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els comentaris i preguntes de la Pilar Bayer a les meves xerrades als STNB
de 2013 i 2016.

Gràcies a la Roser Homs per l’ajut que m’ha donat sempre que li he
demanat, especialment referent a dubtes de català, però també en altres
temes. Gràcies també pels ànims que en tot moment m’ha donat. Gràcies al
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I, de nou, moltes gràcies, Xavier, per tot el suport, paciència i optimisme
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Introduction

Along this thesis we give a conjectural construction of the Albanese va-
riety of a non-Archimedean uniformized analytic variety. The main idea we
use is that analytic varieties contain a certain topological structure called
skeleton over which one can develope a parallel theory in an easier way, and
then one can rise several results and constructions to the analytic variety.

For example, in dimension 1, the skeleton of an analytic curve is a metric
graph, and the Jacobian of the curve can be built filling the Jacobian of the
graph, as we show for Mumford curves in the chapters 2 and 3 (and as Baker
and Rabinoff show for more general curves in [BR15]). Further, the skeleton
of the uniformizing space of a Mumford curve coincides with the uniformizing
tree of the skeleton of the curve, and several results on the analytic space
can be reduced to results on its skeleton.

In general dimension and over a discrete field, the given variety degener-
ates to a certain simplicial complex which behaves as its skeleton, and the
uniformization space has a building by degeneration complex. In certain
cases there is a reduction map from the analytic space to its degeneration,
which generalizes the retraction to the skeleton.

Thus, some constructions and proofs on analytic varieties can be reduced
to constructions and proofs on combinatorial objects (or metric spaces, when
there are weights). With this frame, we did this thesis trying to get the
construction of the Albanese varieties from a study of the skeletons of the
given varieties.

Next, we present an historical account of the developments which lead to
this framework and to the objectives of this thesis.

A well known result on complex algebraic curves states that the uniformiz-
ing space of a hyperbolic curve is the upper half-plane with an structure of
analytic space. At the begining of the 1970s, Mumford proved in [Mum72a]
an analogue result for a class of algebraic curves (those with totally degen-
erate reduction) defined over a p-adic field K changing the complex upper
half-plane by a rigid analytic space called p-adic upper half plane. In fact,
he proved that giving the curve is equivalent to give the uniformizing group
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(up to isomorphism in the respective categories). Thus, he starts with a
Schottky group Γ ⊂ PGL2(K) (which generalizes the complex groups stud-
ied previously by Schottky to the non-Archimedean setting), he builds the
corresponding p-adic upper half plane ΩLΓ

as the complement in P1
K of the

closure LΓ of the set of fixed points of elements of Γ, as the analytification of
a formal scheme built through the subtree TΓ of the Bruhat-Tits tree having
LΓ as ends, and then, he obtains the curve as the quotient CΓ = Γ\ΩLΓ

.
Then, Mumford proved in [Mum72b] that the Jacobians of these curves

are abelian varieties that can be expressed as rigid analytic tori. After those
works, Manin, Drinfeld, Gerritzen, van der Put and other authors found
explicit methods to build such Jacobians using p-adic theta functions and a
relation between these constructions and the theory of graphs, mainly involv-
ing the Bruhat-Tits trees and their quotients GΓ = Γ\TΓ in which degenerate
the Mumford curves. In the paper by Manin and Drinfeld [MD73] already
appear two pairings

( , )LΓ
: Γab × Γab −→ K∗

and
( , )Γ : H1(GΓ,Z)×H1(GΓ,Z) −→ Z

and the formula
vK((γ, γ′)LΓ

) = (γ, γ′)Γ

which equals the valuation of the pairing on the Schottky group, which de-
fines the Jacobian of the curve and gives the called monodromy pairing by
Grothendieck, to the natural pairing on the edges of the graph. It is an
important step to show that the analytic object defined previously has a
polarization and therefore, it is algebraizable.

The construction by Mumford was taken up by Drinfeld in his study of
the moduly varieties of elliptic modules [Dri74], where he showed that the
space ΩPd(K) which arise from the projective space of arbitrary dimension d
over a local field by removing all rational hyperplanes has a natural rigid
analytic structure of p-adic symmetric space by means of a reduction map to
the Bruhat-Tits building

r : ΩPd(K) −→ B(PGLd(K)).

Later Mustafin generalized this result and described a class of varieties of any
dimension generalizing the Mumford curves, built as the quotient of a more
general rigid analytic symmetric space ΩLΓ

by a suitable hyperbolic subgroup
Γ ⊂ PGLd(K). The construction of the symmetric space was done again as a
formal scheme with the structure given by a subbuilding BLΓ

of the Bruhat-
Tits building of PGLd(K). Later, first Schneider and Stuhler in [SS91],
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and then de Shalit and Alon in [dS01],[AdS02] and [AdS03] computed the
rigid de Rham cohomology of the Drinfeld p-adic symmetric spaces and their
quotient varieties Γ\ΩPd(K) by torsion-free, discrete, cocompact subgroups
Γ ⊂ PGLd(K), for which they are algebraic, in terms of the Bruhat-Tits
building. They introduce harmonic cochains on the Bruhat-Tits building
and harmonic measures on the spherical building at infinity (that, as a set
also can be seen as the K-points of a flag variety) to give different descriptions
of the rigid de Rham cohomology groups.

Further, Raskind and Xarles in [RX07a] and [RX07b] proved for these
p-adically uniformized varieties and other under the assumption of having
totally degenerate reduction that their cohomology verifies certain properties
which allow to develope a p-adic theory of intermediate Jacobians analogue
to the complex theory by Griffiths by means of a cohomological construction
of those, but not analytic as in the case of the Jacobians of Mumfrod curves.
The authors expected that such expected analytic construction could be done
by means of the description of the cohomology with harmonic measures pre-
viously mentioned. More recently, Wilke in [Wil11] has given an analytic
construction of the Picard variety of certain rigid analytic varieties, which
he called totally degenerated, and that also generalize the Mumford curves
to any dimension.

In addition to that, new analytic tools for non-Archimedean geometry
have been devoleped through the last decades.

On one hand, new analytic theories have appeared, like the Berkovich
analytic geometry, related to the tropical geometry, or the adic geometry
introduced by Huber. These have better properties than rigid analytic theory
and, as a consequence, they produce stronger results. For example, while
rigid analytic spaces have a G-topology (since the original topology is totally
disconnected, so that it is almost useless), but not a (“good”) topology in
the usual sense, Berkovich spaces did, since they have “more points”.

On the other hand, Bertolini, Darmon, Dasgupta, Green and Longhi
among others (cf. [BDG04], [Dar01],[Dar06], [Das04], [Das05], [Lon02]) have
developed a theory of multiplicative integrals which allow to give an analytic
construction of Stark-Heegner points (a certain class of p-adic points on mod-
ular elliptic curves), which are conjecturally global algebraic points, with the
hope of proving several cases of the Birch and Swinnerton-Dyer conjecture
(cf. [Dar06, §4]).

Both developments have dealt with Bruhat-Tits buildings and Jacobians
of Mumford curves or objects related to them. Indeed, the equality of pair-
ings described above have been studied and generalized in the context of
Berkovich geometry in [BR15, Thm.’s 2.3 and 2.9], and the reduction map
by Drinfeld has been generalized and reinterpreted as a retraction and as
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a tropicalization. Multiplicative integrals have been used to describe Jaco-
bians of Mumford curves over local fields, after and equality relating these
ones and theta functions in [Das04], and taking into account subtrees of the
Bruhat-Tits tree.

We make our thesis in this context. Its first goal is to build the Jacobian
of a Berkovich-analytic Mumford curve over any complete non-Archimedean
field using these recently introduced techniques. After introducing the theory
of harmonic measures, the Schottky groups and the Mumford curves with the
tools provided by Berkovich geometry we give the defining morphism of the
Jacobian

Γab
×
∫
•
d
// Hom(M (L,Z)Γ

0 ,Gm,K) := T

γ � // ×
∫
γp−p

d : µ 7→ ×
∫
γp−p

dµ

and the prove that it is an abelian variety rests, mainly, in the equality
between the pairings and that they are positive definite. To do that, we
prove the isomorphism between the harmonic cochains on the tree associated
to Γ and the harmonic measures on the ends of the tree and we build a
retraction map from the Berkovich upper half-plane to the tree, which is also
its skeleton.

On the way, we prove in all its generality some old claims of which we
did not find any other rigurous proof in the literature; we generalize several
definitions and results which were only stated for rigid analytic geometry or
when the base field is local. In particular, some of these results are impor-
tant theorems given in [GvdP80] or in [vdP92]. Moreover, we also reprove
for Mumford curves recent results of Berkovich geometry of curves mainly
appeared in [BPR13] and [BR15], using the theory of harmonic measures,
related to the theories of harmonic cochains and of multiplicative integrals
by means of the Bruhat-Tits R-trees and subtrees of those. In particular, we
relate the Jacobian of the Mumford curve with the Jacobian of the skeleton
of the curve (that when the valuation is discrete it is known as its degenera-
tion graph, and that it is a tropical curve), the last Jacobian playing the role
of tropicalization of the first one, thanks, again, to the equality between the
graph and the monodromy pairings through the valuation map.
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ΩLΓ
// //

rLΓ

����

CΓ

iz0 //

rLΓ,Γ

����

Hom(M (L,Z)Γ
0 ,Gm,K)

×
∫
d
(
Γab
) ∼= Jac(CΓ)

vK

��

TK(LΓ) // // GΓ

ip // Hom(M (E(TK(LΓ)),Z)Γ
0 ,R)∫

d
(
Γab
) ∼= Jac(GΓ).

Our construction of the Jacobian of a Berkovich-analytic Mumford curve
can be useful to make even more explicit the description of such Jacobians
by trying to compute the defining lattices (that is, the periods) using the
multiplicative integrals (this is part of a common project with Piermarco
Milione). It also provides some hints to generalize it to higher dimension.
More specifically, a similar way can be followed to construct the Albanese
variety of a non-Archimedean uniformized variety.

The second goal of this thesis is to present a conjectural analytic con-
struction of the Albanese variety of a Mustafin uniformized variety (that is,
those algebraic non-Archimedean uniformized varieties by Mustafin) and to
give some steps in the proof when the dimension of this one is 2, following an
analogue process to the one employed for Mumford curves. Very little work
has been done until now on Mustafin varieties, beyond the uniformized by
the Drinfeld p-adic symmetric spaces and torsion-free, discrete, cocompact
subgroups Γ ⊂ PGLd(K) on dimension greater than 1, and the same occurs
with the theory of harmonic cochains. They appear, almost always, with a
local base field and the total Bruhat-Tits building, as in the papers cited
above by Schneider, Stuhler, de Shalit and Alon. We introduce the construc-
tion identically to the given in dimension 1 with the generality that Mustafin
results allow, that is, under a complete, discrete valued field, and we show in
dimension 2 that the isomorphism between harmonic cochains and harmonic
measures, known in dimension 1 for any compact L ⊂ P1(K) and in any
dimension d when L are d+ 1 points not contained in a hyperplane or when
L = Pd(K) and K is local, can be generalized. To get this, first we associate
to a compact set L ⊂ Pd(K) a chamber subcomplex BL of the Bruhat-Tits
building, which is a building for the construction of Mustafin, and we study
in detail the structure of the minimal 1-skeleton of BL in relation with L by
means of the apartments of BL and of the open sets associated to the edges
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as defined in [AdS02]. This structure let us to consider three important maps

StminL : Z[BL0] −→ Z[B̂L
min

1 ],

∂min : Z[BLd] −→ Z[B̂L
min

1 ]

and
FlowL : Z[B̂L

min

1 ] −→ Z[B̂L
min

1 ],

which have a key importance in such study.
In particular, we note that we introduce in dimension 2 a definition of har-

monic cochain on BL -through these three maps presented just above-, which
generalizes the harmonic cochains defined by de Shalit in the local, cocompact
case. This is one of the difficult points, since we are interested in harmonic
cochains on the minimal 1-skeleton of BL (more generally, we should take
into account the q-skeleton to relate to the corresponding intermediate Ja-
cobian), which is more directly related to the construction by Schneider and
Stuhler than to the given by de Shalit (cf. [SS91, Cor. 17 Rem. (2)] and
[dS01, §8.3]), but in a very different language. In addition, there is a third
construction by Garland in [Gar73] on the quotients of the building which
differs slightly with respect to the other (except for the harmonic cochains
on the chambers).

The contents of this thesis are organized as follows:
Chapter 1 is devoted to compute the discrete Jacobian of a graph using

concepts, tools or just ideas that are of great importance through the next
chapters, like are the Jacobian of a graph itself, the harmonic cochains on a
graph (cf. remark 1.4.4) and one of the versions of the star map.

We start by giving the concept of graph and other related that ap-
pear along all the thesis, like the orientation of a graph and the opposite
edge. Then we introduce a suitable definition of principally polarized dis-
crete abelian variety which adapts the classical analytic definition, and we
study equivalent formulations. With it, we give the construction of the Jaco-
bian, for which we follow [BdlHN97], we relate it to the Jacobian of a graph
as presented in [BN07] and we also mention the isomorphic dual construc-
tion of the Albanese torus in [KS08]. Finally, we show two different ways to
compute such Jacobians following the works of de Shalit and Alon [dS01],
[AdS03], and Infante [Inf06].

In the chapter 2 we introduce finite metric graphs, which are non other
thing than tropical curves, and we compute their Jacobian by means of their
universal coverings and the theory of harmonic measures and integration.
Further, we define harmonic cochains and relate them to harmonic measures
in such construction.
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After generalize the definition of graph given in the first chapter to weight
and metric graphs, we study the structure of the covering tree and its ends,
and then we introduce harmonic cochains, measures and integrals. In the
final section we start by giving the definition of the Albanese torus of a metric
graph by Caporaso and Viviani in [CV10] in relation with the definition of the
discrete Albanese torus of a graph, and we compute it and the Abel-Jacobi
map by using the ideas of [BF11], which relate them to a generalization of
the discrete Jacobian of a graph which we give in our chapter 1 for weighted
graphs. Finally, we show that we can compute the Albanese torus by means
of integration on the ends of the universal covering tree.

In chapter 3 we present Mumford curves, their Jacobians and their Abel-
Jacobi maps over any complete non-Archimedean field in the setting of
Berkovich analytic geometry, we reprove or also generalize in an original
way known results about them, as we remarked above in the explanation of
our first goal.

First, we construct the Bruhat-Tits R-tree as the skeleton of the Berkovich
projective line, we define the subtree TK(L) associated to a compact set
L ⊂ P1(K) and we construct the retraction map rL : ΩL −→ TK(L). Then,
we define multiplicative integrals following Longhi in [Lon02] and we relate
them to the integration introduced in the previous chapter over the corre-
sponding tree, which allows that in the final section we prove the equality
between the monodromy pairing and the natural pairing on the edges of the
skeleton of the Mumford curve. To build the Mumford curve we also in-
troduce Schottky groups and reprove the results given by [GvdP80] in an
original way. Further, we define the map

µ̃ : O(ΩL)∗ :−→M(L,Z)0

and we prove some properties of it, going further that in [vdP92], in addition
to the Poisson formula, which lead to the proof of the symmetry of the pairing
defining the analytic torus associated to the curve, and thus, to the fact that
it is indeed an abelian variety, and it is also useful to develope briefly a theory
of theta function with the objective of obtaining that the analytic torus is
indeed the Jacobian of the curve. Moreover, for this introduction of theta
function we also use and reprove some recent results of Berkovich geometry
appeared in [BPR13].

The last chapter is devoted to the second main objective of this thesis,
which consists, on one hand, in the conjectural construction of the Albanes
variety of a Mustafin uniformized variety over any dimension, and on the
other hand, on the proof of the isomorphism between harmonic measures
and harmonic cochains related to an arbitrary compact L ⊂ P2(K).
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In fact, the construction of the Albanese variety is done in the last section,
from a generalitazion to higher dimension of Schottky groups, in the same
way that Mustafin does. The last one is done by means of asking to a
hyperbolic group Γ ⊂ PGLd(K) that it and their associated complex BLΓ

verify certain conditions. Previously, we start by defining the Bruhat-Tits
building over a complete, discrete valuation field and study some properties.
We construct the subcomplex BL associated to a compact L and we study
it in relation with its minimal 1-skeleton, its points at infinity (L) and the
maps introduced above (the minimal star, the minimal differential and the
flow). Even if BL is not a building, it has some nice properties that we
present by means of its apartments, of the minimal edges, of the associated
open sets and of the points of L. Some technical details lead us to continue
our study on dimension 2, in particular, the definition of harmonic cochains,
as remarked above. With this tools, we can proof the main theorem of the
chapter, which is the isomorphism

C1
har(BL,Z) ∼= M (L,Z)0

when BL is a building of dimension 2. This allows to reduce the proof that the
defining map of the analytic variety associated to the Mustafin uniformized
variety is an analytic torus to the fact that the map

H1(Γ\BLΓ
,Z) −→ Hom(C1

har(Γ\BLΓ
,Z),Z)

is injective.



Conventions

In this section I will give some definitions related to the notation employed
along this work.

The notation I will define over objects of certain categories, like groups
or vector spaces, works over the morphisms of the corresponding categories
too.

Along this work all fields will be commutative. For topological spaces,
compactness means quasi-compactness plus the Hausdorff property, and so
locally compact spaces are also Hausdorff by definition.

If H is an abelian group, following the standard notation for the extension
of scalars we will denote HK := H ⊗K, where K is a field of characteristic
0, and the tensor product is taken over Z. In addition, for us the dual group
of an abelian group H will be

H∨ = HomZ(H,Z).

Assume now V is a vector space over a field K. Its dual will be denoted V ∗

in order to distinguish it of the dual as abelian group. The annihilator of a
vector subspace W ⊂ V is

W⊥ := {ω ∈ V ∗|ω(v) = 0 ∀v ∈ W}

If R ⊆ K, a lattice in V is a discrete subgroup Λ ⊆ V with rank equal to the
dimension of V as R-vector space, in particular, Λ ∼= ZdimR(V ). If moreover,
V has an inner product 〈 , 〉, the dual of a lattice (with respect to the inner
product) is

Λ# = {x ∈ V | 〈x, λ〉 ∈ Z ∀ λ ∈ Λ},

which is also a lattice.

We shall denote by log the natural logarithm.

By a complete extension L|K over a complete base field K with absolute
value | · | we will refer to a field L containing K, complete with respect to an
absolute value | · |L extending | · |.
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For any x ∈ K, r ∈ R≥0, we consider the ball in the completion CK := K̂
of the algebraic closure of K, B(x, r) := {y ∈ CK | |y − x| ≤ r}.

Now, let K be any field, let V be an n-dimensional K-vector space, and
denote by V ∗ its dual, so PV = Proj(S•(V ∗)) is the projective space asso-
ciated to V , whose K-rational points correspond to the 1-dimensional sub-
spaces of V (thus, with the traditional notation we have P(V ) = PV (K)). We
also will consider the dual projective space PV ∗ = Proj(S•(V )), whose K-
rational hyperplanes are in correspondence with the K-rational points of PV .
Given such a point z ∈ P(V ), we denote by Hz the corresponding hyperplane
in PV ∗ . We will identify V with S1(V ), and the field K with S0(V ).

We will write G := PGL(V ); it is naturally isomorphic to the group of
automorphisms of PV as K-algebraic variety. It acts also on PV ∗ by the usual
contragredient representation (if γ ∈ G, ω ∈ P(V ∗), then γ · ω := ωγ−1).
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Chapter 1

Jacobians of graphs

By analogy with the classical case for complex algebraic curves one may
consider the Jacobians of finite graphs. These appear to us when we consider
the dual graph of the reduction of a curve over a p-adic field with totally
degenerate reduction.

Moreover, graphs are more simple objects than curves, and also than
metric graphs. It is because of this that we start studying them and their
Jacobians in order to get familiar with distinct notions and notations which
will appear with variations through this thesis.

First of all, we define a graph and some related notions which will appear
henceforth and which will be also generalized.

Second we introduce discrete analytic tori and principally polarized dis-
crete abelian varieties before compare different ways to compute them.

Then, we recall the construction of the Jacobian of a graph made in
[BdlHN97] and we show that it is a principally polarized discrete abelian
variety. We finish the chapter given two different constructions of the Jaco-
bians and proving that they are equivalent. The last recalls tools provided by
[Inf06, Ch. 3], while the previous one remakes the construction made using
harmonic cochains in [AdS03], mainly in the section 4.2, for the 1-dimensional
case, but with integral coefficients.

1.1 Introduction

Definition 1.1.1. A graph (or undirected graph) G consists of a set V = V (G)
of vertices, a set E = E(G), disjoint from V , of edges, and an incidence
function

ψ : E −→ V (2)
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that associates to each edge of G an unordered pair of (not necessarily dis-
tinct) vertices of G (what is also called an unweighted undirected multigraph).
If the 2 vertices are the same we shall say the corresponding edge is a loop.
If 2 edges have associated the same pair of vertices we shall say that they are
parallel edges.

A directed graph is a pair (V,E) of disjoint sets (of vertices and edges)
together with a map

s× t : E −→ V × V.

We call s(e) the source vertex of e and t(e) its target vertex.

An orientation of an undirected graph G = (V,E) is a directed graph
G′ = (V ′, E ′) such that V ′ = V , E ′ = E and

s× t : E −→ V × V

verifies ψ(e) = {s(e), t(e)} for any e. An oriented graph is a graph with an
orientation.

A graph G = (V,E) (in particular, an oriented graph) has associated
naturally a directed graph (V, Ê) where Ê = Ê(G) = E t E, which is the
union of two copies of E, and two maps

s× t : Ê −→ V × V and o : Ê −→ Ê,

the last written as o(e) =: e and called the opposite of e, satisfying for each
e ∈ E that e 6= e, e = e and s(e) = t(e). In fact, the function o is given by
mapping an edge of a copy of E to the same edge in the other copy of E, and
both copies define oriented graphs with opposite orientations.

The genus of a graph is its genus as topological space, which will be denoted
g(G). The degree of a vertex v of G, dv, is the number of edges incident to
it.

For any graph G, we have a 2 to 1 map

Et : Ê −→ E.

An orientation in G is given by one preimage in Ê(G) of each edge of E for
that map.
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1.2 Discrete analytic tori

We need to know what kind of object are we looking for. Following the
analogy with the classical case, we know that Jacobians of complex curves are
principally polarized abelian varieties. Below we define a discrete analogue
of them.

Definition 1.2.1. A discrete analytic torus is a triple

(H1,0, H0,1, ν : H1,0 −→ H0,1),

where H1,0 and H0,1 are free abelian groups of the same rank (finite), ν is an
injective morphism. A polarization in a discrete analytic torus is a morphism
ψ : H1,0 −→ H0,1∨ being injective and satisfying the conditions

ψ(λ)(ν(λ)) > 0∀ λ ∈ H1,0 r {0}
ψ(λ)(ν(λ′)) = ψ(λ′)(ν(λ))∀ λ, λ′ ∈ H1,0.

A discrete abelian variety is a discrete analytic torus which admits a polariza-
tion. A polarized discrete abelian variety is a discrete analytic torus together
with a polarization.

Definition 1.2.2. A principally polarized discrete abelian variety (from now
on, ppdav, for short) is a quadruple

(H1,0, H0,1, ν : H1,0 −→ H0,1, Q : H0,1
R ×H

0,1
R −→ R),

where H1,0 and H0,1 are free abelian groups of the same rank (finite), ν is an

injective morphism, and Q is an inner product such that H1,0#
= H0,1 and

H0,1#
= H1,0 looking at H1,0 inside of H0,1 ⊆ H0,1

R by means of ν.

Remark 1.2.3. Note that the fact that ν is an injective morphism of abelian
groups of the same rank makes it to have finite cokernel. Further, the condi-

tion H1,0#
= H0,1 implies that Q restricted to H1,0 takes values in Z.

The dimension of a discrete analytic torus or of a (principally polarized)
discrete abelian variety is the rank of the free abelian groups of its definition.

Definition 1.2.4. A morphism between two ppdav’s (H1,0, H0,1, ν, Q) and
(H ′

1,0
, H ′

0,1
, ν ′, Q′) is a pair of group homomorphisms f 1,0 : H1,0 −→ H ′

1,0

3



and f 0,1 : H0,1 −→ H ′
0,1

, such that the diagrams

H1,0

f 1,0

��

ν // H0,1

f 0,1

��

H0,1
R ×H

0,1
R

f 0,1
R × f

0,1
R

��

Q

(( R

H ′1,0 ν ′ // H ′0,1 H ′0,1R ×H ′
0,1
R

Q′
66

commute.

Remark 1.2.5. The last definition allows us speak of isomorphisms. Then
one also may see that giving an isomorphism class of ppdav’s is the same
that giving a matrix A with integer coefficients defining an inner product in
Rn (that is, symmetric and positive definite) up to multiplication by GLn(Z).
From the ppdav we obtain A as a matrix representing Q in a basis of H1,0.
Reciprocally, one has H1,0 := Zn, the canonical lattice in Rn, H0,1 := Zn#,
the dual lattice, and Q the inner product defined by A.

Now, by means of the next equivalences, we shall see how the definition
of a ppdav completes the ones given before.

Theorem 1.2.6. Given H1,0, H0,1, free abelian groups of the same rank
(finite), the following are equivalent.

a. There are ν and Q such that (H1,0, H0,1, ν, Q) is a ppdav.

b. There are an isomorphism and a bilinear map

H1,0 ψ
∼=

// H0,1∨, H1,0 ×H0,1∨ 〈 , 〉
// Z

respectively, such that

〈λ, ψ(λ′)〉 = 〈λ′, ψ(λ)〉 ∀λ, λ′ ∈ H1,0 and

〈λ, ψ(λ)〉 > 0∀ λ ∈ H1,0 r {0}

c. There are an injective morphism and an isomorphism

H1,0 � � ν // H0,1, H1,0 ψ
∼=

// H0,1∨

respectively, such that
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• ψ(λ)(ν(λ)) > 0 ∀ λ ∈ H1,0 r {0}
• The diagram

H1,0 ν //

ψ

��

H0,1

ψ∨

��

H0,1∨ ν∨ // H1,0∨

commutes.

Proof. If we start with the ppdav and we want to prove b, we define ψ as
follows:

ψ(λ) = Q(ν(λ), )∀ λ ∈ H1,0

We have ψ(λ) ∈ H0,1∨ since H1,0#
= H0,1. It is an isomorphism. In order to

prove that, take an ω ∈ H0,1∨ and tensor it by R, obtaining thus an element
of H0,1

R
∗
. Since Q is an inner product on H0,1

R , there exists a unique λ ∈ H0,1
R

such that Q(λ, ) = ωR. Using ωR|H0,1 ∈ H0,1∨ and H0,1#
= H1,0 we conclude

λ ∈ ν(H1,0). This proves surjectivity, but also injectivity since ω determines
ωR.
Now we define the bilinear map by

〈λ, ω〉 = Q(ν(λ), ν(ψ−1(ω)))∀ λ ∈ H1,0, ω ∈ H0,1∨

The map 〈 , 〉 satisfies the required properties due to Q provides them. Fur-
ther, it induces the morphism

H1,0 //
(
H0,1∨

)∨ ∼= H0,1

λ � // 〈λ, 〉

which coincides with ν. To show this, we take an arbitrary element ω ∈ H0,1∨

and we note that for any λ ∈ H1,0

〈λ, ω〉 = Q(ν(λ), ν(ψ−1(ω))) = ω(ν(λ))

by definition of ψ and symmetry of Q.

We use the last idea to prove the reciprocal. Thus, we define ν from 〈 , 〉 by

H1,0 //
(
H0,1∨

)∨ ∼= H0,1
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This definition means 〈λ, ω〉 = ω(ν(λ)) for all λ ∈ H1,0 and ω ∈ H0,1∨. Fur-
thermore, the properties of 〈 , 〉 do easy to check that ν is injective.
In order to define Q we first note that ψ and 〈 , 〉 give a bilinear map

Q̃ : H1,0 ×H1,0 −→ Z (Q̃(λ, λ′) := 〈λ, ψ(λ′)〉). Further, we may tensor Q̃
and ν with R getting

H1,0
R ×H

1,0
R

Q̃R // Z, H1,0
R

νR // H0,1
R

The map νR is a monomorphism (since R is Z-flat and ν injective) of vector
spaces of the same dimension, and then an isomorphism. Thus we define Q
as the composition

H0,1
R ×H

0,1
R

ν−1
R × ν

−1
R // H1,0

R ×H
1,0
R

Q̃R // Z

Then, by going through the vector spaces, νR, Q̃ and Q̃R, one may check
that Q is an inner product taking into account the properties of 〈 , 〉, and
also that, by construction (of Q and ν), Q satisfies

Q(ν(λ), µ) = ψ(λ)(µ)∀ λ ∈ H1,0, µ ∈ H0,1

This implies H1,0 ⊆ H0,1#
and H0,1 ⊆ H1,0#

. In order to prove the equalities,
tensor ψ with R. Then consider the following commutative diagram:

H0,1
R

H1,0
R

νR ∼=

OO

ψR
∼=

// H0,1
R
∗

H1,0

OO

ψ
∼=

// H0,1∨

OO

Let λ ∈ H0,1
R . Then Q(λ, ) ∈ H0,1

R
∗
. Saying λ ∈ H0,1#

means that Q(λ, )
restricted to H0,1 has image in Z. In this case, since ψ is an isomorphism,
there is an element λ′ ∈ H1,0 with Q(ν(λ′), ) = Q(λ, ) on H0,1. The commu-
tativity of the diagram implies that these two maps coincide on H0,1

R . Then

λ = ν(λ′) in H1,0 inside H0,1
R , thus H0,1#

= H1,0.
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Now, dualizing the maps ψ in the diagram we have

H0,1
R

ψR
∗

∼=
// H1,0

R
∗

H0,1

OO

ψ∨

∼=
// H1,0∨

OO

Let µ ∈ H1,0#
in H0,1

R . This means that Q(νR( ), µ) = ψR
∗(µ) ∈ H1,0

R
∗

re-

stricted to H1,0 takes values in Z, that is, it belongs to H1,0∨. As before,
there is an element µ′ ∈ H0,1 such that ψ∨(µ′) coincides with the restriction
of ψR

∗(µ) to H1,0, therefore by the commutativity of the diagram we obtain

µ = µ′ ∈ H0,1 and then H1,0#
= H0,1.

Now we will proof the equivalence between b and c. Assume b is satisfied.
We have already defined ν from 〈 , 〉 proving a. The properties are verified
straightforward from the ones given in b, for example

(ψ∨(ν(λ))) (λ′) = ψ(λ′)(ν(λ)) = 〈λ, ψ(λ′)〉 = 〈λ′, ψ(λ)〉 = ψ(λ)(ν(λ′)) =

= (ψ∨(ν(λ′))) (λ) ∀ λ, λ′ ∈ H1,0

means that the square is commutative.
Let’s assume now c. We may define

H1,0 ×H1,0 Q̃ // Z

(λ, λ′) � // Q̃(λ, λ′) := (ψ(λ))(ν(λ′))

H1,0 ×H0,1∨ 〈 , 〉
// Z

(λ, ω) � // 〈λ, ω〉 := Q̃(λ, ψ−1(ω))

The required properties are verified immediately from the ones that we have
via these definitions.

1.3 The Picard group and the discrete Jaco-

bian of a graph

Closely related to the Jacobian of a graph is the Picard group of a graph.
We define both below following [BdlHN97] and [BN07], and we compare
them.
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Let G be a finite connected graph with its set of directed edges Ê(G).
Let C0(G,R) be the vector space of all real functions on V (G), and

let C1(G,R) be the vector space of all functions g : Ê(G) −→ R such that
g(e) = −g(e) for all e ∈ Ê(G). These are Euclidean spaces for inner products
defined by

〈f1, f2〉0 =
∑

v∈V (G)

f1(v)f2(v)

and

〈g1, g2〉1 =
1

2

∑
e∈Ê(G)

g1(e)g2(e) =
∑

e∈E(G)

g1(e)g2(e)

for all f1, f2 ∈ C0(G,R), g1, g2 ∈ C1(G,R). We have an exterior differential
d : C0(G,R) −→ C1(G,R) defined by

(df)(e) = f(t(e))− f(s(e))

with its adjoint operator d∗ : C1(G,R) −→ C0(G,R) given by

(d∗g)(v) =
∑

e∈Ê(G)
t(e)=v

g(e) =
∑

e∈E(G)
t(e)=v

g(e)−
∑

e∈E(G)
s(e)=v

g(e),

and thus a ”Laplacian operator”

∆ = d∗d : C0(G,R) −→ C0(G,R)

We may restrict all these maps to the subgroups of integer functions C0(G,Z),
C1(G,Z). We identify the first with the free abelian group on V (G), the

group of divisors on G, Div(G) by means of f ←→
∑

v∈V (G)

f(v)v. Inside

Div(G) we have the subgroup of degree 0 divisors

Div0(G) =
{ ∑
v∈V (G)

nvv |
∑

v∈V (G)

nv = 0
}

One sees that Im ∆ ⊆ Div0(G) and defines the Picard group of G by

Pic0(G) := Div0(G)/ Im(∆)

We note this coincides with the definition of Jacobian of a graph given in
[BN07].
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Next, we define the lattice of integral flows of the graph as

Λ1(G) := C1(G,Z)
⋂

Ker(d∗)

and the first cohomology groups as

H1(G,R) = Coker (d : C0(G,R) −→ C1(G,R))

H1(G,Z) = Coker (d : C0(G,Z) −→ C1(G,Z))

Further, we have

C1(G,R) = Ker(d∗)⊕ Im(d) // // Ker(d∗)

If we restrict the projection of C1(G,R) onto H1(G,R) to Ker(d∗) we get
an isomorphism, then we will identify H1(G,R) with Ker(d∗). By def-
inition, we have Λ1(G) ⊆ Ker(d∗). We consider its dual lattice inside of
Ker(d∗) by 〈 , 〉1|Ker(d∗), Λ1(G)#. From now on, we will denote the restriction

〈 , 〉1|Ker(d∗) by ( , ) looking at it as a bilinear form on H1(G,R). It is clear

that Λ1(G) ⊆ Λ1(G)#. We also have

H1(G,Z) �
� // H1(G,Z)⊗Z R ∼= H1(G,R)

and the isomorphism between Ker(d∗) and H1(G,R) restricts to an isomor-
phism between Λ1(G)# and H1(G,Z) ([BdlHN97, Prop. 3 (iii)]).

Gathering all this data, we obtain the next diagram:

C1(G,R) = Ker(d∗)⊕ Im(d) // //

����

Ker(d∗)
∼=

ss
H1(G,R) Λ1(G)#

?�

OO

∼=

ss
H1(G,Z)

?�

OO

C1(G,Z)

44 44

/�

??

Λ1(G) = Ker(d∗)
⋂
C1(G,Z)

?�

OO

9 Y

kk

? _oo

Definition 1.3.1. We define the (discrete) Jacobian torus of a graph G,
Jac(G), as the quadruple

(Λ1(G), H1(G,Z), Λ1(G) // H1(G,Z) , ( , ) : H1(G,R)×H1(G,R) −→ R)

where the map is given by the composition Λ1(G) �
� // Λ1(G)# ∼= H1(G,Z) .
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Once and for all, for us, the Jacobian of a graph will be its discrete
Jacobian.

Proposition 1.3.2. The Jacobian of a graph is a principally polarized dis-
crete abelian variety.

Proof. Since Λ1(G) and Λ1(G)# are lattices of the same vector space, they
are free abelian groups of the same rank, and so Λ1(G) and H1(G,Z). The
duality relations are shown in [BdlHN97, Prop. 3 (iii)].

Proposition 1.3.3. The Picard group of a graph is given by the Jacobian,
since

Pic0(G) ∼= H1(G,Z)/H1(G,Z)#

Proof. We have

H1(G,Z)/H1(G,Z)# ∼= Λ1(G)#/Λ1(G) ∼= Pic0(G)

where the first isomorphism comes from the one between Ker(d∗) andH1(G,R)
and the second is given in [BdlHN97, Prop. 7 (iii)].

Remark 1.3.4. Dually to the Jacobian we may define the (discrete) Al-
banese torus of G. One has C0(G,R), C1(G,R), H1(G,R), H1(G,Z) to-
gether with an inner product, then H1(G,Z)#. In this case we have that
H1(G,Z) ⊆ H1(G,Z)#, and moreover

Pic0(G) ∼= H1(G,Z)#/H1(G,Z)

This is one of the goals of [KS08]. This is similar to the classical case, where
the Jacobian variety and the Albanese variety are isomorphic in dimension
1.

1.4 Computing the Jacobian of a graph

Now, we will look at another way which will let us to compute the Jaco-
bian of a graph, as we will prove.

The involved construction is studied in [dS01] and [AdS03], which are
papers about a particular collection of p-adic varieties with totally degenerate
reduction, certain quotients of Drinfeld’s p-adic symmetric domains called p-
adically uniformized varieties. A small variation of the one dimensional case
is which gives the Jacobian.
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Let G = (V,E) be a finite connected oriented graph. Our goal is to
compute its Jacobian by means of harmonic cochains as defined by de Shalit.
In order to do that, we will reproduce in a simplified way and over the
integers the construction done in [AdS03, §4.2]. Actually, that construction
proceeds by considering the universal covering of G, is applied to it, and then
invariants for the covering group (that is, the fundamental group of G) are
taken. We skip all these steps and work directly over the graph, with the
same result.

First of all, for each vertex v, we have to enumerate the target vertices
of the (adjacent) edges which have v as source (s(e) = v) in one to one
correspondence with them, even if there are coincidences among the vertices.
We denote these enumerated vertices by v1, v2, . . . , vdv , and the corresponding
directed edges ev1, e

v
2, . . . , e

v
dv ∈ Ê(G) (s(evi ) = v).

To start with the construction, consider for any vertex and any (oriented)
edge the diagonal maps

Z −∆v // Zdv Z −∆e // Z2

av
� // (−av, . . . ,−av) be

� // (−be,−be)

and their corresponding products over all the vertices and (oriented) edges
of the graph G:

∏
v∈V (G)

Z

∏
(−∆v)

//
∏

v∈V (G)

Zdv
∏

e∈E(G)

Z

∏
(−∆e)

//
∏

e∈E(G)

Z2

(av)v
� // (−av, . . . ,−av)v (be)e

� // (−be,−be)e

Note that since the products are finite, they are direct sums, and for example∏
v∈V (G)

Z ∼= Div(G).

Further, we are considering the factor Zdv with base v, v1, . . . , vdv−1, that is,
the vertex v itself, and the enumerated vertices removing the last.

Next, we define other two morphisms for each vertex and (oriented) edge,

Zdv // Zdv−1 Z2 // Z

(cvi )i=0÷dv−1
� // (cvi − cv0)i=1÷dv−1 (ae1, a

e
2) � // ae2 − ae1
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and we take the products, as above:

∏
v∈V (G)

Zdv
∂∗V //

∏
v∈V (G)

Zdv−1

((cvi )i=0÷dv−1)v
� // ((cvi − cv0)i=1÷dv−1)v

∏
e∈E(G)

Z2
∂∗E //

∏
e∈E(G)

Z

(ae1, a
e
2)e

� // (ae2 − ae1)e

Here we think of Zdv−1 with base ev1, e
v
2, . . . , e

v
dv−1.

To complete the structure we need, we define 3 morphisms more. The
first is ∏

v∈V (G)

Z d0
//
∏

e∈E(G)

Z

(av)v
� // (at(e) − as(e))e

For the second morphism, first we have to inject the product over the vertices
v, v1, . . . , vdv−1, in the one adding the last vertex,∏
v∈V (G)

Zdv = Zv ⊕ Zv1 ⊕ · · · ⊕ Zvdv−1
� � //

∏
v∈V (G)

Zdv+1 = Zv ⊕ Zv1 ⊕ · · · ⊕ Zvdv

((cvi )i=0÷dv−1)v
� // ((cvi )i=0÷dv)v

where

cvdv = dvc
v
0 −

i=dv−1∑
i=1

cvi .

With this definition, we note the symmetry among the cvi for i 6= 0, since,
if we change any of them by cvdv , the relation is also satisfied. For i ≥ 1 we
may write cvi = cvvi . With this notation we can define the next map:∏

v∈V (G)

Zdv+1 //
∏

e∈E(G)

Z2

((cvi )i=0÷dv)v
� //

(
c
t(e)
s(e) − c

s(e)
0 , c

t(e)
0 − cs(e)t(e)

)
e

We denote the composition of these two maps d̃0, which is the second mor-
phism we were looking for.
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For the third morphism we proceed in a similar way. We start taking into
account the injection∏
v∈V (G)

Zdv−1 = Zev1 ⊕ · · · ⊕ Zevdv−1
� � //

∏
v∈V (G)

Zdv = Zev1 ⊕ · · · ⊕ Zevdv

((bvi )i=1÷dv−1)v
� // ((bvi )i=1÷dv)v

where

bvdv = −
dv−1∑
i=1

bvi .

As before, we remark the symmetry among the bvi , in the relation. Consider
an edge e, assume that s(e) = v and t(e) = v′. There are i and j such that

v′ = vi and v = v′j. We denote bvi = bve = bs(e)e and bv
′

j = bv
′

e = b
t(e)
e (remember

that e is the opposite edge of e). The composition of the last map with∏
v∈V (G)

Zdv //
∏

e∈E(G)

Z

((bvi )i=1÷dv)v
� // (−bt(e)e − bs(e)e )e

is, by definition, d1. We get together all these morphisms in the next diagram:

0 //
∏

v∈V (G)

Z

∏
(−∆v)

//

d0

��

∏
v∈V (G)

Zdv
∂∗V //

d̃0

��

∏
v∈V (G)

Zdv−1 //

d1

��

0

0 //
∏

e∈E(G)

Z

∏
(−∆e)

//
∏

e∈E(G)

Z2
∂∗E //

∏
e∈E(G)

Z // 0

The exactness of the rows is clear and also the commutativity of the first
square. We check the commutativity of the second square:

d1 (∂∗V (((cvi )i=0÷dv−1)v))e = d1 (((cvi − cv0)i=1÷dv−1)v)e =

= −ct(e)s(e) + c
t(e)
0 − cs(e)t(e) + c

s(e)
0 = c

t(e)
0 − cs(e)t(e) − c

t(e)
s(e) + c

s(e)
0 =

= ∂∗E

(
c
t(e)
s(e) − c

s(e)
0 , c

t(e)
0 − cs(e)t(e)

)
e

= ∂∗E

(
d̃0
((

(cvi )i=0÷dv−1

)
v

))
e

We may write the results of the differents maps in terms of e forgetting i’s,
that is, it does not matter if some vertex is vdv , because of the symmetry
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before remarked. As a consequence of the snake lemma we get a morphism
ν, which we can see in the next diagram:

0

��

0

��

0

��
0 // Ker(d0) //

��

Ker(d̃0) //

��

Ker(d1)

��

ν

//

0 //
∏

v∈V (G)

Z

∏
(−∆v)

//

d0

��

∏
v∈V (G)

Zdv
∂∗V //

d̃0

��

∏
v∈V (G)

Zdv−1 //

d1

��

0

0 //
∏

e∈E(G)

Z

∏
(−∆e)

//

��

∏
e∈E(G)

Z2
∂∗E //

��

∏
e∈E(G)

Z //

��

0

Coker(d0) //

��

Coker(d̃0) //

��

Coker(d1) //

��

0

0 0 0

Definition 1.4.1. We define the de Shalit Jacobian of the graph G as the
triple

(Ker(d1),Coker(d0), ν : Ker(d1) −→ Coker(d0))

and we denote it by JacdS(G)

Theorem 1.4.2. There is a natural isomorphism between the de Shalit Ja-
cobian and the discrete analytic torus determined by the Jacobian of a graph,

JacdS(G) ∼= (Λ1(G), H1(G,Z),Λ1(G) −→ H1(G,Z)).

14



In particular, the de Shalit Jacobian has a structure of ppdav isomorphic to
Jac(G), since we know that this discrete analytic torus admits a principal
polarization.

Proof.

Lemma 1.4.3. There is an isomorphism Λ1(G) ∼= Ker(d1).

Proof. First, we remark that the lattice of integral flows Λ1(G) is nothing
that the morphisms g : Ê(G) −→ Z such that g(e) = −g(e), and∑

e∈Ê(G)
t(e)=v

g(e) = 0

or, what is the same, ∑
e∈Ê(G)
s(e)=v

g(e) = 0.

Second, we define a map

b : Λ1(G) −→
∏

v∈V (G)

Zdv−1

by ((
b(g)

)
i

)
v

= g(evi ).

The image of this map is in the kernel of d1:

d1 (b(g))e = −b(g)
t(e)
e − b(g)s(e)e = −g(e)− g(e) = 0

Then we have b : Λ1(G) −→ Ker(d1).
Take now an element of

Ker(d1) ⊆
∏

v∈V (G)

Zdv−1 ⊆
∏

v∈V (G)

Zdv .

If we look at it inside
∏

v∈V (G) Zdv , we may write it ((bvi )i=1÷dv)v. For any

oriented edge e, we consider the vertex s(e), then we have e = ei for some

i, and we define g(e) := b
s(e)
i . Similarly to the way as we proceed in the last

computation, we see that the condition of being in the kernel of d1 implies
g(e) = −g(e) (g ∈ C1(G,Z)), and the immersion∏

v∈V (G)

Zdv−1 ⊆
∏

v∈V (G)

Zdv ,
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given by

bvdv = −
dv−1∑
i=1

bvi ,

implies g ∈ Ker(d∗). It is clear that this construction is inverse to the map
b, so this is an isomorphism.

Remark 1.4.4. The idea of this lemma is that these isomorphic groups are,
in some way, groups of harmonic cochains as defined by de Shalit, but over the
finite graph G. Indeed, if TG −→ G is the universal covering of G with fun-
damental group Γ, Ker(d1) coincides with C1

har(TG,Z)Γ = H0(Γ,C1
har(TG,Z))

as it appears in [AdS03, §4.2] up to that we specify a different tree and that
the group of values is Z.

We also have an isomorphism between Coker(d0) and H1(G,Z). This is
consequence of the 2 objects being cokernels of isomorphic morphisms, as we
proof below.

Lemma 1.4.5. There is an isomorphism of morphisms as described in the
next commutative square:

C0(G,Z) d //

EvV∼=

��

C1(G,Z)

EvE∼=

��∏
v∈V (G)

Z d0
//
∏

e∈E(G)

Z

Proof. The isomorphisms are defined as

C0(G,Z)
EvV //

∏
v∈V (G)

Z C1(G,Z)
EvE //

∏
e∈E(G)

Z

f � // (f(v))v g � // (g(e))e

We show the commutativity:

EvE(d(f)) = (f(t(e))− f(s(e)))e = d0((f(v))v) = d0(EvV (f))

16



Finally, we have to proof the commutativity of the square

Λ1(G) //

b∼=

��

H1(G,Z)

EvE∼=

��
Ker(d1) ν // Coker(d0)

Take g ∈ Λ1(G). The image in H1(G,Z) is g. Following

EvE(g) = (g(e))e

On the other hand, b(g) =
(
g(evi )i

)
v
. To finish we have to see its image by ν.

To this end, we regard the definition of ν. We take as antiimage of
(
g(evi )i

)
v

by the map ∂∗V :
∏

v∈V (G)

Zdv −→
∏

v∈V (G)

Zdv−1 the element defined through

cv0 := 0

cvi := g(evi ), i = 1÷ dv − 1

After this, we compute d̃0. By means of the injection of
∏

v∈V (G) Zdv in∏
v∈V (G) Zdv+1 we get

cvdv = −
dv−1∑
i=1

g(evi ) = g(evdv).

Therefore

d̃0
((

(cvi )i=0÷dv−1

)
v

)
e

= (g(e),−g(e))e = (−g(e),−g(e))e.

And this element has (g(e))e as antiimage by
∏

(−∆e). Then

ν(b(g)) = ν(
(
g(evi )i

)
v
) = (g(e))e,

so the square commutes.

To finish this chapter, we give another way to compute the Jacobian
which is implicit in [Inf06, Ch. 3].

Next we consider now the map

ZE(G) d // ZV (G)

e � // t(e)− s(e)
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and denote its kernel T−1
1 (G) = Ker(d ), the space of cycles of G. Likewise

we take into account the map

ZV (G) d ′ // ZE(G)

v � //
∑

e∈E(G)
t(e)=v

e−
∑

e∈E(G)
s(e)=v

e

to define T 1
0 (G) = Coker(d ′), and we consider the composition

T−1
1 (G) �

� // ZE(G) // // T 1
0 (G)

which will be called N . Together with this we dualize

ZV (G) d ′ // ZE(G) // T 1
0 (G) // 0

to obtain the exact sequence

0 // T 1
0 (G)

∨ //
(
ZE(G)

)∨ d ′∨ //
(
ZV (G)

)∨
Taking the dual bases to V (G) and to E(G) and the correponding isomor-
phisms we get a commutative diagram with exact rows

0 // T−1
1 (G) //

∼=

��

ZE(G) d //

∼=

��

ZV (G)

∼=

��

ks

0 // T 1
0 (G)

∨ //
(
ZE(G)

)∨ d ′∨ //
(
ZV (G)

)∨
where the commutativity of the second square comes from the fact that the
transpose of the matrix of d ′ in the given bases is the matrix of d .

Theorem 1.4.6. The quadruple

(T−1
1 (G), T 1

0 (G), N : T−1
1 (G) −→ T 1

0 (G), T−1
1 (G) −→ T 1

0 (G)
∨
)

satisfies the condition c of Theorem 1.2.6, then it is a ppdav which we will
call the Chow Jacobian of G and denote by JacCh(G). Furthermore, we have

Jac(G) ∼= JacCh(G)
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Proof. The way of proving this theorem is the next. First we consider Jac(G),
which we know it is a ppdav by Proposition 1.3.2. Second, we have the map

Λ1(G) // H1(G,Z)
∨

λ � // (λ, )

which together with the morphism Λ1(G) −→ H1(G,Z), applying Theorem 1.2.6,
satisfies the condition c of itself. Finally, the only thing rest to do is proving
the isomorphism between the Jacobians, that is, looking for two isomor-
phisms T−1

1 (G) ∼= Λ1(G), T 1
0 (G) ∼= H1(G,Z) resulting in commutative dia-

grams:

T−1
1 (G) N //

∼=

��

T 1
0 (G)

∼=

��

T−1
1 (G) //

∼=

��

T 1
0 (G)

∨

∼=

��

Λ1(G) // H1(G,Z) Λ1(G) // H1(G,Z)
∨

where the horizontal arrows are the ones already given. Thus we will get all
the statements at the same time.

To define T−1
1 (G) −→ Λ1(G), let

∑
e∈E(G) mee be a cycle in T−1

1 (G) ⊆ ZE(G)

and associate to it the map g defined by

g(e) :=

{
me, if e ∈ E(G)
−me, if e ∈ E(G)

We can write in such a way any map of C1(G,Z). Note further that

d (
∑

e∈E(G)

mee) = 0

means the same that d∗(g) = 0. Therefore, we can reverse the construction.
Thus we obtain a well defined map, which is an isomorphism. Actually we
get more, an isomorphism between ZE(G) and C1(G,Z), which induces the
commutativity of the next diagram with exact rows

ZV (G) d ′ //

∼=

��

ZE(G) //

∼=

��

T 1
0

//

∼=

��

0

+3

C0(G,Z) d // C1(G,Z) // H1(G,Z) // 0
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Then, the commutativity of the first square follows immediately, since it is
the composition of the next commutative squares:

T−1
1 (G) �

� //

∼=

��

ZE(G) // //

∼=

��

T 1
0 (G)

∼=

��
Λ1(G) �

� // C1(G,Z) // // H1(G,Z)

Finally, let us denote the dual element in
(
ZE(G)

)∨
of an edge e by δe

(δe(e) = 1, δe(e
′) = 0 for e′ 6= e). We want to prove the commutativity of

the second square. Let us take an element
∑

e∈E(G)

mee in T−1
1 . If first we

follow the way of the left-down corner we get the associated map g ∈ Λ1(G)

and (g, ) ∈ H1(G,Z)
∨
. Following the other way, we get

∑
e∈E(G)

meδe ∈ T 1
0
∨
.

Next, take any element η ∈ H1(G,Z). We have η = h for some h ∈ C1(G,Z),
and

(g, η) = 〈g, h〉 =
∑

e∈E(G)

g(e)h(e) =
∑

e∈E(G)

meh(e)

by construction of g. On the other hand we compute ∑
e∈E(G)

meδe

 ∑
e∈E(G)

h(e)e

 =
∑

e∈E(G)

meh(e)

The equality of the two last terms computed give the commutativity of the
square and finishes thus the proof.

Remark 1.4.7. Note that neither JacdS(G) nor JacCh(G) depend on the
orientation E(G) on the graph. Indeed, they can be obtained from Jac(G) by
the corresponding isomorphisms, and the construction of the Jacobian does
not use E(G) but just Ê(G).
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Chapter 2

The Albanese torus of a finite
metric graph

Along this chapter we extend the notions studied in chapter 1 to metric
graphs and, then, we give a construction of the Albanese torus of a weighted
graph and the Abel-Jacobi map by means of measures on the ends of its
universal cover along sections 2.1 and 2.4.

Caporaso and Viviani studied in [CV10] the Torelli theorem for tropical
curves by means of the identification of these ones with metric graphs and of
the Albanese torus of these graphs. Baker and Faber developed some tools in
[BF11] -where they also identify a tropical curve with a compact connected
metric graph of finite total length- to understand better the corresponding
Abel-Jacobi map, from their definition of the Jacobian of a weighted graph,
which generalizes the definition of the Jacobian of a graph we showed in the
chapter 1 from [BdlHN97]. In particular, they introduce a way to compute
the Albanese torus of a weighted graph by means of 1-forms.

First, we show some structural results on metric and weighted graphs and,
in particular, on trees. Then we study the ends of a tree as a topological
space (with open compact sets which generalize the ones defined in [Das05,
§2.3] and in [AdS02, §1.6] for certain discrete Bruhat-Tits trees). In the
next section we define harmonic measures and harmonic cochains and we
prove a canonical isomorphism between them, before introducing integrals
on compact sets, which we will use on the ends of the trees. Finally, we relate
the 1-forms in [BF11] with the harmonic cochains on a finite metric graph
and we rise them to its universal cover, we proof the isomorphism between
the Γ-invariant harmonic measures and the abelianized of Γ, where it is the
fundamental group of the graph, and we conclude with a way to compute its
Albanese torus and its Abel-Jacobi map by means of the integration on the
ends of the universal cover tree.
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2.1 Graphs, their models and the topology

on the ends of a tree

First we will give the definitions of weighted and metric graphs and we will
show some essential properties of them. Then, we will introduce the classical
notions of rays and ends, in order to finish studying a natural topology on
the set of ends of an infinite tree.

Definition 2.1.1. A weighted graph G is a non empty set V = V (G) called
vertex set together with a directed edge set Ê = Ê(G), a weight function

` : Ê −→ R>0,

an edge assignment map

s× t : Ê −→ V × V

which makes correspond to each edge e a pair (s(e), t(e)), where s(e) is called
the source of e and t(e) the target of e, and a bijection

o : Ê −→ Ê

verifying `(o(e)) = `(e), s × t(o(e)) = (t(e), s(e)), o(e) 6= e and o(o(e)) = e.
The edge o(e) is called the opposite of e and denoted by ē (cf. [BF11] and
[Ser80]).

The valence of a vertex is the number of edges whose source is that vertex.

Definition 2.1.2. The topological realization of a weighted graph G is a
topological space G := |G| formed by vertices in correspondence with the
vertices of G and, for each e ∈ Ê(G)/{e ∼ o(e)}, by an homeomorphic copy
of the interval [0, `(e)], glued according to the structure of the weighted graph.

If it admits a distance, it is a metric space, so we call it a metric graph,
for which the length of their edges is given by the weight of the edges of G
(the same definitions and notations that we have for a weighted graph work
for a metric graph).

Remark 2.1.3. This definition of metric graph includes the one stated in
[BF11, §3]. In fact, they are the same under the assumptions of compactness,
conectedness and finite valence everywhere. Thus, as we mentioned in the
beginning of this chapter, tropical curves will be implicit objects through it.

Remark 2.1.4. Note that, even though all the edges have a length in the
topological realization of a graph, it is not necessarily a metric space. Take,

22



for example, the graph formed by two vertices v, v′ and infinite edges en be-
tween them in correspondence with the non-zero natural numbers, each of
them of weight 1

n
. Then, we would define

d(v, v′) = inf
n∈N>0

{`(en)} = inf
n∈N>0

{
1

n

}
= 0

But a distance only can be zero between two points if they are the same, so
this is not a metric space.

Definition 2.1.5. Given a metric graph G, a model for it is any weighted
graph G such that G is obtained as its topological realization, that is G ∼= |G|.
A minimal model is one in which all the vertices have valence greater than 2.

Definition 2.1.6. Given two models G,G′ of a metric graph G and edges
e ∈ Ê(G), e′ ∈ Ê(G′) such that |e′| ⊂ |e|, we say that they have the same
orientation or they preserve the orientation if it is the same in R after the

homeomorphism ρe : |e|
∼=−→ [0, `(e)] (which preserves the orientation by def-

inition, since ρe(s(e)) < ρe(t(e))).

Remark 2.1.7. For an edge e ∈ Ê(G), the topological realizations of edges
|e| and |o(e)| give the same set in |G| but with opposite orientations.

Definition 2.1.8. A cycle in a weighted graph (resp. in a metric graph) is a
subgraph whose topological realization (resp. itself) is homeomorphic to S1.

A tree T is a connected graph (weighted or metric respectively) without
cycles. This is equivalent to say that given two vertices v, v′ ∈ V (T), there
exists a unique set of edges Pv,v′ ⊂ Ê(T) such that there is an homeomorphism
ρ0 : |Pv,v′| −→ [0, r] ⊂ R verifying ρ0(|v|) = 0 and ρ0(|v′|) = r.

We will denote the path |Pv,v′| by [v, v′].

By definition, other topological notions (like connectedness...) will apply
to a weighted graph if and only if they apply to its topological realization.

Let G = (V, Ê) be a weighted graph such that G = |G| is connected. As
in the definitions of tree, a path between two vertices v, v′ ∈ V (G) is a set of
edges P ⊂ Ê(G) such that there is an homeomorphism ρ0 : |P | −→ [0, r] ⊂ R
verifying ρ0(|v|) = 0 and ρ0(|v′|) = r. The difference is that for a graph we
can have many paths between two vertices. The length of a path P is

`(P ) :=
∑
e∈P

`(e)

Let us denote by Pv,v′ the set of paths between two vertices v, v′ ∈ V (G).
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Proposition 2.1.9. Let G = (V, Ê) be a weighted graph such that G = |G|
is connected. If for all pair of different vertices v, v′ ∈ V it satisfies

inf
P∈Pv,v′

`(P ) > 0,

then G = |G| is a metric graph.

