2.2.7. Let p € .#(X,7Z) be a Z-valued measure on X. We say
that 1 is harmonic if the total volume p(X) is 0. We denote the set of
harmonic measures by M (X, 7).

The isomorphic image in D(X,7Z) is denoted by D(X, Z)par and called the
set of harmonic distributions.

Remark 2.2.8. When X is compact we have an exact sequence
0 —Z—CX(X,Z) — C*(X,Z)]Z — 0.
so dualizing we get an exact sequence
0 — Hom(C*(X,Z)/Z,7) — Hom(C*(X,Z),7Z) — Hom(Z,Z)
naturally isomorphic to
0 — (X, 2) — M (X,Z) — 7

where the last arrow maps a measure to its value on X.
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2.2.3 Relating harmonic cochains with harmonic mea-
sures

Recall that if a tree T is locally finite, the set of ends £(7) is compact,
so from now on along this chapter we are going to assume this hypothesis.

Theorem 2.2.9. Any harmonic cochain ¢ of a locally finite metric tree T
determines a unique harmonic measure p(c) in M (E(T),Z)o by defining
w(c)(B(e)) = c(e) for any directed edge e in T . This induces an isomorphism
between M (E(T),Z)o and CL (T, Z).

Proof. Essentially, all we have to check is that the map
Clllar(T7 Z) — ’%<6(T)7 Z)O

given by the description above is well defined.

First, it is enough to characterize a harmonic measure over the sets B(e)
since these are a basis for the topology of £(T).

Next, take a model T = (V, E) for 7. We just have to see that for any
open compact set U C £(T) and for any partition U = | | ., B(e) with I C E
finite, the sum ) _; c(e) is invariant. Let us take two finite partitions of U:

U=||Be)=||Ble)

ecl eel’

Since U is open and compact so it is the complement V = £(T) \ U and we
can consider another finite partition ¥V = |_| Be), I c E. Then we have

ecl

ET)=uuv=||Be)u| |Ble)=| | Ble)u| |Ble)

ecl eei ecl’ eef

Therefore, by the previous corollary, we get TUJT = St(%) and I'UT = St(T)
for certain finite subtrees of T (or any or both disjoint unions can be the
degenerated case, which the reader can do as an easy exercise). Then we

have
Zc(e) + Zc(e) = Z cle) = Z cle) =0
ecl ecl ecIUl e€St(T)

and
See)+Y cle)= > cle)= Y cle)=0
ecl’ eel eeI'UT e€St(T’)
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after apply lemma [2.2.1] so we get

Z cle) = Z c(e)
ecl ecl’
as we wanted to prove.

Once we have the map well defined, it follows immediately from the defi-
nition that it is an isomorphism of abelian groups. Indeed, the kernel has to
be zero and the same definition together with the fact that the sets B(e) are
a basis for the topology of £(7T) provide the exhaustivity. O

2.3 Harmonic integration on locally finite met-
ric trees

In this section we introduce integration on compact sets from measures,
then we relate them by means of the isomorphism of the measures with the
distributions and of its definition as a dual space of some locally constant
functions. Later, we integrate on the ends of a tree and we use this to define
a way to integrate degree zero divisors on the tree.

Inspired by [Lon02, Prop. 5], we consider the next lemma.

Lemma 2.3.1. Let X be a compact space (in particular Hausdorff) such that
the compact open subsets form a basis for the topology. Let A be a complete
topological abelian group such that a basic system of neighbourhoods of the
zero consists of open subgroups. Let f: X — A be a continuous function
and let p € M (X,Z) be a Z-valued measure on X. Then, the limit

lim > pU) f(E),

taken over the direct system of finite covers Co, = Co(X) of X by disjoint open
compact subsets Uy, and where the t;, are arbitrary points in them, exists in
A and is independent of the choice of the t; ’s.

Proof. Let N C A be an open supgroup neighbourhood of 0. The sets
f Yz + N) with € A form an open covering of X, which can be refined
to a covering by compact open subsets. We take a finite subcovering Co(n).
Then, for any refined covering o« > «(N) and for any U € C,, t,t' € U
implies that f(t) — f(t') € N. This tell us that

> U f(E)
UL eCaq

9 U N
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is a “Cauchy sequence” in « (quotation marks since there is not a unique
sequence, but a direct system, so given «, ', there exists o’ > «, '), and it
converges since A is complete. Further we get the independence of the choice
of the ¢, ’s. O

Definition 2.3.2. Let X be a compact space (in particular Hausdorff) such
that the compact open subsets form a basis for the topology. Let A be a
complete topological abelian group. Let f : X — A be a continuous function
and let p € #(X,7) be a Z-valued measure on X. Then, the integral of f
with respect to p is defined as

[ fawi= [ @aun) =t S pea) s € 4
: : o ey

taken over the direct system of finite covers Co, = Co(X) of X by disjoint open
compact subsets U, and where the t;, are arbitrary points in them.

Proposition 2.3.3. For any measure u € #(X,7Z), we have

1. For any compact open subset U of X, and for any a € A, denote by
Xo(t) the function mapping x € X toa if x € U, and to 0 otherwise.

Then/ Xv.adi = ap(U).
X

2. If f,g: X — A are continuous functions on X and the corresponin
integrals exist, then

firom= () ()

Remark 2.3.4. The lemma previous to the definition tells the existence of
the integral under a strong hypothesis on A. The last proposition, tells its ex-
istence if f is an A-linear combination of characteristic functions X, : X — Z,
which gives a reinterpretation of the proposition[2.2.6 for A-valued measures.

T (X, A) — D(X, A)
s given by
0060 = f Xy

and so,

T (/) = ]{( fdu,

39



that is, for each measure i we have a well defined map
7[ dp : CX(X,7) @, A — A.
X

The comentary below shows the trivial existence if f is constant and p s
harmonic.

Note that for any harmonic measure p and for any constant function
f: X — Asuch that f(z) =a for all z € X, we have / fdu = 0.

Let T be a metric tree, and let A be a finite set of pOi)I(ItS in 7. Consider
the subtree of T generated by the points of A, that is the minimal substree
containing all these points. We denote it by T4. It is clearly finite and there
is a unique retraction map

7 T — Ta

which maps every point p € T \ T4 to the nearest point in 74. This has a
sense, since T4 is compact and path-connected, and 7T is a metric space, so
there exists inf,e7, {d(p,a)}. Further, the a reaching this infimum is unique,
since for any other a’ € T4 the path connecting it with p pass through a and,
therefore, has a greater length.

Since the topological realization of a ray r = (vg,vq,...) is connected,
there is an N such that for all n > N 14(v,) stabilizes, so we can associate
this point to the end defined by this ray, therefore we get a map

17 E(T) — Ta

Moreover, when A C A we have Ta C T; and the restriction of the
retraction map
r:% = r;’4-|7,1 2Tz — Ta,

A_ A A
SO I‘T—rjOI"T.

Definition 2.3.5. Let T be a metric tree, let A be a finite set of points in
T, and let D == > ,myp € Z[T]o be a degree zero divisor. With these
elements we build the map

ng<T) — R

given by .
fole) = =3 Y myd(p, ().

peEA
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This function is clearly locally constant and, therefore, continuous.
Remark 2.3.6. For D =0 we have fy = 0.
Next, let D = p’ — p. Then we have

fr-ole) = 5 (dp, () — Ao, T3(2))
and, if [p,p/] is an edge

fo(e) = { 2dep) ifeeBp.p)
rer —5d(p,p) ifee By, p).

Lemma 2.3.7. Let T be a metric tree, let A be a finite set of points in
T, and let D := 3 ,myp € Z[T]o be a degree zero divisor. Then, for all

peT
> mpd(p, vt (p) = > myd(p,p).

peA pEA

Proof. We just have to note that for any p € T4, 14(p') € [p/, p] and compute

Zmpd(p,p Zmp (v, r7- P))+ d(r?(p/),p)) -

peA pEA
- Zmp p7 r’T + d p r’T Zmp Zmpd<p7 r74(pl>>
peA pEA pEA

O

Proposition 2.3.8. Let T be a metric tree, let A, A" be two finite sets of
points in T, and let D =3 _ ympp, D" =3, myp € Z[T]o be two degree
zero divisors. Then

fo+pr = fp+ fpr.
Proof. Let ¢ € E(T). Let us denote A := AU A’. On one hand we have

~2fpip = Y (my +ml)d(p, 7€) =

pej
A A
= Zmpd(p, r7(e)) + Z myd(p, 17 (€)).
peEA pe A’
O~n the other hand, since ra‘i = rj‘lorg, by the previous lemma applied to
r4(g) we get
“21p(e) = Yyl A(E) = (e
pEA peA

We proceed identically for A’, D" and we deduce the claimed equality. H
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Corollary 2.3.9. As a consequence, any map fp is determined by the maps
fy—p where [p,p'] is an edge in T.

Definition 2.3.10. Given a locally finite metric tree T, a harmonic measure
pe AMET),Z)o and a divisor D := 3 myp € Z[T|o we define

/ dp = fpdup € R.
D E(T)

Lemma 2.3.11. Let p,p’ be points in T such that [p,p'] is an edge and
we MET),Z)y. Then we have

/,_ dp = d(p, p")u(B(p,p")).

Proof. We use the definition and the computation of the function previously
remarked:

[ = [ st = B2 g ) — B ) g ) =

= 2. 2) (u(B(p.1) ~ W(BW.p) = dlp.p)u(B(,p))

where the last equality is due to the harmonicity of © and to the covering by
an edge and its opposite. O

The latter lemma, the proposition and the proposition give us
a well defined abelian groups morphism

/d  Z[T]o — Hom(4 (E(T), Z)o, R).

Lemma 2.3.12. Let I' be a group acting continuously on T . Then, the
previous map commutes with the I'-operation.

/ d:’y-/d
v-D D

for any v € T'. That is to say that for any v € T" and p € #(E(T),Z)y we
have

vadM:/ duzv-/duz/d(v‘ln):/ fod(y™ 1)
&(T) v-D D D &)
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Let us to compute the first integral:

[ Fdi=tim S ) fo(e) =l 3 ) ) 87) =
&) Ca UYEC, Ca U2eC,
toeus by €U

=lim Y uU)foly™My) =lim Y (WU folty) =
Ca U2eC, Ca UzeC,
treUs treus

=lim Y (v 'w)U fo(ty) = / fod(y™'p)
Ca Yoec,
18 ey

Therefore we get the claimed compatibility of the action of I' with the map.
0

Proposition 2.3.13. A group I' acting continuously on T induces an ho-
momorphism of abelian groups

/d T — Hom(# (E(T),Z)5, R).
Proof. Consider the short exact sequence

0— Z[T|o — Z[T] — Z — 0.

The action of I' gives us a long homology sequence from which we extract
the first connecting morphism

Hy(T',Z) — Ho(T',Z[T o) = Z[T oy
which maps vy to yp — p for any p € 7, and the lemma gives us a morphism
Z[Top — Hom (.4 (E(T), Z)o, R)r = Hom (.4 (E(T), Z)g, R).
Thus, composing we get

=~ f,(I',Z) — Hom (. (E(T),Z);,R).
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2.4 The Albanese torus of a finite metric graph
via integration

Along this section, first we recall the different discrete and analytic torus
appeared in the chapter [I] in order to compare with the Albanese torus of a
finite metric graph such as it is defined in [CV10]. Then, we recall the way
for computing it implicit in [BE11] and we use this to rise the computation
on the ends of the universal covering tree of the graph and to build the
Abel-Jacobi map.

In addition, we proof the fundamental isomorphism between the I'-invariant
measures on the ends of the universal covering of a graph with the abelianized
of I", where this group is the fundamental group of the given finite metric
graph.

The Albanese torus of a finite metric graph

Let us start recalling some ideas shown along the previous chapter and
taken from different papers as [BAIHN97], [KS00], [KS08], [CV10] or [BE11].

We have seen along the first chapter that the definition of the discrete Ja-
cobian torus of a graph G consists essentially in a quotient H'(G,Z)/H' (G, Z)*
with the metric ( , ) on H'(G,R) induced by the inner product ( , );
on CYG,R). Dually, the discrete Albanese torus conmsists in a quotient
H,(G,Z)*/H,(G,Z) with the metric on H!(G,R) induced by the correspond-
ing inner product on C;(G,R).

If we consider the undiscrete or analytic versions, the Jacobian of G is
the flat torus H'(G,R)/H'(G,Z) together with the same metric obtained
as above, while the Albanese torus is H;(G,R)/H,(G,Z) together with the
corresponding flat metric.

Modifying the notation of first chapter, and denoting by ( , ) all the inner
products, we call now

Jac(G) = (H'(G,R)/H'(G,Z),( . ))

Jac'(G) = (HN(G, Z)/H" (G, Z)*,( , ))
Alb(G) = (H,(G,R)/H\(G,Z),(, ))
AIY(G) = (H\(G,Z)* /H\(G,Z),( , ))

and we have Alb'(G) < Alb(G). Further, we have seen Jac'(G) = Pic(G) =
Al (G).

Recall the definition of the Albanese torus of a finite metric graph (or
more generally, of a tropical curve) (see, for example [CVI0L Def. 4.1.4]). We
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only consider metric graphs G with all vertices of valence at least 2. By the

introduction of section , for any edge e of G we have a length ¢(e) € Ry.
We choose an orientation for each edge of G, and we consider the free

abelian group C1(G,Z) = Z[E(G)] generated by these oriented edges of G

and the map 0 : Z[E(G)] — Z[V (G)] = Co(G,Z) given by d(e) = t(e) — s(e),

where t(e) is the target of e and s(e) is the source. Then H,(G,Z) = Ker(9).
For any metric graph we can define the paring

(,):Ci(G,Z) x C1(G,Z) - R

by (e,e’) = 0 if ¢’ # e and ¢ # € (the opposite edge of e), (e,e) = £(e) and
(e,€) = —{(e), which induces a symmetric positive definite bilinear map on
C1(G,R) = C1(G,Z) @z R.

If we are dealing with several metric graphs and we need to specify in
which we are applying the pairing, we shall denote it by (, )g.

From now on along this section we assume the graphs are finite unless we
specify the contrary.

The previous inner product determines a flat metric on the homology
group H;(G,R) = Ker(dg).

Definition 2.4.1. The Albanese torus of a finite metric graph G is the torus
given by Hi(G,R)/H,(G,Z) together with the metric determined by ( , ).

AIB(G) = (H\(G,R)/H\(G,Z),( , )

On the other hand, in [BF11] the authors consider a model & for the
graph G with one orientation for each edge, instead of taking each edge
with its opposite, as we do here. Then, their definition of the 1-forms on
& is equivalent to the elements of the quotient of the real vector space with
formal basis {de : e € E } by the subspace generated by the elements de+de.
Following, they take into consideration the harmonic 1-forms, which are those
1-forms w = > wede such that for each vertex v € V

Y we=0[<+= > w=0],

s(e)=v t(e)=v

and denote them by (®).
Let us consider the set E' = E(®) of edges that they consider, formed by

exactly an edge e for each couple e, € in E=F (&), so we have for an abelian
group A (here, Z or R)

AE] = A[E]/{e + e} e
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and the A-cochains on the graph is the dual (over A) of the right-hand side,
isomorphic to the dual of A[E].

Consider the free abelian groups C1(®, A) := A[E] and Cy(&, A) := A[V],
and the differential map 0, : C1 (&, A) — Cy(&, A) given by 0;(e) = t(e) —
s(e). Then, on one hand, H,(®,A) = Ker(0;) = Hi(G,A) (that is the
isomorphism between singular and simplicial homology), and on the other
hand, by means of the identification of Cy(,A) and Cy(®, A) with their
duals made in [BF11l, § 2.1] (which we will denote with hats instead of the
notation used in that paper to avoid confusion), we have

O—>H1 ®,A)—>Cl @,A)—>OO ®,A>

o ~| =|

as we have seen in theorem for unweighted graphs. This implies our
homology group coincides with the defined in the paper by Baker and Faber.
They also introduce a pairing

Q(B) x C(,R) R

(w,0) e

which extends by linearity the equality

[ le) ife=¢€,
/e,de_{() if e £ €.

and which restricts to a pairing

Q&) x Hy(8,R) — R.

Then, as commented in [BF1I, Rem. 2.3 (2)], we get a natural construc-
tion of the Albanese torus.

Lemma 2.4.2. Given a finite metric graph G, for any model & the restricted
pairing to the homology is perfect, and so we have

Alb(G) = Q&) /H (6, Z).
Proof. This is the lemma 2.1 in [BF11]. O
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We already see that this object does not depend on the chosen model.
In fact, this is proven in [BE1I, Lem. 2.9]. But let us see in another way.
Consider the real harmonic cochains on any locally finite weighted graph
&, which are maps c : R[E(@)] — R verifying the same properties that
the harmonic cochains. We denote them by Ci, (®,R). As the harmonic
cochains (with integer values), these also satisfy

Char (6, R) =2 C, (G, R).

We also have a natural star map

A

St : A[V] — A[E] — A[E]

composing the projection with the map which associates the divisor ZeeSt(v) e
to the vertex v € V', understanding the star which appear in the summation
as defined in previous sections. Thus, we can define the harmonic cochains
as the kernel of the dual map, obtaining an exact sequence

0 — Ct,. (6, A) — Homyu(A[E], A) — Homyu(A[V], A).
which, when A = R, is isomorphic to the exact sequence
0 — Q&) — R[E] — R[V]
where a function f € R[E]" corresponds to the divisor >° .y f(e)de -
writing the formal symbol de instead of e-, similarly for vertices, and the last
map makes correspond the divisor >0,y g) ( 2cesi) me> V10 Y- e () Mede.
Thus we got Q(&) = C]_ (6, R) = C]_(G,R) when G is finite.

har har
Let us observe too, that under the assumption of finiteness of GG, and so,

of its vertices and its edges, and since R is Z-flat, we have
Homy(Z[E], Z) ®z R = Homg (R[E], R)
and
Homy(Z[V],Z) ®7z R = Homg(R[V], R),
and in addition we get an exact sequence
0 — Ch(G,Z) @2 R — R[E]* — R[V]*

which results in a natural isomorphism C{_ (G,Z) @z R = Cl_(G,R).

Remark 2.4.3. In [BF11)] the authors build the Jacobian of a finite weighted
group and show that the Albanese torus of a finite metric group is isomorphic
to the direct limit of the Jacobians of the models. We will not repeat that
construction here, but we would like to mention that it generalizes naturally
the construction of the Jacobian of an unweigthed graph in [BAIHN9T|], which
we describe in the sectior{1.3 of the first chapter.
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The Abel-Jacobi map

Next, we have yet a connected finite metric graph G and a model &. In
fact, whichever model it is, it verifies

AIb(G) = Q&) /Hi (6, 7).

Definition 2.4.4. Given two weighted graphs & and &', we say that &'
refines & if there exist an injection vy : V(8) — V(&) and a surjection
g BE(®) — E(®) such that for any edge e of & there exist vertices
vo = vy (s(e)),vr,...,v, = vy(t(e)) and edges ey, ... e, € E(®') satisfying
T (e) = {e1,...,en}, Soi le;) = L(e) and s X t(e;) = (vi_1,v;) for each
1=1,...,n.

To construct the Abel-Jacobi map, fix a point p € G. For any other point
g € G, consider another model &, , of G containing p and ¢ as vertices and
refining &. Consider a path P C E(&,,) from p to ¢ in &, ,, which we can

~

see as a sum of the edges in P, that is a 1-chain Z[E(®,,)], and let ap its
image by the projection

Z[E(®p,q)] — Z[E(ﬁp,q)] = Cl(QSp,qa Z)'

Thus, our construction coincides with which precedes the proof of the theo-
rem 2.11 in [BF11] ap. With the notation in that reference

ap = Z e(P,e)e.

ecE(®)

The pairing previously introduced induces a map

/ : Cl((’jpmz) — Q(ﬁp,q)*a

so we get

/ € Q(6B,,)".

Lemma 2.4.5. This construction is compatible with the refinement and so,
it does not depend on the model &, ,. Then, it gives an Abel-Jacobi map

¢, : G — Alb(G)

defined by



Proof. We constructed a map ®, : G — Q(®,,,)*. The difference of the
images in two models goes to an integer cycle in a common refinement, which
goes to zero in the Albanese torus (cf. paragraphs at the begining of section 4
of [BF11]). Therefore, we can compose with the isomorphisms

(Gp,)°
A o >~ Alh(G
H\(8,,Z) H\(6,Z) (©)

in a compatible way. O]

A finite metric graph and its universal covering

Let G be a connected finite metric graph. It is well known that it has
a universal covering space 75 which is a connected locally finite tree, being
infinite if G is not a tree. It is clear that £(7s) = 0 if and only if G is a tree.

Let I' := m (G, v) for any v in G. Then I' acts freely on 7¢ and G = I'\T¢.
Let us denote the universal covering projection by

TG . ,TG — G.
Further, the action on 7¢ induces an action of I' on £(7¢).

Proposition 2.4.6. Fach non neutral element v € I" has exactly two distinct
fized points in E(T).

Proof. Take any point p € Tg and consider v"p for m € Z. Since I' acts
freely on 7g, these points for m > 0 have to define an end, and for m < 0 a
different end, which are two fixed points. If there were three different ends
fixed by 7, the vertex determined by them (lemma would be fixed, so
we would contradict the fact that the action is free. m

Let us take ¥ in 7¢ such that mg(0) = v. We have maps

g

Fab = 7T1(G, U)ab Hl(G, Z)
v WG([{}?'V’E])

I

Then, we have a symmetric, positive definite bilinear form
(s )Gy : T x I — R

defined by (’Ya ’y/)fn(G,v) = (w(V)v w(’yl))
Proposition 2.4.7. Any finite metric graph G satisfies H,(G,Z) = C}

har

(G, Z).
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Proof. Take a model & for G and recall that H,(G,Z) = H,(®,Z) (it is the
equivalence between singular and simplicial homologies). We want to prove

Hi(6,7) = CL _(&,7).

har
Given a cycle

c= Y nee€ Hi(®,Z) C ZIE(®)],
ecE(®)

we associate to it a harmonic cochain ¢(z) defined by ¢(z)(e) := n. and
c(z)(é) :== —n, for any e € E(G). Indeed, we have

0=0(z)= > mne-(tle)—s(e)= > [ D n—> ne
e€E(G) veV (&) \t(e)=v s(e)=v

what implies that for any v € V(&)

Z cle) = Z Ne — Z ne =20
s(e)= (e)=v

e€St(v) v t

Reciprocally, for each harmonic cochain ¢ we get a cycle

e€cE(G)
This correspondence defines the bijection. ]

Since I' acts on 7Tg, it also acts on the harmonic cochains on the tree and
since the action is free, we get

Clllar<7—G7 Z)F = Clllar(r\7—G7 Z) - Clllar(G7 Z’) = Hl (G7 Z’) = Fab

Corollary 2.4.8. The map pu: " — #(E(T),Z); defined by

i (B(0) i= n() (o)) = =)

over an edge e is a natural isomorphism such that for any ~v,v € I', we have

(’777/)7r1(G,v) = / dllﬂy’
YP—p
where p is any point of T .

20



Proof. The previous results together with the section[2.2]give the composition
of isomorphisms

Fab ? H1<G’ Z) ? Cllla.r(G7 Z) g—> Cll‘lar(%’ Z)F ~ %(E(ITG)v Z)g
Y w(y) ——c(@(7)) p(c(w(7)))

1%

which assigns to v € I'® the harmonic cochain defined by

el (B(e)) = el (e) = =)

Since the set of points of valence greater than 2 in the path from p to vp is
finite (by the lemma [2.1.11]), then we get the equality

(VY ) mew) = / dpty

=P

decomposing the path linearly, applying the lemma|2.3.11| and the additivity
of the integral with respect to the path and taking into account the definition
of the map p. If yp —p =>""_, pi — pi—1, where [p;,_1,p;] are edges, then

/ dpy = Z/ dpiy = Zd(pz'api—l)ﬂ'y’(B(pi—lapi)) =
YP—p 4=1 Y Pi—DPi-1 i=1

r

_ Zd(%,piq) (WG([pi—17pi])7w(7’)) _ Z <7TG<[pi—1;pi])7w('7/)) _

d(pi-1, p:) i—1

= (@), @(")) = (1,7 )m@w)
0

The Albanese torus and the Abel-Jacobi map via integration on
the universal covering

Note that we have by the proposition [2.3.13| a map
/d CHy(G,7) 2T — Hom (A (E(T), Z)§, R).

given by



Theorem 2.4.9. The Albanese torus of a (connected) finite metric graph G
satisfies
Hom(.# (E(T),Z);

1%

Alb(G)

Proof. By the lemma we have Alb(G ) =~ Q(B)/H,(B,Z) where & is
a model for G. We also know Q(&) = C} (G,R) = C},.(G,Z) ®z R and

H,(8,Z) = H,(G,Z) naturally. Moreover
Hom(.# (£(7c), Z), R) = Hom(C,,(T6, Z)", R) = Hom(C,,,, (G, Z), R) =
= HomR(Clluxr(G’ Z) Qz R, R) = HomR(Clllar(Ga R)7 R) = Ciar(G7 R)*

Therefore, to end we only have to see that the next square is commutative:

s

H(&,2)— H|(6,R) ——————

R =

I

I

o
ol

H.(G,Z) Hom (. (£(T¢),Z)5, R).

Take v =} ) Me€ € Hi(®,Z). We also will denote by a its topolog-
ical realization, which is the cycle that corresponds to it in H;(G,Z). Recall
that '®* = H,(G,7Z), thus, there is v € ' such that a = w(7y), that is the
projection of a path from a vertex v € 75 to v - ©. Then, m, counts how
many times appear edges representing e in that path in 75 with orientation.
If & is one of those edges in 7;'(e), that is the value > e €([0,70], 7€) with
the notation introduced before the proof of theorem 2.11 in [BF11], applied
at 7. That is

me =Y e([0,70],7¢) = (wél)’e)-

vyerl (
)

Take also a harmonic measure u € .#(£(7g),Z),. The corresponding

harmonic 1-form is
Z wu(B(e))de € Q(S).
e€E(®)

By the isomorphism .# (E(7¢), Z); = ', we have u = u., for v/ € T and,
as above,



by the corollary [2.4.8 This result also allows us to conclude the sought
commutativity, as follows:

L= S wBE)e | = 3 mou(Ble))(e) =

ccE(8) el \ ecE(®) e€E(®)

= 3 mee, S uBe)e | = (wlr).w(v) = / m
(®) Yp—p

e€E(®) eckE

]

Theorem 2.4.10. Given any point p € G, the Abel-Jacobi map with base
point p is given by

ip Hom(.#(E(T),7),R)
d (Hl (G> Z))

q
q /d:,ur—>/ dp
p G—p

where 7a(p) = p and 7g(q) = q.

G

=~ Alb(G)

Proof. First, observe that the map is well defined. Indeed, assume first we
define it fixing a point p € Tg. Two representants of ¢ € G in T have the
form ¢ and g for some v € I', and so we have

[oa- [ a=] ae [z

That is, i; does not depend on the chosen representant of ¢g. Next, changing
p by vp and taking a fixed representant ¢ of ¢, we get i;(q) = i,5(¢) by an
identical reasoning, therefore ¢, is well defined.

Now we want to see that for any ¢ € G, ®,(q) = i,(¢). By the lemmal[2.4.5
we may take a model & of G containing p and ¢ as vertices. Thus, for any
path P in & from p to ¢ we have

/ = 00)

with the notation introduced above the mentioned lemma. In particular,
if we take representants p and ¢ of p and ¢ respectively, we take as P the
projection of the path from p to §. Then, we want to see that

[
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As in the proof of the corollary [2.4.8] we subdivide the path [p, g] in subpaths
[pi, Pit1], © = 0,...,r, which are projected to the topological realizations
in G of edges in &, where po = p and p, = ¢. Let ¢; € E(@) be the
edge whose topological realization is wg/([pi—1, pi]), with the same orientation.
Note that the projection of 7/, ¢; in Z[E(®)] is ap = 3 e €(P:e)e by
construction.

Now, take a harmonic measure u € #(E(T),Z)). We evaluate and
proceed like in the proof of the previous theorem

i (@) (1) = / =Y / "= 3 teonlB(e),

B = [ (=Y dPenBEe)

ecE(®)

and, since p(B(€;)) = —p(B(e;)) and €(P, e) counts how many times appears
e in the set {ey,...,e,} with orientation,

T

Y UeanBle)) = Y e(Pe)u(Be))ie),

i=1 eEE(®)

obtaining i,(q)(u) = ®,(q)(p) for all p, as we wanted to prove. O
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Chapter 3

The Abel-Jacobi map for
Mumford curves via integration

Mumford built in 1972 some algebraic curves associated to certain sub-
groups of the linear group PGLy(K), when K is a complete field with respect
to a discrete absolute value, analogous to a construction of Schottky over the
complex numbers. He restricted to the case of discrete absolute value and
used the geometry given by formal schemes.

This was generalized to every non-archimedean absolute value by Ger-
ritzen and van der Put in [GvdP80] in 1980. They named such curves Mum-
ford curves. Shortly after Mumford’s paper, Drinfeld and Manin in [MD73]
showed that the Jacobian of a Mumford curve is isomorphic to an analytic
torus (in the rigid-analytic geometry) and that it can be built with some
theta functions in the case K is a finite extension of the p-adic numbers.
This construction was also done in the general case by Gerritzen and van der
Put in [GvdP80]. Both took advantage of rigid analytic geometry, introduced
by Tate some years ago.

More recently, Dasgupta showed in his thesis ([Das04]) an equivalent con-
struction of the Jacobian to the ones cited above, but restricted to the local
case, by means of multiplicative integrals, defined previously by Darmon in
[Dar01] and generalized by Longhi in [Lon02].

Before that, in 1990 Berkovich introduced an alternative analytic theory
to the one of Tate in his seminal book [Ber90]. The biggest difference over a
variety consists in introducing more points instead of removing Zariski open
sets. This does not impede getting equivalent categories of “good” enough an-
alytic varieties which can be seen as generic fibres of formal schemes, thanks
to works of Raynaud, Bosch and Liitkebohmert. Concurrently, tropical ge-
ometry was developed and found in big relation with Berkovich analytic
geometry.
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In this chapter, we give a new construction of the Jacobian of a Mumford
curve over any complete non-archimedean field, departing from Berkovich
geometry, and giving so a new and enlightening point of view.

It should be also recognized a great parallelism of this work with part of
the paper by van der Put [vdP92]. Some of the results are directly related
to results by Baker and Rabinoff appeared in [BR15] in slightly different
language.

In order to get the asserted goal, we make the basic constructions given by
Berkovich theory in sections and [3.2] from which, later, in the section [3.6]
we build our Mumford curve. They are the Berkovich projective line together
(PL")o" with its skeleton Ty, which coincides with the Bruhat-Tits building
of PGLy(K), the locally finite subtree T (L) associated to a compact set £
and the retraction map

e (PR — Tr(L).

Through the sections [3.4] and we develope the theory of multiplicative
integrals and analytic functions that we need -completed later in the sec-
tions and [3.8] Essentially, we define these integrals, we build the ones
in which we are interested and we relate them to analytic functions through
the Poisson formula and the map

f:OQe) i — M(L,Z)

Later we study the automorphic forms for a Schottky group I' C PGLy(K),
and the last part of this work gather all previous topics to build the desired
Abel-Jacobi map.

Through this chapter K will be a complete field with respect to a non-
trivial non-archimedean absolute value| - | := | - |x. The ring of integers
of K will be denoted by O = {z € K | |z| < 1}, its maximal ideal by
my = {z € K| |z| < 1}, and its residue field by k := Ok /m.

If the absolute value |- | is discretely valued, we will assume — log |z| € Z
for any € K*, so it is the discrete valuation vx associated to |-|. Otherwise,
we also define the valuation of = by vk (x) := —log |z|.

Taking the 2-dimensional vector space V = KX, @ KX, = K?, we see the
dual projective line PL" over K as the projective spectrum of the polynomial
ring K[Xo, Xi], that is Py» = Proj(S*V). Its K-rational points correspond

o (K*)*\ {(0,0)} modulo homothety. We denote the class of (xq,z;) by
[ @ 21].

The infinite point in the dual projective line will be co = [0 : 1] and we em-

bed K in P*(K) by means of i*(z) = [1 : —z]. Therefore, an f € K[X;, X]
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defines a function L — L for any extension L|K, that by abuse of notation
we also denote f, by f(z) := f(1,—2).

On the other hand we inject K in P'(K) by i(z) = [z : 1], taking as
infinity of the projective line [1 : 0].

Given a point p = [a : b] € P"(K), we will denote its corresponding point
p* = [-b:a] € PL(K) (or if p € PY(K), then p* € PI"(K)). Note that this
implies i*(z) = i(2)* for all z € K and (y-p)* =~ - p* for all p € P}(K) (or
p € PY(K)), v € PGLy(K). Furthermore, co* = co.

More generally, given a set of points S C P*(K) (resp. S’ C PI*(K)) we
denote S* := {p*|p € S} C P*(K) (resp. S := {p*|p € §'} C P}(K)).

3.1 Trees and Skeletons

The main objective of this section is the construction of a metric tree
associated to an arbitrary compact set £ C P!(K), study its structure and
define the open sets associated to its edges. This subtree generalizes to a
non-discrete setting the one defined by Mumford in [Mum?72a] and gives an
alternative and more complete construction to the one given in [GvdP80),
Ch. 1]. In order to do it, we recall some well known notions coming from
Berkovich analytic geometry and Bruhat-Tits theory. This first part is mainly
extracted from [Bak0§], but it is also greatly indebted to [Wer04], where some
ideas we recall here and further on are shown.

Consider the Berkovich analytic projective line (PL.")® defined over K,
which is the set of all the multiplicative seminorms on the polynomial ring
K[Xy, X;] extending | | on K modulo an equivalence relation which is spec-
ified below; that is, the maps

a K[Xo,Xl] — Rzo

such that

—_

- QK = | ‘

2. a(XoK + X, K) # {0}

3. a(f-g)=a(f) alg)

4. of +g) <max{a(f), a(g)}

with o ~ f3 if there exists a constant C' € R+ such that a(f) = C4B(f) for
all f € K[Xo, X;] homogeneous of degree d and for all d > 0.
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We associate to an z € PL*(K), # # oo = [0 : 1] and an r € Rx an
element a(z,r) € (P 7)™ by defining

afz,r)(f) =sup{|f(y)| : y € B(x,r)} for f € K[Xo, X1]

and a(00, 0)(f) == [£(0,1)].
We will call these seminorms the ones associated to the balls (or to K-
rational points if r = 0).

Remark 3.1.1. Let f = AXqg+puX; € V=KX, & KX,. Then,
az,r)(f) = max{|A — pl, [u|r}.
Indeed, fory € B(x,r) we have
A= pyl = (A = pa + ple — y)| < max{|A — pal, [pl|z —y[}
whose maximum is reached at |y — x| = r, and so
a(z,r)(f) =sup{|A- 1+ p-(=y)l - y € Bla,r)} < max{|A — pal, [ulr}.

In addition we have trivially |\ — px| < a(z,r)(f), and so, the only case
which concerns us is | A — px| < |p|r, which is equivalent to

<r

‘__x
1

Then, for any vy such that

<ly—z|<r

2o

we have [A—pz| < |p|lz—y| and so |A—py| = |A—px+p(z—y)| = |pl|lz—yl.
Finally, we have a sequence (y,), inside B(x,r) such that lim |x — y,| =,

and therefore

af(z,7)(f) = sup{[A\—pyl, y € B(z,r)} = sup{|ullz—y|, y € B(x,r)} = |ulr.

In particular, when ¢ € K and f = qXo + 1X4, identifying them we get
&($7 T)(Q) = rnax{\q - lL’|,?"}.

Definition 3.1.2. We call mazimal skeleton of (P )" and denote Ty the
set of points associated to balls with r > 0, and the compactified skeleton T
is the skeleton together with the (points associated to) rational points P**(K).
It is well known that this set is a topological space, and together with a natural
metric, which we will recall in the following, forms an R-tree ([BPR13)).
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Figure 3.1: The Berkovich projective line (P%.")o".

Remark 3.1.3. If K is algebraically closed, then it is well-known (look at
[Ber90]) that the points in (P )" can be divided in four types, the type we
being associated to K -rational points, types II and III associated to (closed)
balls with center some x € PV (K), and with radius r € |K*| orr € Ryo\|K*|
respectively, and a fourth type associated to sequences of nesting balls with
empty intersection. Then the topological space (P%")* has the structure of
an R-tree. The maximal skeleton Ty of (PL7)™ is the set of points of type IT
and III, which is an R-subtree, and Ty is the set of points of type I, II and
I11.

Recall that in [BPR13] is defined a skeleton in (PL")*" and corollary
5.56. asserts that Tk is the inductive limit of all their skeleta. Note also that
(PL7)e" is homeomorphic to the inverse limit of the set of all skeleta with
respect to the natural retraction maps ([BPR13, Thm. 5.57.]).

Given any two distinct points zp and z; € PY*(K)\ {oc}, if R = |2q — 4],
we will denote by zgV z1 := a(zg, R) = a(z1, R). For any two classes of
seminorms ay = (g, 79) and oy = a(x1,7m1) € Tk, either the correspond-
ing balls verify B(xg,709) N B(x1,71) # 0, in which case a(z;,r;) = aly,r;)
for all the points y € B(xg,7r9) N B(x1,7) and ¢ = 0, 1, and we denote
ap V g := a(y, max(rg, 1)), or they verify B(xg,r9) N B(x1,71) = 0 and we
denote o V a1 := xg V 27.

Let us consider two points a = «a(z,7),a’ = a(z,r’) of the R-tree Tk,
with 0 < r <7’ and = # oco. We denote the (oriented) path from o« to o/
as P(a, ), being as a set of points {a(z, s)|r < s < 7'} = [r,r] C Rsg. The
(oriented) path P(cd/, ) from o to « is the same set of points oriented with
the opposite direction. Finally, the (oriented) path P(a(z,r), a(oo,0)) from
a(z,r) to a(co,0) is the set of points

{a(z, )]s =} J{a(oe, 0)} 2= [r, 00] € Rxg | J{oo}

with the orientation given by the isomorphism (as above), and we define sim-
ilarly the opposite path P(a(o0,0), a(z,r)) reversing the orientation. Given
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two arbitrary points o,/ € Tx \ {a(00,0)}, the (oriented) path P(a,a)
from « to o' is the path P(a, a V o) followed by the path P(aV o/, o).
Recall that given any two distinct points z¢ and z; € P'*(K), there is
a unique line in T going from z, to 21, the open path P(a(x,0), a(x1,0))
-the interior of the path P(a(z,0), a(z1,0)). This line is homeomorphic as
a metric tree to R, and we denote it by A, ,,: it is called an apartment of
the skeleton Tx. Its closure is, by definition, A 213 = Afzeeiy U {20, 21}
Given two points ag = (g, 70) and oy = (o, 71) € A0}, We define

log n

d(Oé(), Oél) = ro

Y

and in general we define
d(ap, aq) := d(ap, g V aq) + d(ag V g, aq).

Then d determines a well defined metric on Tx.

