
Doctoral Thesis

A Framework for Navigation of
Autonomous Characters in

Complex Virtual Environments

Author: Supervisor:

Ramon Oliva Dr. Nuria Pelechano

A thesis submitted in fulfilment of the requirements for the degree
of Doctor of Philosophy

in the

Research Center for Visualization, Virtual Reality and Graphics
interaction (ViRVIG)

Departament de Ciències de la Computació (CS)

September 19, 2016

2

Dedicated to my family and friends.

4

5

Abstract

The simulation of large numbers of autonomous characters in real time is an im-
portant field of research in both computer graphics and robotics. The computer
graphics industry has many applications that require these characters to nav-
igate complex virtual environments in a believable manner. Such applications
include video games and crowd simulation for planning or evacuation purposes.
In order to create autonomous characters it is necessary to solve the problem of
moving agents between two locations, at both the global and local navigation
levels. Global navigation has two main components: the path finding algorithms
being used and the space representation needed to abstract away the complexity
of the static geometry. Once a path is found in a virtual environment, a local
movement algorithm is applied to guide the agent through the free space rep-
resentation from one way point to the next. Local movement algorithms steer
the agent while avoiding collisions with obstacles and other agents. Although
both problems have been widely addressed in the literature, there are still many
aspects that need to be further improved at both the global and local level. This
PhD dissertation therefore explores two areas: (1) new algorithms to automat-
ically compute navigation meshes from complex virtual environments that can
improve the global navigation; and (2) new methods to enrich the quality of the
local movement given a general navigation mesh.

The main goal of this thesis has been the development of a unified framework
for the movement of autonomous characters in complex virtual environments,
specifically aimed at those challenging applications that require a real-time re-
sponse. In order to accomplish this goal, we first focused the research on de-
veloping a fully automatic system capable of generating a navigation mesh (a
special space partition used for navigation) for any 3D scene represented as a
polygon soup. Our system, entitled NEOGEN (from NEar-Optimal GEnerator
of Navigation meshes) produces a navigation mesh that satisfies two very im-
portant requirements: it provides a near-optimal space subdivision and a tight
adjustment to the input geometry. The first requirement is very important in
order to minimize the computational cost of path finding, while the second is
important for local movement. Realistic local movement requires an accurate
representation of the walkable space that allows the algorithm to make a more
realistic use of the environment by letting the characters move within the whole
navigable space. We call our algorithm near-optimal since it almost always
yields a solution in the lower fourth of the optimality interval.

As presented in this dissertation, the autonomous navigation mesh generator
has been built in several phases: (1) first we present a novel solution to compute
a near-optimal partition for a 2D polygon with holes (NEOGEN-2D); (2) then
we introduce a novel method to flatten the geometry given by a 3D polygon
soup to obtain the 2D simple polygon with holes needed for the previous step;
(3) next we present a method entitled NEOGEN-ML (the ML is for Multi-
Layered geometry), to classify any 3D geometry into layers through a GPU

6

based voxelization process, and then flatten each individual 3D floor. NEOGEN-
ML provides 2.5D navigation mesh as it can handle multiple layers with a tight
adjustment in 2D (X and Z axis) but not in Y; Finally (4), with the knowledge
acquired at this stage of the PhD and being aware of the limitations of the
voxelization phase, we present a final method, entitled NEOGEN-3D, which is a
novel algorithm that can handle any 3D geometry and extract a navigation mesh
that adjusts to the input geometry in its three dimensions. Taken together, our
contributions are a powerful tool to ease the process of creating the navigation
meshes needed to move characters in complex virtual environments.

The final contribution is a real-time technique to compute paths with any
desired amount of clearance that is independent of the underlying navigation
mesh being used. Clearance values are used for both global navigation (dis-
carding unreachable nodes due to the character’s size) and local movement by
strategically steering the characters. Attractor points for characters are set
based on clearance, position and trajectory, thus guaranteeing that agents in a
crowd will have different attractor points assigned. This reduces considerably
the number of collisions between agents or against the static geometry, as well
as obtaining a better usage of all the available space for navigation.