Proof. Given two different vertices v, v′ ∈ |V | we define

d(v, v′) := inf
P∈Pv,v′

`(P ), and otherwise d(v, v) = 0.

Any other point, which is inside an edge e, can be thought as a vertex of
valence two with the corresponding distances to the vertices of e, so the
distance function extends to all G.

By definition d(v, v′) ≥ 0 for all v, v′ ∈ G and it is a symmetric map. By
the hypothesis d(v, v′) = 0 if and only if v = v′, so we only have to see the
triangle inequality.

Since two paths between v and v′, and between v′ and v′′ respectively
extend to a path between v and v′′ if they do not cut through another path,
and otherwise allow to build a shorter path between v and v′′, we get

d(v, v′′) = inf
P∈Pv,v′′

`(P ) ≤ inf
P∈Pv,v′

`(P ) + inf
P∈Pv′,v′′

`(P ) = d(v, v′) + d(v′, v′′)

as we desired.

Corollary 2.1.10. The topological realization of a weighted graph G = (V, Ê)
such that for all v, v′ ∈ V there are a finite number of paths joining them is
a metric graph. In particular, this is the case of trees and finite graphs.

Lemma 2.1.11. Let G a weighted graph given by the sets (V, Ê) of vertices
and edges respectively and let G := |G| be its topological realization. Let
p, p′ ∈ G be two points connected for at least a path P ⊂ G between them,
so we have an homeomorphism ρ : P −→ [0, λ] ⊂ R such that ρ(p) = 0 and
ρ(p′) = λ′. Then P

⋂
|V (G)| is finite.

Proof. Observe that if p is not the topological realization of a vertex of V ,
then is inside |e| for an e ∈ Ê and such that one of the connected components
of |e\{p}| is inside P and the other has empty intersection with P ; therefore,
we can extend P by |e| and assume that p = |v0| for v0 ∈ V , and identically
for p′. Now we get, |e|

⋂
P 6= ∅ if and only if |e| ⊂ P .

For any edge e ∈ Ê such that |e| ⊂ P take the image by ρ of the interior
of its topological realization; it is an open interval Ue := ρ(|e|) = (ze−he, ze+
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he) ⊂ [0, λ]. For any |v| ∈ |V |
⋂
P different from p, p′, let ev the edge such

that t(ev) = v and |ev| ⊂ P and ev the one such that s(ev) = v and |ev| ⊂ P .
Take the open interval Uv := (ρ(|v|)−hev/2, ρ(|v|)+hev/2) ⊂ [0, λ]. For p take
the open Up := [0, hep/2) ⊂ [0, λ], and for p′ the open Up′ := (λ − hep′/2, λ].
Thus, we have

[0, λ] = Up ∪
⋃
|e|⊂P

Ue ∪
⋃

|v|∈|V |
⋂
P

Uv ∪ Up′ .

Since the interval is compact, we can make this covering with a finite number
of these open sets given by Ê ′ ⊂ Ê, V ′ ⊂ V , both finite. But then we have
|V ′| = P

⋂
|V (G)| and we finish.

In particular, given two vertices v, v′ of a weighted tree T, we get that
[v, v′]

⋂
|V (T)| is finite. As a consequence, we can extend the length of the

edges of a tree given by the weight map to a metric on |T|

d : |T| × |T| −→ R≥0

by d(v, v′) =
∑

e∈Pv,v′
`(e) and by “linearity”.

We will consider the free abelian group Z[Ê(G)] generated by the directed
edges of G.

Given a weighted graph G, the star of a vertex v, St(v), is the set of edges
of G with source v.

Let G = (V, Ê) be a weighted graph and H be a finite weighted subgraph
of G. We define the star of the subgraph as

St(H) := {e ∈ Ê| s(e) ∈ H, e 6∈ Ê(H)}

Note that this generalizes the definition of St(v) for a vertex v.

Definition 2.1.12. A ray in a weighted tree T is an infinite subtree whose
topological realization is homeomorphic to [0,+∞) (so the condition of being
infinite is equivalent by the lemma 2.1.11 to say that there are no v, v′ ∈ V (T)
such that the ray is inside [v, v′]), or equivalently, it is the tree generated by
an injective sequence of vertices, that is, an injective map N −→ V (T) such
that [vn−1, vn] ∩ [vn, vn+1] = {vn} for all n ≥ 1. Two rays are equivalent
if they differ in a finite subgraph of the union, which is the same that their
intersection being another ray. An end of T is an equivalence class of rays.

Let us denote its set of ends by E(T).
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Proposition 2.1.13. Let T and T′ be two weighted trees such that |T| ∼= |T′|
(this is the same that having two models for a given metric tree). Then there
is a natural bijection E(T) ∼= E(T′).

Proof. Let [r] ∈ E(T) be an end. Let us denote the homeomorphism of the
topological realizations by T : |T| −→ |T′|. Since |r| ∼= T (|r|) ⊂ |T′| ∼= |T| is
infinite, there are no p, p′ ∈ |T′| such that T (|r|) is contained in the path be-
tween p and p′, and then, there are no v, v′ ∈ V (T′) such that [v, v′] ⊃ T (|r|).

Write ρ′ : T (|r|)
∼=−→ [0,+∞) and let p0 = ρ′−1(0) ∈ T (|r|) be the start-

ing point of this half-line. If it is not a vertex |v0| ∈ |V (T′)|, it is inside
|e| ∈ |Ê(T)| such that |t(e)| ∈ T (|r|) (because of the previous remark that
T (|r|) * [v, v′]). Define then v0 := t(e) ∈ V (T′). Apply the same reasoning
to the half-line ρ′−1([ρ(v0) + 1,+∞) to get v1 ∈ V (T′), and so on, so we get
a ray (v0, v1, v2, . . . ) in T′ and an end in E(T′).

Now we have defined the map E(T) −→ E(T′). Similarly we have a
map in the opposite direction. Since the topological realization of the initial
ray and of the ray resulted of the composition of both maps coincide on the
topological realization of the tree, their intersection is infinite, so another ray,
therefore the composition is the identity and we get the claimed bijection.

Definition 2.1.14. We define a ray in a metric tree T as the topological
realization of a ray in a model T. We say that two of them are equivalent if
their intersection is the realization of another ray in a model of T , and an
end of T is a class of rays in it. Let us denote its set of ends by E(T ) ∼= E(T).

By the previous proposition, this definitions are independent of the mod-
els chosen.

Definition 2.1.15. Let e be an edge of T . We define B(e) as the set of
ends in E(T ) classes of rays r such that e ⊂ r and any homeomorphism

ρr : r
∼=→ [0,+∞) preserves the orientation of e, that is, ρr(s(e)) < ρr(t(e)).

Note that we can do this definition for e an edge of a model of T and
B(|e|) = B(e) due to the previous definitions.

Proposition 2.1.16. These sets satisfy the next properties:

• Since T is a tree, E(T ) = B(e) t B(e) for each edge e.

• After considering a model of T , for any vertex v its star gives rise to
another partition

E(T ) =
⊔

e∈St(v)

B(e).
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• Let e, e′ be edges of a model of T . Then

B(e)
⋂
B(e′)



= B(e) = B(e′), if there is another model of T with
an edge e′′ such that |e|, |e′| ⊂ |e′′|
preserving orientation

= ∅, if s(e), s(e′) ∈ [t(e), t(e′)] ⊂ T
= B(e) ⊂ B(e′), if s(e) ∈ [t(e), s(e′)] and s(e′) 6∈ [t(e), t(e′)]
= B(e′) ⊂ B(e), if s(e′) ∈ [t(e′), s(e)] and s(e) 6∈ [t(e′), t(e)]{
6= ∅ and
( B(e),B(e′)

,
if [s(e), s(e′)] is not an edge and
s(e), s(e′) 6∈ [t(e), t(e′)]

• In the last of the previous cases, for any end ε ∈ B(e)
⋂
B(e′) there

exists an edge e′′ such that ε ∈ B(e′′) ⊂ B(e)
⋂
B(e′).

Proof. Given any ray in T , it is clear that we can make a unique equivalent
ray starting either by an edge e or by its opposite, so the first assertion
follows. We also can choose a unique equivalent ray starting by a given
vertex v, which determines the edge of St(v), thus, we get the second claim
too.

Next, we take two edges e, e′′ in T such that e ⊂ e′′ preserving the orien-
tation. Then, the inclusion B(e′′) ⊂ B(e) is clear. But given a ray through e
(“well oriented”), since e′′ is an edge the ray always can be extended to an
equivalent ray through e′′, so B(e) = B(e′′).

Now assume s(e), s(e′) ∈ [t(e), t(e′)]. Observe that any homeomorphism

ρ : [t(e), t(e′)]
∼=−→ I ⊂ R, where I is a closed interval, reverses the orientation

of e′ with respect to e, so B(e)
⋂
B(e′) = ∅ by definition of these subsets of

ends.
Next, take s(e) ∈ [t(e), s(e′)], s(e′) 6∈ [t(e), t(e′)] and an end in B(e),

which can be given by a ray starting by s(e) and through t(e). Since
s(e) ∈ [t(e), s(e′)], we can extend the ray to an equivalent one starting by
s(e′), and s(e′) 6∈ [t(e), t(e′)] implies that t(e′) belongs to the extended ray,
therefore, the end is in B(e′) too.

Finally, assume that [s(e), s(e′)] is not and edge and s(e), s(e′) 6∈ [t(e), t(e′)].
The first condition implies that there is a proper vertex v 6= s(e), s(e′) in
[s(e), s(e′)], that is, a vertex in every model of T , therefore having valence
at least 3. Take the unique minimal path containing e and e′, and so also
v. observe that if t(e) 6∈ [s(e), s(e′)], then [t(e), t(e′)]

⋂
[s(e), s(e′)] = ∅, due

to the second condition, but this would have as a consequence that there
is a proper vertex in at least one of the edges, which cannot occur. Then
t(e), t(e′) ∈ [s(e), s(e′)]. Next, if [t(e′), t(e)] ⊂ [s(e), s(e′)] preserving the ori-
entation and with t(e) 6= t(e′), a proper vertex in [s(e), s(e′)] should be in e
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or e′ which is also imposible Therefore we get [t(e), t(e′)] ⊂ [s(e), s(e′)] and
v ∈ [t(e), t(e′)] necessarily. Since v has valence at least 3, there is a ray start-
ing at v whose class is in B(e) and B(e′), so the intersection is non empty.
Since [s(e), s(e′)] reverses the orientation of one edge with respect the other,
the intersection is neither B(e) nor B(e′). Finally, and because of the same
reason, any end in the intersection is the class of a ray starting by v and
which does not pass through none of the edges e, e′, so through a third edge
e′′ belonging to the star of v. Reciprocally, any ray in this way belongs to
the intersection, so B(e′′) ⊂ B(e)

⋂
B(e′).

Because of the last property, we can take the empty set with the sets
B(e) as the basis for a topology in E(T ), which, from now on, will be the
considered topology there.

Given a tree T and an edge e in it, we denote by T t(e)e and T s(e)e to the
connected components of T \ e̊ containing t(e) and s(e) respectively. Observe

that T s(e)e = T t(e)e .

Remark 2.1.17. We deduce a number of properties on the ends of the tree.

• The first property of the previous proposition implies that the sets B(e)
are open and closed.

• Along the first paragraph of the proof we have noted that there is a
bijection between the ends and the topological rays starting at a fixed
vertex.

• A continuous action of a group Γ on T induces a continuous action of
Γ on E(T ).

• Note that given an edge e in T , the connected component T t(e)e contains
rays representing exactly the ends of B(e). Thus, we get

B(e) ∼= E(T t(e)e ) and B(e) = E(T s(e)e ).

Therefore, all the properties of E(T ) depending on hypotheses on T will

apply to the open sets B(e) while T t(e)e satisfy the same hypotheses.

Proposition 2.1.18. The topological space E(T ) is Hausdorff.

Proof. Take two distinct ends ε, ε′ ∈ E(T ).
Take a vertex v0 in T . If there is one edge e ∈ St(v0) such that ε, ε′ ∈ B(e)

take the vertex v1 := t(e). Repeat this construction for v1 to get v2 and for vi
to get vi+1. It has to be finite, since otherwise we would get a ray representing
both ends and they would be equal.
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So we can take a vertex v in T such that there are e, e′ ∈ St(v) and
ε ∈ B(e) and ε′ ∈ B(e′). Thus, we have disjoint open sets containing two
distinct ends for any couple of them.

Lemma 2.1.19. Given three ends ε, ε′, ε′′ ∈ E(T ), there exists a unique ver-
tex v ∈ T such that there are three edges e, e′, e′′ ∈ St(v) verifying ε ∈ B(e),
ε′ ∈ B(e′) and ε′′ ∈ B(e′′).

Proof. Let us start proving the existence. As we proved in the previous
proposition, we can take a vertex v0 with e0, e

′
0 ∈ St(v0) such that ε ∈ B(e0)

and ε′ ∈ B(e′0). If there is no e′′ ∈ St(v0) distinct of the other two whose
open set contain ε′′, this end is contained in B(e0) or B(e′0). We can assume
that ε′′ ∈ B(e0). Take v1 = t(e0). Then ε, ε′′ are contained in B(e1),B(e′′)
for e1, e

′′ ∈ St(v1) \ {e0} and ε′ ∈ B(e0). If e1 6= e′′ we have find the vertex
we are looking for; otherwise, we repeat this reasoning with v2 = t(e1) and
so on. Again as in the proof of the previous proposition, this process has to
be finite, since we are defining rays representing ε and ε′′ which are different,
and in the finite step we get the vertex v.

For any other vertex v′ 6= v, take the path [v′, v] joining them. At least two
of the three edges e, e′, e′′ are not in these path, therefore the corresponding
ends belong to the same open set of the edges of St(v′).

Proposition 2.1.20. Let T = (V, Ê) be a model for T and let F ⊂ Ê
be a well oriented finite set of edges, meaning that it satisfies the following
hypothesis:

• it cannot exist an edge e of T and edges e′, e′′ ∈ F such that |e′| ⊂ e,
preserving the orientation and |e′′| ⊂ e reversing the orientation.

Take the source vertices of F, σ := σ(F ) := {s(e)| e ∈ F} and denote by Tσ
the subtree generated by σ. Then

1. The open sets {B(e)}e∈F are pairwise disjoint if and only if F
⋂
Ê(Tσ)

is empty, which means |F | ⊂ | St(Tσ)|.

2. The equality
⋃
e∈F

B(e) = E(T ) occurs if and only if St(Tσ) ⊂ F .

Proof. We will show the claims by induction on the cardinal of vertices
n = #V (Tσ).

If n = 1, then Tσ = {v} = σ(F ), F ⊂ St(v), the sets B(e) with e ∈ St(v)

are pairwise disjoint and
⊔
e∈F

B(e) = E(T ) if and only if F = St(v).
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Next, assume n > 1 and let v ∈ σ = σ(F ) be a vertex with valence 1
in Tσ. Consider the non empty set Fv := {e ∈ F | s(e) = v}, proper in F
since n > 1, and let ev be the edge of Tσ with target t(ev) = v. Then, if
F ′ := (F \ Fv) ∪ {ev}, we get the next remarkable properties:

• σ′ := (σ \ {v}) ∪ {s(ev)} = σ(F ′),

• and #V (Tσ′) = n − 1, so we may apply the induction hypothesis on
F ′.

• Ê(Tσ′) = Ê(Tσ) \ {ev, ev}, so

F ′ ∩ Ê(Tσ′) = (F \ Fv)
⋂(

Ê(Tσ) \ {ev, ev}
)
.

• St(Tσ′) = (St(Tσ) \ St(v)) ∪ {ev}.

• St(Tσ) = (St(Tσ′) \ {ev}) ∪ (St(v) \ {ev}).

Suppose that F
⋂
Ê(Tσ) = ∅. Therefore F ′

⋂
Ê(Tσ′) = ∅. Then, by

induction hypothesis, the open sets {B(e)}e∈F ′ are pairwise disjoint and, in
particular, B(ev) ∩ B(e) = ∅ for all e ∈ F \ Fv. Recall now that

B(ev) =
⊔

e∈St(v)\ev

B(e)

and that Fv ⊂ St(v). But, ev and ev are edges of Tσ, so F
⋂
Ê(Tσ) = ∅

implies that ev, ev 6∈ F , and therefore we get that the sets {B(e)}e∈F are also
pairwise disjoint.

Now assume that F
⋂
Ê(Tσ) 6= ∅. Then, either F ′

⋂
Ê(Tσ′) 6= ∅, or

F ′
⋂
Ê(Tσ′) = ∅ but

∅ 6= F
⋂

Ê(Tσ) ⊂ {ev, ev}.

In this last case, F ′
⋂
Ê(Tσ′) = ∅ and F

⋂
Ê(Tσ) ⊂ {ev, ev}, when ev ∈

F , then B(ev) ∩ B(e) 6= ∅ for any e ∈ Fv 6= ∅. In the case ev ∈ F , the fact
that ev ∈ F ′ and so that B(ev) ∩ B(e) = ∅ for any e ∈ F \ Fv (by induction
on F ′), together with B(ev) = E(T ) \ B(ev), implies that B(ev) ∩ B(e) 6= ∅
for any e ∈ F \ Fv.

If F ′
⋂
Ê(Tσ′) 6= ∅, the sets {B(e)}e∈F ′ are not pairwise disjoint, and the

collection of sets {B(e)}e∈F include the same except maybe B(ev), besides
the {B(e)}e∈Fv .

Therefore, if there are e, e′ ∈ F \ Fv such that B(e) ∩ B(e′) 6= ∅ we get
the claim. Otherwise there is an e0 ∈ F \ Fv such that B(e0) ∩ B(ev) 6= ∅
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and ev 6∈ F . By definition of ev we have that s(ev) ∈ [t(ev), s(e0)]. Then,
taking in consideration the proposition 2.1.16 we get s(e0) 6∈ [t(ev), t(e0)]
(and B(e0) ∩ B(ev) = B(ev) ⊂ B(e0)), since otherwise we would have s(e0) ∈
[t(ev), t(e0)] and, as a consequence, B(e0) ∩ B(ev) = ∅.

Take now an edge e1 ∈ Fv. Assume first e1 6= ev. Then we obtain that
B(e1) ⊂ B(ev) ⊂ B(e0) and that the sets {B(e)}e∈F are not pairwise disjoint
as we wanted. To finish the proof of the the first equivalence, we just have
to deal with the case Fv = {ev}. Since F is well oriented, there is some
vertex of valence three in T between s(e0) and t(ev) (excluding them). Then
B(e0) ∩ B(ev) 6= ∅ by proposition 2.1.16.

Recalling the properties we have noted above, we get that St(Tσ) ⊂ F

implies St(Tσ′) ⊂ F ′, so, by hypothesis,
⋃
e∈F ′
B(e) = E(T ). By definition, we

know that each edge of F ′ is an edge of F except at most ev, but we have

that St(v) \ {ev} ⊂ St(Tσ) ⊂ F and B(ev) =
⊔

e∈St(v)\ev

B(e), so

E(T ) =
⋃
e∈F ′
B(e) ⊂

⋃
e∈F

B(e) = E(T ).

Suppose that St(Tσ) 6⊂ F . This means that there is an edge e ∈ St(Tσ) \
F , in particular with s(e) ∈ σ = σ(F ). We may assume that the vertex v we
chose above in order to apply the induction method is different from s(e). It
is clear that e 6∈ F ′, and by the assumption e ∈ St(Tσ′), so St(Tσ′) 6⊂ F ′ and⋃
e∈F ′
B(e) 6= E(T ).

Finally, as we have seen before, we have⋃
e∈F

B(e) =
⋃

e∈F\Fv

B(e) ∪
⋃
e∈Fv

B(e) ⊂
⋃
e∈F ′
B(e) ∪ B(ev) ⊂

⋃
e∈F ′
B(e) ( E(T ).

Corollary 2.1.21. Let {ei}i∈I be a finite set of directed edges in T such that
the open sets B(ei) for i ∈ I are pairwise disjoint. Then⊔

i∈I

B(ei) = E(T )⇐⇒ {ei}i∈I = St(T)

for the finite subtree T with source vertices {s(ei)}i∈I , or {ei}i∈I = {e1, e2}
existing an edge e in T such that e1 ⊂ e and e2 ⊂ e.

Proposition 2.1.22. Let T be a locally finite metric tree. Let E0 be a set
of edges of T such that E(T ) =

⋃
e∈E0
B(e). Then, there is a finite subset

E1 ⊂ E0 such that E(T ) =
⋃
e∈E1
B(e).
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Proof. We assume that E0 is an infinite set.

If there is an e ∈ E0 such that e ∈ E0 we take E1 = {e, e}, so from now
on we assume there is no such an edge e.

Consider now the subgraph T \
⋃
e∈E0

e̊. It is a union of trees being its
connected components, indexed by a set which we will denote I:

T \ E̊0 = T \
⋃
e∈E0

e̊ =
⋃
i∈I

Ti.

If I is finite, then E0 is also finite. Thus, assume that I is an infinite set and
let us denote

E+
i = {e ∈ E0| t(e) ∈ Ti},

E−i = {e ∈ E0| s(e) ∈ Ti},

and

Ei = E+
i ∪ E−i 6= ∅.

Observe that for e ∈ E0, e ∈ E+
i means that t(e) ∈ Ti and s(e) 6∈ Ti, which is

equivalent to say that Ti ⊂ T t(e)e (recall that T t(e)e is the connected component
of T \ e̊ touching t(e)).

Next, let us divide the rest of the proof in three different cases.

First, assume that there exists i ∈ I such that there are edges e 6= e′ and

{e, e′} ⊂ E+
i . Then, e′ ∈ T t(e)e and e ∈ T t(e

′)
e′ , and therefore T s(e)e ⊂ T t(e

′)
e′ .

Thus,

E(T ) = B(e) ∪ B(e) = B(e) ∪ E(T s(e)e ) ⊂ B(e) ∪ E(T t(e
′)

e′ ) = B(e) ∪ B(e′),

so we take E1 = {e, e′}.
In the second place, assume that there exists i ∈ I such that E+

i = ∅.
If E(Ti) 6= ∅, there exists ε ∈ E(Ti) and e ∈ E0 such that ε ∈ B(e). Then

e 6∈ Ei; otherwise, e ∈ E−i , so Ti ⊂ T s(e)e and ε ∈ E(Ti) ⊂ E(T s(e)e ) = B(e).
Consider the unique path connecting e with Ti. Since e 6∈ Ei, there is a

unique edge e′ 6= e in this path, such that e′ ∈ Ei = E−i , so e ∈ T t(e
′)

e′ . The

fact that ε ∈ E(Ti) ∩ B(e) implies that Ti ⊂ T t(e)e and T s(e
′)

e′ ⊂ T t(e)e . Thus,

E(T ) = B(e′) ∪ B(e′) = B(e′) ∪ E(T s(e
′)

e′ ) ⊂ B(e′) ∪ E(T t(e)e ) = B(e′) ∪ B(e),

so we take E1 = {e, e′}.
If E(Ti) = ∅, the tree Ti is finite, since T is locally finite, so the set

E1 := Ei = E−i is also finite. For any j 6= i take the unique path connecting
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Tj with Ti. As above, it contains an edge ej ∈ Ei such that Tj ⊂ T
t(ej)
ej . Now,

we get that

E(T ) =
⊔
j∈I

E(Tj) ⊂
⊔
e∈E1

E(T t(e)e ) =
⊔
e∈E1

B(e),

as we wanted.
Finally, assume that for all i ∈ I, E+

i = {ei}. Fix an i0 ∈ I. Let i1 ∈ I
be the index such that s(ei0) ∈ Ti1 . Note that ei0 ∈ E−i1 , so we have ei1 6= ei0 .
Generally, let in+1 ∈ I be the index such that s(ein) ∈ Tin+1 . Consider the
ray defined by the sequence {t(ein)}n∈N, which can be seen as

ei0 ∪ [s(ei0), t(ei1)] ∪ ei1 ∪ [s(ei1), t(ei2)] ∪ ei2 ∪ [s(ei2), t(ei3)] ∪ ei3 ∪ . . .

(observe that [s(ein), t(ein+1)] ⊂ Tin+1 , so the previous union is disjoint xcept
at the vertices). We are going to show that this end cannot be in any B(e)
for e ∈ E0, so we will get a contradiction from which we will deduce that this
case cannot occur.

Assume there exists e ∈ E0 such that B(e) contains the previously built
end. Therefore, the ray starting at e and defining this end cuts Tin and
contains ein for all n ∈ N big enough. Let us denote the edges in the inter-
section of this ray with E0 by fn consecutively starting from e, so f0 := e
and for all n big enough ein = fm(n), where m : N≥N −→ N is an increasing
map. Therefore, there exists an m ∈ N such that fm has the same orienta-
tion of the ray (like f0) and fm+1 has the opposite orientation (like any ein
for any n big enough). Then, if Ti(m) is the connected component between
fm and fm + 1, both edges verify that t(fm), t(fm+1) ∈ Ti(m), and therefore,
fm, fm+1 ∈ E+

i(m), which contradicts the hypothesis that this set consists in a
unique element.

Summarizing, the end given by the sequence {t(ein)}n∈N cannot exist, so
the third case, whose hypothesis is that each E+

i consists in a unique element,
does not occur.

Corollary 2.1.23. If T is a locally finite tree, E(T ) is compact, and in the
same way, all the open subsets B(e) are also compact.

Proof. The sets B(e) form a basis of open sets, so one only has to apply he
definitions and the previous proposition to conclude.

Remark 2.1.24. Compact metric graphs are locally finite, and so their uni-
versal coverings. In particular, we may apply the previous corollary to the
universal covering trees of tropical curves seen as metric graphs.
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2.2 Harmonic cochains on a graph and har-

monic measures on a compact set

We give general definitions of harmonic cochains over any weighted graph
and of harmonic measures over a suitable compact set, and we prove the
isomorphism between the harmonic measures on the ends of a locally finite
metric tree and the harmonic cochains on that tree.

In the next chapter, given a compact subset L ⊂ P1(K) we will build a
tree TK(L), whose ends correspond to L, so we will be able to apply the
result to this tree, proving the assertion by van der Put in [vdP92, Ex. 2.1.1].

2.2.1 Harmonic cochains on a graph

Recall that a harmonic cochain is a morphism c : Z[Ê(G))]→ Z verifying

• c(ē) = −c(e) for any e ∈ Ê(G), and

• c
( ∑
e∈St(v)

e
)

= 0 for any vertex v ∈ V (G).

We denote the set of harmonic cochains of G by C1
har(G,Z).

Observe that, if we subdivide an oriented edge e in two oriented edges
e1 and e2, then the properties tell that any harmonic cochain verifies that
c(e1) = c(e2). Hence, given a (locally finite) metric graph and two arbi-
trary models for it, there is a canonical isomorphism between their harmonic
cochains, so we can define them for the metric graph G = |G|, and we can
write C1

har(G,Z) := C1
har(G,Z).

Lemma 2.2.1. Let H be a finite weighted subgraph of G. Then, any harmonic

cochain c satisfies c
( ∑
e∈St(H)

e
)

= 0.

Proof. First observe the following properties of stars:

St(H) t Ê(H) = St(V (H)) =
⊔

v∈V (H)

St(v)

Next note that an edge belongs to H if and only if its opposite also do. Then,
taking into consideration the first equality of stars and the previous remark,
because of the first property of the harmonic cochains we get

c
( ∑
e∈St(H)

e
)

=
∑

e∈St(H)

c(e) =
∑

e∈St(V (H))

c(e)
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and because of the second equality of stars and the second property of har-
monic cochains we finish as follows:∑

e∈St(V (H))

c(e) =
∑

v∈V (H)

∑
e∈St(v)

c(e) = 0

2.2.2 Harmonic measures on a compact set

In order to get another point of view for the harmonic cochains we have
to define the harmonic measures on a suitable compact space. Previously we
will define distributions.

Remark 2.2.2. Let X be a Hausdorff topological space and assume that it
has a basis formed by open compact subsets (or similarly, every point has a
neighbourhood basis formed by compact open subsets). Then, it is clear that
X is locally compact, and it is also easy to check that it is totally discon-
nected. If X is a topological group locally compact and totally disconnected,
then the opposite implication is also true (what is usually called a locally
profinite group). In particular, these conditions are equivalent and satisfied
for subspaces of finite dimensional projective spaces over local fields.

Definition 2.2.3. Let X be a Hausdorff topological space and assume that
it has a basis formed by open compact subsets. Let C∞c (X,Z) be the space of
all Z-valued, compactly supported, locally constant functions on X. For any
abelian group A we call

D(X,A) = Hom(C∞c (X,Z), A)

the space of A-valued distributions on X.

Lemma 2.2.4. With the previous hypotheses, any f ∈ C∞c (X,Z) is a finite
linear combination of characteristic functions on open compact sets of X.

Proof. Since f has compact support, there exists a compact K ⊂ X such
that X \ K ⊂ f 1({0}) and

K =
⊔

m∈Z\{0}

f−1({m}).

As the sets f−1({m}) are open, in this union only appear a finite set. But
these sets are closed contained in the compact K, so they are compact. Then
we get a finite sum

f =
∑

f−1({m})⊂K

mχf−1({m}).
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Definition 2.2.5. Let X be a compact space such that the compact open
subsets form a basis for the topology. Given an abelian group A, an A-valued
measure µ on X is a function on the compact open subsets of X such that
applied to a finite disjoint union of compact open subsets is equal to the sum
of the images of these subsets. The set of A-valued measures on X is denoted
M (X,A).

Proposition 2.2.6. With the same hypotheses from previous definition we
have an isomorphism of abelian groups

Υ : D(X,A)
∼=−→M (X,A),

given by Υ(f)(U) = f(χU), where χU ∈ C∞c (X,Z) is the characteristic
function of U .

Proof. First of all we have to see that this map is well defined. Indeed, if U
is open and compact χU ∈ C

∞
c (X,Z), and given disjoint open compact sets

U ,V ⊂ X we have

Υ(f)(UtV) = f(χUtV) = f(χU+χV) = f(χU)+f(χV) = Υ(f)(U)+Υ(f)(V).

The injectivity is straightforward because of the lemma 2.2.4. In order to
prove that it is exhaustive we only have to define an f ∈ D(X,A) by f(χU) =
µ(U) and extending by linearity, again by the lemma named just before.
Thus, we get clearly Υ(f) = µ.

Definition 2.2.7. Let µ ∈M (X,Z) be a Z-valued measure on X. We say
that µ is harmonic if the total volume µ(X) is 0. We denote the set of
harmonic measures by M (X,Z)0.

The isomorphic image in D(X,Z) is denoted by D(X,Z)har and called the
set of harmonic distributions.

Remark 2.2.8. When X is compact we have an exact sequence

0 −→ Z −→ C∞c (X,Z) −→ C∞c (X,Z)/Z −→ 0.

so dualizing we get an exact sequence

0 −→ Hom(C∞c (X,Z)/Z,Z) −→ Hom(C∞c (X,Z),Z) −→ Hom(Z,Z)

naturally isomorphic to

0 −→M (X,Z)0 −→M (X,Z) −→ Z

where the last arrow maps a measure to its value on X.
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2.2.3 Relating harmonic cochains with harmonic mea-
sures

Recall that if a tree T is locally finite, the set of ends E(T ) is compact,
so from now on along this chapter we are going to assume this hypothesis.

Theorem 2.2.9. Any harmonic cochain c of a locally finite metric tree T
determines a unique harmonic measure µ(c) in M (E(T ),Z)0 by defining
µ(c)(B(e)) = c(e) for any directed edge e in T . This induces an isomorphism
between M (E(T ),Z)0 and C1

har(T ,Z).

Proof. Essentially, all we have to check is that the map

C1
har(T ,Z) −→M (E(T ),Z)0

given by the description above is well defined.
First, it is enough to characterize a harmonic measure over the sets B(e)

since these are a basis for the topology of E(T ).
Next, take a model T = (V, Ê) for T . We just have to see that for any

open compact set U ⊂ E(T ) and for any partition U =
⊔
e∈I B(e) with I ⊂ Ê

finite, the sum
∑

e∈I c(e) is invariant. Let us take two finite partitions of U :

U =
⊔
e∈I

B(e) =
⊔
e∈I′
B(e)

Since U is open and compact so it is the complement V = E(T ) \ U and we

can consider another finite partition V =
⊔
e∈Ĩ

B(e), Ĩ ⊂ Ê. Then we have

E(T ) = U t V =
⊔
e∈I

B(e) t
⊔
e∈Ĩ

B(e) =
⊔
e∈I′
B(e) t

⊔
e∈Ĩ

B(e)

Therefore, by the previous corollary, we get I t Ĩ = St(T) and I ′t Ĩ = St(T′)
for certain finite subtrees of T (or any or both disjoint unions can be the
degenerated case, which the reader can do as an easy exercise). Then we
have ∑

e∈I

c(e) +
∑
e∈Ĩ

c(e) =
∑
e∈ItĨ

c(e) =
∑

e∈St(T)

c(e) = 0

and ∑
e∈I′

c(e) +
∑
e∈Ĩ

c(e) =
∑
e∈I′tĨ

c(e) =
∑

e∈St(T′)

c(e) = 0
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after apply lemma 2.2.1, so we get∑
e∈I

c(e) =
∑
e∈I′

c(e)

as we wanted to prove.
Once we have the map well defined, it follows immediately from the defi-

nition that it is an isomorphism of abelian groups. Indeed, the kernel has to
be zero and the same definition together with the fact that the sets B(e) are
a basis for the topology of E(T ) provide the exhaustivity.

2.3 Harmonic integration on locally finite met-

ric trees

In this section we introduce integration on compact sets from measures,
then we relate them by means of the isomorphism of the measures with the
distributions and of its definition as a dual space of some locally constant
functions. Later, we integrate on the ends of a tree and we use this to define
a way to integrate degree zero divisors on the tree.

Inspired by [Lon02, Prop. 5], we consider the next lemma.

Lemma 2.3.1. Let X be a compact space (in particular Hausdorff) such that
the compact open subsets form a basis for the topology. Let A be a complete
topological abelian group such that a basic system of neighbourhoods of the
zero consists of open subgroups. Let f : X −→ A be a continuous function
and let µ ∈M (X,Z) be a Z-valued measure on X. Then, the limit

lim→
Cα

∑
Uαn∈Cα
tαn∈Uαn

µ(Uαn )f(tαn),

taken over the direct system of finite covers Cα = Cα(X) of X by disjoint open
compact subsets Uαn , and where the tαn are arbitrary points in them, exists in
A and is independent of the choice of the tαn’s.

Proof. Let N ⊂ A be an open supgroup neighbourhood of 0. The sets
f−1(x + N) with x ∈ A form an open covering of X, which can be refined
to a covering by compact open subsets. We take a finite subcovering Cα(N).
Then, for any refined covering α ≥ α(N) and for any Uαn ∈ Cα, t, t′ ∈ Uαn
implies that f(t)− f(t′) ∈ N . This tell us that

∑
Uαn∈Cα
tαn∈Uαn

µ(Uαn )f(tαn)


α
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is a “Cauchy sequence” in α (quotation marks since there is not a unique
sequence, but a direct system, so given α, α′, there exists α′′ > α, α′), and it
converges since A is complete. Further we get the independence of the choice
of the tαn’s.

Definition 2.3.2. Let X be a compact space (in particular Hausdorff) such
that the compact open subsets form a basis for the topology. Let A be a
complete topological abelian group. Let f : X −→ A be a continuous function
and let µ ∈M (X,Z) be a Z-valued measure on X. Then, the integral of f
with respect to µ is defined as∫

X

fdµ :=

∫
X

f(t)dµ(t) := lim→
Cα

∑
Uαn∈Cα
tαn∈Uαn

µ(Uαn )f(tαn) ∈ A

taken over the direct system of finite covers Cα = Cα(X) of X by disjoint open
compact subsets Uαn , and where the tαn are arbitrary points in them.

Proposition 2.3.3. For any measure µ ∈M (X,Z), we have

1. For any compact open subset U of X, and for any a ∈ A, denote by
χU,a(t) the function mapping x ∈ X to a if x ∈ U , and to 0 otherwise.

Then

∫
X

χU,adµ = aµ(U).

2. If f, g : X −→ A are continuous functions on X and the corresponin
integrals exist, then∫

X

(f + g)dµ =

(∫
X

fdµ

)
+

(∫
X

gdµ

)
Remark 2.3.4. The lemma previous to the definition tells the existence of
the integral under a strong hypothesis on A. The last proposition, tells its ex-
istence if f is an A-linear combination of characteristic functionsχU : X −→ Z,
which gives a reinterpretation of the proposition 2.2.6 for A-valued measures.

Υ−1 : M (X,A)
∼=−→ D(X,A)

is given by

Υ−1(µ)(χU) = ×
∫
X

χUdµ.

and so,

Υ−1(µ)(f) = ×
∫
X

fdµ,
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that is, for each measure µ we have a well defined map

×
∫
X

dµ : C∞c (X,Z)⊗Z A −→ A.

The comentary below shows the trivial existence if f is constant and µ is
harmonic.

Note that for any harmonic measure µ and for any constant function

f : X −→ A such that f(x) = a for all x ∈ X, we have

∫
X

fdµ = 0.

Let T be a metric tree, and let A be a finite set of points in T . Consider
the subtree of T generated by the points of A, that is the minimal substree
containing all these points. We denote it by TA. It is clearly finite and there
is a unique retraction map

rAT : T −→ TA

which maps every point p ∈ T \ TA to the nearest point in TA. This has a
sense, since TA is compact and path-connected, and T is a metric space, so
there exists infa∈TA{d(p, a)}. Further, the a reaching this infimum is unique,
since for any other a′ ∈ TA the path connecting it with p pass through a and,
therefore, has a greater length.

Since the topological realization of a ray r = (v0, v1, . . . ) is connected,
there is an N such that for all n ≥ N rAT (vn) stabilizes, so we can associate
this point to the end defined by this ray, therefore we get a map

rAT : E(T ) −→ TA.

Moreover, when A ⊂ Ã we have TA ⊂ TÃ and the restriction of the
retraction map

rAÃ := rAT |TÃ
: TÃ −→ TA,

so rAT = rAÃ ◦ rÃT .

Definition 2.3.5. Let T be a metric tree, let A be a finite set of points in
T , and let D :=

∑
p∈Ampp ∈ Z[T ]0 be a degree zero divisor. With these

elements we build the map

fD : E(T ) −→ R

given by

fD(ε) = −1

2

∑
p∈A

mpd(p, rAT (ε)).
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This function is clearly locally constant and, therefore, continuous.

Remark 2.3.6. For D = 0 we have f0 ≡ 0.

Next, let D = p′ − p. Then we have

fp′−p(ε) =
1

2

(
d(p, rAT (ε))− d(p′, rAT (ε))

)
and, if [p, p′] is an edge

fp′−p(ε) =

{
1
2
d(p, p′) if ε ∈ B(p, p′)
−1

2
d(p, p′) if ε ∈ B(p′, p).

Lemma 2.3.7. Let T be a metric tree, let A be a finite set of points in
T , and let D :=

∑
p∈Ampp ∈ Z[T ]0 be a degree zero divisor. Then, for all

p′ ∈ T ∑
p∈A

mpd(p, rAT (p′)) =
∑
p∈A

mpd(p, p′).

Proof. We just have to note that for any p ∈ TA, rAT (p′) ∈ [p′, p] and compute∑
p∈A

mpd(p, p′) =
∑
p∈A

mp

(
d(p′, rAT (p′)) + d(rAT (p′), p)

)
=

=
∑
p∈A

mpd(p, rAT (p′)) + d(p′, rAT (p′))
∑
p∈A

mp =
∑
p∈A

mpd(p, rAT (p′)).

Proposition 2.3.8. Let T be a metric tree, let A,A′ be two finite sets of
points in T , and let D :=

∑
p∈Ampp,D

′ :=
∑

p∈A′m
′
pp ∈ Z[T ]0 be two degree

zero divisors. Then
fD+D′ = fD + fD′ .

Proof. Let ε ∈ E(T ). Let us denote Ã := A ∪A′. On one hand we have

−2fD+D′ =
∑
p∈Ã

(mp +m′p)d(p, rÃT (ε)) =

=
∑
p∈A

mpd(p, rÃT (ε)) +
∑
p∈A′

m′pd(p, rÃT (ε)).

On the other hand, since rAT = rAÃ ◦ rÃT , by the previous lemma applied to

rÃT (ε) we get

−2fD(ε) =
∑
p∈A

mpd(p, rAT (ε)) =
∑
p∈A

mpd(p, rÃT (ε)).

We proceed identically for A′, D′ and we deduce the claimed equality.
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Corollary 2.3.9. As a consequence, any map fD is determined by the maps
fp′−p where [p, p′] is an edge in T .

Definition 2.3.10. Given a locally finite metric tree T , a harmonic measure
µ ∈M (E(T ),Z)0 and a divisor D :=

∑
p∈Ampp ∈ Z[T ]0 we define∫

D

dµ :=

∫
E(T )

fDdµ ∈ R.

Lemma 2.3.11. Let p, p′ be points in T such that [p, p′] is an edge and
µ ∈M (E(T ),Z)0. Then we have∫

p′−p
dµ = d(p, p′)µ(B(p, p′)).

Proof. We use the definition and the computation of the function previously
remarked:∫

p′−p
dµ =

∫
E(T )

fp′−pdµ = µ(B(p, p′))
1

2
d(p, p′)− µ(B(p′, p))

1

2
d(p, p′) =

=
1

2
d(p, p′) (µ(B(p, p′))− µ(B(p′, p))) = d(p, p′)µ(B(p, p′))

where the last equality is due to the harmonicity of µ and to the covering by
an edge and its opposite.

The latter lemma, the proposition 2.3.3 and the proposition 2.3.8 give us
a well defined abelian groups morphism∫

•
d : Z[T ]0 −→ Hom(M (E(T ),Z)0,R).

Lemma 2.3.12. Let Γ be a group acting continuously on T . Then, the
previous map commutes with the Γ-operation.

Proof. We want to see that ∫
γ·D

d = γ ·
∫
D

d

for any γ ∈ Γ. That is to say that for any γ ∈ Γ and µ ∈ M (E(T ),Z)0 we
have∫

E(T )

fγDdµ =

∫
γ·D

dµ = γ ·
∫
D

dµ =

∫
D

d(γ−1µ) =

∫
E(T )

fDd(γ−1µ)
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Let us to compute the first integral:∫
E(T )

fγDdµ = lim→
Cα

∑
Uαn∈Cα
tαn∈Uαn

µ(Uαn )fγD(tαn) = lim→
Cα

∑
Uαn∈Cα
tαn∈Uαn

µ(Uαn )(γfD)(tαn) =

= lim→
Cα

∑
Uαn∈Cα
tαn∈Uαn

µ(Uαn )fD(γ−1tαn) = lim→
Cα

∑
Uαn∈Cα
tαn∈Uαn

µ(γUαn )fD(tαn) =

= lim→
Cα

∑
Uαn∈Cα
tαn∈Uαn

(γ−1µ)(Uαn )fD(tαn) =

∫
E(T )

fDd(γ−1µ)

Therefore we get the claimed compatibility of the action of Γ with the map.

Proposition 2.3.13. A group Γ acting continuously on T induces an ho-
momorphism of abelian groups∫

d : Γab −→ Hom(M (E(T ),Z)Γ
0 ,R).

Proof. Consider the short exact sequence

0 −→ Z[T ]0 −→ Z[T ] −→ Z −→ 0.

The action of Γ gives us a long homology sequence from which we extract
the first connecting morphism

H1(Γ,Z) −→ H0(Γ,Z[T ]0) = Z[T ]0Γ

which maps γ to γp− p for any p ∈ T , and the lemma gives us a morphism

Z[T ]0Γ −→ Hom(M (E(T ),Z)0,R)Γ = Hom(M (E(T ),Z)Γ
0 ,R).

Thus, composing we get

Γab ∼= H1(Γ,Z) −→ Hom(M (E(T ),Z)Γ
0 ,R).
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2.4 The Albanese torus of a finite metric graph

via integration

Along this section, first we recall the different discrete and analytic torus
appeared in the chapter 1, in order to compare with the Albanese torus of a
finite metric graph such as it is defined in [CV10]. Then, we recall the way
for computing it implicit in [BF11] and we use this to rise the computation
on the ends of the universal covering tree of the graph and to build the
Abel-Jacobi map.

In addition, we proof the fundamental isomorphism between the Γ-invariant
measures on the ends of the universal covering of a graph with the abelianized
of Γ, where this group is the fundamental group of the given finite metric
graph.

The Albanese torus of a finite metric graph

Let us start recalling some ideas shown along the previous chapter and
taken from different papers as [BdlHN97], [KS00], [KS08], [CV10] or [BF11].

We have seen along the first chapter that the definition of the discrete Ja-
cobian torus of a graphG consists essentially in a quotientH1(G,Z)/H1(G,Z)#

with the metric ( , ) on H1(G,R) induced by the inner product 〈 , 〉1
on C1(G,R). Dually, the discrete Albanese torus consists in a quotient
H1(G,Z)#/H1(G,Z) with the metric onH1(G,R) induced by the correspond-
ing inner product on C1(G,R).

If we consider the undiscrete or analytic versions, the Jacobian of G is
the flat torus H1(G,R)/H1(G,Z) together with the same metric obtained
as above, while the Albanese torus is H1(G,R)/H1(G,Z) together with the
corresponding flat metric.

Modifying the notation of first chapter, and denoting by ( , ) all the inner
products, we call now

Jac(G) =
(
H1(G,R)/H1(G,Z), ( , )

)
Jac′(G) =

(
H1(G,Z)/H1(G,Z)#, ( , )

)
Alb(G) = (H1(G,R)/H1(G,Z), ( , ))

Alb′(G) =
(
H1(G,Z)#/H1(G,Z), ( , )

)
and we have Alb′(G) ↪→ Alb(G). Further, we have seen Jac′(G) ∼= Pic0(G) ∼=
Alb′(G).

Recall the definition of the Albanese torus of a finite metric graph (or
more generally, of a tropical curve) (see, for example [CV10, Def. 4.1.4]). We
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only consider metric graphs G with all vertices of valence at least 2. By the
introduction of section 2.1, for any edge e of G we have a length `(e) ∈ R>0.

We choose an orientation for each edge of G, and we consider the free
abelian group C1(G,Z) = Z[E(G)] generated by these oriented edges of G
and the map ∂ : Z[E(G)]→ Z[V (G)] = C0(G,Z) given by ∂(e) = t(e)−s(e),
where t(e) is the target of e and s(e) is the source. Then H1(G,Z) = Ker(∂).

For any metric graph we can define the paring

( , ) : C1(G,Z)× C1(G,Z)→ R

by (e, e′) = 0 if e′ 6= e and e′ 6= e (the opposite edge of e), (e, e) = `(e) and
(e, e) = −`(e), which induces a symmetric positive definite bilinear map on
C1(G,R) ∼= C1(G,Z)⊗Z R.

If we are dealing with several metric graphs and we need to specify in
which we are applying the pairing, we shall denote it by ( , )G.

From now on along this section we assume the graphs are finite unless we
specify the contrary.

The previous inner product determines a flat metric on the homology
group H1(G,R) = Ker(∂R).

Definition 2.4.1. The Albanese torus of a finite metric graph G is the torus
given by H1(G,R)/H1(G,Z) together with the metric determined by ( , ).

Alb(G) = (H1(G,R)/H1(G,Z), ( , ))

On the other hand, in [BF11] the authors consider a model G for the
graph G with one orientation for each edge, instead of taking each edge
with its opposite, as we do here. Then, their definition of the 1-forms on
G is equivalent to the elements of the quotient of the real vector space with
formal basis {de : e ∈ Ê} by the subspace generated by the elements de+de.
Following, they take into consideration the harmonic 1-forms, which are those
1-forms ω =

∑
ωede such that for each vertex v ∈ V

∑
s(e)=v

ωe = 0

⇐⇒ ∑
t(e)=v

ωe = 0

 ,

and denote them by Ω(G).
Let us consider the set E = E(G) of edges that they consider, formed by

exactly an edge e for each couple e, e in Ê = Ê(G), so we have for an abelian
group A (here, Z or R)

A[E] ∼= A[Ê]/{e+ e}e∈Ê
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and the A-cochains on the graph is the dual (over A) of the right-hand side,
isomorphic to the dual of A[E].

Consider the free abelian groups C1(G, A) := A[E] and C0(G, A) := A[V ],
and the differential map ∂1 : C1(G, A) −→ C0(G, A) given by ∂1(e) = t(e)−
s(e). Then, on one hand, H1(G, A) = Ker(∂1) ∼= H1(G,A) (that is the
isomorphism between singular and simplicial homology), and on the other
hand, by means of the identification of C1(G, A) and C0(G, A) with their
duals made in [BF11, § 2.1] (which we will denote with hats instead of the
notation used in that paper to avoid confusion), we have

0 // H1(G, A) //

∼=
��

C1(G, A)
∂1 //

∼=
��

C0(G, A)

∼=
��

0 // Ĥ1(G, A) // Ĉ1(G, A) d∗ // Ĉ0(G, A)

as we have seen in theorem 1.4.6 for unweighted graphs. This implies our
homology group coincides with the defined in the paper by Baker and Faber.
They also introduce a pairing

Ω(G)× C1(G,R) // R

(ω, α) � //
∫
α

ω

which extends by linearity the equality∫
e′
de =

{
`(e) if e = e′,
0 if e 6= e′.

and which restricts to a pairing

Ω(G)×H1(G,R) −→ R.

Then, as commented in [BF11, Rem. 2.3 (2)], we get a natural construc-
tion of the Albanese torus.

Lemma 2.4.2. Given a finite metric graph G, for any model G the restricted
pairing to the homology is perfect, and so we have

Alb(G) ∼= Ω(G)∗/H1(G,Z).

Proof. This is the lemma 2.1 in [BF11].
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We already see that this object does not depend on the chosen model.
In fact, this is proven in [BF11, Lem. 2.9]. But let us see in another way.
Consider the real harmonic cochains on any locally finite weighted graph
G, which are maps c : R[Ê(G)] −→ R verifying the same properties that
the harmonic cochains. We denote them by C1

har(G,R). As the harmonic
cochains (with integer values), these also satisfy

C1
har(G,R) ∼= C1

har(G,R).

We also have a natural star map

St : A[V ] −→ A[Ê] −→ A[E]

composing the projection with the map which associates the divisor
∑

e∈St(v) e
to the vertex v ∈ V , understanding the star which appear in the summation
as defined in previous sections. Thus, we can define the harmonic cochains
as the kernel of the dual map, obtaining an exact sequence

0 −→ C1
har(G, A) −→ HomA(A[E], A) −→ HomA(A[V ], A).

which, when A = R, is isomorphic to the exact sequence

0 −→ Ω(G) −→ R[E] −→ R[V ]

where a function f ∈ R[E]∗ corresponds to the divisor
∑

e∈E(G) f(e)de -
writing the formal symbol de instead of e-, similarly for vertices, and the last

map makes correspond the divisor
∑

v∈V (G)

(∑
e∈St(v) me

)
v to

∑
e∈E(G)mede.

Thus we got Ω(G) ∼= C1
har(G,R) ∼= C1

har(G,R) when G is finite.
Let us observe too, that under the assumption of finiteness of G, and so,

of its vertices and its edges, and since R is Z-flat, we have

HomZ(Z[E],Z)⊗Z R ∼= HomR(R[E],R)

and
HomZ(Z[V ],Z)⊗Z R ∼= HomR(R[V ],R),

and in addition we get an exact sequence

0 −→ C1
har(G,Z)⊗Z R −→ R[E]∗ −→ R[V ]∗

which results in a natural isomorphism C1
har(G,Z)⊗Z R ∼= C1

har(G,R).

Remark 2.4.3. In [BF11] the authors build the Jacobian of a finite weighted
group and show that the Albanese torus of a finite metric group is isomorphic
to the direct limit of the Jacobians of the models. We will not repeat that
construction here, but we would like to mention that it generalizes naturally
the construction of the Jacobian of an unweigthed graph in [BdlHN97], which
we describe in the section1.3 of the first chapter.
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The Abel-Jacobi map

Next, we have yet a connected finite metric graph G and a model G. In
fact, whichever model it is, it verifies

Alb(G) ∼= Ω(G)∗/H1(G,Z).

Definition 2.4.4. Given two weighted graphs G and G′, we say that G′

refines G if there exist an injection νV : V (G) −→ V (G′) and a surjection
πE : E(G′) −→ E(G) such that for any edge e of G there exist vertices
v0 = νV (s(e)), v1, . . . , vn = νV (t(e)) and edges e1, . . . , en ∈ E(G′) satisfying
π−1
E (e) = {e1, . . . , en},

∑n
i=1 `(ei) = `(e) and s × t(ei) = (vi−1, vi) for each

i = 1, . . . , n.

To construct the Abel-Jacobi map, fix a point p ∈ G. For any other point
q ∈ G, consider another model Gp,q of G containing p and q as vertices and

refining G. Consider a path P ⊂ Ê(Gp,q) from p to q in Gp,q, which we can

see as a sum of the edges in P , that is a 1-chain Z[Ê(Gp,q)], and let αP its
image by the projection

Z[Ê(Gp,q)] −→ Z[E(Gp,q)] = C1(Gp,q,Z).

Thus, our construction coincides with which precedes the proof of the theo-
rem 2.11 in [BF11] αP . With the notation in that reference

αP =
∑

e∈E(G)

ε(P, e)e.

The pairing previously introduced induces a map∫
•

: C1(Gp,q,Z) −→ Ω(Gp,q)
∗,

so we get ∫
αP

∈ Ω(Gp,q)
∗.

Lemma 2.4.5. This construction is compatible with the refinement and so,
it does not depend on the model Gp,q. Then, it gives an Abel-Jacobi map

Φp : G −→ Alb(G)

defined by

Φp(q) :=

∫
αP

.
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Proof. We constructed a map Φp : G −→ Ω(Gp,q)
∗. The difference of the

images in two models goes to an integer cycle in a common refinement, which
goes to zero in the Albanese torus (cf. paragraphs at the begining of section 4
of [BF11]). Therefore, we can compose with the isomorphisms

Ω(Gp,q)
∗

H1(Gp,q,Z)
∼=

Ω(G)∗

H1(G,Z)
∼= Alb(G)

in a compatible way.

A finite metric graph and its universal covering

Let G be a connected finite metric graph. It is well known that it has
a universal covering space TG which is a connected locally finite tree, being
infinite if G is not a tree. It is clear that E(TG) = ∅ if and only if G is a tree.

Let Γ := π1(G, v) for any v in G. Then Γ acts freely on TG and G ∼= Γ\TG.
Let us denote the universal covering projection by

πG : TG −→ G.

Further, the action on TG induces an action of Γ on E(TG).

Proposition 2.4.6. Each non neutral element γ ∈ Γ has exactly two distinct
fixed points in E(T ).

Proof. Take any point p ∈ TG and consider γmp for m ∈ Z. Since Γ acts
freely on TG, these points for m > 0 have to define an end, and for m < 0 a
different end, which are two fixed points. If there were three different ends
fixed by γ, the vertex determined by them (lemma 2.1.19) would be fixed, so
we would contradict the fact that the action is free.

Let us take ṽ in TG such that πG(ṽ) = v. We have maps

Γ // // Γab = π1(G, v)ab ∼=
$ // H1(G,Z)

γ � // γ � // πG([ṽ, γṽ])

Then, we have a symmetric, positive definite bilinear form

( , )π1(G,v) : Γab × Γab −→ R

defined by (γ, γ′)π1(G,v) = ($(γ), $(γ′)).

Proposition 2.4.7. Any finite metric graph G satisfies H1(G,Z) ∼= C1
har(G,Z).
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Proof. Take a model G for G and recall that H1(G,Z) ∼= H1(G,Z) (it is the
equivalence between singular and simplicial homologies). We want to prove
H1(G,Z) ∼= C1

har(G,Z).
Given a cycle

z =
∑

e∈Ê(G)

ne · e ∈ H1(G,Z) ⊂ Z[Ê(G)],

we associate to it a harmonic cochain c(z) defined by c(z)(e) := ne and
c(z)(ē) := −ne for any e ∈ E(G). Indeed, we have

0 = ∂(z) =
∑

e∈E(G)

ne · (t(e)− s(e)) =
∑

v∈V (G)

∑
t(e)=v

ne −
∑
s(e)=v

ne


what implies that for any v ∈ V (G)∑

e∈St(v)

c(e) =
∑
s(e)=v

ne −
∑
t(e)=v

ne = 0

Reciprocally, for each harmonic cochain c we get a cycle

zc :=
∑

e∈E(G)

c(e) · e.

This correspondence defines the bijection.

Since Γ acts on TG, it also acts on the harmonic cochains on the tree and
since the action is free, we get

C1
har(TG,Z)Γ ∼= C1

har(Γ\TG,Z) = C1
har(G,Z) ∼= H1(G,Z) ∼= Γab

Corollary 2.4.8. The map µ : Γab →M (E(T ),Z)Γ
0 defined by

µγ(B(e)) := µ(γ)(B(e)) :=
(πG(e), $(γ))

`(e)
.

over an edge e is a natural isomorphism such that for any γ, γ′ ∈ Γ, we have

(γ, γ′)π1(G,v) =

∫
γp−p

dµγ′

where p is any point of T .
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Proof. The previous results together with the section 2.2 give the composition
of isomorphisms

Γab ∼=
// H1(G,Z) ∼=

// C1
har(G,Z) ∼=

// C1
har(TG,Z)Γ

∼=
//M (E(TG),Z)Γ

0

γ � // $(γ) � // c($(γ)) � // µ(c($(γ)))

which assigns to γ ∈ Γab the harmonic cochain defined by

µ(c($(γ)))(B(e)) = c($(γ))(e) =
(πG(e), $(γ))

`(e)

Since the set of points of valence greater than 2 in the path from p to γp is
finite (by the lemma 2.1.11), then we get the equality

(γ, γ′)π1(G,v) =

∫
γp−p

dµγ′

decomposing the path linearly, applying the lemma 2.3.11 and the additivity
of the integral with respect to the path and taking into account the definition
of the map µ. If γp− p =

∑r
i=1 pi − pi−1, where [pi−1, pi] are edges, then∫

γp−p
dµγ′ =

r∑
i=1

∫
pi−pi−1

dµγ′ =
r∑
i=1

d(pi, pi−1)µγ′(B(pi−1, pi)) =

=
r∑
i=1

d(pi, pi−1)
(πG([pi−1, pi]), $(γ′))

d(pi−1, pi)
=

r∑
i=1

(πG([pi−1, pi]), $(γ′)) =

= ($(γ), $(γ′)) = (γ, γ′)π1(G,v)

The Albanese torus and the Abel-Jacobi map via integration on
the universal covering

Note that we have by the proposition 2.3.13 a map∫
d : H1(G,Z) ∼= Γab −→ Hom(M (E(T ),Z)Γ

0 ,R).

given by ∫
d(γ)(µ) =

∫
γp−p

dµ.
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Theorem 2.4.9. The Albanese torus of a (connected) finite metric graph G
satisfies

Alb(G) ∼=
Hom(M (E(T ),Z)Γ

0 ,R)

H1(G,Z)
.