A seminorm on V is a1 V = XoK + X1 K — Ry satisfying (2) and
(4) as above in the definition of multiplicative seminorm on K[Xj, X;], and
a(l) = [Ma(v) for A € K, v € V. We say that a seminorm « on V is
diagonalizable if there exists a basis vy, v; of V' such that

a(v) = max{lwo (v)|a(vo), [wr(v)[e(vr) }

for all v € V, where wp,w; is the dual basis of vy,v;. We denote that
SEMINOIm as (vy,u1),(po,p1) With po := a(vp) and p; := a(v).

Remark 3.1.4 (The action of PGLy(K) on (PL")%"). The left action of
PGLy(K) on V induces a left action on K[Xo, X1] = S°V. Then, it also
induces a left action on (PY")™ by defining (v - @)(f) == a(y~*- f).

For any v € PGLy(K) we get v-a(z,0) = a(y-z,0), making the injection
PY(K) — (PL7)™ defined by x + a(z,0) equivariant. We also have

T Xwo,v1),(p0,01) = X(y-vo,yv1),(p0,p1)

Next we are going to identify the R-tree Tx with the Bruhat-Tits building
of PGLy(K), which is the set of diagonalizable norms on K2 up to homothety.

Proposition 3.1.5. The seminorm a(z,r) restricted to 'V is the seminorm
Q= Qug,01),(p0,p1)» diagonalizable with respect to the basis vo = (1,0), vy = (x,1)

and such that py = 1 and p1 = r when x # oo, meanwhile (00, 0) = a((1,0),0,1)),(0,1)-
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Proof. The identification works by means of restricting any seminorm in Ty
to KXo+ KX, by means of its identification with 2. When the seminorm
is a(z,r) for z € K ¢ P¥(K) and r > 0, and we apply it to a vector
v = (a,b) = (a — bx)vy + bvy, we have

a(z,r)(v) = max{|a — bzx|, |blr} = a(v)

Observe that wy(a,b) = a — bz and also that the seminorm on K? associated
to a rational point x has z* as its kernel, that is to say, the set of vectors
w € K? with |wy(w)| = 0 is the subspace generated by (z,1).

In the case of a(co,0) we have

a(00,0)(v) = [b] = max{|al0, [b|1} = a(w,0),0,1)),0,1)(V)
0

In the following result we will specify how the correspondence between
classes of seminorms with form a(x,r) and diagonalizable seminorms on V'
works.

Proposition 3.1.6. Let vy, v1 be a basis of V', wo,wy; € V* be its dual basis,
Yo = [wo],y1 = [w1] € PV (K) and po, p1 € Rsg. We suppose that yo,y; # o
(look at proposition above for the case in which one point is o), and then
we may take w; = (1, —y;) for i = 1,2 (by means of i*).

With these hypotheses we get:

If p1 < po, [Cwo,01),(p0.01)] = [a(vo,v1)7(17%)]
and
_ £1
CV(vo,m),(l,ﬁ—(l)) = o | Yo, %|y0 - yl' .
[f Po < pP1, [a(UO7U1)7(po,p1)] — [a(vo7vl)7(%71)]
and
_ £o
a(vo,m),(%’,l) = x| Y1, ,0_1|y0 - y1| .
If pr = po, [a(v07”1)7(PO:P1)] = [a(vo,vl),(l,l)]
and

Qvg,v1),(1,1) = O (ZJo, ’yo - yﬂ) =« (yb ’yo - 3/1‘) .
Reciprocally, and for r < |yo — y1|

(0] ) =« -
(yO ) (vo,vl)7(17m>

(0% 7T = = .
(:7) = 0 ) (m 1)
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Proof. Assume, just for simplicity, that pg, p; # 0, meaning that « is a norm.
Define o := a/(vy,01),(p0,p1)-

Next, we start at the end. By definition a € Agy 11, 50 @ € P(yo, 90 VY1)
or @« € P(yo V y1,y1); for some r < |yo — yi1|, in the first case we would
get a = a(yp,r) and in the second we would oo = «(y;,7) up to homothety.
Without loss of generality we suppose the first case. Let us take an arbitrary
vector v = (a,b) € V. We have

a(yo,r)(v) = max{|a — byol, |b|r},

a(a,b) = max{[a — byo|po, |a — byi|p1} ~ max{|a — byol, |a — byﬂ%}
We note that if |a — byg| < |b|r, we have [o](v) = [a(yo, 7)](v) if and only if
blr = la — by 2,

Po

or also
po_ [blr
po la—byi|
But since we have |b||yo — y1| > [b|r > |a — byol|, then we get |a — by;| =
la —byo + b(yo — y1)| = max{|a — byol, [bl|yo — y1]} = [bl|yo — y1], s0
L
po 1Yo — vl

[a] = {04 (?Joa %WO - y1|>]

after assuming r < |yo — y1/|, that is p; < po. In the same way, when p; > pg

we get
Po
al = o (0220 ) |
P1

We see the extreme cases too, that is, when p; = 0 then [a] = [a(yo,0)],
and when py = 0, [a] = [a(y1,0)]. O

Therefore we obtain

We keep together the last two results in the next:

Corollary 3.1.7. The mazimal and the compactified skeletons Tx and Tx
can be canonically identified with the set of classes modulo homothety of non-
trivial diagonalizable norms and seminorms on K? respectively. These are
the Bruhat-Tits building of PGLy(K') and its compactification.
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Proof. The classes of seminorms associated to balls correspond to the classes
of diagonalizable norms and seminorms on K? by the two previous results.
O

And now we are going to show that d is invariant with respect to the
action of PGLy(K).

Consider any apartment Ay, ., for zg,z; € P (K) and choose represen-
tatives wg,w; € V™ respectively. Let vg,v; € V be the dual basis of wy, w;.
For any two elements in this apartment o := (yg,01),(p0,p1)> ¢ =
we define a distance in this apartment as:

/ /
os (5 )| = o (&) =12 ()
PopP1 Po Po

Note that the homeomorphism (up to orientation) A, .,3 — R is given by

a — log (&),
Po

SO dy, 5, is the transported distance from the natural one in R.

a(UO ,’U1),(P6 7p/1)

dﬂcoym (Oé, O/> =

Proposition 3.1.8. The two definitions of distance coincide, that is, for any
zg, 71 € PV (K) we have

d|A{w0,x1} - dxo,xl

Proof. For any o := Q/(ug,u),(po,p1): @ = Qvo,01),(oh.0,) € A2y We want to
see d(a, ') = dyy 4y (v, Q).

First, we can assume and we do that there exists an z € P (K) such
that o, o/ € Ag; ). Otherwise d(a, ') = d(a,a V&) +d(aV o/, o) and by
definition d, ,, satisfies the same equality.

Moreover, it is enough to prove that if a,a’ € Ay 3 (VAgyyy then
dyoay (0, @) = dyy 4 (o, @), since for the particular case yy = x, y1 = 0o we
have dj oo = d.

We may reduce to the case yy = x¢ by applying the result in two steps.
Let us denote x5 := y; € P (K) and let it be represented by

Wy = Awo + pwy € V*, pu# 0.

Then
A U1

UO:UO—;?A,UQZ—EV

is the dual basis of wg, ws. Now we have that

)\‘ } ‘1‘
—|P1¢, M= |"|P1
7]

Q1= Q(ug,01),(po,p1) = Qluo,usz), (o) With 70 = max {p07 I
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and
A

1
Mﬂi}ﬂéZ‘;

Note that p; = |u|ne implies that ny = max{po, |A|n2}. Furthermore

Pl

/. . . ; /
Q1= Qyg 1), (04.07) = PXuo,uz),(n),m5) with 7y = max {pm

po = a(vg) = max{no, |A|n2},

since vg = ug + Aug. Then 19 = py. Identically we get 1y = pj.
Therefore

= dyo (a, 0‘/)

/
_ ‘log pirh
Pop1

Corollary 3.1.9. The distance is PGLo(K)-invariant, that is to say,
d(a, o) =d(y-a,v-a)
for any v € PGLy(K).

Proof. First we recall that v - a(ug,v1),(p0,01) = Xy-v0,7-01),(p0,p1)- L€t US to take
now any apartment Ay, 3 which contains a, o’ as above. Then d(a, ') =
Ayoor (0, Q) = oy oy (V- 0,7 -@) = d(7y-, v+ ), where the second equality
is due to the remark [3.1.4] O

Let xg, 21 and x5 be three distinct points in P!"(K). Then there exists
a unique point t(zg, x1,x2) € Tx which is contained in the three apartments
they form. If 25 = oo, then t(zg, 1, 00) = a(zg, R) = x¢ V 1, where |z —
xo| = R. If none of them is equal to oo, it corresponds to the smallest ball
containing all three points.

Observe that the points t(zg, x1,z2) are always of type II, so they have
the form a(zg,r) with r € |K*|.

Definition 3.1.10. Let £ be a subset of P1(K) which contain at least two
points. Denote by

TK(‘C) = U A{900,961} = U A{x07$1}

{z§x7}CL {zo,x1}CL*

the tree associated to L (which is the subspace of Tk generated by the lines
between two points corresponding of points in L). Note that

T(L) == Tr(L) U L*

with the natural topology.
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It is clear that for any extension of fields L|K the tree associated to L is
always the same: T(L) = T (L), To(L) = Tk (L).

We will show in the sequel that Tx (L) is a locally finite metric tree if £
is compact.

Lemma 3.1.11. The points of the form t(xg, 1, z2) for three distinct points
X, T1, T2 € L* are the points in T (L) with valence greater than 2.

Suppose that 0o, xg € L* and consider a point o := a(xo,r) € T (L) of
the form t(xq,x1,00) for some x1 € L*. Then

{y € L7\ {0, 00} | v = t(wo,y,00)} ={y € L7 | [y —wo| =7}

Moreover, there is a bijection between the set of directions from a(xg, r) except
the ones which connect with oo and xy, and the image of the map

v{ye Ll | |ly—xzol =1} — k"

given by:
Yy —Zo
Iy — X

Y(y) =

(mod mg).

Proof. The unique claim that needs a proof is the bijection. From the equal-
ity shown, we see that a direction can be identified with a set of points
E, c {y € L* | ly — xo| = r} such that |y — ¢"| < r for all ¢,y € E,.
Thus, the only thing we have to prove is that ¥ (y) = ¥(y') if and only if
ly—y'| <r.

To start with this equivalence we note that ¢(y) = ¥ (y') means that there
exists z € my, or equivalently |z| < 1, such that

/
Yy—To Y — o
1 — T T1 — o

+z

We may write this equality as y — ' = z(x; — x¢) and taking absolute value
ly — y'| = |z|r < r. Finally, the other option, |z| = 1, is that for which

U(y) # V(). O

Proposition 3.1.12. If £ is compact, then Tx (L) is a locally finite metric
tree, that is to say, any vertex has a finite number of directions arriving to it
and any finite lenght path contains only a finite number of vertices of valence
greater than 2.

Proof. We suppose L has at least three points and oo € L£* without loss of
generality.
Note that |£| = |£*| and that £ is compact if and only if £* is compact.
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In order to prove the first claim consider a vertex a(xg,r) € T (L) that
we may assume of the form t(xg,z1,00) for some xy and z; € L*. Since
L* is compact and {y € K | |y — xo| = r} is closed, their intersection
{y € L* | |y — x| = r} is compact. Now, given any ¢ € k*, the set =1 ({t})
is an open subset (the previous proof shows it is an open ball). Then, if the
point had infinite directions arriving to it, the image of ¢» would be infinite
so the compact set {y € L* | |y — xo| = r} would be covered by an infinite
number of disjoint open subsets and we would get a contradiction.

To get the second claim we can reduce us to show it for a path with the
form P(a(x,r),a(z,r")) with 0 < <1’. We have to show that the set

Srwi={serr]| el |ly—zl =s}
is finite. Consider the set

yes|r<ly—al <y =L (Blr)\ Bla.r) =

= U verlly—a=s}

SEST‘T/

Since it is a closed in L£*, then it is compact. Further, the subsets

Loo={yel|ly—zl=st= (E*ﬂf?(y,S))

yeLS o

are open, so we can get a finite covering by them, and this implies necessarily
that S, is finite. O

Definition 3.1.13. With the hypotheses of definition |3.1.10] we say that
Ti (L) is perfect if for any o € Ti(L) and for any r € Ryq there exists
o € T (L) with valence greater than 2 and such that d(o, ') > r.

One can show that this definition is compatible with the one of perfect
set, so T (L) is perfect if and only if £ is perfect (all the points in £ are
accumulation points), clearly equivalent to £L* being perfect. For example, if
L is a finite set, then Tk (L) is not perfect, since it has just a finite number
of vertices of valence greater than 2.

Definition 3.1.14. We will call a topological (oriented) edge e := e, (of
Tk (L)) a non trivial path P(ca, 5) C T (L), such that all its interior points
have valence two in Ti(L). We will call the length of e the distance d(c, ),
and we will denote it by l(e).

From now on, let £ C P(K) be a compact subset with at least two
points.
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Proposition 3.1.15. Since L is compact, there is a bijection between L and

E(Tk (L))

Proof. Let us handle with £* instead of £ for simplicity. From the definition
of Tk (L) we build a map € : £L* — E(Tx(L)). Indeed, to any point xy € L*
we may choose any ray in any apartment Ay, ., getting close to g, which
gives a well defined end. Further, it is clearly injective.

Now, to prove exhaustivity, we take an end given by a ray {a(x,,r,)}.
After taking a different model of T (£) and an equivalent ray, we may assume
and we do 7, # r,41 for all n.

There are two options. Either r,,1 > r, for all n or there exists an N
such that r, 1 <, for alln > N.

Indeed, assume r, 1 > r, < r,41. Then we have

a(wnarn—l) € P(Of(xnarn)aa(xn—laTn—l))7

since, if |z,-1 — x,| < r,—1 we have a(z,_1,7,-1) = a(x,,7,—1) and other-
wise P(a(:cn, Tn)s a(ajn,l,rn,l)) is the path P(a(a:n,rn), Ty, [T, — a:n,l\))
followed by the path P(a(:cn, |zp — Tpa]), @@, rn,l)). And in the same
way a(z,, Thi1) € Pla(zn, ), a(2pi1,7me1)). Therefore

P(a(zn-1,7n-1), a(Tn, 7)) ﬂ P(a(@ns1, Tng1), a(@n, 7)) D

D) P(a(a:n, Tn), Ty, min{?“n_1,7’n+1})) # {a(rn, ™)}

against the definition of ray.

Therefore, by taking an equivalent ray, we may assume that {r,}, is
increasing or decreasing from the beginning.

Moreover, since L* is compact, the sequence {z,}, has a convergent par-
tial subsequence {z,,, }m, which defines an equivalent ray, thus we assume
lim, ;oo x, = x € L*. When x # oo, we also can suppose without loss of
generality, and we do, that z = 0.

Then, I claim that the preimage of this end is co when {r,}, is an in-
creasing sequence and it is 0(= z) when the sequence is decreasing.

If {r, }, is increasing, choose r; > 0. The limit previously computed gives
an N such that for all n > N we have |z,| <1 <1, S0

(2, Tn) = @(0,7,) € Afo,00,

therefore the given end is the image of oo.

Thus, to finish we assume the sequence {r,}, is decreasing.

Now assume that there exists an r > 0 such that r, > r for all n. Since
lim,, o , = 0 we have that there would exist an N such that |z,| < r for
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all n > N. This would imply that «(z,,r,) = a(0,r,) and we would have all
the ray contained in P (a(zo,79),®(0,7)) a contradiction with the definition
of ray, which has to be infinite. Therefore lim,,_,, 7, = 0.

Next, take an «(x,,, r,,) such that |z, | > r,. Since we assume the sequence
of the radii is decreasing, by the same resoning

alx' ) r') e P(a(xn,rn), a(acn+1,7’n+1)) implies 7,1 <1’ < Tp.

This gives 1, > |z, — Zp41|. Otherwise (r,, < |, —x,11|) we would have that
the path P(a(wn,rn),a($n+1,rn+1)) is P(a(xn,rn),a(xn, |z, — :EnH\)) fol-
lowed by P(a(a;n, |zp—xn11]), (T, rn+1)), getting a contradiction through
the first part. Therefore we obtain

|Tn| > 10 > |xn - xn+1| = |xn| = |xn+1|7

and by the same reasoning |z,| = |z,,| for all m > n, which contradices that
lim,, oo ,, = 0.

Then, we got |z,| < 7, for all n and so a(xn, ) = (0,7,) € Afg o}, 50
the end is the one given by the image of 0, as we desired.

Finally, note that if we had lim, ,, x, = co € L* we could assume
{|zn|}n is strictly increasing, and further, by similar reasonings as above, we
would obtained {r,}, being a strictly increasing sequence and

‘xn—l-ll = |xn - xn+1| > Tp = Tny1 > |xn - In—l-ll = |xn+1|a

Ty > |=’L‘n+1| = Tp+1 > T > |ZL‘n+1|,

so we would get the end of the ray in Ay, as the image of co.

Next, we particularize the definition [2.1.15]

Definition 3.1.16. Let e be the topological edge of T (L) induced by the path
P(a, 8) (in particular, o # ). We may define a subset of L associated to it
as

B(e) :=B(a,8):={x € Ll ag P(z",B)} ={x € L] B € P(z",a)}.

Corollary 3.1.17. The bijection L = E(Tx(L)) is an homeomorphism. In
particular, the topology defined in the previous chapter coincide with the given
topology in L.

Proof. Note that if « = a(x,r), o = a(x,s) and x € K, either r < s and so
B(a, o) = £\ B(z,s), or v > s and then B(o, /) = L B(x, ).

And now we have finished, since the balls and their complementaries are
a basis of open sets in £ and the sets associated to edges are a basis of open

sets in E(Tx(L)). O
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Thus, we have the properties of proposition|2.1.16, and, as a consequence,
these sets are an open basis of the topology of £ in the strong sense, meaning
that any compact open set of L is a finite disjoint union of them.

3.2 The retraction map

We build the retraction map 1z : (PL7)%" — Tx(L) generalizing the
reduction map constructed by Werner in [Wer(04] to the trees introduced in
the previous section, which, on the other hand, gives the complete description
over all the Berkovich analytic points of the reduction map named in [Das05,
2.3.]. Further, we do not restrict to a local field.

Through this section L|K will be an arbitrary extension of valued com-
plete fields.

Given any compact subset with at least two points £ C P}(K) we define
Qr(L) :=PY(L) \ £*. We also define the diameter of L* as

don { inf{r > 0| L* C B(z,r) for some z € L*} if co & L*
7] 40 if 0o € L£F

Note that we may fix € L* and the definition is independent of the chosen

point z. Observe also that we can do the same definition for £ obtaining

dy = dg«, so we can speak about the diameter of £ and denote by d, the

diameter of d .

Definition 3.2.1. Let £L C PY(K) be as just above. We define the retraction

map 1z : P (L) — T (L) to be
x,if v e L*

re(z) =< alzr,inf{s >0 | B(x,s)NL* #0}), if B(x,de) N L*# 0 and x & L*
aly,dg) for anyy € L*, if B(x,dg)N L =0

for x # oo, and

| aly,dg) for anyy € L*, if oo & L*
re(00) = { Oé(OO,S), if oo € L*

We also define vz : Qp(L) — Ti (L) as the restriction.

Remark 3.2.2. The retraction map leaves fized the points of L*. On the
other hand, if v & L, the point rc(z) is the only point of the path P(a(x,0),12(x)) C
TK which is in TK(ﬁ)
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Now we want to extend this map to rz : T, — Tx(£). First, if
a € Tr(L), then r(a) = a.

Next, consider o € T, \ T (L). Then a = a(x,r) for some x € L ~\ L*
and some r > 0.

If B(z,r)(L* = 0, we define rz(a) := re(x). We only need to show
that rz(a) does not depend on the chosen x. When B(x,d.) N L* # 0,
re(x) = a(x,s) and s > r since oz, r) € Tr(L). Hence, if a(z,r) = aly,r),
then a(z, s) = a(y, s). Otherwise, it is clear.

In the other case, B(x,r)(L* # 0, we have oo € L* and L* C B(z,r)
(sor > dg). Then we define rz(a) 1= rg(00).

Proposition 3.2.3. The retraction map is a retraction. As a consequence,
if I' € PGLy(K) acts on L, it is I'-equivariant.

Proof. 1t follows from the previous remark and construction that the map is
a retraction in the strict sense. The consequence is due to the fact that the
projective linear group acts continuously on Tx and I' leaves Tx (L) invariant.

]

Next, let us recall that Cx embeds isometrically into a spherically com-
plete nonarchimedean field K, since it admits a maximally complete extension
by [Kru32, Thm. 24], and this condition is equivalent to spherical complete-
ness by [Kap42, Thm. 4]. We know by [Ber90, §1.4] that (P%")® has no type
IV points so we get

ry: (PE)™ =T — Tx(L)

Note that from the beginning of the formalization of the retraction map,
each time that we define it taking an infimum (rz(«) = a(z,inf{...})) we get
this element is inside the tree Tx (L) since L is compact.

The following lemma is clear from the properties of the retraction map.

Lemma 3.2.4. If we have two subsets L' C L C PY(K) as above, then
re() = 1p(re(@)) for any o € T

Lemma 3.2.5. For any two points yo, y1 in PV (K), with respective rep-
resentatives in (K?)* given by wo, wy and having dual basis vy, v, and
for any a € Ty, the point I{juol, o]} (@) 45 the seminorm n diagonalized by
vo and vy up to equivalence, with n(v;) = «(v;) for i = 0 and 1, that is

[ o). o113 ()] = [ ,01).(a(w0) (1))
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Proof. If o € Ay, ;) there is nothing to prove. From now on we assume this
is not the case.
If one of the two points, let us assume y;, is oo, then, writing a = a(z, r),

I'oo for]} (@) = (2, [yo — z[) = a(¥o, [Yo — 2|) = Awo,01), (1l —w0])
Now we compute
a(z,r)(vg) = a(x,r)(1,0) = max{1,0} = 1,

afz,r)(vr) = a(z,7)(yo, 1) = max{[yo — x|, 7} = |z = yol,

since |z — yo| > 7 due to o & Ay, 43-
Next, suppose yo, y1 # 00, and then we can take w; = (1, —y;) for i = 0, 1,

_( Y1 1 ) _( Yo 1 )
vy = , and v; = ; .
Y1 — Yo Y1 — Yo Yo— Y1 Yo — U1

Furthermore, either {yo, 41} C B(x,r) or B(z,r) ({vo,v1} = 0.
In the first case

SO

I {[uo],for]} () = T{fuo]jen]} (00) = (Yo, [Yo — ¥1]}) = Qwo,on),(1,1)

We just need to show that a(vg) = a(vy). We have

alz,r)(v) = oz, 7) ( i ! ) - maX{

Y1 — Y Y1— Yo

r
Y1 — Yo

Yy —
Y1 — Yo

b

Since the condition {yo, 11} C B(xz,7) tells us that r > |yo — x|, |y1 — | we
get the required equality a(vg) = a(vy).
In the second case, being satisfied B(z,7) ({vo,y1} = 0, we have

b

|

and, identically,

r

Yo — N

Y — X
Yo —

)

a(z,7)(v)) = max{

I {wol,foa]} (@) = T{fuo),fon]} () =

_ { a(z, min{|z — yol, [z — y1|}), if B, [yo — 1|) N {yo, y1} # 0
(Yo, |y0 —l), if B(z, |?JO - yl|) N {?Jo,yl} =0

after noticing that the diameter is dyju,), w11} = [¥o—21|. Now, the fact that the
intersection B(x, |yo — y1]) N {yo,y1} is empty is equivalent to the inequality
Yo — x| = |y1 — | > |yo — 11| and a(yo, [Yo — ¥1]) = Xwov1),(1,1)- All the rest
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of the proof for this situation works exactly equal as above taking into account
that the condition B(z, ) ({vo,v1} = 0 implies |yo — z|(= |y1 — z|) > 7.

Finally, when B(x,[yo — v1]) N {yo, y1} # 0 we have |y; — 2| < |yo — u1|
for i = 0,1 and at least for one 4, |y; — 2| = |yo — y1|; assume this equality
for y;. Then, on one hand we get

oz, min{|z—yol, [z—y1]}) = ez, [r—yo|) = a(yo, [z—yo|) = 04(1,07”1)7(1 lz—yo| >

lyo—wvil

On the other hand we have

Y1 —x r Yy —
o(,7)(vo) = m{ , } _
Y1 — Yo Y1 — Yo Y1 — Yo

and

Yo— r Yo — X
a(xz,r)(v) = max{ , } =
Yo— V1| [Yo— U Yo — W

since B(x,7)(yo,y1} = 0. Therefore, maintaining and employing the as-
sumption |y1 — x| = |yo — y1| > |yo — [, we obtain

Oé(vo,vl)»(a(vo),a(vl)) = Oé(v()’l)l)’(lslll—_yzl\’Ifoo:yﬁ‘\) = a(UOuvl)i(:l?‘yIO_—yyOl Da

and so the claimed equality. Note that if we had assumed |yo — 2| = |yo — 1]
we would have got

oz(x,min{|x - y0|7 ‘l’ - y1|}) - Oé(yl, |I - y1|) - a(U07U1),< lz—y1| 1> =

lvo—v1l’

= Qvg,01),(a(vo),a(v1))

too. O
With the notation of the previous lemma note that y§ = [v1] and y§ = [vo).

Lemma 3.2.6. Let L C P'(K) be a compact subset with at least two points.
For any two seminorms a,o’ € Tp such that oxx, x,) = a|/K[Xo,X1]> then
re(a) =rg(d).

Proof. If L* = {yo,y1} the claim is true due to the last lemma. Other-
wise, we always can find two points yg,y1 € L* such that their retractions
(o), 12(0) € Agyyy,y- Then, using this hypothesis for the outer equalities
together with lemmas [3.2.4] and [3.2.5] for the interior equalities, we get

re(a) = r{yé,yi‘}(rﬁ(@)) = r{ya‘,y{}(a) =

= r{ys,yi‘}(a/) = r{y{j,yf}(rﬁ(a/)) = FL(O/)
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Finally, recall that we have a retraction map r. : 7, — Tx(£) with two
important particular cases:

Tp TK — TK(E)

and -
Ip: (]P]%*)(m = ,E( — TK([,)

Now we want extend the first retraction map to 1z : (P )" — Tx(L).
Note first that (P )" = (Pg, )"/ Gal(Ck|K) by [Berd0, Cor. 1.3.6], so we
may assume for a while K = Cg in order to define the extension.

Then, by remark we only have to do this for the points of type
IV. Let us take such a seminorm point a € (PL7)®™. It is a limit of ball
seminorms {«(z;,7;) }ien such that

Tig1 < T, B(xiy1,1i41) C B(xg,75)

ro= Zliglom > 0 and ﬂB(wi,n) =0
ieN
We consider the balls of the same center and radio with points in the spherical
completion K, that is Bg(z;,r;) == {y € K| |y — x;] < r;}. Denote the
associated seminorms in (PL")* by ag(z;,7;).
Therefore, on one hand we have ag(x;, 7;)|k[x,,x,] = (%, ;) and on the
other hand we obtain (),cy Bx(;,7;) # 0, so it is a ball Bg(Z,r) which has
an associated seminorm ag(#,r) € (PL*)®™. Thus we get

o = lim a(z;,r) = lim ax (@, 1) kxe,x1] = Ok (T, 1)K [x0,x1]
12— 00 71— 00

Finally, we may take ry(a) := rz(ag(#,7)) which is well defined by the last
lemma above.

Remark 3.2.7. This construction of vz : (Pi")*" — Ti (L) and the Zemmam

allows us to note that when Tx(L) = Tk, this definition coincides with the
given by Werner in [Wer0j)].

Remark 3.2.8. The retraction map we have built restricts to another re-

traction map on Q¥ = (P )™ \ L*, making correspond to the square of
inclusions

T (L) (P} )™

Tk (L) ——= Q7"
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the square of retractions

(P) " == Tx (L)
&J“E" = TKJ(AE).

3.3 The discrete cross ratio

In this section we show with wide generality some results relating the
cross ratio of 4 points in P!(Cg) with the tree they generate.
Recall that, given four points ay, as, 21, 22 € PL"(Ck), the cross ratio is

defined as
( a2 ) (a1 - 21)(CL2 - 22)

Qg 29 - (Cll — Zg)(CLQ — Zl)

Note that formally

ai . 21 . 21 -y . ag © 29
a9 . 29 Z9 . Q2 ay 21

and given a fifth point z3 € P (C),

ay . 21 aq1 . 29 . a . 21
a9 © 29 a9 . 23 Qa9 © 23

The next result is known, at least the particular cases and when K is
local ([MD73], [BDGO04]), but we prefer to expose a general and new proof
using our results.

Proposition 3.3.1. Let a1, ay, 21, 20 € PL"(Cg) be points such that a; # ao
and zy # z3. Then

a - 21
UK (< as . 29 )) = (A{al,a2}7A{z1722})%K.

Proof. To begin, recall the definition of the first term,

a . 21 —
UK Q9 © 29 N 08

If a;, = z; for some ¢,j it is clear that the valuation of the cross ratio and
the intersection pairing of the apartments are identically +oo with the sign

(a1 — 21)(as — 22)
(a1 — z9)(ag — 21) |
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depending on the combination. Next we will considerate the case in which
the four points are distinct.

Let us suppose first that one of the four points is co. By the absolute
symmetry among them, we can put zo = oo. Then, on one hand we have

ay 21 _
w((002) v

On the other hand we will compute the intersection of Ay, 4,3 with Ag;, .
Note that we may write a(z1,7) with r € R for the points of the second
apartment. Let us assume without loss of generality that |a; — 21| < |as — 2],
so we see that the intersection between the apartments goes from the point
a(z1, |21 — a1]) to the point a(z1, |21 — as|) and the distance between them,
which is the length of the intersection, and it is the product of the pairing
(with positive sign because the assumption), is

a . 21
=
K a9 . 29
as we wanted to see.

To finish the proof we have to deal with the case in which none of the four
points is co. Let us consider the compact set £ := {a,as} and the radii

ay — 21

a2 — 21

laz = 2| @ — 2

= —log
Ao — 21

‘log

la; — 21|

r1:=min(|z; — a1, |21 — azl), and

Once more, we can do the assumption r; < ry without loss of generality. We
will consider three cases:

We suppose first |a; — as| > ry > 7.

On one hand it can occur that there is an i € {1, 2} such that r; = |z —a;]
and 7y = |23 — a;]. Then, the starting and ending points of the intersection
between Ay, .3 and Ay, .,y are a(a;, 1) and a(a;, 72) respectively (so the
intersection pairing is the distance with positive sign), or the intersection is
empty or just a point if r{ = ry. Anyway,

r r
(A{a17a2},A{Z1722})%K = d(a(ai,rl),a(ai,rz)) = logi = —logr—;
Ifi =1, r < |z —az] < max{ry,|a; — as|} so |z1 — as| = |a; — as|, and
ro < |29 — ag| < max{ry, |a; — az|} so |25 — as| = |a; — as|. If i = 2, the same
computation gives a similar result. In any case we always get
vk << aq Z1 >) _ —10g (al — 21)(6L2 _ZQ) _ _logT1’a1 — a2| _ —logﬂ
Qg - 22 (a1 — 22)(az — 21) Tola; — as| )
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On the other hand, writing {i,j} = {1,2} we have r, = |a; — 21| and
ry = |aj — z2|. We may assume i = 1 and j = 2. The starting and ending
points of the intersection are a(ay,r;) and a(ag,72). So we have

(A{al,az}a A{zl,zz})%K - d(a(a’h Tl)? Oé(a,27 T2)> -

rir
= d(a(ar, ), a1, |ar —as|)) +d(alaz, 2), a(as, [a1 —as|)) = —log ﬁ

17— a2
(Note that if we assumed i = 2 and j = 1, the intersection pairing would be
minus the distance.)

Further, ro > |a;—z| > max{|a;—as|, 2} > |a1—az| so |ay—2a| = |a1—as|
and identically |as — 21| = |a; — az|. Therefore
aj 2 (a1 - 21)(a2 - Zz) rira
v =—1lo = —log ——=—.
K(( az : 22 )) g (a1 — 22)(as — 21) g|CL1—@2|2

In second place we suppose ro > |a;—az| > r1. We can assume r; = |21 — aq].
Let us observe that ro = |25 — a1| = |22 — az|. The starting and ending points
of the intersection are a(aq,r1) and «(aq, |a; — az|), so
™

(A{al,az}aA{ZLZZ})TCK = d(a(ai, 1), a(ar, |ay — as])) = —log |y — as]

(Note that if we assumed r; = |z; — asgl, the distance would appear with a
minus, and so we would get the inverse value.)

Since we have |z; — as| = |a; — az| by an argument as above, we get
v alle — _log (a1 — z1)(ag — 2o)
Qo © 29 (a1 — ZQ)((IQ — Zl)
172 71
=—log—— = —log ——.
ralay — agl a1 — as

Finally, the third case is r; > ry > |21 — 25|. In this case the intersection
of the apartments is empty so the intersection pairing of the apartments is
zero, and since |21 — a1| = |21 — ao| and |29 — a;| = |22 — ag|, the valuation of
the cross ratio vanishes as well. O

Corollary 3.3.2. Let L C P}(K) be a compact set with at least two points.
If a1, as, 21, 20 are in L* or even in PL"(K), the pairing can be done in Tk,

a . 21
(%%¢ (( Gy 2 )) = (A{al,aQ}aA{zl,Zz})TK

while if a1, ay € L* and z1, 25 € Qr(Ck), we may restrict to T (L):

e (((0232) = (Bt PUreCe0). 1) -
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3.4 Multiplicative Integrals

The following definition was introduced by Longhi in [Lon02] as a gener-
alization of the one given by Darmon in [Dar(1].

Definition 3.4.1. Let X be a compact space such that the compact open sub-
sets form a basis for the topology, and let G be a complete topological abelian
group (written multiplicatively). Let f: X — G be a continuous function
and let pp € A (X,7) be a Z-valued measure on X. The multiplicative integral
of f with respect to i 1s defined as

][fdu ::]é f(t)du(t) == lim H F o))
X X CO‘ UQECQ
toeue

where the limit is taken over the direct system of finite covers Co = Co(X)
of X by disjoint open compact subsets U, and the t; are arbitrary points in
them.

Proposition 3.4.2. If G has a basic system of neighbourhoods of the identity
consisting of open subgroups the integral is well defined, since the limit exists
and it does not depend on the choice of the t’s.

Proof. Look at [Lon02, Prop. 5] or at our proof of lemma [2.3.1] O
Proposition 3.4.3. For any measure u € #(X,7Z), we have

1. For any compact open subset U of X, and for any v € G, denote by
XUW(t) the function mapping x € X to~y if v € U, and to 1 otherwise.

Then][ Xu dp = 0.
U

2. If f,g: X — G are continuous functions on X such that the corre-
sponding integrals exist, then

fr = () (o)

Note that for any harmonic measure p € .# (X, Z)y and for any constant
function f : X — G such that f(xz) = A for all x € X, we have ][ fdu = 1.
X

Now, let £ be a compact subset of P!(K) with at least two points and
let L|K be an arbitrary complete extension of fields. We get from them the
set £* C P'*(K), the space Qz(L) and the tree Tx(£). With these objects
we give the next definitions and lemmas.
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Definition 3.4.4. Let P be a finite set of points in Qc(L), and consider
D = Zpep mpp a divisor of degree zero. We denote by fp the element
of Maps(L, L*)/L* which is defined up to scalars as follows: if we choose
representatives v, € (L*)* for any p € P and v, € K* for q, then

folq) = H Up(vg)™

peP

does not depend on v,. Any other election of the vectors v, change fp to Afp
for some A\ € L*.

Similarly, let A be a finite set of points in Ty, and consider the de-
gree zero divisor D =37\ ymiglal, then we denote by |f|p the element
of Maps(L,R~¢)/R%, being defined up to scalars by

flo(g) = J] alg)™e

acA

(remind that the points [a] are classes modulo homothety of diagonalizable
seminorms «).

We note that we will be flexible when using these notations, not making
difference between the map and the class of the map.

We note also that any representant of fp can be seen as a map which
extends to a meromorphic function on P! with divisor D.

Remark 3.4.5. Given divisors D, D’ with the suitable support we have the
equalities fpyp = fpfo and f-p = f5', or also |flpip = |flplflp and

\flop = IfI5"

In particular, for any points p,p’,p" € Q¢ and o, o/, " € Tr, we have

Jor—p = Jfpr—p fprr—p and |flo—a = | flar=ar| flar—a-

Remark 3.4.6. We can see the degree zero divisor 0 as the divisor Op for
any p € Qe (L). Therefore, as m, =0, we get fo =1 and |f|o = 1.

As a particular case, if we consider the divisor D := a(z,s) — a(z,r) in
Ti (L), where s > r, then we have

= if ¢ € B(z*,7)
Flol) =4 2 ifqe Ble,s)\ Ba*,r)
1 if ¢ & B(z*,s)

for any q € L.
Observe that, if the path from a(z,r) to a(z,s) is a topological edge,
then £* N (B(x,s —¢€) \ B(z,r)) is empty for any s —r > € > 0 (and so the
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corresponding intersection with £), and then |f|p(¢q) = 1 or 2 for any q € L.
Moreover, by the remark [3.4.5, any |f|p is determined by the divisors of this

type.

Proposition 3.4.7. For any degree zero divisor D € Z|Tx(L)]o we have the
equality of maps

—log|f|p(z) = fo(e(z"))
where fp is the map on the ends of the tree Ti (L) in definition[2.5.5 (there
is not ambiguity since the other map fp given in definition[3.4.4] has no sense

for divisors D on the tree), v € L and e(x*) is the corresponding point seen
as an end of T (L).

Proof. Let o := a(z,s) and a(z,r) with r < s and assume that P(«, ) is
a topological edge. We have B(xz*,r) N L* = B(d/,«) and L£*\ B(z*,s) =
1

B(a,a'). Since | f|p is well defined up to scalars, after multiply by (f) 2 we
also have )

)2 ifgeB(d, )

_1
) ? ifg € B(a,d)

7l(0) = { E

Sl 3w

Then we get

tog 1o(o) = {

By the remark |3.4.5| this becomes true for any divisor D = o/ — « such that
P(a, ') is a topological edge.
Then, when P(a, o) is an edge we get

—log|flar—a(q) = far—a(e(q")).

Therefore, remark and corollary imply that for any degree zero
divisor D € Z[Tx(L)]o we get the equality

—log|f|p(q) = fole(q")),

as we desired. O

Lemma 3.4.8. Let A be a finite set of points in Tg, let D = Y aes Malt
be a degree zero divisor and consider its retraction r2(D) ==Y . marz().
Then | flp = | Flve(p) in Maps(£, Roo) /R,

Proof. First of all, observe that in the case £* = {yo, y1 } this is a consequence

of lemma [3.2.51
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Now we do the general case. Fix x € £* and consider any point y € L£*,
x #y. Take L' := {y*, 2*} C L. Using the previous case twice (and taking
some representatives) we get that

[floje = 1 lepyer = 1o = |Fleeo e

by applying lemma [3.2.4] Since this equality is satisfied for all £ with x
fixed, it is satisfied for £* too (if we looked to the maps representing these
classes modulo homothety, it would appear some scalar at the end of the
equality which would not depend on £* or on y due to the fixed z). O

Definition 3.4.9. Given any degree 0 divisor D =), m;p; with support in
Qp(L) (ie. my € Z, p; € Qp(L), being I a finite set and with )., m; =0)
we choose v; in (L%)* representatives of the p; € PY"(L) and consider the
map up to scalars fp € Maps(L, L*)/ K™ given by a representant [, vi(x)™
(which depend on the v;’s). Let u € M (L,Z)y be a Z-valued harmonic mea-

sure on L.
][ dp = ][ fpdp € L7,
L,D L

We define
which is well defined since the integral does not depend on fp but only on D
(and L* satisfies the hypothesis of proposition . Indeed, although the
representant of fp depend on the elections of the representatives in (L*)* of
the points in PY*(L), the multiplicative integral does not, since the measure
18 harmonic.