7

Declaration of Authorship

I, Ramon Oliva, declare that this thesis titled, ‘A Framework for Navigation
of Autonomous Characters in Complex Virtual Environments’ and the work
presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research
degree at this University.

• Where any part of this thesis has previously been submitted for a degree
or any other qualification at this University or any other institution, this
has been clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given.
With the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I
have made clear exactly what was done by others and what I have con-
tributed myself.

Signed:

Date:

8

Contents

1 Introduction 13

1.1 Contributions . 15

1.2 Organization of this document 16

1.3 Publications . 17

1.3.1 JCR Journals . 17

1.3.2 International Conferences 18

1.3.3 National Conferences . 18

1.3.4 Book Chapters . 18

2 State of the art 19

2.1 Global Movement . 20

2.1.1 Regular Grids . 20

2.1.2 Roadmaps . 23

2.1.3 Corridors . 27

2.1.4 Navigation Mesh . 30

2.2 Local Movement . 41

2.3 Path Finding . 49

2.4 Discussion . 58

3 Computing Navmeshes for 2D simple polygons 61

3.1 Overview . 62

3.2 Algorithm Description . 63

3.2.1 Creating portals . 65

3.2.2 Cell and Portal Graph construction 69

9

10 CONTENTS

3.3 Convexity Relaxation . 70

3.4 Discussion on the Navigation Mesh Created. 73

3.5 Results . 74

3.6 Conclusions . 81

4 Computing NavMeshes for 2.5D geometry 83

4.1 Converting a 3D World into 2D Polygons 84

4.1.1 Normal and Depth Map Extraction 84

4.1.2 Obstacle Detection . 86

4.1.3 Contour Expansion and Refinement 86

4.1.4 Polygon Reconstruction and Simplification 88

4.2 Automatically Generating NavMeshes 89

4.2.1 The GPU based version 89

4.2.2 The Portal Vertex-Portal case 92

4.3 Results . 92

4.4 Conclusions . 96

5 Computing NavMeshes for multi-layered 3D environments 99

5.1 Algorithm Description . 100

5.1.1 GPU coarse voxelization 101

5.1.2 Layer extraction and labeling 104

5.1.3 Layer refinement . 106

5.2 Results . 111

5.3 Conclusions . 120

6 Computing NavMeshes for arbitrary 3D environments 121

6.1 Algorithm Description . 123

6.1.1 Constructing the Terrain 124

6.1.2 Slope Constraint . 125

6.1.3 Ceil Constraints . 125

6.1.4 Constructing the NavMesh 126

6.2 Results . 131

6.3 Conclusions . 135

CONTENTS 11

7 Computing Exact Arbitrary Clearance for NavMeshes 137

7.1 Clearance Value of a Cell . 138

7.2 Finding Portals with Enough Clearance 140

7.3 Critical Radius: . 149

7.4 Dynamic Way Points . 149

7.5 Local Movement . 152

7.6 Results . 152

7.6.1 Performance . 155

7.6.2 Path finding . 158

7.6.3 Comparison of dynamic collisions 158

7.6.4 Comparison of collisions against geometry 160

7.7 Limitations of Path finding with Clearance 163

7.8 Conclusions . 167

8 Conclusions & Future Work 169

8.1 Conclusions . 169

8.2 Future Work . 171

12 CONTENTS

Chapter 1

Introduction

Autonomous characters are needed in many real time applications to enhance
the overall realism of the environment. In order to have those character wan-
dering such scenarios in a believable manner it is necessary to achieve realism in
both path planning and natural local motion. Real time path planning for au-
tonomous characters is a central problem in the fields of robotics, video games,
and crowd simulation. Such applications require one or many characters to fol-
low visually convincing paths in real time. Characters should move towards their
destination along a realistic path, maintaining an appropriate amount of clear-
ance with respect to the obstacles while avoiding collisions with other agents as
smoothly as possible.

Figure 1.1: Virtual crowds is of main importance in games such as the
Assassin’s Creed series. Crowded virtual environments highly improve the

realism of the scene.