Proof. By the lemma 2.4.2 we have Alb(G) ∼= Ω(G)∗/H1(G,Z) where G is
a model for G. We also know Ω(G) ∼= C1

har(G,R) ∼= C1
har(G,Z) ⊗Z R and

H1(G,Z) ∼= H1(G,Z) naturally. Moreover

Hom(M (E(TG),Z)Γ
0 ,R) ∼= Hom(C1

har(TG,Z)Γ,R) ∼= Hom(C1
har(G,Z),R) ∼=

∼= HomR(C1
har(G,Z)⊗Z R,R) ∼= HomR(C1

har(G,R),R) = C1
har(G,R)∗.

Therefore, to end we only have to see that the next square is commutative:

H1(G,Z) �
� //

∼=

��

H1(G,R) ∼=

∫
• // Ω(G)∗

∼=
��

C1
har(G,R)∗

∼=
��

H1(G,Z)

∫
d

// Hom(M (E(TG),Z)Γ
0 ,R).

Take α =
∑

e∈E(G) mee ∈ H1(G,Z). We also will denote by α its topolog-

ical realization, which is the cycle that corresponds to it in H1(G,Z). Recall
that Γab ∼= H1(G,Z), thus, there is γ ∈ Γ such that α = $(γ), that is the
projection of a path from a vertex ṽ ∈ TG to γ · ṽ. Then, me counts how
many times appear edges representing e in that path in TG with orientation.
If ẽ is one of those edges in π−1

G (e), that is the value
∑

γ∈Γ ε([ṽ, γṽ], γẽ) with
the notation introduced before the proof of theorem 2.11 in [BF11], applied
at TG. That is

me =
∑
γ∈Γ

ε([ṽ, γṽ], γẽ) =
($(γ), e)

`(e)
.

Take also a harmonic measure µ ∈ M (E(TG),Z)Γ
0 . The corresponding

harmonic 1-form is ∑
e∈E(G)

µ(B(e))de ∈ Ω(G).

By the isomorphism M (E(TG),Z)Γ
0
∼= Γab, we have µ = µγ′ for γ′ ∈ Γab and,

as above,

µ(B(e)) =
(e,$(γ′))

`(e)
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by the corollary 2.4.8. This result also allows us to conclude the sought
commutativity, as follows:∫

α

(µ) =

∫
∑
e∈E(G)mee

 ∑
e∈E(G)

µ(B(e))de

 =
∑

e∈E(G)

meµ(B(e))`(e) =

=

 ∑
e∈E(G)

mee,
∑

e∈E(G)

µ(B(e))e

 = ($(γ), $(γ′)) =

∫
γp−p

dµ.

Theorem 2.4.10. Given any point p ∈ G, the Abel-Jacobi map with base
point p is given by

G
ip // Hom(M (E(T ),Z)Γ

0 ,R)∫
d (H1(G,Z))

∼= Alb(G)

q � //
∫ q̃

p̃

d : µ 7−→
∫
q̃−p̃

dµ

where πG(p̃) = p and πG(q̃) = q.

Proof. First, observe that the map is well defined. Indeed, assume first we
define it fixing a point p̃ ∈ TG. Two representants of q ∈ G in TG have the
form q̃ and γq̃ for some γ ∈ Γ, and so we have∫

γq̃−p̃
d−

∫
q̃−p̃

d =

∫
γq̃−q̃

d ∈
∫
d(H1(G,Z))

That is, ip̃ does not depend on the chosen representant of q. Next, changing
p̃ by γp̃ and taking a fixed representant q̃ of q, we get ip̃(q) = iγp̃(q) by an
identical reasoning, therefore ip is well defined.

Now we want to see that for any q ∈ G, Φp(q) = ip(q). By the lemma 2.4.5,
we may take a model G of G containing p and q as vertices. Thus, for any
path P in G from p to q we have∫

αP

= Φp(q)

with the notation introduced above the mentioned lemma. In particular,
if we take representants p̃ and q̃ of p and q respectively, we take as P the
projection of the path from p̃ to q̃. Then, we want to see that∫

αP

=

∫
q̃−p̃

d.
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As in the proof of the corollary 2.4.8, we subdivide the path [p̃, q̃] in subpaths
[pi, pi+1], i = 0, . . . , r, which are projected to the topological realizations
in G of edges in G, where p0 = p̃ and pr = q̃. Let ei ∈ Ê(G) be the
edge whose topological realization is πG([pi−1, pi]), with the same orientation.
Note that the projection of

∑r
i=1 ei in Z[E(G)] is αP =

∑
e∈E(G) ε(P, e)e by

construction.
Now, take a harmonic measure µ ∈ M (E(T ),Z)Γ

0 . We evaluate and
proceed like in the proof of the previous theorem

ip(q)(µ) =

∫ q̃

p̃

dµ =
r∑
i=1

∫ pi

pi−1

dµ =
r∑
i=1

`(ei)µ(B(ei)),

Φp(q)(µ) =

∫
αP

(µ) =
∑

e∈E(G)

ε(P, e)µ(B(e))`(e),

and, since µ(B(ei)) = −µ(B(ei)) and ε(P, e) counts how many times appears
e in the set {e1, . . . , er} with orientation,

r∑
i=1

`(ei)µ(B(ei)) =
∑

e∈E(G)

ε(P, e)µ(B(e))`(e),

obtaining ip(q)(µ) = Φp(q)(µ) for all µ, as we wanted to prove.
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Chapter 3

The Abel-Jacobi map for
Mumford curves via integration

Mumford built in 1972 some algebraic curves associated to certain sub-
groups of the linear group PGL2(K), when K is a complete field with respect
to a discrete absolute value, analogous to a construction of Schottky over the
complex numbers. He restricted to the case of discrete absolute value and
used the geometry given by formal schemes.

This was generalized to every non-archimedean absolute value by Ger-
ritzen and van der Put in [GvdP80] in 1980. They named such curves Mum-
ford curves. Shortly after Mumford’s paper, Drinfeld and Manin in [MD73]
showed that the Jacobian of a Mumford curve is isomorphic to an analytic
torus (in the rigid-analytic geometry) and that it can be built with some
theta functions in the case K is a finite extension of the p-adic numbers.
This construction was also done in the general case by Gerritzen and van der
Put in [GvdP80]. Both took advantage of rigid analytic geometry, introduced
by Tate some years ago.

More recently, Dasgupta showed in his thesis ([Das04]) an equivalent con-
struction of the Jacobian to the ones cited above, but restricted to the local
case, by means of multiplicative integrals, defined previously by Darmon in
[Dar01] and generalized by Longhi in [Lon02].

Before that, in 1990 Berkovich introduced an alternative analytic theory
to the one of Tate in his seminal book [Ber90]. The biggest difference over a
variety consists in introducing more points instead of removing Zariski open
sets. This does not impede getting equivalent categories of “good” enough an-
alytic varieties which can be seen as generic fibres of formal schemes, thanks
to works of Raynaud, Bosch and Lütkebohmert. Concurrently, tropical ge-
ometry was developed and found in big relation with Berkovich analytic
geometry.
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In this chapter, we give a new construction of the Jacobian of a Mumford
curve over any complete non-archimedean field, departing from Berkovich
geometry, and giving so a new and enlightening point of view.

It should be also recognized a great parallelism of this work with part of
the paper by van der Put [vdP92]. Some of the results are directly related
to results by Baker and Rabinoff appeared in [BR15] in slightly different
language.

In order to get the asserted goal, we make the basic constructions given by
Berkovich theory in sections 3.1 and 3.2, from which, later, in the section 3.6,
we build our Mumford curve. They are the Berkovich projective line together
(P1

K
∗
)an with its skeleton TK , which coincides with the Bruhat-Tits building

of PGL2(K), the locally finite subtree TK(L) associated to a compact set L
and the retraction map

rL : (P1
K
∗
)an −→ TK(L).

Through the sections 3.4 and 3.5 we develope the theory of multiplicative
integrals and analytic functions that we need -completed later in the sec-
tions 3.7 and 3.8. Essentially, we define these integrals, we build the ones
in which we are interested and we relate them to analytic functions through
the Poisson formula and the map

µ̃ : O(ΩL)∗ :−→M(L,Z)0

Later we study the automorphic forms for a Schottky group Γ ⊂ PGL2(K),
and the last part of this work gather all previous topics to build the desired
Abel-Jacobi map.

Through this chapter K will be a complete field with respect to a non-
trivial non-archimedean absolute value| · | := | · |K . The ring of integers
of K will be denoted by OK = {x ∈ K | |x| ≤ 1}, its maximal ideal by
mK = {x ∈ K | |x| < 1}, and its residue field by k := OK/mK .

If the absolute value | · | is discretely valued, we will assume − log |x| ∈ Z
for any x ∈ K∗, so it is the discrete valuation vK associated to |·|. Otherwise,
we also define the valuation of x by vK(x) := − log |x|.

Taking the 2-dimensional vector space V = KX0⊕KX1
∼= K2, we see the

dual projective line P1
K
∗

over K as the projective spectrum of the polynomial
ring K[X0, X1], that is PV ∗ = Proj(S•V ). Its K-rational points correspond
to (K2)∗ \ {(0, 0)} modulo homothety. We denote the class of (x0, x1) by
[x0 : x1].

The infinite point in the dual projective line will be∞ = [0 : 1] and we em-
bed K in P1∗(K) by means of i∗(z) = [1 : −z]. Therefore, an f ∈ K[X0, X1]
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defines a function L −→ L for any extension L|K, that by abuse of notation
we also denote f , by f(z) := f(1,−z).

On the other hand we inject K in P1(K) by i(z) = [z : 1], taking as
infinity of the projective line [1 : 0].

Given a point p = [a : b] ∈ P1∗(K), we will denote its corresponding point
p∗ = [−b : a] ∈ P1(K) (or if p ∈ P1(K), then p∗ ∈ P1∗(K)). Note that this
implies i∗(z) = i(z)∗ for all z ∈ K and (γ · p)∗ = γ · p∗ for all p ∈ P1(K) (or
p ∈ P1∗(K)), γ ∈ PGL2(K). Furthermore, ∞∗ =∞.

More generally, given a set of points S ⊂ P1(K) (resp. S ′ ⊂ P1∗(K)) we
denote S∗ := {p∗|p ∈ S} ⊂ P1∗(K) (resp. S ′∗ := {p∗|p ∈ S ′} ⊂ P1(K)).

3.1 Trees and Skeletons

The main objective of this section is the construction of a metric tree
associated to an arbitrary compact set L ⊂ P1(K), study its structure and
define the open sets associated to its edges. This subtree generalizes to a
non-discrete setting the one defined by Mumford in [Mum72a] and gives an
alternative and more complete construction to the one given in [GvdP80,
Ch. 1]. In order to do it, we recall some well known notions coming from
Berkovich analytic geometry and Bruhat-Tits theory. This first part is mainly
extracted from [Bak08], but it is also greatly indebted to [Wer04], where some
ideas we recall here and further on are shown.

Consider the Berkovich analytic projective line (P1
K
∗
)an defined over K,

which is the set of all the multiplicative seminorms on the polynomial ring
K[X0, X1] extending | | on K modulo an equivalence relation which is spec-
ified below; that is, the maps

α : K[X0, X1]→ R≥0

such that

1. α|K = | |.

2. α(X0K +X1K) 6= {0}.

3. α(f · g) = α(f) · α(g)

4. α(f + g) ≤ max{α(f), α(g)}

with α ∼ β if there exists a constant C ∈ R>0 such that α(f) = Cdβ(f) for
all f ∈ K[X0, X1] homogeneous of degree d and for all d ≥ 0.
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We associate to an x ∈ P1
K
∗
(K), x 6= ∞ = [0 : 1] and an r ∈ R≥0 an

element α(x, r) ∈ (P1
K
∗
)an by defining

α(x, r)(f) = sup{|f(y)| : y ∈ B(x, r)} for f ∈ K[X0, X1]

and α(∞, 0)(f) := |f(0, 1)|.
We will call these seminorms the ones associated to the balls (or to K-

rational points if r = 0).

Remark 3.1.1. Let f = λX0 + µX1 ∈ V = KX0 ⊕KX1. Then,

α(x, r)(f) = max{|λ− µx|, |µ|r}.

Indeed, for y ∈ B(x, r) we have

|λ− µy| = |λ− µx+ µ(x− y)| ≤ max{|λ− µx|, |µ||x− y|}

whose maximum is reached at |y − x| = r, and so

α(x, r)(f) = sup{|λ · 1 + µ · (−y)| : y ∈ B(x, r)} ≤ max{|λ− µx|, |µ|r}.

In addition we have trivially |λ − µx| ≤ α(x, r)(f), and so, the only case
which concerns us is |λ− µx| < |µ|r, which is equivalent to∣∣∣∣λµ − x

∣∣∣∣ < r

Then, for any y such that ∣∣∣∣λµ − x
∣∣∣∣ < |y − x| < r

we have |λ−µx| < |µ||x−y| and so |λ−µy| = |λ−µx+µ(x−y)| = |µ||x−y|.
Finally, we have a sequence (yn)n inside B(x, r) such that lim

n
|x− yn| = r,

and therefore

α(x, r)(f) = sup{|λ−µy|, y ∈ B(x, r)} = sup{|µ||x−y|, y ∈ B(x, r)} = |µ|r.

In particular, when q ∈ K and f = qX0 + 1X1, identifying them we get
α(x, r)(q) = max{|q − x|, r}.

Definition 3.1.2. We call maximal skeleton of (P1
K
∗
)an and denote TK the

set of points associated to balls with r > 0, and the compactified skeleton TK
is the skeleton together with the (points associated to) rational points P1∗(K).
It is well known that this set is a topological space, and together with a natural
metric, which we will recall in the following, forms an R-tree ([BPR13]).
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Figure 3.1: The Berkovich projective line (P1
K
∗
)an.

Remark 3.1.3. If K is algebraically closed, then it is well-known (look at
[Ber90]) that the points in (P1

K
∗
)an can be divided in four types, the type we

being associated to K-rational points, types II and III associated to (closed)
balls with center some x ∈ P1∗(K), and with radius r ∈ |K∗| or r ∈ R>0\|K∗|
respectively, and a fourth type associated to sequences of nesting balls with
empty intersection. Then the topological space (P1

K
∗
)an has the structure of

an R-tree. The maximal skeleton TK of (P1
K
∗
)an is the set of points of type II

and III, which is an R-subtree, and TK is the set of points of type I, II and
III.

Recall that in [BPR13] is defined a skeleton in (P1
K
∗
)an and corollary

5.56. asserts that TK is the inductive limit of all their skeleta. Note also that
(P1

K
∗
)an is homeomorphic to the inverse limit of the set of all skeleta with

respect to the natural retraction maps ([BPR13, Thm. 5.57.]).

Given any two distinct points x0 and x1 ∈ P1∗(K)\{∞}, if R = |x0 − x1|,
we will denote by x0 ∨ x1 := α(x0, R) = α(x1, R). For any two classes of
seminorms α0 = α(x0, r0) and α1 = α(x1, r1) ∈ TK , either the correspond-
ing balls verify B(x0, r0) ∩B(x1, r1) 6= ∅, in which case α(xi, ri) = α(y, ri)
for all the points y ∈ B(x0, r0) ∩B(x1, r1) and i = 0, 1, and we denote
α0 ∨ α1 := α(y,max(r0, r1)), or they verify B(x0, r0) ∩B(x1, r1) = ∅ and we
denote α0 ∨ α1 := x0 ∨ x1.

Let us consider two points α = α(x, r), α′ = α(x, r′) of the R-tree TK ,
with 0 ≤ r ≤ r′ and x 6= ∞. We denote the (oriented) path from α to α′

as P (α, α′), being as a set of points {α(x, s)|r ≤ s ≤ r′} ∼= [r, r′] ⊂ R≥0. The
(oriented) path P (α′, α) from α′ to α is the same set of points oriented with
the opposite direction. Finally, the (oriented) path P (α(x, r), α(∞, 0)) from
α(x, r) to α(∞, 0) is the set of points

{α(x, s)|s ≥ r}
⋃
{α(∞, 0)} ∼= [r,∞] ⊂ R≥0

⋃
{∞}

with the orientation given by the isomorphism (as above), and we define sim-
ilarly the opposite path P (α(∞, 0), α(x, r)) reversing the orientation. Given
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two arbitrary points α, α′ ∈ TK \ {α(∞, 0)}, the (oriented) path P (α, α′)
from α to α′ is the path P (α, α ∨ α′) followed by the path P (α ∨ α′, α′).

Recall that given any two distinct points x0 and x1 ∈ P1∗(K), there is
a unique line in TK going from x0 to x1, the open path P̊ (α(x0, 0), α(x1, 0))
-the interior of the path P (α(x0, 0), α(x1, 0)). This line is homeomorphic as
a metric tree to R, and we denote it by A{x0,x1}: it is called an apartment of

the skeleton TK . Its closure is, by definition, A{x0,x1} = A{x0,x1} ∪ {x0, x1}.
Given two points α0 = α(x0, r0) and α1 = α(x0, r1) ∈ A{x0,∞}, we define

d(α0, α1) =

∣∣∣∣log
r1

r0

∣∣∣∣,
and in general we define

d(α0, α1) := d(α0, α0 ∨ α1) + d(α0 ∨ α1, α1).

Then d determines a well defined metric on TK .

A seminorm on V is α : V = X0K + X1K −→ R≥0 satisfying (2) and
(4) as above in the definition of multiplicative seminorm on K[X0, X1], and
α(λv) = |λ|α(v) for λ ∈ K, v ∈ V . We say that a seminorm α on V is
diagonalizable if there exists a basis v0, v1 of V such that

α(v) = max{|ω0(v)|α(v0), |ω1(v)|α(v1)}

for all v ∈ V , where ω0, ω1 is the dual basis of v0, v1. We denote that
seminorm as α(v0,v1),(ρ0,ρ1) with ρ0 := α(v0) and ρ1 := α(v1).

Remark 3.1.4 (The action of PGL2(K) on (P1
K
∗
)an). The left action of

PGL2(K) on V induces a left action on K[X0, X1] ∼= S•V . Then, it also
induces a left action on (P1

K
∗
)an by defining (γ · α)(f) := α(γ−1 · f).

For any γ ∈ PGL2(K) we get γ ·α(x, 0) = α(γ ·x, 0), making the injection
P1∗(K) −→ (P1

K
∗
)an defined by x 7→ α(x, 0) equivariant. We also have

γ · α(v0,v1),(ρ0,ρ1) = α(γ·v0,γ·v1),(ρ0,ρ1).

Next we are going to identify the R-tree TK with the Bruhat-Tits building
of PGL2(K), which is the set of diagonalizable norms on K2 up to homothety.

Proposition 3.1.5. The seminorm α(x, r) restricted to V is the seminorm
α := α(v0,v1),(ρ0,ρ1), diagonalizable with respect to the basis v0 = (1, 0), v1 = (x, 1)
and such that ρ0 = 1 and ρ1 = r when x 6=∞, meanwhile α(∞, 0) = α((1,0),(0,1)),(0,1).
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Proof. The identification works by means of restricting any seminorm in TK
to KX0 +KX1, by means of its identification with K2. When the seminorm
is α(x, r) for x ∈ K ⊂ P1∗(K) and r ≥ 0, and we apply it to a vector
v = (a, b) = (a− bx)v0 + bv1, we have

α(x, r)(v) = max{|a− bx|, |b|r} = α(v)

Observe that ω0(a, b) = a− bx and also that the seminorm on K2 associated
to a rational point x has x∗ as its kernel, that is to say, the set of vectors
w ∈ K2 with |ω0(w)| = 0 is the subspace generated by (x, 1).

In the case of α(∞, 0) we have

α(∞, 0)(v) = |b| = max{|a|0, |b|1} = α((1,0),(0,1)),(0,1)(v)

In the following result we will specify how the correspondence between
classes of seminorms with form α(x, r) and diagonalizable seminorms on V
works.

Proposition 3.1.6. Let v0, v1 be a basis of V , ω0, ω1 ∈ V ∗ be its dual basis,
y0 = [ω0], y1 = [ω1] ∈ P1∗(K) and ρ0, ρ1 ∈ R≥0. We suppose that y0, y1 6=∞
(look at proposition above for the case in which one point is ∞), and then
we may take ωi = (1,−yi) for i = 1, 2 (by means of i∗).

With these hypotheses we get:

If ρ1 < ρ0, [α(v0,v1),(ρ0,ρ1)] = [α(v0,v1),(1,
ρ1
ρ0

)]

and

α(v0,v1),(1,
ρ1
ρ0

) = α

(
y0,

ρ1

ρ0

|y0 − y1|
)
.

If ρ0 < ρ1, [α(v0,v1),(ρ0,ρ1)] = [α(v0,v1),(
ρ0
ρ1
,1)]

and

α(v0,v1),(
ρ0
ρ1
,1) = α

(
y1,

ρ0

ρ1

|y0 − y1|
)
.

If ρ1 = ρ0, [α(v0,v1),(ρ0,ρ1)] = [α(v0,v1),(1,1)]

and
α(v0,v1),(1,1) = α (y0, |y0 − y1|) = α (y1, |y0 − y1|) .

Reciprocally, and for r ≤ |y0 − y1|

α(y0, r) = α
(v0,v1),

(
1, r
|y0−y1|

)
α(y1, r) = α

(v0,v1),
(

r
|y0−y1|

,1
).
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Proof. Assume, just for simplicity, that ρ0, ρ1 6= 0, meaning that α is a norm.
Define α := α(v0,v1),(ρ0,ρ1).

Next, we start at the end. By definition α ∈ A{y0,y1}, so α ∈ P (y0, y0∨y1)
or α ∈ P (y0 ∨ y1, y1); for some r ≤ |y0 − y1|, in the first case we would
get α = α(y0, r) and in the second we would α = α(y1, r) up to homothety.
Without loss of generality we suppose the first case. Let us take an arbitrary
vector v = (a, b) ∈ V . We have

α(y0, r)(v) = max{|a− by0|, |b|r},

α(a, b) = max{|a− by0|ρ0, |a− by1|ρ1} ∼ max{|a− by0|, |a− by1|
ρ1

ρ0

}

We note that if |a− by0| < |b|r, we have [α](v) = [α(y0, r)](v) if and only if

|b|r = |a− by1|
ρ1

ρ0

,

or also
ρ1

ρ0

=
|b|r

|a− by1|
.

But since we have |b||y0 − y1| ≥ |b|r > |a− by0|, then we get |a− by1| =
|a− by0 + b(y0 − y1)| = max{|a− by0|, |b||y0 − y1|} = |b||y0 − y1|, so

ρ1

ρ0

=
r

|y0 − y1|

Therefore we obtain

[α] =

[
α

(
y0,

ρ1

ρ0

|y0 − y1|
)]

after assuming r ≤ |y0 − y1|, that is ρ1 ≤ ρ0. In the same way, when ρ1 ≥ ρ0

we get

[α] =

[
α

(
y1,

ρ0

ρ1

|y0 − y1|
)]
.

We see the extreme cases too, that is, when ρ1 = 0 then [α] = [α(y0, 0)],
and when ρ0 = 0, [α] = [α(y1, 0)].

We keep together the last two results in the next:

Corollary 3.1.7. The maximal and the compactified skeletons TK and TK
can be canonically identified with the set of classes modulo homothety of non-
trivial diagonalizable norms and seminorms on K2 respectively. These are
the Bruhat-Tits building of PGL2(K) and its compactification.
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Proof. The classes of seminorms associated to balls correspond to the classes
of diagonalizable norms and seminorms on K2 by the two previous results.

And now we are going to show that d is invariant with respect to the
action of PGL2(K).

Consider any apartment A{x0,x1} for x0, x1 ∈ P1∗(K) and choose represen-
tatives ω0, ω1 ∈ V ∗ respectively. Let v0, v1 ∈ V be the dual basis of ω0, ω1.
For any two elements in this apartment α := α(v0,v1),(ρ0,ρ1), α

′ := α(v0,v1),(ρ′0,ρ
′
1)

we define a distance in this apartment as:

dx0,x1(α, α′) :=

∣∣∣∣log

(
ρ1ρ
′
0

ρ0ρ′1

)∣∣∣∣ =

∣∣∣∣log

(
ρ1

ρ0

)
− log

(
ρ′1
ρ′0

)∣∣∣∣
Note that the homeomorphism (up to orientation) A{x0,x1} −→ R is given by

α 7→ log

(
ρ1

ρ0

)
,

so dx0,x1 is the transported distance from the natural one in R.

Proposition 3.1.8. The two definitions of distance coincide, that is, for any
x0, x1 ∈ P1∗(K) we have

d|A{x0,x1}
= dx0,x1

Proof. For any α := α(v0,v1),(ρ0,ρ1), α
′ := α(v0,v1),(ρ′0,ρ

′
1) ∈ A{x0,x1} we want to

see d(α, α′) = dx0,x1(α, α′).
First, we can assume and we do that there exists an x ∈ P1∗(K) such

that α, α′ ∈ A{x,∞}. Otherwise d(α, α′) = d(α, α ∨ α′) + d(α ∨ α′, α′) and by
definition dx0,x1 satisfies the same equality.

Moreover, it is enough to prove that if α, α′ ∈ A{x0,x1}
⋂

A{y0,y1} then
dx0,x1(α, α′) = dy0,y1(α, α′), since for the particular case y0 = x, y1 = ∞ we
have dx,∞ = d.

We may reduce to the case y0 = x0 by applying the result in two steps.
Let us denote x2 := y1 ∈ P1∗(K) and let it be represented by

ω2 = λω0 + µω1 ∈ V ∗, µ 6= 0.

Then

u0 = v0 −
λ

µ
v1, u2 =

v1

µ
∈ V

is the dual basis of ω0, ω2. Now we have that

α := α(v0,v1),(ρ0,ρ1) = α(u0,u2),(η0,η2) with η0 = max

{
ρ0,

∣∣∣∣λµ
∣∣∣∣ ρ1

}
, η2 =

∣∣∣∣ 1µ
∣∣∣∣ ρ1
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and

α′ := α(v0,v1),(ρ′0,ρ
′
1) = α(u0,u2),(η′0,η

′
2) with η′0 = max

{
ρ′0,

∣∣∣∣λµ
∣∣∣∣ ρ′1} , η′2 =

∣∣∣∣ 1µ
∣∣∣∣ ρ′1

Note that ρ1 = |µ|η2 implies that η0 = max{ρ0, |λ|η2}. Furthermore

ρ0 = α(v0) = max{η0, |λ|η2},

since v0 = u0 + λu2. Then η0 = ρ0. Identically we get η′0 = ρ′0.
Therefore

dx0,x2(α, α′) =

∣∣∣∣log
η2η
′
0

η0η′2

∣∣∣∣ =

∣∣∣∣log
ρ1ρ
′
0

ρ0ρ′1

∣∣∣∣ = dx0,x1(α, α′)

Corollary 3.1.9. The distance is PGL2(K)-invariant, that is to say,

d(α, α′) = d(γ · α, γ · α′)

for any γ ∈ PGL2(K).

Proof. First we recall that γ · α(v0,v1),(ρ0,ρ1) = α(γ·v0,γ·v1),(ρ0,ρ1). Let us to take
now any apartment A{x0,x1} which contains α, α′ as above. Then d(α, α′) =
dx0,x1(α, α′) = dγ·x0,γ·x1(γ ·α, γ ·α′) = d(γ ·α, γ ·α′), where the second equality
is due to the remark 3.1.4.

Let x0, x1 and x2 be three distinct points in P1∗(K). Then there exists
a unique point t(x0, x1, x2) ∈ TK which is contained in the three apartments
they form. If x2 = ∞, then t(x0, x1,∞) = α(x0, R) = x0 ∨ x1, where |x1 −
x0| = R. If none of them is equal to ∞, it corresponds to the smallest ball
containing all three points.

Observe that the points t(x0, x1, x2) are always of type II, so they have
the form α(x0, r) with r ∈ |K∗|.

Definition 3.1.10. Let L be a subset of P1(K) which contain at least two
points. Denote by

TK(L) :=
⋃

{x∗0,x∗1}⊂L

A{x0,x1} =
⋃

{x0,x1}⊂L∗
A{x0,x1}

the tree associated to L (which is the subspace of TK generated by the lines
between two points corresponding of points in L). Note that

TK(L) := TK(L) ∪ L∗

with the natural topology.
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It is clear that for any extension of fields L|K the tree associated to L is
always the same: TL(L) = TK(L), TL(L) = TK(L).

We will show in the sequel that TK(L) is a locally finite metric tree if L
is compact.

Lemma 3.1.11. The points of the form t(x0, x1, x2) for three distinct points
x0, x1, x2 ∈ L∗ are the points in TK(L) with valence greater than 2.

Suppose that ∞, x0 ∈ L∗ and consider a point α := α(x0, r) ∈ TK(L) of
the form t(x0, x1,∞) for some x1 ∈ L∗. Then

{y ∈ L∗ \ {x0,∞} | α = t(x0, y,∞)} = {y ∈ L∗ | |y − x0| = r}.

Moreover, there is a bijection between the set of directions from α(x0, r) except
the ones which connect with ∞ and x0, and the image of the map

ψ : {y ∈ L∗ | |y − x0| = r} → k∗

given by:

ψ(y) =
y − x0

x1 − x0

(mod mK).

Proof. The unique claim that needs a proof is the bijection. From the equal-
ity shown, we see that a direction can be identified with a set of points
Ey ⊂ {y ∈ L∗ | |y − x0| = r} such that |y′ − y′′| < r for all y′, y′′ ∈ Ey.
Thus, the only thing we have to prove is that ψ(y) = ψ(y′) if and only if
|y − y′| < r.

To start with this equivalence we note that ψ(y) = ψ(y′) means that there
exists z ∈ mK , or equivalently |z| < 1, such that

y − x0

x1 − x0

=
y′ − x0

x1 − x0

+ z

We may write this equality as y − y′ = z(x1 − x0) and taking absolute value
|y − y′| = |z|r < r. Finally, the other option, |z| = 1, is that for which
ψ(y) 6= ψ(y′).

Proposition 3.1.12. If L is compact, then TK(L) is a locally finite metric
tree, that is to say, any vertex has a finite number of directions arriving to it
and any finite lenght path contains only a finite number of vertices of valence
greater than 2.

Proof. We suppose L has at least three points and ∞ ∈ L∗ without loss of
generality.

Note that |L| = |L∗| and that L is compact if and only if L∗ is compact.
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In order to prove the first claim consider a vertex α(x0, r) ∈ TK(L) that
we may assume of the form t(x0, x1,∞) for some x0 and x1 ∈ L∗. Since
L∗ is compact and {y ∈ K | |y − x0| = r} is closed, their intersection
{y ∈ L∗ | |y − x0| = r} is compact. Now, given any t ∈ k∗, the set ψ−1({t})
is an open subset (the previous proof shows it is an open ball). Then, if the
point had infinite directions arriving to it, the image of ψ would be infinite
so the compact set {y ∈ L∗ | |y − x0| = r} would be covered by an infinite
number of disjoint open subsets and we would get a contradiction.

To get the second claim we can reduce us to show it for a path with the
form P (α(x, r), α(x, r′)) with 0 < r ≤ r′. We have to show that the set

Sr,r′ := {s ∈ [r, r′]| ∃y ∈ L∗ : |y − x| = s}

is finite. Consider the set

{y ∈ L∗| r ≤ |y − x| ≤ r′} = L∗
⋂(

B(x, r′) \ B̊(x, r)
)

=

=
⋃

s∈Sr,r′

{y ∈ L∗| |y − x| = s}

Since it is a closed in L∗, then it is compact. Further, the subsets

L∗x,s := {y ∈ L∗| |y − x| = s} =
⋃

y∈L∗x,s

(
L∗ ∩ B̊(y, s)

)
are open, so we can get a finite covering by them, and this implies necessarily
that Sr,r′ is finite.

Definition 3.1.13. With the hypotheses of definition 3.1.10 we say that
TK(L) is perfect if for any α ∈ TK(L) and for any r ∈ R>0 there exists
α′ ∈ TK(L) with valence greater than 2 and such that d(α, α′) > r.

One can show that this definition is compatible with the one of perfect
set, so TK(L) is perfect if and only if L is perfect (all the points in L are
accumulation points), clearly equivalent to L∗ being perfect. For example, if
L is a finite set, then TK(L) is not perfect, since it has just a finite number
of vertices of valence greater than 2.

Definition 3.1.14. We will call a topological (oriented) edge e := eα,β (of
TK(L)) a non trivial path P (α, β) ⊂ TK(L), such that all its interior points
have valence two in TK(L). We will call the length of e the distance d(α, β),
and we will denote it by l(e).

From now on, let L ⊂ P1(K) be a compact subset with at least two
points.
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Proposition 3.1.15. Since L is compact, there is a bijection between L and
E(TK(L)).

Proof. Let us handle with L∗ instead of L for simplicity. From the definition
of TK(L) we build a map ε : L∗ −→ E(TK(L)). Indeed, to any point x0 ∈ L∗
we may choose any ray in any apartment A{x1,x0} getting close to x0, which
gives a well defined end. Further, it is clearly injective.

Now, to prove exhaustivity, we take an end given by a ray {α(xn, rn)}.
After taking a different model of TK(L) and an equivalent ray, we may assume
and we do rn 6= rn+1 for all n.

There are two options. Either rn+1 > rn for all n or there exists an N
such that rn+1 < rn for all n ≥ N .

Indeed, assume rn−1 > rn < rn+1. Then we have

α(xn, rn−1) ∈ P
(
α(xn, rn), α(xn−1, rn−1)

)
,

since, if |xn−1 − xn| < rn−1 we have α(xn−1, rn−1) = α(xn, rn−1) and other-
wise P

(
α(xn, rn), α(xn−1, rn−1)

)
is the path P

(
α(xn, rn), α(xn, |xn − xn−1|)

)
followed by the path P

(
α(xn, |xn − xn−1|), α(xn−1, rn−1)

)
. And in the same

way α(xn, rn+1) ∈ P (α(xn, rn), α(xn+1, rn+1)). Therefore

P
(
α(xn−1, rn−1), α(xn, rn)

)⋂
P
(
α(xn+1, rn+1), α(xn, rn)

)
⊃

⊃ P
(
α(xn, rn), α(xn,min{rn−1, rn+1})

)
6= {α(xn, rn)}

against the definition of ray.
Therefore, by taking an equivalent ray, we may assume that {rn}n is

increasing or decreasing from the beginning.
Moreover, since L∗ is compact, the sequence {xn}n has a convergent par-

tial subsequence {xnm}m, which defines an equivalent ray, thus we assume
limn→∞ xn = x ∈ L∗. When x 6= ∞, we also can suppose without loss of
generality, and we do, that x = 0.

Then, I claim that the preimage of this end is ∞ when {rn}n is an in-
creasing sequence and it is 0(= x) when the sequence is decreasing.

If {rn}n is increasing, choose r1 ≥ 0. The limit previously computed gives
an N such that for all n ≥ N we have |xn| < r1 < rn, so

α(xn, rn) = α(0, rn) ∈ A{0,∞},

therefore the given end is the image of ∞.
Thus, to finish we assume the sequence {rn}n is decreasing.
Now assume that there exists an r > 0 such that rn > r for all n. Since

limn→∞ xn = 0 we have that there would exist an N such that |xn| < r for
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all n ≥ N . This would imply that α(xn, rn) = α(0, rn) and we would have all
the ray contained in P

(
α(x0, r0), α(0, r)

)
a contradiction with the definition

of ray, which has to be infinite. Therefore limn→∞ rn = 0.
Next, take an α(xn, rn) such that |xn| > rn. Since we assume the sequence

of the radii is decreasing, by the same resoning

α(x′, r′) ∈ P
(
α(xn, rn), α(xn+1, rn+1)

)
implies rn+1 < r′ < rn.

This gives rn ≥ |xn−xn+1|. Otherwise (rn < |xn−xn+1|) we would have that
the path P

(
α(xn, rn), α(xn+1, rn+1)

)
is P

(
α(xn, rn), α(xn, |xn − xn+1|)

)
fol-

lowed by P
(
α(xn, |xn−xn+1|), α(xn+1, rn+1)

)
, getting a contradiction through

the first part. Therefore we obtain

|xn| > rn ≥ |xn − xn+1| =⇒ |xn| = |xn+1|,

and by the same reasoning |xn| = |xm| for all m ≥ n, which contradices that
limn→∞ xn = 0.

Then, we got |xn| ≤ rn for all n and so α(xn, rn) = α(0, rn) ∈ A{0,∞}, so
the end is the one given by the image of 0, as we desired.

Finally, note that if we had limn→∞ xn = ∞ ∈ L∗, we could assume
{|xn|}n is strictly increasing, and further, by similar reasonings as above, we
would obtained {rn}n being a strictly increasing sequence and

|xn+1| = |xn − xn+1| > rn =⇒ rn+1 > |xn − xn+1| = |xn+1|,

rn ≥ |xn+1| =⇒ rn+1 > rn ≥ |xn+1|,
so we would get the end of the ray in A{0,∞}, as the image of ∞.

Next, we particularize the definition 2.1.15.

Definition 3.1.16. Let e be the topological edge of TK(L) induced by the path
P (α, β) (in particular, α 6= β). We may define a subset of L associated to it
as

B(e) := B(α, β) := {x ∈ L| α 6∈ P (x∗, β)} = {x ∈ L| β ∈ P (x∗, α)}.

Corollary 3.1.17. The bijection L ∼= E(TK(L)) is an homeomorphism. In
particular, the topology defined in the previous chapter coincide with the given
topology in L.

Proof. Note that if α = α(x, r), α′ = α(x, s) and x ∈ K, either r < s and so
B(α, α′) = L \ B̊(x, s), or r > s and then B(α, α′) = L

⋂
B(x, s).

And now we have finished, since the balls and their complementaries are
a basis of open sets in L and the sets associated to edges are a basis of open
sets in E(TK(L)).
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Thus, we have the properties of proposition 2.1.16, and, as a consequence,
these sets are an open basis of the topology of L in the strong sense, meaning
that any compact open set of L is a finite disjoint union of them.

3.2 The retraction map

We build the retraction map rL : (P1
K
∗
)an −→ TK(L) generalizing the

reduction map constructed by Werner in [Wer04] to the trees introduced in
the previous section, which, on the other hand, gives the complete description
over all the Berkovich analytic points of the reduction map named in [Das05,
2.3.]. Further, we do not restrict to a local field.

Through this section L|K will be an arbitrary extension of valued com-
plete fields.

Given any compact subset with at least two points L ⊂ P1(K) we define
ΩL(L) := P1∗(L) \ L∗. We also define the diameter of L∗ as

dL∗ =

{
inf{r ≥ 0| L∗ ⊂ B(x, r) for some x ∈ L∗} if ∞ 6∈ L∗
+∞ if ∞ ∈ L∗

Note that we may fix x ∈ L∗ and the definition is independent of the chosen
point x. Observe also that we can do the same definition for L obtaining
dL = dL∗ , so we can speak about the diameter of L and denote by dL the
diameter of dL∗ .

Definition 3.2.1. Let L ⊂ P1(K) be as just above. We define the retraction
map rL : P1∗(L)→ TK(L) to be

rL(x) =


x, if x ∈ L∗
α(x, inf{s ≥ 0 | B(x, s) ∩ L∗ 6= ∅}), if B(x, dL) ∩ L∗ 6= ∅ and x 6∈ L∗
α(y, dL) for any y ∈ L∗, if B(x, dL) ∩ L∗ = ∅

for x 6=∞, and

rL(∞) =

{
α(y, dL) for any y ∈ L∗, if ∞ 6∈ L∗
α(∞, 0), if ∞ ∈ L∗

We also define rL : ΩL(L)→ TK(L) as the restriction.

Remark 3.2.2. The retraction map leaves fixed the points of L∗. On the
other hand, if x 6∈ L∗, the point rL(x) is the only point of the path P (α(x, 0), rL(x)) ⊂
TK which is in TK(L).
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Now we want to extend this map to rL : TL −→ TK(L). First, if
α ∈ TK(L), then rL(α) = α.

Next, consider α ∈ TL r TK(L). Then α = α(x, r) for some x ∈ L r L∗
and some r > 0.

If B(x, r)
⋂
L∗ = ∅, we define rL(α) := rL(x). We only need to show

that rL(α) does not depend on the chosen x. When B(x, dL) ∩ L∗ 6= ∅,
rL(x) = α(x, s) and s > r since α(x, r) 6∈ TK(L). Hence, if α(x, r) = α(y, r),
then α(x, s) = α(y, s). Otherwise, it is clear.

In the other case, B(x, r)
⋂
L∗ 6= ∅, we have ∞ 6∈ L∗ and L∗ ⊂ B(x, r)

(so r > dL). Then we define rL(α) := rL(∞).

Proposition 3.2.3. The retraction map is a retraction. As a consequence,
if Γ ⊂ PGL2(K) acts on L, it is Γ-equivariant.

Proof. It follows from the previous remark and construction that the map is
a retraction in the strict sense. The consequence is due to the fact that the
projective linear group acts continuously on TK and Γ leaves TK(L) invariant.

Next, let us recall that CK embeds isometrically into a spherically com-
plete nonarchimedean field K, since it admits a maximally complete extension
by [Kru32, Thm. 24], and this condition is equivalent to spherical complete-
ness by [Kap42, Thm. 4]. We know by [Ber90, §1.4] that (P1

K
∗
)an has no type

IV points so we get

rL : (P1
K
∗
)an = TK −→ TK(L)

Note that from the beginning of the formalization of the retraction map,
each time that we define it taking an infimum (rL(α) = α(x, inf{...})) we get
this element is inside the tree TK(L) since L is compact.

The following lemma is clear from the properties of the retraction map.

Lemma 3.2.4. If we have two subsets L′ ⊂ L ⊂ P1(K) as above, then

rL′(α) = rL′(rL(α)) for any α ∈ TK .

Lemma 3.2.5. For any two points y0, y1 in P1∗(K), with respective rep-
resentatives in (K2)∗ given by ω0, ω1 and having dual basis v0, v1, and
for any α ∈ TL, the point r{[v0],[v1]}(α) is the seminorm η diagonalized by
v0 and v1 up to equivalence, with η(vi) = α(vi) for i = 0 and 1, that is
[r{[v0],[v1]}(α)] = [α(v0,v1),(α(v0),α(v1))].
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Proof. If α ∈ A{y0,y1} there is nothing to prove. From now on we assume this
is not the case.

If one of the two points, let us assume y1, is∞, then, writing α = α(x, r),

r{∞,[v1]}(α) = α(x, |y0 − x|) = α(y0, |y0 − x|) = α(v0,v1),(1,|x−y0|)

Now we compute

α(x, r)(v0) = α(x, r)(1, 0) = max{1, 0} = 1,

α(x, r)(v1) = α(x, r)(y0, 1) = max{|y0 − x|, r} = |x− y0|,

since |x− y0| > r due to α 6∈ A{y0,y1}.
Next, suppose y0, y1 6=∞, and then we can take ωi = (1,−yi) for i = 0, 1,

so

v0 =

(
y1

y1 − y0

,
1

y1 − y0

)
and v1 =

(
y0

y0 − y1

,
1

y0 − y1

)
.

Furthermore, either {y0, y1} ⊂ B(x, r) or B(x, r)
⋂
{y0, y1} = ∅.

In the first case

r{[v0],[v1]}(α) = r{[v0],[v1]}(∞) = α(y0, |y0 − y1|}) = α(v0,v1),(1,1)

We just need to show that α(v0) = α(v1). We have

α(x, r)(v0) = α(x, r)

(
y1

y1 − y0

,
1

y1 − y0

)
= max

{∣∣∣∣ y1 − x
y1 − y0

∣∣∣∣ , ∣∣∣∣ r

y1 − y0

∣∣∣∣}
and, identically,

α(x, r)(v1) = max

{∣∣∣∣ y0 − x
y0 − y1

∣∣∣∣ , ∣∣∣∣ r

y0 − y1

∣∣∣∣}.
Since the condition {y0, y1} ⊂ B(x, r) tells us that r ≥ |y0 − x|, |y1 − x| we
get the required equality α(v0) = α(v1).

In the second case, being satisfied B(x, r)
⋂
{y0, y1} = ∅, we have

r{[v0],[v1]}(α) = r{[v0],[v1]}(x) =

=

{
α(x,min{|x− y0|, |x− y1|}), if B(x, |y0 − y1|) ∩ {y0, y1} 6= ∅
α(y0, |y0 − y1|), if B(x, |y0 − y1|) ∩ {y0, y1} = ∅

after noticing that the diameter is d{[v0],[v1]} = |y0−y1|. Now, the fact that the
intersection B(x, |y0 − y1|) ∩ {y0, y1} is empty is equivalent to the inequality
|y0 − x| = |y1 − x| > |y0 − y1| and α(y0, |y0 − y1|) = α(v0,v1),(1,1). All the rest
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of the proof for this situation works exactly equal as above taking into account
that the condition B(x, r)

⋂
{y0, y1} = ∅ implies |y0 − x|(= |y1 − x|) > r.

Finally, when B(x, |y0 − y1|) ∩ {y0, y1} 6= ∅ we have |yi − x| ≤ |y0 − y1|
for i = 0, 1 and at least for one i, |yi − x| = |y0 − y1|; assume this equality
for y1. Then, on one hand we get

α(x,min{|x−y0|, |x−y1|}) = α(x, |x−y0|) = α(y0, |x−y0|) = α
(v0,v1),

(
1,
|x−y0|
|y0−y1|

)
On the other hand we have

α(x, r)(v0) = max

{∣∣∣∣ y1 − x
y1 − y0

∣∣∣∣ , ∣∣∣∣ r

y1 − y0

∣∣∣∣} =

∣∣∣∣ y1 − x
y1 − y0

∣∣∣∣
and

α(x, r)(v1) = max

{∣∣∣∣ y0 − x
y0 − y1

∣∣∣∣ , ∣∣∣∣ r

y0 − y1

∣∣∣∣} =

∣∣∣∣ y0 − x
y0 − y1

∣∣∣∣
since B(x, r)

⋂
{y0, y1} = ∅. Therefore, maintaining and employing the as-

sumption |y1 − x| = |y0 − y1| ≥ |y0 − x|, we obtain

α(v0,v1),(α(v0),α(v1)) = α
(v0,v1),

(
|y1−x|
|y1−y0|

,
|y0−x|
|y0−y1|

) = α
(v0,v1),

(
1,
∣∣∣ x−y0y0−y1

∣∣∣),
and so the claimed equality. Note that if we had assumed |y0−x| = |y0− y1|
we would have got

α(x,min{|x− y0|, |x− y1|}) = α(y1, |x− y1|) = α
(v0,v1),

(
|x−y1|
|y0−y1|

,1
) =

= α(v0,v1),(α(v0),α(v1))

too.

With the notation of the previous lemma note that y∗0 = [v1] and y∗1 = [v0].

Lemma 3.2.6. Let L ⊂ P1(K) be a compact subset with at least two points.
For any two seminorms α, α′ ∈ TL such that α|K[X0,X1] = α′|K[X0,X1], then
rL(α) = rL(α′).

Proof. If L∗ = {y0, y1} the claim is true due to the last lemma. Other-
wise, we always can find two points y0, y1 ∈ L∗ such that their retractions
rL(α), rL(α′) ∈ A{y0,y1}. Then, using this hypothesis for the outer equalities
together with lemmas 3.2.4 and 3.2.5 for the interior equalities, we get

rL(α) = r{y∗0 ,y∗1}(rL(α)) = r{y∗0 ,y∗1}(α) =

= r{y∗0 ,y∗1}(α
′) = r{y∗0 ,y∗1}(rL(α′)) = rL(α′)
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Finally, recall that we have a retraction map rL : TL −→ TK(L) with two
important particular cases:

rL : TK −→ TK(L)

and

rL : (P1
K
∗
)an = TK −→ TK(L)

Now we want extend the first retraction map to rL : (P1
K
∗
)an −→ TK(L).

Note first that (P1
K
∗
)an ∼= (P1

CK
∗
)an/Gal(CK |K) by [Ber90, Cor. 1.3.6], so we

may assume for a while K = CK in order to define the extension.
Then, by remark 3.1.3 we only have to do this for the points of type

IV. Let us take such a seminorm point α ∈ (P1
K
∗
)an. It is a limit of ball

seminorms {α(xi, ri)}i∈N such that

ri+1 ≤ ri, B(xi+1, ri+1) ⊂ B(xi, ri)

r := lim
i→∞

ri > 0 and
⋂
i∈N

B(xi, ri) = ∅

We consider the balls of the same center and radio with points in the spherical
completion K, that is BK(xi, ri) := {y ∈ K | |y − xi| ≤ ri}. Denote the
associated seminorms in (P1

K
∗
)an by αK(xi, ri).

Therefore, on one hand we have αK(xi, ri)|K[X0,X1] = α(xi, ri) and on the
other hand we obtain

⋂
i∈NBK(xi, ri) 6= ∅, so it is a ball BK(x̂, r) which has

an associated seminorm αK(x̂, r) ∈ (P1
K
∗
)an. Thus we get

α = lim
i→∞

α(xi, ri) = lim
i→∞

αK(xi, ri)|K[X0,X1] = αK(x̂, r)|K[X0,X1]

Finally, we may take rL(α) := rL(αK(x̂, r)) which is well defined by the last
lemma above.

Remark 3.2.7. This construction of rL : (P1
K
∗
)an −→ TK(L) and the lemma 3.2.5

allows us to note that when TK(L) = TK, this definition coincides with the
given by Werner in [Wer04].

Remark 3.2.8. The retraction map we have built restricts to another re-
traction map on Ωan

L := (P1
K
∗
)an \ L∗, making correspond to the square of

inclusions

TK(L) �
� // (P1

K
∗
)an

TK(L)
?�

OO

� � // Ωan
L
?�

OO
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the square of retractions

(P1
K
∗
)an

rL // // TK(L)

Ωan
L
?�

OO

rL // // TK(L).
?�

OO

3.3 The discrete cross ratio

In this section we show with wide generality some results relating the
cross ratio of 4 points in P1(CK) with the tree they generate.

Recall that, given four points a1, a2, z1, z2 ∈ P1
K
∗
(CK), the cross ratio is

defined as (
a1 : z1

a2 : z2

)
=

(a1 − z1)(a2 − z2)

(a1 − z2)(a2 − z1)

Note that formally(
a1 : z1

a2 : z2

)
=

(
z1 : a1

z2 : a2

)
=

(
a2 : z2

a1 : z1

)
and given a fifth point z3 ∈ P1

K
∗
(CK),(

a1 : z1

a2 : z2

)(
a1 : z2

a2 : z3

)
=

(
a1 : z1

a2 : z3

)
The next result is known, at least the particular cases and when K is

local ([MD73], [BDG04]), but we prefer to expose a general and new proof
using our results.

Proposition 3.3.1. Let a1, a2, z1, z2 ∈ P1
K
∗
(CK) be points such that a1 6= a2

and z1 6= z2. Then

vK

((
a1 : z1

a2 : z2

))
=
(
A{a1,a2},A{z1,z2}

)
TCK

.

Proof. To begin, recall the definition of the first term,

vK

((
a1 : z1

a2 : z2

))
= − log

∣∣∣∣(a1 − z1)(a2 − z2)

(a1 − z2)(a2 − z1)

∣∣∣∣ .
If ai = zj for some i, j it is clear that the valuation of the cross ratio and
the intersection pairing of the apartments are identically ±∞ with the sign
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depending on the combination. Next we will considerate the case in which
the four points are distinct.

Let us suppose first that one of the four points is ∞. By the absolute
symmetry among them, we can put z2 =∞. Then, on one hand we have

vK

((
a1 : z1

a2 : z2

))
= − log

∣∣∣∣a1 − z1

a2 − z1

∣∣∣∣
On the other hand we will compute the intersection of A{a1,a2} with A{z1,∞}.
Note that we may write α(z1, r) with r ∈ R>0 for the points of the second
apartment. Let us assume without loss of generality that |a1−z1| < |a2−z1|,
so we see that the intersection between the apartments goes from the point
α(z1, |z1 − a1|) to the point α(z1, |z1 − a2|) and the distance between them,
which is the length of the intersection, and it is the product of the pairing
(with positive sign because the assumption), is∣∣∣∣log

|a2 − z1|
|a1 − z1|

∣∣∣∣ = − log

∣∣∣∣a1 − z1

a2 − z1

∣∣∣∣ = vK

((
a1 : z1

a2 : z2

))
as we wanted to see.

To finish the proof we have to deal with the case in which none of the four
points is ∞. Let us consider the compact set L′ := {a1, a2} and the radii

r1 := min(|z1 − a1|, |z1 − a2|), and
r2 := min(|z2 − a1|, |z2 − a2|).

Once more, we can do the assumption r1 ≤ r2 without loss of generality. We
will consider three cases:

We suppose first |a1 − a2| ≥ r2 ≥ r1.
On one hand it can occur that there is an i ∈ {1, 2} such that r1 = |z1−ai|

and r2 = |z2 − ai|. Then, the starting and ending points of the intersection
between A{a1,a2} and A{z1,z2} are α(ai, r1) and α(ai, r2) respectively (so the
intersection pairing is the distance with positive sign), or the intersection is
empty or just a point if r1 = r2. Anyway,(

A{a1,a2},A{z1,z2}
)
TCK

= d(α(ai, r1), α(ai, r2)) =

∣∣∣∣log
r2

r1

∣∣∣∣ = − log
r1

r2

If i = 1, r1 ≤ |z1 − a2| ≤ max{r1, |a1 − a2|} so |z1 − a2| = |a1 − a2|, and
r2 ≤ |z2− a2| ≤ max{r2, |a1− a2|} so |z2− a2| = |a1− a2|. If i = 2, the same
computation gives a similar result. In any case we always get

vK

((
a1 : z1

a2 : z2

))
= − log

∣∣∣∣(a1 − z1)(a2 − z2)

(a1 − z2)(a2 − z1)

∣∣∣∣ = − log
r1|a1 − a2|
r2|a1 − a2|

= − log
r1

r2

.
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On the other hand, writing {i, j} = {1, 2} we have r1 = |ai − z1| and
r2 = |aj − z2|. We may assume i = 1 and j = 2. The starting and ending
points of the intersection are α(a1, r1) and α(a2, r2). So we have(

A{a1,a2},A{z1,z2}
)
TCK

= d(α(a1, r1), α(a2, r2)) =

= d(α(a1, r1), α(a1, |a1−a2|))+d(α(a2, r2), α(a2, |a1−a2|)) = − log
r1r2

|a1 − a2|2

(Note that if we assumed i = 2 and j = 1, the intersection pairing would be
minus the distance.)

Further, r2 ≥ |a1−z2| ≥ max{|a1−a2|, r2} ≥ |a1−a2| so |a1−z2| = |a1−a2|
and identically |a2 − z1| = |a1 − a2|. Therefore

vK

((
a1 : z1

a2 : z2

))
= − log

∣∣∣∣(a1 − z1)(a2 − z2)

(a1 − z2)(a2 − z1)

∣∣∣∣ = − log
r1r2

|a1 − a2|2
.

In second place we suppose r2 > |a1−a2| ≥ r1. We can assume r1 = |z1 − a1|.
Let us observe that r2 = |z2 − a1| = |z2 − a2|. The starting and ending points
of the intersection are α(a1, r1) and α(a1, |a1 − a2|), so(

A{a1,a2},A{z1,z2}
)
TCK

= d(α(a1, r1), α(a1, |a1 − a2|)) = − log
r1

|a1 − a2|

(Note that if we assumed r1 = |z1 − a2|, the distance would appear with a
minus, and so we would get the inverse value.)

Since we have |z1 − a2| = |a1 − a2| by an argument as above, we get

vK

((
a1 : z1

a2 : z2

))
= − log

∣∣∣∣(a1 − z1)(a2 − z2)

(a1 − z2)(a2 − z1)

∣∣∣∣ =

= − log
r1r2

r2|a1 − a2|
= − log

r1

|a1 − a2|
.

Finally, the third case is r1 ≥ r2 > |z1 − z2|. In this case the intersection
of the apartments is empty so the intersection pairing of the apartments is
zero, and since |z1− a1| = |z1− a2| and |z2− a1| = |z2− a2|, the valuation of
the cross ratio vanishes as well.

Corollary 3.3.2. Let L ⊂ P1
K(K) be a compact set with at least two points.

If a1, a2, z1, z2 are in L∗ or even in P1
K
∗
(K), the pairing can be done in TK,

vK

((
a1 : z1

a2 : z2

))
=
(
A{a1,a2},A{z1,z2}

)
TK

while if a1, a2 ∈ L∗ and z1, z2 ∈ ΩL(CK), we may restrict to TK(L):

vK

((
a1 : z1

a2 : z2

))
=
(
A{a1,a2}, P

(
rL(z1), rL(z2)

))
TK(L)

.
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3.4 Multiplicative Integrals

The following definition was introduced by Longhi in [Lon02] as a gener-
alization of the one given by Darmon in [Dar01].

Definition 3.4.1. Let X be a compact space such that the compact open sub-
sets form a basis for the topology, and let G be a complete topological abelian
group (written multiplicatively). Let f : X −→ G be a continuous function
and let µ ∈M (X,Z) be a Z-valued measure on X. The multiplicative integral
of f with respect to µ is defined as

×
∫
X

fdµ := ×
∫
X

f(t)dµ(t) := lim→
Cα

∏
Uαn∈Cα
tαn∈Uαn

f(tαn)µ(Uαn )

where the limit is taken over the direct system of finite covers Cα = Cα(X)
of X by disjoint open compact subsets Uαn , and the tαn are arbitrary points in
them.

Proposition 3.4.2. If G has a basic system of neighbourhoods of the identity
consisting of open subgroups the integral is well defined, since the limit exists
and it does not depend on the choice of the tαn’s.

Proof. Look at [Lon02, Prop. 5] or at our proof of lemma 2.3.1.

Proposition 3.4.3. For any measure µ ∈M (X,Z), we have

1. For any compact open subset U of X, and for any γ ∈ G, denote by
χU,γ(t) the function mapping x ∈ X to γ if x ∈ U , and to 1 otherwise.