In general, when some L was fixed previously -as along this section-, we
will omit its corresponding set, writing

][d,u ::][ du,
D £,D

meanwhile we will specify the other sets over which we will integrate.

Note also that when D = 0, we have ][d,u =1, since fo = 1.
0
Therefore, this definition gives us a morphism of groups

Z[Q2: (L))o Hom (. (L, Z)o, L")

D ][d:,ul—>][dpb
D D
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Lemma 3.4.10. Let I' C PGLy(K) be a subgroup acting on L and so on L*.

Then, the map ¥ d is I'-equivariant.

Proof. We want to see that ][ d=r- ][ d for any v € I'. That is to say
v-D D
that for any v € I and p € #(L,7Z), we have

]{fwd# = ]{_D dp = v-Jidu = ]{)d(v‘lu) = ]{fde-lm

Let us to compute the first integral:

]{fwd“: tim [T fo@) e =tim T (o)) =

CalL) UseCy (L) CalL) Yaec, (L)
tocus toeus
=lim [ foG )0 =1im I fo@)rt*) =
CalL) Yaec, (L) CalL) Yaec, (L)
toeu teeu
. NI _
=lm J[ /()" “““"’Z][fde )
Ca(L) yaeca (L) £
to ey

Therefore we get the claimed compatibility of the action of I with the map.
O

Definition 3.4.11. Given any degree 0 divisor D =) ., m;a; with support
in Tg(L) (i.e. mi € Z, oy € Tg(L), with I a finite set and Y_,.;m; = 0)
consider the map up to scalars |f|p € Maps(L,R~o)/R%, given by a repre-
sentant [[,c; ci(x)™ . Let p € M (L, 7)o be a Z-valued harmonic measure on

L.
1

We define
when the corresponding limit exist, since, as above, its value only depends
on D, but not on the representant of |f|p, because of the harmonicity of the
measure.

We will follow the same rule that above with respect to L, omiting it when
it 1s a given fixed set and specifying only in case of need:

IR

dui=  1flodu € Rog
D L

dp.
D

du =
D
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Remark 3.4.12. We cannot claim yet the existence of the integral since we
cannot apply proposition but we are going to prove this after the next
remark.

Remark 3.4.13. From this definition and the proposition|3.4.7 we get

fl, e f
D D

through the homeomorphisms L = L* = E(Tk (L)) inducing the isomorphism
between measures M (L, 7)o = M (E(Tk (L)), Z)o, which we identify denoting
i 1n both sides.

— log

Remark 3.4.14. As we anticipated in the remark [3.4.13, the latter has as
a consequence the existence of

o
D

[
D

exists, as we proved through the section and the logarithm is a bijection.

since

Lemma 3.4.15. Let P be a finite set of points in Qp(L), and consider a
degree zero divisor D := 3" _pmyp. Denote by ap =} pmya,, where oy,
is the seminorm associated to p. Then |fp| = |f|a, tn Maps(L£,R-q)/R%,.

Proof. Take g € L and representatives as in the definition [3.4.4, For the sake
of simplicity we will assume all the points p and ¢ are non infinite (then we
can choose v, = (¢, 1) and v, = (1, —p)).

fol(@) = 1fo(@)l = | [T op(wa)™ 1 = TTla = o™ =TT (@) = | flan (@)

peEP peEP peP
by having into account for the fourth equality the remark|3.1.1} ]

Proposition 3.4.16. For any degree 0 divisor D =), m;p; with support
in Qr(L), consider the diwvisor 12(D) == 3., mirz(p;) on Ti(L). Then, for
any Z-valued harmonic measure u € M (L, 7)o on L, we have

fl-f
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Proof. Applying the lemmas [3.4.15| and [3.4.§ we obtain

éw%fﬁmmzﬁm@wzﬁmmww{f

Lemma 3.4.17. Given x € L*, for any two points a(x,r),a(zr,s) € Tk (L),
with s > r, such that the path P(a(z,r), oz, s)) is a topological edge, then

/

flofa) = {

and these are the only two possibilities. Hence |f[p(¢) = xu,s for the open
set U = B(z*,r) in the notation of Proposition [3.4.3|
Now, if we denote by D = a(z,s) — a(x,r), and by applying Proposi-

tion [3.4.3] we get

S\ w(B(z*,r)NL)
dp = ¥ |flpdp = ¥ xvsdu = (—) :
D L L r

Proposition 3.4.18. For any a, o’ € Ti(L) such that P(a, &') is a topolog-
ical edge, then

UK<][ du):—log
’UK(][ du):—log][ dp’:—log][

Proof. Proposition [3.4.16| gives us
and applying the remark together with the lemma [2.3.11| we obtain

f

dp
rz(D)

]

( S ) w(B(z*,r)NL)
r

du =
a(z,s)—a(z,r)
Proof. We have

if g € B(x*,r)
if g & B(x*,r)

S |®n

O

/ dp = d(a, " )p(B(a, a')).

dp

'—a

e

— log

w:[ dji = d(a, o/ )u(Blay, o).
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Remark 3.4.19. We may show this result in a more expressive way writing
the topological edge as e and defining its boundary Oe as the difference of its
target minus its source -as usual in homology theory.

Recall that by the theorem we have M (L, 7)o = Ct, (T (L), Z) in
such a way that to each harmonic measure p corresponds a harmonic cochain
¢, such that c,(e) = p(B(e)).

Thus, by abuse of notation we can write u(e) = pu(B(e)), and we will do.

Therefore, we may write the proposition as

e (£ ) =ttowtor

3.5 The Poisson Formula

In this section we will show in our context the Poisson formula made by
Longhi in [Lon02, Thm. 6]. To show this, we recall and study in detail a map
introduced by van der Put in [vdP92, Thm. 2.1], which assigns a harmonic
measure to any invertible analytic function, and to which we will give later
uses.

Let £ C PY(K) be a compact set with at least two points and consider
the abelian group of harmonic measures .#(L,Z),. For any two different
points a,b € £ we define the harmonic measure y,; by

lifacld, bgU
papU) =4 —1ifbel, ad U

0, otherwise

In particular, on the open compact subsets B(e) C L, which determine
the measure because of being a basis, we note that

lifee P(b*, a")
pape) :=< —1life e P(a*,b*)
0, otherwise

For any a,b € L we take representatives &,5 € K? and for any complete
extension L|K we define the function w; ; : Qg(L) — L™ as

() = 22 )

b(z)  z(b)

Note that identifying z with (1,—z) or (0, 1) if it is oo, this is an analytic
function on Q,(L) depending on a,b up to a constant.
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Let us write for any p, ¢ € L*, u, 4(2) := wp«_g. for suitable representants,
so we can put
=P
z—q
where we consider the usual convention when some of the two points are oo

([GvdP80l, Ch. 2(2.2)]), that is

Up,q(2) =

lifp=q¢g=o
z—pif 00 =
Upq(2) = pitp7 1
ifp=o00#q
z—dq

On the other hand, let us recall part of the definition[3.4.9] For any degree
0 divisor D = ., m;p; with support in Q(L) we could build as above a
map up to scalars fp € Maps(L£, L*)/L*. Let us fix an element by € L. Along
this section we will choose a representant of fp satisfying fp(by) = 1, so fp
will be a well defined function.

We write the usual notation O(€,) for the analytic functions on the
analytic space Qp = (P )% \ £*, and we write O(Q)* for the ones which
vanish nowhere. Then we have w. ; € O(Q,)".

Let e be a topological edge of Tk (L) induced by a path P(a(z,7), a(z, s))
with z € £* and r < s. Then we define the (closed) annulus associated to e
as R(e) == Ry(r,s) := B(x,s) \ B(z,r), and the open annulus associated to
e as R(e) :== R,(r,s) :== B(z,s) \ B(z,r).

We recall the following result from [Thu05, Lem. 2.2.1.].

Lemma 3.5.1. Given x € L*, and any two points a(z,r), a(x,s) € Tk (L),
with v < s, such that the path P(a(x,r),a(z,s)) is a topological edge (i.e.
Ry(r,s) N L* =0), for any w € O(Q)* there exists k € Z such that for any
interior path P' = P(a(z,1"),a(z, s")) C P(a(z,r),a(x,s)) (r<r <s <s)
satisfying R.(r',s') N L* = 0, the function |w(z)(z — x)~*| is constant on
R, (1", s").

Proof. For any 0 < 1’ < s’ let us consider R,(r’, s")*", the Berkovich analytic
annulus associated to R,(r’,s’). Now we can assume without any problem
that x = 0. Then, we have the isomorphism

O(Ro(r', 8™ = K(r'T',s''T)

where
KT ', 87'T) =

(e}
— { Z a, T : |ap|r'™ — 0 as n — —o0, |a,|s™ — 0 asn — oo}
n=—00
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We will prove first the case ' = s/ = 1. We have w € O(,)* and
then the restriction of w is a unit in K(T~',T). Such an element can
be expressed as w = c-w; for ¢ € K* such that ||w|gry11) = |¢| and
w; € O (T~1,T)*. Therefore, the reduction of wy to k[T, T]* is also in-
vertible so it has the form bT™ for b € k, n € Z, and so we deduce that
we can write w; = DT + wy = bT™(1 + wh) with b € O, wy € mp (T, T,
wé = bilT*"wg and ||Wé||R0(171) = ||W2||R0(171) <1, so that

w(2)27"] = [ebl|L + wy(2)| = |cb].

Observe that writing w = >, a,T™ the supremum norm can be ex-
pressed by ||w|| ry(1,1) := max{|a,,|} and this is reached at just one m, which
1s n.

From now on we consider the case " < s'. Now w is a unit ) _, a,T"
in K(r'T~1 §~1T), so for any " € [, s'], the image of w by the restriction
homomorphism K (r'T~'s'. T) — K(r"T~* v"7'T) is also a unit. Next
note that after a non archimedean extension K’'|K we have " € |K"™| so
there is an isomorphism K'(+"T~' ¢"7'T) = K'(T~ T). O

Definition 3.5.2. We say that a sequence of functions (wy), in O(z)*
converge uniformly to a function w € O(Sz)* if for each edge e of T (L) and
for all € > 0 there exists an ng = n(e, €) such that for any N > ny we have
lw — wn||r(e) < € (recall that |e| means the topological realization of e).

We will write lim wy = w.

N—o0

Theorem 3.5.3. There exists a morphism ji: O(Qp) — M (L, 7)o with
kernel K* and such that commutes with limits in the following sense: if
Nh_r)n()owN = w, then [i(w) = ]\}I_I)Iloolli(wN).
Proof. Let us consider w € O(§2)*. We have to define fi(w) over each (di-
rected) edge e of Tk (L). By the proposition we may assume that
le| or |e| is contained in a topological edge given by P(a(x,r), a(x,s)) with
r < sand z € L*N K. Depending on if this happens with e or e, we define
f(w)(e) := k or fi(w)(e) := —k respectively, where k is the integer obtained
in the above lemma. Henceforth we will work on this edge to prove its prop-
erties.

First, fi(w) is a harmonic measure because of the definition and the residue
theorem ([FvdP04, Thm. 2.3.3 (2)]).

From the way we have defined the map i it is clear that it is a morphism
and that K* is inside its kernel. From the definition of fi, the fact that
Q) is connected implies that if i(w) = 0, then the absolute value of w is a
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constant, and since bounded analytic functions on €2, are constant ([GvdP80),
Ch. 4 Cor. (2.5)]), we get Ker(f1) = K*.

And now let us see the commutativity with limits in the sense we told.
We want to check the equality fi(w)(e) = ]\}gr(l)o fi(wy)(e) for any edge e that

we can take as above.

We know by hypothesis that for any € > 0 there exists an ny = n(e, €)
such that for any N > ng we have |w — wy||gr,(rs) < €. Note that if we
just take € = inf.cp, (s {|w(2)|}, which is strictly positive since R,(r,s) is
compact, then for any z € R,(r,s) we get |w(z) — wy(2)| < |w(z)| and so
wn (2)] = |w(2)|, therefore fi(wn)(e) = f(w)(e). O

Proposition 3.5.4. The morphism i : O(Qp)* — M (L, 7)o satisfies the
following properties:

1. For any two different points a,b € L,
i (wag) = b

independently of the chosen representants of a and b. In particular, for
any p,q € L* we have [i (upq) = pg p+-

2. It is natural with the meaning that if L C L' are both compacts, it
commutes with restriction maps:

o) " (.2,

N

O ) —t= (', 7),

In particular it does not depend on L, since given any compacts Ly, L,
the definition coincides in L1 N Lsy.

3. It commutes with the action of PGLy(K), that is, for each v € PGLy(K)
the diagram

o)~ a(c.2),

b,

O(Qc)* — (1L, 2,

is commutative, where v,(w) = v -w and v«(u) = v - p. (Note that
Qe =)
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Proof. First, we want to see fi (w;_;) (€) = fuq(€).
If a,b € Ble) = L\ B(z*,s), for z € Ry(r, s) we have

z(a)
2(b)
(taking into account the above convention if a or b are oo), which is a con-
stant, so fi(w;_;)(€) =0 = ppq(e).

If a,b € B(e) = LN B(az*, 1), 2 € R,(r, s) verifies

| — a7
EE

wa5(2)] =

2(@)] = |2 —a’| = |z —a| = |z = b*| = |2(0)],

so that we also get a constant (\wa_m Rm(m)| = 1) and the equality as above.
Finally, assuming a € B(e) = £\ B(z*,s), b € B(e) = LN B(z*,r), then

@) _Joma|_emalfemel
W~ 1l Z = — = = = |\ —Qa C AN s
‘ a—b( )’ Z(b) |Z—b*| ’SL’—Z| |Z—b*| ‘ ‘ ’ ( )‘
therefore fi(w; ;)(e) = —1 = fuq(€) (once more, one should consider the case

in which a is oo, but we would get a similar result).

Second, the naturality is a direct consequence of the definition of the
through the above lemma.

The third property is equivalent to say v - fi(w)(e) = f(y - w)(e) for
all w € O(Qz)" and e € Tk(v - L), and the left side of the equality is
fi(w)(y~t - €). Then, this also follows from the definition by means of the
lemma and from the isomorphism v* : O(R(|e|)) — O(R(|y "e|)), by which
V(W) =7 w. O

As Longhi remarks ([Lon02]), we may compute a multiplicative integral
on £ by means of fixing a vertex vy € Tx (L) and defining [, (e) as the number
of intermediate vertices between vy and e in a previously fixed model for
Tx(L). Then we have

fdu=tm [ e
[: n—oo

lyg (e)=n
te€B(e)

Theorem 3.5.5 (Poisson Formula). Let u € O(Qz)* and zo € Q. Then,
for any z € Q, the next identity is satisfied:




Proof. We follow the proof of [Lon02, Thm. 6].
The partial products

H fz zo e ,u(u ©

lyy (e)=N
te€B(e)

converge uniformly on {2, so the integral built with them is a nowhere
vanishing analytic function of z. Since by the previous theorem the ker-
nel of ;i is K™, in order to prove the identity it is enough to see that

(][ fozo(®)dn(u)(t )) Further, note that

(te) Zolbo) 2
fz—z()(t ) fZ 20( >/fz ZO(bO) Z~0(t~) 2(60) 2( ~0) Z~O(
ce K(z)"

Therefore we have fi(f,_.,(tc)) = t,r. also by the previous theorem.

Then, by the commutativity of /i and limits we obtain

i(f Featodieo®) =i i T fow ) =

lug (e)=N
te€B(e)
= Jlim fi(u)(e)fi (fa-z(te)) = lim [i(w)(€) o .
—00 N—oo
lyg(e)=N lyg(e)=N
te€B(e) te€B(e)

Let us evaluate on an edge ¢’ of Tx(L). We may assume €’ points away
from by, so by € B(e’). We have ¢’ C P(bs, 1) if and only if t. € B(¢'), so we

get

i Foaltdi®) @) = fin 3 e () =

— 3 Y — 1 /
= Jim > fi(u)(e) = fi(u)(€’)
lyg (e)=N
te€B(e)NB(e)

where the last equality is due to harmonicity applied to the sum independent
of N > 1,,(€). O
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Corollary 3.5.6 (Extended Poisson Formula). Take u € O(Q)*. Then,
gwen any degree 0 divisor D =" myp of Q, we have

[T v = dntw

pESupp(D)

Corollary 3.5.7. The morphism i : O(Qz)* — M(L,7Z) is surjective and
for each zy € Qp it has a section I, : M(L,Z)g —> O(Qz)*. As a conse-
quence we get a (non-unique, non-canonical) isomorphism

O(Q)* = K* x M(L,Z),.

Proof. Let us take a harmonic measure p € M(L,Z)y. Let zy € Q be any
point. Then, as along the proof of the Poisson formula, we see that the

function
Z—20

is analytic on €., and once more, the same steps with p instead of fi(u)
prove that fi(Z, .,) = pu. Then, we define the section by Z,, (i) := Z, ., and
we check that it is a morphism of groups:

Lt 1)) = f

z—

dnrs) = f dnf A = T WL () ()

Finally, by theorem we got the short exact sequence
0— K* — O(Q) — M(L,Z)g — 0

which, with the section morphism, gives the asserted isomorphism by ele-
mentary homological algebra. ]

3.6 Schottky groups and their limit sets

Along this section we recall Schottky groups and their main properties,
and we build the Mumford curve, for which we want to give its Jacobian via
the isomorphism with the Albanese variety, and its associated graph. The
main novelty is the “Berkovich analytification” of some results in [GvdP80].

Given any v € PGLy(K), we say that «y is hyperbolic if the (two) eigenval-
ues of v have two distinct absolute values. In particular, hyperbolic elements
have infinite order. We have

=) =10 )
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with \; € K and

(a+d)?| (M + )
ad —be| A1 \a ’
If there was |A\;| = |A\2|, we would have
‘()\1 + )| _ M ]
A1z ~ M ’
while in our case we may assume wlog max{|\{|,[\2|} = |A\1]| so we have
|A1 + Ao = || and so
‘(A1+>\2)2 B VT R PV
)\1)\2 |>\1)\2| )\2 '

so v is hyperbolic if and only if that value is strictly greater than 1. We have
even more: 7 € PGLy(K) is hyperbolic if and only if it is conjugated to an
element of PGLy(Of) represented by a matrix

(3%)

with ¢ € K, |g| < 1 (look at [GvdP80, Ch. 1 Lem. I.1.4]). The idea is reduce
the characteristic polynomial to k£ and apply the Hensel lemma, which we
dispose of since our base field is complete non-Archimedean. In particular,
the eigenvalues of any representant of v are in K. From this we get that if v
is hyperbolic,

{z € PYCk)| yo = 2} C PY(K).

Given any subgroup I' C PGLy(K), we denote by Lr the closure in
P!'(Ck) of the set of fixed points for some element of T distinct of the identity
and we call it the limit set of I' (there is no risk of confussion with any other
object appearing through this work).

Lr:={r €P(Ck)| Iy \{lr}: yx =2} C P(Ck)

But, from the previous remark we have Lr C PY(K). If vz = =z, then
Yy (y'z) = vz, therefore Lr is [-invariant, since the action of PGLy(K)
on P'(Cg) is continue.

Observe that £y is the limit set of I' in the dual projective line for the
contragredient action, and that this set verifies the same properties that we
have just mentioned.

Definition 3.6.1. A Schottky group is a finite generated subgroup I' C PGLy(K)

such that all its elements v # 1r are hyperbolic and Tp is compact for all
pE PI(CK)
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Let v € PGLy(K) be represented by

(37)

with |g| < 1. Then, L, = {[1:0],[0: 1]} = {00, 0} is its set of fixed points,
and for any p # 0, oo,

{7"p}nez = {0, 00} U{V"p}nez
is compact. More specifically, we have

pj = ngrfoo Y'p=0 and p = ng@m v'p = o0.
Thus, I' = (v) is a Schottky group.

More generally, for any 7/ € PGLy(K) hyperbolic, we have 7/ = §v§~!
with v as above. Thus, Ly = 0L, and (y)p = §(vy)é~1p, and so, (y') is
also a Schottky group.

Clearly, for |¢| # 1 and 0 € PGLy(K), these are all the Schottky groups
generated by one element.

Note one further thing. Consider an element o = a(x,r) of the tree Tk.
Then one has

v-alz,r) = alqr,|q|r) # a(x,r)

Thus, any hyperbolic element acts freely on Tg.
Lemma 3.6.2. For any vy €', Lr =1 - L. In particular, it is compact.

Proof. Since Lr is I'-invariant and closed, we have I' - £,y C Lr. As we can
take closures, for the opposite inclusion it is enough to see that any fixed
point p’ for some element 7" of I is in I' - £y. Indeed, we may assume that
p" & L. Then, one of the two points of L, is not fixed by +', let us
write pS. Then, p’ = lim, ,7'p5 € I' - Ly,y, after taking the inverse of 7" if
necessary. Thus, we conclude. ]

Corollary 3.6.3. If Lr has at least three points, it is perfect (it does not
have isolated points), and in particular, an infinite compact set.

Proof. The same proof as above applies here. O

Remark 3.6.4. We could refine even deeper the results, as shown in [Gud P80,
Ch. 1 (1.6)]) or also in the preprint [SX10, §5 and §6], but we already have
all we need here.

Since Lr is compact, we can consider the tree Tx(Lr).
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Proposition 3.6.5. A Schottky group T acts freely on Tx(Lr) (with the
induced left action by PGLy(K) on Tk ), and the quotient Gr := I'\Tx(Lr)
is a finite metric graph. Moreover, if L' C PY(K) is the union of Lr and
a finite set of orbits of points by the action of I', then there exists a finite
connected graph G such that

Gr C Gp C T\Tx(L') and ("\T(£)\ G = | | (0, +00)

R
where Re = T\(L"\ Lr) is a finite set.

Proof. The fact that I' acts freely on Tx(Lr) is a consequence of all its non-
neutral elements are hyperbolic.

For the rest of the proof, we are inspired by the proof given in [GvdP8(),
Ch. 1 Lem. (3.2)]. Let Br be a finite set of generators of I' and their in-
verses containing the identity 1r too. Take w € Tk (Lr) and a finite subtree
Tw C Tx(Lr) containing Br - w. Then,

yel’

is a subtree of Tk (Lr). The only thing we have to verify is that it is connected,
that is, given 7,7 € I'and p € v- %, p' € ' - %, there exists a path in
T between p and p’. Through operating by 4" on the path, we may suppose
"= 1r. Also, by an induction process it is enough to show this when v € Br.

So, with these hypotheses, we have p’ and yw connected by a path in T,
and yw and p connected by a path in v - %,,.

Now we will show V(%) = V(Tx(Lr)), from what we will get the finiteness
of the quotient.

Let v be any vertex of Tx(Lr) and consider a ray through v starting at
w, whose end corresponds to a point of the limit set z € Lr by proposi-
tion |3.1.15] Since Lr is the closure of the set of fixed points, we can take the
ray corresponding to a fixed point z for some v € I'. After considering the
inverse of v if necessary, for any zg € P} \ Lr, we have that lim,, .., 7"z = 2.
Then the fragments P(y"w, " w) belong to ¥ and the end of the ray start-
ing at w which is contained in their union corresponds to z, so v € ¥.

Thus we get that V(Gr) is finite. But we know that Tx(Lr) is locally
finite, so we conclude the finiteness of the quotient.

For the second part, recall that Tx(Lr) C T (L") and that we have the
retraction map

| Q[,p — TK(ﬁF)
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Choose a p € Q. such that I'- p is one of the orbits added to Lr to form L'
Take the open path L, := P(rz.(p), p) and then observe that L,NTx(Lr) = 0.
Now it is clear that

NTx(L)y=Gr| || | mr(Ly)

mr(p)ER £/

but the 7nr(L,) have not to be disjoint. Nevertheless, note that for any
v € I'\ {Ir} the intersection L., N L, is empty, since otherwise, r..(p) would
be a fixed vertex for v, which contradicts the first claim of the result. Take
now another g € Q. such that nr(q) € Re and 7r(q) # nr(p). It may
happen that for some v € I' (by the previous consideration, for at most one
7v) we have L, N L., # 0. In that case, in which rz.(p) = rz.(7q), let v,, be
the vertex of valence 3 in the tree L, U L.,. Next, let v, be one vertex of L,
such that all the possible v,, with 7p(q) € R, are in the path P(rz.(p), v,).
Finally take

Gp = F\ TK(EF) U I P<r£r(p>7vp>

mr(p)ER 1/
and the claim is immediate. O]

Corollary 3.6.6. If " is a Schottky group and Gr := I'\Tx(Lr), then T' =
m1(Gr,v) for any vertex v of the quotient graph, so it is a free group, in
particular, if it is generated by more than one element, it is non abelian, and
7r : T (Lr) — Gr is the universal cover of the graph.

We denote the rank of a Schottky group I" by ¢(T").

Theorem 3.6.7. Let I' be a Schottky group and consider L := Lr and ) :=
Qp = (PY)™\ L*. Then T acts on Q and Cr = I'\Q is a proper analytic
space and so it is isomorphic to the analytification of a smooth projective
algebraic curve of genus g(I").

Proof. You can see the proof with more detail in [GvdP80, Ch. 2 and 3].
Here, we will sketch it.

We will suppose that G has a model without loops. This is possible after
a finite extension of the base field, if necessary. The general case can be done
by means of Galois descent.

We consider the projection 7r : T (L) — Gr and a metric graph model
for Tk (L) given by a pair of sets (V, E). The collection of vertices V' is formed
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by points of the form t(xg, z1, z) for zg, z1, 1o € P1(K) such that it includes
all the points of valency greater than 2, it is [-invariant and the metric graph
model for Gr given by nr (V') has no loops. Recall that the set of open edges
for the model of Tk (L) is the set of connected components of Tx (L) \ V, and
the edges are obtained from the open ones adjoining the adherent vertices in
two different ways, giving the two orientations for each edge. We will denote
this set by E.

Consider now the restriction of the retraction map, rz : Q — Tx(L).
To each e € E, we associate Ule) := 1;'(e), and, similarly, to a vertex
v € V we associate U(v) := 1" (v). Then, the sets U(e) and U(v) are strictly
affinoid and from them we get back Q2 by gluing U(e) with U(e’) through
U(v) when the edges e, €’ have v as a common vertex.

Since the retraction map r, is I'-equivariant, given two edges e, e’ € E
such that mr(e) = 7mr(e’) so there exists v € I" such that v -e = €, then
v-U(e) = U(€), and similarly for vertices. Therefore, gluing as before
but taking into account these identifications, or what is the same, gluing
according to the graph Gr we get the analytic space Cr, which is reduced
and separated.

To prove that CT is proper we are going to show that it is compact and
its boundary (over K) is empty ([Teml15l, Def. 4.2.13. (ii)]).

The compactness is because we can express Cr as a finite union of affi-
noids: the preimages of the stars of the vertices of Gr, which is a finite
set.

To show that the boundary is empty, take any x € Cr. We want to show
there exists x € U affinoid such that x ¢ OU. Consider the image of x by
the induced retraction map in the quotients,

I'er: Cr — Gr.

Now, rzr(z) is an interior point of a St(v) for some vertex v in the fixed
model of Gr (if rzp(z) is a vertex we take v = rg p(z); otherwise v is any
vertex of the edge to which r. () belongs). Then, rZ}F(St(v)) is the affinoid
we are looking for.

Consider the following commutative diagram:

QL T (L)

T jﬂ'p
Ter

Cr ——Gr

Choose a vertex ¥ in Tx (L) such that 7p(9) = v. Then 7 gives an isomor-
phism
7 St(9) — St(v),
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since there are no loops in Gr and the action of I' in Tk (L) is free. It is clear

that
= |J U

v=s(e)

and hence, by construction of Cr, nr also induces an isomorphism
mr 1 (St(D)) < 17 h(St(0))
Now recall that oU(e) = {s(e),t(e)} C U(e), since U(e) is an annulus,

therefore
O(rz* (St(2))) = {t(e)] s(e) =0}
So we get 8(r271r(8t(v))) = {mr(t(e))| s(e) =0} F x as we wished. O

Remark 3.6.8. We have used that the retraction re. @ Qe — T (Lr)
stated in the remark descends to another retraction v giving place to
a commutative square

I'EF
QLF I TK(EF)
P |7
I'epm

Cr

Gr.

Corollary 3.6.9. If there exists a model of Gr which is without loops, then
the map Qp(K) — Cr(K) is surjective.

Proof. Choose such a model. By the previous proof we have

- U vt 0.(K) = | U@ (K

eEE(GF eckE

with the same notation. We may assume 7r(€) = e so we conclude U(é) = U(e).

]

3.7 A peculiar symmetry

In this section we study some properties of the action of I on Tk, a re-
lation among the harmonic measures, and a symmetry among multiplicative
integrals which can be useful to generalize the well known symmetry between
theta functions.

Let I' € PGLy(K) be a Schottky group, and let £ := Lr C P}(K) be
its limit set. We are going to show a new result which will led to a proof
of the symmetry of the bilinear pairing defining the Albanese variety of the
Mumford curve Cr.
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We assume that Qz(K) # () and contains at least the closures of two
['-orbits of points. This is possible after a finite extension of K, meanwhile
L remains invariant.

Let us define for any p € Q(K) the compact set £, := LUT - p* C P'(K)
and for any ~,0 € I' the analytic function

z—0p
u Z)i=u z) = e 0
wip( ) 75]?7’)/10( ) Z— ( Ep)
Consider now a point ¢ € € (K), which is the same that a point
q € Qp(K) verifying I'-pNT-qg=0. Then, for any p € I', applying the
invariance of the cross ratio we obtain

u’Yvé:p(pQ) . U”Yfl,p,q (5]))

Uy 5.5(q) Us1,p,4(P)
Recall from proposition the equality of measures

/l(uv,&p) = ﬂ(uwp,w) = Hyp* op*

Uny,§ pq
lz - ][ Joa- q dﬂw yOp*
vﬁp

and then

Therefore, putting together the two last ideas we have

Uy5.0(Pq)
Foq—a(t)du *75*:7—:
fép rq Q() Yp©,Yop u%&p(q)

(p)
:L ][ft?pp )bt —1g% =1pg~

Un=1 p

For any ¢ € I', using corollary E applied to the tree Tk (L), one de-
fines a harmonic measure us € # (L, 7)o, while we have just defined a har-
MONIC MEASUTE [iypr Aops € M (L, L)y for each v € I'. Note that £ C £, and
Ti(L) C Tk(L,). We consider compatible models for these trees, meaning
that the model of Tk (L,) restricts to the model of Tx(L).

Proposition 3.7.1. With the above notations, for any edge e of T (L,) and

T (L) we have
Z/Lw*,vép*(e) = —ps(e)

yel’
and for any edge of Tx(L,) which is not inside Tk (L), then

Z Hp* ope (€) = 0.

vel’

97



In order to prove the proposition, we observe first that

Z [yp* yop+ (€) = Z Hop* 5p* (ye) =

~el ~yel’
— Z L sp+ (7€) = Z - op (V€E)
~el {V€T| ~ve€|P(p,6p)|}

(where the bars for | P(p, dp)| mean that we are considering just the underly-
ing sets, without orientation) and we proceed by steps. The first step, which
is the main one, lies essentially on the following lemma.

Lemma 3.7.2. For any § € I' and p € Q(K) we have
|A{p’5p}| N |A{52p753p}| =10

and
Apopy N AG-1p520 = Apspy N As C Ag sy N T (L)

Proof. Since ¢ is hyperbolic it has the form

5:5’(8 ?)5/1

with |g| < 1. Consider p' := 6 'p € Q. Then, if we prove the equalities of

the lemma for
q 0
01

and p’ instead of 6 and p, allowing § act on the apartments we will get the
claims. Therefore, we may assume

-(39)

with |g| < 1. In particular, we have A5 = A0}
Now, we want to show |Ag, gy| N |Age2pem| = 0. Let us observe that

|°p| < |¢*p| < lgp| < p, so

Afpapy N A0y = P (a0, |p]), (0, |gpl))
Atgpgipy M Afoooy = P (O‘(O» |q2p|), (0, |q3p|))

Therefore, if the intersection |Ag, sp| N |Ags2p 53p1| Was non empty it should
occur in A o) since the total space is a tree, but it is clear that

P (a(0,]pl), a(0,1gp])) N P ((0, 1¢°pl), a(0,¢°pl)) = 0,
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and so we get the first claim.
In order to obtain the second claim we will prove

(Ao Atpan) . = (Apary Aoy 7.,
Applying the proposition we see it is enough to check that

( ( : 1 ) ) v < ( : ) )
qp - q2p qp - 0 ’
SO we compute:

R _ 1 2 —1
. (( Piglp )) — g v pllap ip\ _ gl p_lllqp! _
qp : ¢°p lp — ¢*pllap — ¢ 'p| ipllg1p|

|ap| <(p100>)
=—log— =
5l F\\qp:0

Next, and under the hypotheses of the previous lemma, it allows us to
subdivide the apartment A, s, in three paths:

]

A{p,ép} = Spﬁp U Ipﬁp U Tpﬁp?

where

Spop = P(p, t(p,p,6~"p))
Lp.sp = P(t(p, 0p,07'p), t(p, op, 6°p))
Ty5p = P(t(p, 0p, 8°p), op)
Since the first part of the lemma tells that |Ag-1, 0| N |Agspe2p| = 0, this
implies that |Spsp| N |Tpsp| = 0, the intersections of the interior of the paths
are empty and the paths are well defined subpaths of Ay, 5, with the same
orientation.

The second part of the lemma implies that 1,5, C Tx(£). With this
tools, we proceed to get the next step:

Lemma 3.7.3. Let e be an edge of Tk (L,) and consider the sets
s={veTlree|Snl}
T ={v el ve€llzsl}
7 ={y €T veel[T,sl}
so that we have the decomposition
{y €T vee|P(p,dp)}t =T5UTTUTT.
Then:

99



1. There is a bijection I'g <— 1'% which reverses the orientation of the
edge in Ag, 5py, that is, if 7' corresponds to a vy such that ve is in Sy s,
with the same orientation, the edge 'e is in T,s, with the opposite
orientation.

2. If e is not inside Tk (L), then I's = 0.
Proof. 1. The bijection is defined by

rs — I

Y= 0y
Thus, if the directed edge ve is in

Spap = P(p,t(p,dp,07"p)) = P(p,d~"p) N P(p, dp),
the directed edge dve is in
P (p,d~"'p) NOP(p,dp) = P(dp,p) N P(dp,8°p) = T, 5.

In general, the orientation of e with respect to S, s, and P(p,dp) is
the same as the orientation of dye with respect to T,s, and P(p,dp)
so the opposite to the orientation of ~ve. Clearly, the inverse map is
v 0.

2. The result is clear from the remark previous to the lemma. If e is not
inside Tx (L), there is no e inside Tx (L) for v € T, but

[7={yellyee |[p75p‘ C|Te(L)|}

so 'S = 0.
0

Proof of proposition|3.7.1. Let us see first the second claim. If e is not in
T (L) we have

Z Hop yop(€) = Z fp 5p+ (vE) =

Vel {v€er| ye€|P(p,ép)|}
= Z Hp* 5p* (E) + Z Hp* 5p* (VE) + Z fip 5 (7€)
WEFES 'yGF? 'yEFeT

Because of the second part of the previous lemma the second summation is
zero and because of the first part and the definition of fi)+ sp« the sum of the
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other two summations vanishes, 80 > fiyp- 45p(€) = 0 as we wanted to
see.

We assume now that e is in T (L£). We have the same equalities as before
and also the cancellation of the two extreme summations so

Z/Mp 7510 Z Hop* 6p* (ve)

vyel vel'¢
and we want to prove this is equal to

(.m0 __ (mrle).mr(Pla,d0)))e,
T R £

where 7p : T (L) — Gr = I'\Tx (L) is the covering projection and « is any
vertex in As. We take oo = t(p, dp, 6 'p), so we have da = t(p, dp, 6*p) and

(mr(e), (P, 6a)))ar (ve, P(a,da))
)= te) oo |ve|c§<:a 500 te) )
_ Z (e, Pg((Oz dar)) Z () Zuw -

where for the third equality we use the definition of a and the fact that the
action of I' on 7T is free, and for the fourth equality we use the definition of

Hp* 5px- o
Corollary 3.7.4. With the above notations we have

H][ pq q t)d iy opr ][qu o(t)dps

vyel’

Proof. 1t is direct from the proposition, taking into account that the inverse
of the function f,,—, appears due to the negative sign in the equality

Zﬂvp*nép*(e) = —pus(e).

vyel

[]

Corollary 3.7.5. Let I' C PGLy(K) be a Schottky group, and consider its
limit set £ := Lr C PY(K). For any p,6 € T and for any p,q € Q(K) such
that T -pNT-q=10 we get

][ dps = ][ dﬂp
Pq—q Sp—p
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Proof. Taking into account the last observation previous to the proposition
and the corollary above we get

][ dps = ][ foa—q(O)dps = H][ f;;;l—q(t)dﬂvp*msp* -
i L Ly

~yel

= H][ f(s;;l_p(t)dﬂv*lq*,w*lpq* = ][ Jop—p()dpi, = ][ A
Lq L ép—p

~yel’

3.8 Automorphic Forms

The main goal of this section is to prove the theorem using the
analytic theory developed along this paper and some results from [BPR13],
like the propositions 2.5, 2.10 and the slope formula theorem (5.15), instead
of using [GvdP80), Ch. 2 (3.2)], whose proof requires the development of other
analytic tools.

Let G be a metric graph.

Definition 3.8.1. We call a tropical function on G a continuous function
[+ G — R such that there exists a model & of G satisfying for each edge
e € E(®) that the restriction

f“e‘ : |€| — R

is linear with integral slope, where by linear we mean that for every isometric
embedding a,b] — |e|, the composition [a,b] — |e|] — R is linear.

Note that this is equivalent to say that for each model of G the function
f is piecewise linear (with integral slopes) on each edge.

Suppose now that G is locally finite. Given a tropical function f on G
and a model & of GG such that f verifies the “edge-linearity” condition stated
on previous definition, we can associate to it a cochain Dy on the edges of &
defined by taking Dy (e) to be the slope of f on e.

We call f a harmonic function if Dy is a harmonic cochain.

Remark 3.8.2. If f is harmonic, f||e| is linear for any edge of any model of
G.

Next, let I be a group with a left action on a metric graph G.
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Definition 3.8.3. A tropical function f on G is called an automorphic form

for T if
Vyel Je(y) eRe f(z)=cs(v) + fy2) V2 € G

Lemma 3.8.4. Let G be a locally finite metric graph on which acts a group
. Let f be an automorphic form for I'. Then there exists a model & of
G, on which acts I', such that f is linear on its edges, the cochain Dy is
D-invariant and so induces a cochain Dy on T\G.