13

14 CHAPTER 1. INTRODUCTION

The main contributions of this thesis have been: (1) the development of
novel algorithms to create automatically navigation meshes for 2D, 2.5D and
3D geometry, and (2) to introduce novel algorithms to enhance current local
movement techniques in order to achieve smoother and more natural looking
paths.

Currently the most popular solutions in the literature to have characters
wandering virtual environments are based on a combination of global and local
movement techniques. The target of global navigation is to provide a represen-
tation of the free space of the scene that is usually obtained by constructing
a navigation mesh (NavMesh). This especial data structure encodes the free
space of the scene by splitting it into convex polygons, known as cells. A Cell-
and-Portal Graph (CPG) is then obtained where a node represents a cell of the
partition and a portal is an edge of the graph that connects two adjacent cells.
Given a start and a goal position, paths can be calculated through the classic
A* algorithm [26] or any of its variants. Once the path has been determined,
and intermediate goals or way points have been assigned, the final part consists
of applying a local movement algorithm at every step of the simulation, to guide
the agent following the sequence of way points along the path.

Despite NavMeshes being widely used in complex applications such as video
games and virtual simulations, there are limited applications to automatically
generate a NavMesh suitable for path planning. In most cases, either the user
needs to manually refine semi-automatically generated NavMeshes, or create
them manually from scratch, which is extremely time consuming and a source
of errors. There is therefore a need for automatic methods to generate CPGs
from any given 3D environment with minimum user input required.

Previous work ([18, 60, 35, 37, 59, 80, 89]) is either not fully automatic,
cannot handle any geometry, and/or provides CPGs with far too many cells or
ill-conditioned cells (a cell where vertices are practically collinear which occurs
when any of the internal angles is close to 0). The optimal number of cells for a
partition should be lower than twice the number of convex nodes [14], therefore
we consider a partition to be over-segmented when it cannot guarantee to be
within the bounds of optimality. The problems with over-segmented partition
are: firstly, the performance of the path finding algorithm directly depends on
the dimensions of the generated graph, so the fewer cells we have, the faster
this step will be; and secondly, depending on the underlying local movement
algorithm being used, an over-segmented partition may end up with characters
walking in zig-zags through a long convex space as they are forced to go through
unnecessary portals, or in portals so close together that they add too many
unnecessary nearby attractors and therefore complexity when trying to achieve
natural looking local movement.

The architecture developed for this PhD thesis presents a completely novel
approach, as it overcomes all limitations described above and presents an entire
pipeline to go automatically from a 3D virtual environment given as a polygon
soup, to the final NavMesh which adjusts tightly to the original geometry [65].

1.1. CONTRIBUTIONS 15

The target of local movement techniques is to provide a mechanism for the
autonomous characters to move from one location to the next one in the com-
puted path in a smooth and natural manner, while avoiding collisions against
static and dynamic obstacles. These methods are generally driven by setting
intermediate goal points (commonly known as way points) within the portals
that work as attractors to steer the agents in the right direction ([67, 73, 74, 79,
92, 93]).

When simulating a variety of characters, it is convenient to be able to cal-
culate the shortest route for the characters based on their size. If we think of
applications such as video games, this would allow a skinny character to escape
from a large monster by running through a narrow passage. Efficiency is also
a key aspect, as many characters may require a path computation in the same
frame over a large scenario, so only a small fraction of a second is available.
Additionally, the method used to compute the way points is also critical in or-
der to produce visually convincing routes. Most proposed solutions are based
on computing a single point over the portal (usually at the center, or at the
endpoints of the portal), so all agents share the same way point. This results in
agents that tend to line up when approaching the portal from the same side, or
form bottlenecks when several agents attempt to cross the portal coming from
different directions. These artifacts reduce artificially the flow rates through
portals and thus the overall time to reach their destination, and are also per-
ceptually unpleasant. For this thesis, we have developed an algorithm that can
run in real time assigning different way points to different characters, mitigating
these artifacts.

Previous work ([9, 18, 60, 37, 43]) is either bounded to a specific amount
of clearance, does not address correctly the problem of clearance or only work
with a specific type of navigation mesh. On the contrary, our current method
[66] is able to deal with an arbitrary amount of clearance and can work with
any type of NavMesh even if cells are not strictly convex.