Then ×
∫
X

χU,γdµ = γµ(U).

2. If f, g : X −→ G are continuous functions on X such that the corre-
sponding integrals exist, then

×
∫
X

(f · g)dµ =

(
×
∫
X

fdµ

)(
×
∫
X

gdµ

)
Note that for any harmonic measure µ ∈M (X,Z)0 and for any constant

function f : X −→ G such that f(x) = λ for all x ∈ X, we have ×
∫
X

fdµ = 1.

Now, let L be a compact subset of P1(K) with at least two points and
let L|K be an arbitrary complete extension of fields. We get from them the
set L∗ ⊂ P1∗(K), the space ΩL(L) and the tree TK(L). With these objects
we give the next definitions and lemmas.
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Definition 3.4.4. Let P be a finite set of points in ΩL(L), and consider
D :=

∑
p∈P mpp a divisor of degree zero. We denote by fD the element

of Maps(L, L∗)/L∗ which is defined up to scalars as follows: if we choose
representatives vp ∈ (L2)∗ for any p ∈ P and vq ∈ K2 for q, then

fD(q) :=
∏
p∈P

vp(vq)
mp

does not depend on vq. Any other election of the vectors vp change fD to λfD
for some λ ∈ L∗.

Similarly, let A be a finite set of points in TL, and consider the de-
gree zero divisor D :=

∑
[α]∈Am[α][α], then we denote by |f |D the element

of Maps(L,R>0)/R∗>0 being defined up to scalars by

|f |D(q) =
∏
α∈A

α(q)m[α]

(remind that the points [α] are classes modulo homothety of diagonalizable
seminorms α).

We note that we will be flexible when using these notations, not making
difference between the map and the class of the map.

We note also that any representant of fD can be seen as a map which
extends to a meromorphic function on P1 with divisor D.

Remark 3.4.5. Given divisors D,D′ with the suitable support we have the
equalities fD+D′ = fDfD′ and f−D = f−1

D , or also |f |D+D′ = |f |D|f |D′ and
|f |−D = |f |−1

D .
In particular, for any points p, p′, p′′ ∈ ΩL and α, α′, α′′ ∈ TL we have

fp′−p = fp′−p′′fp′′−p and |f |α′−α = |f |α′−α′′|f |α′′−α.

Remark 3.4.6. We can see the degree zero divisor 0 as the divisor 0p for
any p ∈ ΩL(L). Therefore, as mp = 0, we get f0 ≡ 1 and |f |0 ≡ 1.

As a particular case, if we consider the divisor D := α(x, s) − α(x, r) in
TK(L), where s > r, then we have

|f |D(q) =


s
r

if q ∈ B(x∗, r)
s

|q−x∗| if q ∈ B(x∗, s) \B(x∗, r)

1 if q 6∈ B(x∗, s)

for any q ∈ L.
Observe that, if the path from α(x, r) to α(x, s) is a topological edge,

then L∗ ∩ (B(x, s− ε) \ B(x, r)) is empty for any s− r > ε > 0 (and so the
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corresponding intersection with L), and then |f |D(q) = 1 or s
r

for any q ∈ L.
Moreover, by the remark 3.4.5, any |f |D is determined by the divisors of this
type.

Proposition 3.4.7. For any degree zero divisor D ∈ Z[TK(L)]0 we have the
equality of maps

− log |f |D(x) = fD(ε(x∗))

where fD is the map on the ends of the tree TK(L) in definition 2.3.5 (there
is not ambiguity since the other map fD given in definition 3.4.4 has no sense
for divisors D on the tree), x ∈ L and ε(x∗) is the corresponding point seen
as an end of TK(L).

Proof. Let α′ := α(x, s) and α(x, r) with r < s and assume that P (α, α′) is
a topological edge. We have B(x∗, r) ∩ L∗ = B(α′, α) and L∗ \ B(x∗, s) =

B(α, α′). Since |f |D is well defined up to scalars, after multiply by
(
s
r

)− 1
2 , we

also have

|f |D(q) =

{ (
s
r

) 1
2 if q ∈ B(α′, α)(

s
r

)− 1
2 if q ∈ B(α, α′)

Then we get

− log |f |D(q) =

{
−1

2
d(α, α′) if q ∈ B(α′, α)

1
2
d(α, α′) if q ∈ B(α, α′)

By the remark 3.4.5, this becomes true for any divisor D = α′−α such that
P (α, α′) is a topological edge.

Then, when P (α, α′) is an edge we get

− log |f |α′−α(q) = fα′−α(ε(q∗)).

Therefore, remark 3.4.5 and corollary 2.3.9 imply that for any degree zero
divisor D ∈ Z[TK(L)]0 we get the equality

− log |f |D(q) = fD(ε(q∗)),

as we desired.

Lemma 3.4.8. Let A be a finite set of points in TK, let D :=
∑

α∈Amαα
be a degree zero divisor and consider its retraction rL(D) :=

∑
α∈Amα rL(α).

Then |f |D = |f |rL(D) in Maps(L,R>0)/R∗>0.

Proof. First of all, observe that in the case L∗ = {y0, y1} this is a consequence
of lemma 3.2.5.
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Now we do the general case. Fix x ∈ L∗ and consider any point y ∈ L∗,
x 6= y. Take L′ := {y∗, x∗} ⊂ L. Using the previous case twice (and taking
some representatives) we get that

|f |D |L′ = |f |rL′ (D)|L′ = |f |rL′ (rL(D))|L′ = |f |rL(D)|L′

by applying lemma 3.2.4. Since this equality is satisfied for all L′∗ with x
fixed, it is satisfied for L∗ too (if we looked to the maps representing these
classes modulo homothety, it would appear some scalar at the end of the
equality which would not depend on L′∗ or on y due to the fixed x).

Definition 3.4.9. Given any degree 0 divisor D =
∑

i∈I mipi with support in
ΩL(L) (i.e. mi ∈ Z, pi ∈ ΩL(L), being I a finite set and with

∑
i∈I mi = 0)

we choose vi in (L2)∗ representatives of the pi ∈ P1∗(L) and consider the
map up to scalars fD ∈ Maps(L, L∗)/K∗ given by a representant

∏
i∈I vi(x)mi

(which depend on the vi’s). Let µ ∈M (L,Z)0 be a Z-valued harmonic mea-
sure on L.

We define

×
∫
L,D

dµ := ×
∫
L
fDdµ ∈ L∗,

which is well defined since the integral does not depend on fD but only on D
(and L∗ satisfies the hypothesis of proposition 3.4.2). Indeed, although the
representant of fD depend on the elections of the representatives in (L2)∗ of
the points in P1∗(L), the multiplicative integral does not, since the measure
is harmonic.

In general, when some L was fixed previously -as along this section-, we
will omit its corresponding set, writing

×
∫
D

dµ := ×
∫
L,D

dµ,

meanwhile we will specify the other sets over which we will integrate.

Note also that when D = 0, we have ×
∫

0

dµ = 1, since f0 ≡ 1.

Therefore, this definition gives us a morphism of groups

Z[ΩL(L)]0

×
∫
•
d

// Hom(M (L,Z)0, L
∗)

D � // ×
∫
D

d : µ 7−→ ×
∫
D

dµ
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Lemma 3.4.10. Let Γ ⊂ PGL2(K) be a subgroup acting on L and so on L∗.
Then, the map ×

∫
•
d is Γ-equivariant.

Proof. We want to see that ×
∫
γ·D

d = γ · ×
∫
D

d for any γ ∈ Γ. That is to say

that for any γ ∈ Γ and µ ∈M (L,Z)0 we have

×
∫
L
fγDdµ = ×

∫
γ·D

dµ = γ · ×
∫
D

dµ = ×
∫
D

d(γ−1µ) = ×
∫
L
fDd(γ−1µ)

Let us to compute the first integral:

×
∫
L
fγDdµ = lim→

Cα(L)

∏
Uαn∈Cα(L)
tαn∈Uαn

fγD(tαn)µ(Uαn ) = lim→
Cα(L)

∏
Uαn∈Cα(L)
tαn∈Uαn

(γfD)(tαn)µ(Uαn ) =

= lim→
Cα(L)

∏
Uαn∈Cα(L)
tαn∈Uαn

fD(γ−1tαn)µ(Uαn ) = lim→
Cα(L)

∏
Uαn∈Cα(L)
tαn∈Uαn

fD(tαn)µ(γUαn ) =

= lim→
Cα(L)

∏
Uαn∈Cα(L)
tαn∈Uαn

fD(tαn)(γ−1µ)(Uαn ) = ×
∫
L
fDd(γ−1µ)

Therefore we get the claimed compatibility of the action of Γ with the map.

Definition 3.4.11. Given any degree 0 divisor D =
∑

i∈I miαi with support
in TK(L) (i.e. mi ∈ Z, αi ∈ TK(L), with I a finite set and

∑
i∈I mi = 0)

consider the map up to scalars |f |D ∈ Maps(L,R>0)/R∗>0 given by a repre-
sentant

∏
i∈I αi(x)mi. Let µ ∈M (L,Z)0 be a Z-valued harmonic measure on

L∗.
We define ∣∣∣∣×∫

L

∣∣∣∣
D

dµ := ×
∫
L
|f |Ddµ ∈ R>0

when the corresponding limit exist, since, as above, its value only depends
on D, but not on the representant of |f |D, because of the harmonicity of the
measure.

We will follow the same rule that above with respect to L, omiting it when
it is a given fixed set and specifying only in case of need:∣∣∣∣×∫ ∣∣∣∣

D

dµ :=

∣∣∣∣×∫
L

∣∣∣∣
D

dµ.
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Remark 3.4.12. We cannot claim yet the existence of the integral since we
cannot apply proposition 3.4.2, but we are going to prove this after the next
remark.

Remark 3.4.13. From this definition and the proposition 3.4.7 we get

− log

∣∣∣∣×∫ ∣∣∣∣
D

dµ =

∫
D

dµ

through the homeomorphisms L ∼= L∗ ∼= E(TK(L)) inducing the isomorphism
between measures M (L,Z)0

∼= M (E(TK(L)),Z)0, which we identify denoting
µ in both sides.

Remark 3.4.14. As we anticipated in the remark 3.4.12, the latter has as
a consequence the existence of ∣∣∣∣×∫ ∣∣∣∣

D

dµ

since ∫
D

dµ

exists, as we proved through the section 2.3, and the logarithm is a bijection.

Lemma 3.4.15. Let P be a finite set of points in ΩL(L), and consider a
degree zero divisor D :=

∑
p∈P mpp. Denote by αD :=

∑
p∈P mpαp, where αp

is the seminorm associated to p. Then |fD| = |f |αD in Maps(L,R>0)/R∗>0.

Proof. Take q ∈ L and representatives as in the definition 3.4.4. For the sake
of simplicity we will assume all the points p and q are non infinite (then we
can choose vq = (q, 1) and vp = (1,−p)).

|fD|(q) = |fD(q)| = |
∏
p∈P

vp(vq)
mp| =

∏
p∈P

|q − p|mp = |
∏
p∈P

αp(q)| = |f |αD(q)

by having into account for the fourth equality the remark 3.1.1.

Proposition 3.4.16. For any degree 0 divisor D =
∑

i∈I mipi with support
in ΩL(L), consider the divisor rL(D) :=

∑
i∈I mi rL(pi) on TK(L). Then, for

any Z-valued harmonic measure µ ∈M (L,Z)0 on L, we have∣∣∣∣×∫
D

dµ

∣∣∣∣ =

∣∣∣∣×∫ ∣∣∣∣
rL(D)

dµ.
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Proof. Applying the lemmas 3.4.15 and 3.4.8 we obtain∣∣∣∣×∫
D

dµ

∣∣∣∣ = ×
∫
L
|fD|dµ = ×

∫
L
|f |αDdµ = ×

∫
L
|f |rL(D)dµ =

∣∣∣∣×∫ ∣∣∣∣
rL(D)

dµ

Lemma 3.4.17. Given x ∈ L∗, for any two points α(x, r), α(x, s) ∈ TK(L),
with s > r, such that the path P (α(x, r), α(x, s)) is a topological edge, then∣∣∣∣×∫ ∣∣∣∣

α(x,s)−α(x,r)

dµ =
(s
r

)µ(B(x∗,r)∩L)

Proof. We have

|f |D(q) =

{
s
r

if q ∈ B(x∗, r)
1 if q 6∈ B(x∗, r)

and these are the only two possibilities. Hence |f |D(q) = χU, s
r

for the open
set U = B(x∗, r) in the notation of Proposition 3.4.3.

Now, if we denote by D = α(x, s) − α(x, r), and by applying Proposi-
tion 3.4.3, we get∣∣∣∣×∫ ∣∣∣∣

D

dµ = ×
∫
L
|f |Ddµ = ×

∫
L
χU, s

r
dµ =

(s
r

)µ(B(x∗,r)∩L)

.

Proposition 3.4.18. For any α, α′ ∈ TK(L) such that P (α, α′) is a topolog-
ical edge, then

vK

(
×
∫
α′−α

dµ

)
= − log

∣∣∣∣×∫ ∣∣∣∣
α′−α

dµ = d(α, α′)µ(B(α, α′)).

Proof. Proposition 3.4.16 gives us

vK

(
×
∫
α′−α

dµ

)
= − log

∣∣∣∣×∫
α′−α

dµ

∣∣∣∣ = − log

∣∣∣∣×∫ ∣∣∣∣
α′−α

dµ

and applying the remark 3.4.13 together with the lemma 2.3.11 we obtain

− log

∣∣∣∣×∫ ∣∣∣∣
α′−α

dµ =

∫
α′−α

dµ = d(α, α′)µ(B(α, α′)).
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Remark 3.4.19. We may show this result in a more expressive way writing
the topological edge as e and defining its boundary ∂e as the difference of its
target minus its source -as usual in homology theory.

Recall that by the theorem 2.2.9 we have M (L,Z)0
∼= C1

har(TK(L),Z) in
such a way that to each harmonic measure µ corresponds a harmonic cochain
cµ such that cµ(e) = µ(B(e)).

Thus, by abuse of notation we can write µ(e) = µ(B(e)), and we will do.
Therefore, we may write the proposition as

vK

(
×
∫
∂e

)
= l(e)µ(e).

3.5 The Poisson Formula

In this section we will show in our context the Poisson formula made by
Longhi in [Lon02, Thm. 6]. To show this, we recall and study in detail a map
introduced by van der Put in [vdP92, Thm. 2.1], which assigns a harmonic
measure to any invertible analytic function, and to which we will give later
uses.

Let L ⊂ P1(K) be a compact set with at least two points and consider
the abelian group of harmonic measures M (L,Z)0. For any two different
points a, b ∈ L we define the harmonic measure µa,b by

µa,b(U) :=


1 if a ∈ U , b 6∈ U
−1 if b ∈ U , a 6∈ U
0, otherwise

In particular, on the open compact subsets B(e) ⊂ L, which determine
the measure because of being a basis, we note that

µa,b(e) :=


1 if e ∈ P (b∗, a∗)
−1 if e ∈ P (a∗, b∗)
0, otherwise

For any a, b ∈ L we take representatives ã, b̃ ∈ K2 and for any complete
extension L|K we define the function ωã−b̃ : ΩL(L) −→ L∗ as

ωã−b̃(z) :=
ã(z)

b̃(z)
=
z(ã)

z(b̃)
.

Note that identifying z with (1,−z) or (0, 1) if it is ∞, this is an analytic
function on ΩL(L) depending on a, b up to a constant.
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Let us write for any p, q ∈ L∗, up,q(z) := ωp̃∗−q̃∗ for suitable representants,
so we can put

up,q(z) :=
z − p
z − q

where we consider the usual convention when some of the two points are ∞
([GvdP80, Ch. 2(2.2)]), that is

up,q(z) :=


1 if p = q =∞
z − p if p 6=∞ = q

1

z − q
if p =∞ 6= q

On the other hand, let us recall part of the definition 3.4.9. For any degree
0 divisor D =

∑
i∈I mipi with support in ΩL(L) we could build as above a

map up to scalars fD ∈ Maps(L, L∗)/L∗. Let us fix an element b0 ∈ L. Along
this section we will choose a representant of fD satisfying fD(b0) = 1, so fD
will be a well defined function.

We write the usual notation O(ΩL) for the analytic functions on the
analytic space ΩL := (P1

K
∗
)an \ L∗, and we write O(ΩL)∗ for the ones which

vanish nowhere. Then we have ωã−b̃ ∈ O(ΩL)∗.
Let e be a topological edge of TK(L) induced by a path P (α(x, r), α(x, s))

with x ∈ L∗ and r ≤ s. Then we define the (closed) annulus associated to e
as R(e) := Rx(r, s) := B(x, s) \ B̊(x, r), and the open annulus associated to
e as R̊(e) := R̊x(r, s) := B̊(x, s) \B(x, r).

We recall the following result from [Thu05, Lem. 2.2.1.].

Lemma 3.5.1. Given x ∈ L∗, and any two points α(x, r), α(x, s) ∈ TK(L),
with r < s, such that the path P (α(x, r), α(x, s)) is a topological edge (i.e.
R̊x(r, s) ∩ L∗ = ∅), for any ω ∈ O(ΩL)∗ there exists k ∈ Z such that for any
interior path P ′ = P (α(x, r′), α(x, s′)) ⊂ P (α(x, r), α(x, s)) (r ≤ r′ ≤ s′ ≤ s)
satisfying Rx(r

′, s′) ∩ L∗ = ∅, the function |ω(z)(z − x)−k| is constant on
Rx(r

′, s′).

Proof. For any 0 < r′ ≤ s′ let us consider Rx(r
′, s′)an, the Berkovich analytic

annulus associated to Rx(r
′, s′). Now we can assume without any problem

that x = 0. Then, we have the isomorphism

O(R0(r′, s′)an) ∼= K〈r′T−1, s′−1T 〉

where
K〈r′T−1, s′−1T 〉 =

=

{
∞∑

n=−∞

anT
n : |an|r′n → 0 as n→ −∞, |an|s′n → 0 as n→∞

}
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We will prove first the case r′ = s′ = 1. We have ω ∈ O(ΩL)∗ and
then the restriction of ω is a unit in K〈T−1, T 〉. Such an element can
be expressed as ω = c · ω1 for c ∈ K∗ such that ‖ω‖R0(1,1) = |c| and
ω1 ∈ OK〈T−1, T 〉∗. Therefore, the reduction of ω1 to k[T−1, T ]∗ is also in-
vertible so it has the form bT n for b ∈ k, n ∈ Z, and so we deduce that
we can write ω1 = b̃T n + ω2 = b̃T n(1 + ω′2) with b̃ ∈ O∗K , ω2 ∈ mK〈T−1, T 〉,
ω′2 = b̃−1T−nω2 and ‖ω′2‖R0(1,1) = ‖ω2‖R0(1,1) < 1, so that

|ω(z)z−n| = |cb̃||1 + ω′2(z)| = |cb̃|.

Observe that writing ω =
∑

n∈Z anT
n the supremum norm can be ex-

pressed by ‖ω‖R0(1,1) := max{|am|} and this is reached at just one m, which
is n.

From now on we consider the case r′ < s′. Now ω is a unit
∑

n∈Z anT
n

in K〈r′T−1, s′−1T 〉, so for any r′′ ∈ [r′, s′], the image of ω by the restriction
homomorphism K〈r′T−1s′−1, T 〉 −→ K〈r′′T−1, r′′−1T 〉 is also a unit. Next
note that after a non archimedean extension K ′|K we have r′′ ∈ |K ′∗| so
there is an isomorphism K ′〈r′′T−1, r′′−1T 〉 ∼= K ′〈T−1, T 〉.

Definition 3.5.2. We say that a sequence of functions (ωn)n in O(ΩL)∗

converge uniformly to a function ω ∈ O(ΩL)∗ if for each edge e of TK(L) and
for all ε > 0 there exists an n0 = n(e, ε) such that for any N ≥ n0 we have
‖ω − ωN‖R(|e|) < ε (recall that |e| means the topological realization of e).

We will write lim
N→∞

ωN = ω.

Theorem 3.5.3. There exists a morphism µ̃ : O(ΩL)∗ −→M (L,Z)0 with
kernel K∗ and such that commutes with limits in the following sense: if
lim
N→∞

ωN = ω, then µ̃(ω) = lim
N→∞

µ̃(ωN).

Proof. Let us consider ω ∈ O(ΩL)∗. We have to define µ̃(ω) over each (di-
rected) edge e of TK(L). By the proposition 2.1.16 we may assume that
|e| or |e| is contained in a topological edge given by P (α(x, r), α(x, s)) with
r < s and x ∈ L∗ ∩K. Depending on if this happens with e or e, we define
µ̃(ω)(e) := k or µ̃(ω)(e) := −k respectively, where k is the integer obtained
in the above lemma. Henceforth we will work on this edge to prove its prop-
erties.

First, µ̃(ω) is a harmonic measure because of the definition and the residue
theorem ([FvdP04, Thm. 2.3.3 (2)]).

From the way we have defined the map µ̃ it is clear that it is a morphism
and that K∗ is inside its kernel. From the definition of µ̃, the fact that
ΩL is connected implies that if µ̃(ω) = 0, then the absolute value of ω is a
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constant, and since bounded analytic functions on ΩL are constant ([GvdP80,
Ch. 4 Cor. (2.5)]), we get Ker(µ̃) = K∗.

And now let us see the commutativity with limits in the sense we told.
We want to check the equality µ̃(ω)(e) = lim

N→∞
µ̃(ωN)(e) for any edge e that

we can take as above.
We know by hypothesis that for any ε > 0 there exists an n0 = n(e, ε)

such that for any N ≥ n0 we have ‖ω − ωN‖Rx(r,s) < ε. Note that if we
just take ε = infz∈Rx(r,s) {|ω(z)|}, which is strictly positive since Rx(r, s) is
compact, then for any z ∈ Rx(r, s) we get |ω(z) − ωN(z)| < |ω(z)| and so
|ωN(z)| = |ω(z)|, therefore µ̃(ωN)(e) = µ̃(ω)(e).

Proposition 3.5.4. The morphism µ̃ : O(ΩL)∗ −→M (L,Z)0 satisfies the
following properties:

1. For any two different points a, b ∈ L,

µ̃
(
ωã−b̃

)
= µb,a

independently of the chosen representants of a and b. In particular, for
any p, q ∈ L∗ we have µ̃ (up,q) = µq∗,p∗.

2. It is natural with the meaning that if L ⊂ L′ are both compacts, it
commutes with restriction maps:

O(ΩL)∗
µ̃ //

��

M (L,Z)0

��
O(ΩL′)

∗ µ̃ //M (L′,Z)0

In particular it does not depend on L, since given any compacts L1, L2,
the definition coincides in L1 ∩ L2.

3. It commutes with the action of PGL2(K), that is, for each γ ∈ PGL2(K)
the diagram

O(ΩL)∗
µ̃ //

γ∗
��

M (L,Z)0

γ∗
��

O(ΩγL)∗
µ̃ //M (γL,Z)0

is commutative, where γ∗(ω) = γ · ω and γ∗(µ) = γ · µ. (Note that
ΩγL = γΩL.)
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Proof. First, we want to see µ̃
(
ωã−b̃

)
(e) = µb,a(e).

If a, b ∈ B(e) = L \ B̊(x∗, s), for z ∈ Rx(r, s) we have

|ωã−b̃(z)| =
∣∣∣∣z(ã)

z(b̃)

∣∣∣∣ =
|x− a∗|
|x− b∗|

(taking into account the above convention if a or b are ∞), which is a con-
stant, so µ̃(ωã−b̃)(e) = 0 = µb,a(e).

If a, b ∈ B(e) = L ∩B(x∗, r), z ∈ Rx(r, s) verifies

|z(ã)| = |z − a∗| = |z − x| = |z − b∗| = |z(b̃)|,

so that we also get a constant (|ωã−b̃|Rx(r,s)| ≡ 1) and the equality as above.

Finally, assuming a ∈ B(e) = L \ B̊(x∗, s), b ∈ B(e) = L ∩B(x∗, r), then

|ωã−b̃(z)| =
∣∣∣∣z(ã)

z(b̃)

∣∣∣∣ =
|x− a∗|
|z − b∗|

=
|x− a∗|
|x− z|

|x− z|
|z − b∗|

= |x− a∗| · |z(x∗)|−1,

therefore µ̃(ωã−b̃)(e) = −1 = µb,a(e) (once more, one should consider the case
in which a is ∞, but we would get a similar result).

Second, the naturality is a direct consequence of the definition of the µ̃
through the above lemma.

The third property is equivalent to say γ · µ̃(ω)(e) = µ̃(γ · ω)(e) for
all ω ∈ O(ΩL)∗ and e ∈ TK(γ · L), and the left side of the equality is
µ̃(ω)(γ−1 · e). Then, this also follows from the definition by means of the

lemma and from the isomorphism γ∗ : O(R(|e|))
∼=−→ O(R(|γ−1e|)), by which

γ∗(ω) = γ−1 · ω.

As Longhi remarks ([Lon02]), we may compute a multiplicative integral
on L by means of fixing a vertex v0 ∈ TK(L) and defining lv0(e) as the number
of intermediate vertices between v0 and e in a previously fixed model for
TK(L). Then we have

×
∫
L
fdµ = lim

n→∞

∏
lv0 (e)=n
te∈B(e)

f(te)
µ(e)

Theorem 3.5.5 (Poisson Formula). Let u ∈ O(ΩL)∗ and z0 ∈ ΩL. Then,
for any z ∈ ΩL the next identity is satisfied:

u(z)

u(z0)
= ×
∫
z−z0

dµ̃(u)
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Proof. We follow the proof of [Lon02, Thm. 6].
The partial products ∏

lv0 (e)=N
te∈B(e)

fz−z0 (te)
µ̃(u)(e)

converge uniformly on ΩL so the integral built with them is a nowhere
vanishing analytic function of z. Since by the previous theorem the ker-
nel of µ̃ is K∗, in order to prove the identity it is enough to see that

µ̃(u(z)) = µ̃

(
×
∫
L
fz−z0(t)dµ̃(u)(t)

)
. Further, note that

fz−z0(te) = fz−z0(te)/fz−z0(b0) =
z̃(t̃e)

z̃0(t̃e)

z̃0(b̃0)

z̃(b̃0)
=
z̃(t̃e)

z̃(b̃0)

z̃0(b̃0)

z̃0(t̃e)
= c · ωt̃e−b̃0(z),

c ∈ K(z̃0)∗

Therefore we have µ̃(fz−z0(te)) = µb0,te also by the previous theorem.
Then, by the commutativity of µ̃ and limits we obtain

µ̃

(
×
∫
L∗
fz−z0(t)dµ̃(u)(t)

)
= µ̃

(
lim
N→∞

∏
lv0 (e)=N
te∈B(e)

fz−z0 (te)
µ̃(u)(e)

)
=

= lim
N→∞

∑
lv0 (e)=N
te∈B(e)

µ̃(u)(e)µ̃ (fz−z0(te)) = lim
N→∞

∑
lv0 (e)=N
te∈B(e)

µ̃(u)(e)µb0,te

Let us evaluate on an edge e′ of TK(L). We may assume e′ points away
from b0, so b0 ∈ B(e′). We have e′ ⊂ P (b∗0, t

∗
e) if and only if te ∈ B(e′), so we

get

µ̃

(
×
∫
L
fz−z0(te)dµ̃(u)(t)

)
(e′) = lim

N→∞

∑
lv0 (e)=N
te∈B(e)

µ̃(u)(e)µb0,te(e
′) =

= lim
N→∞

∑
lv0 (e)=N

te∈B(e)∩B(e′)

−µ̃(u)(e) = µ̃(u)(e′)

where the last equality is due to harmonicity applied to the sum independent
of N ≥ lv0(e′).
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Corollary 3.5.6 (Extended Poisson Formula). Take u ∈ O(ΩL)∗. Then,
given any degree 0 divisor D =

∑
mpp of ΩL, we have∏

p∈Supp(D)

u(p)mp = ×
∫
D

dµ̃(u)

Corollary 3.5.7. The morphism µ̃ : O(ΩL)∗ −→M(L,Z)0 is surjective and
for each z0 ∈ ΩL it has a section Iz0 :M(L,Z)0 −→ O(ΩL)∗. As a conse-
quence we get a (non-unique, non-canonical) isomorphism

O(ΩL)∗ ∼= K∗ ×M(L,Z)0.

Proof. Let us take a harmonic measure µ ∈ M(L,Z)0. Let z0 ∈ ΩL be any
point. Then, as along the proof of the Poisson formula, we see that the
function

Iµ,z0(z) := ×
∫
z−z0

dµ

is analytic on ΩL, and once more, the same steps with µ instead of µ̃(u)
prove that µ̃(Iµ,z0) = µ. Then, we define the section by Iz0(µ) := Iµ,z0 and
we check that it is a morphism of groups:

Iz0(µ+ µ′)(z) = ×
∫
z−z0

d(µ+ µ′) = ×
∫
z−z0

dµ ×
∫
z−z0

dµ′ = (Iz0(µ)Iz0(µ′)) (z)

Finally, by theorem 3.5.3 we got the short exact sequence

0 −→ K∗ −→ O(ΩL)∗ −→M(L,Z)0 −→ 0

which, with the section morphism, gives the asserted isomorphism by ele-
mentary homological algebra.

3.6 Schottky groups and their limit sets

Along this section we recall Schottky groups and their main properties,
and we build the Mumford curve, for which we want to give its Jacobian via
the isomorphism with the Albanese variety, and its associated graph. The
main novelty is the “Berkovich analytification” of some results in [GvdP80].

Given any γ ∈ PGL2(K), we say that γ is hyperbolic if the (two) eigenval-
ues of γ have two distinct absolute values. In particular, hyperbolic elements
have infinite order. We have

γ =

[(
a b
c d

)]
=

[(
λ1 0
0 λ2

)]
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with λi ∈ K and ∣∣∣∣(a+ d)2

ad− bc

∣∣∣∣ =

∣∣∣∣(λ1 + λ2)2

λ1λ2

∣∣∣∣ .
If there was |λ1| = |λ2|, we would have∣∣∣∣(λ1 + λ2)2

λ1λ2

∣∣∣∣ ≤ |λ1|2

|λ1|2
= 1,

while in our case we may assume wlog max{|λ1|, |λ2|} = |λ1| so we have
|λ1 + λ2| = |λ1| and so∣∣∣∣(λ1 + λ2)2

λ1λ2

∣∣∣∣ =
|λ1|2

|λ1λ2|
=

∣∣∣∣λ1

λ2

∣∣∣∣ > 1.

so γ is hyperbolic if and only if that value is strictly greater than 1. We have
even more: γ ∈ PGL2(K) is hyperbolic if and only if it is conjugated to an
element of PGL2(OK) represented by a matrix(

q 0
0 1

)
with q ∈ K, |q| < 1 (look at [GvdP80, Ch. 1 Lem. I.1.4]). The idea is reduce
the characteristic polynomial to k and apply the Hensel lemma, which we
dispose of since our base field is complete non-Archimedean. In particular,
the eigenvalues of any representant of γ are in K. From this we get that if γ
is hyperbolic,

{x ∈ P1(CK)| γx = x} ⊂ P1(K).

Given any subgroup Γ ⊂ PGL2(K), we denote by LΓ the closure in
P1(CK) of the set of fixed points for some element of Γ distinct of the identity
and we call it the limit set of Γ (there is no risk of confussion with any other
object appearing through this work).

LΓ := {x ∈ P1(CK)| ∃ γ ∈ Γ \ {1Γ} : γx = x} ⊂ P1(CK)

But, from the previous remark we have LΓ ⊂ P1(K). If γx = x, then
γ′γγ′−1(γ′x) = γ′x, therefore LΓ is Γ-invariant, since the action of PGL2(K)
on P1(CK) is continue.

Observe that L∗Γ is the limit set of Γ in the dual projective line for the
contragredient action, and that this set verifies the same properties that we
have just mentioned.

Definition 3.6.1. A Schottky group is a finite generated subgroup Γ ⊂ PGL2(K)
such that all its elements γ 6= 1Γ are hyperbolic and Γp is compact for all
p ∈ P1(CK).
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Let γ ∈ PGL2(K) be represented by(
q 0
0 1

)
.

with |q| < 1. Then, L〈γ〉 = {[1 : 0], [0 : 1]} = {∞, 0} is its set of fixed points,
and for any p 6= 0,∞,

{γnp}n∈Z = {0,∞}
⊔
{γnp}n∈Z

is compact. More specifically, we have

p+
γ := lim

n→+∞
γnp = 0 and p−γ := lim

n→−∞
γnp =∞.

Thus, Γ = 〈γ〉 is a Schottky group.
More generally, for any γ′ ∈ PGL2(K) hyperbolic, we have γ′ = δγδ−1

with γ as above. Thus, L〈γ′〉 = δL〈γ〉 and 〈γ′〉p = δ〈γ〉δ−1p, and so, 〈γ′〉 is
also a Schottky group.

Clearly, for |q| 6= 1 and δ ∈ PGL2(K), these are all the Schottky groups
generated by one element.

Note one further thing. Consider an element α = α(x, r) of the tree TK .
Then one has

γ · α(x, r) = α(qx, |q|r) 6= α(x, r)

Thus, any hyperbolic element acts freely on TK .

Lemma 3.6.2. For any γ ∈ Γ, LΓ = Γ · L〈γ〉. In particular, it is compact.

Proof. Since LΓ is Γ-invariant and closed, we have Γ · L〈γ〉 ⊂ LΓ. As we can
take closures, for the opposite inclusion it is enough to see that any fixed
point p′ for some element γ′ of Γ is in Γ · L〈γ〉. Indeed, we may assume that
p′ 6∈ L〈γ〉. Then, one of the two points of L〈γ〉 is not fixed by γ′, let us
write pεγ. Then, p′ = limn→∞ γ

′pεγ ∈ Γ · L〈γ〉, after taking the inverse of γ′ if
necessary. Thus, we conclude.

Corollary 3.6.3. If LΓ has at least three points, it is perfect (it does not
have isolated points), and in particular, an infinite compact set.

Proof. The same proof as above applies here.

Remark 3.6.4. We could refine even deeper the results, as shown in [GvdP80,
Ch. 1 (1.6)]) or also in the preprint [SX16, §5 and §6], but we already have
all we need here.

Since LΓ is compact, we can consider the tree TK(LΓ).
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Proposition 3.6.5. A Schottky group Γ acts freely on TK(LΓ) (with the
induced left action by PGL2(K) on TK), and the quotient GΓ := Γ\TK(LΓ)
is a finite metric graph. Moreover, if L′ ⊂ P1(K) is the union of LΓ and
a finite set of orbits of points by the action of Γ, then there exists a finite
connected graph GL′ such that

GΓ ⊂ GL′ ⊂ Γ\TK(L′) and (Γ\TK(L′)) \GL′ =
⊔
RL′

(0,+∞)

where RL′ = Γ\(L′ \ LΓ) is a finite set.

Proof. The fact that Γ acts freely on TK(LΓ) is a consequence of all its non-
neutral elements are hyperbolic.

For the rest of the proof, we are inspired by the proof given in [GvdP80,
Ch. 1 Lem. (3.2)]. Let BΓ be a finite set of generators of Γ and their in-
verses containing the identity 1Γ too. Take w ∈ TK(LΓ) and a finite subtree
Tw ⊂ TK(LΓ) containing BΓ · w. Then,

T =
⋃
γ∈Γ

γ · Tw

is a subtree of TK(LΓ). The only thing we have to verify is that it is connected,
that is, given γ, γ′ ∈ Γ and p ∈ γ · Tw, p′ ∈ γ′ · Tw there exists a path in
T between p and p′. Through operating by γ′ on the path, we may suppose
γ′ = 1Γ. Also, by an induction process it is enough to show this when γ ∈ BΓ.
So, with these hypotheses, we have p′ and γw connected by a path in Tw,
and γw and p connected by a path in γ · Tw.

Now we will show V (T) = V (TK(LΓ)), from what we will get the finiteness
of the quotient.

Let v be any vertex of TK(LΓ) and consider a ray through v starting at
w, whose end corresponds to a point of the limit set z ∈ LΓ by proposi-
tion 3.1.15. Since LΓ is the closure of the set of fixed points, we can take the
ray corresponding to a fixed point z for some γ ∈ Γ. After considering the
inverse of γ if necessary, for any z0 ∈ P1

K \LΓ, we have that limn→∞ γ
nz0 = z.

Then the fragments P (γnw, γn+1w) belong to T and the end of the ray start-
ing at w which is contained in their union corresponds to z, so v ∈ T.

Thus we get that V (GΓ) is finite. But we know that TK(LΓ) is locally
finite, so we conclude the finiteness of the quotient.

For the second part, recall that TK(LΓ) ⊂ TK(L′) and that we have the
retraction map

rLΓ
: ΩLΓ

−→ TK(LΓ).
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Choose a p ∈ ΩLΓ
such that Γ · p is one of the orbits added to LΓ to form L′.

Take the open path Lp := P̊ (rLΓ
(p), p) and then observe that Lp∩TK(LΓ) = ∅.

Now it is clear that

Γ\TK(L′) = GΓ

⊔ ⋃
πΓ(p)∈RL′

πΓ(Lp)


but the πΓ(Lp) have not to be disjoint. Nevertheless, note that for any
γ ∈ Γ\{1Γ} the intersection Lγp∩Lp is empty, since otherwise, rLΓ

(p) would
be a fixed vertex for γ, which contradicts the first claim of the result. Take
now another q ∈ ΩLΓ

such that πΓ(q) ∈ RL′ and πΓ(q) 6= πΓ(p). It may
happen that for some γ ∈ Γ (by the previous consideration, for at most one
γ) we have Lp ∩ Lγq 6= ∅. In that case, in which rLΓ

(p) = rLΓ
(γq), let vpq be

the vertex of valence 3 in the tree Lp ∪ Lγq. Next, let vp be one vertex of Lp
such that all the possible vpq with πΓ(q) ∈ RL′ are in the path P (rLΓ

(p), vp).
Finally take

GL′ := Γ\

TK(LΓ)
⋃

πΓ(p)∈RL′

Γ · P (rLΓ
(p), vp)


and the claim is immediate.

Corollary 3.6.6. If Γ is a Schottky group and GΓ := Γ\TK(LΓ), then Γ ∼=
π1(GΓ, v) for any vertex v of the quotient graph, so it is a free group, in
particular, if it is generated by more than one element, it is non abelian, and
πΓ : TK(LΓ) −→ GΓ is the universal cover of the graph.

We denote the rank of a Schottky group Γ by g(Γ).

Theorem 3.6.7. Let Γ be a Schottky group and consider L := LΓ and Ω :=
ΩL = (P1∗)an \ L∗. Then Γ acts on Ω and CΓ := Γ\Ω is a proper analytic
space and so it is isomorphic to the analytification of a smooth projective
algebraic curve of genus g(Γ).

Proof. You can see the proof with more detail in [GvdP80, Ch. 2 and 3].
Here, we will sketch it.

We will suppose that GΓ has a model without loops. This is possible after
a finite extension of the base field, if necessary. The general case can be done
by means of Galois descent.

We consider the projection πΓ : TK(L) −→ GΓ and a metric graph model
for TK(L) given by a pair of sets (V, Ê). The collection of vertices V is formed
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by points of the form t(x0, x1, x2) for x0, x1, x2 ∈ P1(K) such that it includes
all the points of valency greater than 2, it is Γ-invariant and the metric graph
model for GΓ given by πΓ(V ) has no loops. Recall that the set of open edges
for the model of TK(L) is the set of connected components of TK(L)\V , and
the edges are obtained from the open ones adjoining the adherent vertices in
two different ways, giving the two orientations for each edge. We will denote
this set by Ê.

Consider now the restriction of the retraction map, rL : ΩL −→ TK(L).
To each e ∈ Ê, we associate U(e) := r−1

L (e), and, similarly, to a vertex
v ∈ V we associate U(v) := r−1

L (v). Then, the sets U(e) and U(v) are strictly
affinoid and from them we get back Ω by gluing U(e) with U(e′) through
U(v) when the edges e, e′ have v as a common vertex.

Since the retraction map rL is Γ-equivariant, given two edges e, e′ ∈ Ê
such that πΓ(e) = πΓ(e′) so there exists γ ∈ Γ such that γ · e = e′, then
γ · U(e) = U(e′), and similarly for vertices. Therefore, gluing as before
but taking into account these identifications, or what is the same, gluing
according to the graph GΓ we get the analytic space CΓ, which is reduced
and separated.

To prove that CΓ is proper we are going to show that it is compact and
its boundary (over K) is empty ([Tem15, Def. 4.2.13. (ii)]).

The compactness is because we can express CΓ as a finite union of affi-
noids: the preimages of the stars of the vertices of GΓ, which is a finite
set.

To show that the boundary is empty, take any x ∈ CΓ. We want to show
there exists x ∈ U affinoid such that x 6∈ ∂U . Consider the image of x by
the induced retraction map in the quotients,

rL,Γ : CΓ −→ GΓ.

Now, rL,Γ(x) is an interior point of a St(v) for some vertex v in the fixed
model of GΓ (if rL,Γ(x) is a vertex we take v = rL,Γ(x); otherwise v is any
vertex of the edge to which rL,Γ(x) belongs). Then, r−1

L,Γ(St(v)) is the affinoid
we are looking for.

Consider the following commutative diagram:

Ω
rL //

πΓ
��

TK(L)

πΓ
��

CΓ

rL,Γ // GΓ

Choose a vertex ṽ in TK(L) such that πΓ(ṽ) = v. Then πΓ gives an isomor-
phism

πΓ : St(ṽ)
∼−→ St(v),
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since there are no loops in GΓ and the action of Γ in TK(L) is free. It is clear
that

r−1
L (St(ṽ)) =

⋃
ṽ=s(e)

U(e)

and hence, by construction of CΓ, πΓ also induces an isomorphism

πΓ : r−1
L (St(ṽ))

∼−→ r−1
L,Γ(St(v))

Now recall that ∂U(e) = {s(e), t(e)} ⊂ U(e), since U(e) is an annulus,
therefore

∂(r−1
L (St(ṽ))) = {t(e)| s(e) = ṽ}.

So we get ∂(r−1
L,Γ(St(v))) = {πΓ(t(e))| s(e) = ṽ} 63 x as we wished.

Remark 3.6.8. We have used that the retraction rLΓ
: ΩLΓ

−→ TK(LΓ)
stated in the remark 3.2.8 descends to another retraction rL,Γ giving place to
a commutative square

ΩLΓ

rLΓ //

πΓ
��

TK(LΓ)

πΓ
��

CΓ

rLΓ,Γ // GΓ.

Corollary 3.6.9. If there exists a model of GΓ which is without loops, then
the map ΩL(K) −→ CΓ(K) is surjective.

Proof. Choose such a model. By the previous proof we have

CΓ(K) =
⋃

e∈E(GΓ)

U(e)(K), ΩL(K) =
⋃
ẽ∈E

U(ẽ)(K)

with the same notation. We may assume πΓ(ẽ) = e so we conclude U(ẽ) = U(e).

3.7 A peculiar symmetry

In this section we study some properties of the action of Γ on TK , a re-
lation among the harmonic measures, and a symmetry among multiplicative
integrals which can be useful to generalize the well known symmetry between
theta functions.

Let Γ ⊂ PGL2(K) be a Schottky group, and let L := LΓ ⊂ P1(K) be
its limit set. We are going to show a new result which will led to a proof
of the symmetry of the bilinear pairing defining the Albanese variety of the
Mumford curve CΓ.
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We assume that ΩL(K) 6= ∅ and contains at least the closures of two
Γ-orbits of points. This is possible after a finite extension of K, meanwhile
L remains invariant.

Let us define for any p ∈ ΩL(K) the compact set Lp := L ∪ Γ · p∗ ⊂ P1(K)
and for any γ, δ ∈ Γ the analytic function

uγ,δ,p(z) := uγδp,γp(z) =
z − γδp
z − γp

∈ O(ΩLp)

Consider now a point q ∈ ΩLp(K), which is the same that a point

q ∈ ΩL(K) verifying Γ · p ∩ Γ · q = ∅. Then, for any ρ ∈ Γ, applying the
invariance of the cross ratio we obtain

uγ,δ,p(ρq)

uγ,δ,p(q)
=
uγ−1,ρ,q(δp)

uγ−1,ρ,q(p)

Recall from proposition 3.5.4 the equality of measures

µ̃(uγ,δ,p) = µ̃(uγδp,γp) = µγp∗,γδp∗ ,

and then
uγ,δ,p(ρq)

uγ,δ,p(q)
= ×
∫
Lp
fρq−q(t)dµγp∗,γδp∗

Therefore, putting together the two last ideas we have

×
∫
Lp
fρq−q(t)dµγp∗,γδp∗ =

uγ,δ,p(ρq)

uγ,δ,p(q)
=

=
uγ−1,ρ,q(δp)

uγ−1,ρ,q(p)
= ×
∫
Lq
fδp−p(t)dµγ−1q∗,γ−1ρq∗

For any δ ∈ Γ, using corollary 2.4.8 applied to the tree TK(L), one de-
fines a harmonic measure µδ ∈M (L,Z)0, while we have just defined a har-
monic measure µγp∗,γδp∗ ∈M (Lp,Z)0 for each γ ∈ Γ. Note that L ⊂ Lp and
TK(L) ⊂ TK(Lp). We consider compatible models for these trees, meaning
that the model of TK(Lp) restricts to the model of TK(L).

Proposition 3.7.1. With the above notations, for any edge e of TK(Lp) and
TK(L) we have ∑

γ∈Γ

µγp∗,γδp∗(e) = −µδ(e)

and for any edge of TK(Lp) which is not inside TK(L), then∑
γ∈Γ

µγp∗,γδp∗(e) = 0.
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In order to prove the proposition, we observe first that∑
γ∈Γ

µγp∗,γδp∗(e) =
∑
γ∈Γ

µp∗,δp∗(γ
−1e) =

=
∑
γ∈Γ

µp∗,δp∗(γe) =
∑

{γ∈Γ| γe∈|P (p,δp)|}

µp∗,δp∗(γe)

(where the bars for |P (p, δp)| mean that we are considering just the underly-
ing sets, without orientation) and we proceed by steps. The first step, which
is the main one, lies essentially on the following lemma.

Lemma 3.7.2. For any δ ∈ Γ and p ∈ ΩL(K) we have

|A{p,δp}| ∩ |A{δ2p,δ3p}| = ∅

and
A{p,δp} ∩ A{δ−1p,δ2p} = A{p,δp} ∩ Aδ ⊂ A{p,δp} ∩ TK(L).

Proof. Since δ is hyperbolic it has the form

δ = δ′
(
q 0
0 1

)
δ′−1

with |q| < 1. Consider p′ := δ−1p ∈ ΩL. Then, if we prove the equalities of
the lemma for (

q 0
0 1

)
and p′ instead of δ and p, allowing δ act on the apartments we will get the
claims. Therefore, we may assume

δ =

(
q 0
0 1

)
with |q| < 1. In particular, we have Aδ = A{∞,0}.

Now, we want to show |A{p,qp}| ∩ |A{q2p,q3p}| = ∅. Let us observe that
|q3p| < |q2p| < |qp| < p, so

A{p,qp} ∩ A{∞,0} = P (α(0, |p|), α(0, |qp|))
A{q2p,q3p} ∩ A{∞,0} = P

(
α(0, |q2p|), α(0, |q3p|)

)
Therefore, if the intersection |A{p,δp}| ∩ |A{δ2p,δ3p}| was non empty it should
occur in A{∞,0} since the total space is a tree, but it is clear that

P (α(0, |p|), α(0, |qp|)) ∩ P
(
α(0, |q2p|), α(0, |q3p|)

)
= ∅,
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and so we get the first claim.
In order to obtain the second claim we will prove(

A{p,qp},A{q−1p,q2p}
)
TCK

=
(
A{p,qp},A{∞,0}

)
TCK

.

Applying the proposition 3.3.1 we see it is enough to check that

vK

((
p : q−1p
qp : q2p

))
= vK

((
p :∞
qp : 0

))
,

so we compute:

vK

((
p : q−1p
qp : q2p

))
= − log

|p− q−1p||qp− q2p|
|p− q2p||qp− q−1p|

= − log
|q−1p||qp|
|p||q−1p|

=

= − log
|qp|
|p|

= vK

((
p :∞
qp : 0

))

Next, and under the hypotheses of the previous lemma, it allows us to
subdivide the apartment Ap,δp in three paths:

A{p,δp} = Sp,δp ∪ Ip,δp ∪ Tp,δp,

where

Sp,δp = P (p, t(p, δp, δ−1p))

Ip,δp = P (t(p, δp, δ−1p), t(p, δp, δ2p))

Tp,δp = P (t(p, δp, δ2p), δp)

Since the first part of the lemma tells that |A{δ−1p,p}| ∩ |A{δp,δ2p}| = ∅, this
implies that |Sp,δp| ∩ |Tp,δp| = ∅, the intersections of the interior of the paths
are empty and the paths are well defined subpaths of A{p,δp} with the same
orientation.

The second part of the lemma implies that Ip,δp ⊂ TK(L). With this
tools, we proceed to get the next step:

Lemma 3.7.3. Let e be an edge of TK(Lp) and consider the sets

ΓeS := {γ ∈ Γ| γe ∈ |Sp,δp|}
ΓeI := {γ ∈ Γ| γe ∈ |Ip,δp|}

ΓeT := {γ ∈ Γ| γe ∈ |Tp,δp|}

so that we have the decomposition

{γ ∈ Γ| γe ∈ |P (p, δp)|} = ΓeS t ΓeI t ΓeT .

Then:
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1. There is a bijection ΓeS ←→ ΓeT which reverses the orientation of the
edge in A{p,δp}, that is, if γ′ corresponds to a γ such that γe is in Sp,δp
with the same orientation, the edge γ′e is in Tp,δp with the opposite
orientation.

2. If e is not inside TK(L), then ΓeI = ∅.

Proof. 1. The bijection is defined by

ΓeS −→ ΓeT
γ 7→ δγ

Thus, if the directed edge γe is in

Sp,δp = P (p, t(p, δp, δ−1p)) = P (p, δ−1p) ∩ P (p, δp),

the directed edge δγe is in

δP (p, δ−1p) ∩ δP (p, δp) = P (δp, p) ∩ P (δp, δ2p) = Tp,δp.

In general, the orientation of γe with respect to Sp,δp and P (p, δp) is
the same as the orientation of δγe with respect to Tp,δp and P (p, δp)
so the opposite to the orientation of γe. Clearly, the inverse map is
γ 7→ δ−1γ.

2. The result is clear from the remark previous to the lemma. If e is not
inside TK(L), there is no γe inside TK(L) for γ ∈ Γ, but

ΓeI = {γ ∈ Γ| γe ∈ |Ip,δp| ⊂ |TK(L)|}

so ΓeI = ∅.

Proof of proposition 3.7.1. Let us see first the second claim. If e is not in
TK(L) we have∑

γ∈Γ

µγp∗,γδp∗(e) =
∑

{γ∈Γ| γe∈|P (p,δp)|}

µp∗,δp∗(γe) =

=
∑
γ∈ΓeS

µp∗,δp∗(γe) +
∑
γ∈ΓeI

µp∗,δp∗(γe) +
∑
γ∈ΓeT

µp∗,δp∗(γe)

Because of the second part of the previous lemma the second summation is
zero and because of the first part and the definition of µp∗,δp∗ the sum of the
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other two summations vanishes, so
∑

γ∈Γ µγp∗,γδp∗(e) = 0 as we wanted to
see.

We assume now that e is in TK(L). We have the same equalities as before
and also the cancellation of the two extreme summations so∑

γ∈Γ

µγp∗,γδp∗(e) =
∑
γ∈ΓeI

µp∗,δp∗(γe)

and we want to prove this is equal to

−µδ(e) = −(πΓ(e), $(δ))GΓ

`(e)
= −(πΓ(e), πΓ(P (α, δα)))GΓ

`(e)

where πΓ : TK(L) −→ GΓ = Γ\TK(L) is the covering projection and α is any
vertex in Aδ. We take α = t(p, δp, δ−1p), so we have δα = t(p, δp, δ2p) and

µδ(e) =
(πΓ(e), π(P (α, δα)))GΓ

`(e)
=

∑
|γe|⊂|P (α,δα)|

γ∈Γ

(γe, P (α, δα))T
`(e)

=

=
∑
γ∈ΓeI

(γe, P (α, δα))T
`(e)

= −
∑
γ∈ΓeI

µp∗,δp∗(γe) = −
∑
γ∈Γ

µγp∗,γδp∗(e)

where for the third equality we use the definition of α and the fact that the
action of Γ on T is free, and for the fourth equality we use the definition of
µp∗,δp∗.

Corollary 3.7.4. With the above notations we have∏
γ∈Γ

×
∫
Lp
f−1
ρq−q(t)dµγp∗,γδp∗ = ×

∫
L
fρq−q(t)dµδ

Proof. It is direct from the proposition, taking into account that the inverse
of the function fρq−q appears due to the negative sign in the equality∑

γ∈Γ

µγp∗,γδp∗(e) = −µδ(e).

Corollary 3.7.5. Let Γ ⊂ PGL2(K) be a Schottky group, and consider its
limit set L := LΓ ⊂ P1(K). For any ρ, δ ∈ Γ and for any p, q ∈ ΩL(K) such
that Γ · p ∩ Γ · q = ∅ we get

×
∫
ρq−q

dµδ = ×
∫
δp−p

dµρ
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Proof. Taking into account the last observation previous to the proposition
and the corollary above we get

×
∫
ρq−q

dµδ = ×
∫
L
fρq−q(t)dµδ =

∏
γ∈Γ

×
∫
Lp
f−1
ρq−q(t)dµγp∗,γδp∗ =

=
∏
γ∈Γ

×
∫
Lq
f−1
δp−p(t)dµγ−1q∗,γ−1ρq∗ = ×

∫
L
fδp−p(t)dµρ = ×

∫
δp−p

dµρ

3.8 Automorphic Forms

The main goal of this section is to prove the theorem 3.8.16 using the
analytic theory developed along this paper and some results from [BPR13],
like the propositions 2.5, 2.10 and the slope formula theorem (5.15), instead
of using [GvdP80, Ch. 2 (3.2)], whose proof requires the development of other
analytic tools.

Let G be a metric graph.

Definition 3.8.1. We call a tropical function on G a continuous function
f : G −→ R such that there exists a model G of G satisfying for each edge
e ∈ Ê(G) that the restriction

f∣∣|e| : |e| −→ R

is linear with integral slope, where by linear we mean that for every isometric
embedding [a, b] −→ |e|, the composition [a, b] −→ |e| −→ R is linear.

Note that this is equivalent to say that for each model of G the function
f is piecewise linear (with integral slopes) on each edge.

Suppose now that G is locally finite. Given a tropical function f on G
and a model G of G such that f verifies the “edge-linearity” condition stated
on previous definition, we can associate to it a cochain Df on the edges of G
defined by taking Df (e) to be the slope of f on e.

We call f a harmonic function if Df is a harmonic cochain.

Remark 3.8.2. If f is harmonic, f∣∣|e| is linear for any edge of any model of

G.

Next, let Γ be a group with a left action on a metric graph G.
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Definition 3.8.3. A tropical function f on G is called an automorphic form
for Γ if

∀ γ ∈ Γ ∃ cf (γ) ∈ R : f(z) = cf (γ) + f(γz) ∀z ∈ G

Lemma 3.8.4. Let G be a locally finite metric graph on which acts a group
Γ. Let f be an automorphic form for Γ. Then there exists a model G of
G, on which acts Γ, such that f is linear on its edges, the cochain Df is
Γ-invariant and so induces a cochain Df on Γ\G.

Proof. Since f is tropical there exists a model of G such that f is linear on
its edges. Now, the minimal Γ-invariant model refining the previous satisfies
the claims of the lemma immediately, and Df is Γ-invariant because f is
automorphic for Γ.

Lemma 3.8.5. Let G be a locally finite metric graph on which acts a group
Γ. Assume there exists a finite connected graph G′ ⊂ G/Γ such that

(Γ\G) \G′ =
⊔
i∈I

Li where I is finite and Li ∼= (0,∞) ∀i ∈ I

such that its closure inside Γ\G is Li ∼= [0,∞) (we are choosing an orienta-
tion on Li).

Then, any harmonic function on G being an automorphic form for Γ
verifies:

1. For any i ∈ I, the restricted cochain is constant: Df |Li ≡ mi ∈ Z.

2.
∑
i∈I

mi = 0.

Proof. We take a suitable model of G -since f is harmonic, it only has to
be Γ-invariant-. Since Df is harmonic, so it is Df . Now, given two adjacent
edges e, e′ of Li with the same orientation, due to the hypothesis on G and G′

harmonicity implies Df (e)+Df (e′) = 0, so Df (e) = Df (e
′), and this extends

obviously to any edge of Li, so the first claim rests proved.
The second claim is a direct consequence of the lemma 2.2.1.

From now on, let Γ be a fixed Schottky group, L = LΓ ⊂ P1(K) the set
of fixed points of Γ, and ΩL as defined above. Let L|K be a field extension.

Definition 3.8.6. We will say that a CK-valued meromorphic function f 6= 0
on ΩL is an automorphic form for Γ (or Γ-automorphic form) with automor-
phy factor cf : Γ −→ C∗K if

f(z) = cf (α)f(αz) ∀z ∈ ΩL∀α ∈ Γ.
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We will call it L-automorphic if cf takes values in L∗.
Let us denote the set of L-automorphic forms on ΩL by AΓ(L).

Remark 3.8.7. By definition, cf is a group morphism.

Proposition 3.8.8. Given a point z0 ∈ ΩL(K) and a Γ-invariant harmonic
measure µ ∈M(L,Z)Γ

0 the function on ΩL

Iµ,z0(z) := ×
∫
z−z0

dµ

is an analytic and automorphic form for Γ with automorphy factor indepen-
dent of z0.

Proof. We already know it is analytic, as shown in the proof of theorem 3.5.5
and remarked in its corollary 3.5.7.

In order to see that it is automorphic for Γ let us show first that the
integral

×
∫
p−γp

dµ

does not depend on p ∈ ΩL. Indeed, given p, q ∈ ΩL we have

×
∫
p−γp

dµ

×
∫
q−γq

dµ

=

×
∫
p−q

dµ

×
∫
γp−γq

dµ

= 1

due to the Γ-equivariance of the integration and to the Γ-invariance of µ.
Therefore,

Iµ,z0(z)

Iµ,z0(γz)
=

×
∫
z−z0

dµ

×
∫
γz−z0

dµ

= ×
∫
z−γz

dµ ∈ K∗

is its automorphy factor.