Proof. Since f is tropical there exists a model of G such that f is linear on
its edges. Now, the minimal I'-invariant model refining the previous satisfies
the claims of the lemma immediately, and Dy is I'-invariant because f is
automorphic for I'. O

Lemma 3.8.5. Let G be a locally finite metric graph on which acts a group
['. Assume there exists a finite connected graph G' C G /T" such that

(M\G)\ G' = I_ILi where I is finite and L; = (0,00) Vi € T

i€l

such that its closure inside T\G is L; = [0,00) (we are choosing an orienta-
tion on L;).

Then, any harmonic function on G being an automorphic form for T’
verifies:

1. For any i € I, the restricted cochain is constant: D_fIL' =m,; € 7.

2. Zmi:O.

iel
Proof. We take a suitable model of G -since f is harmonic, it only has to
be I'-invariant-. Since Dy is harmonic, so it is D_f Now, given two adjacent
edges e, ¢’ of L; with the same orientation, due to the hypothesis on G and G’
harmonicity implies D (e)+ D (€/) = 0, so D¢(e) = Dy(€’), and this extends
obviously to any edge of L;, so the first claim rests proved.
The second claim is a direct consequence of the lemma [2.2.1 O

From now on, let ' be a fixed Schottky group, £ = Lr C P}(K) the set
of fixed points of I, and €2, as defined above. Let L|K be a field extension.

Definition 3.8.6. We will say that a Cg-valued meromorphic function f # 0
on Qr is an automorphic form for I (or I'-automorphic form) with automor-
phy factor ¢y : I' — Ci if

f(z) =cs(a)f(az) Vz € QpVa e T
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We will call it L-automorphic if cy takes values in L*.
Let us denote the set of L-automorphic forms on Qg by Ar(L).

Remark 3.8.7. By definition, cy is a group morphism.

Proposition 3.8.8. Given a point zy € Qs (K) and a '-invariant harmonic
measure € M(L,Z)y the function on Q¢

L) = f du
zZ—20

is an analytic and automorphic form for I' with automorphy factor indepen-
dent of zg.

Proof. We already know it is analytic, as shown in the proof of theorem [3.5.5
and remarked in its corollary [3.5.7]

In order to see that it is automorphic for I' let us show first that the

integral
f o
=P

does not depend on p € €. Indeed, given p, q € €2, we have

[ fo
p—p pP—q

= = 1
[ ]
q9—"q YP—7q

due to the I'-equivariance of the integration and to the I'-invariance of pu.

Therefore,
dp
Iﬂ,zo (72) f d,u 2=z
YZ—Z20
is its automorphy factor. [

Proposition 3.8.9. For any c € Hom(I'®®, L*) there exists an L-automorphic
form f such that ¢ = cy.

Proof. Let us consider the group M(£,)* of non-zero meromorphic func-
tions on €2, and its quotient () by the constants, so we have the short exact
sequence

00— L — M(Qz) —Q —0
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After taking invariants under I" we find the exact sequence
M(Cr) — Q" — Hom(T'**, L*) — H'(T, M(Q,)")

We end the proof recalling that H'(I', M(Q,)*) = 0 by [vdP92, Cor. 5.3]
-since Cr is algebraic-, and noting that Q' coincides with the group of L-
automorphic forms modulo the constants. O

We may express this telling that the morphism
Ar(L) — Hom(I'’, L*)

is surjective.
Let us formalize the notion of infinite divisor as in [MD73], §2].

Definition 3.8.10. We call a function D : Q;(Cx) — Z an infinite L-
divisor on Sz verifying the following properties:

e D(z1) = D(z) if z1 = I'zs.

o The set Supp(D) = {z € Q| D(z) # 0} has no limit points in Q, and
there is a finite extension L'|L such that Supp(D) C Q(L').

We write such a divisor in the usual form

D = Z N, 2.

n,=D(z)#0

We will say that such an infinite divisor has finite representant D if this
is a finite divisor (that is it has finite support) such that

D=> 4D=TD

~yel

We consider now the zeroes and poles of the automorphic forms. Note
that if z is a zero (resp. pole) of order n of f € Ar, for each v € T, 7z is a
zero (resp. pole) of order n of f too.

Proposition 3.8.11. Let f be a meromorphic function and e an edge of a
model of Ti(L). Then, the set of zeroes and poles of f restricted to U(e) is
finite.

Proof. First, a meromorphic function is the quotient of analytic functions
so we may assume that f is analytic and we only have to show that it
has a finite number of zeroes. But this is proved in [FvdP04, Prop. 3.3.6]
as a consequence of the fact that the affinoid U(e) is a disjoint union of
closed discs, the Mittag-Leffler decomposition theorem and the Weierstrass
preparation theorem. O
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Corollary 3.8.12. The set of zeros and poles of an automorphic form f on
Qr for T is a finite union of orbits of points of Q2.

Proof. Consider a model for Tx (L) and denote the set of its edges E. Con-
sider also a set of edges Er c Ein bijection by mr with the edges on the
induced model on Gr. Since the quotient graph is finite, so it is the set Er,
and since this is a set of representatives of the graph Gr,

UV'EF:E

vyel

Therefore, the affinoids vU(Er) with v € T' cover all Qz, where

U(Er) = | Ule).

EGEF

Now, because of the previous proposition, the set Sp(f) of zeroes and poles
of f on U(Er) is finite. And since this set is -invariant and the orbit of
U(Er) covers Q, the orbit of Sp(f) is the set of zeroes and poles of f and
it is a finite union of orbits of points. ]

Let us denote S(f) the set of zeroes and poles of an automorphic form f
on Uz, and Ly := Lpr U S(f)*. The set Ly is compact, due to the previous
proposition and the fact that I" is a Schottky group.

Note that f has neither zeroes nor poles on ¢, so f € O(€z,)*.

Theorem 3.8.13. Let f be an automorphic form for I' on €2p. Then

F = —log|fli7cy
is a harmonic and automorphic form for I' on Tx(Ly).

Proof. The first thing we have to check is that F' is tropical, that is, given a
model of Tx(Lf) and an edge e of this model, the restriction of F' on |e| is
piecewise linear on it.

Since we are going to apply lemma [3.5.1] we recall the notation used in
it. We may suppose that the topological realization of the edge e is the path
le] = P(a(z,r),a(z,s)) with z € Ly, r < s and such that its associated
annulus satisfies R, (r,s) N Ly = (. We also do not loss generality assuming
x = 0. Now we consider an isometric embedding

exp : [ro, so] —> P(a(0, exp(ro)), a(0, exp(so)))

where 7 = exp(rg), s = exp(sg).
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By the cited lemma, we know that |f(z)| = 7|2*| for some r € Ry, k € Z
on that path, and z = exp(w) for w € [rg, so]. Therefore

F(exp(w)) = —log|f(z)| = —klog|z| — log(r) = —kw — log(r),

so we get the hoped linearity with integral slope k, and so F' becomes tropical.
In the previous computation we got Dr(e) = —k. Recall also the map

i OQ,) — M (Ly, L),

by which fi(f)(e) = k. Therefore D = —fi(f), so this is a harmonic cochain
and F'is harmonic.

Finally we will show that F'is automorphic for I' on Tx (L) C Q, C Q.
Since f is automorphic on €1, we have that for all z € Q, and v €T,
f(z) = cs(v) f(yz) with ¢ () € Cj. Let us restrict to the case when z € T (Ly):

F(z) = —log|f(2)] = —logles(v)f(v2)| = —log |ep(v)] —log | f(v2)| =

= ok (cs (7)) + F(yz) with vk (cp(7)) € R
[l

We maintain the same hypothesis of the theorem. Consider now the
quotient I'\Tx (L¢). By the proposition W, its quotient is the disjoint union
of a finite connected graphs with a finite union of “ends” which correspond
to the classes of zeroes and poles of f modulo I' -that is I'\S(f)- by the
definition of £;. For any € S(f) denote L, the corresponding end oriented
from the interior to the exterior, like in lemma [3.8.5] With the previous
theorem, the next completes the slope formula (cf. [BPR13| 5.15]).

Proposition 3.8.14. With the previous notation we get
D_FILZ = 0.(f)

Proof. In order to know the value of D_p| 1, we have to evaluate Dy on any
edge e of L,. We can assume its topological realization is of the form
P(a(x,r),a(x,s)) with » < s. Note that, by the chosen orientation, we

have D_F| 1., = Ds(€) = —Dp(e). Finally, by what we have seen on the
proof of the previous theorem or in lemma we get Dp(e) = —o.(f), so
DF\LI :Om(f) Il

Next, we want to build a finite degree zero divisor associated to an au-
tomorphic form on .. In order to get this, we have to refine the proof of

corollary (3.8.12]
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First, we note that there is a “semi-open” (connected) tree (open at some
edges, closed at others) in Tx (L) in bijection with Gr = I'\Tx (L) by the
projection map 7.

To see this, take a maximal tree Tt of G and a set E}. of adjacent closed
edges of Tk (L) such that its topological realization |Ef| is a tree in bijection
with Tt by 7. Next take a set of open edges EP of Tx (L) corresponding to
the open edges which form Gr \ Tr, each one of them adjacent to some edge
of Ef. Then we have that |Ef U E2| is a subtree of Tk (L) in bijection with
mr(FE U ER) = G, as the one we claimed the existence.

Now take
vGr) = Jue Ul UueE

e€ER éEE
By construction, for v € '\ {1r}, we have
UGr) () (7 -U(Gr)) =B and | ]~ U(Gr) = Q.
~yel

Consider also the set Sr(f) = S(f) (N U(Gr) (note that in the proof of corol-
lary |3.8.12f we used the same notation but with a slightly different meaning,
since U(FEr) # U(Gr)) and the finite divisor

DJF‘ = Z op(f)p
pESr(f)

By the previous remark on unions and intersections on the orbit of U(GT)
and the structure of S(f), we get that the divisor of f satisfies

> op(fip=> 7D
peS(f) el

Proposition 3.8.15. An automorphic form has associated an infinite divisor
with finite representant of degree zero.

Proof. Because of the previous considerations, the only we have to proof is
that D}; has degree zero, that is

Z Op(f) =0
pEST(f)

Next note that there is a bijection between Sp(f) and I'\S(f). Further, by
the previous theorem we have

2. olf)= > Drg,= >, Dry,
Jes(

peST(f) peST(f) wr(p nHn/T
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Finally, applying the lemma to the quotient Tx(Ly), which has as ends
the sets L, with 7r(p) € T'\S(f) by the proposition [3.6.5, we get that this

sum is zero, as we wanted to prove. 0

In order to go in depth, let us take into consideration a special kind of
automorphic forms: theta functions.
For any p,p’ € Q,(Ck), the infinite product

Z=p
9(p—p’;2)¢=HZ_ ,
TP

defines a meromorphic function on €2, clasically called theta function.

Its construction and the properties we report are done in [GvdP80, Ch. 2].
It is an L-automorphic form for I', where L|K is any complete extension of
fields such that p,p’ € Q,(L). If p and p’ are in the same ['-orbit, the theta
function is analytic. If I'p # I'p/, then 0(p — p'; z) has simple zeroes at the
points of I'p and simple poles at the points of I'p’ and no other zeroes or
poles. The previous considerations show us that 6(p — p’; z) has associated
an infinite divisor on €z, which is I'(p — p’) = I'p — I'p/. Further, for any
d € I" and p € Q, the theta function 6(p — dp; z) does not depend on p.

Next we prove a simpler version of [GvdP80, Ch. 2 (3.2)].

Theorem 3.8.16. Let f be an automorphic form on p. There is a finite
divisor Y., (p; — q;) which represent the infinite divisor associated to f and
such that

F(2) = f(2) - 0(pr — qi:2) - 0(pr — 43 2)

with ]? analytic function without zeroes on p. Further, if L is a field such
that p;, q; € Qe (L), then f is L-automorphic.

Proof. First, with the notation of the previous proposition take

T

DJFf = Z (pi — ¢)
i=1
Second, consider the automorphic form

Opr(2) = 0(p1 — qu;2) - 0(pr — 43 2)

By definition, the zeroes and poles of it are the same as the ones of f, so
f(z) = f(z)/@DJg(z) is an analytic function.
The second claim is immediate. O]
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Therefore we have an infinite divisor on 2, for any automorphic form.
Indeed, the associated infinite divisor to the form of the theorem is

L Z _Q’L

As a consequence we get a well defined degree zero divisor on the curve
\Q(L) = Cr(L).

Finally let us take into consideration 6 € I' and the analytic function
O(p — op; z) € O(Q)* for any p € Qz(K) (as above we assume Q. (K) # (),
if necessary after a finite extension of the base field).

Theorem 3.8.17. The image of 0(p — dp; z) by the morphism
fi: O)" — A (L, Z)o

is 5. Moreover, it maps any (analytic) automorphic form to a T'-invariant
measure.

Proof. In the same way that we did before, we define £, := LUT - p* C PY(K).
We recall the analytic functions defined through section |3.5]

Z =P %
Uspyop(2) = 2 —~op € O(S,)

SO
O(p — op; 2) Huwwgp on g, .

yel

Now, theorem [3.5.3| gives us the map
f:O8,) — MLy, 7)o

by which we map the previous functions:

[i(0(p — op; 2)) = [ (H Uspsp(2 ) ZU Usp,yop(2 ZMWJP P

vyer yerl’ verl’

where the second equality is due to the fact that g commutes with lim-
its. Thus, applying results of previous sections, this measure coincides with
—i5—1 = p15 when it is restricted to £, so the image of 8(p — 0p; z) by i as an
analytic function on L is ;.

For the second claim, let us take an analytic K-automorphic form f € O(£,)*.
To be automorphic means that for any v € I', v - f = ¢, f for some ¢, € K*.
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Therefore, applying the I'-equivariance of fi -recall the third part of proposi-
tion and the I'-invariance of £- we get

v a(f) =y - f) = aleyf) = iley) + a(f) = af)
Finally, since we can apply this reasoning for any field K, this is true for all

automorphic forms. O

Corollary 3.8.18. If f € O(,)* is an automorphic form, there exists a
0 € I" such that a(f) = ps-

Proof. By the previous theorem we have fi(f) € #(L,Z){ and by the iso-
morphism ' = 7 (L, 7)) (corollary [2.4.8)) there exists a 6 € T' such that

a(f) = ps- O
We give a new proof of the complete result cited above [GvdP80, Ch. 2 (3.2)].

Corollary 3.8.19. All analytic automorphic forms are products of the theta
functions of the form 0(p — op; z) by constants.

Proof. This is due to the first claim of the theorem, to the previous corollary
and to the fact that the kernel of i are the constants. m

We finish this section extending the corollary

Corollary 3.8.20. We have a commutative rectangle of short exact sequences
with sections for each zy € Qp

0 K" O(Q,)" M(L,T), 0
~— @@
7L,
0 K* Ar O e M(L,2)E 0
Z

20
and with (non-canonical) isomorphisms O(Q)* = K* x M(L,Z)o and
ArnO(Q)* =2 K* x M(L,Z)5 = K* x T,

Proof. We had already built the first exact sequence with its section and the
corresponding isomorphism by the corollary [3.5.7 The map [ restricts to
analytic automorphic forms and I'-invariant measures by the theorem [3.8.17]
The same occurs to the section due to the proposition |3.8.8, so we get the
exhaustivity and the isomorphism (using the corollary for the last part).

O
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3.9 The Albanese variety and the Abel-Jacobi
map

Using the results of the previous sections, we show that the Albanese
variety and the Abel-Jacobi map of a Mumford curve can be described in
terms of multiplicative integrals. The main theorem generalizes the result
of Dasgupta [Das05, Thm. 2.5] to any field complete with respect a non-
archimedean absolute value. We give, however, a distinct and independent
proof.

3.9.1 The abelian variety 7'/A

Let I' C PGLy(K) be a Schottky group, let £ := Lr C P}(K) be its limit
set and let 2, be the functor which associates to any complete extension of
fields L| K the set of points Q. (L).

Now we are going to do the following steps aimed at building an abelian
variety associated to I' in a natural way.

Take into consideration the short exact sequence

0 —Z[Qrlo — Z[Q] —Z — 0

where the first arrow is the injection of divisors of degree zero and the second
arrow is the degree map. Since " acts on )., we can take the associated long
homology sequence, and in particular, the morphism
[ — H,(T, Z) —= Ho(T', ZIQclo) = Z[Qe]o
ol P —p

independent of the chosen p € Q.
Since the map ][d 1 Z[Qr)o — Hom( A (L, Z)o, Gy i) is '-equivariant

[ ]
we may take I'-coinvariants, so we obtain

][d L ZQ;)op — Hom( A (L, 7)o, G i )r = Hom(A (L, Z)5, G k)

and after composing with the connecting map above we get

D 0~ Hom( 42, )8, Gy
~ ][ d: ,u|—>][
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Note that if £ # P'(K), then we may take p € Q,(K). This occurs unless
K is local and T" is cocompact, in which case, since we may take p in any

complete extension L|K, we also have ][ dp € K*.

YpP—Pp
By corollary " is the fundamental group of I'\Tx (L), therefore, by
corollary we get a pairing
£00
Fab % Fab £

(v, V) ]{ (v,7) = ]{p_p ity

K*

such that, by the corollary and the proposition [3.4.16

e (0 =i

for all 7,7 € I'. This equality implies that the pairing is positive definite.
Further, using corollary we get

][(%v’) 2][ dfty 27[ dpiy = 7[ (v,7)
L Yp—p ¥'p—p L

so the pairing is symmetric too.
Summarizing, we have a morphism

H(T,7Z) Hom (A (L,2)5, G k) =T

e f e f

which is an isomorphism between H;(T',Z) = I'* and its image A, so that it
is a free group of rank g = rank(I").
Note that, as a consequence of having

][ dp € K~
YpP—p

for any v € I', we get
A C T(K) =Hom((L,Z), K*) = Hom(I'“", K*) = (K*)?
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Let us consider now the valuation map applied to this:

(K RS

(a1,...,a9) — (vk(a1),...,vk(ay))

Lemma 3.9.1. The subgroup vk (A) C RY is a lattice.

Proof. Observe the way in which the isomorphism 7T'(K) = (K*)9 works:

T(K)

F . fun)

where v1,...,7, is a fixed basis of the free group I'. In particular, A seen
inside of (K*)Y is the multiplicative subgroup

{ (7[5(% M- 7[5(% %)) }WGF-

After applying the valuation map to this we get

(UK (][E(%%)) sene UK (fﬁ(%vg))) = (v 75+ (1 79)r)

that is the image of the map

(K7)?

Fab

YT~ Uk <][£(% '))

As T is generated by 71, ..., 7, vk(A) C RY is the subgroup generated by

Hom(I'®, R) = R

((’717 '71)F7 SRR ('71a ’79>F) s ((’79’ '71)F’ ) (797 /79)1“)

which, due to the fact that (, )r is positive definite, is isomorphic to Z¢ so it
is a discrete subgroup, and it has maximal rank. Therefore it is a lattice. [

Theorem 3.9.2. The quotient
T /A = Hom (A (L, Z)g, G i)™ /A

15 an abelian variety.
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Proof. By [FvdP04, 6.4, p. 171] we obtain that this quotient is a proper
analytic torus.

Note that by means of the identification .Z (L, Z)5 = T'®, the torus is
defined by the map v +— ][ (7, ).

c
This torus has principal polarization

*

P A — M X(T) = Homg—gyp(T, G ic) = T

o f f
() ( ]{ . d) = ]{p_p dpy = ][E(% )

and this form is symmetric and positive definite. Thus, we conclude that
T /A is an abelian variety ([FvdP04, Thm. 6.6.1]). O

since

Remark 3.9.3. This statement rests on two main steps: one was proving
the symmetry. The other one can be explained by the fact that composing
with the valuation gives a real analytic torus (that is, an isogeny) which is

the Albanese torus of Gr = I'\Tx(Lr) by the theorem [2.4.9, since there is a
commutative triangle

Hom(.# (Lr, Z)g, G i)

/

Hom(.Z (E(Tx(Lr)), Z)g, R).

Uk

Indeed, we take into account the isomorphism L = E(Tx(Lr)) and the next
equalities given by the proposition and the remark allow con-
clude the proof of the commutativity:
[
P—p

VK ( ][ d,u) = —log

Yp—p

][ dp = / dp
yre(p)—re(p) yre(p)—re(p)
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3.9.2 The isomorphism with the Albanese variety and
the Abel-Jacobi map

An isomorphism between abelian varieties
Our next goal is to get an isomorphism of abelian varieties
Alb(Cr) — T/A

In order to show this we are going to use the well known isomorphism
Alb(Cr) = Divy(Cr)/Prin(Cr). First we will build for any extension of
complete fields L|K a map

Divo(Cr)(L) — (T/A)(L)
Then, let us fix any extension of complete fields L|K. Take a divisor
D € Divy(Cr)(L). It can be written as
D= Z npp verifying D = D Vo € Gal(C|L)
peCr(CpL)

and there exists a finite extension L'|L such that Supp(D) C Cr(L') so that

D e Divy(Cr(L’)). Now, there is a finite field extension L|L' such that Gr
has no loops (in fact, this is true for almost any extension up to a finite
number), so by corollary [3.6.9) the map Q;(L) — Cp(L) is surjective and
thus, the maps

M\Qg(L) — Cp(L) and \Z[Q.(L)]o — Dive(Cp(L))

are isomorphisms. Thus, we got a finite extension ZNL\L such that there is a
divisor D € Z[Q2z(L)]o satistying mr(D) = D, that is

Vo € Gal(L|L) 3 v, € T such that D’ = ~,D.

The continuous arrows of the diagram

o f ~

Hom (. (£,Z)5, L*) = T(L)

D fd:u»%j{du
D D

Divg(Cp (L)) o ~T(L)/A

WF(D):Dl ............................................................................................................ - d

o)
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factorize by the dots arrow, since T\Z[Qz(L)]o = Hy(T, Z\Z[Q(L)]op-
We can finish the construction of the map we told above thanks to the
following result.

Lemma 3.9.4. Given a finite extension L|L and any D € Z[Q,(L)]o satis-
fying i N i
Vo € Gal(L|L) 3 v, € I" such that D° = ~,D,

(]é)d)oz]éd (mod A)

Proof. We just have to note how it is defined the integral, as a limit of
products of the function fp. This is integrated over L, set of K-rational
points, so invariant by o. Therefore, for any u € .#(L,7)y we have

(fan) (fan) = (foom) (fan) =
= f Joei (]{3 du)l - ][cf%[)du (]{ fDdM> o

we have

independent of u. Finally ][ deA. O]
Yo D—D

Corollary 3.9.5. Under the same hypothesis we get

f d e (T/A)(D)

D

Proof. Tt is immediate. O

Therefore, for D € Divo(Cr)(L) we have built a well defined element

]{) de (T/A)(L),

so we get the map
Divo(Cr)(L) — (T/A)(L)

Next we want to show its exhaustivity and compute its kernel. The next
result is crucial to move forward:
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Lemma 3.9.6. Let D be a degree zero divisor on Q. which can be represented
as > .._, (pi — q;) and let us define the automorphic form

0p(2) == 0(pr — q1;2) - 0(pr — 43 2)

Then its factor of automorphy is given by

C%W%=fdm Vyerl
D
Proof. On one hand we have

o, (1) = B0 _ O = i) 00— ari)

0p(v2)  O(p1—qi;7v2) - 0(pr — Gr;72)

_0(z=zp1) -0z =z pr)
0(z=vzq1) - 0(z — v 4r)
where the last equality is due to the straightforward symmetry of theta func-
tions. On the other hand, applying the theorem and the extended
Poisson formula (corollary we have

~ ZO_’VZOPJ
d :][d 0(z0 — v20; )
]é) Fr D M(O 7= HGZO—’YZO;QZ)

Since the right sides of two last chains of equalities are independent of z and
2o respectively, they are equal. O

Lemma 3.9.7. If h € O(Q)* is an (analytic) automorphic form, its factor
of automorphy ¢, belongs to A.

Proof. First, recall by corollary |3.8.18 that fi(h) = us for some 6 € I'. Next,
let us compute its automorphic form on a v € I' by means of applying the
Poisson formula:

00) = s = § = f = f = f g

Finally, ][ d belongs to A by definition. ]
z—0z

Proposition 3.9.8. Given an automorphic form h € Ar with factor of au-

tomorphy cy, there is a finite divisor Dy, on Qp such that the infinite divisor
of h on Qp is Dy =1"- Dy, and



Proof. We take Dh a finite divisor as in theorem [3.8.16| such that D) = F~bh
and h(z) = h'(2)0p, (2) with h/(z) analytic. Then, by the previous lemmas
we have

Ch = CnCo, = Cop = ][ d (mod A)

Dy,

]

Corollary 3.9.9. The map Divo(Cr)(L) — (T'/A)(L) factorize by the prin-
cipal divisors of Cr and the resulting map

Divo(Cr)(L)/ Prin(Cr)(L) — (T'/A)(L)

18 1njective.
Proof. First we will show that the map factorize by the principal divisors.

A divisor of Divy(Cr)(L) is principal when it is the divisor of a mero-
morphic function on CT, that is a I'-invariant meromorphic function on 2.
Let Dy, and h be such a divisor and such a function respectively. Since h is
[-invariant, its factor of automorphy is constant equal to 1. Therefore, by
the proposition we get

][ d=1 (mod A)
D,

with D, = I'Dj,, and so we obtain the factorization by the principal divisors.
Next we want to prove the injectivity of this factorized map. Take now a

D € Divy(Cr)(L) such that

]4 d € A so there exists a § € I" satisfying ][ d= ][ d
D D Sp—p

where D = I'D with D divisor on €, and p € Qy. Now, as above, we
can build the automorphic form 6, which has associated infinite divisor D.
Further, let us consider the analytic function 6(dp — p; z), and write ¢p and
¢s for the factors of automorphy of the two last automorphic forms. Observe

that
cp(7) Zjédm =][ dpy = c5(7).
D dp—p

Therefore, D is the divisor associated to the function 05(z)/0(dp — p; 2),
which is ['-invariant, so it is principal and thus the injectivity is done.
O]

Proposition 3.9.10. There is an isomorphism

(Divo(Cr)/ Prin(Cr)) (L) — (T/A)(L)
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Proof. Let us check first that this map is well defined.
Consider a divisor D in (Divo(Cr)/ Prin(Cr)) (L). Then, there is a Galois
extension L|L and a divisor D € Divy(Cr)(L) such that

D° — D € Prin(Cp)(L) for all o € Gal(L|L).

This implies that
7{ ~d=0pa € (T/A)(L)
De—D
and so, as in the proof of the lemma |3.9.4] we get the next equalities in

(T/A)(L): )
(]éd) zfad:]{jd Vo € Gal(L|L)

Therefore ][ d e (T/A)(L) and we get the morphism

D

(Divo(Cr)/ Prin(Cr)) (L) — (T'/A)(L)

which is injective by the previous corollary.

Next we have to prove its exhaustivity. An element =
be seen in T(L)/A, satisfying =7 = Z for each ¢ € Gal(L]|
a Galois extension. This element is the class of a & € T(L)
such that

(T/A)(L) can

where L|L is
Hom(T'%, L*)

S
L),
€ =¢ (mod A)  for each o € Gal(L|L),

which in turn is the factor of automorphy ¢, of an automorphic form h € Ar,
by the proposition [3.8.9. Now, by the proposition [3.9.8| we have

[1]

D

][ d=c, =& (mod A) and so ][ d=
Dy,

with Dj, € Divy(Cr)(L). By the hypothesis

(][ d) :][ d SO ][ d = 07/
Dy, Dy, D7 —Dp,

what, due to the injectivity of the map, gives that Dj — D, € Prin(Cr)(L).
But this for each o € Gal(L|L) implies that D), € (Divo(Cr)/ Prin(Cr)) (L).
]

Now we are ready to prove the main theorem, which generalizes to any
complete field with respect to a non-trivial non-archimedean valuation [Das05),
Thm. 2.5]:
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Theorem 3.9.11. There is an isomorphism over K of abelian varieties
Alb(Cr) — T/A
Proof. First, as we told above, we recall the isomorphism
Alb(Cr) = Divy(Cr)/ Prin(Cr)
Second, we have built an analytic morphism of abelian varieties
Divy(Cr)/ Prin(Cr) — T/A

Since they are proper, by GAGA it is an algebraic morphism, and it also re-
spects the group operations, so it is a morphism of abelian varieties. Further,
it induces an isomorphism in the corresponding L-points for any extension
of complete fields L| K, and this implies that it is an isomorphism. m

The Abel-Jacobi map

Corollary 3.9.12. The abelian variety T /A is the Albanese variety of the
curve Cr and the Abel Jacobi map is given, after having fixed some point
zo € CF, by

Cr—2 Hom(.4(L,Z)E. G )/ A

2 ][ d
z—20

Remark 3.9.13. Next, we put together the remarks|3.6.8 and |3.9.5. This
Abel-Jacobi map descends to the one of the associated graph by means of the
retraction. That s, we have a commutative diagram

] r
O Ch b2 Hom(///(L’AZ)O,Gm,K) ~ Alb(Cy)
I'ep I'ep,r UK
] T
Tic(Lr) Gr . Hom(A(E(Tk(Lr)), Z)y, R) ~ Alb(Gy).

o

where p =1z, r(20). Indeed, for any z € Cr let Z € Q. be a representant, so
that p == rr.(20) € T (Lr) is a representant for p € Gr and more generally,
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2. (2) is a representant for vp.r(z). Next, we compute as in the last remark

named:
VK <][ du) = —log ][ du‘:
-5 i-%

— log \ Flo = [ du= i)
ren (2)-P re(2)—p

This summarizes several results from [BR15] that we have recovered for
Berkovich analytic Mumford curves, as the theorem 2.9 (which is, essentially,
our corollary , the proposition 6.1 (it is what we have just proved in
this remark) and the corollary 6.6, which says that there is a canonical iso-
morphism between the skeleton of the Albanese torus Alb(Cr)™ of Cr and
the Albanese torus Alb(Gr) of the skeleton of Cr, and that vk coincides with
the retraction to the skeleton, which, moreover, is the tropicalization map (cf.

[Gub10, § 4)).
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Chapter 4

The conjectural construction of
the Albanese variety of a
non-Archimedean uniformized
variety

Mustafin generalized “Mumford’s construction of nonarchimedean uni-
formization for curves over a discrete valued field K to the multidimensional
case” in [Mus78]. In order to do it, he introduced the Bruhat-Tits building
PB(G) associated to a d+ 1-dimensional vector space V, then, given a certain
subgroup I' € PGL(V') that he called normal hyperbolic and that genaralizes
Schottky groups, he considered a subbuilding %,. C #(G) obtained from
the dual set Lr of the set of limit points of I' . With these objects, Mustafin
built a formal scheme €2, which arises from projective d-space over K by
removing the dual hyperplanes of the points in Lr as a rigid analytic variety,
and that uniformizes the object of his research, that he obtain as a quotient
I'"\Q,,. =: Xt and that inherits a rigid analytic structure.

These uniformized varieties are algebraizable in some cases, like when
they are abelian varieties (in which case the abelian variety is a quotient of
a torus Gfm x by a lattice), or also when the base field is local and the group
[ is discrete, cocompact and without torsion. In the last case, Lr = P(V),
PBr. = B(G) and Q. is the rigid analytic space called p-adic symmetric
space introduced by Drinfeld in [Dri74] generalizing the 1-dimensional p-adic
upper half plane as a p-adic analogue of the real symmetric spaces.

Drinfeld remarked the importance of the cohomology of the p-adic sym-
metric spaces, which computed Schneider and Stuhler in [SS91], where they
also computed the cohomology of their quotient varieties by the groups I
Later, in [dS01], de Shalit went deeper in the study of the rigid de Rham co-
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homology of the p-adic symmetric spaces, giving a new description in terms
of “a certain space of harmonic cochains on the Bruhat-Tits building” and
answering “a few questions left open in the original approach” by Schnei-
der and Stuhler. This author continued this study together with Alon in
[AdS02] (and in [AdS03]), where they related the different descriptions given
of the rigid de Rham cohomology of Qp(y). In particular, they translated
a description given in [SS91] to the language of harmonic measures on the
space of K-points of a certain flag variety which, combinatorially, can be
seen as part of the spherical building boundary of the Bruhat-Tits building
of PGL(V') (which is the Bruhat-Tits building of GL(V')), and they described
the isomorphism between these space of harmonic measures and the space of
harmonic cochains on the building.

Finally, Raskind and Xarles defined in [RX07a] the notion of projec-
tive varieties with totally degenerate reduction, which applies to abelian
varieties, to the quotients of the p-adic symmetric spaces by torsion free,
discrete, cocompact subgroups I' C PGL(V) and, more generally, to any
nonarchimedean uniformized variety Xt = '\, being algebraizable as a
projective variety. Then, in [RX07h], they associated to those varieties cer-
tain rigid analytic tori that they called “p-adic intermediate Jacobians”, and
a kind of Abel-Jacobi maps to them. As their complex analogues introduced
by Griffith, the “extreme” p-adic intermediate Jacobians are the Picard va-
riety and the Albanese variety.

The original motivation for this work is to give a more analytic con-
struction of such tori, but early we had decided to focus on the Albanese
varieties, since a big field for research is open only with their study. In this
chapter we give a conjectural construction of the Albanese varieties in the
paragraph and in the following we study a way to prove that it is in
fact a rigid analytic torus when the uniformized variety is a surface. The
key step is the proof of the isomorphism between the harmonic measures on
Lr with the harmonic cochains on %,,., which generalizes the isomorphisms
proved by Schneider and Stuhler, and de Shalit and Alon when T is discrete,
cocompact and torsion free (Lr = P(V)) and K is local.

4.1 The Bruhat-Tits building (over a discrete
valuation field)
In this section, we introduce the Bruhat-Tits building following mainly

the combinatorial approach by Mustafin and de Shalit in [Mus78] and [dS01]]
respectively. We also introduce some special subcomplexes 4, that for cer-
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tain compact sets £ C P(V') are the subbuildings in which we are interested.
In particular, we start to study their minimal 1-skeleton.

Let K be a complete field with respect to a non-trivial discrete valuation
vk, let Ok be its valuation ring, let mg = (7g) be its maximal ideal and
k = O /mp its residual field.

Let V be a (d+1)-dimensional K-vector space, and denote by V* its dual,
so Py = Proj(S*(V*)) is the projective space associated to V', whose K-
rational points correspond to the 1-dimensional subspaces of V' (so, with the
traditional notation we have P(V) = Py (K)). We will write G := PGL(V),
the group of automorphisms of Py as K-algebraic variety.

A lattice in V is a free Og-module L C V of rank d + 1, so it spans V'
over K. Two lattices L, L' are equivalent (L ~ L') if there exists A € K*
such that L' = AL. We may consider the left action of the group GL(V') on
the set of such lattices in the natural way: if v € G, vL = {yx | x € L}.
Then, L ~ L' if and only if L and L’ belong to the same orbit of the center
K* C GL(V), so we get a left action of G on the set of classes of equivalence
of lattices.

The Bruhat-Tits building of G is a simplicial complex (not necessarily
locally finite) %(G) whose vertices -which we shall denote by #(G),- are the
set of lattices in V up to equivalence. We shall denote the equivalence class
of L by [L].

There is a metric p in B(G),. Take A = [L], A’ = [L'] two any vertices in
V. By the equivalence, we may assume L D L’. Therefore we have

L)L = Ok /mi® @ - ® O /mi,  m; >0

and we define p([L], [L]) := maxm; — minm,;. This is equivalent to take L’

in the same class as above, satisfying L D L' D myL, I’ 2 m} 'L and
defining p([L],[L']) := r. For any integer 0 < ¢ < d, a g-dimensional simplex
(or cell) of B(G) is a subset A = {Ag,..., Ay} of B(G), such that satisfies
any of the next equivalence conditions:

e For any i # j, p(Ai, Aj) = 1.

e We may choose A; = [L;] such that Lo D Ly D --- 2 L, 2 mx Ly (what
we shall call a ¢-flag in Ly).

(see [Gar97, Ch. 19]). We shall denote the set of g-simplices by #(G),, as
usual. As already defined, O-simplices are called vertices, 1-simplices are
called edges, and d-simplices are the maximal simplices of A(G), which will
be called chambers. The subsimplices of a simplex are called its faces. The
codimension 1 faces (= d — 1-simpices) will be called panels.
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Definition 4.1.1. Two chambers A, A" are adjacent if they are distinct and
have a common panel A = A A’.

A pregallery of length n is a sequence of n+1 chambers Sx = (Ao, ..., Ay)
such that A; and A;y1 are adjacent or equal fort=10,1,....,n—1. A gallery
is a pregallery in which A; # A;1 for all 7.

We say that Ay and A, are the ends of the (pre-)gallery, that Sx is a
(pre-)gallery from Ag to A, or that it connects these chambers.

A gallery is minimal if there is no gallery with the same ends and length
strictly less than n, and that length is called the gallery distance between Ag
and A,,.

Notice the cyclic order of the vertices of a g-simplex A of A(G) (and
so, its orientation). We shall say that A is pointed if it has a distinguished
vertex, or equivalently, if we fix an order in it Ag = [Lo] < --- < A, = [L,]
where Ly 2 Ly 2 -+ D L, D mxLy. In this case, writing d; = dimy(L;/L;+1)
(where L, := mgLg), we say that A has type t = (do,...,d,) € Nq;;lfrl.
Note that > 7 d; = dimy(Lo/mx Lo) = d + 1 and

q
Zdl = dimk(Lj/’ﬂ'KLo) =iny.

i=j
A pointed g-simplex A can be written
A = (LO 2 Ll 2 2 Lq 2 7TKLO) = (Ao,Al,...,Aq).

There are (Z) types of g-simplices, of which we shall call the minimal type
to(d+1—gq,1...,1). We will denote the set of pointed g-simplices of type
t, the minimal ¢-simplices, and the set of all the pointed ¢-simplices by

—t

A(G)

—

é@;ﬂm and #(G),

q7

respectively, so that

L —

Note that #(G), = B(G),.

We will call the distinguished vertex Aq of a pointed simplex A its source,
and we will denote it as s(A) = Ay, generalizing the edges classical notation.
Precisely for an edge e, its another vertex is called its target and denoted by
t(e), as usual.

Given two simplices, pointed or not, A’ and A, if A is a face of A’ as
g-simplices, we will write A < A/,
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Given a simplex Ay, we will denote by Z(G),(Ao) the set of g-simplices
A such that for any vertices Ag < Ay, A < A, then p(Ag,A) < 1. This
is equivalent to say that Ay and A are face of a common chamber. We

—

will denote by #(G),(Ao) the set of pointed g-simplices A verifying the
same property and we will specify the type if we restrict to it accordingly:

@:(Ao)- Removing the specifications, the subcomplex with its cells will
be denoted by ZB(G)(A).

For a general n € N, we will denote the set of g-simplices (resp. pointed,
resp. of a given type t) A such that p(Ag, A) < n for any vertices Ay < Ay,
A <A, by

B(G), (D) (resp. B(G),(Bo)™, resp. B(G).(Ag)™),

and we will denote Z(G)(Ay)™ the subcomplex generated by them.
We will say that a basis {v,...,v4} of V is adapted to a g-simplex

A ={[Lo),...,[Ly]} with source Lg if we have
L, = @ Okv; @ @ Okmrv; (and then L; /7Ly = @ kv;).
J<n; Jj=2n; J<n;

Such a basis always exists ([Mus78, Lem. 1.1.]).