1.1 Contributions

The goal of this thesis has focused mostly on the development of methods to
automatically generate automatic navigation meshes. From the beginning of this
work, we had a very clear picture of which should be the main characteristics
of such NavMeshes: to adjust as tightly as possible to the original geometry,
to lower us much as possible the resulting number of cells in order to provide
an efficient structure for path finding in real time, to reduce the user input to
obtain the final NavMeshes, and to provide a data structure that aid in reducing
or eliminating typical local movement artifacts.

Therefore in this thesis we propose four methods to obtain the navigation
meshes and new algorithms for calculating clearance and enhancing local move-
ment. More specifically the contributions of this thesis are:

16 CHAPTER 1. INTRODUCTION

• NavMesh Generator for 2D floor maps: The first contribution of
this work presents a fully automatic algorithm to generate a navigation
mesh for a given floor map given as a 2D single polygon with holes. The
algorithm introduces the concept of convexity relaxation based on local
movement capabilities to further reduce the number of cells in the navi-
gation mesh. The results provide near-optimal navigation meshes.

• NavMesh Generator for 2.5D geometry: The second contribution
consists of processing a 2.5D virtual map, in order to produce a 2D polygon
with holes that can be used as an input for our first contribution. We define
a 2.5D map as a virtual scene represented as a 3D polygon soup where all
the obstacles can be safely projected to the 2D plane, therefore ignoring
the height component.

• NavMesh Generator for multi-level 3D geometry: The third con-
tribution manages to process any 3D geometry given as a polygon soup,
and through a voxelization process decomposes the scene into layers, that
are then projected onto 2D maps to create NavMeshes for each level. Then
the different NavMeshes of each level are automatically linked to obtain
the overall NavMesh. Each of the NavMeshes tightly adjusts to the 2D
projection of the geometry.

• 3D Automatic NavMesh Generator: Finally we present a novel al-
gorithm to obtain 3D NavMeshes that can adjust perfectly to the three
dimensions of the original geometry, and eliminates the need of voxelizing
the geometry to process the different layers.

• Clearance and dynamic way points: An automatic method to create
NavMeshes that guarantee clearance for a variety of characters, both at the
level of computing paths and at the level of local movement by assigning
adequate way points. The dynamic way points algorithm presented further
reduces the number of collisions and provides smother paths with a better
usage of free space.

1.2 Organization of this document

This thesis is organized as follows. Chapter 2 is dedicated to the state of the
art, where we review in depth the most important previous works in the fields
of global movement, local movement and path finding. The chapter ends with
a section where we discuss the limitations of the previous work and we briefly
describe how the work presented in this thesis overcomes the found limitations.

Our contributions to the field of global movement based on navigation meshes,
are exposed and discussed in Chapters from 3 to 6. More specifically:

Chapter 3 describes NEOGEN-2D , our first contribution to automatically
generate near-optimal navigation meshes for any given 2D simple polygon with

1.3. PUBLICATIONS 17

holes. Also, we introduce a novel concept to further reduce the final number of
cells of the partition.

In Chapter 4, we present a GPU based method that takes as an input a
3D scene representing a single floor plan, and automatically computes a 2D
polygon with holes abstraction that fits with the input required by NEOGEN-
2D , previously introduced in Chapter 3. Additionally, a GPU based version of
this algorithm is described.

Chapter 5 presents NEOGEN-ML, a novel full framework to process any
given multi-layered 3D scene (such as a building) and splits it into floor maps
for each level that can be then input independently to our 2D algorithm. The
individual NavMesh created for each level, are joined later on into a single
NavMesh representing the walkable space of the whole scene.

In Chapter 6 we introduce NEOGEN-3D , another approach that is able
to compute a navigation mesh for any 3D model representing a scene with
an arbitrary topology, thus overcoming the main limitation of NEOGEN-ML
presented in Chapter 5, which was restricted only to multi-layered environments.
Although this chapter is ongoing work, we present initial results and discuss the
details of the algorithm and we are preparing a paper for submission.