Proposition 3.8.9. For any c ∈ Hom(Γab, L∗) there exists an L-automorphic
form f such that c = cf .

Proof. Let us consider the group M(ΩL)∗ of non-zero meromorphic func-
tions on ΩL and its quotient Q by the constants, so we have the short exact
sequence

0 −→ L∗ −→M(ΩL)∗ −→ Q −→ 0
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After taking invariants under Γ we find the exact sequence

M(CΓ) −→ QΓ −→ Hom(Γab, L∗) −→ H1(Γ,M(ΩL)∗)

We end the proof recalling that H1(Γ,M(ΩL)∗) = 0 by [vdP92, Cor. 5.3]
-since CΓ is algebraic-, and noting that QΓ coincides with the group of L-
automorphic forms modulo the constants.

We may express this telling that the morphism

AΓ(L) −→ Hom(Γab, L∗)

is surjective.
Let us formalize the notion of infinite divisor as in [MD73, §2].

Definition 3.8.10. We call a function D : ΩL(CK) −→ Z an infinite L-
divisor on ΩL verifying the following properties:

• D(z1) = D(z2) if z1 = Γz2.

• The set Supp(D) := {z ∈ ΩL| D(z) 6= 0} has no limit points in ΩL and
there is a finite extension L′|L such that Supp(D) ⊂ ΩL(L′).

We write such a divisor in the usual form

D =
∑

nz=D(z)6=0

nzz.

We will say that such an infinite divisor has finite representant D̃ if this
is a finite divisor (that is it has finite support) such that

D =
∑
γ∈Γ

γD̃ =: ΓD̃

We consider now the zeroes and poles of the automorphic forms. Note
that if z is a zero (resp. pole) of order n of f ∈ AΓ, for each γ ∈ Γ, γz is a
zero (resp. pole) of order n of f too.

Proposition 3.8.11. Let f be a meromorphic function and e an edge of a
model of TK(L). Then, the set of zeroes and poles of f restricted to U(e) is
finite.

Proof. First, a meromorphic function is the quotient of analytic functions
so we may assume that f is analytic and we only have to show that it
has a finite number of zeroes. But this is proved in [FvdP04, Prop. 3.3.6]
as a consequence of the fact that the affinoid U(e) is a disjoint union of
closed discs, the Mittag-Leffler decomposition theorem and the Weierstrass
preparation theorem.
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Corollary 3.8.12. The set of zeros and poles of an automorphic form f on
ΩL for Γ is a finite union of orbits of points of ΩL.

Proof. Consider a model for TK(L) and denote the set of its edges Ê. Con-
sider also a set of edges ÊΓ ⊂ Ê in bijection by πΓ with the edges on the
induced model on GΓ. Since the quotient graph is finite, so it is the set ÊΓ,
and since this is a set of representatives of the graph GΓ,⋃

γ∈Γ

γ · ÊΓ = Ê

Therefore, the affinoids γU(ÊΓ) with γ ∈ Γ cover all ΩL, where

U(ÊΓ) :=
⋃
e∈ÊΓ

U(e).

Now, because of the previous proposition, the set SΓ(f) of zeroes and poles
of f on U(ÊΓ) is finite. And since this set is Γ-invariant and the orbit of
U(ÊΓ) covers ΩL, the orbit of SΓ(f) is the set of zeroes and poles of f and
it is a finite union of orbits of points.

Let us denote S(f) the set of zeroes and poles of an automorphic form f
on ΩL, and Lf := LΓ ∪ S(f)∗. The set Lf is compact, due to the previous
proposition and the fact that Γ is a Schottky group.

Note that f has neither zeroes nor poles on ΩLf , so f ∈ O(ΩLf )
∗.

Theorem 3.8.13. Let f be an automorphic form for Γ on ΩL. Then

F = − log |f ||TK(Lf )

is a harmonic and automorphic form for Γ on TK(Lf ).

Proof. The first thing we have to check is that F is tropical, that is, given a
model of TK(Lf ) and an edge e of this model, the restriction of F on |e| is
piecewise linear on it.

Since we are going to apply lemma 3.5.1, we recall the notation used in
it. We may suppose that the topological realization of the edge e is the path
|e| = P (α(x, r), α(x, s)) with x ∈ Lf , r < s and such that its associated
annulus satisfies Rx(r, s) ∩ Lf = ∅. We also do not loss generality assuming
x = 0. Now we consider an isometric embedding

exp : [r0, s0] −→ P (α(0, exp(r0)), α(0, exp(s0)))

where r = exp(r0), s = exp(s0).
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By the cited lemma, we know that |f(z)| = r|zk| for some r ∈ R>0, k ∈ Z
on that path, and z = exp(w) for w ∈ [r0, s0]. Therefore

F (exp(w)) = − log |f(z)| = −k log |z| − log(r) = −kw − log(r),

so we get the hoped linearity with integral slope k, and so F becomes tropical.
In the previous computation we got DF (e) = −k. Recall also the map

µ̃ : O(ΩLf )
∗ −→M (Lf ,Z)0

by which µ̃(f)(e) = k. Therefore DF = −µ̃(f), so this is a harmonic cochain
and F is harmonic.

Finally we will show that F is automorphic for Γ on TK(Lf ) ⊂ ΩLf ⊂ ΩL.
Since f is automorphic on ΩL we have that for all z ∈ ΩL and γ ∈ Γ,
f(z) = cf (γ)f(γz) with cf (γ) ∈ C∗K . Let us restrict to the case when z ∈ TK(Lf ):

F (z) = − log |f(z)| = − log |cf (γ)f(γz)| = − log |cf (γ)| − log |f(γz)| =

= vK(cf (γ)) + F (γz) with vK(cf (γ)) ∈ R

We maintain the same hypothesis of the theorem. Consider now the
quotient Γ\TK(Lf ). By the proposition 3.6.5, its quotient is the disjoint union
of a finite connected graphs with a finite union of “ends” which correspond
to the classes of zeroes and poles of f modulo Γ -that is Γ\S(f)- by the
definition of Lf . For any x ∈ S(f) denote Lx the corresponding end oriented
from the interior to the exterior, like in lemma 3.8.5. With the previous
theorem, the next completes the slope formula (cf. [BPR13, 5.15]).

Proposition 3.8.14. With the previous notation we get

DF |Lx ≡ ox(f)

Proof. In order to know the value of DF |Lx we have to evaluate Df on any
edge e of Lx. We can assume its topological realization is of the form
P (α(x, r), α(x, s)) with r < s. Note that, by the chosen orientation, we
have DF |Lx = Df (e) = −DF (e). Finally, by what we have seen on the
proof of the previous theorem or in lemma 3.5.1, we get DF (e) = −ox(f), so
DF |Lx = ox(f).

Next, we want to build a finite degree zero divisor associated to an au-
tomorphic form on ΩL. In order to get this, we have to refine the proof of
corollary 3.8.12.
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First, we note that there is a “semi-open” (connected) tree (open at some
edges, closed at others) in TK(L) in bijection with GΓ = Γ\TK(L) by the
projection map πΓ.

To see this, take a maximal tree TΓ of GΓ and a set Ec
Γ of adjacent closed

edges of TK(L) such that its topological realization |Ec
Γ| is a tree in bijection

with TΓ by πΓ. Next take a set of open edges Eo
Γ of TK(L) corresponding to

the open edges which form GΓ \ TΓ, each one of them adjacent to some edge
of Ec

Γ. Then we have that |Ec
Γ ∪ Eo

Γ| is a subtree of TK(L) in bijection with
πΓ(Ec

Γ ∪ Eo
Γ) = GΓ, as the one we claimed the existence.

Now take

U(GΓ) :=

 ⋃
e∈EcΓ

U(e)

⋃ ⋃
e̊∈EoΓ

U (̊e)


By construction, for γ′ ∈ Γ \ {1Γ}, we have

U(GΓ)
⋂

(γ′ · U(GΓ)) = ∅ and
⋃
γ∈Γ

γ · U(GΓ) = ΩL.

Consider also the set SΓ(f) = S(f)
⋂
U(GΓ) (note that in the proof of corol-

lary 3.8.12 we used the same notation but with a slightly different meaning,
since U(ÊΓ) 6= U(GΓ)) and the finite divisor

DΓ
f :=

∑
p∈SΓ(f)

op(f)p

By the previous remark on unions and intersections on the orbit of U(GΓ)
and the structure of S(f), we get that the divisor of f satisfies∑

p∈S(f)

op(f)p =
∑
γ∈Γ

γ ·DΓ
f

Proposition 3.8.15. An automorphic form has associated an infinite divisor
with finite representant of degree zero.

Proof. Because of the previous considerations, the only we have to proof is
that DΓ

f has degree zero, that is∑
p∈SΓ(f)

op(f) = 0

Next note that there is a bijection between SΓ(f) and Γ\S(f). Further, by
the previous theorem we have∑

p∈SΓ(f)

op(f) =
∑

p∈SΓ(f)

DF |Lp =
∑

πΓ(p)∈S(f)/Γ

DF |Lp
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Finally, applying the lemma 3.8.5 to the quotient TK(Lf ), which has as ends
the sets Lp with πΓ(p) ∈ Γ\S(f) by the proposition 3.6.5, we get that this
sum is zero, as we wanted to prove.

In order to go in depth, let us take into consideration a special kind of
automorphic forms: theta functions.

For any p, p′ ∈ ΩL(CK), the infinite product

θ(p− p′; z) :=
∏
γ∈Γ

z − γp
z − γp′

defines a meromorphic function on ΩL, clasically called theta function.
Its construction and the properties we report are done in [GvdP80, Ch. 2].

It is an L-automorphic form for Γ, where L|K is any complete extension of
fields such that p, p′ ∈ ΩL(L). If p and p′ are in the same Γ-orbit, the theta
function is analytic. If Γp 6= Γp′, then θ(p − p′; z) has simple zeroes at the
points of Γp and simple poles at the points of Γp′ and no other zeroes or
poles. The previous considerations show us that θ(p − p′; z) has associated
an infinite divisor on ΩL, which is Γ(p − p′) = Γp − Γp′. Further, for any
δ ∈ Γ and p ∈ ΩL, the theta function θ(p− δp; z) does not depend on p.

Next we prove a simpler version of [GvdP80, Ch. 2 (3.2)].

Theorem 3.8.16. Let f be an automorphic form on ΩL. There is a finite
divisor

∑r
i=1 (pi − qi) which represent the infinite divisor associated to f and

such that

f(z) = f̃(z) · θ(p1 − q1; z) · · · θ(pr − qr; z)

with f̃ analytic function without zeroes on ΩL. Further, if L is a field such
that pi, qi ∈ ΩL(L), then f is L-automorphic.

Proof. First, with the notation of the previous proposition take

DΓ
f =

r∑
i=1

(pi − qi)

Second, consider the automorphic form

θDΓ
f
(z) := θ(p1 − q1; z) · · · θ(pr − qr; z)

By definition, the zeroes and poles of it are the same as the ones of f , so
f̃(z) := f(z)/θDΓ

f
(z) is an analytic function.

The second claim is immediate.
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Therefore we have an infinite divisor on ΩL for any automorphic form.
Indeed, the associated infinite divisor to the form of the theorem is

Γ ·
r∑
i=1

(pi − qi)

As a consequence we get a well defined degree zero divisor on the curve
Γ\ΩL(L) = CΓ(L).

Finally let us take into consideration δ ∈ Γ and the analytic function
θ(p− δp; z) ∈ O(ΩL)∗ for any p ∈ ΩL(K) (as above we assume ΩL(K) 6= ∅,
if necessary after a finite extension of the base field).

Theorem 3.8.17. The image of θ(p− δp; z) by the morphism

µ̃ : O(ΩL)∗ −→M (L,Z)0

is µδ. Moreover, it maps any (analytic) automorphic form to a Γ-invariant
measure.

Proof. In the same way that we did before, we define Lp := L ∪ Γ · p∗ ⊂ P1(K).
We recall the analytic functions defined through section 3.5.

uγp,γδp(z) =
z − γp
z − γδp

∈ O(ΩLp)
∗

so
θ(p− δp; z) =

∏
γ∈Γ

uγp,γδp(z) on ΩLp .

Now, theorem 3.5.3 gives us the map

µ̃ : O(ΩLp)
∗ −→M (Lp,Z)0

by which we map the previous functions:

µ̃(θ(p− δp; z)) = µ̃

(∏
γ∈Γ

uγp,γδp(z)

)
=
∑
γ∈Γ

µ̃(uγp,γδp(z)) =
∑
γ∈Γ

µγδp∗,γp∗

where the second equality is due to the fact that µ̃ commutes with lim-
its. Thus, applying results of previous sections, this measure coincides with
−µδ−1 = µδ when it is restricted to L, so the image of θ(p− δp; z) by µ̃ as an
analytic function on L is µδ.

For the second claim, let us take an analyticK-automorphic form f ∈ O(ΩL)∗.
To be automorphic means that for any γ ∈ Γ, γ · f = cγf for some cγ ∈ K∗.
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Therefore, applying the Γ-equivariance of µ̃ -recall the third part of proposi-
tion 3.5.4 and the Γ-invariance of L- we get

γ · µ̃(f) = µ̃(γ · f) = µ̃(cγf) = µ̃(cγ) + µ̃(f) = µ̃(f)

Finally, since we can apply this reasoning for any field K, this is true for all
automorphic forms.

Corollary 3.8.18. If f ∈ O(ΩL)∗ is an automorphic form, there exists a
δ ∈ Γ such that µ̃(f) = µδ.

Proof. By the previous theorem we have µ̃(f) ∈ M (L,Z)Γ
0 and by the iso-

morphism Γab ∼= M (L,Z)Γ
0 (corollary 2.4.8) there exists a δ ∈ Γ such that

µ̃(f) = µδ.

We give a new proof of the complete result cited above [GvdP80, Ch. 2 (3.2)].

Corollary 3.8.19. All analytic automorphic forms are products of the theta
functions of the form θ(p− δp; z) by constants.

Proof. This is due to the first claim of the theorem, to the previous corollary
and to the fact that the kernel of µ̃ are the constants.

We finish this section extending the corollary 3.5.7.

Corollary 3.8.20. We have a commutative rectangle of short exact sequences
with sections for each z0 ∈ ΩL

0 // K∗ // O(ΩL)∗
µ̃ //M(L,Z)0

//

Iz0
kk 0

0 // K∗ // AΓ ∩ O(ΩL)∗
µ̃ //

?�

OO

M(L,Z)Γ
0

//

Iz0
kk

?�

OO

0

and with (non-canonical) isomorphisms O(ΩL)∗ ∼= K∗ ×M(L,Z)0 and

AΓ ∩ O(ΩL)∗ ∼= K∗ ×M(L,Z)Γ
0
∼= K∗ × Γab.

Proof. We had already built the first exact sequence with its section and the
corresponding isomorphism by the corollary 3.5.7. The map µ̃ restricts to
analytic automorphic forms and Γ-invariant measures by the theorem 3.8.17.
The same occurs to the section due to the proposition 3.8.8, so we get the
exhaustivity and the isomorphism (using the corollary 2.4.8 for the last part).
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3.9 The Albanese variety and the Abel-Jacobi

map

Using the results of the previous sections, we show that the Albanese
variety and the Abel-Jacobi map of a Mumford curve can be described in
terms of multiplicative integrals. The main theorem generalizes the result
of Dasgupta [Das05, Thm. 2.5] to any field complete with respect a non-
archimedean absolute value. We give, however, a distinct and independent
proof.

3.9.1 The abelian variety T/Λ

Let Γ ⊂ PGL2(K) be a Schottky group, let L := LΓ ⊂ P1(K) be its limit
set and let ΩL be the functor which associates to any complete extension of
fields L|K the set of points ΩL(L).

Now we are going to do the following steps aimed at building an abelian
variety associated to Γ in a natural way.

Take into consideration the short exact sequence

0 −→ Z[ΩL]0 −→ Z[ΩL] −→ Z −→ 0

where the first arrow is the injection of divisors of degree zero and the second
arrow is the degree map. Since Γ acts on ΩL, we can take the associated long
homology sequence, and in particular, the morphism

Γab = H1(Γ,Z) // H0(Γ,Z[ΩL]0) = Z[ΩL]0Γ

γ � // γp− p

independent of the chosen p ∈ ΩL.

Since the map ×
∫
•
d : Z[ΩL]0 −→ Hom(M (L,Z)0,Gm,K) is Γ-equivariant

we may take Γ-coinvariants, so we obtain

×
∫
•
d : Z[ΩL]0Γ −→ Hom(M (L,Z)0,Gm,K)Γ = Hom(M (L,Z)Γ

0 ,Gm,K)

and after composing with the connecting map above we get

Γab // Z[ΩL]0Γ
// Hom(M (L,Z)Γ

0 ,Gm,K)

γ // ×
∫
γp−p

d : µ 7→ ×
∫
γp−p

dµ
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Note that if L 6= P1(K), then we may take p ∈ ΩL(K). This occurs unless
K is local and Γ is cocompact, in which case, since we may take p in any

complete extension L|K, we also have ×
∫
γp−p

dµ ∈ K∗.

By corollary 3.6.6 Γ is the fundamental group of Γ\TK(L), therefore, by
corollary 2.4.8 we get a pairing

Γab × Γab
×
∫
L

( , )
// K∗

(γ, γ′) � // ×
∫
L

(γ, γ′) := ×
∫
γp−p

dµγ′

such that, by the corollary 2.4.8 and the proposition 3.4.16,

vK

(
×
∫
L
(γ, γ′)

)
= (γ, γ′)Γ

for all γ, γ′ ∈ Γ. This equality implies that the pairing is positive definite.
Further, using corollary 3.7.5 we get

×
∫
L

(γ, γ′) = ×
∫
γp−p

dµγ′ = ×
∫
γ′p−p

dµγ = ×
∫
L

(γ′, γ)

so the pairing is symmetric too.
Summarizing, we have a morphism

H1(Γ,Z)

×
∫
•
d

// Hom(M (L,Z)Γ
0 ,Gm,K) := T

γ � // ×
∫
γp−p

d : µ 7→ ×
∫
γp−p

dµ

which is an isomorphism between H1(Γ,Z) ∼= Γab and its image Λ, so that it
is a free group of rank g = rank(Γ).

Note that, as a consequence of having

×
∫
γp−p

dµ ∈ K∗

for any γ ∈ Γ, we get

Λ ⊂ T (K) = Hom(M (L,Z)Γ
0 , K

∗) ∼= Hom(Γab, K∗) ∼= (K∗)g
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Let us consider now the valuation map applied to this:

(K∗)g
vK // Rg

(a1, . . . , ag)
� // (vK(a1), . . . , vK(ag))

Lemma 3.9.1. The subgroup vK(Λ) ⊂ Rg is a lattice.

Proof. Observe the way in which the isomorphism T (K) ∼= (K∗)g works:

T (K) // (K∗)g

×
∫

� //

(
×
∫

(µγ1), . . . , ×
∫

(µγg)

)
where γ1, . . . , γg is a fixed basis of the free group Γ. In particular, Λ seen
inside of (K∗)g is the multiplicative subgroup{(

×
∫
L
(γ, γ1), . . . , ×

∫
L
(γ, γg)

)}
γ∈Γ

.

After applying the valuation map to this we get(
vK

(
×
∫
L
(γ, γ1)

)
, . . . , vK

(
×
∫
L
(γ, γg)

))
= ((γ, γ1)Γ, . . . , (γ, γg)Γ)

that is the image of the map

Γab // Hom(Γab,R) ∼= Rg

γ � // vK

(
×
∫
L
(γ, ·)

)
As Γ is generated by γ1, . . . , γg, vK(Λ) ⊂ Rg is the subgroup generated by

((γ1, γ1)Γ, . . . , (γ1, γg)Γ) , . . . , ((γg, γ1)Γ, . . . , (γg, γg)Γ)

which, due to the fact that ( , )Γ is positive definite, is isomorphic to Zg so it
is a discrete subgroup, and it has maximal rank. Therefore it is a lattice.

Theorem 3.9.2. The quotient

T an/Λ = Hom(M (L,Z)Γ
0 ,Gm,K)an/Λ

is an abelian variety.
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Proof. By [FvdP04, 6.4, p. 171] we obtain that this quotient is a proper
analytic torus.

Note that by means of the identification M (L,Z)Γ
0
∼= Γab, the torus is

defined by the map γ 7→ ×
∫
L

(γ, ·).
This torus has principal polarization

Γab ∼= Λ
µ∗ // X(T ) = HomK−Grp(T,Gm,K) ∼= Γab

γ � // µ∗(γ) : ×
∫
7−→ ×

∫
(µγ)

since

µ∗(γ′)

(
×
∫
γp−p

d

)
= ×
∫
γp−p

dµγ′ = ×
∫
L
(γ, γ′)

and this form is symmetric and positive definite. Thus, we conclude that
T an/Λ is an abelian variety ([FvdP04, Thm. 6.6.1]).

Remark 3.9.3. This statement rests on two main steps: one was proving
the symmetry. The other one can be explained by the fact that composing
with the valuation gives a real analytic torus (that is, an isogeny) which is
the Albanese torus of GΓ = Γ\TK(LΓ) by the theorem 2.4.9, since there is a
commutative triangle

Γab
×
∫
•
d
//∫
•
d

''

Hom(M (LΓ,Z)Γ
0 ,Gm,K)

vK

��
Hom(M (E(TK(LΓ)),Z)Γ

0 ,R).

Indeed, we take into account the isomorphism L ∼= E(TK(LΓ)) and the next
equalities given by the proposition 3.4.16 and the remark 3.4.13 allow con-
clude the proof of the commutativity:

vK

(
×
∫
γp−p

dµ

)
= − log

∣∣∣∣×∫
γp−p

dµ

∣∣∣∣ =

= − log

∣∣∣∣×∫ ∣∣∣∣
γ rL(p)−rL(p)

dµ =

∫
γ rL(p)−rL(p)

dµ
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3.9.2 The isomorphism with the Albanese variety and
the Abel-Jacobi map

An isomorphism between abelian varieties

Our next goal is to get an isomorphism of abelian varieties

Alb(CΓ) −→ T/Λ

In order to show this we are going to use the well known isomorphism
Alb(CΓ) ∼= Div0(CΓ)/Prin(CΓ). First we will build for any extension of
complete fields L|K a map

Div0(CΓ)(L) −→ (T/Λ)(L)

Then, let us fix any extension of complete fields L|K. Take a divisor
D ∈ Div0(CΓ)(L). It can be written as

D =
∑

p∈CΓ(CL)

npp verifying Dσ = D ∀σ ∈ Gal(CL|L)

and there exists a finite extension L′|L such that Supp(D) ⊂ CΓ(L′) so that
D ∈ Div0(CΓ(L′)). Now, there is a finite field extension L̃|L′ such that GΓ

has no loops (in fact, this is true for almost any extension up to a finite
number), so by corollary 3.6.9, the map ΩL(L̃) −→ CΓ(L̃) is surjective and
thus, the maps

Γ\ΩL(L̃) −→ CΓ(L̃) and Γ\Z[ΩL(L̃)]0 −→ Div0(CΓ(L̃))

are isomorphisms. Thus, we got a finite extension L̃|L such that there is a
divisor D̃ ∈ Z[ΩL(L̃)]0 satisfying πΓ(D̃) = D, that is

∀σ ∈ Gal(L̃|L) ∃ γσ ∈ Γ such that D̃σ = γσD̃.

The continuous arrows of the diagram

Z[ΩL(L̃)]0Γ

����

×
∫
•
d

// Hom(M (L,Z)Γ
0 , L̃

∗) = T (L̃)

�� ��

D̃ � // ×
∫
D̃

d : µ 7−→ ×
∫
D̃

dµ

Div0(CΓ(L̃)) // T (L̃)/Λ

πΓ(D̃) = D � // ×
∫
D

d
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factorize by the dots arrow, since Γ\Z[ΩL(L̃)]0 ∼= H1(Γ,Z)\Z[ΩL(L̃)]0Γ.
We can finish the construction of the map we told above thanks to the

following result.

Lemma 3.9.4. Given a finite extension L̃|L and any D̃ ∈ Z[ΩL(L̃)]0 satis-
fying

∀σ ∈ Gal(L̃|L) ∃ γσ ∈ Γ such that D̃σ = γσD̃,

we have (
×
∫
D̃

d

)σ
≡ ×
∫
D̃

d (mod Λ)

Proof. We just have to note how it is defined the integral, as a limit of
products of the function fD. This is integrated over L, set of K-rational
points, so invariant by σ. Therefore, for any µ ∈M (L,Z)0 we have(

×
∫
D̃

dµ

)σ (
×
∫
D̃

dµ

)−1

=

(
×
∫
L
fD̃dµ

)σ (
×
∫
D̃

dµ

)−1

=

= ×
∫
L
fD̃σdµ

(
×
∫
D̃

dµ

)−1

= ×
∫
L
fγσD̃dµ

(
×
∫
L
fD̃dµ

)−1

=

= ×
∫
γσD̃−D̃

dµ

independent of µ. Finally ×
∫
γσD̃−D̃

d ∈ Λ.

Corollary 3.9.5. Under the same hypothesis we get

×
∫
D̃

d ∈ (T/Λ)(L)

Proof. It is immediate.

Therefore, for D ∈ Div0(CΓ)(L) we have built a well defined element

×
∫
D

d ∈ (T/Λ)(L),

so we get the map

Div0(CΓ)(L) −→ (T/Λ)(L)

Next we want to show its exhaustivity and compute its kernel. The next
result is crucial to move forward:
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Lemma 3.9.6. Let D̃ be a degree zero divisor on ΩL which can be represented
as
∑r

i=1 (pi − qi) and let us define the automorphic form

θD̃(z) := θ(p1 − q1; z) · · · θ(pr − qr; z)

Then its factor of automorphy is given by

cθD̃(γ) = ×
∫
D̃

dµγ ∀ γ ∈ Γ

Proof. On one hand we have

cθD̃(γ) =
θD̃(z)

θD̃(γz)
=

θ(p1 − q1; z) · · · θ(pr − qr; z)

θ(p1 − q1; γz) · · · θ(pr − qr; γz)
=

=
θ(z − γz; p1) · · · θ(z − γz; pr)

θ(z − γz; q1) · · · θ(z − γz; qr)

where the last equality is due to the straightforward symmetry of theta func-
tions. On the other hand, applying the theorem 3.8.17 and the extended
Poisson formula (corollary 3.5.6) we have

×
∫
D̃

dµγ = ×
∫
D̃

dµ̃(θ(z0 − γz0; ·)) =
r∏
i=1

θ(z0 − γz0; pi)

θ(z0 − γz0; qi)

Since the right sides of two last chains of equalities are independent of z and
z0 respectively, they are equal.

Lemma 3.9.7. If h ∈ O(ΩL)∗ is an (analytic) automorphic form, its factor
of automorphy ch belongs to Λ.

Proof. First, recall by corollary 3.8.18 that µ̃(h) = µδ for some δ ∈ Γ. Next,
let us compute its automorphic form on a γ ∈ Γ by means of applying the
Poisson formula:

ch(γ) =
h(z)

h(γz)
= ×
∫
z−γz

dµ̃(h) = ×
∫
z−γz

dµδ = ×
∫
z−δz

dµγ = ×
∫
z−δz

d(µγ)

Finally, ×
∫
z−δz

d belongs to Λ by definition.

Proposition 3.9.8. Given an automorphic form h ∈ AΓ with factor of au-
tomorphy ch, there is a finite divisor D̃h on ΩL such that the infinite divisor
of h on ΩL is Dh = Γ · D̃h and

ch ≡ cθD̃h
= ×
∫
D̃h

d (mod Λ)
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Proof. We take D̃h a finite divisor as in theorem 3.8.16, such that Dh = Γ·D̃h

and h(z) = h′(z)θD̃h(z) with h′(z) analytic. Then, by the previous lemmas
we have

ch = ch′cθD̃h
≡ cθD̃h

= ×
∫
D̃h

d (mod Λ)

Corollary 3.9.9. The map Div0(CΓ)(L) −→ (T/Λ)(L) factorize by the prin-
cipal divisors of CΓ and the resulting map

Div0(CΓ)(L)/Prin(CΓ)(L) −→ (T/Λ)(L)

is injective.

Proof. First we will show that the map factorize by the principal divisors.
A divisor of Div0(CΓ)(L) is principal when it is the divisor of a mero-

morphic function on CΓ, that is a Γ-invariant meromorphic function on ΩL.
Let Dh and h be such a divisor and such a function respectively. Since h is
Γ-invariant, its factor of automorphy is constant equal to 1. Therefore, by
the proposition we get

×
∫
D̃h

d ≡ 1 (mod Λ)

with Dh = ΓD̃h, and so we obtain the factorization by the principal divisors.
Next we want to prove the injectivity of this factorized map. Take now a

D ∈ Div0(CΓ)(L) such that

×
∫
D̃

d ∈ Λ so there exists a δ ∈ Γ satisfying ×
∫
D̃

d = ×
∫
δp−p

d

where D = ΓD̃ with D̃ divisor on ΩL and p ∈ ΩL. Now, as above, we
can build the automorphic form θD̃, which has associated infinite divisor D.
Further, let us consider the analytic function θ(δp− p; z), and write cD̃ and
cδ for the factors of automorphy of the two last automorphic forms. Observe
that

cD̃(γ) = ×
∫
D̃

dµγ = ×
∫
δp−p

dµγ = cδ(γ).

Therefore, D is the divisor associated to the function θD̃(z)/θ(δp − p; z),
which is Γ-invariant, so it is principal and thus the injectivity is done.

Proposition 3.9.10. There is an isomorphism

(Div0(CΓ)/Prin(CΓ)) (L) −→ (T/Λ)(L)
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Proof. Let us check first that this map is well defined.
Consider a divisor D in (Div0(CΓ)/Prin(CΓ)) (L). Then, there is a Galois

extension L̃|L and a divisor D̃ ∈ Div0(CΓ)(L̃) such that

D̃σ − D̃ ∈ Prin(CΓ)(L̃) for all σ ∈ Gal(L̃|L).

This implies that

×
∫
D̃σ−D̃

d = 0T/Λ ∈ (T/Λ)(L̃)

and so, as in the proof of the lemma 3.9.4 we get the next equalities in
(T/Λ)(L̃): (

×
∫
D̃

d

)σ
= ×
∫
D̃σ
d = ×

∫
D̃

d ∀σ ∈ Gal(L̃|L)

Therefore ×
∫
D

d ∈ (T/Λ)(L) and we get the morphism

(Div0(CΓ)/Prin(CΓ)) (L) −→ (T/Λ)(L)

which is injective by the previous corollary.
Next we have to prove its exhaustivity. An element Ξ ∈ (T/Λ)(L) can

be seen in T (L̃)/Λ, satisfying Ξσ = Ξ for each σ ∈ Gal(L̃|L), where L̃|L is
a Galois extension. This element is the class of a ξ ∈ T (L̃) ∼= Hom(Γab, L̃∗)
such that

ξσ ≡ ξ (mod Λ) for each σ ∈ Gal(L̃|L),

which in turn is the factor of automorphy ch of an automorphic form h ∈ AΓ,
by the proposition 3.8.9. Now, by the proposition 3.9.8 we have

×
∫
D̃h

d ≡ ch = ξ (mod Λ) and so ×
∫
Dh

d = Ξ

with Dh ∈ Div0(CΓ)(L̃). By the hypothesis(
×
∫
Dh

d

)σ
= ×
∫
Dh

d so ×
∫
Dσh−Dh

d = 0T/Λ

what, due to the injectivity of the map, gives that Dσ
h −Dh ∈ Prin(CΓ)(L̃).

But this for each σ ∈ Gal(L̃|L) implies that Dh ∈ (Div0(CΓ)/Prin(CΓ)) (L).

Now we are ready to prove the main theorem, which generalizes to any
complete field with respect to a non-trivial non-archimedean valuation [Das05,
Thm. 2.5]:
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Theorem 3.9.11. There is an isomorphism over K of abelian varieties

Alb(CΓ) −→ T/Λ

Proof. First, as we told above, we recall the isomorphism

Alb(CΓ) ∼= Div0(CΓ)/Prin(CΓ)

Second, we have built an analytic morphism of abelian varieties

Div0(CΓ)/Prin(CΓ) −→ T/Λ

Since they are proper, by GAGA it is an algebraic morphism, and it also re-
spects the group operations, so it is a morphism of abelian varieties. Further,
it induces an isomorphism in the corresponding L-points for any extension
of complete fields L|K, and this implies that it is an isomorphism.

The Abel-Jacobi map

Corollary 3.9.12. The abelian variety T an/Λ is the Albanese variety of the
curve CΓ and the Abel Jacobi map is given, after having fixed some point
z0 ∈ CΓ, by

CΓ

iz0 // Hom(M (L,Z)Γ
0 ,Gm,K)/Λ

z � // ×
∫
z−z0

d

Remark 3.9.13. Next, we put together the remarks 3.6.8 and 3.9.3. This
Abel-Jacobi map descends to the one of the associated graph by means of the
retraction. That is, we have a commutative diagram

ΩLΓ
// //

rLΓ

����

CΓ

iz0 //

rLΓ,Γ

����

Hom(M (L,Z)Γ
0 ,Gm,K)

Λ
∼= Alb(CΓ)

vK

��

TK(LΓ) // // GΓ

ip // Hom(M (E(TK(LΓ)),Z)Γ
0 ,R)∫

d
(
Γab
) ∼= Alb(GΓ).

where p = rLΓ,Γ(z0). Indeed, for any z ∈ CΓ let z̃ ∈ ΩLΓ
be a representant, so

that p̃ := rLΓ
(z̃0) ∈ TK(LΓ) is a representant for p ∈ GΓ and more generally,
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rLΓ
(z̃) is a representant for rLΓ,Γ(z). Next, we compute as in the last remark

named:

vK

(
×
∫
z̃−z̃0

dµ

)
= − log

∣∣∣∣×∫
z̃−z̃0

dµ

∣∣∣∣ =

= − log

∣∣∣∣×∫ ∣∣∣∣
rLΓ

(z̃)−p̃
dµ =

∫
rL(z̃)−p̃

dµ = ip(rLΓ,Γ(z)).

This summarizes several results from [BR15] that we have recovered for
Berkovich analytic Mumford curves, as the theorem 2.9 (which is, essentially,
our corollary 2.4.8), the proposition 6.1 (it is what we have just proved in
this remark) and the corollary 6.6, which says that there is a canonical iso-
morphism between the skeleton of the Albanese torus Alb(CΓ)an of CΓ and
the Albanese torus Alb(GΓ) of the skeleton of CΓ, and that vK coincides with
the retraction to the skeleton, which, moreover, is the tropicalization map (cf.
[Gub10, § 4]).
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Chapter 4

The conjectural construction of
the Albanese variety of a
non-Archimedean uniformized
variety

Mustafin generalized “Mumford’s construction of nonarchimedean uni-
formization for curves over a discrete valued field K to the multidimensional
case” in [Mus78]. In order to do it, he introduced the Bruhat-Tits building
B(G) associated to a d+1-dimensional vector space V , then, given a certain
subgroup Γ ⊂ PGL(V ) that he called normal hyperbolic and that genaralizes
Schottky groups, he considered a subbuilding BLΓ

⊂ B(G) obtained from
the dual set LΓ of the set of limit points of Γ . With these objects, Mustafin
built a formal scheme ΩLΓ

which arises from projective d-space over K by
removing the dual hyperplanes of the points in LΓ as a rigid analytic variety,
and that uniformizes the object of his research, that he obtain as a quotient
Γ\ΩLΓ

=: XΓ and that inherits a rigid analytic structure.
These uniformized varieties are algebraizable in some cases, like when

they are abelian varieties (in which case the abelian variety is a quotient of
a torus Gd

m,K by a lattice), or also when the base field is local and the group
Γ is discrete, cocompact and without torsion. In the last case, LΓ = P(V ),
BLΓ

= B(G) and ΩLΓ
is the rigid analytic space called p-adic symmetric

space introduced by Drinfeld in [Dri74] generalizing the 1-dimensional p-adic
upper half plane as a p-adic analogue of the real symmetric spaces.

Drinfeld remarked the importance of the cohomology of the p-adic sym-
metric spaces, which computed Schneider and Stuhler in [SS91], where they
also computed the cohomology of their quotient varieties by the groups Γ.
Later, in [dS01], de Shalit went deeper in the study of the rigid de Rham co-
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homology of the p-adic symmetric spaces, giving a new description in terms
of “a certain space of harmonic cochains on the Bruhat-Tits building” and
answering “a few questions left open in the original approach” by Schnei-
der and Stuhler. This author continued this study together with Alon in
[AdS02] (and in [AdS03]), where they related the different descriptions given
of the rigid de Rham cohomology of ΩP(V ). In particular, they translated
a description given in [SS91] to the language of harmonic measures on the
space of K-points of a certain flag variety which, combinatorially, can be
seen as part of the spherical building boundary of the Bruhat-Tits building
of PGL(V ) (which is the Bruhat-Tits building of GL(V )), and they described
the isomorphism between these space of harmonic measures and the space of
harmonic cochains on the building.

Finally, Raskind and Xarles defined in [RX07a] the notion of projec-
tive varieties with totally degenerate reduction, which applies to abelian
varieties, to the quotients of the p-adic symmetric spaces by torsion free,
discrete, cocompact subgroups Γ ⊂ PGL(V ) and, more generally, to any
nonarchimedean uniformized variety XΓ = Γ\ΩLΓ

being algebraizable as a
projective variety. Then, in [RX07b], they associated to those varieties cer-
tain rigid analytic tori that they called “p-adic intermediate Jacobians”, and
a kind of Abel-Jacobi maps to them. As their complex analogues introduced
by Griffith, the “extreme” p-adic intermediate Jacobians are the Picard va-
riety and the Albanese variety.

The original motivation for this work is to give a more analytic con-
struction of such tori, but early we had decided to focus on the Albanese
varieties, since a big field for research is open only with their study. In this
chapter we give a conjectural construction of the Albanese varieties in the
paragraph 4.5.3 and in the following we study a way to prove that it is in
fact a rigid analytic torus when the uniformized variety is a surface. The
key step is the proof of the isomorphism between the harmonic measures on
LΓ with the harmonic cochains on BLΓ

, which generalizes the isomorphisms
proved by Schneider and Stuhler, and de Shalit and Alon when Γ is discrete,
cocompact and torsion free (LΓ = P(V )) and K is local.

4.1 The Bruhat-Tits building (over a discrete

valuation field)

In this section, we introduce the Bruhat-Tits building following mainly
the combinatorial approach by Mustafin and de Shalit in [Mus78] and [dS01]
respectively. We also introduce some special subcomplexes BL, that for cer-
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tain compact sets L ⊂ P(V ) are the subbuildings in which we are interested.
In particular, we start to study their minimal 1-skeleton.

Let K be a complete field with respect to a non-trivial discrete valuation
vK , let OK be its valuation ring, let mK = (πK) be its maximal ideal and
k = OK/mK its residual field.

Let V be a (d+1)-dimensional K-vector space, and denote by V ∗ its dual,
so PV = Proj(S•(V ∗)) is the projective space associated to V , whose K-
rational points correspond to the 1-dimensional subspaces of V (so, with the
traditional notation we have P(V ) = PV (K)). We will write G := PGL(V ),
the group of automorphisms of PV as K-algebraic variety.

A lattice in V is a free OK-module L ⊂ V of rank d + 1, so it spans V
over K. Two lattices L,L′ are equivalent (L ∼ L′) if there exists λ ∈ K∗

such that L′ = λL. We may consider the left action of the group GL(V ) on
the set of such lattices in the natural way: if γ ∈ G, γL = {γx | x ∈ L}.
Then, L ∼ L′ if and only if L and L′ belong to the same orbit of the center
K∗ ⊂ GL(V ), so we get a left action of G on the set of classes of equivalence
of lattices.

The Bruhat-Tits building of G is a simplicial complex (not necessarily
locally finite) B(G) whose vertices -which we shall denote by B(G)0- are the
set of lattices in V up to equivalence. We shall denote the equivalence class
of L by [L].

There is a metric ρ in B(G)0. Take Λ = [L],Λ′ = [L′] two any vertices in
V . By the equivalence, we may assume L ⊃ L′. Therefore we have

L/L′ ∼= OK/mm0
K ⊕ · · · ⊕ OK/m

md
K , mi ≥ 0

and we define ρ([L], [L′]) := max
i
mi −min

i
mi. This is equivalent to take L′

in the same class as above, satisfying L ⊃ L′ ⊃ mr
KL, L′ 6⊃ mr−1

K L and
defining ρ([L], [L′]) := r. For any integer 0 ≤ q ≤ d, a q-dimensional simplex
(or cell) of B(G) is a subset ∆ = {Λ0, . . . ,Λq} of B(G)0 such that satisfies
any of the next equivalence conditions:

• For any i 6= j, ρ(Λi,Λj) = 1.

• We may choose Λi = [Li] such that L0 ) L1 ) · · · ) Lq ) πKL0 (what
we shall call a q-flag in L0).

(see [Gar97, Ch. 19]). We shall denote the set of q-simplices by B(G)q, as
usual. As already defined, 0-simplices are called vertices, 1-simplices are
called edges, and d-simplices are the maximal simplices of B(G), which will
be called chambers. The subsimplices of a simplex are called its faces. The
codimension 1 faces (= d− 1-simpices) will be called panels.
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Definition 4.1.1. Two chambers ∆,∆′ are adjacent if they are distinct and
have a common panel A = ∆

⋂
∆′.

A pregallery of length n is a sequence of n+1 chambers S∆ = (∆0, . . . ,∆n)
such that ∆i and ∆i+1 are adjacent or equal for i = 0, 1, . . . , n− 1. A gallery
is a pregallery in which ∆i 6= ∆i+1 for all i.

We say that ∆0 and ∆n are the ends of the (pre-)gallery, that S∆ is a
(pre-)gallery from ∆0 to ∆n or that it connects these chambers.

A gallery is minimal if there is no gallery with the same ends and length
strictly less than n, and that length is called the gallery distance between ∆0

and ∆n.

Notice the cyclic order of the vertices of a q-simplex ∆ of B(G) (and
so, its orientation). We shall say that ∆ is pointed if it has a distinguished
vertex, or equivalently, if we fix an order in it Λ0 = [L0] < · · · < Λq = [Lq]
where L0 ) L1 ) · · · ) Lq ) πKL0. In this case, writing di = dimk(Li/Li+1)
(where Lq+1 := πKL0), we say that ∆ has type t = (d0, . . . , dq) ∈ Nq+1

≤d+1.
Note that

∑q
i=0 di = dimk(L0/πKL0) = d+ 1 and

q∑
i=j

di = dimk(Lj/πKL0) =: nj.

A pointed q-simplex ∆ can be written

∆ = (L0 ) L1 ) · · · ) Lq ) πKL0) = (Λ0,Λ1, . . . ,Λq).

There are
(
d
q

)
types of q-simplices, of which we shall call the minimal type

to (d+ 1− q, 1 . . . , 1). We will denote the set of pointed q-simplices of type
t, the minimal q-simplices, and the set of all the pointed q-simplices by

B̂(G)
t

q, B̂(G)
min

q and B̂(G)q

respectively, so that

B̂(G)q =
⊔
t

B(G)tq.

Note that B̂(G)0 = B(G)0.
We will call the distinguished vertex Λ0 of a pointed simplex ∆ its source,

and we will denote it as s(∆) = Λ0, generalizing the edges classical notation.
Precisely for an edge e, its another vertex is called its target and denoted by
t(e), as usual.

Given two simplices, pointed or not, ∆′ and ∆, if ∆ is a face of ∆′ as
q-simplices, we will write ∆ ≤ ∆′.
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Given a simplex ∆0, we will denote by B(G)q(∆0) the set of q-simplices
∆ such that for any vertices Λ0 ≤ ∆0, Λ ≤ ∆, then ρ(Λ0,Λ) ≤ 1. This
is equivalent to say that ∆0 and ∆ are face of a common chamber. We

will denote by B̂(G)q(∆0) the set of pointed q-simplices ∆ verifying the
same property and we will specify the type if we restrict to it accordingly:

B̂(G)
t

q(∆0). Removing the specifications, the subcomplex with its cells will
be denoted by B(G)(∆0).

For a general n ∈ N, we will denote the set of q-simplices (resp. pointed,
resp. of a given type t) ∆ such that ρ(Λ0,Λ) ≤ n for any vertices Λ0 ≤ ∆0,
Λ ≤ ∆, by

B(G)q(∆0)(n) (resp. B̂(G)q(∆0)(n), resp. B̂(G)
t

q(∆0)(n)),

and we will denote B(G)(∆0)(n) the subcomplex generated by them.
We will say that a basis {v0, . . . , vd} of V is adapted to a q-simplex

∆ = {[L0], . . . , [Lq]} with source L0 if we have

Li =
⊕
j<ni

OKvj ⊕
⊕
j≥ni

OKπKvj (and then Li/πKL0 =
⊕
j<ni

kvj).

Such a basis always exists ([Mus78, Lem. 1.1.]).
The apartment associated to a basis v = {v0, . . . , vd} of V is the simplicial

subcomplex of B(G) generated by the vertices of the form [
⊕

iOKπ
mi
K vi],

where mi ∈ Z. We will denote it by Av. The same notations for the sets of
q-simplices, pointed q-simplices and the ones of a given type introduced for
B(G) apply to the apartments. Clearly, we have a bijection

Av0
∼= Zd+1/Z · (1, . . . , 1)

mapping [
⊕

iOKπ
mi
K vi] to [(m0, . . . ,md)] = (m0, . . . ,md)+Z(1, . . . , 1), which

extends to an isomorphism of cyclic ordered simplicial complexes

Av
∼= Zd+1/Z · (1, . . . , 1)

giving to Zd+1/Z · (1, . . . , 1) the suitable structure.
Let us recall some facts from [Mus78, § 1.].

• Fixed a vertex Λ = [L] ∈ B(G)0, the set of q-simplices ∆ with source
Λ are in one to one canonical correspondence with the q-flags in L and
with the flags of length r in kd+1, preserving the type.

• Given two chambers there exists at least an apartment containing both.

127



• The action of G on B(G)0 extends to an action on B̂(G)q on the left,
which is simplicial and transitive on simplices with distinguished vertex
of the same type.

• B(G) is a contractible simplicial complex of dimension d. The topo-
logical realization of any apartment A ⊂ B(G) is isomorphic to Rd.

• The isomorphisms |Av| ∼= Rd induce a G-invariant Euclidean metric on
the topological realization of the building |B(G)|.

Given a basis v = {v0, . . . , vd} of V consider the element vd+1 =
∑d

i=0 vd.
Let us compute the intersection of Av with the apartment associated to the
basis v0 := {vd+1, v1, . . . , vd}. It is the subcomplex generated by the set of
classes of lattices

⊕
iOKπ

mi
K vi which coincide with lattices of the form

OKπ
m′0
K vd+1 ⊕

⊕
i>1

OKπ
m′i
K vi.

To get the equality we need mi = m′i for all i and m0 ≥ mi for all i, and this
condition is enough.

Therefore, if we call vi to the basis consequence of replacing vi by vd+1

we get

Av ∩
d⋂
i=0

Avi =

[⊕
i

OKvi

]
=: t([v0], . . . , [vd], [vd+1])

where the notation is inspired by the introduced in the previous chapter.
Observe that the apartment Av only depends on the classes [vi] ∈ P(V ),

but the isomorphism with Zd+ 1/Z · (1, . . . , 1) depends on the given basis
ordered. So in this last case we will have to use the introduced notation
Av, but in general, if we do not need so much precision, we can write an
apartment as AP , where P ⊂ P(V ) is a set of d+ 1 projective points linearly
independent (as {[v0], . . . , [vd]}).

More generally, for any subset L ⊂ P(V ) and any set of d + 1 points
linearly independent P ⊂ L we may consider the apartment AP . We consider
the subcomplex of B(G) associated to L defined by

BL :=
⋃
P⊂L

P={p0,...,pd}
l. i.

AP

It is a simplicial complex of dimension d whose maximal cells are chambers
of B(G). In some cases, it is a building in the sense of [AB08, Ch. 4] (it
is a convex subcomplex of B(G)), as when BP = AP and BP(V ) = B(G),
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but generally it is not. For example, assume d = 2, let v0, v1, v2 be a ba-
sis for V and take L = {[v0], [v1], [v2], [v0 + v1 + v2]}. In this case BL is
not a building, since there is no apartment in BL containing the vertices
[OKπKv0 ⊕OKv1 ⊕OKv2] and [OKv0 ⊕OK(v0 + v1 + v2)⊕OKπKv2] simul-
taneously.

If BL is a building, we know it is contractible ([AB08, Thm. 4.127]). It
seems reasonable to think BL is contractible even if it is not a building, but
we are not going to use this and then, we will not prove that.

The same notations for the sets of q-simplices, pointed q-simplices and
the ones of a given type introduced for B(G) apply to BL.

Let us define the covalence of a panel A in BL as the number of chambers
in BL containing that panel. We will denote it by covL(A).

From now on, L ⊂ P(V ) is a closed subset not contained in a hyperplane
(so BL is not empty).

Proposition 4.1.2. Given a vertex Λ ∈ BL0 and a point p ∈ L, there exists
a subset P ⊂ L of d + 1-linearly independent points such that p ∈ P and
Λ ∈ AP0.

Proof. Since Λ = [L] ∈ BL0, there is a basis v = {v0, . . . , vd} such that
[vi] ∈ L for each i and L =

⊕d
i=0OKvi ∈ Av0 . Consider a representant

v =
∑d

i=0 λ
ivi ∈ V of the point p = [v]. Since v 6= 0, there exists an i such

that {v} ∪ v \ {vi} is a basis of V . More specifically, we choose this i such
that vK(λi) ≤ vK(λj) for all j 6= i. Without loss of generality we assume

i = 0. Further, taking a suitable representant v (multiplying by π
−vK(λ0)
K ),

we have that v′ = {v, v1, . . . , vd} is a basis for L, and therefore Λ ∈ Av′0
.

The minimal subgraph

We have a particular interest in the minimal edges of B(G), so next we
are going to restrict us to an apartment and see how are these when we look
at Zd+1/Z · (1, . . . , 1), after the given isomorphism. Then, we will work with
edges with a distinguished vertex.

Consider the norm in Zd+1 defined by

‖(m0, . . . ,md)‖ := max
i,j
|mi −mj| = max

i,j
{mi −mj} = max

i
mi −min

j
mj.

It is an easy exercise to check that it is a norm. Further, it factorizes by
Z · (1, . . . , 1), so we get a norm in Zd+1/Z · (1, . . . , 1). Thus, we shall call
it the tropical norm, and denote it by ‖ · ‖trop (as others had already done
previously).
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Let Λ, Λ′ be two vertices, and assume that they correspond to

[m] = [(m0, . . . ,md)] and [m′] = [(m′0, . . . ,m
′
d)]

respectively. I claim that (Λ, Λ′) is an edge if and only if ‖[m]− [m′]‖trop = 1.
After subtracting m, we can assume that Λ corresponds to [0]. Then, the
assertion becomes clear if we remind that (Λ, Λ′) is an edge if and only if
ρ(Λ, Λ′) = 1, and we observe that ρ(Λ, Λ′) = ‖[m′]− [0]‖trop.

Identically, if we have vertices Λ0, . . . ,Λq corresponding to [m(0)], . . . , [m(q)],
they form a simplex if and only if ‖[m(i)]− [m(j)]‖trop = 1 for all i 6= j.

Now, that an edge (Λ, Λ′) corresponding to ([m],[m’]) is minimal if and
only if [m′]− [m] = [(1, . . . , 1, 0, 1, . . . , 1)] is just a quick verification.

0,−2,2 0,−1,2 0,0,2 0,1,2 0,2,2 0,3,2

0,−2,1 0,−1,1 0,0,1 0,1,1 0,2,1 0,3,1

0,−2,0 0,−1,0 0,0,0 0,1,0 0,2,0 0,3,0

0,−2,−1 0,−1,−1 0,0,−1 0,1,−1 0,2,−1 0,3,−1

0,−2,−2 0,−1,−2 0,0,−2 0,1,−2 0,2,−2 0,3,−2
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Figure 4.1: A small portion of an apartment A for d = 2 seen inside
Z3/Z(1, 1, 1) with the orientations of the maximal simplices and the mini-
mal edges indicated, and colored following the intersections Av∩Avi studied
above.

Definition 4.1.3. We shall say that two minimal edges e, e′ ∈ B̂(G)
min

1

are straight if either t(e) = s(e′) or t(e′) = s(e), and there are no chamber
containing both edges.

Proposition 4.1.4. Let A be an apartment. For each e ∈ Âmin
1 there exists

a unique e′ ∈ Âmin
1 such that they are straight with t(e) = s(e′) (and the same

applies with t(e′) = s(e)).

Proof. We can write e = ([m], [m′]) with [m], [m′] ∈ Zd+1/Z · (1, . . . , 1).
Since we ask for t(e) = s(e′), we also can write e′ = ([m′], [m′′]) with
[m′′] ∈ Zd+1/Z · (1, . . . , 1).
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Since e, e′ are minimal, we have

[m′]− [m] = [(1, . . . , 1, 0, 1, . . . , 1)]

with the 0 in the position i, and

[m′′]− [m′] = [(1, . . . , 1, 0, 1, . . . , 1)]

with the 0 in the position i′. Recall that e, [m], [m′], i are given, while [m′′], i′′

are the unknowns. If i′ 6= i we have

‖[m′′]− [m]‖trop = 1

so ([m′], [m′′]) is an edge and [m], [m′], [m′′] are contained in a chamber. Oth-
erwise i′ = i, [m′′] = [m′] + ([m′]− [m]) and

‖[m′′]− [m]‖trop = 2,

therefore they do not belong to any common chamber.

Remark 4.1.5. For some basis {v0, . . . , vd} we have s(e) = [
⊕

iOKvi], and
i0 ∈ {0, 1, . . . , d} such that t(e) = [OKvi0 ⊕

⊕
i 6=i0 OKπKvi]. Thus, we obtain

t(e′) =

[
OKvi0 ⊕

⊕
i 6=i0

OKπ2
Kvi

]
.

Sum action on an apartment and parallelism

Note that we have a left action

Zd+1 × Zd+1/Z · (1, . . . , 1) −→ Zd+1/Z · (1, . . . , 1)

given by the sum of vectors

(z0, . . . , zd) · (m0, . . . ,md) := (z0 +m0, . . . , zd +md),

so we shall denote it (z0, . . . , zd)+(m0, . . . ,md). It factorizes by Z ·(1, . . . , 1),
so we get a left action

Zd+1/Z · (1, . . . , 1)× Av −→ Av.

Definition 4.1.6. We will say that two minimal edges e, e′ ∈ Âv

min

1 are
parallel with respect to v and we shall denote this by e ‖v e′, if they are in
the same orbit by the action of Zd+1/Z · (1, . . . , 1), that is, if there exists
[n] ∈ Zd+1/Z · (1, . . . , 1) such that e′ = [n] + e.
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Note that, at least initially, this definition depends on the basis. In fact
we see that it only depends on the points [vi] ∈ P(V ), where vi are the
vectors of the basis, but neither on the representants vi (whose change is a
translation of the vectors), nor on their order (whose change gives a reorder
of the coordinates), that is, it only depends on the apartment.

Note also that this notion of parallelism restricted to an apartment is an
equivalence relation, since it is defined by the orbit of an action.

Another consequence of the proof of the proposition 4.1.4, is that two
straight edges are parallel with respect to any basis.

Proposition 4.1.7. The notion of parallelism between minimal edges does
not depend on the apartment. In particular, two minimal edges are parallel in
an apartment containing both if and only if they are parallel in any apartment
containing them.

Proof. Let e, e′ edges both contained in two apartments A,A′ of B(G). Since
B(G) is a building, it verifies the well known property for such objects that
given two simplices in two apartments, there is a simplicial isomorphism of
the apartments fixing both simplices (cf. [AB08, Def. 4.1]). Now consider
a simplicial isomorphism Zd+1/Z · (1, . . . , 1) ∼= A. Next, let us compose the
simplicial isomorphisms A′ ∼= A ∼= Zd+1/Z · (1, . . . , 1), so we get another
simplicial isomorphism between A′ and Zd+1/Z · (1, . . . , 1). Since e, e′ are in
the intersection of both apartments, they are mapped to the same image, and
since parallelism does not depend on these isomorphisms, they are parallel
with respect to A if and only if they are parallel with respect to A′.

4.2 The open sets associated to the minimal

edges of BL

We are going to study open sets associated to the minimal edges of B(G),
which, when L ⊂ P(V ) is compact, induce a basis for the topology of L by
open compacts. We also will introduce some “simplicial” maps and obtain
some important properties related to the structure of partitions by these
open sets, which we will use following repeatedly and that will become key
for later proofs.

Lemma 4.2.1. Let V be a K-vector space and let L be a lattice in V , so it
is a free OK-module with a natural isomorphism L⊗OK K ∼= V . Let Z ⊂ V
be a K-vector subspace and L′ := πKL+ (Z ∩ L). Then

dimK(Z) = dimk(L
′/πKL).
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Proof. First, recall the well known facts that Z ∩ L is a free OK-module of
rank less than rankOK (L) and in fact,

rankOK (Z ∩ L) = dimk

(
Z ∩ L

πK(Z ∩ L)

)
= dimk

(
L′

πKL

)
.

Next, we are going to prove rankOK (Z ∩ L) = dimK(Z). Let us write
s := rankOK (Z ∩ L), so Z∩L = 〈w1, . . . , ws〉OK . Then, clearly s ≤ dimK(Z).
If s < dimK(Z), there would be a v ∈ Z \ 〈w1, . . . , ws〉K and an r ∈ Z such
that πrKv ∈ L∩Z, so we would get a contradiction. Therefore, s = dimK(Z).

Following, let Z ⊂ V be a 1-dimensional K-vector subspace. As we have
shown in the previous proof, there exists w ∈ L such that Z ∩ L = OKw.
Further, we see that w ∈ L \ πKL and it is unique up to O∗K . Therefore we
have πKL+ (Z ∩ L) = πKL+OKw.

Observe that for any lattice L we have

L/πKL ∼= kd+1.

Then, for each vertex Λ = [L] ∈ B(G)0 there is a reduction map

rΛ : P(V ) −→ P(L⊗OK k) ∼= Pd(k)

defined as follows: for any Z ∈ P(V ) we have just seen that there is ω ∈ Z∩L
such that Z ∩ (L \ πKL) = O∗Kω, and therefore we can define rΛ(Z) as the
class of this element in

((L \ πKL)/πKL) /O∗K ∼= (kd+1 \ {0})/k∗ = Pd(k).