The apartment associated to a basis v = {vy, ..., vq} of V is the simplicial
subcomplex of Z(G) generated by the vertices of the form [P, Oxniivi],
where m; € Z. We will denote it by A,. The same notations for the sets of
g-simplices, pointed ¢-simplices and the ones of a given type introduced for
A (G) apply to the apartments. Clearly, we have a bijection

Avo =277 (1,...,1)

mapping [B, Ox 7 v;] to [(mo, ..., ma)] = (Mg, ..., mq)+Z(1,...,1), which
extends to an isomorphism of cyclic ordered simplicial complexes

A, =277, (1,...,1)

giving to Z4T1/Z - (1,...,1) the suitable structure.
Let us recall some facts from [Mus78, § 1.].

o Fixed a vertex A = [L] € B(G),, the set of ¢g-simplices A with source
A are in one to one canonical correspondence with the g-flags in L and
with the flags of length r in k%*!, preserving the type.

e Given two chambers there exists at least an apartment containing both.
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e The action of G on B(G), extends to an action on Z(G), on the left,
which is simplicial and transitive on simplices with distinguished vertex
of the same type.

e (@) is a contractible simplicial complex of dimension d. The topo-
logical realization of any apartment A C %(G) is isomorphic to RY.

e The isomorphisms |A,| = R? induce a G-invariant Euclidean metric on
the topological realization of the building |4(G)|.

Given a basis v = {wy, ..., v4} of V consider the element vy, = ch‘l:(] Vg
Let us compute the intersection of A, with the apartment associated to the
basis v? := {vgy1,v1,...,v4}. It is the subcomplex generated by the set of

classes of lattices @, O my v; which coincide with lattices of the form

my m/
OKﬂ'K Vd+1 D @ OKWK V;.

1>1

To get the equality we need m; = m/ for all < and mg > m; for all ¢, and this
condition is enough.
Therefore, if we call v! to the basis consequence of replacing v; by vgi1

we get
@ OKUi

where the notation is inspired by the introduced in the previous chapter.

Observe that the apartment A, only depends on the classes [v;] € P(V),
but the isomorphism with Zd + 1/Z - (1,...,1) depends on the given basis
ordered. So in this last case we will have to use the introduced notation
Ay, but in general, if we do not need so much precision, we can write an
apartment as Ap, where P C P(V) is a set of d+ 1 projective points linearly
independent (as {[vo], ..., [v4]})-

More generally, for any subset £ C P(V) and any set of d + 1 points
linearly independent P C £ we may consider the apartment Ap. We consider
the subcomplex of Z(G) associated to £ defined by

A, N ﬂ Ay = =:t([vo], - - -, [va], [Vax1])

@L = U Ap
PCL
7)={1)107i:~,pd}
It is a simplicial complex of dimension d whose maximal cells are chambers
of #(G). In some cases, it is a building in the sense of [AB0S, Ch. 4] (it
is a convex subcomplex of #(G)), as when Bp = Ap and HBp) = B(G),
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but generally it is not. For example, assume d = 2, let vy, vy, vy be a ba-
sis for V' and take £ = {[vo], [v1], [v2], [vo + v1 + vo]}. In this case B, is
not a building, since there is no apartment in %, containing the vertices
[Oxmrvy ® Oy @ Okgvy] and [Ogvy @ Ok (v + v1 + v2) & O vy simul-
taneously.

If A, is a building, we know it is contractible (JABO8, Thm. 4.127]). It
seems reasonable to think 4, is contractible even if it is not a building, but
we are not going to use this and then, we will not prove that.

The same notations for the sets of g-simplices, pointed ¢-simplices and
the ones of a given type introduced for Z(G) apply to A..

Let us define the covalence of a panel A in %, as the number of chambers
in #, containing that panel. We will denote it by cov,(A).

From now on, £ C P(V) is a closed subset not contained in a hyperplane
(so A is not empty).

Proposition 4.1.2. Given a vertex A € B,y and a point p € L, there exists
a subset P C L of d + 1-linearly independent points such that p € P and
A € Apg.

Proof. Since A = [L] € By, there is a basis v = {vg,...,vq} such that
[v;] € L for each ¢ and L = @?:0 Ogkv; € Ay,. Consider a representant
v = Z?:o Av; € V of the point p = [v]. Since v # 0, there exists an ¢ such
that {v} Uv \ {v;} is a basis of V. More specifically, we choose this ¢ such
that vg(A\) < vk (M) for all j # 4. Without loss of generality we assume
i = 0. Further, taking a suitable representant v (multiplying by . (’\O)),
we have that v/ = {v,vy,...,v4} is a basis for L, and therefore A € A,. [

The minimal subgraph

We have a particular interest in the minimal edges of Z(G), so next we
are going to restrict us to an apartment and see how are these when we look
at Z4Z - (1,...,1), after the given isomorphism. Then, we will work with
edges with a distinguished vertex.

Consider the norm in Z4*! defined by

(o, ..., ma)|| := max [m; —m;| = max {m; —m;} = maxm; — minm,.

) ),

It is an easy exercise to check that it is a norm. Further, it factorizes by
Z-(1,...,1), so we get a norm in Z41/Z - (1,...,1). Thus, we shall call
it the tropical norm, and denote it by || - ||sop (as others had already done
previously).
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Let A, A’ be two vertices, and assume that they correspond to
[m] = [(mo, ..., mq)] and [m] = [(mg, ..., my)]

respectively. I claim that (A, A’) is an edge if and only if ||[m]— [m/]|1ep = 1.
After subtracting m, we can assume that A corresponds to [0]. Then, the
assertion becomes clear if we remind that (A, A’) is an edge if and only if
p(A, A') =1, and we observe that p(A, A') = [|[m] — [0]||trop-

Identically, if we have vertices Ay, . . ., A, corresponding to [m'?], ..., [m9)],
they form a simplex if and only if ||[m¥] — [mYD]||;0p = 1 for all i # j.

Now, that an edge (A, A’) corresponding to ([m],[m’]) is minimal if and
only if [m/] — [m] =[(1,...,1,0,1,...,1)] is just a quick verification.

0,—2,2 0,—1,2 0,0,2 0,1,2 0,2,2 0,3,2
Y O Y
O O
0,—2,1 0,—1,1 0,0,1 0,1,1 0,2,1 0,3,1
Y O Y O Y
O O O
0,—2,0 0,—1,0 0,0,0 0,1,0 0,2,0 0,3,0
/ 4 O 4 O 4 O 4
O O O O O
0,—2,—1 0,—1,—1 0,0,:1 0,1,j1 0,2,j1 0,3,—1
;"/;‘ ,\'/;‘ Y O Y O Y O Y
O O O O O
0,—2,—2 | 0,—1,—2 | 0,0,—2 0,1,—2 02,-2 |03,-2

Figure 4.1: A small portion of an apartment A for d = 2 seen inside
Z3)7(1,1,1) with the orientations of the maximal simplices and the mini-
mal edges indicated, and colored following the intersections A, N A: studied
above.

Definition 4.1.3. We shall say that two minimal edges e, e’ € m;ﬂm
are straight if either t(e) = s(€') or t(e’) = s(e), and there are no chamber
containing both edges.

Proposition 4.1.4. Let A be an apartment. For each e € 1&“{”" there exists
a unique ¢ € AT such that they are straight with t(e) = s(¢’) (and the same
applies with t(e') = s(e)).

Proof. We can write e = ([m], [m/]) with [m], [m/] € Z¥Y/Z - (1,...,1).
Since we ask for t(e) = s(€’), we also can write ¢ = ([m/],[m”]) with
m"] € 277 - (1,...,1).
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Since e, ¢/ are minimal, we have

with the 0 in the position ¢, and

"] — [m] = [(1,...,1,0,1,...,1)]

with the 0 in the position i'. Recall that e, [m], [m'], are given, while [m"], "

are the unknowns. If ¢/ # i we have

T = [m]lerop = 1

so ([m/], [m”]) is an edge and [m/], [m'], [m”] are contained in a chamber. Oth-
erwise ¢ =i, [m"] = [m/] + ([m/] — [m]) and

||[m_//] - [m]Htrop = 27

therefore they do not belong to any common chamber. O

Remark 4.1.5. For some basis {vy,...,vq} we have s(e) = [, Okv;], and
io € {0,1,...,d} such that t(e) = [Oxvi, & D, Oxmrvi]. Thus, we oblain

t(@l) = OKUiO D @ O[(W%(Ui
iio
Sum action on an apartment and parallelism

Note that we have a left action
77 x 72z - (1,...,1) — 277 - (1,.. ., 1)
given by the sum of vectors
(20,---524) - (Mo, ...,mq) :== (20 + Mo, ..., 24 +Mmq),

so we shall denote it (2, ..., zq) + (mo, ..., mq). It factorizes by Z-(1,...,1),
so we get a left action

27 (1,..0,1) x Ay — A,
Definition 4.1.6. We will say that two minimal edges e, e’ € ‘T&:,Tm are
parallel with respect to v and we shall denote this by e ||, €, if they are in
the same orbit by the action of Z4t1 /7 - (1,...,1), that is, if there exists
n] € Z¥™Y/Z - (1,...,1) such that ¢’ = [n] +e.
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Note that, at least initially, this definition depends on the basis. In fact
we see that it only depends on the points [v;] € P(V), where v; are the
vectors of the basis, but neither on the representants v; (whose change is a
translation of the vectors), nor on their order (whose change gives a reorder
of the coordinates), that is, it only depends on the apartment.

Note also that this notion of parallelism restricted to an apartment is an
equivalence relation, since it is defined by the orbit of an action.

Another consequence of the proof of the proposition [£.1.4] is that two
straight edges are parallel with respect to any basis.

Proposition 4.1.7. The notion of parallelism between minimal edges does
not depend on the apartment. In particular, two minimal edges are parallel in
an apartment containing both if and only if they are parallel in any apartment
containing them.

Proof. Let e, ¢’ edges both contained in two apartments A, A’ of Z(G). Since
A (@) is a building, it verifies the well known property for such objects that
given two simplices in two apartments, there is a simplicial isomorphism of
the apartments fixing both simplices (cf. [ABOS, Def. 4.1]). Now consider

a simplicial isomorphism Z4*1/Z - (1,...,1) = A. Next, let us compose the
simplicial isomorphisms A’ = A = Z4+1/7 . (1,...,1), so we get another
simplicial isomorphism between A’ and Z**!/Z - (1,...,1). Since e, ¢’ are in

the intersection of both apartments, they are mapped to the same image, and
since parallelism does not depend on these isomorphisms, they are parallel
with respect to A if and only if they are parallel with respect to A’. [

4.2 The open sets associated to the minimal
edges of 4,

We are going to study open sets associated to the minimal edges of Z(G),
which, when £ C P(V) is compact, induce a basis for the topology of £ by
open compacts. We also will introduce some “simplicial” maps and obtain
some important properties related to the structure of partitions by these
open sets, which we will use following repeatedly and that will become key
for later proofs.

Lemma 4.2.1. Let V' be a K-vector space and let L be a lattice in V', so it
is a free Og-module with a natural isomorphism L ®p,, K = V. Let Z CV
be a K-vector subspace and L' :== gL+ (Z N L). Then
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Proof. First, recall the well known facts that Z N L is a free Og-module of
rank less than ranke, (L) and in fact,

. ZNL , L
rankep, (Z N L) = dimy, (m) = dimy, (’NKL) :

Next, we are going to prove rankep,(Z N L) = dimg(Z). Let us write
s:=rankp, (ZNL),s0o ZNL = (wy,...,ws)o,. Then, clearly s < dimg(Z).
If s < dimg(Z), there would be a v € Z \ (wy,...,ws)kx and an r € Z such

that v € LN Z, so we would get a contradiction. Therefore, s = dimg (7).
O

Following, let Z C V be a 1-dimensional K-vector subspace. As we have
shown in the previous proof, there exists w € L such that Z N L = Ogw.
Further, we see that w € L \ mx L and it is unique up to Oj. Therefore we
have gL+ (Z N L) = gL + Ogw.

Observe that for any lattice L we have

L/mxL = k%
Then, for each vertex A = [L] € A(G), there is a reduction map
rp : P(V) — P(L ®o, k) = P4 E)

defined as follows: for any Z € P(V') we have just seen that thereisw € ZNL
such that Z N (L \ 7xL) = Ojw, and therefore we can define ry(Z) as the
class of this element in

(L\7xL)/mcL) [O5 = (kT \{0}) /K" = P(k).

Recall that a 1-flag in V' is a linear subspace of dimension 1, that is a point
of P(V). Let e = (A, A’) be a minimal edge and take representants A = [L],
N = [L'] verifying L D L' D mgL. Since e is minimal, dimy(L'/7xL) = 1.
We define the open set associated to e by

B(e):={Z cV |dimg(Z)=1, L' =nxk L+ (ZNL)} CP(V),
and more generally, given £ C P(V') closed, one defines
Be(e) :==B(e)N L.
Note that if £ C L, then Be/(e) C Be(e).

Lemma 4.2.2. We have Z € B(e) if and only if ZN L C L'. In particular
[u] € B(e) if and only if the representant of [u] in L\ L belongs to L'\ mx L.
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Proof. One implication is obvious and the opposite follows from previous
considerations. We have seen that Z N L = Ogw for a w € L\ ngL. If
L' D gL+ (ZNL), any w' in the difference would be K-linearly independent
with w, what would imply dimy (L' /7x L) > 2, therefore it cannot exist, and
L' =ngL+(ZNL). O

Thus, the open set can also be defined as

Ble) ={Z € P(V) |1p(Z) = L' Jn L} = v (L' J7k L).

The minimal star maps

Observe that given A = [L], the point Z =: z € P(V') determines A’ = [L/]
and (A, A’) is a minimal edge, and so, given A, A}, A, such that e; = (A, A})
and ey = (A, A}) are minimal edges, B(e;) N B(ez) = (. Therefore, for each
A e B(G), we get

PV)= || Bl
EEQ(G) "
s(e)=A
Given a closed set £ C P(V'), we shall call the minimal star of A in %, the
set of edges '
SR (A) = {e € Bry | s(e) = A}
and when £ = P(V) we will write St™" := Stﬁ?(%.

Then, another way to tell the previous discussion is that the map 1y

induces an injective map

mm . Stmm(A) N Pd(k)
which maps e = (A, A') with A = [L],A = [L'] and L D L' D 7L, to
L'/ngL € P(L ®o, k). Then, for e = (A, A’) we have

Ble) ={Z € P(V)| 1a(Z) =" (e)} = 1y (3" (e))
and
PV)= || m'eRme)= | Bl.
eeSt™in (A) eeSt™in (A)
It is not immediate that we have the similar equality

L= || B

St (A)

since it means that for any point p € £ and any A € %, thereis e € St7"(A)
such that p € B(e). We know that there is a unique e € St(A) such that

—~ min

p € B(e), so we have to see that actually e € %,
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Proposition 4.2.3. Let L =P be a set of d+1 points linearly independents,
so By = Ap. Then, for any minimal edge of Ap, Bp(e) consists of exactly
one point of P and for each point p € P and each vertex N € Ap, there is
an edge e € St} (A) such that {p} = Bp(e).

Proof. Without loss of generality we assume P = {py, ..., pa}, with p; = [v;],
where v = {vg,...,v4} is a basis of V| such that

P={(1:0:---:0),(0:1:0:+--:0),...,(0:---:0:1)}
and s(e) = [0]. Then this minimal edge has the form

e=([0],[(1,...,1,0,1,...,1)])

after going through the isomorphism A, = Z4t1/7 - (1,...,1). Now, writing

d d
e= <@ Ogv; 2 @ Ogmgv; @ Ogv; 2 @ OKW(%) ,

i=0 j#i i=0

we claim that Bp(e) = {p;}. Indeed, it is clear, since

d d
@OKTFKU]' D OKUz‘ = @O}(TFKUZ' + (@ OKUZ‘ N <Uh>) <= i=~h
=0 =0

JF

Reciprocally, we can assume A = [0] and we have seen that for each p;
there is an edge e € St (A) of the chosen form such that {p;} = Bp(e). O

Remark 4.2.4. Note that if we have [n] € Z* /7 - (1,...,1) and
¢:=[nl+e=(n],[(no+1,...;0_1+1L,n;ni1 +1,...,nqg+1)]),

after taking the basis u; = mlv; for the same apartment we can apply the
same proof to €' and we get Bp(e') = Bp(e).

Corollary 4.2.5. Given £ C P(V) closed and e minimal edge in P, the
open set Br(e) is not empty. Further, if Po C L 1s a set of d+ 1 points
linearly independents such that e & Kp\ozmn, then Py N Be(e) is exactly one
point.

Proof. The minimal edge e is contained in an apartment Ap with P C L,
therefore ) # Bp(e) C Bz(e). The second claim follows from the fact that,

ma

since e € K;M " we get Py Be(e) = Bp,(e). O
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Corollary 4.2.6. Let e be a minimal edge in B(G) and p € B(e). Then
there exists a set P of d + 1 points linearly independents containing p, such
that e belongs to the apartment Ap. If s(e) € Bry and p € L we can choose
PCL.

Proof. Take A = s(e) and apply the proposition to get a set P and the
corresponding apartment Ap C HB(G). The same lemma gives us the last
claim under the added hypotheses. Since there is a unique edge e € St™"(A)
such that p € B(e) and there is an edge ¢’ € St} (A) C St™"(A) such that
{p} = Bp(€'), we conclude e = ¢’ O

———min

Corollary 4.2.7. Given an edge e € B(G), and a closed subset L C P(V)
such that s(e),t(e) € Br, e is in Be if and only if Be(e) = B(e)( L # 0.

Proof. 1t is a consequence of the two last corollaries put together. [

Corollary 4.2.8. Given L C P(V) closed, a vertex A € %y and a point
p € L, there exists e € St (A) such that p € Bz(e). Therefore

L= |_| Bg(e).
)

Stmin (A
Corollary 4.2.9. Given L C P(V') closed, the sets B.(e) are open and closed.

Proof. Consider the minimal star of s(e). The union of all the open sets asso-

ciated to the edges in St/*""(s(e)) \ {e} is open, therefore, its complementary

Be(e) is closed. O

Corollary 4.2.10. If £ C P(V) is compact, for all vertex Ao in B, St7"(Ag)
is finite.

Proof. The edges in St/*""(Ay) provide a disjoint union by open sets of L,
which has to be finite when this set is compact. O

Then, we can think the minimal star as a map

—~ min

St?m : ZL@LD] — Z[:@El ]

defined by
St A) = ) e

ceBry
s(e)=A

Corollary 4.2.11. If £L C P(V) is compact, the sets Br(e) are compact.
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Proof. Since they are closed sets in a compact set, they are compact. O]
We may restrict the maps ry and 7" to
5 L — PAUE)
and
i St s (k)

respectively. Then, for e = (A, ') € @;mn we have

Bee) = Ble) N L =1y (7™ (e)) N L =1{ (" (e)).
Corollary 4.2.12. Given L C P(V) closed, for any A € By,

IR (StE(A)) = Im(rf) = ra(£),

Corollary 4.2.13. For any vertex A € B(G),, if L C P(V) is compact, its
reduction 5 (L) = 15(N) is finite.

min

Proof. Indeed the map r" is injective and St7"(A) is finite, therefore,

rp (L) = rP (St (A)) is finite. O
Proposition 4.2.14. If £ C P(V) is compact, the complex B is locally
finite.

Proof. All we have to show is that every vertex A is contained in a finite
number of cells. Since each cell is contained in a chamber, and the number of
faces of chambers is finite, it is enough to show that every vertex is contained
in a finite number of chambers.

Note that a cell of Z, is contained in some apartment of the complex,
therefore in some chamber of #(G) in %, which, in turn, has dimension d.

Next, on one hand, we have just remarked that the number of minimal
edges with source a given vertex is finite. On the other hand, every minimal
edge is contained in a chamber of %,. Therefore, it is equivalent to prove
that the number of chambers containing a minimal edge is finite.

Fix a vertex A and a minimal edge e € St7""(A). Assume that there are
an infinite number of chambers which contain e, and note that each of them
also includes a minimal edge with source t(e). Since St7*"(t(e)) is finite,
there is a minimal edge e; € St (¢(e)) such that the number of chambers
containing e and e; is infinite, and all of them comprise t(e;). After applying
the same reasoning we get e; € St7"(t(ez)) such that there are infinite
chambers including e,e; and e;. Recursively we get d + 1 minimal edges
contained in infinite chambers, but they determine a unique chamber, so we
have arrived to a contradiction.

Thus, the number of chambers to which A belongs is finite. m
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Proposition 4.2.15. Let L = P be a set of d+1 points linearly independents
pi = [vi], so B, = Ap, and write v = {vo,...,v4}. Then, given minimal
edges e, €' of A,, we have Bp(e) = Bp(€') if and only if e ||, €.

Proof. <—|
This is what we have shown in the remark [4.2.4]
=]
We can write e = ([mY], [mWY)), e’ = ([m/Q], [m'M]) with

m @], Y], [ @), [ Y] € ZHYZ - (1, 1).

Since e, ¢’ are minimal, we have

with the 0 in the position ., and
[m’(l)] — [L(O)] =1(1,...,1,0,1,...,1)]

with the 0 in the position i.,. Again, by the remark and by the propo-
sition [4.2.3| Bp(e) = Bp(€') implies i, = i, that is,

m®) ~ ] = )] ~ ).
Now, define [n] := [m/©] — [m®]. Then we get
) = ) + ()] ~ ) = ] + (] ~ ) = (] + [

So we have [m'©] = [n]+[m?] and [m/V] = [n]+[mY)], therefore €/ = [n]+e,
as we claimed. O

Corollary 4.2.16. Let L C P(V) be a closed set. For any two edges e, €’ in

B such that they are parallel in any apartment containing both, and these
coincide, Br(e) = B (€').

Proof. A point p € B(e) gives an apartment A = Ap such that p € P and
e e 1&{’””, as we have shown in the corollary 4.2.6| By hypothesis, this apart-
ment contains ¢/, and since they are parallel, again by the proposition .2.15]
{p} = Bp(e) = Bp(e') C Be(€'), as we wanted to show. O

Let us do a small excursus based on the proposition |4.2.3] Let £ C P(V)
be any closed subset, let A be any vertex in 4, and let A = A, be an

apartment in %, containing A, where v = {vg,...,v4} is a basis of V' such
that
d
A= P (’)sz]
i=0




In fact, we can work with £ = P(V) and £, = ZA(G) and later restrict
the discussion to the corresponding subcomplex. We consider the edges in
St™™(A) N A (actually, since A is any apartment containing A, we are taking
into account all the edges in St™"(A)). Let

d d
€ = (@ OK"UZ' 2 @OKTFK’UJ‘ D OKUi 2 @OKWK%> s

i=0 j#i i=0

s, if p; := [v;] and P = {py, ..., pa}, we proved through the proposition [4.2.3
Bp(e;) = {p;} Let us compute B(e;). It is the set of points [v] such that

d d
@ OKTFKU]‘ D OKUi == @ OKTI'KUZ‘ + <@ OKUi N <U>> .
i=0 =0

JFi
Then, writing v = Z?:o Aiv;, one gets
B(e:) = {[v] | ve(Xi) < vk(Xj) V j # i}
Finally, observe that if [v] € B(e;), the set of vectors (v \ {v;})U{v} is a basis
for V, and if v is a representant of V' in @;l:o Okv; \ @;l:o Ogmkvj, then
@?:0 Ogvj = @j# Orvj; @ Ogv. As a consequence, A is in the apartment
obtained from changing p; € B(e;) by any other p € B(e;).

Proposition 4.2.17. Given L C P(V) closed, for all vertex A in B, and all
apartment A = Ap < B, containing A\, given any points py € B (e;) where

e are the edges in St (A), the vertex A belongs to the apartment Az, 5.1-

.....

Proof. The previous discussion applied reiteratively to all the edges in Stgm (A).

O
The minimal differential map
Proposition 4.2.18. Let L C P(V) be a closed set. Consider a chamber
A:(L();ng"'ngQﬂ'KL())Ee@d
and a collection of vectors verifying v; € L; \ Liy1, where Lqgyy = mg L.

Then, this set of vectors is a basis adapted to the chamber after reversing the
order of the vectors. Thus, if [v;] € L for all i, we got A < Ap < PB, where
P ={[vo], ..., [va]}-
Let us denote ey := (Lo 2 Lqg 2 mrLo) and e; := (L; 2 mxLi—1 2 mxLy)
fori>1. Then
Be(e;) ={[u] € Ll we L\ Lis1}.
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so we get
d
L= |Be(ey).
i=0

Proof. Consider the minimal edge Lg 2 Lq 2 mxLo. We have vy € Ly \ mx Lo
and such as we have seen in the lemma we get

Ld = 7TKLO + OKUC[.

For i < d, consider the minimal edge 7r;(1LZ-+1 2 L; 2 L. Identically
as above we get L; = L; 1 + Ogv;, so inductively we obtain

d
Li = Z OKUj + 7TKLQ

j=i
and

d d

Lo = Z Oxv; +rly = Z Ogv; + W?LO Vm € Zzl

i=0 i=0
Next we have to see 2Ly C Z?:o Oxkuv; for some m € Z>;. Take an Og-
basis {uo, ..., uq} for Lo and let us write u; = > Mv; with A} € K, and
m = max{— min; ;{vg(A\)},1}. Then we get 7Ly C Z?:o Oxw;, therefore
Ly = Z?:o Ogv; and so Ly = @?:o Oxv;. As a consequence, we obtain

i—1 d
Li = @ OKT('KUj ©® @ OKUj
j=0 J=i

The second assert follows again from the lemma [4.2.2] combined with the
definition of B.(e) from B(e) for any edge e. O

Remark 4.2.19. In the previous proposition we have used all the minimal
edges contained in a chamber. Further, we see that for each vertex there is
one minimal edge in the chamber having that vertex as source, another having
it as target and there are no more minimal edges in that cell passing through
that vertez.

With the notation of the previous proposition, we define the map

—~ min

8"”5" : Z[%ﬁd] — Z[%ﬁl ]

(and also
—~ min

G L Bra) — LBe, )
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by 9™ (A) = Zj:o e;. By abuse of notation, in some ocasion we also shall

write ™" (A) = {eq, ..., €4}
Then, we rewrite the last result as

L= || Bcle).

Corollary 4.2.20. Two minimal edges e, e’ are straight with t(e) = s(e’) if
and only if t(e) = s(€¢') and B(e') C B(e).

Proof. Since t(e) = s(e¢’) we can denote
€ = (LO 2 Ll 2 TrKLO) €I = (Ll ; L2 2 7TKL1).

If there exists a chamber containing both, then B(e) N B(e') = 0, so we
conclude the “if”. For the opposite implication, take a point [u] € B(e') with
u € Lo\ mg Ly C Ly. We want to see u & g L. Assume this is not the case.
Then we have

T Ly gLQZﬂ'KLl—FOKUC?TKLOng

and we get a contradiction with the fact that there is no chamber containing
both edges. O

Proposition 4.2.21. Let ey, eq,...,eq be minimal edges such that
s(e;) = t(ejp1) foralli=0,...,d—1 and s(eq) = t(eo).
Then, there exists a chamber A such that ™" (A) = Z?:o €.

Proof. Let us denote the vertices of the edges verifying the following rule:
A; = s(e;). Then eg = (Mg, Ag) and for all i > 1, e; = (A;, Aj—q).
Let us write A; = [L;]. We can take the lattices satifying

Lo 2 Lg 2 kLo,
Ly 2D mgly 2 mrly,

Ld 2 7TKLd,1 2 7TKLd.
Then we have
Lo2 Ly DLy D2 Ly 2 Ly 2D wgLly,

which gives a chamber A as we claimed. O
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The behaviour of the open sets by galleries of chambers

Lemma 4.2.22. Let A and A’ be two chambers intersecting in a panel or
mazimal face of both A = AN A'. Let €4 be the minimal edge of A whose
target vertex is the opposite to A, that is the vertex of A not contained in A.
Let ex, be the minimal edge of A’ whose source vertex is the opposite to A in

A, Then B(e%) C B(ek)).
Proof. We may denote
A= (Lo2 L1222 Lq27KLo)
and
A= ([) 21522152 nxLh)
with L; = L} for each i # d and Lq # L/}, so
A=(Lo2 L1 22 Ls1 2 7 Lo)
and
ed = (Lo 2 Ly D mxly) and ex, = (L), D mx La_1 D wx L))

Let [u] € B(e}) with u € Ly \ mxLo, as we know we can assume. Then
T € T Lg C mgLg—1. Suppose mgu € gLl so that u € L)\ mx Lo and
[u] € B((Lo 2 La 2 mxLo)) NB((Ly 2 L, 2 mxLy)) = 0 as we have shown
above, so that we would get a contradiction. Therefore, Txu € mx Ly—1\mx L}

and thus, [u] € B(ex,). O

Al A2

€A1 €A2

Al €A2 AZ
Ap vy ALy AV Azr Y
€A, A / €A / X2

Ay Af )

Enl €

Figure 4.2: Distinct configurations examples of the lemma.

Remark 4.2.23. Note that P(V) = |_| B(e) =

= B(e}) UB(ed) U | ] B(e) = B(e})UB(ed) U || Bl

— ———min
ec#(G), ec%(G),
e<A e<A
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and so B(e4) U B(ex) = B(ed) U B(ed).

Remark 4.2.24. The edges €4, e, are parallel in any apartment containing
A and A'. Indeed, let us take any apartment A containing both chambers,
and consider the unique isomorphism A = 71 /7 - (1,...,1) such that A

goes to
([(0,...,0)],[(0,...,0,1)],...,[(0,1,...,1)])
with €4 mapping to ([(0,...,0)], [(0, 1,...,1)]). Then A applies to
(

([(0,...,0)],[(0,...,0,1)],...,[(0,0,1,...,1)]),
A to
([(0,...,0)],[(0,...,0,D],...,[(0,0,1,..., 1], [(1,0,1,...,1)])
and ex, to ([(1,0,1,...,1)],[(0,0,1,...,1)]) = [(1,0,1...,1)] +e.
The reciprocal is also true.

Proposition 4.2.25. Two minimal edges e, e’ are parallel in a common
apartment A if and only if there exist minimal edges ey := e, e, ..., e, == ¢€
and chambers A; fori=0,...,r in A such that e; < Ay, Ajy1:= A A
are panels, and e; = eﬁjﬂ and e; ;1 = eﬁ’i, ore; = 6’2 and e = ejﬁj.
Proof. <—|

This is the previous remark together with the fact that the parallelism re-
lation restricted to an apartment is an equivalent relation, and, in particular,
transitive.

=

Let e || € and fix an isomorphism A = Z41/7 . (1,...,1). We divide
the proof in different steps.

We suppose first ¢/ = [(0,...,0,1,0,...,0)]+e with the 1 in the coordinate
19. We may assume

d d
- (EB Oxv; 2 @ Oxmiv; @ Ok 2 P OK”K%’)

=0 J#i j=0
with the 0 in the position i, without loss of generality. If i # ig, let A be any
chamber as follows

d d
@OKUJ' 2 @OKU]'@OKWK%;O 2 cee 2 @OK’]TKUJ‘ D OKUi 2 @OKWKUJ'.

Jj=0 J#io J#i J=0
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. d .
Let A be the panel opposite to the vertex @jzo Okvj in A:
@ OKU]'@OKWKUZ'O 2 tee 2 @ OKT('K’Uj D OKUZ‘ 2 @ OKWKUJ‘@OKT(%{WO.
J#io J#i J#io
and let A’ be the chamber containing A given by

@OKU]' D OKWKUiO 2 ce 2 @OKWKUJ' D OKUi 2
J#io J#i

2 @ OKTI'K’Uj D OKUi ) OKﬂ-%(vio'

J#i%0
Then, we have e = e4 and ¢/ = e4'. Next, if ¢ = [(ng,...,nq)] + e with

n; = 0 and n; > 0 for all j # ¢, we get this case by induction. But we
also want to allow n; < 0. Again by induction, we reduce to the case
¢ =10,...,0,-1,0,...,0)] + e with —1 in the position iqg # i. Observe
that this is the same that ¢/ = [(1,...,1,0,1,...,1)] + e with the 0 in the
same marked position. We have e’ given by

@ OKWKUJ‘ D OKUio 2 @ OK’]T%(U]' D OKWKUi D OKWKUZ'O 2
J#%0 J#10,1

2 @ OKﬂ'%(Uj D OKT('K?JZ‘O.
J#io
Now let A be any chamber given by

@ Ogvj; 2 -+ 2 @ Ormrv; ® Ogvi, © Okgv; 2 @ Oxmrv; @ Ok,
J J#i%0 J#i
let A be the face obtained removing @#i Ogmrv; ® Okv;, and let A’ be
the chamber which we get joining the vertex @#io Or7mrv; © Ogv;, to A.
Thus, we have e = ¢4 and €’ = e4,.
O

Proposition 4.2.26. Let L C P(V) be a closed set. We recall the situation
of lemma [4.2.24 Let A and A’ be two chambers in P, intersecting in a
panel or mazimal face of both A = ANA'. Let €4 be the minimal edge of A
whose target vertex is the opposite to A, that is the vertex of A not contained
in A. Let ex, be the minimal edge of A’ whose source vertex is the opposite
to A in A'. In this situation, cov(A) = 2 if and only if Be(e3) = Be(eh)
and more generally,
Be(ed) = | | Be(ed).

A<A
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Proof. One inclusion is given by lemma [4.2.22] For the other, recall the same
notation as there:

A=(Lo2L12 2 La2mxly),
A= (Lo 2Ly 22 Ly 2 mrLy),
A=(Lo2 L1 22 Lg1 2 7mrly),
eﬁ = (LO 2 Ld 2 ’/TKLO) and 8‘2/ = (in 2 7TI(I/dfl 2 ,/TKLZl)
with L; = L] for each i # d and L, # L/,.
Recall also the notation of the proposition [4.2.18}
eo = (Lo 2 La 2 mx Lo), ei = (L 2 mgLi—1 2 TrLy),
and
= (Lo 2 Ly 2 mrly),  e;= (L 2 mxLi_y 2 mr L),
and observe that e; = ¢} for all i # 0, d.
Assume covg(A) = 2.
Take now [u] € Bg(e4,), so we may assume u € Lg_1\L/;. Then u & 7 Ly.
Suppose u & Ly and consider the lattice

Lu = 7TKL() + OKU g Ld—l'
Then we have a chamber
A"=(Lo2 L1 22 Lg12 Ly 27gLy).

Denote ej = (Lo 2 Ly, 2 mxlo) and €] = (L, 2 mxLqs1 2 7xLy). By the
proposition (4.2.18 we have
L =Be(ep) UBe(ey) U | | Be(e)) = Be(eg) UBe(eg)u | | Bele
1#£0,d 1#£0,d
so that
Be(ep) U Be(ey) = Be(eg) U Be(eg)-
Since Be(ep) C BE(eA,) = Bc(€)), by the lemma [4.2.22] the intersection

Be(e)) N Be(el)) C Be(ely) is non empty, therefore, applying again the propo-
sition 4.2.18, A" < %,.

Moreover, the assumption, L, # Ly implies A” # A. Since u ¢ L/,
L, # L)), so A" # A'. But A is contained in A; A" and A", so cov.(A) > 3,
which contradicts the hypothesis. Therefore, u € L4 \ mx Lo, and thus
[u] € Be(ed).

If covp(A) > 3, there exists such a chamber

A”:(LODLl DLd 1DLdD7TKLQ)
as above in %4,. The minimal edge ¢’ = ﬁ (Lo 2 L 2 mxLy) verifies

e
0 # Br(e") C Belea,) and Be(e”) N Be(e4) = 0, and thus, we conclude. [
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Ends on #(G)

Definition 4.2.27. We shall call a ray in (G) an oriented infinite sequence
of straight minimal edges contained in some apartment. That is

r = (eg, €1, €, ... ) such that t(e;) = s(e; + 1) and B(e;1) C B(e;).
For eachn € N, the n-truncation of v is the ray 7,,(r) 1= (€n, €nt1, €nt2, - - - Joo-

Remark 4.2.28. For any n consider an apartment Ap containing eq and e,,.
Then, e; is in Ap for all i = 0,...,n. It is enough to see this for i =1. As
we have shown in the proposition[4.2.3, the open sets B(e,) C B(e1) contain
exactly one point p of P. The same result tells us that the unique edge in
St™"(t(ey)) containing p is in Ap, since t(eg) is in the apartment. But that
edge is eq.

Take a ray r in an apartment A,. We observe that e; ||y e; for any
1, ], since parallelism with respect to v is an equivalence relation, e;, e; ;1 are
straight, and then they are parallel.

Definition 4.2.29. We shall say that two rays r,r" in an apartment A, are
parallel with respect to v and we shall denote this by v ||, ', if e; ||» €} for
any i,7. This has sense by the previous consideration.

We shall say that two rays are equivalent if they have truncations which
are contained in a common apartment and parallel with respect to it.

Remark 4.2.30. Let r = (ep, e1,€9,... )00 be a ray. Taking e = ey in the
remark and applying it to all the edges e; in a ray simultaneously (since
the ray is contained in an apartment by hypothesis), we get

s(e;) =

OKUiO ) @ OKW%UJ‘] .
J#io
and
m (OKU’iO D @ O}ﬁ'&'%’l)j) = OKUiO-
i€N j#io
Let us project this point to P(V'), so we deal with [v;,]. We formalize this with

the next proposition. Note that given a parallel ray in the same apartment,
we obtain the same projective point.

Proposition 4.2.31. Given a ray r = (eg, €1, €2, ... ), We can assume that

s(e;) =

OKUiO D @ OKW%UJ‘] .
J#io
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and therefore
ﬂ (OKUiO D @ OKﬂé(Uj> = OKUig-
ieN J#i0
Then
() Ble:) = [vi,)-

€N

Proof. That the point is included in the intersection is clear. Recall that
each e; is given by

OK'Uio D @ OKW%»UJ' 2 OKUiO D @OKW;HUJ' 2 OKWK’UZ'O D @ OKW?JU]'.
J#i0 J#i0 J#i0

For any point z € ("),cy B(e;) and for each 7 € N it has to have a representant

v E (OKUZ'O D @ OKT('?LU]‘> \ (OK’H'KUZ‘O D @O[(ﬂ'?%]j) .

J#i0 J#i0

Note that this implies that the coefficient of v;, in v will have valuation 0.
Since z € B(ep), it has a representant with the form v = v;, + Z#io Ajvj,
with v (A;) > 1 for all j # iy. Because of the previous comment, this is
the representant satisfying the previous inclusion for each ¢ € N. Therefore,
z € B(e;) implies vk (A;) > ¢ + 1 for all j # ip and for all i € N, but then,
the unique possibility is A\; = 0 for all j # ig, so z = [v;,]. O

Definition 4.2.32. We shall call an end on B(G) a ray up to equivalence.
We shall denote the set of ends by € = E(B(G)). We take into consideration

the set of ends classes of rays starting from a minimal edge e
Ele) ={nl Fr=1(e,... ) [r =n} ={lle,... )]} C &
By the remark [£.2.30, we have an exhaustive map
£:8(A(G)) — P(V).
defined by £([(eo, €1, - )oo]) = Nien Blei)-

For any point p € P(V) and any vertex A € %(G),, by the proposi-

tion thereis A € Ap with p € P. The remarks[4.2.30|together with[4.1.5]
give us a unique ray r in Ap with eg € St™"(A) such that £([r]) = p.