Recall that a 1-flag in V is a linear subspace of dimension 1, that is a point
of P(V ). Let e = (Λ,Λ′) be a minimal edge and take representants Λ = [L],
Λ′ = [L′] verifying L ) L′ ) πKL. Since e is minimal, dimk(L

′/πKL) = 1.
We define the open set associated to e by

B(e) := {Z ⊂ V | dimK(Z) = 1, L′ = πKL+ (Z ∩ L)} ⊂ P(V ),

and more generally, given L ⊂ P(V ) closed, one defines

BL(e) := B(e) ∩ L.

Note that if L′ ⊂ L, then BL′(e) ⊂ BL(e).

Lemma 4.2.2. We have Z ∈ B(e) if and only if Z ∩ L ⊂ L′. In particular
[u] ∈ B(e) if and only if the representant of [u] in L\πKL belongs to L′\πKL.
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Proof. One implication is obvious and the opposite follows from previous
considerations. We have seen that Z ∩ L = OKw for a w ∈ L \ πKL. If
L′ ) πKL+(Z∩L), any w′ in the difference would be K-linearly independent
with w, what would imply dimk(L

′/πKL) ≥ 2, therefore it cannot exist, and
L′ = πKL+ (Z ∩ L).

Thus, the open set can also be defined as

B(e) = {Z ∈ P(V ) | rΛ(Z) = L′/πKL} = r−1
Λ (L′/πKL).

The minimal star maps

Observe that given Λ = [L], the point Z =: z ∈ P(V ) determines Λ′ = [L′]
and (Λ,Λ′) is a minimal edge, and so, given Λ,Λ′1,Λ

′
2 such that e1 = (Λ,Λ′1)

and e2 = (Λ,Λ′2) are minimal edges, B(e1) ∩ B(e2) = ∅. Therefore, for each
Λ ∈ B(G)0 we get

P(V ) =
⊔

e∈B̂(G)
min

1
s(e)=Λ

B(e)

Given a closed set L ⊂ P(V ), we shall call the minimal star of Λ in BL the
set of edges

StminL (Λ) = {e ∈ B̂L
min

1 | s(e) = Λ}
and when L = P(V ) we will write Stmin := StminP(V ).

Then, another way to tell the previous discussion is that the map rΛ

induces an injective map

rminΛ : Stmin(Λ) −→ Pd(k),

which maps e = (Λ,Λ′) with Λ = [L],Λ = [L′] and L ) L′ ) πKL, to
L′/πKL ∈ P(L⊗OK k). Then, for e = (Λ,Λ′) we have

B(e) = {Z ∈ P(V )| rΛ(Z) = rminΛ (e)} = r−1
Λ (rminΛ (e))

and
P(V ) =

⊔
e∈Stmin(Λ)

r−1
Λ (rminΛ (e)) =

⊔
e∈Stmin(Λ)

B(e).

It is not immediate that we have the similar equality

L =
⊔

StminL (Λ)

BL(e),

since it means that for any point p ∈ L and any Λ ∈ BL0 there is e ∈ StminL (Λ)
such that p ∈ B(e). We know that there is a unique e ∈ St(Λ) such that

p ∈ B(e), so we have to see that actually e ∈ B̂L
min

1 .
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Proposition 4.2.3. Let L = P be a set of d+1 points linearly independents,
so BL = AP . Then, for any minimal edge of AP , BP(e) consists of exactly
one point of P and for each point p ∈ P and each vertex Λ ∈ AP0 there is
an edge e ∈ StminP (Λ) such that {p} = BP(e).

Proof. Without loss of generality we assume P = {p0, . . . , pd}, with pi = [vi],
where v = {v0, . . . , vd} is a basis of V , such that

P = {(1 : 0 : · · · : 0), (0 : 1 : 0 : · · · : 0), . . . , (0 : · · · : 0 : 1)}

and s(e) = [0]. Then this minimal edge has the form

e = ([0], [(1, . . . , 1, 0, 1, . . . , 1)])

after going through the isomorphism Av
∼= Zd+1/Z · (1, . . . , 1). Now, writing

e =

(
d⊕
i=0

OKvi )
⊕
j 6=i

OKπKvj ⊕OKvi )
d⊕
i=0

OKπKvi

)
,

we claim that BP(e) = {pi}. Indeed, it is clear, since

⊕
j 6=i

OKπKvj ⊕OKvi =
d⊕
i=0

OKπKvi +

(
d⊕
i=0

OKvi ∩ 〈vh〉

)
⇐⇒ i = h

Reciprocally, we can assume Λ = [0] and we have seen that for each pi
there is an edge e ∈ StminP (Λ) of the chosen form such that {pi} = BP(e).

Remark 4.2.4. Note that if we have [n] ∈ Zd+1/Z · (1, . . . , 1) and

e′ := [n] + e = ([n], [(n0 + 1, . . . , ni−1 + 1, ni, ni+1 + 1, . . . , nd + 1)]),

after taking the basis uj := π
nj
K vj for the same apartment we can apply the

same proof to e′ and we get BP(e′) = BP(e).

Corollary 4.2.5. Given L ⊂ P(V ) closed and e minimal edge in BL, the
open set BL(e) is not empty. Further, if P0 ⊂ L is a set of d + 1 points

linearly independents such that e ∈ ÂP0

min

1 , then P0 ∩ BL(e) is exactly one
point.

Proof. The minimal edge e is contained in an apartment AP with P ⊂ L,
therefore ∅ 6= BP(e) ⊂ BL(e). The second claim follows from the fact that,

since e ∈ ÂP0

min

1 we get P0 ∩ BL(e) = BP0(e).
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Corollary 4.2.6. Let e be a minimal edge in B(G) and p ∈ B(e). Then
there exists a set P of d + 1 points linearly independents containing p, such
that e belongs to the apartment AP . If s(e) ∈ BL0 and p ∈ L we can choose
P ⊂ L.

Proof. Take Λ = s(e) and apply the proposition 4.1.2 to get a set P and the
corresponding apartment AP ⊂ B(G). The same lemma gives us the last
claim under the added hypotheses. Since there is a unique edge e ∈ Stmin(Λ)
such that p ∈ B(e) and there is an edge e′ ∈ StminP (Λ) ⊂ Stmin(Λ) such that
{p} = BP(e′), we conclude e = e′.

Corollary 4.2.7. Given an edge e ∈ B̂(G)
min

1 and a closed subset L ⊂ P(V )
such that s(e), t(e) ∈ BL, e is in BL if and only if BL(e) = B(e)

⋂
L 6= ∅.

Proof. It is a consequence of the two last corollaries put together.

Corollary 4.2.8. Given L ⊂ P(V ) closed, a vertex Λ ∈ BL0 and a point
p ∈ L, there exists e ∈ StminL (Λ) such that p ∈ BL(e). Therefore

L =
⊔

StminL (Λ)

BL(e).

Corollary 4.2.9. Given L ⊂ P(V ) closed, the sets BL(e) are open and closed.

Proof. Consider the minimal star of s(e). The union of all the open sets asso-
ciated to the edges in StminL (s(e)) \ {e} is open, therefore, its complementary
BL(e) is closed.

Corollary 4.2.10. If L ⊂ P(V ) is compact, for all vertex Λ0 in BL, StminL (Λ0)
is finite.

Proof. The edges in StminL (Λ0) provide a disjoint union by open sets of L,
which has to be finite when this set is compact.

Then, we can think the minimal star as a map

StminL : Z[BL0] −→ Z[B̂L
min

1 ]

defined by

StminL (Λ) =
∑

e∈B̂L
min

1
s(e)=Λ

e.

Corollary 4.2.11. If L ⊂ P(V ) is compact, the sets BL(e) are compact.
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Proof. Since they are closed sets in a compact set, they are compact.

We may restrict the maps rΛ and rminΛ to

rLΛ : L −→ Pd(k)

and
rminΛ : StminL −→ Pd(k)

respectively. Then, for e = (Λ,Λ′) ∈ B̂L
min

1 we have

BL(e) = B(e) ∩ L = r−1
Λ (rminΛ (e)) ∩ L = rLΛ

−1
(rminΛ (e)).

Corollary 4.2.12. Given L ⊂ P(V ) closed, for any Λ ∈ BL0,

rminΛ (StminL (Λ)) = Im(rLΛ) = rΛ(L).

Corollary 4.2.13. For any vertex Λ ∈ B(G)0, if L ⊂ P(V ) is compact, its
reduction rΛ(L) = rLΛ(Λ) is finite.

Proof. Indeed the map rminΛ is injective and StminL (Λ) is finite, therefore,
rΛ(L) = rminΛ (StminL (Λ)) is finite.

Proposition 4.2.14. If L ⊂ P(V ) is compact, the complex BL is locally
finite.

Proof. All we have to show is that every vertex Λ is contained in a finite
number of cells. Since each cell is contained in a chamber, and the number of
faces of chambers is finite, it is enough to show that every vertex is contained
in a finite number of chambers.

Note that a cell of BL is contained in some apartment of the complex,
therefore in some chamber of B(G) in BL, which, in turn, has dimension d.

Next, on one hand, we have just remarked that the number of minimal
edges with source a given vertex is finite. On the other hand, every minimal
edge is contained in a chamber of BL. Therefore, it is equivalent to prove
that the number of chambers containing a minimal edge is finite.

Fix a vertex Λ and a minimal edge e ∈ StminL (Λ). Assume that there are
an infinite number of chambers which contain e, and note that each of them
also includes a minimal edge with source t(e). Since StminL (t(e)) is finite,
there is a minimal edge e1 ∈ StminL (t(e)) such that the number of chambers
containing e and e1 is infinite, and all of them comprise t(e1). After applying
the same reasoning we get e2 ∈ StminL (t(e2)) such that there are infinite
chambers including e, e1 and e2. Recursively we get d + 1 minimal edges
contained in infinite chambers, but they determine a unique chamber, so we
have arrived to a contradiction.

Thus, the number of chambers to which Λ belongs is finite.
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Proposition 4.2.15. Let L = P be a set of d+1 points linearly independents
pi = [vi], so BL = AP , and write v = {v0, . . . , vd}. Then, given minimal
edges e, e′ of Av, we have BP(e) = BP(e′) if and only if e ‖v e′.

Proof. ⇐=|
This is what we have shown in the remark 4.2.4.
=⇒|
We can write e = ([m(0)], [m(1)]), e′ = ([m′(0)], [m′(1)]) with

[m(0)], [m(1)], [m′(0)], [m′(1)] ∈ Zd+1/Z · (1, . . . , 1).

Since e, e′ are minimal, we have

[m(1)]− [m(0)] = [(1, . . . , 1, 0, 1, . . . , 1)]

with the 0 in the position ie, and

[m′(1)]− [m′(0)] = [(1, . . . , 1, 0, 1, . . . , 1)]

with the 0 in the position ie′ . Again, by the remark 4.2.4 and by the propo-
sition 4.2.3, BP(e) = BP(e′) implies ie = ie′ , that is,

[m(1)]− [m(0)] = [m′(1)]− [m′(0)].

Now, define [n] := [m′(0)]− [m(0)]. Then we get

[m′(1)] = [m′(0)] + ([m′(1)]− [m′(0)]) = [m′(1)] + ([m(1)]− [m(0)]) = [m(1)] + [n]

So we have [m′(0)] = [n]+[m(0)] and [m′(1)] = [n]+[m(1)], therefore e′ = [n]+e,
as we claimed.

Corollary 4.2.16. Let L ⊂ P(V ) be a closed set. For any two edges e, e′ in
BL such that they are parallel in any apartment containing both, and these
coincide, BL(e) = BL(e′).

Proof. A point p ∈ BL(e) gives an apartment A = AP such that p ∈ P and

e ∈ Âmin
1 , as we have shown in the corollary 4.2.6. By hypothesis, this apart-

ment contains e′, and since they are parallel, again by the proposition 4.2.15,
{p} = BP(e) = BP(e′) ⊂ BL(e′), as we wanted to show.

Let us do a small excursus based on the proposition 4.2.3. Let L ⊂ P(V )
be any closed subset, let Λ be any vertex in BL and let A = Av be an
apartment in BL containing Λ, where v = {v0, . . . , vd} is a basis of V such
that

Λ =

[
d⊕
i=0

OKvi

]
.
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In fact, we can work with L = P(V ) and BL = B(G) and later restrict
the discussion to the corresponding subcomplex. We consider the edges in
Stmin(Λ)∩A (actually, since A is any apartment containing Λ, we are taking
into account all the edges in Stmin(Λ)). Let

ei =

(
d⊕
i=0

OKvi )
⊕
j 6=i

OKπKvj ⊕OKvi )
d⊕
i=0

OKπKvi

)
,

so, if pi := [vi] and P = {p0, . . . , pd}, we proved through the proposition 4.2.3
BP(ei) = {pi} Let us compute B(ei). It is the set of points [v] such that

⊕
j 6=i

OKπKvj ⊕OKvi =
d⊕
i=0

OKπKvi +

(
d⊕
i=0

OKvi ∩ 〈v〉

)
.

Then, writing v =
∑d

i=0 λivi, one gets

B(ei) = {[v] | vK(λi) < vK(λj) ∀ j 6= i}.

Finally, observe that if [v] ∈ B(ei), the set of vectors (v \ {vi})∪{v} is a basis
for V , and if v is a representant of V in

⊕d
j=0OKvj \

⊕d
j=0OKπKvj, then⊕d

j=0OKvj =
⊕

j 6=iOKvj ⊕ OKv. As a consequence, Λ is in the apartment
obtained from changing pi ∈ B(ei) by any other p ∈ B(ei).

Proposition 4.2.17. Given L ⊂ P(V ) closed, for all vertex Λ in BL and all
apartment A = AP ≤ BL containing Λ, given any points p̃0 ∈ BL(ei) where
ei are the edges in StminP (Λ), the vertex Λ belongs to the apartment A{p̃0,...,p̃d}.

Proof. The previous discussion applied reiteratively to all the edges in StminP (Λ).

The minimal differential map

Proposition 4.2.18. Let L ⊂ P(V ) be a closed set. Consider a chamber

∆ = (L0 ) L1 ) · · · ) Ld ) πKL0) ∈ B̂Ld

and a collection of vectors verifying vi ∈ Li \ Li+1, where Ld+1 := πKL0.
Then, this set of vectors is a basis adapted to the chamber after reversing the
order of the vectors. Thus, if [vi] ∈ L for all i, we got ∆ ≤ AP ≤ BL where
P = {[v0], . . . , [vd]}.

Let us denote e0 := (L0 ) Ld ) πKL0) and ei := (Li ) πKLi−1 ) πKLI)
for i ≥ 1. Then

BL(ei) = {[u] ∈ L| u ∈ Li \ Li+1}.
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so we get

L =
d⊔
i=0

BL(ei).

Proof. Consider the minimal edge L0 ) Ld ) πKL0. We have vd ∈ Ld \ πKL0

and such as we have seen in the lemma 4.2.2 we get

Ld = πKL0 +OKvd.

For i < d, consider the minimal edge π−1
K Li+1 ) Li ) Li+1. Identically

as above we get Li = Li+1 +OKvi, so inductively we obtain

Li =
d∑
j=i

OKvj + πKL0

and

L0 =
d∑
i=0

OKvi + πKL0 =
d∑
i=0

OKvi + πmKL0 ∀m ∈ Z≥1

Next we have to see πmKL0 ⊂
∑d

i=0OKvi for some m ∈ Z≥1. Take an OK-
basis {u0, . . . , ud} for L0 and let us write ui =

∑
j λ

j
ivj with λji ∈ K, and

m = max{−mini,j{vK(λji )}, 1}. Then we get πmKL0 ⊂
∑d

i=0OKvi, therefore

L0 =
∑d

i=0OKvi and so L0 =
⊕d

i=0OKvi. As a consequence, we obtain

Li =
i−1⊕
j=0

OKπKvj ⊕
d⊕
j=i

OKvj

The second assert follows again from the lemma 4.2.2 combined with the
definition of BL(e) from B(e) for any edge e.

Remark 4.2.19. In the previous proposition we have used all the minimal
edges contained in a chamber. Further, we see that for each vertex there is
one minimal edge in the chamber having that vertex as source, another having
it as target and there are no more minimal edges in that cell passing through
that vertex.

With the notation of the previous proposition, we define the map

∂min : Z[BLd] −→ Z[B̂L
min

1 ]

(and also

∂̂min : Z[B̂Ld] −→ Z[B̂L
min

1 ])
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by ∂min(∆) =
∑d

i=0 ei. By abuse of notation, in some ocasion we also shall
write ∂min(∆) = {e0, . . . , ed}.

Then, we rewrite the last result as

L =
⊔

∂min(∆)

BL(e).

Corollary 4.2.20. Two minimal edges e, e′ are straight with t(e) = s(e′) if
and only if t(e) = s(e′) and B(e′) ⊂ B(e).

Proof. Since t(e) = s(e′) we can denote

e = (L0 ) L1 ) πKL0) e′ = (L1 ) L2 ) πKL1).

If there exists a chamber containing both, then B(e) ∩ B(e′) = ∅, so we
conclude the “if”. For the opposite implication, take a point [u] ∈ B(e′) with
u ∈ L2 \ πKL1 ⊂ L1. We want to see u 6∈ πKL0. Assume this is not the case.
Then we have

πKL1 ( L2 = πKL1 +OKu ⊂ πKL0 ( L1

and we get a contradiction with the fact that there is no chamber containing
both edges.

Proposition 4.2.21. Let e0, e1, . . . , ed be minimal edges such that

s(ei) = t(ei+1) for all i = 0, . . . , d− 1 and s(ed) = t(e0).

Then, there exists a chamber ∆ such that ∂min(∆) =
∑d

i=0 ei.

Proof. Let us denote the vertices of the edges verifying the following rule:
Λi = s(ei). Then e0 = (Λ0,Λd) and for all i ≥ 1, ei = (Λi,Λi−1).

Let us write Λi = [Li]. We can take the lattices satifying

L0 ) Ld ) πKL0,
L1 ) πKL0 ) πKL1,

...
Ld ) πKLd−1 ) πKLd.

Then we have

L0 ) L1 ) L2 ) · · · ) Ld−1 ) Ld ) πKL0,

which gives a chamber ∆ as we claimed.
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The behaviour of the open sets by galleries of chambers

Lemma 4.2.22. Let ∆ and ∆′ be two chambers intersecting in a panel or
maximal face of both A = ∆ ∩ ∆′. Let e∆

A be the minimal edge of ∆ whose
target vertex is the opposite to A, that is the vertex of ∆ not contained in A.
Let eA∆′ be the minimal edge of ∆′ whose source vertex is the opposite to A in
∆′. Then B(e∆

A) ⊂ B(eA∆′).

Proof. We may denote

∆ = (L0 ) L1 ) · · · ) Ld ) πKL0)

and
∆′ = (L′0 ) L′1 ) · · · ) L′d ) πKL

′
0)

with Li = L′i for each i 6= d and Ld 6= L′d, so

A = (L0 ) L1 ) · · · ) Ld−1 ) πKL0)

and
e∆
A = (L0 ) Ld ) πKL0) and eA∆′ = (L′d ) πKLd−1 ) πKL

′
d)

Let [u] ∈ B(e∆
A) with u ∈ Ld \ πKL0, as we know we can assume. Then

πKu ∈ πKLd ⊂ πKLd−1. Suppose πKu ∈ πKL
′
d, so that u ∈ L′d \ πKL0 and

[u] ∈ B((L0 ) Ld ) πKL0)) ∩ B((L0 ) L′d ) πKL0)) = ∅ as we have shown
above, so that we would get a contradiction. Therefore, πKu ∈ πKLd−1\πKL′d
and thus, [u] ∈ B(eA∆′).
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Figure 4.2: Distinct configurations examples of the lemma.

Remark 4.2.23. Note that P(V ) =
⊔

∂min(∆)

B(e) =

= B(e∆
A) t B(eA∆) t

 ⊔
e∈B̂(G)

min

1
e≤A

B(e)

 = B(e∆′

A ) t B(eA∆′) t

 ⊔
e∈B̂(G)

min

1
e≤A

B(e)


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and so B(e∆
A) t B(eA∆) = B(e∆′

A ) t B(eA∆′).

Remark 4.2.24. The edges e∆
A , e

A
∆′ are parallel in any apartment containing

∆ and ∆′. Indeed, let us take any apartment A containing both chambers,
and consider the unique isomorphism A ∼= Zd+1/Z · (1, . . . , 1) such that ∆
goes to

([(0, . . . , 0)], [(0, . . . , 0, 1)], . . . , [(0, 1, . . . , 1)])

with e∆
A mapping to ([(0, . . . , 0)], [(0, 1, . . . , 1)]). Then A applies to

([(0, . . . , 0)], [(0, . . . , 0, 1)], . . . , [(0, 0, 1, . . . , 1)]) ,

∆′ to

([(0, . . . , 0)], [(0, . . . , 0, 1)], . . . , [(0, 0, 1, . . . , 1)], [(1, 0, 1, . . . , 1)])

and eA∆′ to ([(1, 0, 1, . . . , 1)], [(0, 0, 1, . . . , 1)]) = [(1, 0, 1 . . . , 1)] + e.

The reciprocal is also true.

Proposition 4.2.25. Two minimal edges e, e′ are parallel in a common
apartment A if and only if there exist minimal edges e0 := e, e, . . . , er := e′

and chambers ∆i for i = 0, . . . , r in A such that ei ≤ ∆i, Ai+1 := ∆i

⋂
∆i+1

are panels, and ei = e∆i
Ai+1

and ei+1 = e
Ai+1

∆i+1
, or ei = e

Ai+1

∆i
and ei+1 = e

∆i+1

Ai+1
.

Proof. ⇐=|
This is the previous remark together with the fact that the parallelism re-

lation restricted to an apartment is an equivalent relation, and, in particular,
transitive.

=⇒|
Let e ‖A e′ and fix an isomorphism A ∼= Zd+1/Z · (1, . . . , 1). We divide

the proof in different steps.
We suppose first e′ = [(0, . . . , 0, 1, 0, . . . , 0)]+e with the 1 in the coordinate

i0. We may assume

e = ([(0, . . . , 0)], [(1, . . . , 1, 0, 1, . . . , 1)]) =

=

(
d⊕
j=0

OKvj )
⊕
j 6=i

OKπKvj ⊕OKvi )
d⊕
j=0

OKπKvj

)
with the 0 in the position i, without loss of generality. If i 6= i0, let ∆ be any
chamber as follows

d⊕
j=0

OKvj )
⊕
j 6=i0

OKvj⊕OKπKvi0 ) · · · )
⊕
j 6=i

OKπKvj ⊕OKvi )
d⊕
j=0

OKπKvj.
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Let A be the panel opposite to the vertex
⊕d

j=0OKvj in ∆:⊕
j 6=i0

OKvj⊕OKπKvi0 ) · · · )
⊕
j 6=i

OKπKvj ⊕OKvi )
⊕
j 6=i0

OKπKvj⊕OKπ2
Kvi0 .

and let ∆′ be the chamber containing A given by⊕
j 6=i0

OKvj ⊕OKπKvi0 ) · · · )
⊕
j 6=i

OKπKvj ⊕OKvi )

)
⊕
j 6=i,i0

OKπKvj ⊕OKvi ⊕OKπ2
Kvi0 .

Then, we have e = eA∆ and e′ = e∆′
A . Next, if e′ = [(n0, . . . , nd)] + e with

ni = 0 and nj ≥ 0 for all j 6= i, we get this case by induction. But we
also want to allow nj < 0. Again by induction, we reduce to the case
e′ = [(0, . . . , 0,−1, 0, . . . , 0)] + e with −1 in the position i0 6= i. Observe
that this is the same that e′ = [(1, . . . , 1, 0, 1, . . . , 1)] + e with the 0 in the
same marked position. We have e′ given by⊕

j 6=i0

OKπKvj ⊕OKvi0 )
⊕
j 6=i0,i

OKπ2
Kvj ⊕OKπKvi ⊕OKπKvi0 )

)
⊕
j 6=i0

OKπ2
Kvj ⊕OKπKvi0 .

Now let ∆ be any chamber given by⊕
j

OKvj ) · · · )
⊕
j 6=i,i0

OKπKvj ⊕OKvi0 ⊕OKvi )
⊕
j 6=i

OKπKvj ⊕OKvi,

let A be the face obtained removing
⊕

j 6=iOKπKvj ⊕ OKvi, and let ∆′ be
the chamber which we get joining the vertex

⊕
j 6=i0 OKπKvj ⊕ OKvi0 to A.

Thus, we have e = e∆
A and e′ = eA∆′ .

Proposition 4.2.26. Let L ⊂ P(V ) be a closed set. We recall the situation
of lemma 4.2.22. Let ∆ and ∆′ be two chambers in BL intersecting in a
panel or maximal face of both A = ∆∩∆′. Let e∆

A be the minimal edge of ∆
whose target vertex is the opposite to A, that is the vertex of ∆ not contained
in A. Let eA∆′ be the minimal edge of ∆′ whose source vertex is the opposite
to A in ∆′. In this situation, covL(A) = 2 if and only if BL(e∆

A) = BL(eA∆′)
and more generally,

BL(eA∆′) =
⊔
A≤∆

BL(e∆
A).
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Proof. One inclusion is given by lemma 4.2.22. For the other, recall the same
notation as there:

∆ = (L0 ) L1 ) · · · ) Ld ) πKL0),

∆′ = (L′0 ) L′1 ) · · · ) L′d ) πKL
′
0),

A = (L0 ) L1 ) · · · ) Ld−1 ) πKL0),

e∆
A = (L0 ) Ld ) πKL0) and eA∆′ = (L′d ) πKLd−1 ) πKL

′
d)

with Li = L′i for each i 6= d and Ld 6= L′d.
Recall also the notation of the proposition 4.2.18:

e0 = (L0 ) Ld ) πKL0), ei = (Li ) πKLi−1 ) πKLi),

and
e′0 = (L′0 ) L′d ) πKL

′
0), e′i = (L′i ) πKL

′
i−1 ) πKL

′
i),

and observe that ei = e′i for all i 6= 0, d.
Assume covL(A) = 2.
Take now [u] ∈ BL(eA∆′), so we may assume u ∈ Ld−1\L′d. Then u 6∈ πKL0.

Suppose u 6∈ Ld and consider the lattice

Lu := πKL0 +OKu ( Ld−1.

Then we have a chamber

∆′′ = (L0 ) L1 ) · · · ) Ld−1 ) Lu ) πKL0) .

Denote e′′0 = (L0 ) Lu ) πKL0) and e′′d = (Lu ) πKLd−1 ) πKLu). By the
proposition 4.2.18, we have

L = BL(e′0) t BL(e′d) t
⊔
i 6=0,d

BL(e′i) = BL(e′′0) t BL(e′′d) t
⊔
i 6=0,d

BL(e′i),

so that
BL(e′0) t BL(e′d) = BL(e′′0) t BL(e′′d).

Since BL(e′′0) ⊂ BL(eA∆′) = BL(e′d), by the lemma 4.2.22, the intersection
BL(e′d) ∩ BL(e′′d) ⊂ BL(e′′d) is non empty, therefore, applying again the propo-
sition 4.2.18, ∆′′ ≤ BL.

Moreover, the assumption, Lu 6= Ld implies ∆′′ 6= ∆. Since u 6∈ L′d,
Lu 6= L′d, so ∆′′ 6= ∆′. But A is contained in ∆,∆′ and ∆′′, so covL(A) ≥ 3,
which contradicts the hypothesis. Therefore, u ∈ Ld \ πKL0, and thus
[u] ∈ BL(e∆

A).
If covL(A) ≥ 3, there exists such a chamber

∆′′ = (L0 ) L1 ) · · · ) Ld−1 ) L′′d ) πKL0)

as above in BL. The minimal edge e′′ = e∆′′
A = (L0 ) L′′d ) πKL0) verifies

∅ 6= BL(e′′) ⊂ BL(eA∆′) and BL(e′′)
⋂
BL(e∆

A) = ∅, and thus, we conclude.
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Ends on B(G)

Definition 4.2.27. We shall call a ray in B(G) an oriented infinite sequence
of straight minimal edges contained in some apartment. That is

r = (e0, e1, e2, . . . )∞ such that t(ei) = s(ei + 1) and B(ei+1) ⊂ B(ei).

For each n ∈ N, the n-truncation of r is the ray τn(r) := (en, en+1, en+2, . . . )∞.

Remark 4.2.28. For any n consider an apartment AP containing e0 and en.
Then, ei is in AP for all i = 0, . . . , n. It is enough to see this for i = 1. As
we have shown in the proposition 4.2.3, the open sets B(en) ⊂ B(e1) contain
exactly one point p of P. The same result tells us that the unique edge in
Stmin(t(e0)) containing p is in AP , since t(e0) is in the apartment. But that
edge is e1.

Take a ray r in an apartment Av. We observe that ei ‖v ej for any
i, j, since parallelism with respect to v is an equivalence relation, ei, ei+1 are
straight, and then they are parallel.

Definition 4.2.29. We shall say that two rays r, r′ in an apartment Av are
parallel with respect to v and we shall denote this by r ‖v r′, if ei ‖v e′j for
any i, j. This has sense by the previous consideration.

We shall say that two rays are equivalent if they have truncations which
are contained in a common apartment and parallel with respect to it.

Remark 4.2.30. Let r = (e0, e1, e2, . . . )∞ be a ray. Taking e = e0 in the
remark 4.1.5, and applying it to all the edges ei in a ray simultaneously (since
the ray is contained in an apartment by hypothesis), we get

s(ei) =

[
OKvi0 ⊕

⊕
j 6=i0

OKπiKvj

]
.

and ⋂
i∈N

(
OKvi0 ⊕

⊕
j 6=i0

OKπiKvj

)
= OKvi0 .

Let us project this point to P(V ), so we deal with [vi0 ]. We formalize this with
the next proposition. Note that given a parallel ray in the same apartment,
we obtain the same projective point.

Proposition 4.2.31. Given a ray r = (e0, e1, e2, . . . )∞, we can assume that

s(ei) =

[
OKvi0 ⊕

⊕
j 6=i0

OKπiKvj

]
.
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and therefore ⋂
i∈N

(
OKvi0 ⊕

⊕
j 6=i0

OKπiKvj

)
= OKvi0 .

Then ⋂
i∈N

B(ei) = [vi0 ].

Proof. That the point is included in the intersection is clear. Recall that
each ei is given by

OKvi0 ⊕
⊕
j 6=i0

OKπiKvj ) OKvi0 ⊕
⊕
j 6=i0

OKπi+1
K vj ) OKπKvi0 ⊕

⊕
j 6=i0

OKπi+1
K vj.

For any point z ∈
⋂
i∈N B(ei) and for each i ∈ N it has to have a representant

v ∈

(
OKvi0 ⊕

⊕
j 6=i0

OKπi+1
K vj

)
\

(
OKπKvi0 ⊕

⊕
j 6=i0

OKπi+1
K vj

)
.

Note that this implies that the coefficient of vi0 in v will have valuation 0.
Since z ∈ B(e0), it has a representant with the form v = vi0 +

∑
j 6=i0 λjvj,

with vK(λj) ≥ 1 for all j 6= i0. Because of the previous comment, this is
the representant satisfying the previous inclusion for each i ∈ N. Therefore,
z ∈ B(ei) implies vK(λj) ≥ i + 1 for all j 6= i0 and for all i ∈ N, but then,
the unique possibility is λj = 0 for all j 6= i0, so z = [vi0 ].

Definition 4.2.32. We shall call an end on B(G) a ray up to equivalence.
We shall denote the set of ends by E = E(B(G)). We take into consideration
the set of ends classes of rays starting from a minimal edge e

E(e) = {η| ∃ r = (e, . . . )∞, [r] = η} = {[(e, . . . )∞]} ⊂ E .

By the remark 4.2.30, we have an exhaustive map

ε̃ : E(B(G)) −→ P(V ).

defined by ε̃([(e0, e1, . . . )∞]) =
⋂
i∈N B(ei).

For any point p ∈ P(V ) and any vertex Λ ∈ B(G)0, by the proposi-
tion 4.1.2, there is Λ ∈ AP with p ∈ P . The remarks 4.2.30 together with 4.1.5
give us a unique ray r in AP with e0 ∈ Stmin(Λ) such that ε̃([r]) = p.

Proposition 4.2.33. For each minimal edge e ε̃(E(e)) = B(e).
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Proof. The proposition 4.2.31 implies ε̃(E(e)) ⊂ B(e). On the other hand,
by the corollary 4.2.6, given p ∈ B(e) there exists an apartment AP such
that e ≤ AP and p ∈ P . Then the unique sequence of straight edges in AP
starting by e is a ray whose associated end is mapped to p by ε̃.

Remark 4.2.34. Actually we expect the map ε̃ is a bijection, which seems to
be provable using the methods introduced in [AB08, Ch. 11]. Indeed, the idea
is that if two ends go to the same projective point, two rays representing them
should have truncations in a common apartment. (cf. [AB08, Lem. 11.77]).

4.3 Properties for dimension d = 2

Even what we are going to do seems adaptable to any dimension, we
need to restrict us to consider the 2-dimensional case as an assumption to
avoid difficulties provided by the fact that, generally, our objects BL are not
buildings. Thus, henceforth V ∼= K3 and B(G) is the 2-dimensional Bruhat-
Tits building, unless otherwise stated. Beyond that, we go on with the study
of the structure of B(G) and the subcomplexes BL that we started in the
previous sections. Later on, we will introduce a notion of convexity with
a suitable behaviour of galleries in “convex complexes” with respect to the
associated open sets, and finally we will give a smaller basis for the topology
of a closed set L ⊂ P(V ) in terms of the rays from a given vertex.

Through this section L ⊂ P(V ) will be a closed set, unless otherwise
specified, even if we are thinking mainly in the cases L = P(V ) or L compact.

4.3.1 On the rays in BL and a number of consequences

Proposition 4.3.1. Given two minimal edges e, e′ ∈ B̂L
min

1 such that their
associated open sets verify BL(e) = BL(e′), there exists an apartment A ≤ BL
containing both and they are parallel in it.

Proof. Consider chambers ∆,∆′ in BL containing e and e′ respectively and
write ∂min(∆) = e+ e1 + e2, ∂min(∆′) = e′ + e′1 + e′2. We have BL(ei),BL(e′i)
are non empty for any i and

L = BL(e) t BL(e1) t BL(e2) = BL(e′) t BL(e′1) t BL(e′2)

Therefore, BL(e1) t BL(e2) = BL(e′1) t BL(e′2).
Let p0 be a point in BL(e) = BL(e′).
If BL(e1) ⊂ BL(e′1), then BL(e′2) ⊂ BL(e2) 6= ∅. Then, choose p1 ∈ BL(e1)

and p2 ∈ BL(e′2) and let P be {p0, p1, p2}. If BL(ei) ⊂ BL(e′j) or BL(e′i) ⊂ BL(ej)
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for some i, j, after a change of notation we are in the same case. Otherwise,
BL(ei) ∩ BL(e′j) 6= ∅ for any i, j, then choose pi ∈ BL(ei) ∩ BL(e′i) for each
i = 1, 2 and let P be {p0, p1, p2}.

In both cases, by the proposition 4.2.18, both chambers ∆,∆′, and so the
edges e, e′, are in the apartment AP ≤ BL, as we claimed.

The parallelism has been already proved, after we know BP(e) = BP(e′).

Let L ⊂ P(V ) be a closed set and let P ,P ′ ⊂ L be sets of d + 1 linearly
independent points such that P ∩ P ′ 6= ∅.

Let us write now L′ := P ∪ P ′. Take p ∈ P ∩ P ′ and consider rays
r = (e0, e1, . . . )∞ and r′ = (e′0, e

′
1, . . . )∞ in AP and AP ′ respectively, such

that ε̃([r]) = ε̃([r′]) = p, that is, ∩eiBL′(ei) = ∩e′iBL′(e
′
i) = {p}. Now, as L′

is finite, there are i0 and i′0 such that BL′(ei) = BL′(e′i′) = {p} for all i ≥ i0,
i′ ≥ i′0.

Next, we have seen in the proposition 4.3.1 that for such i, i′, ei, e
′
i′ are

contained in a common apartment APo of BL′ .

Proposition 4.3.2. The complex of chambers BL is path-connected.

Proof. Let AP ,AP ′ be two apartments in BL and let L′ := P ∪ P ′ ⊂ L.
Consider a sequence of apartments AP0 , . . . ,APr where P0 = P , Pr = P ′,
Pi ⊂ L′ for all i and Pi ∩ Pi+1 6= ∅.

Then, our claim reduces to the fact that AP can be connected with AP ′
when P ∩ P ′ 6= ∅. Indeed, in the previous discussion we have seen that
both apartments have non empty intersection with a third apartment APo ,
through which we can connect them.

Corollary 4.3.3. The complex BL is a chamber complex in the sense of
[AB08], that is, the maximal cells are chambers of B(G) and any two of
them are gallery connected.

Proof. As in the previous proof we can consider two apartments AP ,AP ′
such that P ∩ P ′ 6= ∅ and write L′ := P ∪ P ′ ⊂ L. In the discussion above
the precedent proposition we have seen there are minimal edges e ≤ AP ,
e′ ≤ AP ′ such that BL′(e) = BL′(e′), therefore an apartment APo containing
both. But, in the course of the proof of the proposition 4.3.1 we have seen
that this intersection in APo contains chambers containing both edges. Thus
we can connect build a gallery of chambers from AP to AP ′ through APo .

Proposition 4.3.4. The map ε̃ : E(B(G)) −→ P(V ) is a bijection.
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Proof. Indeed, take two ends [r], [r′] such that ε̃([r]) = ε̃([r′]) = p. They are
represented by rays r, r′ in apartments AP ,AP ′ respectively, with p ∈ P ∩P ′.
In addition, by the previous discussion, we can assume (after taking suitable
truncations) r and r′ are in some common apartment, in which they are
parallel, therefore they are equivalent and [r] = [r′].

Proposition 4.3.5. Given different minimal edges e, e′ ∈ B̂L
min

1 , there exists
a chamber containing both in BL if and only if it exists in B(G).

Proof. We just have to prove that if there exists a chamber containing both
in B(G), there exists a chamber containing both in BL, since the opposite
is trivial. Thus, we assume that e, e′ are contained in a common chamber.

Recall that the 2-dimensional chambers have three vertices and three
edges. Therefore, e and e′ have a common vertex, which we assume without
loss of generality to be s(e′) = t(e). Further, since there are three vertices in
e together with e′, there is a unique chamber in B(G) containing them. Let
us denote it by ∆̂ and its other edge by ê. We want to see that this chamber
is in BL. Since e and e′ are in this complex, BL(e) and BL(e′) are non empty,
therefore, by the proposition 4.2.18 (applied on B(G)) it is enough to see that
BL(ê) 6= ∅. Indeed, we will be able to choose points p ∈ BL(e), p′ ∈ BL(e′)
and p̂ ∈ BL(ê), obtaining by the lemma ∆̂ ≤ A{p,p′,p̂} ≤ BL as we claimed.

Let ∆ be a chamber in BL containing e and assume it is not ∆̂. Let us
denote the edge of ∆ with source t(e) by e0. Since it is in BL, BL(e0) is non
empty, and by the lemma 4.2.22 applied to the chambers ∆, ∆̂ with common
panel e we have ∅ 6= BL(e0) ⊂ BL(ê), obtaining a point in L ∩ B(ê), as we
expected.

Remark 4.3.6. The previous result is valid for any dimension when BL is
a building, since then, given two edges there exists an apartment containing
both, and then, the existence of a chamber in it is characterized, as in B(G),
by the tropical distances among the vertices.

Corollary 4.3.7. Two minimal edges e, e′ ∈ B̂L
min

1 are straight if and only if
either t(e) = s(e′) or t(e′) = s(e), and there are no chamber in BL containing
them.

Proof. This is just the definition of straight edges restricted to BL after
taking into consideration the previous proposition.

Proposition 4.3.8. Two minimal edges e, e′ ∈ B̂L
min

1 are straight with
t(e) = s(e′) if and only if t(e) = s(e′) and BL(e′) ⊂ BL(e).
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Proof. The “if” is clear as in corollary 4.2.20. For the other implication we
use the same result and the fact that there is no chamber containing them
in B(G), therefore

BL(e′) = B(e′) ∩ L ⊂ B(e) ∩ L = BL(e)

Definition 4.3.9. We shall call a ray in BL an oriented infinite sequence
of straight minimal edges contained in some apartment of BL. That is

r = (e0, e1, e2, . . . )∞ such that t(ei) = s(ei + 1) and BL(ei+1) ⊂ BL(ei).

Proposition 4.3.10. A ray in BL is the same that a ray in B(G) contained
in BL.

Proof. Clearly, a ray in BL is nothing other than a ray in B(G) contained
in some apartment of BL. Thus, it is enough to prove that a ray in B(G)
contained in BL is contained in some apartment of BL.

Indeed, let r = (e0, e1, . . . )∞ be such a ray. Since r is contained in BL
its edges verify BL(ei) 6= ∅. On the other hand we now that

⋂
i B(ei) = {pr}.

Then, as L is closed, pr ∈ L and there is an apartment AP ≤ BL with pr ∈ P
and e0 ≤ AP . Therefore r is contained in that apartment.

Recall the notions of truncation of a ray and of parallelism of rays in an
apartment.

Definition 4.3.11. We will say that two rays in BL are L-equivalent if they
have truncations which are contained in a common apartment of BL and they
are parallel with respect to it. We shall call an end on BL a ray in BL up
to L-equivalence. We shall denote the set of ends on BL by EL = E(BL).
We take into consideration the set of ends classes of rays starting from a
minimal edge e

EL(e) = {η| ∃ r = (e, . . . )∞ ⊂ BL, [r] = η} = {[(e, . . . )∞]}.

Proposition 4.3.12. Two rays in BL are L-equivalent if and only if they
are equivalent in B(G).

Proof. That L-equivalence implies equivalence in B(G) is clear. In the other
direction, take two rays r, r′ in BL which are equivalent in B(G). By the
discussion shortly after the beginning of this section, there is an apartment
A in BL containing truncations of both rays. Since truncations of them are
parallel in some apartment of B(G) by hypothesis, they are parallel in A, so
that they are L-equivalent.
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Thus, we get that the equivalence relation in BL is compatible with that
in B(G), and then we get EL = E

⋂
L and EL(e) = E(e)

⋂
L for all e.

Corollary 4.3.13. There is a bijection ε̃ : EL −→ L.

Proof. It is a consequence of the same result for L = P(V ) and of the com-
patibility previously commented.

Definition 4.3.14. Let us call the set of minimal edges in BL straight with
an edge e at t(e) the flow of e and denote it by FlowL(e) (or also Flow(e)
when L = P(V )). Reciprocally, the edges straight at s(e) will be called the
preflow of e and denoted PFlowL(e) (resp. PFlow(e)).

We also will call the cling of e at t(e) the set of minimal edges with source
at t(e) and contained in a common chamber with e, that is

ClingminL (e) := StminL (t(e)) \ FlowL(e)

and the cling of e at s(e) wil be the set of minimal edges with target at s(e)
and contained in a common chamber with e, that is

Cling−minL (e) := St−minL (s(e)) \ PFlowL(e)

where St−minL (Λ) is the set of minimal edges with target Λ.

As above for the StminL , when these sets are finite we may identify them
with the sum of their edges by a small abuse of notation.

Remark 4.3.15. Note that an edge e′ belongs to the preflow of e if and only
if t(e′) = s(e) and they are not contained in a common chamber, if and only
if e is in the flow of e′. Thus, in some way they are inverse concepts.

Corollary 4.3.16. For any e in BL (resp. in B(G)) we have

BL(e) =
⊔

e′∈FlowL(e)

BL(e′).

Proof. Since Flow(e) ⊂ Stmin(t(e)), we get the disjointness of the union.
Now, consider a point p ∈ BL(e). Then, we have an apartment AP ≤ BL
containing e with p ∈ P , and we know that there is a unique straight edge
with e at t(e) in AP , that is a unique edge e′ in ÂP1

⋂
FlowL(e). But then,

{p} = BP(e′) ⊂ BL(e′).
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4.3.2 Open sets relations on an apartment and chamber-
convexity

Let us consider for any apartment A the isomorphism with Z3/Z ·(1, 1, 1).
Let ([(m0,m1,m2)], [(m′0,m

′
1,m

′
2)]) be an edge, so

max {(m′i −mi)− (m′j −mj} = 1.

Then, we can express [(m′0,m
′
1,m

′
2)]− [(m0,m1,m2)] as the class of a vector

with 0’s and 1′s. If it has exactly one zero, then it is minimal; if it has two
zeros, the opposite edge has exactly one zero; therefore, each edge of A is
either minimal or the opposite of a minimal edge.

We simplify even more, considering the isomorphism

Z3/Z · (1, 1, 1) ∼=
// Z2

(m0,m1,m1) � // (m1 −m0,m2 −m0).

Definition 4.3.17. Let us call a minimal edge ([m], [m′]) horizontal if

[m′]− [m] = [(1, 0, 1)] = [(0,−1, 0)],

vertical if

[m′]− [m] = [(1, 1, 0)] = [(0, 0,−1)]

and diagonal if

[m′]− [m] = [(0, 1, 1)].

0,−1,2� 0,0,2� 0,1,2� 0,2,2
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���
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���
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0,−1,0� 0,0,0� 0,1,0� 0,2,0
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���
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��

�
���
�
��

�
���
�
��

	 	 	
0,−1,−1� 0,0,−1� 0,1,−1� 0,2,−1

Figure 4.3: Horizontal, vertical and diagonal minimal edges.
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Now we will use two coordinates. The Z2 (∼= Z3/Z · (1, 1, 1))-action on a
vertex Λ = (m1,m2) is given by (n1, n2) + Λ = (0, n1 + m1, n2 + m2), while
the action on an horizontal edge e = ((m1 + 1,m2), (m1,m2)) is given by

(n1, n2) + e = ((0, n1 +m1 + 1, n2 +m2), (0, n1 +m1, n2 +m2)).

Observe that applying the lemma 4.2.22, given e horizontal edge, we have

B((1, 1) + e)

⊂
B(e)

⊂

⊂
B((1, 0) + e),

B((0,−1) + e)

⊂

and so B(e) ⊂ B((l + n1, l − n2) + e) for any l, n1, n2 ∈ N. If e is vertical we
have

B((0, 1) + e) ⊃ B((1, 1) + e)

B((−1, 0) + e)

⊂
⊃ B(e),

⊂

and so B(e) ⊂ B((l− n1, l+ n2) + e) for any l, n1, n2 ∈ N. And finally, if e is
diagonal we get

B((−1, 0) + e) ⊃

⊂

B(e)

⊂

B((−1,−1) + e) ⊃ B((0,−1) + e),

and so B(e) ⊂ B((−n1,−n2) + e) for any n1, n2 ∈ N.

Proposition 4.3.18. Let e be a horizontal edge. Then

B(e) = B((0,−1) + e)
⋂
B((1, 1) + e)

and
B((1, 0) + e) = B((0,−1) + e)

⋃
B((1, 1) + e).

Proof. After a change of basis (let us denote it by v0, v1, v2), we may assume
e = ((0, 0), (−1, 0)) = ([(0, 0, 0)], [(1, 0, 1)]), and so it is given by

e = (OKv0 ⊕OKv1 ⊕OKv2 ) OKπKv0 ⊕OKv1 ⊕OKπKv2)

and
B(e) = {z = [z0 : z1 : z2] ∈ P(V )| vK(z1) < vK(z0), vK(z2)} .
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In the same way,

(0,−1) + e =
(
OKv0 ⊕OKv1 ⊕OKπ−1

K v2 ) OKπKv0 ⊕OKv1 ⊕OKv2

)
,

B((0,−1)+e) = {z = [z0 : z1 : z2] ∈ P(V )| vK(z1) ≤ vK(z2), vK(z1) < vK(z0)} .
(1, 1) + e =

(
OKπ−1

K v0 ⊕OKv1 ⊕OKv2 ) OKv0 ⊕OKv1 ⊕OKπKv2

)
,

B((1, 1)+e) = {z = [z0 : z1 : z2] ∈ P(V )| vK(z1) ≤ vK(z0), vK(z1) < vK(z2)} ,
(1, 0) + e =

(
OKπ−1

K v0 ⊕OKv1 ⊕OKπ−1
K v2 ) OKv0 ⊕OKv1 ⊕OKv2

)
,

and

B((1, 0)+e) = {z = [z0 : z1 : z2] ∈ P(V )| vK(z1) ≤ vK(z0), vK(z1) ≤ vK(z2)} .

Thus, we get the claim.

Let us introduce some notation. We will write

e = ((0,−1) + e) ∧ ((1, 1) + e) and ((1, 0) + e) = ((0,−1) + e) ∨ ((1, 1) + e)

for the previous configuration, and with the given names of the corresponding
edges. Generally, when B(e) = B(e′)

⋂
B(e′′) we will write e = e′ ∧ e′′ (or ∨

when we have union, respectively). We also will write

e ≺ (1, 1) + e and e ≺ (0,−1) + e

and in general, e ≺ e′ if B(e) ⊂ B(e′). For instance, (1, 1) + e ≺ (1, 0) + e.
We state similar results when e is not horizontal, even when they reduce

to that one.

Proposition 4.3.19. Let e be a vertical edge. Then

B(e) = B((−1, 0) + e)
⋂
B((1, 1) + e)

and
B((0, 1) + e) = B((−1, 0) + e)

⋃
B((1, 1) + e).

Proof. If we consider the basis and we reorder the two last vectors v1 and v2,
the edges become horizontal and we apply the previous proposition.

Proposition 4.3.20. Let e be a diagonal edge. Then

B(e) = B((−1, 0) + e)
⋂
B((0,−1) + e)

and
B((−1,−1) + e) = B((−1, 0) + e)

⋃
B((0,−1) + e).
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Proof. Now reorder v0 and v1. Then, the edges become horizontal again and
we apply the proposition.

Next, we will make an ad-hoc definition of the convex hull of two horizon-
tal edges. From now on we restrict us to these edges since, as we have seen
just above, the other cases are isomorphic after a reordering of the basis.

Definition 4.3.21. Consider two horizontal edges

e = ((m1 + 1,m2), (m1,m2)) and e′ = ((m′1 + 1,m′2), (m′1,m
′
2)) .

We define its chamber-convex hull in A as follows:

• if m2 6= m′2, the chamber-convex hull of e and e′ is the full simplicial
complex generated by the set of edges e′′ = ((m′′1 + 1,m′′2), (m′′1,m

′′
2)) ver-

ifying:
min{m1,m

′
1} ≤ m′′1 ≤ max{m1,m

′
1}

min{m2,m
′
2} ≤ m′′2 ≤ max{m2,m

′
2}

and

min{m2 −m1,m
′
2 −m′1} ≤ m′′2 −m′′1 ≤ max{m2 −m1,m

′
2 −m′1}.

• if m2 = m′2, the first and the last sequence of inequaities as before, but
the next one instead of the middle above:

m2 − 1 ≤ m′′ ≤ m2 + 1.

If we assume m1 < m′1, this is the same that considering the chamber-
convex hull of e and (0, 1) + e′ together with the chamber-convex hull of
e and (−1,−1) + e′ together with the chamber-convex hull of (0, 1) + e′

and (−1,−1) + e′.

Remark 4.3.22. We expect this is the convex hull in the sense of [AB08,
3.139 (c)], in the first case, but we will not make use of this fact, so we will
not prove that here. In the other case, we take a different definition since we
need the convex hull including chambers. This is the reason why we call it
the chamber-convex hull.

Definition 4.3.23. The chamber-convex hull of two edges in B(G) is the
union of all the chamber-convex hulls of e, e′ in A for all the apartments A
containing both edges. The chamber-convex hull of two edges in BL is the
intersection of BL with the chamber-convex hull in B(G).
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Proposition 4.3.24. If e, e′, e′′ are parallel edges in A, and e′′ is in the
chamber-convex-hull of e and e′ then

B(e)
⋂
B(e′) ⊂ B(e′′) ⊂ B(e)

⋃
B(e′),

that is, e∧ e′ ≺ e′′ ≺ e∨ e′. Moreover, there are edges e′′ = e∨ e′, e′′′ = e∧ e′
inside of it.

Proof. First of all, we will assume e = ((1, 0), (0, 0)) without loss of generality
through all the proof.

Recall next that if e′ = (l+ n1, l− n2) + e with l, n1, n2 ∈ N, then e ≺ e′,
and we claim that any edge e′′ in the convex hull verifies e ≺ e′′ ≺ e′ since
it verifies a similar expression. Indeed, in this case e′ can be expressed as
(l + n, l) + e or as (n1,−n2) + e.

If e′ = (l+n, l) + e and e′′ = (n′′1, n
′′
2) + e, then 0 ≤ n′′1 ≤ l+n, 0 ≤ n′′2 ≤ l

and −n ≤ n′′2−n′′1 ≤ 0. Therefore, n′′2 ≤ n′′1, and so e′′ = (n′′2+(n′′1−n′′2), n′′2)+e
with n′′2, n

′′
1 − n′′2 ∈ N, that is, e ≺ e′′. Further

e′ = (l+n, l)+e = (l+n−n′′1, l−n′′2)+e′′ = ((l−n′′2)+n+n′′2−n′′1, l−n′′2)+e′′

with −n′′2, n+ n′′2 − n′′1 ∈ N, so e′′ ≺ e′.

If e′ = (n1,−n2)+e and e′′ = (n′′1, n
′′
2)+e, then 0 ≤ n′′1 ≤ n1, −n2 ≤ n′′2 ≤ 0

and −n2 − n1 ≤ n′′2 − n′′1 ≤ 0. Thus we have e′′ = (n′′1,−(−n′′2)) + e with
n′′1,−n′′2 ∈ N, and so e ≺ e′′. In addition,

e′ = (n1,−n2) + e = (n1 − n′′1,−n2 − n′′2) + e′′

with n1−n′′1, n2 +n′′2 ∈ N, so e′′ ≺ e′ concluding the proof of our assertion at
the beginning. It can be observed that we have not taken into consideration
the case in which l or n2 are 0, for which there is a different definition of
the chamber-convex-hull, but this reduces to the other, since it is a union
of chamber-convex-hulls whose definition edges verify (0, 1) + e′ ≺ e′ and
(−1,−1) + e′ ≺ e′.

Next, let e′ = (n1, n2) + e be such that n1 ≥ 0 and n2 > n1 (if n2 ≤ n1,
we are in the previous case). Let us write ei−j = (i, i+ j) + e for i, j ∈ N.
Observe that e′′ = (n′′1, n

′′
2) + e belongs to the chamber-convex-hull of e and

e′ if and only if 0 ≤ n′′1 ≤ n1, 0 ≤ n′′2 ≤ n2 and 0 ≤ n′′2 − n′′1 ≤ n2 − n1, if and
only if e′′ = ei−j with 0 ≤ i ≤ n1 and 0 ≤ j ≤ n2 − n1. Note that we have
e = e0

−0, e′ = en1

−(n2−n1),

ei−j ≺ ei+1
−j and ei−(j+1) ≺ ei−j
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We will prove e ∧ e′ ≺ ei−j ≺ e ∨ e′ by double induction on i and j. For
i = 0 and j = 0 it is trivial (e = e0

−0). Assume that it is satisfied for j, and
j + 1 ≤ n2 − n1. We have

e ∨ e′ � e � e0
−j � e0

−(j+1) = e0
−j ∧ e1

−(j+1) =

= e0
−j ∧ (e1

−j ∧ e2
−(j+1)) = e0

−j ∧ e2
−(j+1) = · · · = e0

−j ∧ e
n1

−(j+1) � e ∧ e′

by the previous inequalities. In particular,

e ∧ e′ ≺ e0
−(n2−n1) = e0

−(n2−n1−1) ∧ e
n1

−(n2−n1) = e0
−(n2−n1−1) ∧ e′ ≺ e ∧ e′

and so e0
−(n2−n1) = e ∧ e′.

Next, assume we have the result for i and suppose again j = 0:

e ∧ e′ ≺ ei−0 ≺ ei+1
−0 = ei0 ∨ ei+1

−1 =

= ei0 ∨ (ei−1 ∨ ei+1
−2 ) = ei0 ∨ ei+1

−2 = · · · = ei0 ∨ ei+1
−(n2−n1) ≺ e ∨ e′.

In particular,

e ∨ e′ = e0
−0 ∨ e

n1

−(n2−n1) ≺ en1
0 ≺ e ∨ e′,

therefore, en1
0 = e ∨ e′.

Finally, if this is verified by j, and j + 1 ≤ n2 − n1:

e ∧ e′ ≺ ei−j ∧ e
n1

−(j+1) = · · · = ei−j ∧ ei+2
−(j+1) = ei−j ∧ (ei+1

−j ∧ ei+2
−(j+1)) =

= ei−j ∧ ei+1
−(j+1) = ei−(j+1) ≺ ei0 ≺ e ∨ e′,

as we wanted to prove.

Finally, if n1 < 0, we change e with e′ to get the result.

Remark 4.3.25. It is easy to check that the reciprocal is not true, since the
set of edges whose associated open sets verify those inclusions is generally
quite bigger. This would lead to another kind of “expanded” convex-hull.

Corollary 4.3.26. Given two parallel edges e, e′ in BL such that BL(e) = BL(e′),
any e′′ in the chamber-convex-hull of e and e′ verifies BL(e′′) = B(e).

Proof. This is a corollary of the previous proposition.
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4.3.3 A basis from the edges on the rays

Let us consider a vertex Λ0 ∈ B(G)0 and an apartment A in B(G)
containing it, and assume it has the coordinates (0, 0) by the isomorphism
A ∼= Z2. Consider also the full subcomplex A(Λ0)(n) generated by the vertices
at distance less or equal than n for a given n ∈ N≥1. Observe that the edge
((−(n− 1), 0), (−n, 0)) belongs to it.

Lemma 4.3.27. For any horizontal edge e in A(Λ0)(n),

B(((−(n− 1), 0), (−n, 0))) ⊂ B(e).

Proof. Recall that the

ρ((0, 0), (m1,m2)) = ‖(0,m1,m2)‖trop = max{|m1|, |m2|, |m1 −m2|}.

Let us write en := ((−(n− 1), 0), (−n, 0)) and e = ((m1 + 1,m2), (m1,m2)).
We know B(en) ⊂ B((l + n1, l − n2) + en) for l, n1, n2 ∈ N and also

max{|m1 + 1|, |m1|, |m2|, |m1 + 1−m2|, |m1 −m2|} ≤ n.

Now, if 0 ≤ m2(≤ n), take l := m2, n1 := m1−m2 +n and n2 := 0, and note
that n1 ≥ −n+ n = 0. If m2 < 0, take n2 := −m2, n1 := m1 + n and l := 0
and note that n1 ≥ 0. In any case we have e = (l + n1, l − n2) + en, so thus,
we finish the proof.