Proposition 4.2.33. For each minimal edge e £(E(e)) = B(e).

147



Proof. The proposition implies £(€(e)) C B(e). On the other hand,
by the corollary given p € B(e) there exists an apartment Ap such
that e < Ap and p € P. Then the unique sequence of straight edges in Ap
starting by e is a ray whose associated end is mapped to p by . O

Remark 4.2.34. Actually we expect the map € is a bijection, which seems to
be provable using the methods introduced in [AB0OS, Ch. 11]. Indeed, the idea
15 that if two ends go to the same projective point, two rays representing them
should have truncations in a common apartment. (cf. [ABOS, Lem. 11.77]).

4.3 Properties for dimension d = 2

Even what we are going to do seems adaptable to any dimension, we
need to restrict us to consider the 2-dimensional case as an assumption to
avoid difficulties provided by the fact that, generally, our objects %, are not
buildings. Thus, henceforth V' = K3 and %(G) is the 2-dimensional Bruhat-
Tits building, unless otherwise stated. Beyond that, we go on with the study
of the structure of Z(G) and the subcomplexes H, that we started in the
previous sections. Later on, we will introduce a notion of convexity with
a suitable behaviour of galleries in “convex complexes” with respect to the
associated open sets, and finally we will give a smaller basis for the topology
of a closed set £ C P(V) in terms of the rays from a given vertex.

Through this section £ C P(V) will be a closed set, unless otherwise
specified, even if we are thinking mainly in the cases £ = P(V') or £ compact.

4.3.1 On the rays in 4, and a number of consequences

Proposition 4.3.1. Given two minimal edges e, e’ € @;mn such that their
associated open sets verify Be(e) = Br(€'), there exists an apartment A < A,
containing both and they are parallel in it.

Proof. Consider chambers A, A" in %, containing e and €’ respectively and
write ™" (A) = e+ e1 + g, ™ (A') = € + €] + €. We have B (e;), Bz (el)
are non empty for any ¢ and

L = Be(e)UBe(er) U Be(ea) = Be(e') U Be(e}) U Be(ey)

Therefore, Bz (er) U Br(ea) = Be(e)) U Be(ée)).

Let po be a point in B.(e) = B.(¢').

If Be(ey) € Be(e)), then Be(ey) € Be(ez) # 0. Then, choose py € Be(eq)
and py € Be(ey) and let P be {po, p1, p2}. If Be(ei) C Be(e)) or Be(e;) C Be(ey)
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for some 1, j, after a change of notation we are in the same case. Otherwise,
Be(e;) N Be(€;) # 0 for any i, j, then choose p; € Br(e;) N Be(e;) for each
i =1,2 and let P be {pg, p1,p2}
In both cases, by the proposition [£.2.18] both chambers A, A’, and so the
edges e, €/, are in the apartment Ap < %,, as we claimed.
The parallelism has been already proved, after we know Bp(e) = Bp(e').
]

Let £ C P(V) be a closed set and let P, P’ C L be sets of d + 1 linearly
independent points such that P NP’ # (.

Let us write now £’ := P UP'. Take p € PN P’ and consider rays
r = (€g,€1,... )00 and ' = (ep,€],... )0 in Ap and Aps respectively, such
that £([r]) = &([r']) = p, that is, Ne,Brr(e;) = N Ber(e;) = {p}. Now, as L’
is finite, there are iy and i(, such that Bz (e;) = Be/(el,) = {p} for all i > iy,
i >,

Next, we have seen in the proposition that for such 4,4, e;, e}, are
contained in a common apartment Apo of %A, .

Proposition 4.3.2. The complex of chambers B, is path-connected.

Proof. Let Ap, Ap be two apartments in %, and let L .= PUP C L.
Consider a sequence of apartments Ap,,...,Ap. where Py = P, P, = P,
,Pi C L' for all i and PZ N PZ'+]_ 7é (Z)

Then, our claim reduces to the fact that Ap can be connected with Ap/
when P NP # (. Indeed, in the previous discussion we have seen that
both apartments have non empty intersection with a third apartment Apo,
through which we can connect them. O

Corollary 4.3.3. The compler P, is a chamber complex in the sense of
[ABOS], that is, the mazimal cells are chambers of B(G) and any two of
them are gallery connected.

Proof. As in the previous proof we can consider two apartments Ap, Ap/
such that P NP’ # () and write £ := P UP’ C L. In the discussion above
the precedent proposition we have seen there are minimal edges e < Ap,
¢/ < Ap: such that B (e) = Bei(€'), therefore an apartment Apo containing
both. But, in the course of the proof of the proposition [4.3.1] we have seen
that this intersection in Apo. contains chambers containing both edges. Thus
we can connect build a gallery of chambers from Ap to Ap, through Ap.. [

Proposition 4.3.4. The map € : E(B(G)) — P(V) is a bijection.
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Proof. Indeed, take two ends [r], [r’] such that £([r]) = &([r']) = p. They are
represented by rays r, 7’ in apartments Ap, Ap/ respectively, with p € PNP’.
In addition, by the previous discussion, we can assume (after taking suitable
truncations) r and r’ are in some common apartment, in which they are
parallel, therefore they are equivalent and [r] = [r]. O

Proposition 4.3.5. Given different minimal edges e, e’ € ,@;mn, there exists
a chamber containing both in B, if and only if it exists in B(G).

Proof. We just have to prove that if there exists a chamber containing both
in #(G), there exists a chamber containing both in %, since the opposite
is trivial. Thus, we assume that e, ¢’ are contained in a common chamber.
Recall that the 2-dimensional chambers have three vertices and three
edges. Therefore, e and €’ have a common vertex, which we assume without
loss of generality to be s(e¢’) = t(e). Further, since there are three vertices in
e together with ¢/, there is a unique chamber in #(G) containing them. Let
us denote it by A and its other edge by é. We want to see that this chamber
is in A,. Since e and €’ are in this complex, Bz (e) and B.(e’) are non empty,
therefore, by the proposition[4.2.18| (applied on %(G)) it is enough to see that
B.(é) # (). Indeed, we will be able to choose points p € B(e), p’ € B(€)
and p € B.(é), obtaining by the lemma A< Ay sy < B as we claimed.
Let A be a chamber in #, containing e and assume it is not A. Let us
denote the edge of A with source t(e) by €. Since it is in A, Bz (eg) is non
empty, and by the lemma applied to the chambers A, A with common
panel e we have () # B.(eg) C B(é), obtaining a point in £ N B(é), as we
expected.
O

Remark 4.3.6. The previous result is valid for any dimension when 9B, is
a building, since then, given two edges there exists an apartment containing
both, and then, the existence of a chamber in it is characterized, as in B(G),
by the tropical distances among the vertices.

Corollary 4.3.7. Two minimal edges e, e’ € 5/32?2” are straight if and only if
eithert(e) = s(e’) ort(e’) = s(e), and there are no chamber in B, containing
them.

Proof. This is just the definition of straight edges restricted to %, after
taking into consideration the previous proposition. O

—~ min

Proposition 4.3.8. Two minimal edges e,e € By, are straight with
t(e) = s(e) if and only if t(e) = s(e’) and Be(e') C Be(e).
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Proof. The “if” is clear as in corollary [4.2.20] For the other implication we
use the same result and the fact that there is no chamber containing them

in A(G), therefore
Be(e') =B(e)NL CBle)yN L =Bg(e)
[l

Definition 4.3.9. We shall call a ray in B, an oriented infinite sequence
of straight minimal edges contained in some apartment of B.. That is

r = (eg, €1, €9, ... )o Such that t(e;) = s(e; + 1) and Br(e;r1) C Be(e;).

Proposition 4.3.10. A ray in B, is the same that a ray in B(G) contained
m %ﬁ.

Proof. Clearly, a ray in %, is nothing other than a ray in #(G) contained
in some apartment of %,. Thus, it is enough to prove that a ray in #(G)
contained in 4, is contained in some apartment of %,.

Indeed, let r = (eg,e1,...)s be such a ray. Since r is contained in %,
its edges verify Bz (e;) # 0. On the other hand we now that (), B(e;) = {p.}.
Then, as L is closed, p, € £ and there is an apartment Ap < %A, with p, € P
and ey < Ap. Therefore 7 is contained in that apartment. n

Recall the notions of truncation of a ray and of parallelism of rays in an
apartment.

Definition 4.3.11. We will say that two rays in B, are L-equivalent if they
have truncations which are contained in a common apartment of B, and they
are parallel with respect to it. We shall call an end on Br a ray in By up
to L-equivalence. We shall denote the set of ends on B, by Ex = E(AB,).
We take into consideration the set of ends classes of rays starting from a
minimal edge e

Ecle) ={nl 3r=1(e;.. )oo CApr,[r] =n} = {l(e, .. )}

Proposition 4.3.12. Two rays in B, are L-equivalent if and only if they
are equivalent in B(QG).

Proof. That L-equivalence implies equivalence in Z(G) is clear. In the other
direction, take two rays r,r’ in 9B, which are equivalent in A(G). By the
discussion shortly after the beginning of this section, there is an apartment
A in A, containing truncations of both rays. Since truncations of them are
parallel in some apartment of %(G) by hypothesis, they are parallel in A, so
that they are L-equivalent. n
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Thus, we get that the equivalence relation in %, is compatible with that
in B(G), and then we get &, = E( L and Ex(e) = E(e) () L for all e.

Corollary 4.3.13. There is a bijection € : E, — L.

Proof. 1t is a consequence of the same result for £ = P(V') and of the com-
patibility previously commented. O

Definition 4.3.14. Let us call the set of minimal edges in B straight with
an edge e at t(e) the flow of e and denote it by Flow,(e) (or also Flow(e)
when £ = P(V')). Reciprocally, the edges straight at s(e) will be called the
preflow of e and denoted PFlow,(e) (resp. PFlow(e)).

We also will call the cling of e at t(e) the set of minimal edges with source
at t(e) and contained in a common chamber with e, that is

Cling?™(e) := St7™(t(e)) \ Flow(e)

and the cling of e at s(e) wil be the set of minimal edges with target at s(e)
and contained in a common chamber with e, that is

Cling,""(e) := St;"™"(s(e)) \ PFlow(e)
where St (A) is the set of minimal edges with target A.

As above for the St7 when these sets are finite we may identify them
with the sum of their edges by a small abuse of notation.

Remark 4.3.15. Note that an edge €' belongs to the preflow of e if and only
if t(¢') = s(e) and they are not contained in a common chamber, if and only
if e is in the flow of €. Thus, in some way they are inverse concepts.

Corollary 4.3.16. For any e in B (resp. in B(G)) we have

Be(e)= || Bele).

e’€Flow, (e)

Proof. Since Flow(e) C St™"(t(e)), we get the disjointness of the union.
Now, consider a point p € Bz(e). Then, we have an apartment Ap < A,
containing e with p € P, and we know that there is a unique straight edge
with e at t(e) in Ap, that is a unique edge €’ in Ap, [ Flow,(e). But then,
{p} = Bp(e) C Be(e). O
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4.3.2 Open sets relations on an apartment and chamber-
convexity

Let us consider for any apartment A the isomorphism with Z3/Z-(1,1,1).
Let ([(mg, m1, m2)], [(mf, m}, m})]) be an edge, so

max { (m; —m;) — (mj; —m;} = 1.

Then, we can express [(my, m}, mb)] — [(mg, m1, ms)] as the class of a vector
with 0’s and 1’s. If it has exactly one zero, then it is minimal; if it has two
zeros, the opposite edge has exactly one zero; therefore, each edge of A is
either minimal or the opposite of a minimal edge.

We simplify even more, considering the isomorphism

737 - (1,1,1) 72

~

(Mo, M1, my) ———— (M1 — Mg, My — My).
Definition 4.3.17. Let us call a minimal edge (|m], [m']) horizontal if

vertical if
[ﬂ/] - [m] = [(17 170)] = [(0707 _1)]

and diagonal if
(] — [m] = [(0,1,1)].

0,—1,2 0,0,2 0,1,2 0,2,2
Y O Y O Y O Y
O O O
0,—1,1 0,0,1 0,1,1 0,2,1
Y O Y O Y O Y
O O O
0,—1,0 0,0,0 0,1,0 0,2,0
Y O Y O Y O Y
O O
0,-1,—1 | 0,0,—1 0,1,—1 0,2,—1

Figure 4.3: Horizontal, vertical and diagonal minimal edges.
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Now we will use two coordinates. The Z? (= Z3/Z - (1,1,1))-action on a
vertex A = (mq,my) is given by (nq,n2) + A = (0,n1 + mq, ny + ms), while
the action on an horizontal edge e = ((m1 + 1,m2), (my,myg)) is given by

(n1,m2) + €= ((0,n1 +my + 1,n9 + my), (0,11 + my, ny + my)).

Observe that applying the lemma[4.2.22] given e horizontal edge, we have

B((1,1) +e¢)
C N
B(e) B((1,0) +¢),
N C
B((0,—1) +e¢)

and so B(e) C B((l + ni,l —ng) + €) for any [,ny,ny € N. If e is vertical we
have

B((0,1) +¢) > B((1.1) +e)
C C
B((~1,0)+¢) > Ble),

and so B(e) C B((I —ny,l+ny) + e) for any I, ny,ns € N. And finally, if e is
diagonal we get

B((—1,0) +¢) D B(e)
N N
B((-1,-1)+e) D B((0,-1)+e),

and so B(e) C B((—n1, —ng) + e) for any ny,ny € N.
Proposition 4.3.18. Let e be a horizontal edge. Then
B(e) = B((0,—1) +¢) [ B((1,1) +¢)

and

B((1,0) +¢) = B((0,—1) + )| JB((1,1) +¢).

Proof. After a change of basis (let us denote it by vy, v1,v2), we may assume

e = ((0,0),(~1,0)) = ([(0,0,0)], [(1,0,1)]), and so it is given by
€ = (OKUO S¥) OKU;[ ©® OKUQ 2 OKWKUO ©® 0[{01 s> OKWKUQ)

and
Ble)={z=1[20:21:2) € P(V)| vk(21) < vk(20), vx(22)} .
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In the same way,

(0,-1) 4+ e = (Okvo ® Oxvy ® Omg'vs 2 Oxmrvg ® Orvr & Ovs)
B((0,—1)4e) ={z=[z0: 21 : 22] € P(V)| vk (21) < vk (22), vk (21) < vk (20)} -
(1,1) + e = (Oxmg'vo ® Oxvr ® Oz 2 Okvg ® Ogvr & Ogmgvs)
B((1,1)+e) ={z=[z0:21: 22) € P(V)| vk(z1) < vk(20), vr(21) < vk (22)},
(1,0) + e = (Oxmy'vo ® Oxvy @ Ogmg'va 2 Oy @ Ogvy & Okn) |

and

B((1,0)+e) ={z=|z0:21: 22] € P(V)| vk (21) < vk (20), vg(21) < vk (22)}.

Thus, we get the claim. O
Let us introduce some notation. We will write

e=((0,-1)+e)A((1,1)+e) and ((1,0) +¢e) = ((0,—1)+e) V((1,1) +¢)

for the previous configuration, and with the given names of the corresponding
edges. Generally, when B(e) = B(e') () B(e”) we will write e = ¢’ A e” (or V
when we have union, respectively). We also will write

e<(l,1)+eande < (0,—1)+e

and in general, e < ¢ if B(e) C B(e’). For instance, (1,1) + e < (1,0) +e.
We state similar results when e is not horizontal, even when they reduce
to that one.

Proposition 4.3.19. Let e be a vertical edge. Then
Ble) = B((—1,0) + ) [ B((1,1) + )

and

B((0,1) +e) = B(=1,0) +e) | JB((1,1) +e).

Proof. 1f we consider the basis and we reorder the two last vectors vy and vy,
the edges become horizontal and we apply the previous proposition. O

Proposition 4.3.20. Let e be a diagonal edge. Then
B(e) = B((~1,0) + )| B((0, 1) +e)

and

B((—1,—1) +¢) = B((—1,0) + )| JB((0,~1) +¢).
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Proof. Now reorder vy and v;. Then, the edges become horizontal again and
we apply the proposition. O

Next, we will make an ad-hoc definition of the convex hull of two horizon-
tal edges. From now on we restrict us to these edges since, as we have seen
just above, the other cases are isomorphic after a reordering of the basis.

Definition 4.3.21. Consider two horizontal edges

e=((m1+1,my),(m1,ma)) and ¢ = ((m)+1,mj),(m},ms)).

We define its chamber-convex hull in A as follows:

e if mo # mly, the chamber-convex hull of e and €' is the full simplicial
complez generated by the set of edges ¢’ = ((m7] + 1,m%), (m{, m})) ver-
ifying:

min{m, m|} < mj < max{my,m}}
min{msy, m5} < mjy < max{ms, my}

and

: !/ /! " " / /
min{mg — my, my, — mj} < my —mi < max{ms — my, my, — m}}.

o if my = mi, the first and the last sequence of inequaities as before, but
the next one instead of the middle above:

me — 1 <m’" <my+ 1.

If we assume my < m, this is the same that considering the chamber-
convex hull of e and (0,1)+ €’ together with the chamber-convex hull of
e and (—1,—1) + € together with the chamber-convex hull of (0,1) + €'
and (—1,-1) +¢€'.

Remark 4.3.22. We expect this is the conver hull in the sense of [ABOS,
3.139 (c)], in the first case, but we will not make use of this fact, so we will
not prove that here. In the other case, we take a different definition since we
need the convexr hull including chambers. This is the reason why we call it
the chamber-convex hull.

Definition 4.3.23. The chamber-convex hull of two edges in B(G) is the
union of all the chamber-convex hulls of e, e’ in A for all the apartments A
containing both edges. The chamber-convex hull of two edges in B, is the
intersection of B, with the chamber-convex hull in B(Q).
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Proposition 4.3.24. If e, €', e” are parallel edges in A, and €” is in the
chamber-convex-hull of e and €' then

B(e)()B(¢) € B(e") € Ble) | B(e),

that is, e Ne! < e’ < eV e'. Moreover, there are edges ¢’ =eVe', e =eNe
inside of it.

Proof. First of all, we will assume e = ((1,0), (0,0)) without loss of generality
through all the proof.

Recall next that if ¢’ = (I +nq,l —ny) + e with [, ny,ny € N, then e < ¢/,
and we claim that any edge €¢” in the convex hull verifies e < €¢” < €’ since
it verifies a similar expression. Indeed, in this case e’ can be expressed as
(I4+n,l) +eoras (n;,—ny) +e.

If e/ = (I4+n,l)+eand e’ = (nf,ny)+e, then 0 <nf <l+n,0<nj <]
and —n < nj—nf{ < 0. Therefore, n§ < nf, and so "’ = (nf+(nf—nj),ny)+e
with nf, n] —ni € N, that is, e < ¢”. Further

e =(l+n,l)+e=(I+n—nf,l—ny)+e" = ((I—ny)+n+ny—nf,l—nj)+e"

with —nj,n+nj —nf € N, so e’ < ¢

If e’ = (ny, —ng)+eand e’ = (nf,ny)+e, then 0 < nf <ny, —ngy <nf <0
and —ny — ny < nj —n] < 0. Thus we have ¢’ = (nf,—(—n})) + e with
nf,—n5 € N, and so e < €”. In addition,

¢ = (ny, —ng) +e=(ng —nj, —ny —ny) + ¢’

with ny —nf,ny+nfj € N, so ¢’ < ¢ concluding the proof of our assertion at
the beginning. It can be observed that we have not taken into consideration
the case in which [ or ny are 0, for which there is a different definition of
the chamber-convex-hull, but this reduces to the other, since it is a union
of chamber-convex-hulls whose definition edges verify (0,1) 4+ ¢ < € and
(—1,-1)+¢€¢ <¢€.

Next, let ¢/ = (ny,n2) + e be such that ny > 0 and ny > ny (if ny < ny,
we are in the previous case). Let us write ei_j = (i,i+7j)+eforijeN.
Observe that ¢” = (n],n}) + e belongs to the chamber-convex-hull of e and
¢ if and only if 0 < nf <ny, 0 <nf < ny and 0 < nj —nf < ny —ny, if and
only if " = ei_j with 0 <7 < n; and 0 < j < ny — ny. Note that we have

_ 0 /o n1
€=¢€_g, € = 67(n27n1)’

i i+1 i i
el; <ely  and el <el;
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We will prove e A €/ < € '; < eV e by double induction on i and j. For
i =0and j =0 it is trivial (e = €%,). Assume that it is satisfied for j, and
7+ 1<ny—mny. We have

! 0 0 _ 0 1 _
eVe >e>e_j>e_(j+1)—e_jAe_(j+1)—

_ 0 1 2 _ 0 2 _ _ 0 /
by the previous inequalities. In particular,
0 0 0
eNe < e, n) = € tngmn—1) N ) = E(ng—m—1) N E S ENE
0 _
and so €2 (np—ny) = €N e.

Next, assume we have the result for ¢ and suppose again j = 0:
ene <e g <t =elvel =
_ i +1 i+l i i+1 /
=ehV (e, Vel =el Ve, == Ve, ) <eve.

In particular,

e\/e:eo\/e( <t <eVve,

na—mni)

therefore, ej* =e Ve
Finally, if this is verified by j, and 7 + 1 < ng — ny:

/ n _ i+2 i H—l i+2 _
ene <el iNe 1(g+1) TE e ANy T A (e Ne (]+1))
=e A e’JF(;H) ei(ﬂl) <eh<eVe,

as we wanted to prove.
Finally, if n; < 0, we change e with ¢’ to get the result. O

Remark 4.3.25. It is easy to check that the reciprocal is not true, since the
set of edges whose associated open sets verify those inclusions is generally

quite bigger. This would lead to another kind of “expanded” convex-hull.

Corollary 4.3.26. Given two parallel edges e, ' in B such that Be(e) = Be(€'),
any € in the chamber-convez-hull of e and €' verifies Bz (e") = B(e).

Proof. This is a corollary of the previous proposition. ]
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4.3.3 A basis from the edges on the rays

Let us consider a vertex Ay € #(G), and an apartment A in Z(G)
containing it, and assume it has the coordinates (0,0) by the isomorphism
A = 72, Consider also the full subcomplex A(Aq)™ generated by the vertices
at distance less or equal than n for a given n € N>;. Observe that the edge

((=(n —1),0),(—n,0)) belongs to it.
Lemma 4.3.27. For any horizontal edge e in A(Ag)™,
B(((=(n—1),0),(=n,0))) C Be).
Proof. Recall that the
p((0,0), (m1,mz)) = [[(0,m1, m2)|erop = max{[mu|, [mal, [my — mal}.

Let us write e, := ((—(n —1),0), (—n,0)) and e = ((m1 + 1,ma), (M1, m2)).
We know B(e,) C B((l 4+ n1,l — ns) + €,) for [,n1,n5 € N and also

max{|my + 1|, |mq|, |ma|, |m1 + 1 — mga|, |m1 — ms|} < n.

Now, if 0 < ms(< n), take [ := mg, ny := my; —my+n and ny := 0, and note

that ny > —n+n=0. If my <0, take ny := —mo, ny :=my+nandl:=0
and note that n; > 0. In any case we have e = (I + ny,l — ny) + e, so thus,
we finish the proof. O

Remark 4.3.28. With the notation of the previous proof, e,, is the n-th edge
in the ray r = (e1,ea,€3,...)s n A where e; := ((0,0),(—1,0)). Recipro-
cally, the n-th edge of any ray from Ay can be represented as e, choosing an
apartment containing the ray and a suitable isomorphism A = 72.

man

In addition, consider the edges in St7"(No), and given a set of minimal

edges E C ,@Tm let Flow(E) denote the set of edges in Flow,(e) where
e € E. Then, for any n € N>, the set of edges e,, in B, coincides with

Flow} " (St (Ay)) -

Let us denote this set by %gl) (Ao). The corollary together with the

manimal star decomposition imply

L= || Bele).

eeZ (Ao)
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Lemma 4.3.29. For each € € %}f“) (Ao) there are lattices Lo,j}vo,z; such
that Ao = [Lo|, € is given by Lo 2 Ly 2 mx Lo, and for any p € B(€) there
is a representant v € V wveryfying v € Ly \ Ly, Ogv + 7 'Ly = Lo,

Okv+ 7Ly = Ly and
BE) = {[pv+ 7] € P(V) | p € O3, 0" € Lo}
Proof. Let us write Ag = [Lg] and p = [v] and assume that € is given by
ivo ) Ly 2 7 Lo.

Consider for a moment an apartment A containing e and Ay in the way
explained in the previous remark, so Ay corresponds to [(0,0,0)] and € corre-
sponds to e, = ([(0, —(n—1),0)],[(0, —n,0)]) = ([(n—1,0,n—1)], [(n,0,n)]).
That, is, we are taking into account a basis vy, v1, v2 of V = K3 such that we
can define the lattices as

Ly = Okgvy ® Ogvi ® Ok,

—~

Lo = OKW?{ilvo ) OKU1 © C’)mr?{lvz

and

—~

Ll = OKT('?{UQ S5 OKU1 © OKW?{'UQ

Further p € B(€) means that
Li = mxLo+ (Lon (v) .

what, writing v = Z?:o Aiv;, s equivalent to vg (A1) +n < vk (o), Vi (A2).
Since v # 0 we assume without loss of generality vy (Ao), vg(A2) > n and
vg(A\1) = 0, in particular v € Lo \ mxLo. Therefore, Oxv + 75 'Ly = E;,
Ogv+7hLy = LNl and

B(e) = {{pv + 7] € P(V) | p € Of,v" € Lo}
[
Lemma 4.3.30. Let e = (A, \') be a minimal edge in @Tin(/\o)(”). Then

we can choose representing lattices such that [Lo] = Ao, [L] = A, [L'] = A
and

LoD L' DL D wj L.
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Proof. Take an apartment A in #(G) containing Ag and e. There are two
possibilities: either the two vertices of e are at distance n of Ay or one is at
distance n — 1.

In the first case, by the well known structure of the apartment, there is
a vertex A = [L] at distance n — 1 from Ay, which together with e form
a chamber. Indeed, take a basis for A for which e is horizontal, so it is
represented by ((m1 + 1, ma), (m1, ms)), and Ay is represented by (0,0). It is
a quick check that if the two vertices of e are at distance n of Ag, then my
has to be +n. Assume without loss of generality mo = n. Now the vertex
we claim its existence is (mq,n — 1).

Next, we can take L such that L 2 L D 7Ly and L, L' such that
LDLDL DnagL. Then

LoD LD L Dagl D agl Dt L.

In the second case, if the vertex at distance n — 1 is A, we can take
representants L, L' such that Ly 2 L D 7'('?(_1[/0, and also

L();L;L/QWKLQ’TF?(L(],

while, if the vertex at distance n — 1 is A/, we can take representants L, L’
such that Ly 2 L' 2 75 ' Lo, and also

LoD L' D7l D wl D 7 Lo.

]

in

Proposition 4.3.31. Let e be a minimal edge in @T (Ao)™. Then, there
is a subset X, of %gl) (Ag) such that

Be(e) = | | Bc(@).

eEHe

Proof. We already know that the sets in the right-hand side of the equality
are disjoint. Then, it is enough to prove that for each p € B.(e) there is

€€ %gb) (Ag) such that
p € Be(e) C Be(e).

In fact, by the remark , there is a unique € € %én)(Ao) such that

p € B.(€). Now, under these conditions, one only need to show B(€) C B(e).

Let us write Ag = [Lg] and p = [v]. By the lemma we assume € is
given by L .
Ly 2 L1 2 mk Lo,
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this sequence satisfies
Lo 2 Lo 2 Ly 2 mx Ly 2 wie Lo,
and v is chosen veryfying v € Ly \ mx Ly and
B(e) = {[mv + v € P(V) | p € Ok, v" € Lo}
Next, let e be given by

L2DL DnkL.

By the previous lemma we can take these lattices such that
Lo 2 L' D7l D 7Ly

so we do it. Recall that p € B(e), so that there exists \. € K such that
Aev € L'\ m L, and similarly, uA.v € L'\ mx L for any p € OF.
Thus, one gets v € Lo \ mx Lo and A\v € Lo \ 7% L, and so

—1 < wvg(Ae) <m.

Therefore vg (Aem}) > n, so for any v € Ly we get, Ampv’ € m Lo C mx L
and as a consequence

Ae(pv + ") = pAev + Aempv’ € L'\ m L.

for any v' € Lg. But these vectors represent all the points in B(€), so that
implies B(e) C B(e).
O]

Remark 4.3.32. Note that we are not saying that we could obtain all these
edges € in %, as the edges e, in the apartments containing e and Ny. That is,
given an apartment A containing e (horizontally) and Ao, the corresponding
e, as in the lemma is in %.. But, even it seems natural, we are not
able to ensure the reciprocal.

Corollary 4.3.33. The sets Br(e) with e in |
for the topology of L.

Further, each open compact U C L has associated a unique minimum
covering by sets Be(e) with e € %y C U, ey, %én)(A())7 that is

A (No) form a basis

TLENZl

U= |_| Bg(e).

eEXy
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In particular, any covering of U by sets Be(e) with e € |, en., %’gl)(Ao)
is a refinement of the covering given by %y, and, as a consequence, the former

induces a covering of Br(e) for each e € %y. Moreover, given two coverings
of U “by edges”

{eyeer {¢Yoer € | 27 (Mo),

TLGNZl

there is another covering “by edges” {€"}enerr finer than both.

Proof. Since the open sets B (e) with e minimal edge in %, form a basis for
the topology of L, the previous result allows us to take just the edges in the
rays from Ag, so they form the claimed basis.

nEN> %gl)(AU% the
associated open sets verify either Bz(e) N Bz(e¢/) = () or some inclussion,
maybe Be(e) C Bz(€'). In fact, the inclusion is satisfied if there is a common
ray 7 = (e1,€2,... )0 from Ay, and e = e,,¢’ = e,, with m < n, while the
intersection is empty if and only if there is no common ray from Ag containing
both edges.

For the second claim, observe that given e, ¢ € |

Take p € U. Then, by the first part of the corollary, there exists a ray r
from Ay (for example, the ray such that £(r) = p) and an edge e, in r such
that p € Be(e) C U. Now we have Br(e,) C Be(en—1). If Belen—1) € U, let
e, be in #,, otherwise apply this rule to e, _;. This proceeding is finite, since,
either there is an n such that Bz(e,) C U and Be(e,—1) € U, or Be(ey) C U;
in this situation let e; € %,.

Thus, for each e € %y there is no €' € |, oy, %’2”)(/\0) with bigger
associated open contained in U, what shows the minimality of the covering,
and so its uniqueness. Thus concludes the proof of the first claim and its
immediate consequence.

Now, given two coverings by edges {e}ccr, {€'}ecr, for each e € I, either
there is ¢/ € I’ such that Bz(e) C Bz(e’) or there are ¢’ € I’ such that the
opposite inclusion verifies. In any case, we take the edges ¢” € I” being the
ones among the edges of I U I’ inducing the smaller open sets, so that they
are inside all the open sets of the given coverings, and so they generate a
finer covering. O]
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4.4 Harmonic cochains on %4, and its isomor-
phism with harmonic measures on £ when
d=2and L C P(V) is compact

In the first paragraph of this section we introduce global and local har-
monic cochains on the minimal 1-skeletons of the subcomplexes %, of the
Bruhat-Tits building of dimension 2, some related morphisms, and we study
some properties. The next two paragraphs are devoted to the proof of the
isomorphism between the harmonic cochains and the harmonic measures on
L, which is the main theorem of this chapter. Finally we will see that the
harmonic cochains are homotopically invariant.

Through this section, we keep the hypothesis of dimension d = 2 for the
Bruhat-Tits building.

4.4.1 Harmonic cochains on %,

Let £ C P(V) be a compact set.

We introduce a definition of harmonic cochains inspired directly by the
space of cochains obtained by Schneider and Stuhler in [SS91, §4 Cor. 17].
We restrict to the cochains on edges, since they are the ones we need, but
the definition generalizes to any dimension.

Definition 4.4.1. A map c : Z[@TW] — Z is called a harmonic cochain
if it satisfies the following properties:

e co St =0.
e For any minimal edge e € @Tzn, c(e) = c(Flowg(e)), that is

Bra
o codmn = .
The set of harmonic cochains is denoted by C}, (B, Z).
Remark 4.4.2. Recall that
St (t(e)) = Flow,(e)| | Cling™ (e
Then, the two first conditions imply
c(e) = —c(Cling™(e)).

Actually, under the assumption of the star condition, the flow property is
equivalent to this one.
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Lemma 4.4.3. We recall the situation of the lemma and the propo-
sition [{.2.20 Let A and A’ be two chambers in B, intersecting in a panel
or mazimal face of both A= ANA'. Let €4 be the minimal edge of A whose
target vertex is the opposite to A, that is the vertex of A not contained in A.
Let ex, be the minimal edge of A’ whose source vertex is the opposite to A in
A, In this situation, cov(A) = 2 implies c(ed,) = c(e}) and in general

cled)= Y cled).
ANEBr 4
ANA'=A

Proof. Observe that
IVMA)=e4 +eh+ A and IM(A) =€ +ed + A
with A properly oriented, and so c(ed ) +c(ed)+c(A) = 0. Since covy(A) = 2
we have Cling""(A) = {e%,e4 }, and so
0= Y o= Y, e+ Y cle)=c(A) +e(eh) +eled).
€St (1(A)) e€Flow . (A) Cling?" (A)
We put all together:

0= c(ed) +clen) +e(A) = c(ed) +clenr) —c(e) —c(ed) = clenr) — cl(ed)

as we wanted to proof. In general,

0= Y ce)+ > cle)=clA) +cled)+ DY cled).
e€Flow, (A) Cling '™ (A) NS
ANA'=A

concluding as above. O]

Definition 4.4.4. Given a simplex A, a local harmonic cochain on Aq is a

map ¢ : Z[@TW(AO)] — Z verifying:

man

e (St (A)) = 0 when St (A) < @1 (Ag) respectively,

in

e c(e) = —c(Cling?™(e)) when e, Clingl""(e) < ,@T (Ay), and

in in

o c(0™(A)) = 0 when O™M(A) < Bry (Do) (if and only if A < Bry (Ag)).

The set of local harmonic cochains on Ay in By is denoted by CL. (Ao, Z) .
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A face relation of simplices A; < Ag induces an inclusion

—~ min —~ min

Bry (Do) CHBry (A1),

and so, a restriction map C}, (A1,Z); — Cl. (A, Z), which is a kind of
coface map.

Remark 4.4.5. Given a vertex A € By, we define its (minimal) 1-link as
LI (A) i= Zy (M) (St (a) [ ] stz ()
Then, the next equalities are straightforward:

Lk"™(A)= || Clingf™(e)

eEStTIn(A)

@?m(e) = @;mn(s(e)) ﬂ @;ﬂm t(e)) = {e} |_| Cling"™ (e) I_l Cling ™" (e).
Take a vertex A € Bry. Then C| (A, Z). is the set of maps

—~ min

c: LBy (N —2Z

such that ¢(StE™"(A)) = 0, (@ (A)) = 0 for all A € Zpy (A) and
c(e) = —c(Cling?™(e)) for all e € StF™"(A). In addition, we have a restric-
tion map

Cl

har

(B, Z) — Cio(N,Z) .

Given an edge e € %1, Cl_ (e, Z), is the set of maps

har
c: Z[@Tzn(e)] —Z
such that c(e) = —C(Chngmm( )) (with e oriented as a minimal edge), and

c(0™m(A)) =0 for all A € %’Ld (e), that is all chambers A > e. From this
description it is easy to obtain Ci, (e,Z), = [Cling?™"(e)] = Zeove(e),

And a chamber A € %, verifies @Z;m (A) = 0™ (A) = {eg, e1, 2}
Therefore C}, (A, Z), is the set of maps

¢ 7B " (A)] — 7
such that ¢(9™"(A)) = 0. But then we get C}, (A, Z); = Z*.
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Thus, the coface maps previously defined as restrictions rise to a map
al: H Clllar(A7Z)£ — H Clllar(eﬁz)ﬁ
ANeHBr e€ABr
given by 9'((ca)a)e = (Ci(e) — Cs(e))e, resulting in a complex
61
0— Co(#2,2) — ] ClaZ)e — ][] Clule.Z)e
AeBr c€Bry
since each composition vanishes. Moreover, the restriction map is clearly
injective.
Proposition 4.4.6. The complex
1
0— C}llar(‘%ﬁ7z) — H Ckllar(A7Z’)£ 8—> H Clllar(67z)ﬁ

ANeHBr e€EBrq
18 exact.

Proof. Take (cy)a € Ker(d'). Then, each ¢, agrees with the other maps
on nonempty intersections on Z,, which allows us to define a map ¢ on all

—~ min

A, . It is harmonic, since each of the conditions of harmonicity is inside

some @;mn(/\) for A € Ay. O

4.4.2 Relating harmonic cochains on %4, and harmonic
measures on L

Let £ C P(V) be a compact set. Our goal is to get an isomorphism
of abelian groups between the harmonic cochains on %, and the harmonic
measures on L. Through this paragraph we will relate them and we will
introduce the tools to get the isomorphism in the next one.

Proposition 4.4.7. There is an injective map
kML, L)y — CL..(Br, 7).

defined by r(p)(e) == p(B(e)).

Proof. The only thing we have to proof is that it is well defined, that is to
see that x(u) is a harmonic cochain. But we know that

L= || Bele)= || Bele),
S

t?ln(l\) 8mzn(A)
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so k(p) (St (A)) = p(L) = 0 = k(p) (™" (A)). Moreover, we also have

Be(e)= || Bele),

e’eFlow (e)

therefore K(1)(€) = 3 prowp(e) K1) (€):
The injectivity reduces to the fact that the sets Bz (e) are a basis for the
open compact subsets of L. ]

Given a simplex A in %, consider the kernel of the composition
ML, L)y — Chon(Br, L) — Chon(AZ) .

which is In = {u e ML, Z)o | n(Be(e) =0V e e %T’”(A)}. Then, let
us consider the quotients

ML, D)o = M (L, LYo/ Ker (M (L, )0 — Cpo(A, Z)r) -
so we get injective maps
KA AL D)o — CLL(A 7).
Thus, given a face relation A; < Ay we have coface maps
Mn (L, LYo — MAy (L, 7)o,

which give a complex

0 — M(LZ)— [] An(L,2)0 25 T[] (L.2)0

AE«%LO ee%ﬁl

where 01 ((1a)a)e = (Hr(e) — His(e))e-
Therefore, we got an injective map of complexes

0—— A (L, L)) — H //[A(‘CvZ%i)‘ H Me(L, L)o

ANeHBr e€EBry

K {"QA IAfie
1
0—Cho(B2,2) — ] CluldZ)e-2~ [] Clule,Z)e

ANeHBr e€HBrq

of which we already know the below sequence is exact. If we see that the
local maps k, are isomorphisms and the above sequence is exact, then we
will conclude that x is an isomorphism.
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From a finite set £; to a compact set £
Proposition 4.4.8. If L; C P(V') is finite, the map

koM (Ls,L)o — Cho(Br,, L)
s an isomorphism.

Proof. Since Ly is finite, it is discrete, and so each point p € Ly is open and
compact. Therefore we have an isomorphism

)

M (L, 0)g —LIL o

p—-—>_ u({p})p

peﬁf

We already know that x is injective, therefore, we only have to see that
it is surjective.

Take ¢ € Cy,.(%c,,Z). We want to construct a harmonic measure
pe € M(Ly, 7)o such that k(u.) = c. Next, we define p.(p) for p € Ly.
There is an apartment A = Ap with p € P C Ly and thus, there are
rays 1 = (€, €1,€2, - - - Joo in A such that (), B, (e;) = {p} by the proposi-
tion and the proposition Since Ly is finite, B, (e;) is finite for
all 4, therefore, there is an 4y such that for all i greater than 4o, B, (e;) = {p}.
We define p.(p) := c(e) for any minimal edge e such that B, (e) = {p}.

Now, given e, ¢’ verifying that condition, we only have to prove that c¢(e) =
c(€'). Since Bg,(e) = B, (€), by the proposition there is an apartment
A = Ap containing both edges and they are parallel. Further, the condition
implies that p € P. Next, any edge in the chamber-convex-hull has the same
associated open set by the proposition [4.3.24] and the chamber-convex-hull
is gallery connected, that is, there is a sequence of chambers (A, ..., A,)
inside it such that A; ;1 := A; (A is a panel, e < Ag, € < A,. This tell
us that the edges eg = €, e1,..., e, = ¢ obtained in the proposition are
in the convex hull. Since the B, (e;) are all equal, by the proposition ,
covz, (A;) = 2 for all i, and by the lemma W’ the value of ¢ is constant on
those edges.

Finally, we have to show that x(u.) = ¢. Note that by the flow condition,
the values of ¢ and k(p.) on an edge e are determined by their values on
edges e; on rays from e. As above, due to the finiteness of £, we can take
these edges e; such that B, (e;) consist of exactly a point and for these edges
both harmonic cochains coincide by construction. O
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Corollary 4.4.9. If L; C P(V) is finite and A € PBr,, the restriction map
Char(Be; L) — Crae(A Z)z,
1s an epimorphism.
Proof. We start describing the isomorphism
ZILslo = M (Ly, L) = Cro(Bey, L)

The corresponding divisor to a harmonic cochain ¢ is Zpe ; &P where if
e is a minimal edge such that B, (e) = {p}, then c(e) = c,. Further, the
isomorphism tells us that

peB;(€)
for any minimal edge e € %,
We are going to see that the composition of those isomorphisms with the
restriction map

Z[Ef]o — C%lar<A? Z)Cf

is surjective.

Consider a local harmonic cochain ¢ € Cy, (A, Z),. Note that its values
on the edges of St7["(A) determine its values on the edges of St;;;*""(A) by the
“flow” condition (which here is equivalent to the “cling” condition). After
this, since chambers have three minimal edges, by the vanishing condition
on their closed minimal paths, the values previously fixed also determine the
values of ¢ on the other edges of @;},T n(A) Therefore, if we have another

min

local harmonic cochain which coincides with ¢ on St Ly (A), they are equal.

For each e € St?}f”(/\), and for each p € B, (e) choose a value ¢, € Z in
such a way that

peBc;(e)
Since ZeGStT;"(A) c(e) = 0, the divisor Zpeﬁf ¢, has degree 0 and the local

harmonic cochain associated by restriction coincides with ¢ on St’g;”(/\), thus,
they are equal, as we wanted to proof. O

Corollary 4.4.10. For any compact subset L C P(V') and any vertex A € %,
the group of local harmonic cochains on A verifies

CL.. (N, Z) =2 Z[St7™(A)]o.

har
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Proof. We already knew that Cj, (A,Z), is isomorphic to a subgroup of
Z[St7*"(A)]o, and by the previous proof we can assign arbitrary values to the
different edges while their sum be zero, therefore we get the claim. O

Remark 4.4.11. Let us describe now the map

ANeHB e€Br

given by 9'((ca)a)e = (Cie) = Cs(e))e as

o' [ zistz™(M))o — ] ZIClingZ™(e)].

ANeHBr e€Bry

Consider an element (cp) s, which is a degree zero divisor cy = ZeGSt?i"(A) mee
for each A and fix an edge e € Br,. We want to compute O*((ca)a)e with
our present description. There are only two vertices which contribute to this
element, t(e) and s(e). Then, the below arrow in the square

Char (t(€), Z). Char (€, Z)2

| :

Z[StE™(t(e))]o Z[Cling™ (e)]

I

projects Ze/estrﬁnin(t(e)) mee' to Ze/eChng’gi”(e) mee’, while the below arrow in
the square

Char(s(€), Z). Char (€, Z)2

| .

Z[St7™(s(e))lo Z[Cling7™ (e)]

1%

projects Ze,€St?in(s(e)) mee’ to

§ : § : /
Men €.

e/ €Cling " () e/ eStmin (8(6))0@21'”" (t(e))\{e}

This can be seen applying the lemma[{.4.5
Finally we get

81((01\)/\)6 = Z Mer — Z men | €.

¢'€Cling7"" (e) e/ EStRIn (s(e))N Az (He')\{e}
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Corollary 4.4.12. If L; C P(V) is finite and e € B, the restriction map
Clllar('@»cf’ Z) — Clllar(ev Z)Cf
s an epimorphism.

Proof. As in the proof for the local cochains on a vertex, we are going to see
that the map

[ﬁf]o — Char( ) Ly

is surjective.

Consider a local harmonic cochain ¢ € C},.(e,Z),. As we have observed

in the discussion after the definition of the local harmonic cochains, to give ¢
is the same that assign freely values on the edges of Cling/*""(e) and defining

cle) = — Z c(e).

¢/ €Cling " (e)

Now, for each ¢’ € Chngmm( ) U {e}, and for each p € B, (€') choose a
value ¢, € Z in such a way that

pEBL,(€)

Since c(€) + 3o ecingpinge ¢(€) = 0, the divisor 37 - ¢, has degree 0 and
s

the local harmonic cochain associated by restriction is ¢, as we wanted to
proof. O

Corollary 4.4.13. If Ly C P(V) is finite and A € Br,,, the restriction
map

Clljar(‘@ﬁf’ Z) — Clllar(A7 Z>£f

1 an epimorphism.

Proof. The proof follows the same proceeding as for vertices and edges, taking
into account the three minimal edges of A. ]

Corollary 4.4.14. If L; C P(V) is finite and A < B, is a simplex, the
map

Ka s MNLy, L)y — Cll1ar<A7Z)£f

1 an isomorphism.
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Proof. By some of the previous corollaries, we have a commutative square

///(‘CﬁZ)O ; Clllar<@»cf’Z>

| :

MN(L5, L)y —"2 = CL(A ).

har
which let us to deduce the surjectivity of Ka. O

Corollary 4.4.15. If L; C P(V) is finite, there is an isomorphism of exact
sequences

1
0—— Ly, 20— ] ALy 2002~ T AlLs.2)o

Ae%cfo ee&%fl

1%
=

I RA = Ke

1
0—Clo(Be,,2) — [ ChaldZ)e, 2~ [ Clule.2)e,

har
AE%QfO 66331;](1

Proof. 1t consists of recalling that the below complex is exact and the previ-
ous results give the isomorphisms in each column. O]
Now, recall that given £’ C £ compacts, we have an injection
exttE s (L) ML, L)y
q pe U pt(U) = pUN L),

and, if %’A”ETW(A) = @;TW(A) it descends to another injection

exth © s MNL LY MN(L, D)o
(1] [1].
Corollary 4.4.16. Let A < B, be a simplex and let L; C L be a finite set

—— min

such that A < B, and @TW(A) =%c,, (A). Then,

extif’ﬁ : %A(ﬁf,Z)o — %A(£7Z)0

and
KA %A(ﬁ,Z)O — Cl (A,Z)L

har

are 1somorphisms.
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Proof. We just have to note that C},.(A,Z), = Ci,.(A,Z), by the hypoth-

esis %LTW(A) B, " (A), and consider the commutative square

exty’”
%A(ﬁf, Z)o% %A(ﬁ, Z)o

> KA KA

(A7Z>Ef ~ Ciar(sz)ﬁ‘

]

Corollary 4.4.17. For L C P(V) compact and for all A < B, the restric-

tion map
ka e Ciar('%ﬁﬂ Z) — Clllar(Av Z)ﬁ

1S surjective.
Proof. Consider the commutative square
M (L, L) Cl,y (B, L)

i |

ML, Z) 2 CL, (A, D).

4.4.3 The isomorphism .#(L,7Z), = C}, (B, 7)
Let £ C P(V) be a compact set. Recall the diagram

0L 2)—— [[ n(e.2)0-2~ T[ .2,

AGE%LO 86345 1

K | KA > Re

%Ea - H CharAzﬁa_1> H Chaur )

AEBL, e€Bry

0— C%lar

We know all in it is exact except in the middle of the above complex. Let us
take

(,UA)A € Ker H -//A(»C,Z)o — H /fe(ﬁ,Z)o

ANeHBr e€EBr1
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Fix a vertex Ay € %y, a number n € N>y and let £,, C £ a finite set
such that %, (Ao)™ = B, (Ag)™. By the proposition [4.2.17]it is enough to
form £,, with a point of B.(e) for each e in

U st

ANeHBr (Ao)(n)

Now, let us consider a (connected) chamber-complex C(n) in %, (Ay)™
for each n in such a way that U, oy C(n) = L,

Br(No) = Be(Ao)V =C(1) CC2) C -~ CC(n) CCln+1) C

and %én) (Ag) C C(n)7™™. Indeed, let C(n) be the chamber complex generated
by the vertices which are separated from Ay by a path with n edges (without
orientation) in .

Observe that in this construction there is implicit a local distance p, in
A which we call L-distance and that the global (tropical) distance on the
building #(G) verifies p < pe. Then, if A € C(n) is at L-distance n from Ay,
by definition it is at £-distance 1 of another vertex A’ which is at £-distance
n — 1 of Ay, therefore it is contained in a chamber inside C(n). Observe
another way of describing C(n) inductively:

C(1):=Bc(Ny), Cn):= |J 2
AeC(n—1)
Consider the commutative squares

I -7 (c.z) I -#.(c,z)

ANeBr e€ABr

| |

[ #ez,-2- [ #ic2)

AeC(n—1)o e€C(n—1)1

H Char (A Z)ﬁ a_> H Char )

AeC(n—1)o ecC(n—1)1

Ke‘g

H %A n7 0 —> H % n7

AeC(n—1)g eeC(n—1)1

>~ KA

12

KA |
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and the projection of (pa)a = (pa)rez,, via

I -#(c.z) I #(c..z),
ANeHBro AeC(n—1)o
(1a)rese, ! (11a) aec(n—1)o-
Since the diagram is commutative we have 0! ((HA)AGC(n—l)o) = 0, which

implies that for each ¢/ € C(n — 1),

ﬂs(e’)(BLn (6/)> = Ht(e) (Bﬁn (el)) = Z Ht(e’) (Bﬁn (6))

ecFlow,,, (/)

The key result is to get a global harmonic measure p, on L, coinciding
with (ua)a with A in C(n—1) along the rays from Ag. We divide it in smaller
steps.

Proposition 4.4.18. There exists a harmonic measure y € M (L, 7)o such
that

[/‘L]AO = IU/AO € %Ao (£n7 Z)O
Proof. First, recall the isomorphism # (L, Z)y = Z[L,)o. Since

Lo= || Bele),

€y (Ao)

we define p as a divisor Zpe ¢, Cpp such that

ple) == Z cp = ps(e)(Be, (€))

pEBL,, (€)

for each e € 922‘) (Ao) = %g?(/\@. Now we will see that it has degree zero
to be certain that it corresponds to a harmonic measure. Recall that

Z (Ao) = Flow} " (St (Ao))
are the edges e, in the rays (e, es,€3,...)s in B, from Ay. Then we have

deg(;c) = Z ,us(e) (Bﬁn (€>> = Z Z :U/s(e) (Bﬁn (e)) =

66%(2;)(1&0) 6’6.%(67::1)(/\0) ecFlow,,, (¢/)

= > S B @)= > (B (€)).

6/6%(67;*1)(/\0) ecFlow,,, (e/) E/E%g;:l)(/\o)
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[terating this process we get

deg() = 3 moBen(@)= S ny(Be.(e) =0,

€y (Ao) €St (o)

as we desired to prove to begin. Thus, p is a global harmonic measure on £,
such that, since it verifies the flow condition, the previous proceeding shows
that

(B, (e)) = pse)(Be, ()

for all e € ;%’g:) (Ag) for each 1 < m < n. In particular p coincides with gy,
in St (Ag) and, therefore, [p]a, = fin, € Mny(Ln, L)o. O

Proposition 4.4.19. Let n > 1. The measure i obtained in the previous
proposition verifies [y = pa for all A € C(n — 1)q in the rays from Ag.

Proof. Let A # Ag be a vertex in C(n — 1) inside a ray from Ag. Then, there
are edges €', e in that ray such that e € Flow,, (¢/), t(e/) = s(e) = A and
e € %g:) (Ap) for some 2 < m < n. We have already shown in the proof of the
previous proposition that u(Bg,(e)) = pa(Be, (e)) for each e € Flow,, (¢').

For the other edges we will proceed by induction on m — 1 = p, (Ag, A).
Recall that

St (t(€") \ Flowg, (¢') = Cling " (e') C B, (s(e')) 7"
Let ¢” € Cling"(¢'). If m = 2, s(€’) = Ay, and so
1(Be, (")) = pay (Be, (")) = pa(Be, (€")).

min

Therefore p coincides with g in St7""(A), what implies ]y = pa. Next,
assume we know this for m —1 and note that we have p._ (Ao, s(€’)) = m—2.
Then, by induction hypothesis

p(Be, (€") = ps(en(Be, (€") = pa(Be, (),
concluding as above [u|xn = pa. O

Keep n > 1. Consider an edge e, € %gf) (Ap) for some 1 < m < n—1 and
write A, := t(e;,). By the two preceding propositions, we have [u]x, = s,
A, = ta,, and [pie,. 1) = He(en,) for each en, 1 € Flowg, (e,,). Now, if

e € St7"(en) \ Flowg, (e,,) = Cling?"™ (e,).

we are going to see that [piye) = fty(e)-
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First we will do it when m = 1, so we have e; € %23 (Ao) = St7""(Ao)
and then, e_; := (t(e), Ag) € St;""(Ao) is the other edge in the chamber
which contains e; and e, and reciprocally, given any edge with target vertex
Ay, it can be obtained in this way from some e; as above.

In order to get this, first we prove a fundamental lemma. Let us assume
n > 2, or we also can take on the convention C(0) := {Ao} to apply the next
lemma when n = 1.

Lemma 4.4.20. For any vertex A € C(n—2)o, if [p]a, = pa, for all Ay = t(e1)
with ey € St7"(A), then [ula , = pa_, for all Ay = s(e_1) with ey €
St ™" (A).

—min

Proof. Fix a vertex A_; = s(e_;) for some e_; € St,"™"(A).

First, observe that A_; is contained in a chamber formed by edges e_1,
e} € St (A) and e = (A}, A_y) where A} =t(e).
Since [u]x0 = ppo, for each €’ € Cling""(e) C St (A1)

w(Be, (€) = pag(Be,(€') = pa_, (Be, (¢),

in particular for ¢/ = e_;. Therefore, our claim reduces to show the same
equality for each

¢’ € St7"" (A1) \ Cling?""(e) = Flow,, (e).

Fix one of those edges ¢’ € Flow,, (e) and consider points p_; € B, (e_1),
) € B, (€Y) and p € B, (¢/) C B, (e). Thus, the chamber formed by e_1, ¢!
and e is inside of the apartment A := A{pfl,p?,p} < %, , which also contains

¢’ since it is the edge in St/*"*(A_;) whose open set contains p.

Let us consider the isomorphism A = Z? making A and e correspond to
(0,0) and ((1,1), (1,0)) respectively. Then, e’ corresponds to ((1,0), (1, —1)).
Let us denote by é, ¢ and e] the minimal edges corresponding to ((1, —1), (0, —1)),
((0,—1),(1,0)) and ((0,0),(0,—1)) respectively, and A} := t(ej). Observe
that ¢/,¢ and é form a chamber, ef < % (A) N B, (A1) = B, (e),
t(é) = A} and e} € St7""(A). In particular, we know [1]ar = pa1, and

pia_s (Be, (€') = par (B, (¢) = w(Be, (€)),
as we wanted to prove. O
Corollary 4.4.21. For any A € B, (Moo, [pt]a = pa-

Proof. By the proposition{4.4.19, we know [(i]y(e,) = ple(e,) for all e; € Stﬁf”(/\o).
Then, the last lemma implies the claim. O]
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Corollary 4.4.22. Let A, := t(e,,) € C(n — 1)y be a vertex in a ray
(€1,€2, s €my .- )oo from Ng. Then, [u]n = pa for all A € Bz, (An)o-

Proof. If A = t(e;,41) with e,,11 € Flow,, (e,,), we have already pointed out
that [u]a = pa since it belongs to a ray from Ag. For the other possibilites
we proceed by induction.

If m =1and A = t(e) for some e € Cling""(e;), then [u]y = pa is
what was proven in the previous corollary. Thus, we proved the result for all
A = t(e) with e € St7""(A;), and we finish by the lemma.

Assume we know the claim for m — 1. Now, let A = t(e) with

e € St7"(Ay,) \ Flowg, (e,,) = Cling?"™ (e,5,).

Then, since e, = (Ay,_1,A), the minimal edge ¢/ = (A, A,,—1) belongs
to Stz;”m(/\m_l) and, as a consequence, [u]n = pp by induction hypoth-
esis. Again by the lemma, as we proved the result for all A = t(e) with
e € St7""(A,,), we conclude. O

Let us denote the measure p € #(L,,Z), obtained in the last results by

-
Consider the extension morphism

exttnl s M (L, 1) o—— AM (L, 7)

and apply it to u,,. Thus, one obtains a sequence of global harmonic measures
ext“n£(pu,,) such that for all n > ny,

ext™ (pn) (Be(e)) = ext o (p1 ) (B (€))

for all e € Z}*(Ag) for all m < ng, since they restrict to ps for all A in the
rays from Ag by the previous corollary.

Next, we define a harmonic measure p giving it values on the basis by
open compact sets Bz (e) with e in the rays from Ag (cf. corollary [4.3.33). In

fact, given such an e, it is in %;(Ag)™ for some n. Then, we define

u(Be(e)) = ext™ " (1,)(Be(€)).

By the preceding considerations, this value is independent on n, therefore
is a well defined map and only rests to proof that it is a harmonic measure.
Indeed, given two disjoint open compact sets, they can be covered by a finite
set of open compact sets of the form B.(e) whose definition edges are in rays
from Ay and belong to a common %,(Ay)™ for some n big enough, and
there, 1 behaves like the measure ext“"*(ju,). More specifically, given two
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coverings of a compact open set by these edges, by the corollary there
is a common finer covering which is also inside %.(Ag)™ for some n big
enough, so that p is well defined, since its value on the first two coverings
coincides with its value on the third. As a consequence, it is additive with
respect to disjoint open compact sets and (L) = 0, then it is a harmonic
measure.

In addition, if A is in a ray from Ay, p restricts to pas in Ay (L, 7)o for
all N € Br(N)o.

Lemma 4.4.23. Let A = Ap < B, be an apartment containing Ay. Con-
sider an isomorphism A = 72 by which Ay corresponds to the vertex (0,0)
and let ey be the edge corresponding to ((0,0),(—1,0)). Then, each horizon-
tal edge e = ((mqy,m2), (my — 1,my)) such that Bz(e) C Br(e1) verifies the
equality

fis(e) (Be(e)) = pu(Bc(e)).

Proof. We divide the proof in different cases according to the coordinates of
e.

First note that if my = 0 > my, e is in the ray of A starting by ey, so that
in this case we know the result. If |mq| = 1 > my we also know the result,
since in this case s(e) is at distance 1 of a vertex in the ray.

Second, assume m; > max{0,ms}. Then we have

Be(er) C Be(e) C Be(en),

that is, its equality. Consider the chamber-convex hull between them (recall
definition [4.3.21]). By the corollary [4.3.26] all the horizontal edges in it have
associated the same open set B(e). Consider a gallery from e; to e in its
chamber-convex hull. By hypothesis on the coordinates of e, it can be given
by a sequence of horizontal edges eq,es,..., e, = e such that each e; is the
sum of e;_1 plus (1,1) or (0, —1), and chambers A; for i = 1,...,r such that
e; < /A; and
A NA; =e; | = (t(e;), s(ei 1))

The equality Bz(e;_1) = Bg(e;), implies that cov(e} ;) = 2 meaning that
Cling?™ (el ,) has only two elements, in A; ; and A; respectively. Now we
have

fs(er)(Be(€i) = e (Belei)) = frs(e,)(Be(€i)) = ts(ei_y)(Belei1))
s0 that pise)(Be(e)) = pa,(Be(er)) = u(Be(er)) = u(Be(e)).

With the two first cases, we have proved the result always that |msy| < 1
(under the hypothesis Be(e) C Be(er)).
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In the third place assume my > max{0,m;}. Let py € P be the point
such that

Bp(e) = Bp(e1) = {po},

let A < A be the chamber generated by e and the vertex (m; — 1,my — 1),
which we will denote by Aa. and write e! = (t(e),Aa.),€? = (Aae, s(e)).
for the other two edges of the chamber. Next recall that by the proposi-
tion [LZ70

Beo)= || Beled).

A'NA=el

In particular, in the apartment A, the corresponding edge eeAll is
((m1 — 1,m2 — 1), (m1 — 2,m2 — 1))

Observe also that A’ is determined by eeAll and e!. Next, we will see that
all of these edges and so, all the chambers A’ intersecting with A through e'
are contained in apartments containing Ag and A. By the previous comment,
we only have to see that the corresponding edge eeAll is in such apartment.
Indeed, fix such a A’, consider

pE Bg(eﬁ/) C Bg(e) C 35(61).

and define P’ := P\ {po} U {p}. By the proposition it defines an
apartment Ap/ containing A, and by the proposition the vertex Ag
belongs to Ap. Further, there is an edge in St7/"(Aa.) whose associated
open set is p, therefore, this edge is eeAl/ and it and A’ are contained in Ap.
Consider the isomorphism of A%, with Ap which leaves fixed the intersection.
Then, by the composition Ap = Ap = Z2, the edge eeAll corresponds again to
((my —1,mqg — 1), (my — 2,mg — 1)). Let us denote E(e;m; — 1,ms — 1) the
set of edges €4, which coincides with Cling7™(e!') \ {e?}, and let us write
with this notation

Be(e) = | | Be(e).

e’€E(e;m1—1,ma—1)

Now we have

ps(e)(Be(€)) = pas, (Be(e) = —pay, (Beleh)) — pian  (Be(e?)) =

= Z HAA .. (BL(GI)) = Z ﬂAA,e(BC(e/))

e’€Cling " (e1)\{e2} e'cE(e;m1—1,ma—1)
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To finish the proof, we proceed by induction on msy. Since if my = 1 we know
the result, we can make the induction hypothesis

pw(Be(e)) = psie)(Be(e))

for the edges ¢’ with second coordinate my — 1 (and verifying the assumption
Be(e') C Be(er)). Then, note that each ¢ € E(e;my — 1,mg — 1) verifies
both conditions, since

85(6/) C BL(B) C 85(61).

Therefore, we conclude

fis(e) (Br(e)) = > pra o (Be(e) =

e’eE(e;m1—1,ma—1)

= X n(Be(e) = m(Bele))

e'€E(e;m1—1,ma—1)

Finally assume 0 > max{m;, my}. The process is identical to the previous
one up to rewrite some coordinates.Now, let A < A be the chamber generated
by e and the vertex Aa . := (mq,ma + 1). We define €', e? exactly as above.
We have again

Be(e)= || Beledd),

A'NA=el

but, now the corresponding edge eeAll in A is
((m1,ma + 1), (m1 — 1,my + 1)).

The construction of Ap above applies again, so all these edges, which are
those of the set Cling7*"(e') \ {€?}, can be represented with the given coor-
dinates, so we denote it by E(e;mq,ms + 1). As above

fis(e)(Be(e)) = > paa.(Be(e)
e’€E(e;mi,ma+1)

and we proceed by induction on —msy. The case —ms = 1 is known. The
hypothesis induction is

pw(Be(e) = psie)(Be(€))

for all ¢ = ((m},mg +1),(m} —1,me + 1)) with —m} € N and for a fixed
—my € Nso, which is the case for all the edges €’ in E(e;my, mg+ 1), which,
moreover, verify, as above, the condition B (e') C Bz(e) C Bz(e1) and we
conclude in the same way. ]
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Proposition 4.4.24. Let L C P(V) be a compact set such that %, is a
building. Let e be a minimal edge in B such that there exists ey € St (Ap)
satisfying Br(e) C Be(er). Then

Hs(e) (85(6)) = M(Bﬁ(e))

Proof. Since A, is a building, there exists an apartment Ap < %, containing
e and e;. Then we have () # Bp(e) C Bp(e1) which consists of a unique point,
therefore, this inclusion is an equality and the edges are parallel. Then, we
consider an isomorphism A = Z? such that e; corresponds to ((0,0), (—1,0))
and we apply the previous lemma. O

Remark 4.4.25. Observe that we only use that B, is a building to en-
sure that for any edge e such that that there exists e; € St7"™(Ao) satisfying
Be(e) C Be(ey), there is an apartment in By containing e and Ag. There-
fore, if we have this for some vertex of B, even if it is not a building, we
can choose this vertex as Ao and we get the same result.

Theorem 4.4.26. Let L C P(V) be a compact set such that By is a building.
Then

1
0t (L.2)y— [ a(£.2))-0 ] L.2),
ANeHBr eEBr,
([]a)a

L

is exact and, as a consequence M (L, Z)y = Ci, (B, 7).

har

Proof. To get the exactness of the sequence, the only step rests to do is to
get a global harmonic measure which projects to

(MA)A € Ker H %A(E,Z)O — H /fe(ﬁ,Z)g

AE%Z:O ee‘—%ﬁl

We have already built a harmonic measure p € # (L, 7)o such that [u]y = pa
through the rays from Ay and we are going to check that it verifies the
expected property.

Let A be any vertex in A, for which we want to prove the same equality.
It is sufficient that p and any representant of p, coincide on the edges of
St7(A), that is

pa(Be(e)) = p(Be(e))
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for each e € St7""(A), so let us fix any of these edges. Recall the corol-
lary [4.3.33] by which there is a minimum finite (since the corresponding
open sets are compact) set

% | 2 ()

nENZl

such that

Be(e) = | | Be(e).

e'€Re

Observe that Z. depends on Ag, even we did not specify this until now since

it is a given fixed vertex from the begining. Now, let us write %\, (e) := Z-,

so we can work with different of these sets, while we change the “base” vertex.
Let us enumerate the edges in %y, (e):

Ry, (e) = {e', ... em}.

Each one of them is ¢/ = Flow’(e}) for some €} € St7™(Ay) and j; € N.
Observe that the set formed by the edges e! coincides with

Sho(e) = {e" € StE™(Ao) | Be(e) N Be(e') # 0}

If |Sa,(e)] = 1 we are under the hypotheses of the previous proposition, and
so we have apply it. Fix any edge of this set, for example el and consider the
minimal decomposition of the associated open set on the rays from A = s(e),

that is
Be(el) = || Be(e).

e’€Zn(e})

Now, since if ¢ € Za(e}), Be(€') C Be(ep), we can apply the previous
proposition again, so that

ps(ery(Be(€')) = p(Be(€).

Observe that the set of edges in the decomposition of el which are in rays
starting by e is

Re(ey) = {e € Zr(e1): Br(e') C Bele)} C Raley)

and gives the equality

Be(e)(\Belet) = || Bele).

e/ €Xe(e})
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Let us denote i' := max {i € N | Z.(e}) NFlow,(e) # 0} € N, so that we
have Z.(e}) C U<y Flowy(e).

Next, we do this process for the rest of edges €2, ..., €™ in Sy, (e) and we
also consider the rest of indices i2,...,i™. We define

i := max{i',i%, ... "}

so that Z.(e}) C U, Flow”.(e) for each i = 1,...,m,. Note also that we
have -

Be(e)= || (Beler)NBe(e) =

e1€SAO(e)
= | || Bee)) = || Bele)
el ESAO (e) e'€EXe(e1) E’EFIOW% (e)

and the edges appearing in the last two expressions are in rays strating by
e, therefore its open sets are disjoint or verify some inclusion. In addition,
since they are equal, given any edge of an expression, there is another edge
of the other expression with nonempty intersection of the associated open
sets. Then, since Z.(e1) C U;; Flowy(e) for each e; € Sy (e), given any

¢/ € Flow's (e) there is an edge e; € Sy,(e), a number j <4, and another
edge € € Z.(e;) NFlow?(e) such that ¢ € Flows ™ (€) and so,

Bg(el) C Bg(g) C Bg(el).

Therefore we can apply the previous proposition to each ¢ € Flow (e),
obtaining

e (Be(e)) = u(Be(e)).

Next, recall the formula
NS(60)<BL<€O)) = Nt(eo)<B£(60)) =

= Z fhi(eo) (Be(er)) = Z fisen) (Be(er)),

e1€Flow (eg) e1€Flow (eo)

apply it to e and iterate it to the edges appearing on the successive expres-
sions:

pa(Be(e)) = pae(Bele)) = Y piageny(Beler)) =

e1€Flow, (e)

- Z Z MS(€2)(BE(62)) = Z Ns(eg)(Bﬁ(GQ))

e1€Flow, (e) ea€Flow (e1) e2€Flow? (e)

185



what, inductively, gives

paBe(e)) = Y paen(Be(e))

e/€Flow’ (e)

for all 7, and applied to i = i,:

maBe(e) = Y menBe(e)) = Y u(Be(e)) = p(Be(e)).

e’GFlow”Ze (e) e’EFlowiﬁe (e)

Since we have obtained this for all e € @Tm, we have finished the proof of
the exactness of the sequence.
The isomorphism . (L,Z)y = Cl. (%, Z) follows from an easy hunt of

elements in the diagram of exact sequences locally isomorphic

0 (L, 2)—— ] -an(t.2) -0~ T] L.2),

AE%‘CO 861@51

K | RA | Re

0_>C}11ar<'%£7 - H Char A Z£_> H Char )ﬁ'

AeHB e€EABr

]

4.4.4 Invariance of the harmonic cochains with respect
to homotopy

Through this subsection %, is a building of dimension d = 2 with
L C P(V) compact.

Simplicial homology on %,

Let us recall first how we compute the homology of a locally finite sim-
plicial complex.

Let I be a finite simplicial complex of dimension d and let A € K be a
simplex. Two (total) orderings of the vertex set of A are said to be equivalent
if they differ from one another by an even permutation. An orientation of A
is an equivalence class of the orderings of the vertex set of A. Note that if
A consists of a vertex, there is a unique orientation, and otherwise there are
two different orientatons. An oriented simplex is a simplex A together with
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an orientation of A. An orientation of K is a choice of an orientation of each

of its simplices. Then, I is said to be oriented if an orientation of I is fixed.
Then, for each ¢ € N4 the abelian group of g-dimensional chains is the

free abelian group generated by the oriented simplices of K of dimension ¢

Cy(K) = & z[a]
Aek
dim(A)=gq

We introduce the g-simplex A with the opposite orientation to the one
chosen as —A. Thus, we define a border operator 9, : Cy(K) — C,—1(K) in
the usual way: 9,(A) =37, (=1)'A; (where A; has an orientation induced
by the one of A) for ¢ > 1 and dy = 0. They form a complex of abelian
groups and the simplicial homology is defined as

H,(K,Z) := Ker(0,)/ Im(0y+1).

If we take the singular homology of its topological realization, H,(|K|,Z),
it is well known that there is a natural isomorphism

H,y(K,Z) = H,(|K],Z).

Next, let us consider the simplicial complex Z,. Recall that each edge
in A, has exactly one minimal orientation (as we have commented at the
begining of subsection , and choose it to define the group of 1-chains of
P, so that

C\(Be) = TPz, ).

Then, for any oriented chamber A, the second differential verifies either
Do(A) = 0™ (A) or Oy(A) = —9™"(A). Indeed, if A is defined by vertices
A; = [L;] where

Lo 2 Ly 2 Ly 2 mrlo

and if we choose the orientation given by Ag < Ay < As, then
O2(A) = (A1, Ag) — (Ao, Ag) + (Mg, Ay) = —0™"(A),

while if we choose the other orientation the two differential maps coincide.
We choose for each chamber the orientation which makes these two maps
coincide.

In addition, since %, is contractible the 1-homology group vanishes,
therefore Ker(9;) = Im(9;) = Im(9™™).
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Homotopy invariance of the harmonic cochains

Given a harmonic cochain ¢ € C}, (%, Z), it vanishes on ™™ by defini-
tion, therefore the previous discussion implies that it vanishes on the closed
paths on 4.

Lemma 4.4.27. Given two vertices N, N € B, there exists an oriented
path from A to N through minimal edges.

Proof. 1f the two vertices are in a chamber, since there exists a closed oriented
path formed by minimal edges through all its vertices, then there exists an
oriented path through these minimal edges from one vertex to the other.
Otherwise, since % is connected, there is a sequence Ay, . .., A, of cham-
bers such that A € Ay, A’ € A, and for each i = 0,...,r—1, there is a vertex
A; € A;N A4 . Since all these vertices are connected as claimed by the first
part of the proof, the assertion follows. ]

Lemma 4.4.28. Given a harmonic cochain ¢ € C} (B, Z), two vertices
AN € PBry and two oriented paths between them through minimal edges,
determined by the sums Py(A,A') € Z[%glmn] and Py(A,N') € Z[%’LTW]
respectively (as their support), we have

c(Pi(A, A)) = c(Py(A, A))

Proof. Choose an oriented path P; from A’ to A through minimal edges. The
union (sum in Z[Q/E\’glmn]) of the path P;(A,A’) with the path P; is a closed
oriented path for each i = 1, 2, therefore it is in the kernel of 9; and ¢ vanishes
on it. Then,

c(PL(A,A) = —c(Ps) = c(Py(A,N)).

Corollary 4.4.29. There is a map
Z[‘@EO]O — Clllar(%l:?Z)v

given by mapping N — A to the evaluation of a harmonic cochain on any
—~ min

oriented path from A to N on Z|%Br, |.

Remark 4.4.30. This is just to say that any harmonic cochain factorizes as
follows:

Z[%ﬁl ] 7Z

/ Ker(dh) = Z[Bel

"

ZBe,
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4.5 The construction of the expected Albanese
variety of a non-Archimedean uniformized
variety by a “generalized Schottky group”
and some steps to prove that it is a torus
when d = 2

We introduce the elements which allow to define the non-Archimedean
uniformized varieties introduced by Mustafin. They are a group being a gen-
eralization to any dimension of Schottky groups, an associated compact set
and the related rigid analytic space whose quotient by the given group is the
uniformized variety. We recall the Drinfeld reduction map and some defini-
tions given in the section of this thesis which can be done without any
change in any dimension, and we prove some properties about them. With
these elements, we show the construction of an object which we conjecture
that it has the universal property of the Albanese variety in the category of
abeloid varieties. Then, using the isomorphism between harmonic measures
and harmonic cochains proved in the previous section, we reduce the proof
of that such object is a torus to that a certain map involving the reduction
of the uniformized variety is injective.

Through this section it is not necessary to assume that the dimension is
d = 2 unless the parts involving harmonic cochains.

4.5.1 Integration on a compact set £ C P(V) and the
analytic reduction

Let £ C P(V) be a closed subset. The analytic space associated to L is

Qp =Py \ | J H..

zeL

The retraction map

As observed by Bruhat and Tits in [BT72, Note ajoutée sur épreuves, pp. 238-
239], we may identify |Z(G)| with the set of homothety classes of diagonal-
izable real norms on V', where a norm

@IV—>R20
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is diagonalizable if there exists a basis vy, ..., vq of V' such that

d
o <Z m) = max {a(v)|A]}-
i=0 T

Remark 4.5.1. We use the term diagonalizable instead of decomposable by
coherence with the section and the references cited there, mainly [RTW15,

§1.2].

Further, given a vertex [L]| € #(G),, the corresponding norm (up to
homothety depending on the chosen representant of the lattice) is defined by

arp(v) :=min{|A\|: \lv € L}
and reciprocally, the lattice associated to a norm « is
L,:={veV|al) <1}
Then, for any complete extension L|K we have a retraction map
1y (L) : Qpvy(L) — |B(G)|

given by 1y (L)(w)(v) = |w(v)| for w € Qpyy and v € V. Note that these
maps are the evaluation on L of a map

Iy : Q[p(v) — ‘%(G)’

Proposition 4.5.2. The retraction map vy : Qpeyy — [ZB(G)| and its re-
striction rv : Qp(y,) — B(G), are surjective and GL(V)-equivariant.

The integration map

Let £ C P(V) be a compact set, and let €z be its associated analytic
space and %, the corresponding chamber complex.
We want to build an integration map

][ 4 2]y —s Hom( (L, Z)o, G 1),

To do that we may copy verbatim adapted to higher dimension (and we do)
the construction made in the section 3.4 of this work.
Let L|K be an arbitrary compete extension of fields.
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Definition 4.5.3. Let P be a finite set of points in Qg(L), and consider
D = Zpep mpp a diwvisor of degree zero. We denote by fp the element
of Maps(L, L*)/L* which is defined up to scalars as follows: if we choose
representatives w, € V* for any p € P and vy € V' for q, then

fplq) == H wp(vg)™

does not depend on v,. Any other election of the vectors v, change fp to Afp
for some A € L*.

Remark 4.5.4. Given divisors D, D’ € Z[Q(L)]o we have fpip = fpfpr
and f_p = fp'.
In particular, for any points p,p’,p" € Q, we have
Jor—p = for—p o —p-
Remark 4.5.5. We can see the degree zero divisor 0 as the divisor Op for
any p € Qe (L). Therefore, as m, =0, we get fo = 1.

Let us apply the valuation map to these functions:

LY )
Lemma 4.5.6. Let p,q € Q(y,) be points such that (rv(p),1v(q)) = € € @an

Then
vk (fo-p) = Xppe — 1-

Proof. Let us write e = (Ly 2 L1 2 mxLg) and recall that z € B(e) if and
only if Ly = mx Lo + (2() Lo), that is, for any representant v, € Ly \ mx Lo
of z it is in Ly \ mxLg. We assume that there is an unramified complete
extension L|K such that p,q € Qpn(L). Let us take z € £, consider any
representants wy,, w, € P(V}) of p and ¢ respectively, and observe that

Ly={veV: |w(v)| <1} ={veV: vg(w,(v)) >0},

Li={veV: |w)] <1} ={veV: uk(w,(v)) >0}
and

kLo ={veV: vg(wy(v)) > 1}.

Then we have 0 < vk (w,(v,)) < 1 and so vk (w,(v,)) = 0, and, if z € B(e),
then vy (wy(v,)) = 0, while if z & B(e), then vk (w,(v,)) = —1.