Remark 4.3.28. With the notation of the previous proof, en is the n-th edge
in the ray r = (e1, e2, e3, . . . )∞ in A where e1 := ((0, 0), (−1, 0)). Recipro-
cally, the n-th edge of any ray from Λ0 can be represented as en choosing an
apartment containing the ray and a suitable isomorphism A ∼= Z2.

In addition, consider the edges in StminL (Λ0), and given a set of minimal

edges E ⊂ B̂L
min

1 let FlowL(E) denote the set of edges in FlowL(e) where
e ∈ E. Then, for any n ∈ N≥1 the set of edges en in BL coincides with

Flown−1
L
(
StminL (Λ0)

)
.

Let us denote this set by R(n)
L (Λ0). The corollary 4.3.16 together with the

minimal star decomposition imply

L =
⊔

e∈R
(n)
L (Λ0)

BL(e).
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Lemma 4.3.29. For each ẽ ∈ R(n)
L (Λ0) there are lattices L0, L̃0, L̃1 such

that Λ0 = [L0], ẽ is given by L̃0 ) L̃1 ) πKL̃0, and for any p ∈ B(ẽ) there

is a representant v ∈ V veryfying v ∈ L0 \ πKL0, OKv + πn−1
K L0 = L̃0,

OKv + πnKL0 = L̃1 and

B(ẽ) = {[µv + πnKv
′] ∈ P(V ) | µ ∈ O∗K , v′ ∈ L0} .

Proof. Let us write Λ0 = [L0] and p = [v] and assume that ẽ is given by

L̃0 ) L̃1 ) πKL̃0.

Consider for a moment an apartment A containing ẽ and Λ0 in the way
explained in the previous remark, so Λ0 corresponds to [(0, 0, 0)] and ẽ corre-
sponds to en = ([(0,−(n−1), 0)], [(0,−n, 0)]) = ([(n−1, 0, n−1)], [(n, 0, n)]).
That, is, we are taking into account a basis v0, v1, v2 of V ∼= K3 such that we
can define the lattices as

L0 = OKv0 ⊕OKv1 ⊕OKv2,

L̃0 = OKπn−1
K v0 ⊕OKv1 ⊕OKπn−1

K v2

and

L̃1 = OKπnKv0 ⊕OKv1 ⊕OKπnKv2

Further p ∈ B(ẽ) means that

L̃1 = πKL̃0 +
(
L̃0 ∩ 〈v〉

)
,

what, writing v =
∑2

i=0 λivi, is equivalent to vK(λ1) + n ≤ vK(λ0), vK(λ2).
Since v 6= 0 we assume without loss of generality vK(λ0), vK(λ2) ≥ n and

vK(λ1) = 0, in particular v ∈ L0 \ πKL0. Therefore, OKv + πn−1
K L0 = L̃0,

OKv + πnKL0 = L̃1 and

B(ẽ) = {[µv + πnKv
′] ∈ P(V ) | µ ∈ O∗K , v′ ∈ L0} .

Lemma 4.3.30. Let e = (Λ,Λ′) be a minimal edge in B̂L
min

1 (Λ0)(n). Then
we can choose representing lattices such that [L0] = Λ0, [L] = Λ, [L′] = Λ′

and

L0 ⊃ L′ ⊃ πKL ⊃ πnKL0.
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Proof. Take an apartment A in B(G) containing Λ0 and e. There are two
possibilities: either the two vertices of e are at distance n of Λ0 or one is at
distance n− 1.

In the first case, by the well known structure of the apartment, there is
a vertex Λ̃ = [L̃] at distance n − 1 from Λ0, which together with e form
a chamber. Indeed, take a basis for A for which e is horizontal, so it is
represented by ((m1 + 1,m2), (m1,m2)), and Λ0 is represented by (0, 0). It is
a quick check that if the two vertices of e are at distance n of Λ0, then m2

has to be ±n. Assume without loss of generality m2 = n. Now the vertex
we claim its existence is (m1, n− 1).

Next, we can take L̃ such that L0 ) L̃ ) πn−1
K L0 and L,L′ such that

L ) L̃ ) L′ ) πKL. Then

L0 ) L̃ ) L′ ) πKL ) πKL̃ ) πnKL0.

In the second case, if the vertex at distance n − 1 is Λ, we can take
representants L,L′ such that L0 ) L ) πn−1

K L0, and also

L0 ) L ) L′ ) πKL ) πnKL0,

while, if the vertex at distance n − 1 is Λ′, we can take representants L,L′

such that L0 ) L′ ) πn−1
K L0, and also

L0 ) L′ ) πKL ) πKL
′ ) πnKL0.

Proposition 4.3.31. Let e be a minimal edge in B̂L
min

1 (Λ0)(n). Then, there

is a subset Re of R(n)
L (Λ0) such that

BL(e) =
⊔
ẽ∈Re

BL(ẽ).

Proof. We already know that the sets in the right-hand side of the equality
are disjoint. Then, it is enough to prove that for each p ∈ BL(e) there is

ẽ ∈ R(n)
L (Λ0) such that

p ∈ BL(ẽ) ⊂ BL(e).

In fact, by the remark 4.3.28, there is a unique ẽ ∈ R(n)
L (Λ0) such that

p ∈ BL(ẽ). Now, under these conditions, one only need to show B(ẽ) ⊂ B(e).
Let us write Λ0 = [L0] and p = [v]. By the lemma 4.3.29 we assume ẽ is

given by
L̃0 ) L̃1 ) πKL̃0,
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this sequence satisfies

L0 ) L̃0 ) L̃1 ) πKL̃0 ) πnKL0,

and v is chosen veryfying v ∈ L0 \ πKL0 and

B(ẽ) = {[µv + πnKv
′] ∈ P(V ) | µ ∈ O∗K , v′ ∈ L0} .

Next, let e be given by

L ) L′ ) πKL.

By the previous lemma we can take these lattices such that

L0 ) L′ ) πKL ) πnKL0

so we do it. Recall that p ∈ B(e), so that there exists λe ∈ K such that
λev ∈ L′ \ πKL, and similarly, µλev ∈ L′ \ πKL for any µ ∈ O∗K .

Thus, one gets v ∈ L0 \ πKL0 and λev ∈ L0 \ πnKL0, and so

−1 < vK(λe) < n.

Therefore vK(λeπ
n
K) ≥ n, so for any v′ ∈ L0 we get, λeπ

n
Kv
′ ∈ πnKL0 ⊂ πKL

and as a consequence

λe(µv + πnKv
′) = µλev + λeπ

n
Kv
′ ∈ L′ \ πKL.

for any v′ ∈ L0. But these vectors represent all the points in B(ẽ), so that
implies B(ẽ) ⊂ B(e).

Remark 4.3.32. Note that we are not saying that we could obtain all these
edges ẽ in Re as the edges en in the apartments containing e and Λ0. That is,
given an apartment A containing e (horizontally) and Λ0, the corresponding
en as in the lemma 4.3.27 is in Re. But, even it seems natural, we are not
able to ensure the reciprocal.

Corollary 4.3.33. The sets BL(e) with e in
⋃
n∈N≥1

R(n)
L (Λ0) form a basis

for the topology of L.
Further, each open compact U ⊂ L has associated a unique minimum

covering by sets BL(e) with e ∈ RU ⊂
⋃
n∈N≥1

R(n)
L (Λ0), that is

U =
⊔
e∈RU

BL(e).
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In particular, any covering of U by sets BL(e) with e ∈
⋃
n∈N≥1

R(n)
L (Λ0)

is a refinement of the covering given by RU and, as a consequence, the former
induces a covering of BL(e) for each e ∈ RU . Moreover, given two coverings
of U “by edges”

{e}e∈I , {e′}e′∈I′ ⊂
⋃

n∈N≥1

R(n)
L (Λ0),

there is another covering “by edges” {e′′}e′′∈I′′ finer than both.

Proof. Since the open sets BL(e) with e minimal edge in BL form a basis for
the topology of L, the previous result allows us to take just the edges in the
rays from Λ0, so they form the claimed basis.

For the second claim, observe that given e, e′ ∈
⋃
n∈N≥1

R(n)
L (Λ0), the

associated open sets verify either BL(e) ∩ BL(e′) = ∅ or some inclussion,
maybe BL(e) ⊂ BL(e′). In fact, the inclusion is satisfied if there is a common
ray r = (e1, e2, . . . )∞ from Λ0, and e = en, e

′ = em with m ≤ n, while the
intersection is empty if and only if there is no common ray from Λ0 containing
both edges.

Take p ∈ U . Then, by the first part of the corollary, there exists a ray r
from Λ0 (for example, the ray such that ε̃(r) = p) and an edge en in r such
that p ∈ BL(e) ⊂ U . Now we have BL(en) ⊂ BL(en−1). If BL(en−1) 6⊂ U , let
en be in RU , otherwise apply this rule to en−1. This proceeding is finite, since,
either there is an n such that BL(en) ⊂ U and BL(en−1) 6⊂ U , or BL(e1) ⊂ U ;
in this situation let e1 ∈ RU .

Thus, for each e ∈ RU there is no e′ ∈
⋃
n∈N≥1

R(n)
L (Λ0) with bigger

associated open contained in U , what shows the minimality of the covering,
and so its uniqueness. Thus concludes the proof of the first claim and its
immediate consequence.

Now, given two coverings by edges {e}e∈I , {e′}e′∈I′ , for each e ∈ I, either
there is e′ ∈ I ′ such that BL(e) ⊂ BL(e′) or there are e′ ∈ I ′ such that the
opposite inclusion verifies. In any case, we take the edges e′′ ∈ I ′′ being the
ones among the edges of I ∪ I ′ inducing the smaller open sets, so that they
are inside all the open sets of the given coverings, and so they generate a
finer covering.
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4.4 Harmonic cochains on BL and its isomor-

phism with harmonic measures on L when

d = 2 and L ⊂ P(V ) is compact

In the first paragraph of this section we introduce global and local har-
monic cochains on the minimal 1-skeletons of the subcomplexes BL of the
Bruhat-Tits building of dimension 2, some related morphisms, and we study
some properties. The next two paragraphs are devoted to the proof of the
isomorphism between the harmonic cochains and the harmonic measures on
L, which is the main theorem of this chapter. Finally we will see that the
harmonic cochains are homotopically invariant.

Through this section, we keep the hypothesis of dimension d = 2 for the
Bruhat-Tits building.

4.4.1 Harmonic cochains on BL

Let L ⊂ P(V ) be a compact set.
We introduce a definition of harmonic cochains inspired directly by the

space of cochains obtained by Schneider and Stuhler in [SS91, §4 Cor. 17].
We restrict to the cochains on edges, since they are the ones we need, but
the definition generalizes to any dimension.

Definition 4.4.1. A map c : Z[B̂L
min

1 ] −→ Z is called a harmonic cochain
if it satisfies the following properties:

• c ◦ StminL = 0.

• For any minimal edge e ∈ B̂L
min

1 , c(e) = c(FlowL(e)), that is

c ◦
(
1

B̂L
min

1

− FlowL

)
= 0.

• c ◦ ∂min = 0.

The set of harmonic cochains is denoted by C1
har(BL,Z).

Remark 4.4.2. Recall that

StminL (t(e)) = FlowL(e)
⊔

ClingminL (e)

Then, the two first conditions imply

c(e) = −c(ClingminL (e)).

Actually, under the assumption of the star condition, the flow property is
equivalent to this one.
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Lemma 4.4.3. We recall the situation of the lemma 4.2.22 and the propo-
sition 4.2.26. Let ∆ and ∆′ be two chambers in BL intersecting in a panel
or maximal face of both A = ∆∩∆′. Let e∆

A be the minimal edge of ∆ whose
target vertex is the opposite to A, that is the vertex of ∆ not contained in A.
Let eA∆′ be the minimal edge of ∆′ whose source vertex is the opposite to A in
∆′. In this situation, covL(A) = 2 implies c(eA∆′) = c(e∆

A) and in general

c(eA∆′) =
∑

∆∈BLd
∆∩∆′=A

c(e∆
A).

Proof. Observe that

∂min(∆) = e∆
A + eA∆ + A and ∂min(∆′) = e∆′

A + eA∆′ + A

with A properly oriented, and so c(e∆′
A )+c(eA∆′)+c(A) = 0. Since covL(A) = 2

we have ClingminL (A) = {e∆
A , e

∆′
A }, and so

0 =
∑

e∈StminL (t(A))

c(e) =
∑

e∈FlowL(A)

c(e) +
∑

ClingminL (A)

c(e) = c(A) + c(e∆
A) + c(e∆′

A ).

We put all together:

0 = c(e∆′

A ) + c(eA∆′) + c(A) = c(e∆′

A ) + c(eA∆′)− c(e∆
A)− c(e∆′

A ) = c(eA∆′)− c(e∆
A)

as we wanted to proof. In general,

0 =
∑

e∈FlowL(A)

c(e) +
∑

ClingminL (A)

c(e) = c(A) + c(e∆′

A ) +
∑

∆∈BLd
∆∩∆′=A

c(e∆
A).

concluding as above.

Definition 4.4.4. Given a simplex ∆0, a local harmonic cochain on ∆0 is a

map c : Z[B̂L
min

1 (∆0)] −→ Z verifying:

• c(StminL (Λ)) = 0 when StminL (Λ) ≤ B̂L
min

1 (∆0) respectively,

• c(e) = −c(ClingminL (e)) when e,ClingminL (e) ≤ B̂L
min

1 (∆0), and

• c(∂min(∆)) = 0 when ∂min(∆) ≤ B̂L
min

1 (∆0) (if and only if ∆ ≤ B̂L
min

d (∆0)).

The set of local harmonic cochains on ∆0 in BL is denoted by C1
har(∆0,Z)L.
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A face relation of simplices ∆1 ≤ ∆0 induces an inclusion

B̂L
min

1 (∆0) ⊂ B̂L
min

1 (∆1),

and so, a restriction map C1
har(∆1,Z)L −→ C1

har(∆0,Z)L which is a kind of
coface map.

Remark 4.4.5. Given a vertex Λ ∈ BL0, we define its (minimal) 1-link as

Lkmin1 (Λ) := B̂L
min

1 (Λ) \
(

StminL (Λ)
⊔

St−minL (Λ)
)

Then, the next equalities are straightforward:

Lkmin1 (Λ) =
⊔

e∈StminL (Λ)

ClingminL (e)

B̂L
min

1 (e) = B̂L
min

1 (s(e))
⋂

B̂L
min

1 (t(e)) = {e}
⊔

ClingminL (e)
⊔

Cling−minL (e).

Take a vertex Λ ∈ BL0. Then C1
har(Λ,Z)L is the set of maps

c : Z[B̂L
min

1 (Λ)] −→ Z

such that c(St±minL (Λ)) = 0, c(∂min(∆)) = 0 for all ∆ ∈ B̂L
min

d (Λ) and
c(e) = −c(ClingminL (e)) for all e ∈ St±minL (Λ). In addition, we have a restric-
tion map

C1
har(BL,Z) −→ C1

har(Λ,Z)L.

Given an edge e ∈ BL1, C1
har(e,Z)L is the set of maps

c : Z[B̂L
min

1 (e)] −→ Z

such that c(e) = −c(ClingminL (e)) (with e oriented as a minimal edge), and

c(∂min(∆)) = 0 for all ∆ ∈ B̂L
min

d (e), that is all chambers ∆ ≥ e. From this
description it is easy to obtain C1

har(e,Z)L ∼= Z[ClingminL (e)] ∼= ZcovL(e).

And a chamber ∆ ∈ BL2 verifies B̂L
min

1 (∆) = ∂min(∆) = {e0, e1, e2}.
Therefore C1

har(∆,Z)L is the set of maps

c : Z[B̂L
min

1 (∆)] −→ Z

such that c(∂min(∆)) = 0. But then we get C1
har(∆,Z)L ∼= Z2.
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Thus, the coface maps previously defined as restrictions rise to a map

∂1 :
∏

Λ∈BL0

C1
har(Λ,Z)L −→

∏
e∈BL1

C1
har(e,Z)L

given by ∂1((cΛ)Λ)e = (ct(e) − cs(e))e, resulting in a complex

0 −→ C1
har(BL,Z) −→

∏
Λ∈BL0

C1
har(Λ,Z)L

∂1

−→
∏

e∈BL1

C1
har(e,Z)L

since each composition vanishes. Moreover, the restriction map is clearly
injective.

Proposition 4.4.6. The complex

0 −→ C1
har(BL,Z) −→

∏
Λ∈BL0

C1
har(Λ,Z)L

∂1

−→
∏

e∈BL1

C1
har(e,Z)L

is exact.

Proof. Take (cΛ)Λ ∈ Ker(∂1). Then, each cΛ agrees with the other maps
on nonempty intersections on BL, which allows us to define a map c on all

B̂L
min

1 . It is harmonic, since each of the conditions of harmonicity is inside

some B̂L
min

1 (Λ) for Λ ∈ BL0.

4.4.2 Relating harmonic cochains on BL and harmonic
measures on L

Let L ⊂ P(V ) be a compact set. Our goal is to get an isomorphism
of abelian groups between the harmonic cochains on BL and the harmonic
measures on L. Through this paragraph we will relate them and we will
introduce the tools to get the isomorphism in the next one.

Proposition 4.4.7. There is an injective map

κ : M (L,Z)0 −→ C1
har(BL,Z).

defined by κ(µ)(e) := µ(B(e)).

Proof. The only thing we have to proof is that it is well defined, that is to
see that κ(µ) is a harmonic cochain. But we know that

L =
⊔

StminL (Λ)

BL(e) =
⊔

∂min(∆)

BL(e),
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so κ(µ)
(
StminL (Λ)

)
= µ(L) = 0 = κ(µ) (∂min(∆)). Moreover, we also have

BL(e) =
⊔

e′∈FlowL(e)

BL(e′),

therefore κ(µ)(e) =
∑

e′ FlowL(e) κ(µ)(e′).

The injectivity reduces to the fact that the sets BL(e) are a basis for the
open compact subsets of L.

Given a simplex ∆ in BL, consider the kernel of the composition

M (L,Z)0
κ−→ C1

har(BL,Z) −→ C1
har(∆,Z)L.

which is I∆ :=
{
µ ∈M (L,Z)0 | µ(BL(e)) = 0 ∀ e ∈ B̂L

min

1 (∆)
}

. Then, let

us consider the quotients

M∆(L,Z)0 := M (L,Z)0/Ker
(
M (L,Z)0 −→ C1

har(∆,Z)L
)
.

so we get injective maps

κΛ : M∆(L,Z)0 −→ C1
har(∆,Z)L.

Thus, given a face relation ∆1 ≤ ∆0 we have coface maps

M∆1(L,Z)0 −→M∆0(L,Z)0,

which give a complex

0 −→M (L,Z)0 −→
∏

Λ∈BL0

MΛ(L,Z)0
∂1

−→
∏

e∈BL1

Me(L,Z)0

where ∂1((µΛ)Λ)e = (µt(e) − µs(e))e.
Therefore, we got an injective map of complexes

0 //M (L,Z)0
//

� _

κ

��

∏
Λ∈BL0

MΛ(L,Z)0
∂1

//

� _

κΛ

��

∏
e∈BL1

Me(L,Z)0

� _

κe

��

0 // C1
har(BL,Z) //

∏
Λ∈BL0

C1
har(Λ,Z)L

∂1
//
∏

e∈BL1

C1
har(e,Z)L

of which we already know the below sequence is exact. If we see that the
local maps κΛ are isomorphisms and the above sequence is exact, then we
will conclude that κ is an isomorphism.
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From a finite set Lf to a compact set L

Proposition 4.4.8. If Lf ⊂ P(V ) is finite, the map

κ : M (Lf ,Z)0 −→ C1
har(BLf ,Z).

is an isomorphism.

Proof. Since Lf is finite, it is discrete, and so each point p ∈ Lf is open and
compact. Therefore we have an isomorphism

M (Lf ,Z)0

∼= // Z[Lf ]0

µ � //
∑
p∈Lf

µ({p})p

We already know that κ is injective, therefore, we only have to see that
it is surjective.

Take c ∈ C1
har(BLf ,Z). We want to construct a harmonic measure

µc ∈M (Lf ,Z)0 such that κ(µc) = c. Next, we define µc(p) for p ∈ Lf .
There is an apartment A = AP with p ∈ P ⊂ Lf and thus, there are
rays r = (e0, e1, e2, . . . )∞ in A such that

⋂
ei
BLf (ei) = {p} by the proposi-

tion 4.2.31 and the proposition 4.2.3. Since Lf is finite, BLf (ei) is finite for
all i, therefore, there is an i0 such that for all i greater than i0, BLf (ei) = {p}.
We define µc(p) := c(e) for any minimal edge e such that BLf (e) = {p}.

Now, given e, e′ verifying that condition, we only have to prove that c(e) =
c(e′). Since BLf (e) = BLf (e′), by the proposition 4.3.1 there is an apartment
A = AP containing both edges and they are parallel. Further, the condition
implies that p ∈ P . Next, any edge in the chamber-convex-hull has the same
associated open set by the proposition 4.3.24 and the chamber-convex-hull
is gallery connected, that is, there is a sequence of chambers (∆0, . . . ,∆r)
inside it such that Ai+1 := ∆i

⋂
∆i+1 is a panel, e ≤ ∆0, e

′ ≤ ∆r. This tell
us that the edges e0 = e, e1, . . . , er = e′ obtained in the proposition 4.2.25 are
in the convex hull. Since the BLf (ei) are all equal, by the proposition 4.2.26,
covLf (Ai) = 2 for all i, and by the lemma 4.4.3, the value of c is constant on
those edges.

Finally, we have to show that κ(µc) = c. Note that by the flow condition,
the values of c and κ(µc) on an edge e are determined by their values on
edges ei on rays from e. As above, due to the finiteness of Lf , we can take
these edges ei such that BLf (ei) consist of exactly a point and for these edges
both harmonic cochains coincide by construction.
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Corollary 4.4.9. If Lf ⊂ P(V ) is finite and Λ ∈ BLf 0
, the restriction map

C1
har(BLf ,Z) −→ C1

har(Λ,Z)Lf .

is an epimorphism.

Proof. We start describing the isomorphism

Z[Lf ]0 ∼= M (Lf ,Z)0
∼= C1

har(BLf ,Z).

The corresponding divisor to a harmonic cochain c is
∑

p∈Lf cpp, where if

e is a minimal edge such that BLf (e) = {p}, then c(e) = cp. Further, the
isomorphism tells us that

c(e) =
∑

p∈BLf (e)

cp.

for any minimal edge e ∈ B̂Lf
min

1
.

We are going to see that the composition of those isomorphisms with the
restriction map

Z[Lf ]0 −→ C1
har(Λ,Z)Lf

is surjective.
Consider a local harmonic cochain c ∈ C1

har(Λ,Z)Lf . Note that its values

on the edges of StminLf (Λ) determine its values on the edges of St−minLf (Λ) by the

“flow” condition (which here is equivalent to the “cling” condition). After
this, since chambers have three minimal edges, by the vanishing condition
on their closed minimal paths, the values previously fixed also determine the

values of c on the other edges of B̂Lf
min

1
(Λ). Therefore, if we have another

local harmonic cochain which coincides with c on StminLf (Λ), they are equal.

For each e ∈ StminLf (Λ), and for each p ∈ BLf (e) choose a value cp ∈ Z in
such a way that

c(e) =
∑

p∈BLf (e)

cp.

Since
∑

e∈StminLf
(Λ) c(e) = 0, the divisor

∑
p∈Lf cp has degree 0 and the local

harmonic cochain associated by restriction coincides with c on StminLf (Λ), thus,
they are equal, as we wanted to proof.

Corollary 4.4.10. For any compact subset L ⊂ P(V ) and any vertex Λ ∈ BL,
the group of local harmonic cochains on Λ verifies

C1
har(Λ,Z)L ∼= Z[StminL (Λ)]0.
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Proof. We already knew that C1
har(Λ,Z)L is isomorphic to a subgroup of

Z[StminL (Λ)]0, and by the previous proof we can assign arbitrary values to the
different edges while their sum be zero, therefore we get the claim.

Remark 4.4.11. Let us describe now the map

∂1 :
∏

Λ∈BL0

C1
har(Λ,Z)L −→

∏
e∈BL1

C1
har(e,Z)L

given by ∂1((cΛ)Λ)e = (ct(e) − cs(e))e as

∂1 :
∏

Λ∈BL0

Z[StminL (Λ)]0 −→
∏

e∈BL1

Z[ClingminL (e)].

Consider an element (cΛ)Λ, which is a degree zero divisor cΛ =
∑

e∈StminL (Λ) mee

for each Λ and fix an edge e ∈ BL1. We want to compute ∂1((cΛ)Λ)e with
our present description. There are only two vertices which contribute to this
element, t(e) and s(e). Then, the below arrow in the square

C1
har(t(e),Z)L

∼=
��

// // C1
har(e,Z)L

∼=
��

Z[StminL (t(e))]0 // // Z[ClingminL (e)]

projects
∑

e′∈StminL (t(e))me′e
′ to

∑
e′∈ClingminL (e) me′e

′, while the below arrow in
the square

C1
har(s(e),Z)L

∼=
��

// // C1
har(e,Z)L

∼=
��

Z[StminL (s(e))]0 // // Z[ClingminL (e)]

projects
∑

e′∈StminL (s(e))me′e
′ to

∑
e′∈ClingminL (e)

 ∑
e′′∈StminL (s(e))∩B̂L

min

1 (t(e′))\{e}

me′′

 e′.

This can be seen applying the lemma 4.4.3.
Finally we get

∂1((cΛ)Λ)e =
∑

e′∈ClingminL (e)

me′ −
∑

e′′∈StminL (s(e))∩B̂L
min

1 (t(e′))\{e}

me′′

 e′.
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Corollary 4.4.12. If Lf ⊂ P(V ) is finite and e ∈ BLf 1
, the restriction map

C1
har(BLf ,Z) −→ C1

har(e,Z)Lf .

is an epimorphism.

Proof. As in the proof for the local cochains on a vertex, we are going to see
that the map

Z[Lf ]0 −→ C1
har(e,Z)Lf

is surjective.
Consider a local harmonic cochain c ∈ C1

har(e,Z)Lf . As we have observed
in the discussion after the definition of the local harmonic cochains, to give c
is the same that assign freely values on the edges of ClingminL (e) and defining

c(e) = −
∑

e′∈ClingminL (e)

c(e′).

Now, for each e′ ∈ ClingminLf (e) ∪ {e}, and for each p ∈ BLf (e′) choose a
value cp ∈ Z in such a way that

c(e′) =
∑

p∈BLf (e′)

cp.

Since c(e) +
∑

e′∈ClingminLf
(e) c(e

′) = 0, the divisor
∑

p∈Lf cp has degree 0 and

the local harmonic cochain associated by restriction is c, as we wanted to
proof.

Corollary 4.4.13. If Lf ⊂ P(V ) is finite and ∆ ∈ BLf 2
, the restriction

map

C1
har(BLf ,Z) −→ C1

har(∆,Z)Lf .

is an epimorphism.

Proof. The proof follows the same proceeding as for vertices and edges, taking
into account the three minimal edges of ∆.

Corollary 4.4.14. If Lf ⊂ P(V ) is finite and ∆ ≤ BLf is a simplex, the
map

κ∆ : M∆(Lf ,Z)0 −→ C1
har(∆,Z)Lf .

is an isomorphism.
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Proof. By some of the previous corollaries, we have a commutative square

M (Lf ,Z)0 ∼=
κ //

����

C1
har(BLf ,Z)

����
M∆(Lf ,Z)0

� � κ∆ // C1
har(∆,Z)Lf .

which let us to deduce the surjectivity of κ∆.

Corollary 4.4.15. If Lf ⊂ P(V ) is finite, there is an isomorphism of exact
sequences

0 //M (Lf ,Z)0
//

κ∼=

��

∏
Λ∈BLf 0

MΛ(Lf ,Z)0
∂1
//

κΛ∼=

��

∏
e∈BLf 1

Me(Lf ,Z)0

κe∼=

��

0 // C1
har(BLf ,Z) //

∏
Λ∈BLf 0

C1
har(Λ,Z)Lf

∂1
//
∏

e∈BLf 1

C1
har(e,Z)Lf

Proof. It consists of recalling that the below complex is exact and the previ-
ous results give the isomorphisms in each column.

Now, recall that given L′ ⊂ L compacts, we have an injection

extL
′,L : M (L′,Z)0

� � //M (L,Z)0

µ � // µe : U 7→ µe(U) := µ(U
⋂
L′),

and, if B̂L
min

1 (∆) = B̂L′
min

1 (∆) it descends to another injection

extL
′,L

∆ : M∆(L′,Z)0
� � //M∆(L,Z)0

[µ] � // [µe].

Corollary 4.4.16. Let ∆ ≤ BL be a simplex and let Lf ⊂ L be a finite set

such that ∆ ≤ BLf and B̂L
min

1 (∆) = B̂Lf
min

1
(∆). Then,

ext
Lf ,L
∆ : M∆(Lf ,Z)0 −→M∆(L,Z)0

and
κ∆ : M∆(L,Z)0 −→ C1

har(∆,Z)L.

are isomorphisms.
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Proof. We just have to note that C1
har(∆,Z)Lf

∼= C1
har(∆,Z)L by the hypoth-

esis B̂L
min

1 (∆) = B̂Lf
min

1
(∆), and consider the commutative square

M∆(Lf ,Z)0
� �

ext
Lf ,L
∆ //

∼= κ∆
��

M∆(L,Z)0� _

κ∆
��

C1
har(∆,Z)Lf ∼=

// C1
har(∆,Z)L.

Corollary 4.4.17. For L ⊂ P(V ) compact and for all ∆ ≤ BL, the restric-
tion map

κ∆ : C1
har(BL,Z) −→ C1

har(∆,Z)L

is surjective.

Proof. Consider the commutative square

M (L,Z)0
� � κ //

����

C1
har(BL,Z)

��
M∆(L,Z)0

� � κ∆

∼=
// C1

har(∆,Z)L.

4.4.3 The isomorphism M (L,Z)0
∼= C1

har(BL,Z)

Let L ⊂ P(V ) be a compact set. Recall the diagram

0 //M (L,Z)0
//

� _

κ

��

∏
Λ∈BL0

MΛ(L,Z)0
∂1

//

∼= κΛ

��

∏
e∈BL1

Me(L,Z)0

∼= κe

��

0 // C1
har(BL,Z) //

∏
Λ∈BL0

C1
har(Λ,Z)L

∂1
//
∏

e∈BL1

C1
har(e,Z)L

We know all in it is exact except in the middle of the above complex. Let us
take

(µΛ)Λ ∈ Ker

 ∏
Λ∈BL0

MΛ(L,Z)0 −→
∏

e∈BL1

Me(L,Z)0

 .
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Fix a vertex Λ0 ∈ BL0, a number n ∈ N≥1 and let Ln ⊂ L a finite set
such that BL(Λ0)(n) = BLn(Λ0)(n). By the proposition 4.2.17 it is enough to
form Ln with a point of BL(e) for each e in⋃

Λ∈BL0(Λ0)(n)

StminL (Λ).

Now, let us consider a (connected) chamber-complex C(n) in BL(Λ0)(n)

for each n in such a way that
⋃
n∈N≥1

C(n) = BL,

BL(Λ0) = BL(Λ0)(1) = C(1) ⊂ C(2) ⊂ · · · ⊂ C(n) ⊂ C(n+ 1) ⊂ · · · .

and R(n)
L (Λ0) ⊂ C(n)min1 . Indeed, let C(n) be the chamber complex generated

by the vertices which are separated from Λ0 by a path with n edges (without
orientation) in BL.

Observe that in this construction there is implicit a local distance ρL in
BL which we call L-distance and that the global (tropical) distance on the
building B(G) verifies ρ ≤ ρL. Then, if Λ ∈ C(n)0 is at L-distance n from Λ0,
by definition it is at L-distance 1 of another vertex Λ′ which is at L-distance
n − 1 of Λ0, therefore it is contained in a chamber inside C(n). Observe
another way of describing C(n) inductively:

C(1) := BL(Λ0), C(n) :=
⋃

Λ∈C(n−1)

BL(Λ)

Consider the commutative squares∏
Λ∈BL0

MΛ(L,Z)0
∂1

//

����

∏
e∈BL1

Me(L,Z)0

����∏
Λ∈C(n−1)0

MΛ(L,Z)0
∂1

//

∼= κΛ

��

∏
e∈C(n−1)1

Me(L,Z)0

∼= κe

��∏
Λ∈C(n−1)0

C1
har(Λ,Z)L

∂1
//
∏

e∈C(n−1)1

C1
har(e,Z)L

∏
Λ∈C(n−1)0

MΛ(Ln,Z)0
∂1
//

∼=κΛ

OO

∏
e∈C(n−1)1

Me(Ln,Z)0

∼=κe

OO
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and the projection of (µΛ)Λ = (µΛ)Λ∈BL0
via∏

Λ∈BL0

MΛ(L,Z)0
// //

∏
Λ∈C(n−1)0

MΛ(Ln,Z)0

(µΛ)Λ∈BL0

� // // (µΛ)Λ∈C(n−1)0 .

Since the diagram is commutative we have ∂1
(
(µΛ)Λ∈C(n−1)0

)
= 0, which

implies that for each e′ ∈ C(n− 1)1,

µs(e′)(BLn(e′)) = µt(e′)(BLn(e′)) =
∑

e∈FlowLn (e′)

µt(e′)(BLn(e)).

The key result is to get a global harmonic measure µn on Ln coinciding
with (µΛ)Λ with Λ in C(n−1) along the rays from Λ0. We divide it in smaller
steps.

Proposition 4.4.18. There exists a harmonic measure µ ∈M (Ln,Z)0 such
that

[µ]Λ0 = µΛ0 ∈MΛ0(Ln,Z)0.

Proof. First, recall the isomorphism M (Ln,Z)0
∼= Z[Ln]0. Since

Ln =
⊔

e∈R
(n)
Ln (Λ0)

BLn(e),

we define µ as a divisor
∑

p∈Ln cpp such that

µ(e) :=
∑

p∈BLn (e)

cp = µs(e)(BLn(e))

for each e ∈ R(n)
L (Λ0) = R(n)

Ln (Λ0). Now we will see that it has degree zero
to be certain that it corresponds to a harmonic measure. Recall that

R(n)
Ln (Λ0) = Flown−1

Ln

(
StminLn (Λ0)

)
are the edges en in the rays (e1, e2, e3, . . . )∞ in BLn from Λ0. Then we have

deg(µ) =
∑

e∈R
(n)
Ln (Λ0)

µs(e)(BLn(e)) =
∑

e′∈R
(n−1)
Ln (Λ0)

∑
e∈FlowLn (e′)

µs(e)(BLn(e)) =

=
∑

e′∈R
(n−1)
Ln (Λ0)

∑
e∈FlowLn (e′)

µs(e)(BLn(e)) =
∑

e′∈R
(n−1)
Ln (Λ0)

µs(e′)(BLn(e′)).

176



Iterating this process we get

deg(µ) =
∑

e∈R
(1)
Ln (Λ0)

µs(e)(BLn(e)) =
∑

e∈StminLn (Λ0)

µΛ0(BLn(e)) = 0,

as we desired to prove to begin. Thus, µ is a global harmonic measure on Ln
such that, since it verifies the flow condition, the previous proceeding shows
that

µ(BLn(e)) = µs(e)(BLn(e))

for all e ∈ R(m)
Ln (Λ0) for each 1 ≤ m ≤ n. In particular µ coincides with µΛ0

in StminLn (Λ0) and, therefore, [µ]Λ0 = µΛ0 ∈MΛ0(Ln,Z)0.

Proposition 4.4.19. Let n > 1. The measure µ obtained in the previous
proposition verifies [µ]Λ = µΛ for all Λ ∈ C(n− 1)0 in the rays from Λ0.

Proof. Let Λ 6= Λ0 be a vertex in C(n− 1) inside a ray from Λ0. Then, there
are edges e′, e in that ray such that e ∈ FlowLn(e′), t(e′) = s(e) = Λ and

e ∈ R(m)
Ln (Λ0) for some 2 ≤ m ≤ n. We have already shown in the proof of the

previous proposition that µ(BLn(e)) = µΛ(BLn(e)) for each e ∈ FlowLn(e′).
For the other edges we will proceed by induction on m− 1 = ρLn(Λ0,Λ).

Recall that

StminLn (t(e′)) \ FlowLn(e′) = ClingminLn (e′) ⊂ BLn(s(e′))min1 .

Let e′′ ∈ ClingminLn (e′). If m = 2, s(e′) = Λ0, and so

µ(BLn(e′′)) = µΛ0(BLn(e′′)) = µΛ(BLn(e′′)).

Therefore µ coincides with µΛ in StminLn (Λ), what implies [µ]Λ = µΛ. Next,
assume we know this for m−1 and note that we have ρLn(Λ0, s(e

′)) = m−2.
Then, by induction hypothesis

µ(BLn(e′′)) = µs(e′)(BLn(e′′)) = µΛ(BLn(e′′)),

concluding as above [µ]Λ = µΛ.

Keep n > 1. Consider an edge em ∈ R(m)
Ln (Λ0) for some 1 ≤ m < n−1 and

write Λm := t(em). By the two preceding propositions, we have [µ]Λ0 = µΛ0 ,
[µ]Λm = µΛm and [µ]t(em+1) = µt(em+1) for each em+1 ∈ FlowLn(em). Now, if

e ∈ StminLn (em) \ FlowLn(em) = ClingminLn (em).

we are going to see that [µ]t(e) = µt(e).
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First we will do it when m = 1, so we have e1 ∈ R(1)
Ln (Λ0) = StminLn (Λ0)

and then, e−1 := (t(e),Λ0) ∈ St−minLn (Λ0) is the other edge in the chamber
which contains e1 and e, and reciprocally, given any edge with target vertex
Λ0, it can be obtained in this way from some e1 as above.

In order to get this, first we prove a fundamental lemma. Let us assume
n > 2, or we also can take on the convention C(0) := {Λ0} to apply the next
lemma when n = 1.

Lemma 4.4.20. For any vertex Λ ∈ C(n−2)0, if [µ]Λ1 = µΛ1 for all Λ1 = t(e1)
with e1 ∈ StminLn (Λ), then [µ]Λ−1 = µΛ−1 for all Λ−1 = s(e−1) with e−1 ∈
St−minLn (Λ).

Proof. Fix a vertex Λ−1 = s(e−1) for some e−1 ∈ St−minLn (Λ).
First, observe that Λ−1 is contained in a chamber formed by edges e−1,

e0
1 ∈ StminLn (Λ) and e = (Λ0

1,Λ−1) where Λ0
1 = t(e0

1).
Since [µ]Λ0

1
= µΛ0

1
, for each e′ ∈ ClingminLn (e) ⊂ StminLn (Λ−1)

µ(BLn(e′)) = µΛ0
1
(BLn(e′)) = µΛ−1(BLn(e′)),

in particular for e′ = e−1. Therefore, our claim reduces to show the same
equality for each

e′ ∈ StminLn (Λ−1) \ ClingminLn (e) = FlowLn(e).

Fix one of those edges e′ ∈ FlowLn(e) and consider points p−1 ∈ BLn(e−1),
p0

1 ∈ BLn(e0
1) and p ∈ BLn(e′) ⊂ BLn(e). Thus, the chamber formed by e−1, e

0
1

and e is inside of the apartment A := A{p−1,p0
1,p} ≤ BLn , which also contains

e′ since it is the edge in StminLn (Λ−1) whose open set contains p.
Let us consider the isomorphism A ∼= Z2 making Λ and e correspond to

(0, 0) and ((1, 1), (1, 0)) respectively. Then, e′ corresponds to ((1, 0), (1,−1)).
Let us denote by ê, ẽ and e1

1 the minimal edges corresponding to ((1,−1), (0,−1)),
((0,−1), (1, 0)) and ((0, 0), (0,−1)) respectively, and Λ1

1 := t(e1
1). Observe

that e′, ẽ and ê form a chamber, e1
1 ≤ BLn(Λ1

1) ∩ BLn(Λ−1) = BLn(ẽ),
t(ê) = Λ1

1 and e1
1 ∈ StminLn (Λ). In particular, we know [µ]Λ1

1
= µΛ1

1
, and

µΛ−1(BLn(e′)) = µΛ1
1
(BLn(e′)) = µ(BLn(e′)),

as we wanted to prove.

Corollary 4.4.21. For any Λ ∈ BLn(Λ0)0, [µ]Λ = µΛ.

Proof. By the proposition 4.4.19, we know [µ]t(e1) = µt(e1) for all e1 ∈ StminLn (Λ0).
Then, the last lemma implies the claim.
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Corollary 4.4.22. Let Λm := t(em) ∈ C(n − 1)0 be a vertex in a ray
(e1, e2, . . . , em, . . . )∞ from Λ0. Then, [µ]Λ = µΛ for all Λ ∈ BLn(Λm)0.

Proof. If Λ = t(em+1) with em+1 ∈ FlowLn(em), we have already pointed out
that [µ]Λ = µΛ since it belongs to a ray from Λ0. For the other possibilites
we proceed by induction.

If m = 1 and Λ = t(e) for some e ∈ ClingminLn (e1), then [µ]Λ = µΛ is
what was proven in the previous corollary. Thus, we proved the result for all
Λ = t(e) with e ∈ StminLn (Λ1), and we finish by the lemma.

Assume we know the claim for m− 1. Now, let Λ = t(e) with

e ∈ StminLn (Λm) \ FlowLn(em) = ClingminLn (em).

Then, since em = (Λm−1,Λm), the minimal edge e′ = (Λ,Λm−1) belongs
to St−minLn (Λm−1) and, as a consequence, [µ]Λ = µΛ by induction hypoth-
esis. Again by the lemma, as we proved the result for all Λ = t(e) with
e ∈ StminLn (Λm), we conclude.

Let us denote the measure µ ∈M (Ln,Z)0 obtained in the last results by
µn.

Consider the extension morphism

extLn,L : M (Ln,Z)0
� � //M (L,Z)0

and apply it to µn. Thus, one obtains a sequence of global harmonic measures
extLn,L(µn) such that for all n ≥ n0,

extLn,L(µn)(BL(e)) = extLn0 ,L(µn0)(BL(e))

for all e ∈ Rm
L (Λ0) for all m ≤ n0, since they restrict to µΛ for all Λ in the

rays from Λ0 by the previous corollary.
Next, we define a harmonic measure µ giving it values on the basis by

open compact sets BL(e) with e in the rays from Λ0 (cf. corollary 4.3.33). In
fact, given such an e, it is in BL(Λ0)(n) for some n. Then, we define

µ(BL(e)) = extLn,L(µn)(BL(e)).

By the preceding considerations, this value is independent on n, therefore µ
is a well defined map and only rests to proof that it is a harmonic measure.
Indeed, given two disjoint open compact sets, they can be covered by a finite
set of open compact sets of the form BL(e) whose definition edges are in rays
from Λ0 and belong to a common BL(Λ0)(n) for some n big enough, and
there, µ behaves like the measure extLn,L(µn). More specifically, given two
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coverings of a compact open set by these edges, by the corollary 4.3.33 there
is a common finer covering which is also inside BL(Λ0)(n) for some n big
enough, so that µ is well defined, since its value on the first two coverings
coincides with its value on the third. As a consequence, it is additive with
respect to disjoint open compact sets and µ(L) = 0, then it is a harmonic
measure.

In addition, if Λ is in a ray from Λ0, µ restricts to µΛ′ in MΛ′(L,Z)0 for
all Λ′ ∈ BL(Λ)0.

Lemma 4.4.23. Let A = AP ≤ BL be an apartment containing Λ0. Con-
sider an isomorphism A ∼= Z2 by which Λ0 corresponds to the vertex (0, 0)
and let e1 be the edge corresponding to ((0, 0), (−1, 0)). Then, each horizon-
tal edge e = ((m1,m2), (m1 − 1,m2)) such that BL(e) ⊂ BL(e1) verifies the
equality

µs(e)(BL(e)) = µ(BL(e)).

Proof. We divide the proof in different cases according to the coordinates of
e.

First note that if m2 = 0 ≥ m1, e is in the ray of A starting by e1, so that
in this case we know the result. If |m2| = 1 > m1 we also know the result,
since in this case s(e) is at distance 1 of a vertex in the ray.

Second, assume m1 ≥ max{0,m2}. Then we have

BL(e1) ⊂ BL(e) ⊂ BL(e1),

that is, its equality. Consider the chamber-convex hull between them (recall
definition 4.3.21). By the corollary 4.3.26, all the horizontal edges in it have
associated the same open set BL(e). Consider a gallery from e1 to e in its
chamber-convex hull. By hypothesis on the coordinates of e, it can be given
by a sequence of horizontal edges e1, e2, . . . , er = e such that each ei is the
sum of ei−1 plus (1, 1) or (0,−1), and chambers ∆i for i = 1, . . . , r such that
ei ≤ ∆i and

∆i−1 ∩∆i = e1
i−1 := (t(ei), s(ei−1)).

The equality BL(ei−1) = BL(ei), implies that covL(e1
i−1) = 2 meaning that

ClingminL (e1
i−1) has only two elements, in ∆i−1 and ∆i respectively. Now we

have

µs(ei)(BL(ei)) = µt(ei)(BL(ei)) = µs(ei−1)(BL(ei)) = µs(ei−1)(BL(ei−1))

so that µs(e)(BL(e)) = µΛ0(BL(e1)) = µ(BL(e1)) = µ(BL(e)).
With the two first cases, we have proved the result always that |m2| ≤ 1

(under the hypothesis BL(e) ⊂ BL(e1)).
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In the third place assume m2 > max{0,m1}. Let p0 ∈ P be the point
such that

BP(e) = BP(e1) = {p0},

let ∆ ≤ A be the chamber generated by e and the vertex (m1 − 1,m2 − 1),
which we will denote by Λ∆,e and write e1 = (t(e),Λ∆,e), e

2 = (Λ∆,e, s(e)).
for the other two edges of the chamber. Next recall that by the proposi-
tion 4.2.26,

BL(e) =
⊔

∆′∩∆=e1

BL(e∆′

e1 ).

In particular, in the apartment A, the corresponding edge e∆′

e1 is

((m1 − 1,m2 − 1), (m1 − 2,m2 − 1)).

Observe also that ∆′ is determined by e∆′

e1 and e1. Next, we will see that
all of these edges and so, all the chambers ∆′ intersecting with ∆ through e1

are contained in apartments containing Λ0 and ∆. By the previous comment,
we only have to see that the corresponding edge e∆′

e1 is in such apartment.
Indeed, fix such a ∆′, consider

p ∈ BL(e∆′

e1 ) ⊂ BL(e) ⊂ BL(e1).

and define P ′ := P \ {p0} ∪ {p}. By the proposition 4.2.18, it defines an
apartment AP ′ containing ∆, and by the proposition 4.2.17 the vertex Λ0

belongs to AP ′ . Further, there is an edge in StminP ′ (Λ∆,e) whose associated
open set is p, therefore, this edge is e∆′

e1 and it and ∆′ are contained in AP ′ .
Consider the isomorphism of A′P with AP which leaves fixed the intersection.
Then, by the composition AP ′ ∼= AP ∼= Z2, the edge e∆′

e1 corresponds again to
((m1 − 1,m2 − 1), (m1 − 2,m2 − 1)). Let us denote E(e;m1 − 1,m2 − 1) the
set of edges e∆′

e1 , which coincides with ClingminL (e1) \ {e2}, and let us write
with this notation

BL(e) =
⊔

e′∈E(e;m1−1,m2−1)

BL(e′).

Now we have

µs(e)(BL(e)) = µΛ∆,e
(BL(e)) = −µΛ∆,e

(BL(e1))− µΛ∆,e
(BL(e2)) =

=
∑

e′∈ClingminL (e1)\{e2}

µΛ∆,e
(BL(e′)) =

∑
e′∈E(e;m1−1,m2−1)

µΛ∆,e
(BL(e′))
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To finish the proof, we proceed by induction on m2. Since if m2 = 1 we know
the result, we can make the induction hypothesis

µ(BL(e′)) = µs(e)(BL(e′))

for the edges e′ with second coordinate m2−1 (and verifying the assumption
BL(e′) ⊂ BL(e1)). Then, note that each e′ ∈ E(e;m1 − 1,m2 − 1) verifies
both conditions, since

BL(e′) ⊂ BL(e) ⊂ BL(e1).

Therefore, we conclude

µs(e)(BL(e)) =
∑

e′∈E(e;m1−1,m2−1)

µΛ∆,e
(BL(e′)) =

=
∑

e′∈E(e;m1−1,m2−1)

µ(BL(e′)) = µ(BL(e)).

Finally assume 0 > max{m1,m2}. The process is identical to the previous
one up to rewrite some coordinates.Now, let ∆ ≤ A be the chamber generated
by e and the vertex Λ∆,e := (m1,m2 + 1). We define e1, e2 exactly as above.
We have again

BL(e) =
⊔

∆′∩∆=e1

BL(e∆′

e1 ),

but, now the corresponding edge e∆′

e1 in A is

((m1,m2 + 1), (m1 − 1,m2 + 1)).

The construction of AP ′ above applies again, so all these edges, which are
those of the set ClingminL (e1) \ {e2}, can be represented with the given coor-
dinates, so we denote it by E(e;m1,m2 + 1). As above

µs(e)(BL(e)) =
∑

e′∈E(e;m1,m2+1)

µΛ∆,e
(BL(e′))

and we proceed by induction on −m2. The case −m2 = 1 is known. The
hypothesis induction is

µ(BL(e′)) = µs(e)(BL(e′))

for all e′ = ((m′1,m2 + 1), (m′1 − 1,m2 + 1)) with −m′1 ∈ N and for a fixed
−m2 ∈ N≥2, which is the case for all the edges e′ in E(e;m1,m2 + 1), which,
moreover, verify, as above, the condition BL(e′) ⊂ BL(e) ⊂ BL(e1) and we
conclude in the same way.
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Proposition 4.4.24. Let L ⊂ P(V ) be a compact set such that BL is a
building. Let e be a minimal edge in BL such that there exists e1 ∈ StminL (Λ0)
satisfying BL(e) ⊂ BL(e1). Then

µs(e)(BL(e)) = µ(BL(e))

Proof. Since BL is a building, there exists an apartment AP ≤ BL containing
e and e1. Then we have ∅ 6= BP(e) ⊂ BP(e1) which consists of a unique point,
therefore, this inclusion is an equality and the edges are parallel. Then, we
consider an isomorphism A ∼= Z2 such that e1 corresponds to ((0, 0), (−1, 0))
and we apply the previous lemma.

Remark 4.4.25. Observe that we only use that BL is a building to en-
sure that for any edge e such that that there exists e1 ∈ StminL (Λ0) satisfying
BL(e) ⊂ BL(e1), there is an apartment in BL containing e and Λ0. There-
fore, if we have this for some vertex of BL, even if it is not a building, we
can choose this vertex as Λ0 and we get the same result.

Theorem 4.4.26. Let L ⊂ P(V ) be a compact set such that BL is a building.
Then

0 //M (L,Z)0
//
∏

Λ∈BL0

MΛ(L,Z)0
∂1
//
∏

e∈BL1

Me(L,Z)0

µ � // ([µ]Λ)Λ

is exact and, as a consequence M (L,Z)0
∼= C1

har(BL,Z).

Proof. To get the exactness of the sequence, the only step rests to do is to
get a global harmonic measure which projects to

(µΛ)Λ ∈ Ker

 ∏
Λ∈BL0

MΛ(L,Z)0 −→
∏

e∈BL1

Me(L,Z)0

 .

We have already built a harmonic measure µ ∈M (L,Z)0 such that [µ]Λ = µΛ

through the rays from Λ0 and we are going to check that it verifies the
expected property.

Let Λ be any vertex in BL, for which we want to prove the same equality.
It is sufficient that µ and any representant of µΛ coincide on the edges of
StminL (Λ), that is

µΛ(BL(e)) = µ(BL(e))
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for each e ∈ StminL (Λ), so let us fix any of these edges. Recall the corol-
lary 4.3.33, by which there is a minimum finite (since the corresponding
open sets are compact) set

Re ⊂
⋃

n∈N≥1

R(n)
L (Λ0)

such that
BL(e) =

⊔
e′∈Re

BL(e′).

Observe that Re depends on Λ0, even we did not specify this until now since
it is a given fixed vertex from the begining. Now, let us write RΛ0(e) := Re,
so we can work with different of these sets, while we change the “base” vertex.

Let us enumerate the edges in RΛ0(e):

RΛ0(e) = {e1, . . . , eme}.

Each one of them is ei = Flowji
L(ei1) for some ei1 ∈ StminL (Λ0) and ji ∈ N.

Observe that the set formed by the edges ei1 coincides with

SΛ0(e) := {e′ ∈ StminL (Λ0) | BL(e) ∩ BL(e′) 6= ∅}.

If |SΛ0(e)| = 1 we are under the hypotheses of the previous proposition, and
so we have apply it. Fix any edge of this set, for example e1

1 and consider the
minimal decomposition of the associated open set on the rays from Λ = s(e),
that is

BL(e1
1) =

⊔
e′∈RΛ(e11)

BL(e′).

Now, since if e′ ∈ RΛ(e1
1), BL(e′) ⊂ BL(e1

1), we can apply the previous
proposition again, so that

µs(e′)(BL(e′)) = µ(BL(e′)).

Observe that the set of edges in the decomposition of e1
1 which are in rays

starting by e is

Re(e
1
1) :=

{
e′ ∈ RΛ(e1

1) : BL(e′) ⊂ BL(e)
}
⊂ RΛ(e1

1)

and gives the equality

BL(e)
⋂
BL(e1

1) =
⊔

e′∈Re(e11)

BL(e′).
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Let us denote i1 := max
{
i ∈ N | Re(e

1
1) ∩ Flowi

L(e) 6= ∅
}
∈ N, so that we

have Re(e
1
1) ⊂

⋃
j≤i1 Flowj

L(e).

Next, we do this process for the rest of edges e2
1, . . . , e

me
1 in SΛ0(e) and we

also consider the rest of indices i2, . . . , im1 . We define

ie := max{i1, i2, . . . , ime}.

so that Re(e
i
1) ⊂

⋃
j≤ie Flowj

L(e) for each i = 1, . . . ,me. Note also that we
have

BL(e) =
⊔

e1∈SΛ0
(e)

(BL(e1) ∩ BL(e)) =

=
⊔

e1∈SΛ0
(e)

 ⊔
e′∈Re(e1)

BL(e′)

 =
⊔

e′∈FlowieL (e)

BL(e′)

and the edges appearing in the last two expressions are in rays strating by
e, therefore its open sets are disjoint or verify some inclusion. In addition,
since they are equal, given any edge of an expression, there is another edge
of the other expression with nonempty intersection of the associated open
sets. Then, since Re(e1) ⊂

⋃
j≤ie Flowj

L(e) for each e1 ∈ SΛ0(e), given any

e′ ∈ Flowie
L (e) there is an edge e1 ∈ SΛ0(e), a number j ≤ ie and another

edge ẽ ∈ Re(e1) ∩ Flowj
L(e) such that e′ ∈ Flowie−j

L (ẽ) and so,

BL(e′) ⊂ BL(ẽ) ⊂ BL(e1).

Therefore we can apply the previous proposition to each e′ ∈ Flowie
L (e),

obtaining
µs(e′)(BL(e′)) = µ(BL(e′)).

Next, recall the formula

µs(e0)(BL(e0)) = µt(e0)(BL(e0)) =

=
∑

e1∈FlowL(e0)

µt(e0)(BL(e1)) =
∑

e1∈FlowL(e0)

µs(e1)(BL(e1)),

apply it to e and iterate it to the edges appearing on the successive expres-
sions:

µΛ(BL(e)) = µs(e)(BL(e)) =
∑

e1∈FlowL(e)

µs(e1)(BL(e1)) =

=
∑

e1∈FlowL(e)

∑
e2∈FlowL(e1)

µs(e2)(BL(e2)) =
∑

e2∈Flow2
L(e)

µs(e2)(BL(e2))
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what, inductively, gives

µΛ(BL(e)) =
∑

e′∈FlowiL(e)

µs(e′)(BL(e′))

for all i, and applied to i = ie:

µΛ(BL(e)) =
∑

e′∈FlowieL (e)

µs(e′)(BL(e′)) =
∑

e′∈FlowieL (e)

µ(BL(e′)) = µ(BL(e)).

Since we have obtained this for all e ∈ B̂L
min

1 , we have finished the proof of
the exactness of the sequence.

The isomorphism M (L,Z)0
∼= C1

har(BL,Z) follows from an easy hunt of
elements in the diagram of exact sequences locally isomorphic

0 //M (L,Z)0
//

� _

κ

��

∏
Λ∈BL0

MΛ(L,Z)0
∂1

//

∼= κΛ

��

∏
e∈BL1

Me(L,Z)0

∼= κe

��

0 // C1
har(BL,Z) //

∏
Λ∈BL0

C1
har(Λ,Z)L

∂1
//
∏

e∈BL1

C1
har(e,Z)L.

4.4.4 Invariance of the harmonic cochains with respect
to homotopy

Through this subsection BL is a building of dimension d = 2 with
L ⊂ P(V ) compact.

Simplicial homology on BL

Let us recall first how we compute the homology of a locally finite sim-
plicial complex.

Let K be a finite simplicial complex of dimension d and let ∆ ∈ K be a
simplex. Two (total) orderings of the vertex set of ∆ are said to be equivalent
if they differ from one another by an even permutation. An orientation of ∆
is an equivalence class of the orderings of the vertex set of ∆. Note that if
∆ consists of a vertex, there is a unique orientation, and otherwise there are
two different orientatons. An oriented simplex is a simplex ∆ together with
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an orientation of ∆. An orientation of K is a choice of an orientation of each
of its simplices. Then, K is said to be oriented if an orientation of K is fixed.

Then, for each q ∈ N≤d the abelian group of q-dimensional chains is the
free abelian group generated by the oriented simplices of K of dimension q

Cq(K) :=
⊕
∆∈K

dim(∆)=q

Z[∆].

We introduce the q-simplex ∆ with the opposite orientation to the one
chosen as −∆. Thus, we define a border operator ∂q : Cq(K) −→ Cq−1(K) in
the usual way: ∂q(∆) =

∑q
i=0 (−1)i∆i (where ∆i has an orientation induced

by the one of ∆) for q ≥ 1 and ∂0 ≡ 0. They form a complex of abelian
groups and the simplicial homology is defined as

Hq(K,Z) := Ker(∂q)/ Im(∂q+1).

If we take the singular homology of its topological realization, Hq(|K|,Z),
it is well known that there is a natural isomorphism

Hq(K,Z) ∼= Hq(|K|,Z).

Next, let us consider the simplicial complex BL. Recall that each edge
in BL has exactly one minimal orientation (as we have commented at the
begining of subsection 4.3.2), and choose it to define the group of 1-chains of
BL, so that

C1(BL) ∼= Z[B̂L
min

1 ].

Then, for any oriented chamber ∆, the second differential verifies either
∂2(∆) = ∂min(∆) or ∂2(∆) = −∂min(∆). Indeed, if ∆ is defined by vertices
Λi = [Li] where

L0 ) L1 ) L2 ) πKL0

and if we choose the orientation given by Λ0 < Λ1 < Λ2, then

∂2(∆) = (Λ1,Λ2)− (Λ0,Λ2) + (Λ0,Λ1) = −∂min(∆),

while if we choose the other orientation the two differential maps coincide.
We choose for each chamber the orientation which makes these two maps
coincide.

In addition, since BL is contractible the 1-homology group vanishes,
therefore Ker(∂1) = Im(∂2) = Im(∂min).
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Homotopy invariance of the harmonic cochains

Given a harmonic cochain c ∈ C1
har(BL,Z), it vanishes on ∂min by defini-

tion, therefore the previous discussion implies that it vanishes on the closed
paths on BL.

Lemma 4.4.27. Given two vertices Λ,Λ′ ∈ BL0, there exists an oriented
path from Λ to Λ′ through minimal edges.

Proof. If the two vertices are in a chamber, since there exists a closed oriented
path formed by minimal edges through all its vertices, then there exists an
oriented path through these minimal edges from one vertex to the other.

Otherwise, since BL is connected, there is a sequence ∆0, . . . ,∆r of cham-
bers such that Λ ∈ ∆0, Λ′ ∈ ∆r and for each i = 0, . . . , r−1, there is a vertex
Λi ∈ ∆i ∩∆i+1. Since all these vertices are connected as claimed by the first
part of the proof, the assertion follows.

Lemma 4.4.28. Given a harmonic cochain c ∈ C1
har(BL,Z), two vertices

Λ,Λ′ ∈ BL0 and two oriented paths between them through minimal edges,

determined by the sums P1(Λ,Λ′) ∈ Z[B̂L
min

1 ] and P2(Λ,Λ′) ∈ Z[B̂L
min

1 ]
respectively (as their support), we have

c (P1(Λ,Λ′)) = c (P2(Λ,Λ′))

Proof. Choose an oriented path P3 from Λ′ to Λ through minimal edges. The

union (sum in Z[B̂L
min

1 ]) of the path Pi(Λ,Λ
′) with the path P3 is a closed

oriented path for each i = 1, 2, therefore it is in the kernel of ∂1 and c vanishes
on it. Then,

c (P1(Λ,Λ′)) = −c(P3) = c (P2(Λ,Λ′)) .

Corollary 4.4.29. There is a map

Z[BL0]0 −→ C1
har(BL,Z)∨

given by mapping Λ′ − Λ to the evaluation of a harmonic cochain on any

oriented path from Λ to Λ′ on Z[B̂L
min

1 ].

Remark 4.4.30. This is just to say that any harmonic cochain factorizes as
follows:

Z[B̂L
min

1 ] c //

����

Z

Z[B̂L
min

1 ]/Ker(∂1) ∼= Z[BL0]0

44
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4.5 The construction of the expected Albanese

variety of a non-Archimedean uniformized

variety by a “generalized Schottky group”

and some steps to prove that it is a torus

when d = 2

We introduce the elements which allow to define the non-Archimedean
uniformized varieties introduced by Mustafin. They are a group being a gen-
eralization to any dimension of Schottky groups, an associated compact set
and the related rigid analytic space whose quotient by the given group is the
uniformized variety. We recall the Drinfeld reduction map and some defini-
tions given in the section 3.4 of this thesis which can be done without any
change in any dimension, and we prove some properties about them. With
these elements, we show the construction of an object which we conjecture
that it has the universal property of the Albanese variety in the category of
abeloid varieties. Then, using the isomorphism between harmonic measures
and harmonic cochains proved in the previous section, we reduce the proof
of that such object is a torus to that a certain map involving the reduction
of the uniformized variety is injective.

Through this section it is not necessary to assume that the dimension is
d = 2 unless the parts involving harmonic cochains.

4.5.1 Integration on a compact set L ⊂ P(V ) and the
analytic reduction

Let L ⊂ P(V ) be a closed subset. The analytic space associated to L is

ΩL = PV ∗ \
⋃
z∈L

Hz.

The retraction map

As observed by Bruhat and Tits in [BT72, Note ajoutée sur épreuves, pp. 238-
239], we may identify |B(G)| with the set of homothety classes of diagonal-
izable real norms on V , where a norm

α : V −→ R≥0
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is diagonalizable if there exists a basis v0, . . . , vd of V such that

α

(
d∑
i=0

λivi

)
= max

i=0,...,d
{α(vi)|λi|}.

Remark 4.5.1. We use the term diagonalizable instead of decomposable by
coherence with the section 3.1 and the references cited there, mainly [RTW15,
§1.2].

Further, given a vertex [L] ∈ B(G)0, the corresponding norm (up to
homothety depending on the chosen representant of the lattice) is defined by

αL(v) := min{|λ| : λ−1v ∈ L}

and reciprocally, the lattice associated to a norm α is

Lα := {v ∈ V | α(v) ≤ 1}.

Then, for any complete extension L|K we have a retraction map

rV (L) : ΩP(V )(L) −→ |B(G)|

given by rV (L)(ω)(v) = |ω(v)| for ω ∈ ΩP(V ) and v ∈ V . Note that these
maps are the evaluation on L of a map

rV : ΩP(V ) −→ |B(G)|

Proposition 4.5.2. The retraction map rV : ΩP(V ) −→ |B(G)| and its re-
striction rV : Ωnr

P(V ) −→ B(G)0 are surjective and GL(V )-equivariant.

The integration map

Let L ⊂ P(V ) be a compact set, and let ΩL be its associated analytic
space and BL the corresponding chamber complex.

We want to build an integration map

×
∫
•
d : Z[ΩL]0 −→ Hom(M (L,Z)0,Gm,K).

To do that we may copy verbatim adapted to higher dimension (and we do)
the construction made in the section 3.4 of this work.

Let L|K be an arbitrary compete extension of fields.
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Definition 4.5.3. Let P be a finite set of points in ΩL(L), and consider
D :=

∑
p∈P mpp a divisor of degree zero. We denote by fD the element

of Maps(L, L∗)/L∗ which is defined up to scalars as follows: if we choose
representatives wp ∈ V ∗ for any p ∈ P and vq ∈ V for q, then

fD(q) :=
∏
p∈P

wp(vq)
mp

does not depend on vq. Any other election of the vectors vp change fD to λfD
for some λ ∈ L∗.
Remark 4.5.4. Given divisors D,D′ ∈ Z[ΩL(L)]0 we have fD+D′ = fDfD′
and f−D = f−1

D .
In particular, for any points p, p′, p′′ ∈ ΩL we have

fp′−p = fp′−p′′fp′′−p.

Remark 4.5.5. We can see the degree zero divisor 0 as the divisor 0p for
any p ∈ ΩL(L). Therefore, as mp = 0, we get f0 ≡ 1.

Let us apply the valuation map to these functions:

L
fD // L∗

vK // Q.

Lemma 4.5.6. Let p, q ∈ Ωnr
P(V ) be points such that (rV (p), rV (q)) = e ∈ B̂L

min

1 .
Then

vK (fq−p) = χBL(e) − 1.

Proof. Let us write e = (L0 ) L1 ) πKL0) and recall that z ∈ B(e) if and
only if L1 = πKL0 + (z

⋂
L0), that is, for any representant vz ∈ L0 \ πKL0

of z it is in L1 \ πKL0. We assume that there is an unramified complete
extension L|K such that p, q ∈ ΩP(V )(L). Let us take z ∈ L, consider any
representants ωp, ωq ∈ P(V ∗L ) of p and q respectively, and observe that

L0 = {v ∈ V : |ωp(v)| ≤ 1} = {v ∈ V : vK(ωp(v)) ≥ 0},

L1 = {v ∈ V : |ωq(v)| ≤ 1} = {v ∈ V : vK(ωq(v)) ≥ 0}
and

πKL0 = {v ∈ V : vK(ωp(v)) ≥ 1}.
Then we have 0 ≤ vK(ωp(vz)) < 1 and so vK(ωp(vz)) = 0, and, if z ∈ B(e),
then vK(ωq(vz)) = 0, while if z 6∈ B(e), then vK(ωq(vz)) = −1.

Now we compute

vK (fq−p(z)) = vK

(
ωq
ωp

(vz)

)
=

{
0 if z ∈ BL(e)
−1 if z 6∈ BL(e).

and we get that we claimed.
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Definition 4.5.7. Given any degree 0 divisor D =
∑

i∈I mipi with support in
ΩL(L) (i.e. mi ∈ Z, pi ∈ ΩL(L), being I a finite set and with

∑
i∈I mi = 0)

we choose vi in V ∗ representatives of the pi ∈ PV ∗(L) and consider the map up
to scalars fD ∈ Maps(L, L∗)/K∗ given by a representant

∏
i∈I wi(x)mi (which

depends on the wi’s). Let µ ∈M (L,Z)0 be a Z-valued harmonic measure on
L.

We define

×
∫
L,D

dµ := ×
∫
L
fDdµ ∈ L∗,

which is well defined since the integral does not depend on fD but only on
D. Indeed, although the representant of fD depends on the elections of the
representatives in V ∗ of the points in PV ∗(L), the multiplicative integral does
not, since the measure is harmonic.

In general, when some L was fixed previously, we will omit its correspond-
ing set, writing

×
∫
D

dµ := ×
∫
L,D

dµ,

meanwhile we will specify the other sets over which we will integrate.

Note also that when D = 0, we have ×
∫

0

dµ = 1, since f0 ≡ 1.

Therefore, this definition gives us a morphism of groups

Z[ΩL(L)]0

×
∫
•
d

// Hom(M (L,Z)0, L
∗)

D � // ×
∫
D

d : µ 7−→ ×
∫
D

dµ

The lemma 3.4.10 generalizes to any group Γ ⊂ PGL(V ) acting on L, so
this map is Γ-equivariant.

Lemma 4.5.8. Let p, q ∈ Ωnr
P(V ) be points such that (rV (p), rV (q)) = e ∈ B̂L

min

1

and let µ ∈M (L,Z)0. Then

vK

(
×
∫
q−p

dµ

)
= µ(BL(e)).

Proof. This is a corollary of lemma 4.5.6. Indeed, we have

vK

(
×
∫
q−p

dµ

)
=

∫
L

vK (fq−p) dµ =

∫
L

(χBL(e) − 1)dµ = µ(BL(e)).

where we are also using the additive integrals theory introduced in section 2.3.
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Remark 4.5.9. Note that given p, p′ ∈ Ωnr
P(V ) such that rV (p), rV (p′) ∈ BL0,

we have an oriented path
∑r

i=1 ei ∈ Z[B̂L
min

1 ] from rV (p) to rV (p′) and points
pi ∈ Ωnr

P(V ), for i = 0, . . . , r, such that p0 = p, pr = p′, rV (p0) = s(e1),

rV (pr) = t(er) and rV (pi) = t(ei) = s(ei+1) for i = 1, . . . , r − 1, and then

vK

(
×
∫
p′−p

dµ

)
= vK

(
r∏
i=1

×
∫
pi−pi−1

dµ

)
=

=
r∑
i=1

vK

(
×
∫
pi−pi−1

dµ

)
=

r∑
i=1

µ(BL(ei))

If we restrict to dimension d = 2, we have defined harmonic cochains and
the map κ : M (L,Z)0 −→ C1

har(BL,Z), so that applying the remark 4.4.30,
we get

vK

(
×
∫
p′−p

dµ

)
=

r∑
i=1

µ(BL(ei)) = κ(µ)

(
r∑
i=1

ei

)
= κ(µ)(rV (p′)− rV (p)).

4.5.2 Generalized Schottky groups in PGL(V )

Hyperbolic subgroups of PGL(V )

Definition 4.5.10. An element γ ∈ PGL(V ) is said to be hyperbolic if for
any representant γ̃ ∈ GL(V ) all its eigenvalues are in K and two of them have
different valuation. It is said strictly hyperbolic if, moreover, γ̃ diagonalizes.

Lemma 4.5.11. If γ ∈ PGL(V ) is hyperbolic, it has no torsion.

Proof. Since a matrix representing γ can be taken triangular superior, and we
only need its diagonal, we can take its diagonal (λ0

γ, . . . , λ
d
γ) (as if γ would be

strictly diagonal). We also can assume that the two eigenvalues with different
valuation are λ0

γ, λ
1
γ. The eigenvalues of the n-th power of γ are (λiγ)

n, and
the difference between the valuations of (λ0

γ)
n and (λ1

γ)
n is n times the initial

difference, therefore, each time higher. Thus, none power of γ can be the
identity.

Definition 4.5.12. A subgroup H ⊂ PGL(V ) is said to be hyperbolic (resp.
strictly hyperbolic) if all its elements distinct of the identity are hyperbolic
(resp. strictly hyperbolic).

Recall the next well known result.
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Theorem 4.5.13. If A1, . . . , Ar are linear operators on V , each of them
diagonalizable, they are simultaneously diagonalizabe (there exists a basis for
which all of them diagonalize) if and only if they commute.

These property characterizes elements being in the same maximal torus
of GL(V ). The conjugation matrix which relates it to the “canonical torus”
Gd+1
m,K gives the matrix of change of basis diagonalizing the given matrices.

Let us denote the set of fixed points in P(V ) of a subgroup Γ ⊂ PGL(V )
by

LΓ := P(V )Γ.

Remark 4.5.14. The torus T = Gd+1
m,K/Gm,K ⊂ PGL(V ) is the centralizer of

the “reference points” p0, . . . , pd, and reciprocally, they form the set of fixed
points of the torus: LT = {p0, . . . , pd}. Since each other maximal K-split
torus is conjugate to it, it is the centralizer in PGL(V ) of a set of d + 1
linearly independent points which is its set of fixed points, and the sets of
maximal K-split tori and of these centralizers coincide. Further, we have

γLT = LγTγ−1

for any γ ∈ PGL(V ).

MAH subgroups

Lemma 4.5.15. Let T ⊂ PGL(V ) be a maximal K-split torus and let
H ⊂ T be a strictly hyperbolic subgroup. Then H is free as abelian group
and rankZ(H) ≤ d.

Proof. By conjugation, we assume that H ⊂ Gd+1
m,K/Gm,K , so the elements of

H are diagonal matrices up to scalars with all the diagonal elements distinct
of zero. Therefore, we can lift H to a subgroup H̃ ⊂ Gd+1

m,K ⊂ GL(V ) as

follows: if the diagonal of γ ∈ H is (λ0
γ, . . . , λ

d
γ), multiply it by (λ0

γ)
−1 and

take that representant which we denote γ̃, that is the one having λ0
γ̃ = 1.

Thus we have a morphism of abelian groups

H
vK // Zd

γ =




1

λ1
γ 0

. . .

0 λdγ


 � // (vK(λ1

γ), . . . , vK(λdγ))
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Since any γ 6= 1H is strictly hyperbolic, there is an index i ≥ 1 such that
vK(λiγ) 6= vK(1) = 0, so this map is injective. Thus, H is isomorphic to its
image, a subgroup of a finite generated free abelian group of rank d, therefore
H is a finite generated free abelian group with rank(H) ≤ d.

Proposition 4.5.16. Let T ⊂ PGL(V ) be a maximal K-split torus, and let
H ⊂ T (and so LT ⊂ LH) be another subgroup. Let v0, . . . , vd ∈ V the basis
given by choosing representants of the points of LT = {[v0], . . . , [vd]}. Then,
the following are equivalent:

1. H is a strictly hyperbolic subgroup and H ∼= Zd.

2. There exist generators γ1, . . . , γd ∈ H such that representants γ̃i ∈ GL(V )
verify γ̃ivj = λjivj for λji ∈ K∗ and, the matrix

M =
(
vK(λji )− vK(λ0

i )
)
i,j≥1

=

=

 vK(λ1
1)− vK(λ0

1) . . . vK(λ1
d)− vK(λ0

d)
...

...
vK(λd1)− vK(λ0

1) . . . vK(λdd)− vK(λ0
d)


has rank d.

Proof. 1. =⇒ 2.| Since H ∼= Zd, it is generated by γ1, . . . , γd ∈ H, and any

representants γ̃i ∈ GL(V ) satisfy equalities of the form γ̃ivj = λjivj with
λji ∈ K∗, due to the points [vj] are fixed by the γi. Consider the matrix

M =
(
vK(λji )− vK(λ0

i )
)
i,j≥1

=

(
vK

(
λji
λ0
i

))
i,j≥1

.

Note that this is the matrix of the linear map vK |H : H −→ Zd that we
introduced during the proof of the previous lemma, in the basis γ1, . . . , γd.
Since we have seen that it is injective, then rank(M) = rankZ(H) = d.

2. =⇒ 1.|
The hypothesis tells us that the elements of H diagonalize in the basis

given by v0, . . . , vd. Then, as we have just noted, M is the matrix of the
images of the elements γi by the map vK |H of the previous lemma. Since
rank(M) = d, these elements are linearly independent in H and there are no
torsion elements in H, therefore H ∼= Zd and it is strictly hyperbolic.

Definition 4.5.17. We will say that a subgroup H ⊂ PGL(V ) verifying any
of the equivalent conditions of the previous proposition is maximal abelian
hyperbolic (MAH for short), or also maximal toric hyperbolic.
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Corollary 4.5.18. If H ⊂ PGL(V ) is MAH, its set of fixed points LH
consists of d+ 1 linearly independent points.

Proof. With the notation of the previous proposition, we already have a basis
v0, . . . , vd such that

{[v0], . . . , [vd]} ⊂ LH

so, the only thing we have to prove is that there are no more points. Let
v =

∑d
i=0 αivi with αi ∈ K such that for each i = 1, . . . , d, γ̃iv = βiv (with

the same representants of the previous proof) for some βi ∈ K∗. Then, for
each i we have

d∑
j=0

λjiαjvj =
d∑
j=0

αj γ̃ivj = γ̃iv = βiv =
d∑
j=0

βiαjvj.

Thus αj 6= 0 implies that λji = βi. If v 6= vi for all i, there are j1 6= j2 such
that αj1 , αj2 6= 0, so λj1i = λj2i for each i, giving place to two equal columns
in the matrix M of the valuations, which we have seen that has rank d.
Therefore, [v] has to be one of the points [vi], as we wanted to show.

Remark 4.5.19. Since, if H is MAH, LH is finite, we have

ΓLH =
⋃
p∈LH

Γp.

Let H ⊂ PGL(V ) be MAH and fix a basis v = {v0, . . . , vd} of V for
which H consists of diagonal matrices up to K∗. Consider also the standard
symmetric bilinear form in V with respect to the coordinates in this basis

Φ : V × V // K

(
d∑
i=0

αivi,
d∑
i=0

βivi

)
� // Φ

(
d∑
i=0

αivi,
d∑
i=0

βivi

)
=

d∑
i=0

αiβi.

Note that given λ ∈ K∗ we have Φ(v, v′) = 0 if and only if Φ(v, λv′) = 0. We
can define for any subspace W ⊂ V , its orthogonal with respect to v as

W⊥v := {u ∈ V | Φ(w, u) = 0 ∀w ∈ W}

Since this is another linear subspace, we can projectivize this definition.
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Remark 4.5.20. Consider the dual basis of v in V ∗ which is w = {ω0, . . . , ωd}
determined by the relations ωi(vj) = δij. Then we define naturally the or-
thogonal of W ⊂ V in V ∗ as

W⊥ := {ω ∈ V ∗ | ω(w) = 0 ∀w ∈ W}

If we apply the isomorphism ϕv : V ∗ −→ V defined by ϕv(ωi) = vi we have

W⊥v = ϕv(W
⊥).

Given a point p ∈ P(V ), we denote its orthogonal hyperplane with respect
to the basis v as Hv

p ⊂ P(V ).

Remark 4.5.21. For a point p ∈ {[v0], . . . , [vd]} =: P, the hyperplane Hv
p is

independent of the representant vi chosen for [vi] so we can write HPp := Hv
p,

and, concretely

HPpi =

{[∑
j 6=i

αjvj

]
∈ P(V )

}
.

Note also that
d⋂
i=0

HPpi = ∅.

Lemma 4.5.22. Let H ⊂ PGL(V ) be MAH and p ∈ LH . Then, there exists
γ ∈ H such that for all p′ 6∈ HLHp

lim
n→∞

γnp′ = p.

Proof. After conjugation, we can suppose that H are classes of diagonalizable
matrices and LH = {p0, . . . , pd} are the “reference” points for the canonical
basis, and we take without loss of generality p = p0 = (1 : 0 · · · : 0). Since
the map vK |H : H −→ Zd has rank d, there is an element

(v1, . . . , vd) ∈ Im(vK |H) ∩ Z>0.

Its preimage is the set of elements γ ∈ H such that vK(λ0
γ) < vK(λiγ) for all

i 6= 0. Take any of them and the representant γ̃ with λ0
γ̃ = 1. Since p′ 6∈ HLHp0

,

p′ can be represented by a vector with the form v′ = v0 +
∑d

i=1 αivi and we
have

γ̃nv′ = v0 +
d∑
i=1

(λiγ̃)
nαivi

Since the valuations vK(λiγ̃) are strictly positive, their powers tend to infinity,
and so,

lim
n→∞

γnp′ = p0.
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Generalized Schottky groups

Let Γ ⊂ PGL(V ) be any subgroup. Define its set of limit points as

LΓ :=
⋃
H⊂Γ
HMAH

LH .

Definition 4.5.23. A subgroup Γ ⊂ PGL(V ) is a generalized Schottky group
if:

1. It is hyperbolic.

2. It is finitely generated.

3. There exists a MAH subgroup H ⊂ Γ.

4. Γ · p is compact for all p ∈ P(V ).

5. BLΓ
is a building.

6. Γ\BLΓ
is a finite simplicial complex and

πΓ : BLΓ
−→ Γ\BLΓ

is a universal covering.

Proposition 4.5.24. The action of Γ on BLΓ
is free.

Proof. This is due to the fact that all the elements of Γ are hyperbolic, and
so torsion-free (cf. [Gar73, Lem. 2.6] and [Mus78, Prop. 1.4]).

Remark 4.5.25. Let us enumerate a number of immediate facts from the
definition:

1. After a finite complete extension L|K, Γ\BLΓ
becomes always a sim-

plicial complex.

2. Since BLΓ
is a universal cover, then

Γab ∼= H1(Γ\BLΓ
,Z).

3. The quotient being a simplicial complex means, in particular, that it
has no loops, what implies that for each vertex Λ ≤ BLΓ

and each
γ ∈ Γ \ {1Γ}: ρ(Λ, γΛ) 6= 1. Further, since Γ acts freely on BLΓ

, we
get ρ(Λ, γΛ) ≥ 2, which is the assumption made in [dS01, § 9.1]. A

consequence of this is that given a minimal edge e ∈ B̂LΓ

min

1 , it is not
identified with any edge in FlowLΓ

(e).
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4. Since the action of PGL(V ) on BLΓ
preserves the cyclic order of its

cells and the types of the pointed simplices, these notions go down to
the quotient. Thus,

(Γ\BLΓ
)q := Γ\BLΓq and Γ̂\BLΓ

t

q := Γ\B̂LΓ

t

q.

In particular, the maps StminLΓ
and ∂min also go down to the quotient.

By the last comment of the previous item, the map FlowLΓ
also can be

well defined on the quotient, over an edge e as the edges in StminLΓ
(t(e))

which do not share any chamber with e, it verifies

FlowLΓ
(e) =

{
e′ | e′ ∈ FlowLΓ

(e)
}

and e 6∈ FlowLΓ
(e) ⊂ StminLΓ

(t(e)).

Conjecture 1. The first four items imply the condition 5) and, after a finite
complete extension L|K, they also imply 6), in the definition of generalized
Schottky group.

Lemma 4.5.26. If Γ ⊂ PGL(V ) is a generalized Schottky group and P ⊂ LΓ

is a subset of d+ 1 points linearly independent, then

LΓ = ΓP .

In particular, this is the case for P = LH where H ⊂ Γ is MAH.

Proof. We only have to show that any point p ∈ LH′ for H ′ ⊂ Γ MAH is in
the closure of ΓP .

By hypothesis, there is no hyperplane H such that P ⊂ H. Then, there is
at least a point q ∈ P such that q 6∈ HLH′p , and we know by the lemma 4.5.22
that there is γ ∈ H ′ ⊂ Γ such that

p = lim
n→∞

γnq ∈ ΓP .

Corollary 4.5.27. If Γ is a generalized Schottky group, the set LΓ is com-
pact, so that BLΓ

is locally finite.

Remark 4.5.28. We got this without using the condition 6) in the definition
of generalized Schotty group.

Proposition 4.5.29. The quotient XΓ := Γ\ΩLΓ
is a rigid analytic variety,

and its reduction has dual complex Γ\BLΓ
.

Proof. This is the result given in [Mus78, Thm. 3.1].

Note that the examples A) and B) in [Mus78, § 4] also apply here.
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4.5.3 The conjectural Albanese variety and Abel-Jacobi
map

Let Γ ⊂ PGL(V ) be a generalized Schottky group, and let L := LΓ ⊂ P(V )
be its associated compact set.

As in the section 3.9 of the chapter 3 for dimension 1, we have a map

Γab ∼= H1(Γ,Z) −→ H0(Γ,Z[ΩL]0) = Z[ΩL]0Γ

obtained from applying Γ-coinvariants to the short exact sequence

0 −→ Z[ΩL]0 −→ Z[ΩL] −→ Z −→ 0.

After composing that connecting morphism with the integration map built
before, we get the morphism

I : Γab −→ Hom(M (L,Z)Γ
0 ,Gm,K) =: T

given by

I (γ) = ×
∫
γp−p

d : µ 7→ ×
∫
γp−p

dµ for any p ∈ ΩL.

Note that Im(I ) ⊂ T (K) = Hom(M (L,Z)Γ
0 , K

∗) as in dimension 1.

Let L|K be a complete extension such that the analytic varietyXΓ := Γ\ΩL
has some L-point p ∈ XΓ(L). Then, there is a map

XΓ

ιp // T/I (Γab)

q � // ιp(q) : µ 7−→ ×
∫
q−p

dµ

We recall next the definition of abeloid variety from [Lüt09]:

Definition 4.5.30. An abeloid variety is a group object in the category of
rigid analytic spaces whose underlying variety is smooth, proper and con-
nected.

Remark 4.5.31. The main result of [Lüt95] tells that all the abeloid varieties
are, after a suitably extension of the base field, an analytic quotient by a
lattice of an abeloid group with good reduction (whatever it be) by an affine
torus. In particular, rigid analytic torus are abeloid varieties.
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Conjecture 2. The object A(XΓ) := T an/I (Γ) is a rigid analytic torus and
for any complete extension L|K such that XΓ(L) 6= ∅ and for any p ∈ XΓ(L),
the map

XΓ,L

ιp // A(XΓ)L

q � // ιp(q) : µ 7−→ ×
∫
q−p

dµ

is a morphism of analytic varieties such that ip(p) = 0, and for any such
other map ϕ : XΓ,L −→ AL, where AL is an abeloid variety and ϕ(p) = 0,
there exists a unique morphism of abeloid varieties

φ : A(XΓ)L −→ AL

such that ϕ = φ ◦ ιp.

Remark 4.5.32. It seems reasonable to expect that the universal property
in the conjecture can be reduced to the cases in which AL is a rigid analytic
torus, by means of topological arguments.

Remark 4.5.33. We just are stating a generalization of the universal prop-
erty of the Albanese torus in the category of abeloid varieties.

In the previous chapter we proved it when the varieties are curves, in
which case they are always algebraic, so that A(XΓ) is the Albanese torus for
d = 1.

4.5.4 Towards a proof of the conjecture 2 when d = 2,
I: harmonic cochains on the simplicial complex
quotient of BLΓ

and an equivalent formulation of
being an analytic torus for A(XΓ)

Let Γ ⊂ PGL(V ) be a generalized Schottky group, and let L := LΓ ⊂ P(V )
be its associated compact set and let KΓ := Γ\BLΓ

. Let the dimension be
d = 2.

To finish, we show that under these assumptions, proving that T/I (Γab)
is an analytic torus reduces to see that a certain map involving harmonic
cochains on KΓ instead of harmonic measures is an isogeny.

Definition 4.5.34. A map c : Z[K̂Γ

min

1 ] −→ Z is called a harmonic cochain
if it satisfies the following properties:

• c ◦ StminL = 0.
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• For any minimal edge e ∈ K̂Γ

min

1 , c(e) = c(FlowL(e)), that is

c ◦
(
1K̂Γ

min

1
− FlowL

)
= 0.

• c ◦ ∂min = 0.

The set of harmonic cochains is denoted by C1
har(KΓ,Z).

Remark 4.5.35. The facts that all these conditions are local, and that for
each vertex Λ ≤ BLΓ

and for each γ ∈ Γ \ {1Γ}, ρ(Λ, γΛ) ≥ 2, imply

C1
har(BLΓ

,Z)Γ ∼= C1
har(KΓ,Z).

Lemma 4.5.36. The map

Γab
ψ // Hom(C1

har(BL,Z)Γ,Z)

γ � // ψγ : c 7−→ ψγ(c) = c (P (Λ, γΛ))

is well defined, independent of Λ ∈ BL0 and a morphism of abelian groups.

Proof. The map is well defined if it is independent of Λ and of the path
P (Λ, γΛ). The independence of the path was proved in lemma 4.4.28. To
get the independence of Λ, for any other Λ′ consider the oriented closed path

union (sum in Z[B̂L
min

1 ]) of oriented paths P (Λ, γΛ), P (γΛ, γΛ′), P (γΛ′,Λ′)
and P (Λ′,Λ). Since it is in Ker(∂1), c vanishes on it. Moreover, since c is
Γ-invariant,

c(P (γΛ, γΛ′)) = c(γP (Λ,Λ′)) = c(P (Λ,Λ′)) = −c(P (Λ′,Λ)),

and therefore

c(P (Λ, γΛ)) = −c(P (γΛ′,Λ′)) = c(P (Λ′, γΛ′)).

To see that the map is a morphism, note that given γ, γ′ ∈ Γ, we get an
oriented path from Λ to γγ′Λ by adjoining a path from Λ to γ′Λ with a path
from γ′Λ to γγ′Λ.

Remark 4.5.37. We can reinterpret this lemma as follows: Γ acts on BL
simplicially, and so, acts in the short exact sequence

0 −→ Z[BL0]0 −→ Z[BL0] −→ Z −→ 0
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what gives to us a connecting morphism

Γab ∼= H1(Γ,Z) −→ H0(Γ,Z[BL0]0) = Z[BL0]0Γ.

The corresponding lemma would say that the map

Z[BL0]0 −→ C1
har(BL,Z)∨

of corollary 4.4.29 is Γ-equivariant, so we could compose

Γab −→ Z[BL0]0Γ −→ Hom(C1
har(BL,Z),Z)Γ = Hom(C1

har(BL,Z)Γ,Z)

to get ψ.

Let us consider the isomorphism

κ : M (L,Z)0 −→ C1
har(BL,Z),

restricted to Γ-invariant harmonic measures and cochains, and the projection

πΓ : BL −→ Γ\BL.

Proposition 4.5.38. Given γ ∈ Γ, µ ∈M (L,Z)Γ
0 , p ∈ Ωnr

P(V ), Λ ∈ BL0, we
have

vK

(
×
∫
γp−p

dµ

)
= κ(µ)(P (Λ, γΛ)) = ψγ(κ(µ)).

where P (Λ, γΛ) ∈ Z[B̂L
min

1 ] is any path from Λ to γΛ.

Proof. Apply the remark 4.5.9 and recall that rV is GL(V )-equivariant and
the expression in the middle is independent of Λ.

Theorem 4.5.39. If

ψ : Γab −→ Hom(C1
har(KΓ,Z),Z)

is an isogeny, A(XΓ) = T/I (Γab) is an analytic torus.

Proof. Compose the integration map

I : Γab −→ Hom(M (L,Z)Γ
0 ,Gm,K) = T

with the induced by the valuation,

vK∗ : Hom(M (L,Z)Γ
0 , K

∗) −→ Hom(M (L,Z)Γ
0 ,Z) ∼= Zg
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(where g is the rank of Γ), so by the last proposition we get a commutative
diagram

Γab

&&

I //

ψ

��

Hom(M (L,Z)Γ
0 , K

∗)

vK∗

��
Hom(M (L,Z)Γ

0 ,Z)

Hom(C1
har(BL,Z)Γ,Z)

κ∨∼=

OO

By [FvdP04, §6.4], T/I (Γab) is an analytic torus if and only if

vK∗ : I (Γab) −→ Hom(M (L,Z)Γ
0 ,Z),Z)

is an isogeny, what, since κ is an isomorphism, is equivalent to that

vK∗ : I (Γab) −→ Hom(C1
har(BL,Z)Γ,Z) ∼= Hom(C1

har(KΓ,Z),Z)

is an isogeny. But ψ = κ−1 ◦ vK∗ ◦I and I : Γab −→ I (Γab) is surjective,
therefore Coker(ψ) ∼= Coker(vK∗) and if ψ is injective, then vK∗|I (Γab) is also
injective.

Then, to get that A(XΓ) is an analytic torus when d = 2 we just have to
see that ψ is an isogeny. We will prove that ψ has finite cokernel, so that we
can formulate the belief that A(XΓ) is an analytic torus as:

Conjecture 3. The map ψ is injective.

4.5.5 Towards a proof of the conjecture 2 when d = 2,
II: the map ψ has finite cokernel

We mantain the same hypotheses and notation of the previous paragraph.
First, recall that Γab ∼= H1(KΓ,Z) and ψ is the natural map

ψ : H1(KΓ,Z) −→ Hom(C1
har(KΓ,Z),Z) = C1

har(KΓ,Z)∨

which maps a 1-chain to the evaluation of a harmonic cochain on it.
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Second, let us rewrite the definition of the harmonic cochains on KΓ.

Observe that C1
har(KΓ,Z) ⊂ Z[K̂Γ

min

1 ]∨, and

C1
har(KΓ,Z) := Ker(StminL )

⋂
Ker(∂min)

⋂
Ker(1K̂Γ

min

1
− FlowL) =

= Ker
(

StminL ⊕∂min ⊕
(
1K̂Γ

min

1
− FlowL

))
Let us denote by H := StminL ⊕∂min ⊕

(
1K̂Γ

min

1
− FlowL

)
the map

Z[K̂Γ

min

1 ]∨ −→ Z[K̂Γ0]∨ ⊕ Z[K̂Γ2]∨ ⊕ Z[K̂Γ

min

1 ]∨

defining the harmonic cochains, and observe that these modules are free and
finite generated, therefore C1

har(KΓ,Z) and Im(H ) are also finite generated
free abelian groups. As a consequence, dualizing we get a short exact se-
quence

0 −→ Im(H )∨ −→ Z[K̂Γ

min

1 ] −→ C1
har(KΓ,Z)∨ −→ 0.

Let us denote by η the map Z[K̂Γ

min

1 ] −→ C1
har(KΓ,Z)∨, which maps z to the

linear map that evaluated on a harmonic cochain is η(z) := z∗(c) = c(z), and
note that it factorizes as the composition of two surjective maps:

Z[K̂Γ

min

1 ] −→ Ker(StminL )∨ −→ C1
har(KΓ,Z)∨.

Observe that by means of restriction and factorization we recover ψ from
η as we show in the next commutative diagram.

Z[K̂Γ

min

1 ]
η // // C1

har(KΓ,Z)∨

Ker(∂1)
?�

OO
ϕ

55

// // Ker(∂1)
Im(∂min)

=: H1(KΓ,Z)

ψ

OO

In addition, because of the various surjective maps we get

Coker(ψ) = Coker(ϕ) ∼=
Z[K̂Γ

min

1 ]

Ker(η) + Ker(∂1)
.

Consider now the composition

Z[KΓ0]
StminL // Z[K̂Γ

min

1 ]
∂1 // Z[KΓ0]
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Remark 4.5.40. Recall that in the lemma 4.4.27 we have proved that the

map ∂1 : Z[K̂Γ

min

1 ] −→ Z[KΓ0] applies onto Z[G0]0. We will say that the
1-skeleton of KΓ is a strongly connected graph.

Let us compute:

(∂1 ◦ StminL )(Λ) = ∂1

 ∑
s(e)=Λ

e

 =
∑
s(e)=Λ

t(e)− d+
ΛΛ

where d+
Λ is the out-degree of Λ, equal to the number of edges having it

as source. Let us denote this composition by ∆min and call it the oriented
Laplacian of KΓ. Note that Im(∆min) ⊂ Z[KΓ0]0. Observe that its matrix in
the basis of vertices is given as follows: if D+ is the diagonal matrix having
the element d+

Λ in the row corresponding to the vertex Λ and AKΓ = (aKΓ)ΛΛ′

is the adjacency matrix,

aKΓ

ΛΛ′ =

{
1 if there is an edge e verifying s(e) = Λ, t(e) = Λ′,
0 else,

then, ∆min is represented by AKΓ −D+. Let L = D+−AKΓ , and let LΛΛ′ be
the matrix result of removing the Λ-column and the Λ′-row, whose additive
opposite fits in the next diagram as follows:⊕

Λ′′∈KΓ0\{Λ}

ZΛ′′ �
� //

−LΛΛ′

��

Z[KΓ0]

∆min

��

∆min

uu

Coker(−LΛΛ′)

����

⊕
Λ′′∈KΓ0\{Λ′}

ZΛ′′

∼=

��

oooo Z[KΓ0]oooo

Z[KΓ0]0/ Im(∆min)
⊕

Λ′′∈KΓ0\{Λ′}

Z(Λ′′ − Λ′)oooo
. �

==

in the specified basis, where the isomorphism is given by the identity matrix,
we are taking into account that

Z[KΓ0]0 =
⊕

Λ′′∈KΓ0\{Λ′}

Z(Λ′′ − Λ′),
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and the projection from Z[KΓ0] onto the submodule generated by all the
vertices except Λ′ is the identity matrix on Z[KΓ0 \ {Λ′}] together with the
column zero for Λ′. Observe also that if det(LΛΛ′) 6= 0, then

|Coker(−LΛΛ′)| = |Coker(LΛΛ′)| = | det(LΛΛ′)|.

Definition 4.5.41. Let G = (V,E) be a directed graph. A vertex Λ ∈ V is
called a root if for every vertex Λ′ 6= Λ there is an oriented path from Λ′ to
Λ. A graph G is called an in-tree if it is a tree and it contains a root. It is
said also to be an arborescence to the root.

The out-degree of a vertex is the number of edges whose source is that
vertex. We denote it by d+.

Remark 4.5.42. If G is an in-tree with root Λ (“rooted at Λ”), then d+(Λ) = 0
and d+(Λ′) = 1 for all Λ′ 6= Λ. In fact, this is an “if and only if”.

Definition 4.5.43. Let G = (V,E) be a directed graph. An spanning in-
tree or in-branching is a subgraph T ⊂ G being an in-tree and such that
V (T ) = V (G).

Theorem 4.5.44 (Kirchhoff-Tutte Matrix-Tree Theorem). The number of
spanning in-trees rooted at Λ is det(LΛΛ).

Corollary 4.5.45. The abelian group Z[KΓ0]0/ Im(∆min) is finite.

Proof. It is enough to show that Coker(LΛΛ) is finite for some Λ ∈ KΓ0, and
so, it is also enough to see that det(LΛΛ) 6= 0. Now, by the Kirchhoff-Tutte
theorem this is equivalent to the existence of some spanning in-tree. Finally,
since the 1-skeleton of KΓ is a strongly connected graph, as we noted in the
remark 4.5.40, we conclude the existence of an in-branching rooted at Λ for
every Λ by the Edmonds branching theorem ([Edm73]).

Next note that

Ker(∂1)
⋂

Im(StminL ) = St(Ker(∆min)).

Theorem 4.5.46. The map

ψ : H1(KΓ,Z) −→ Hom(C1
har(KΓ,Z),Z) = C1

har(KΓ,Z)∨

has finite cokernel.
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Proof. Recall that we have

Coker(ψ) = Coker(ϕ) ∼=
Z[K̂Γ

min

1 ]

Ker(η) + Ker(∂1)
.

Moreover, the inclusion Ker(η) + Ker (∂1) ⊃ Im(StminL ) + Ker(∂1) induces a
surjective map

Z[K̂Γ

min

1 ]/
(
Im(StminL ) + Ker (∂1)

)
−→ Z[K̂Γ

min

1 ]/ (Ker(η) + Ker (∂1)) .

Therefore, it is enough to see that Z[K̂Γ

min

1 ]/
(
Im(StminL ) + Ker (∂1)

)
is finite.

Recall the remark 4.5.40, from which we deduce the next diagram

Z[K̂Γ

min

1 ]
∂1 // //

����

Z[KΓ0]0

����

Z[K̂Γ

min

1 ]/Ker (∂1)

∼=
∂1

33

����

Z[K̂Γ

min

1 ]/
(
Im(StminL ) + Ker (∂1)

)
∼=
∂1 // Z[KΓ0]0/ Im(∆min)

Thus, we are reduced to see that Z[KΓ0]0/ Im(∆min) is finite, but this is the
corollary 4.5.45
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Chapter 5

Conclusions and open questions

We have developed in the chapter 3 a construction of the Jacobian of
Mumford curves with all generality in a very natural way, obtaining on the
way a variety of results related to them. Further, a version of that construc-
tion gives us the Jacobian of a finite metric graph, as we have shown in the
chapter 2, and the same process of multiplicative integration with harmonic
measures on a compact set in the ends of a building can be done in higher
dimension, once we have the uniformized varieties built by Mustafin, as we
did in the chapter 4.

We also know the definition of harmonic cochains and the isomorphism
with harmonic measures in several cases. When L is a set of d + 1 points
in general position, BL is an apartment and the uniformized variety is an
abelian variety; when K is local, Γ is a torsion-free, discrete, cocompact
subgroup of PGL( K) an L = Pd(K); when L ⊂ P(K) is a compact set and
the dimension is d = 1, 2.

As we have already told, when the base field is p-adic and the given
uniformized variety is algebraic, Raskind and Xarles have related to the uni-
formized varieties what they called their p-adic intermediate Jacobians by
means of their cohomology groups, therefore, by the works of Schneider,
Stuhler, de Shalit and Alon, in the cocompact case they can be computed
through groups of harmonic cochains or harmonic measures (actually, for gen-
eral intermediate Jacobians, we should say harmonic distributions, following
the terminology of de Shalit and Alon in [AdS02]).

All these developments together lead us to believe that the construction
of the Jacobian of Mumford curves by using harmonic measures and mul-
tiplicative integrals, and using the isomorphism with harmonic cochains to
make the proofs is generalizable to any dimension of the uniformized va-
riety, to build any intermediate Jacobian, and over more general complete
non-Archimedean fields.

209



In the chapter 4 we have given a conjectural construction of the Albanese
variety of the Mustafin uniformized varieties as we introduced them in the
proposition 4.5.29, with the little licence that we refer to the universal prop-
erty of the Albanese variety in the category of abeloid varieties, and none
of them have to be algebraic. Further, in dimension 2 we have reduced the
fact that our construction gives an analytic torus to the injectivity of a map
related to a finite simplicial complex.

Thus, several questions remain open when one wants to extend the con-
struction of the Jacobians of Mumford curves to higher dimension.

The Albanese variety of a Mustafin uniformized variety

The first open questions which stand out are the conjectures we proposed
in the final part of this thesis.

We have given a construction in any dimension of an object that we expect
it is an analytic torus and it verifies the universal property of the Albanese
variety in the category of abeloid varieties. In dimension 2, we have reduced
the fact that it is an analytic torus to:

Conjecture 3. The map

ψ : H1(KΓ,Z) −→ Hom(C1
har(KΓ,Z),Z)

is injective, where KΓ = Γ\BLΓ
.

This would have as a consequence:

Corollary 5.0.1. Given a generalized Schottky group Γ ⊂ PGL(V ), if the
associated non-Archimedean uniformized variety XΓ = Γ\ΩLΓ

has dimension
2,

A(XΓ) :=
Hom(M (LΓ,Z)Γ

0 ,Gm,K)an

I (Γab)

is an analytic torus.

Then we could abbreviate our second conjecture in the 2-dimensional case
or, more generally, if we know that A(XΓ) is an analytic torus:

Conjecture 2’. For any complete extension L|K such that XΓ(L) 6= ∅ and
for any p ∈ XΓ(L), the map

XΓ,L

ιp // A(XΓ)L

q � // ιp(q) : µ 7−→ ×
∫
q−p

dµ
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is a morphism of analytic varieties such that ip(p) = 0, and for any such
other map ϕ : XΓ,L −→ AL, where AL is an abeloid variety and ϕ(p) = 0,
there exists a unique morphism of abeloid varieties

φ : A(XΓ)L −→ AL

such that ϕ = φ ◦ ιp.

If, as we told in the remark 4.5.32, it is enough to deal with analytic
torus, it can be stated as follows:

Conjecture 2”. For any complete extension L|K such that XΓ(L) 6= ∅ and
for any p ∈ XΓ(L), the map

XΓ,L

ιp // A(XΓ)L

q � // ιp(q) : µ 7−→ ×
∫
q−p

dµ

is a morphism of analytic varieties such that ip(p) = 0, and for any such
other map ϕ : XΓ,L −→ AL, where AL is an analytic torus and ϕ(p) = 0,
there exists a unique morphism of analytic torus

φ : A(XΓ)L −→ AL

such that ϕ = φ ◦ ιp.

Next, we reproduce this conjecture as in the previous chapter, without
any assumption:

Conjecture 2. The object A(XΓ) := T an/I (Γ) is a rigid analytic torus and
for any complete extension L|K such that XΓ(L) 6= ∅ and for any p ∈ XΓ(L),
the map

XΓ,L

ιp // A(XΓ)L

q � // ιp(q) : µ 7−→ ×
∫
q−p

dµ

is a morphism of analytic varieties such that ip(p) = 0, and for any such
other map ϕ : XΓ,L −→ AL, where AL is an abeloid variety and ϕ(p) = 0,
there exists a unique morphism of abeloid varieties

φ : A(XΓ)L −→ AL

such that ϕ = φ ◦ ιp.
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Generalizing Schottky groups to any dimension and the chamber
subcomplexes BL of the Bruhat-Tits building

Another conjecture we have stated refers to the definition of generalized
Schottky group, to which we impose several conditions:

Conjecture 1. Let K a complete, discrete, valued field and V a K-vector
space. Let Γ ⊂ PGL(V ) be a finitely generated, hyperbolic subgroup contain-
ing a MAH subgroup H and such that Γ · p is compact for all p ∈ P(V ).
Then

• BLΓ
is a building.

• After a finite complete extension L|K, Γ\BLΓ
is a finite simplicial

complex and

πΓ : BLΓ
−→ Γ\BLΓ

is a universal covering.

More specifically, the question should be on the appropiate conditions
to generalize Schottky groups and obtaining Mustafin uniformized varieties.
This author also imposes as a condition that the quotient is finite, but he
takes a building by definition as a convex envelope in the Bruhat-Tits build-
ing, while we prefer to associate first a compact set LΓ ⊂ P(V ) to the given
group and then to take the associated chamber subcomplex BLΓ

≤ B(G).
From this the next question arises:

Question 1. For which compact (or more generally, closed) sets L ⊂ P(V ),
the chamber subcomplex BL ≤ B(G) is a building? Equivalently, we are
asking for, that given two chambers in BL there is an apartment in BL
containing both.

It is important, among other matters, because in the 2-dimensional case
we have proved the isomorphism M (L,Z)0

∼= C1
har(BL,Z) only when BL is a

building or L is finite. Nevertheless, we only have used that BL is a building
in one step in the proof of the propsition 4.4.24. For dimension 2, where we
have defined harmonic cochains, we can formulate the next conjecture:

Conjecture 4. For any compact set L ⊂ P(V ), the map

κ : M (L,Z)0 −→ C1
har(BL,Z)

is an isomorphism.
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Another conjecture on the generalization to any dimension of Schottky
groups relates to MAH subgroups as an extension to any dimension of cyclic
subgroups in dimension 1.

Conjecture 5. A MAH subgroup is a generalized Schottky group, or equiv-
alently, H · p is compact for all p ∈ P(V ).

Remark 5.0.2. If Γ is a generalized Schottky group and H ⊂ Γ is a MAH
group, H also is a generalized Schottky group, since Γ · p is compact for any
p ∈ P(V ) and H · p ⊂ Γ · p is also compact as a closed subset of a compact
set.

Question 2. The previous conjecture is related to imposing the condition
that the closure of the orbit of any point is compact. We use it mainly to
prove that LΓ is compact, and therefore, that BL is locally finite; further,
Mustafin does not impose any other similar condition but the finiteness of
the quotient. Nevertheless, in dimension 1 we have used it to extend the set
of limit points to other compact sets in order to make some proofs.

Is this condicion necessary? Is it enough to impose a weaker condition
(at least, BL locally finite) to develope a suitable theory?

Another question on these groups uniformizing Mustafin varieties is on
the quotient finite simplicial complex?

Question 3. Which conditions characterize the finite simplicial complexes K
realizing as the degeneration complexes of Mustafin uniformized varieties, so
that they can be expressed as K = Γ\BLΓ

over a suitable complete extension
of K?

In dimension 1 we know there is no condition, but it does not seem to be
the general case. Moreover, in dimension 1 we have shown the construction
of the Jacobian of a graph. Then a related question appears:

Question 4. How can be defined the Albanese variety of a finite simplicial
complex, maybe under some assumptions as those which answer the previous
question? In which categories should we work to get these definitions?

Constructions in the Berkovich setting and tropical geometry in
any dimension

As in dimension 1 the base fields are not necessarily discrete, the quotients
Γ\BLΓ

are finite metric graphs, and thus, tropical curves. Then we can ask:
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Question 5. Is there in higher dimension an equivalence between certain
metric objects including the finite simplicial complexes of the form Γ\BLΓ

and some kind of tropical varieties as in dimension 1?

This would be more useful if the next question has an affirmative answer:

Question 6. Can Mustafin uniformization be extended to varieties over any
complete non-Archimedean field (without the discreteness condition), maybe
by means of the Berkovich analytic geometry?

On the side of Bruhat-Tits buildings in this setting, which have been re-
cently studied in [RTW10], [RTW12] and [RTW15], the next question arises:

Question 7. How to give them a suitable combinatorial structure? How to
describe the types of cells and, in particular, the minimal cells?

On the extension to any dimension of the properties for dimension
2

The isomorphism that we have proved in dimension 2 between harmonic
cochains and harmonic measures rests in properties and constructions that
we could make in dimension 2, but not in general. Further, through the
section 4.3 we could prove other results. Are these generalizable to any
dimension?

For example, we could prove the bijection between the ends of BL as
defined by us and the points of L, a result that we told to expect for L = P(V )
in the remark 4.2.34:

Conjecture 6. The map ε̃ : EL −→ L is a bijection.

Other results generalize to any dimension under the assumption that BL
is a building because of the convexity condition, as explained for a particular
proposition in the remark 4.3.6.

Later, we define a certain chamber-convex hull and we told in the re-
mark 4.3.22 to expect that it is equivalent to the given in [AB08]. Further,
our interest is in a result of the kind of the proposition 4.3.24. so that by
the commented in the remark 4.3.25 different definitions could be given. One
can ask which is better to generalize to higher dimension.

On more general harmonic cochains, harmonic distributions and
intermediate Jacobians

Next, we ask again on the harmonic cochains:
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Question 8. Given a compact set L ⊂ P(V ) on any dimension, how har-
monic cochains on the minimal edges of BL should be defined?

Once we have this definition, the known isomorphisms in dimensions 1
and 2, and in the abelian and local cocompact cases lead us to the conjecture:

Conjecture 7. For any compact set L ⊂ P(V ), the map

κ : M (L,Z)0 −→ C1
har(BL,Z)

is an isomorphism (maybe, under the assumption that BL is a building).

Actually, one can expect that a definition of harmonic cochains such that
κ is an isomorphism for finite sets L ⊂ P(V ) would be good in the sense that
the previous conjecture would be satisfied (since, as we did in dimension 2,
the proof could be done by means of a restriction to local isomorphisms which
could be seen for finite sets L).

A problem beyond that we do not know how to define harmonic cochains,
is that our given proofs depend strongly on the dimension, so that they are
not generalizable.

More widely, we can ask:

Question 9. Given a compact set L ⊂ P(V ) on any dimension d and given
1 ≤ q ≤ d, how harmonic cochains on the minimal q-cells of BL should be
defined?

We think the answer to these questions can be approached in the same
way that Schneider and Stuhler do in [SS91, §4], which is also described in
[dS01, §8.3], after comparing the combinatorial and the group theoretical
presentations of the buildings.

Let us denote the conjectural group of A-valued harmonic cochains on
the minimal q-cells of BL by Cq

har(BL, A). In [AdS02], given a certain
space of flags Bminq−1 which corresponds to the total Bruhat-Tits building
in the local, cocompact case, the authors define a certain space of har-
monic distributions D(Bminq−1 , K)har whose harmonicity condition only coin-
cides with that we defined in chapter 2 for q = 1. In this case they show
D(Bminq−1 , K)har ∼= Cq

har(B(G), K). Now, given a compact set L ⊂ P(V ) such
that BL is a building over a complete field with a discrete valuation, assume
we can associate to it a certain subset Lq ⊂ Bminq−1 , also in a certain set of ends
of the building (bigger than as we have defined it). Then we could extend
the conjecture on harmonic cochains on the minimal edges to:

Conjecture 8. Given a compact set L ⊂ P(V ) such that BL is a building,
there is an isomorphism D(Lq,Z)har ∼= Cq

har(BL,Z).
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These objects describe certain cohomology groups which give other in-
termediate Jacobians beyond the Albanese varieties. Under the assumption
that given L we know what is Lq, we could try to make a similar construction
to that we do for the Albanese variety. But a first question appears:

Question 10. How to build functions on Lq on which apply multiplicative
integrals?

Analytic constructions for other varieties with totally degenerate
reduction

Given a product of Mumford curves, it is also a variety with totally de-
generate reduction. The final and more general question which stands out
is how to build analytically the intermediate Jacobians defined by Raskind
and Xarles for any variety with totally degenerate reduction or for Berkovich
analytic generalizations.
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fibers, Arithmetic geometry (Cortona, 1994) (Cambridge), Sym-
pos. Math., XXXVII, Cambridge Univ. Press, 1997, pp. 45–69
(English). MR 98i:14011

[Bou02] Nicolas Bourbaki, Lie groups and Lie algebras. Chapters 4–6,
Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002

218

http://www.ams.org/mathscinet-getitem?mr=2008m:05167
http://www.ams.org/mathscinet-getitem?mr=2010e:14031
http://www.ams.org/mathscinet-getitem?mr=3204269
http://www.ams.org/mathscinet-getitem?mr=3455421
http://www.ams.org/mathscinet-getitem?mr=3428970
http://www.ams.org/mathscinet-getitem?mr=91k:32038
http://www.ams.org/mathscinet-getitem?mr=2005e:11062
http://www.ams.org/mathscinet-getitem?mr=98i:14011


(English), Translated from the 1968 French original by Andrew
Pressley. MR 1890629

[BMV11] Silvia Brannetti, Margarida Melo, and Filippo Viviani, On the
tropical Torelli map, Adv. Math. 226 (2011), no. 3, 2546–2586
(English). MR 2012e:14121

[BT72] François Bruhat and Jacques Tits, Groupes réductifs sur un
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2004 (English). MR 2004i:14023

[Gar73] Howard Garland, p-adic curvature and the cohomology of discrete
subgroups of p-adic groups, Ann. of Math. (2) 97 (1973), 375–423
(English). MR 47:8719

[Gar97] Paul Garrett, Buildings and classical groups, Chapman & Hall,
London, 1997 (English). MR 1449872

[GR96] E.-U. Gekeler and M. Reversat, Jacobians of Drinfeld modular
curves, J. Reine Angew. Math. 476 (1996), 27–93 (English).
MR 97f:11043

[Ger72] L. Gerritzen, On non-Archimedean representations of abelian va-
rieties, Math. Ann. 196 (1972), 323–346 (English). MR 0308132

[GvdP80] Lothar Gerritzen and Marius van der Put, Schottky groups
and Mumford curves, Lecture Notes in Mathematics, vol. 817,
Springer, Berlin, 1980 (English). MR 82j:10053

[GI63] O. Goldman and N. Iwahori, The space of p-adic norms, Acta
Math. 109 (1963), 137–177 (English). MR 0144889

220

http://www.ams.org/mathscinet-getitem?mr=2002a:14019
http://www.ams.org/mathscinet-getitem?mr=2005h:14049
http://www.ams.org/mathscinet-getitem?mr=0351889
http://www.ams.org/mathscinet-getitem?mr=644799 (83g:32001)
http://www.ams.org/mathscinet-getitem?mr=644799 (83g:32001)
http://www.ams.org/mathscinet-getitem?mr=2004i:14023
http://www.ams.org/mathscinet-getitem?mr=47:8719
http://www.ams.org/mathscinet-getitem?mr=1449872
http://www.ams.org/mathscinet-getitem?mr=97f:11043
http://www.ams.org/mathscinet-getitem?mr=0308132
http://www.ams.org/mathscinet-getitem?mr=82j:10053
http://www.ams.org/mathscinet-getitem?mr=0144889


[GK05] Elmar Grosse-Klönne, Acyclic coefficient systems on build-
ings, Compositio Math. 141 (2005), no. 3, 769–786 (English).
MR 2005m:20071

[GK11] , On the p-adic cohomology of some p-adically uniformized
varieties, J. Algebraic Geom. 20 (2011), no. 1, 151–198 (English).
MR 2012b:14037

[Gub07] Walter Gubler, Tropical varieties for non-Archimedean analytic
spaces, Invent. Math. 169 (2007), no. 2, 321–376 (English).
MR 2318559

[Gub10] , Non-Archimedean canonical measures on abelian vari-
eties, Compos. Math. 146 (2010), no. 3, 683–730 (English).
MR 2644932

[Har01] Urs T. Hartl, Semi-stability and base change, Arch. Math. (Basel)
77 (2001), no. 3, 215–221 (English). MR 2002h:14021

[Inf06] Carlos A. Infante, Ciclos algebraicos y reducción semiestable,
Ph.D. thesis, Universitat Autònoma de Barcelona, 2006.
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