Now we compute

B Wy 0 ifzeBgle)
Uk (fq—p(z)) = Uk (w_p(vZ)) - { 1 if 2 ¢ Bg(e).
and we get that we claimed. O
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Definition 4.5.7. Given any degree 0 divisor D =Y., m;p; with support in
Qr(L) (i.e. my € Z, p; € Qp(L), being I a finite set and with ) ., m; = 0)
we choose v; in V* representatives of the p; € Py« (L) and consider the map up
to scalars fp € Maps(L, L)/ K™ given by a representant [ [, w;(x)™ (which
depends on the w;’s). Let u € M (L,7)o be a Z-valued harmonic measure on

L.
][ dp = ][ fpdu € L™,
£,D c

We define
which is well defined since the integral does not depend on fp but only on
D. Indeed, although the representant of fp depends on the elections of the
representatives in V* of the points in Py« (L), the multiplicative integral does
not, since the measure is harmonic.

In general, when some L was fixed previously, we will omait its correspond-

g set, writing
][d,u ::][ du,
D £,D

meanwhile we will specify the other sets over which we will integrate.

Note also that when D = 0, we have ][d,u =1, since fo = 1.

0
Therefore, this definition gives us a morphism of groups

d

Z[Q2: (L))o Hom (4 (L, Z)o, L")

D ][d:,ur—>][dp
D D

The lemma [3.4.10| generalizes to any group I' C PGL(V) acting on L, so
this map is I'-equivariant.

—~ min

Lemma 4.5.8. Letp,q € Q%/) be points such that (ry (p),rv(q)) = e € Br,y
and let p € M (L,7Z)y. Then

" ( ][ du) = u(Be(e).

Proof. This is a corollary of lemma Indeed, we have

- ( f du) — [ e Gt = [ o = D = (e

where we are also using the additive integrals theory introduced in section|2.3].
]
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Remark 4.5.9. Note that given p,p" € Qp(,y such that ry(p), rv(p) € Bro,
we have an oriented path Y. e; € Z[,@;;mn] from ry(p) tory(p') and points
pi € Qpfyy, for i = 0,...,7, such that po = p, pr = P, rvi(po) = s(er),
ry(p,) =t(e,) and vy (p;) = t(e;) = s(ejrq1) fori=1,...,r — 1, and then

(. )-~(if )

_ Z o /- i) = Zﬁ;u(zsz(ez-))

If we restrict to dimension d = 2, we have defined harmonic cochains and
the map k : M (L, 7)o — Ci..(Bc,Z), so that applying the remark

we get

e ( ][ du) - guwei)) = () (Z ) — w1 (&) — 1 )

4.5.2 Generalized Schottky groups in PGL(V)
Hyperbolic subgroups of PGL(V)

Definition 4.5.10. An element v € PGL(V) is said to be hyperbolic if for
any representant 5 € GL(V') all its eigenvalues are in K and two of them have
different valuation. It is said strictly hyperbolic if, moreover, v diagonalizes.

Lemma 4.5.11. If v € PGL(V) is hyperbolic, it has no torsion.

Proof. Since a matrix representing vy can be taken triangular superior, and we
only need its diagonal, we can take its diagonal (A9, ..., )\i) (as if v would be
strictly diagonal). We also can assume that the two eigenvalues with different
valuation are AJ, \]. The eigenvalues of the n-th power of 5 are (\)", and
the difference between the valuations of (/\2)” and (/\%)” is n times the initial
difference, therefore, each time higher. Thus, none power of v can be the
identity. O

Definition 4.5.12. A subgroup H C PGL(V) is said to be hyperbolic (resp.
strictly hyperbolic) if all its elements distinct of the identity are hyperbolic
(resp. strictly hyperbolic).

Recall the next well known result.
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Theorem 4.5.13. If Ay,..., A, are linear operators on V, each of them
diagonalizable, they are simultaneously diagonalizabe (there exists a basis for
which all of them diagonalize) if and only if they commute.

These property characterizes elements being in the same maximal torus
of GL(V'). The conjugation matrix which relates it to the “canonical torus”
Gﬁk gives the matrix of change of basis diagonalizing the given matrices.

Let us denote the set of fixed points in P(V') of a subgroup I' € PGL(V)
by

Lr:=P(V)"

Remark 4.5.14. The torus T = Gi' . /Gy« € PGL(V) is the centralizer of
the “reference points” py,...,pa, and reciprocally, they form the set of fixed
points of the torus: Lo = {po,...,pa}. Since each other mazimal K -split
torus is conjugate to it, it is the centralizer in PGL(V') of a set of d + 1
linearly independent points which is its set of fixed points, and the sets of
maximal K-split tori and of these centralizers coincide. Further, we have

"}/[,T = E,YT.Y—l

for any v € PGL(V).

MAH subgroups

Lemma 4.5.15. Let T C PGL(V) be a maximal K-split torus and let
H C T be a strictly hyperbolic subgroup. Then H is free as abelian group
and rankz(H) < d.

Proof. By conjugation, we assume that H C Gz:f}( /G i, so the elements of

H are diagonal matrices up to scalars with all the diagonal elements distinct
of zero. Therefore, we can lift H to a subgroup H C Gii i € GL(V) as
follows: if the diagonal of v € H is (A,..., %), multiply it by (A))~! and
take that representant which we denote 7, that is the one having /\g = 1.
Thus we have a morphism of abelian groups

H UK 74
1
v 0 1 ;
v = = (x(\); -, vx(AT))
0 A
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Since any v # 1y is strictly hyperbolic, there is an index ¢ > 1 such that
i (AL) # vk (1) = 0, so this map is injective. Thus, H is isomorphic to its
image, a subgroup of a finite generated free abelian group of rank d, therefore
H is a finite generated free abelian group with rank(H) < d. O]

Proposition 4.5.16. Let T'C PGL(V) be a mazimal K-split torus, and let
H CT (and so Ly C Lg) be another subgroup. Let vo, ... ,vg € V the basis
given by choosing representants of the points of Lr = {[vo], ..., [va]}. Then,
the following are equivalent:

1. H is a strictly hyperbolic subgroup and H = 7.

2. There exist generators yi, . ..,vq € H such that representants v; € GL(V)
verify Yiv; = Nw; for X € K* and, the matriz

M = (vx(N]) = ok (\)), 1oy =

v (A1) — ok (A}) o vk (Ag) — v (M)

v (M) — o (A}) o ok (ND) — vk (N))
has rank d.

Proof. 1. = 2.| Since H = Z¢, it is generated by 7;,...,v4 € H, and any
representants 7; € GL(V) satisfy equalities of the form v; = Mo with
A € K*, due to the points [v;] are fixed by the ~;. Consider the matrix

M = (UK()\z) — UK()\?)>i,j21 = (UK (i—g)) .

Note that this is the matrix of the linear map vy gy : H — Z¢ that we
introduced during the proof of the previous lemma, in the basis y,..., 74
Since we have seen that it is injective, then rank(M) = rankz(H) = d.

2. = 1|

The hypothesis tells us that the elements of H diagonalize in the basis
given by vg,...,v4. Then, as we have just noted, M is the matrix of the
images of the elements v; by the map vg |y of the previous lemma. Since
rank(M) = d, these elements are linearly independent in H and there are no
torsion elements in H, therefore H = Z% and it is strictly hyperbolic.

0

Definition 4.5.17. We will say that a subgroup H C PGL(V') verifying any
of the equivalent conditions of the previous proposition is maximal abelian
hyperbolic (MAH for short), or also mazximal toric hyperbolic.
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Corollary 4.5.18. If H C PGL(V) is MAH, its set of fized points Ly
consists of d + 1 linearly independent points.

Proof. With the notation of the previous proposition, we already have a basis
Vg, . .., Vg such that

{[’Uo], sy [Ud]} - ‘CH
so, the only thing we have to prove is that there are no more points. Let
v = Z?:o a;v; with a; € K such that for each i = 1,...,d, ;v = Bv (with
the same representants of the previous proof) for some §; € K*. Then, for
each ¢ we have

d d d

§ : J — § ’ Sy — Ay — — E '
)\iOéjUj = Q77U = 70 = ﬁi’l} = Biajvj-

j=0 j=0 j=0

Thus a; # 0 implies that /\g = B;. If v # v; for all 4, there are j; # jo such
that aj,, o, # 0, so )\gl = )\32 for each ¢, giving place to two equal columns
in the matrix M of the valuations, which we have seen that has rank d.
Therefore, [v] has to be one of the points [v;], as we wanted to show. O

Remark 4.5.19. Since, if H is MAH, Ly is finite, we have

Tz = |J T

pELH

Let H C PGL(V) be MAH and fix a basis v = {vg,...,vq} of V for
which H consists of diagonal matrices up to K*. Consider also the standard
symmetric bilinear form in V' with respect to the coordinates in this basis

O:VxV K

d d d d d
(Z Vi, Z ﬁz‘%’) — (Z Vg, Z @'W) = Z a; ;.
i=0 i=0 i=0 i=0 i=0

Note that given A\ € K* we have ®(v,v’") = 0 if and only if ®(v, Av’) = 0. We
can define for any subspace W C V its orthogonal with respect to v as
Wt ={ueV | ®w,u)=0VYweW}

Since this is another linear subspace, we can projectivize this definition.

196



Remark 4.5.20. Consider the dual basis of v in V* which is w = {wy, ..., w4}
determined by the relations w;(v;) = 0;;. Then we define naturally the or-

thogonal of W C V in V* as
Whi={weV*|ww)=0VYweW}
If we apply the isomorphism ¢, : V* — V defined by ¢,(w;) = v; we have
W = (W),

Given a point p € P(V'), we denote its orthogonal hyperplane with respect
to the basis v as Hy C P(V).

Remark 4.5.21. For a point p € {[vo), ..., [va]} =: P, the hyperplane H is
independent of the representant v; chosen for [v;] so we can write ]HIZ: = Hp,

and, concretely
HZ = { [Z Olj’l)j] € ]P)(V)} .

J#i
Note also that

d
(H, = 0.
1=0

Lemma 4.5.22. Let H C PGL(V) be MAH and p € Ly. Then, there exists
~v € H such that for all p' & HlfH

lim v"p’ = p.

n—oo
Proof. After conjugation, we can suppose that H are classes of diagonalizable
matrices and Ly = {po,...,pa} are the “reference” points for the canonical

basis, and we take without loss of generality p = py = (1 : 0--- : 0). Since
the map vk g : H — Z¢ has rank d, there is an element

(vi,. .., va) € Im(vg ) N Zso.

Its preimage is the set of elements v € H such that vk (A)) < vk (\,) for all
i # 0. Take any of them and the representant 5 with A9 = 1. Since p/ & H5#

Po
p’ can be represented by a vector with the form v' = vy + Zle a;v; and we

have
d

A" = vy + Z ()\%)”aivi
i=1
Since the valuations UK()\?QY) are strictly positive, their powers tend to infinity,
and so,

lim ~"p" = po.
n—oo
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Generalized Schottky groups
Let I' € PGL(V) be any subgroup. Define its set of limit points as

Er = U ,CH

HCr
HMAH

Definition 4.5.23. A subgroup I' C PGL(V) is a generalized Schottky group
if:

1. It 1s hyperbolic.

It is finitely generated.

There exists a MAH subgroup H C T'.
T - p is compact for all p € P(V).

B, 1s a building.

S v e e

I\A., is a finite simplicial complex and
mr: Br. — '\Be,
1S a universal covering.
Proposition 4.5.24. The action of I' on B, is free.

Proof. This is due to the fact that all the elements of I" are hyperbolic, and
so torsion-free (cf. [Gar73, Lem. 2.6] and [Mus78, Prop. 1.4]). O

Remark 4.5.25. Let us enumerate a number of immediate facts from the
definition:

1. After a finite complete extension L|K, I'\%B.,. becomes always a sim-
plicial complex.

2. Since B, is a universal cover, then

=~ f,("'\%,., 7).

3. The quotient being a simplicial complex means, in particular, that it
has no loops, what implies that for each vertex A < . and each
v e\ {Llr}: p(A,vA) # 1. Further, since I acts freely on B, we
get p(A,yAN) > 2, which is the assumption made in [dS01, § 9.1]. A

consequence of this is that given a minimal edge e € 9/3;71”“1, it 158 not
identified with any edge in Flow,.(e).
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4. Since the action of PGL(V) on %, preserves the cyclic order of its
cells and the types of the pointed simplices, these notions go down to
the quotient. Thus,

—t —t
(F\%ﬁr)q = F\:@qu and F\ggﬁrq = F\@LFq.
In particular, the maps Stznrm and O™" also go down to the quotient.
By the last comment of the previous item, the map Flow,,. also can be
well defined on the quotient, over an edge € as the edges in St}""(t(€))
which do not share any chamber with €, it verifies

Flow,.(e) = {¢’ | € € Flow,,.(e)}
and € € Flow,, () C St7"(t(e)).

Conjecture 1. The first four items imply the condition 5) and, after a finite
complete extension L|K, they also imply 6), in the definition of generalized
Schottky group.

Lemma 4.5.26. IfT" C PGL(V) is a generalized Schottky group and P C Lr
15 a subset of d + 1 points linearly independent, then

Lr =TP.
In particular, this is the case for P = Ly where H C T" is MAH.

Proof. We only have to show that any point p € Ly for H € I' MAH is in
the closure of I'P.

By hypothesis, there is no hyperplane H such that P C H. Then, there is
at least a point ¢ € P such that ¢ & HﬁH ", and we know by the lemma
that there is v € H' C I' such that

p = lim ~4"q € T'P.
n—oo
O

Corollary 4.5.27. If I" is a generalized Schottky group, the set Lr is com-
pact, so that B, is locally finite.

Remark 4.5.28. We got this without using the condition 6) in the definition
of generalized Schotty group.

Proposition 4.5.29. The quotient Xt := I'\Q,,. is a rigid analytic variety,
and its reduction has dual complex T'\%B,..

Proof. This is the result given in [Mus78, Thm. 3.1]. H
Note that the examples A) and B) in [Mus78| § 4] also apply here.
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4.5.3 The conjectural Albanese variety and Abel-Jacobi
map

Let I' € PGL(V) be a generalized Schottky group, and let £ := Lr C P(V)
be its associated compact set.
As in the section [3.9] of the chapter [3] for dimension 1, we have a map
>~ H(I',Z) — Ho(T',Z[Q%]o) = Z[Q]op
obtained from applying I'-coinvariants to the short exact sequence

0 — Z[Qr]o — Z[Q] — Z — 0.

After composing that connecting morphism with the integration map built
before, we get the morphism

S T — Hom(A (L, Z),Gic) = T
given by
ﬂ(v):][ d:ur—>][ dp for any p € Q.
Vp—p Yp—p
Note that Im(.#) C T(K) = Hom(.# (L, Z)}, K*) as in dimension 1.

Let L| K be a complete extension such that the analytic variety Xr := '\,
has some L-point p € Xp(L). Then, there is a map

Xr Y T/

q|—>Lp(q):u»—>][ du
a—p

We recall next the definition of abeloid variety from [Liit09]:

Definition 4.5.30. An abeloid variety is a group object in the category of
rigid analytic spaces whose underlying variety is smooth, proper and con-
nected.

Remark 4.5.31. The main result of [Liit95] tells that all the abeloid varieties
are, after a suitably extension of the base field, an analytic quotient by a
lattice of an abeloid group with good reduction (whatever it be) by an affine
torus. In particular, rigid analytic torus are abeloid varieties.
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Conjecture 2. The object A(Xr) :=T*/.F(T') is a rigid analytic torus and
for any complete extension L|K such that Xr(L) # 0 and for any p € Xr(L),

the map
L

XrL £ A(Xr)L

g 1(q) :MH][ dp
q—p

is a morphism of analytic varieties such that i,(p) = 0, and for any such
other map ¢ : Xr — Ar, where Ay is an abeloid variety and p(p) = 0,
there exists a unique morphism of abeloid varieties

gb . A(XF)L — AL
such that ¢ = ¢ o 1.

Remark 4.5.32. [t seems reasonable to expect that the universal property
in the conjecture can be reduced to the cases in which Ay is a rigid analytic
torus, by means of topological arguments.

Remark 4.5.33. We just are stating a generalization of the universal prop-
erty of the Albanese torus in the category of abeloid varieties.

In the previous chapter we proved it when the varieties are curves, in
which case they are always algebraic, so that A(Xt) is the Albanese torus for
d=1.

4.5.4 Towards a proof of the conjecture [2| when d = 2,
I: harmonic cochains on the simplicial complex
quotient of .. and an equivalent formulation of
being an analytic torus for A(Xr)

Let I' € PGL(V) be a generalized Schottky group, and let £ := Lr C P(V)
be its associated compact set and let K := I'\AB,,.. Let the dimension be
d=2.

To finish, we show that under these assumptions, proving that T'/.# (I'®)

is an analytic torus reduces to see that a certain map involving harmonic
cochains on Kr instead of harmonic measures is an isogeny.

Definition 4.5.34. A map c: Z[Ia;mn] — Z is called a harmonic cochain
iof it satisfies the following properties:

e co St =0.

201



e For any minimal edge e € //C?lmn, c(e) = c(Flowg(e)), that is

co (:H_I/C\min — F10W5> = 0.

ri

o codmn =\.
The set of harmonic cochains is denoted by Cl_ (Kr,Z).

Remark 4.5.35. The facts that all these conditions are local, and that for
each vertex A < PBr. and for each v € I'\ {1r}, p(A,vA) > 2, imply

1
Char

(%ﬁrv Z)F = Ciar(lcrv Z)
Lemma 4.5.36. The map

ra L4 Hom(C., . (%B.,7)",7)

Y1, c—> Py (c) = c(P(A,7A))

is well defined, independent of A € By and a morphism of abelian groups.

Proof. The map is well defined if it is independent of A and of the path
P(A,vA). The independence of the path was proved in lemma [4.4.28, To
get the independence of A, for any other A’ consider the oriented closed path

union (sum in Z[@Tm]) of oriented paths P(A,vA), P(yA,vA'), P(vA', A)
and P(A’;A). Since it is in Ker(9;), ¢ vanishes on it. Moreover, since c¢ is
['-invariant,

c(P(yA,yA')) = c(vP(A, N)) = c(P(A,A)) = —c(P(A, A)),
and therefore
c(P(A,A)) = —c(P(yAN', A)) = c(P(A, 7).

To see that the map is a morphism, note that given v, € I', we get an
oriented path from A to vy'A by adjoining a path from A to 4’A with a path
from ~'A to yy'A. O

Remark 4.5.37. We can reinterpret this lemma as follows: T' acts on B,
simplicially, and so, acts in the short exact sequence

0 — Z[Brolo — L[ Bro) — Z — 0

202



what gives to us a connecting morphism
1 2 Hy(T, ) — Ho(T, Z[Brolo) = Z[PBrolor-
The corresponding lemma would say that the map
Z|Brolo — Char( P, Z)"
of corollary[4.4.29 is T -equivariant, so we could compose
I — Z[Brolop — Hom(Ct, (B.,Z), Z)r = Hom(Ct, (%B., Z)", Z)

to get 1.

Let us consider the isomorphism
ki ML, 7)oy — Cro (B, 7),
restricted to [-invariant harmonic measures and cochains, and the projection
7 Br — T\A,.

Proposition 4.5.38. Given vy €T, p € #(L,Z);, p € Oy, A € Bro, we
have

e (f di) = k0PI, 2) = v (1),
where P(A,vA) € Z[@TW] is any path from A to yA.

Proof. Apply the remark and recall that ry is GL(V)-equivariant and
the expression in the middle is independent of A. O

Theorem 4.5.39. If
¢ : T — Hom(C},,(Kr,Z), 7)
is an isogeny, A(Xr) = T/F(T'®) is an analytic torus.
Proof. Compose the integration map
S 1 — Hom( A (L, 2)4,Gpi) =T
with the induced by the valuation,
vk, - Hom (. (L, 7)), K*) — Hom(# (L, 7),,7) = 79
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(where g is the rank of T'), so by the last proposition we get a commutative
diagram

peb L Hom(.#(L,Z), K*)
UK

» Hom(.# (L,7);,7)
P

Hom(C,, (B¢, Z)", Z)
By [FvdP04, §6.4], T/.# (I'“’) is an analytic torus if and only if
vy I () — Hom( 4 (L, 7)5,7),7)
is an isogeny, what, since k is an isomorphism, is equivalent to that
vy (1) — Hom(C}, (B, 2)', Z) = Hom(CL,,(Kr, Z), Z)

is an isogeny. But ¢ = ko vk, o & and & : ' — #(I'?) is surjective,
therefore Coker(y)) = Coker(vk,) and if 4 is injective, then vk | s ey is also
injective.

Then, to get that A(Xt) is an analytic torus when d = 2 we just have to
see that ¢ is an isogeny. We will prove that v has finite cokernel, so that we
can formulate the belief that A(Xt) is an analytic torus as:

Conjecture 3. The map 1 is injective.

4.5.5 Towards a proof of the conjecture [2| when d = 2,
II: the map @ has finite cokernel

We mantain the same hypotheses and notation of the previous paragraph.
First, recall that I'® = H,(Kp,Z) and 1 is the natural map

w : HI(ICFa Z) — Hom(clllar(lcfa Z)’ Z) = Clllar(’CF’ Z)v
which maps a 1-chain to the evaluation of a harmonic cochain on it.
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Second, let us rewrite the definition of the harmonic cochains on Kr.
Observe that CL_(Kr,Z) C Z[Kr, ], and

har

Char(Kr, Z) := Ker(St}™) ﬂKer (omimy ﬂKer (1 min — Flow) =

Fl

1

Let us denote by J# := St7'"" @™ @ <]]./\mzn F10W£> the map

Fl

Z[Kr, 1" — ZlKro]” © Z[Kro)" @ Z[Kr, ]
defining the harmonic cochains, and observe that these modules are free and
finite generated, therefore C (Kr,Z) and Im(7#) are also finite generated

free abelian groups. As a consequence, dualizing we get a short exact se-
quence

0 — ()" — Z[Kr "] — CL_(Kp,Z)" — 0.

Let us denote by 7 the map Z[I/C;;m ] — C}..(Kr,Z)Y, which maps z to the
linear map that evaluated on a harmonic cochain is 7(z) := z*(¢) = ¢(z), and
note that it factorizes as the composition of two surjective maps:
ZIKr, ] — Ker(Stp™)Y — Cl.(Kr, Z)".
Observe that by means of restriction and factorization we recover v from
1 as we show in the next commutative diagram.

A T Ol (K, )
o T”T
Ker(d) Iﬁ%@% =: H,(Kr, Z)
In addition, because of the various surjective maps we get
Z[Key

Coker(1)) = Coker(p) = Ker(n) + Ker(d))

Consider now the composition

Stmm —~min al

Z[Kr] ZIKr;, ]

Z[Kro]
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Remark 4.5.40. Recall that in the lemma we have proved that the
map Oy : Z[I/C\p;mn] — Z[Kro| applies onto Z|Gglo. We will say that the
1-skeleton of Kr is a strongly connected graph.

Let us compute:

@roStm (M) =01 [ Y e] =) tle)—diA

s(e)=A s(e)=A

where d is the out-degree of A, equal to the number of edges having it
as source. Let us denote this composition by A™™ and call it the oriented
Laplacian of Kr. Note that Im(A™™) C Z[Krglo. Observe that its matrix in
the basis of vertices is given as follows: if D% is the diagonal matrix having
the element d} in the row corresponding to the vertex A and AXT = (a’r)p/
is the adjacency matrix,

1 if there is an edge e verifying s(e) = A, t(e) = A/,
0 else,

Kr _
Appr =

then, A™" is represented by At — D, Let L = D+ — A*r and let Ly be
the matrix result of removing the A-column and the A’-row, whose additive
opposite fits in the next diagram as follows:

D zv——2IKr)

AN'eKro\{A}
_LAA’ Amm
Coker(—Lna/) ZN" Z|Kro]
A"eRro\{A'}
Amin

>~

Z[Krolo/ Im(Amm) -~ @ Z(AN - A,)

A"elro\{A'}

in the specified basis, where the isomorphism is given by the identity matrix,
we are taking into account that

ZKro= @) Z( - A,
A'eKro\{A’}
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and the projection from Z[Kr,| onto the submodule generated by all the
vertices except A’ is the identity matrix on Z[Krq \ {A'}] together with the
column zero for A’. Observe also that if det(Ljx/) # 0, then

| Coker(—Laar)| = | Coker(Laa/)| = | det(Laar)]-

Definition 4.5.41. Let G = (V, E) be a directed graph. A vertex A € V is
called a root if for every vertex N’ # A there is an oriented path from N to
A. A graph G is called an in-tree if it is a tree and it contains a root. It is
said also to be an arborescence to the root.

The out-degree of a vertex is the number of edges whose source is that
vertexr. We denote it by d*.

Remark 4.5.42. If G is an in-tree with root A (“rooted at A7), then d*(A) =0
and dT(AN') =1 for all N' # A. In fact, this is an “if and only if”.

Definition 4.5.43. Let G = (V, E) be a directed graph. An spanning in-
tree or in-branching is a subgraph T C G being an in-tree and such that
V(T) =V(G).

Theorem 4.5.44 (Kirchhoff-Tutte Matrix-Tree Theorem). The number of
spanning in-trees rooted at A is det(Lan).

Corollary 4.5.45. The abelian group Z[Krglo/ Im(A™™) is finite.

Proof. Tt is enough to show that Coker(L,,) is finite for some A € Ky, and
S0, it is also enough to see that det(Ljy) # 0. Now, by the Kirchhoff-Tutte
theorem this is equivalent to the existence of some spanning in-tree. Finally,
since the 1-skeleton of ICr is a strongly connected graph, as we noted in the

remark [4.5.40, we conclude the existence of an in-branching rooted at A for
every A by the Edmonds branching theorem ([Edm73]). O

Next note that
Ker(0y) () Im(St7™) = St(Ker(A™")).
Theorem 4.5.46. The map
v« Hy(Kp, Z) — Hom(Cy,,(Kr, Z), Z) = C,(Kr, Z)"
has finite cokernel.
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Proof. Recall that we have
ZKr, ]

Coker(¢)) = Coker(p) = Ket() + Ker(d))

Moreover, the inclusion Ker(n) + Ker (91) D Im(St%) 4+ Ker(9;) induces a

surjective map
ZIKry ]/ (Im(St™) + Ker (81)) — Z[Kr, )/ (Ker(n) + Ker (91)).

Therefore, it is enough to see that Z[IE\FTm]/ (Im(St7"™) + Ker (0)) is finite
Recall the remark [£.5.40] from which we deduce the next diagram

Z[Kry ] - Z[Krolo
O

1%

Z[Ke ™)) Ker (01)

SH

Z[ICFO]()/ Im(Amm)

I

Z[KCry ™)/ (Im(St2™) + Ker (8,))

Thus, we are reduced to see that Z[Kro)o/ Im(A™™) is finite, but this is the
UJ

corollary
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Chapter 5

Conclusions and open questions

We have developed in the chapter [3| a construction of the Jacobian of
Mumford curves with all generality in a very natural way, obtaining on the
way a variety of results related to them. Further, a version of that construc-
tion gives us the Jacobian of a finite metric graph, as we have shown in the
chapter [2] and the same process of multiplicative integration with harmonic
measures on a compact set in the ends of a building can be done in higher
dimension, once we have the uniformized varieties built by Mustafin, as we
did in the chapter [4]

We also know the definition of harmonic cochains and the isomorphism
with harmonic measures in several cases. When L is a set of d + 1 points
in general position, %, is an apartment and the uniformized variety is an
abelian variety; when K is local, I' is a torsion-free, discrete, cocompact
subgroup of PGL( K) an £ = P4(K); when £ C PIK) is a compact set and
the dimension is d = 1, 2.

As we have already told, when the base field is p-adic and the given
uniformized variety is algebraic, Raskind and Xarles have related to the uni-
formized varieties what they called their p-adic intermediate Jacobians by
means of their cohomology groups, therefore, by the works of Schneider,
Stuhler, de Shalit and Alon, in the cocompact case they can be computed
through groups of harmonic cochains or harmonic measures (actually, for gen-
eral intermediate Jacobians, we should say harmonic distributions, following
the terminology of de Shalit and Alon in [AdS02]).

All these developments together lead us to believe that the construction
of the Jacobian of Mumford curves by using harmonic measures and mul-
tiplicative integrals, and using the isomorphism with harmonic cochains to
make the proofs is generalizable to any dimension of the uniformized va-
riety, to build any intermediate Jacobian, and over more general complete
non-Archimedean fields.
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In the chapter |4 we have given a conjectural construction of the Albanese
variety of the Mustafin uniformized varieties as we introduced them in the
proposition 4.5.29, with the little licence that we refer to the universal prop-
erty of the Albanese variety in the category of abeloid varieties, and none
of them have to be algebraic. Further, in dimension 2 we have reduced the
fact that our construction gives an analytic torus to the injectivity of a map
related to a finite simplicial complex.

Thus, several questions remain open when one wants to extend the con-
struction of the Jacobians of Mumford curves to higher dimension.

The Albanese variety of a Mustafin uniformized variety

The first open questions which stand out are the conjectures we proposed
in the final part of this thesis.

We have given a construction in any dimension of an object that we expect
it is an analytic torus and it verifies the universal property of the Albanese
variety in the category of abeloid varieties. In dimension 2, we have reduced
the fact that it is an analytic torus to:

Conjecture [3. The map
Y Hi(Kr,Z) — Hom(C},,(Kr, Z), Z)
is injective, where Ky = I'\AB,,..
This would have as a consequence:

Corollary 5.0.1. Given a generalized Schottky group I' C PGL(V'), if the
associated non-Archimedean uniformized variety Xr = I'\Qg,. has dimension
2,

HOIH(%(CF, Z)g, ij()an

A(XF) = j(rab)

15 an analytic torus.

Then we could abbreviate our second conjecture in the 2-dimensional case
or, more generally, if we know that A(XT) is an analytic torus:

Conjecture [2]. For any complete extension L|K such that Xr(L) # 0 and
for any p € Xr(L), the map

L
Xr.L F A(Xp)L

)

q|—>Lp(q):ur—>][ du
q—p
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is a morphism of analytic varieties such that i,(p) = 0, and for any such
other map ¢ : Xvr, — AL, where Ap is an abeloid variety and p(p) = 0,
there exists a unique morphism of abeloid varieties

(b . A<XF)L — AL
such that ¢ = ¢ o .

If, as we told in the remark [4.5.32 it is enough to deal with analytic
torus, it can be stated as follows:

Conjecture [2]. For any complete extension LIK such that Xv(L) # 0 and
for any p € Xr(L), the map

L
Xrz P A(Xp)L

g—1,(q) :u|—>][ dpu
q—p

is a morphism of analytic varieties such that i,(p) = 0, and for any such
other map ¢ : Xr — Ap, where Ap, is an analytic torus and ¢(p) = 0,
there exists a unique morphism of analytic torus

¢ : A(XF)L — AL
such that ¢ = ¢ o 1,,.

Next, we reproduce this conjecture as in the previous chapter, without
any assumption:

Conjecture [2l The object A(Xr) :=T"/.7(T) is a rigid analytic torus and
for any complete extension L|K such that Xr(L) # 0 and for any p € Xr(L),

the map
L

XFL

)

P A(Xp)L

s |
q—p

is a morphism of analytic varieties such that i,(p) = 0, and for any such
other map ¢ : Xr — A, where Ay is an abeloid variety and p(p) = 0,
there exists a unique morphism of abeloid varieties

¢ : A(XF)L — AL

such that ¢ = ¢ o 1.
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Generalizing Schottky groups to any dimension and the chamber
subcomplexes %, of the Bruhat-Tits building

Another conjecture we have stated refers to the definition of generalized
Schottky group, to which we impose several conditions:

Conjecture Let K a complete, discrete, valued field and V a K-vector
space. Let ' C PGL(V) be a finitely generated, hyperbolic subgroup contain-
ing a MAH subgroup H and such that T -p is compact for all p € P(V).
Then

o B, is a building.

o After a finite complete extension L|K, I'\PB. is a finite simplicial
complex and
- ‘@EF — F\%EF

1S a universal covering.

More specifically, the question should be on the appropiate conditions
to generalize Schottky groups and obtaining Mustafin uniformized varieties.
This author also imposes as a condition that the quotient is finite, but he
takes a building by definition as a convex envelope in the Bruhat-Tits build-
ing, while we prefer to associate first a compact set Lr C P(V') to the given
group and then to take the associated chamber subcomplex %, < ZA(G).
From this the next question arises:

Question 1. For which compact (or more generally, closed) sets L C P(V'),
the chamber subcompler B, < B(G) is a building? FEquivalently, we are
asking for, that given two chambers in B, there is an apartment in B
containing both.

It is important, among other matters, because in the 2-dimensional case
we have proved the isomorphism .# (L, Z)q = C}. (%, Z) only when %, is a
building or L is finite. Nevertheless, we only have used that %, is a building

in one step in the proof of the propsition [4.4.24] For dimension 2, where we
have defined harmonic cochains, we can formulate the next conjecture:

Conjecture 4. For any compact set L C P(V), the map
ki ML)y — Cro (B, 7)
s an isomorphism.
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Another conjecture on the generalization to any dimension of Schottky
groups relates to MAH subgroups as an extension to any dimension of cyclic
subgroups in dimension 1.

Conjecture 5. A MAH subgroup is a generalized Schottky group, or equiv-
alently, H - p is compact for all p € P(V).

Remark 5.0.2. If " is a generalized Schottky group and H C T" is a MAH
group, H also is a generalized Schottky group, since I' - p is compact for any
peP(V)and H-p C T -pis also compact as a closed subset of a compact
set.

Question 2. The previous conjecture is related to imposing the condition
that the closure of the orbit of any point is compact. We use it mainly to
prove that Lr is compact, and therefore, that B, is locally finite; further,
Mustafin does not impose any other similar condition but the finiteness of
the quotient. Nevertheless, in dimension 1 we have used it to extend the set
of limit points to other compact sets in order to make some proofs.

Is this condicion necessary? Is it enough to impose a weaker condition
(at least, B locally finite) to develope a suitable theory?

Another question on these groups uniformizing Mustafin varieties is on
the quotient finite simplicial complex?

Question 3. Which conditions characterize the finite simplicial complexes IC
realizing as the degeneration complexes of Mustafin uniformized varieties, so
that they can be expressed as K = I'\PB,,. over a suitable complete extension

of K?

In dimension 1 we know there is no condition, but it does not seem to be
the general case. Moreover, in dimension 1 we have shown the construction
of the Jacobian of a graph. Then a related question appears:

Question 4. How can be defined the Albanese variety of a finite simplicial
complex, maybe under some assumptions as those which answer the previous
question? In which categories should we work to get these definitions?

Constructions in the Berkovich setting and tropical geometry in
any dimension

As in dimension 1 the base fields are not necessarily discrete, the quotients
'\ A, are finite metric graphs, and thus, tropical curves. Then we can ask:
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Question 5. s there in higher dimension an equivalence between certain
metric objects including the finite simplicial complezes of the form I'\ A,
and some kind of tropical varieties as in dimension 17

This would be more useful if the next question has an affirmative answer:

Question 6. Can Mustafin uniformization be extended to varieties over any
complete non-Archimedean field (without the discreteness condition), maybe
by means of the Berkovich analytic geometry?

On the side of Bruhat-Tits buildings in this setting, which have been re-
cently studied in [RTWTI0], [RTW12] and [RTW15], the next question arises:

Question 7. How to give them a suitable combinatorial structure? How to
describe the types of cells and, in particular, the minimal cells?

On the extension to any dimension of the properties for dimension
2

The isomorphism that we have proved in dimension 2 between harmonic
cochains and harmonic measures rests in properties and constructions that
we could make in dimension 2, but not in general. Further, through the
section we could prove other results. Are these generalizable to any
dimension?

For example, we could prove the bijection between the ends of %, as
defined by us and the points of £, a result that we told to expect for £ = P(V)
in the remark [4.2.34

Conjecture 6. The map € : E — L is a bijection.

Other results generalize to any dimension under the assumption that %,
is a building because of the convexity condition, as explained for a particular
proposition in the remark [£.3.6]

Later, we define a certain chamber-convex hull and we told in the re-
mark to expect that it is equivalent to the given in [ABO§]. Further,
our interest is in a result of the kind of the proposition [4.3.24] so that by
the commented in the remark different definitions could be given. One

can ask which is better to generalize to higher dimension.

On more general harmonic cochains, harmonic distributions and
intermediate Jacobians

Next, we ask again on the harmonic cochains:

214



Question 8. Given a compact set L C P(V') on any dimension, how har-
monic cochains on the minimal edges of B should be defined?

Once we have this definition, the known isomorphisms in dimensions 1
and 2, and in the abelian and local cocompact cases lead us to the conjecture:

Conjecture 7. For any compact set L C P(V'), the map
kML, L)y — CL..(Br,7)
is an isomorphism (maybe, under the assumption that By is a building).

Actually, one can expect that a definition of harmonic cochains such that
K is an isomorphism for finite sets £ C P(V') would be good in the sense that
the previous conjecture would be satisfied (since, as we did in dimension 2,
the proof could be done by means of a restriction to local isomorphisms which
could be seen for finite sets L£).

A problem beyond that we do not know how to define harmonic cochains,
is that our given proofs depend strongly on the dimension, so that they are
not generalizable.

More widely, we can ask:

Question 9. Given a compact set L C P(V) on any dimension d and given
1 < g < d, how harmonic cochains on the minimal q-cells of %, should be
defined?

We think the answer to these questions can be approached in the same
way that Schneider and Stuhler do in [SS91, §4], which is also described in
[dS01l, §8.3], after comparing the combinatorial and the group theoretical
presentations of the buildings.

Let us denote the conjectural group of A-valued harmonic cochains on
the minimal g¢-cells of %, by C{ (%, A). In [AdS02], given a certain
space of flags B(Tf? which corresponds to the total Bruhat-Tits building
in the local, cocompact case, the authors define a certain space of har-
monic distributions D( gﬁ?,K Jhar Whose harmonicity condition only coin-
cides with that we defined in chapter [2| for ¢ = 1. In this case they show
DBy}, K)par = CL,,(B(G), K). Now, given a compact set £ C P(V') such
that %, is a building over a complete field with a discrete valuation, assume
we can associate to it a certain subset £, C B}, also in a certain set of ends
of the building (bigger than as we have defined it). Then we could extend

the conjecture on harmonic cochains on the minimal edges to:

Conjecture 8. Given a compact set L C P(V') such that B, is a building,
there is an isomorphism D(Ly, Z)par = CL, . (PBr, 7).

har
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These objects describe certain cohomology groups which give other in-
termediate Jacobians beyond the Albanese varieties. Under the assumption
that given £ we know what is £,, we could try to make a similar construction
to that we do for the Albanese variety. But a first question appears:

Question 10. How to build functions on L, on which apply multiplicative
integrals?

Analytic constructions for other varieties with totally degenerate
reduction

Given a product of Mumford curves, it is also a variety with totally de-
generate reduction. The final and more general question which stands out
is how to build analytically the intermediate Jacobians defined by Raskind
and Xarles for any variety with totally degenerate reduction or for Berkovich
analytic generalizations.
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