Our contributions to local movement are explained in Chapter 7, where
we introduce ExACT , a novel algorithm to compute paths with any desired
amount of clearance for any type of NavMesh. We also propose a dynamic
technique for way point assignation that considerably improves the quality of
the simulation by reducing the number of collisions against both the static and
dynamic geometry. In addition, we propose a novel and straightforward A*
encoding, which solves the problem of having cycles when computing paths
with clearance on NavMeshes.

Finally, in Chapter 8 we present the conclusions of this thesis as well as
possible future work that could open new research topics from this work.

1.3 Publications

1.3.1 JCR Journals

1. R. Oliva, N. Pelechano. Clearance for Diversity of Agents’ Sizes in Navi-
gation Meshes. Computers & Graphics. vol. 47. pp. 48-58. April (2015).

2. R. Oliva, N. Pelechano. NEOGEN: Near Optimal Generator of Naviga-
tion Meshes for 3D Multi-Layered Environments. Computers & Graphics.
vol. 37. no. 5. pp. 403-412. (2013).

18 CHAPTER 1. INTRODUCTION

1.3.2 International Conferences

1. W.van Toll, R. Triesscheijn, M. Kallmann, R. Oliva, N. Pelechano, J.
Pettré, R. Geraerts. A Comparative Study of Navigation Meshes. ACM
SIGGRAPH conference on Motion in Games (MIG’2016). October 10-12.
San Francisco (California). (2016).

1. R. Oliva, N. Pelechano. A Generalized Exact Arbitrary Clearance Tech-
nique for Navigation Meshes. ACM SIGGRAPH conference on Motion in
Games (MIG’2013). November 7-9. Dublin (Ireland). Article 81, 8 pages,
pp: 103-110. (2013).

2. R. Oliva, A. Beacco, N. Pelechano. Computing Exact Arbitrary Clearance
for Navigation Meshes. ACM SIGGRAPH / Eurographics Symposium
on Computer Animation (SCA’2013). Poster. July 19-21. Anaheim,
California. (USA). (2013).

3. R. Oliva, N. Pelechano. Automatic Generation of Suboptimal NavMeshes.
The Fourth International Conference on Motion in Games 2011 (MIG’2011),
Edinburgh (UK), November 13-15, 2011. LNCS, Vol 7060, pp: 328-339.
(2011).

1.3.3 National Conferences

1. R. Oliva, N. Pelechano. NavMeshes with Clearance for Different Char-
acter Sizes. Congreso Español de Informática Gráfica. CEIG’13. Sección
Española de Eurographics (EGse). Madrid (Spain) September 17-20,
(2013).

2. R. Oliva, N. Pelechano. A GPU Accelerated Method for the Automatic
Generation of Near-Optimal Navigation Meshes. Congreso Español de
Informática Gráfica. CEIG’12. Sección Española de Eurographics (EGse).
Jaén (Spain) September 12-14, (2012).

1.3.4 Book Chapters

1. R. Oliva, N. Pelechano. Navigation Meshes. In Virtual Crowds: Steps
Toward Behavioral Realism, pp. 59-74. Morgan & Claypol, (2015).

Chapter 2

State of the art

In this chapter we review the state of the art regarding navigation of autonomous
characters in virtual environments. In Section 2.1, we give an overview of the
main global movement methods proposed. Then, different local movement tech-
niques are discussed in Section 2.2. Finally, Section 2.3 presents the current
work done in path finding. At the end of this chapter we present a discussion
section where we summarize the main limitations of the current work on the
aforementioned fields and how we tackle these problems in the present thesis.

19

20 CHAPTER 2. STATE OF THE ART

2.1 Global Movement

The aim of global navigation methods is to generate a special data structure
that, given a virtual environment and a set of navigational capabilities (such as
the dimensions of the virtual agents or the maximum slope they can traverse),
it encodes the available free space of the scene. We can classify those methods
into 4 main blocks according to the type of data structure they generate: Reg-
ular Grids, Roadmaps, Corridors and Navigational Meshes. Regardless of the
specific global navigation method being used, this data structure is subsequently
translated into a connectivity graph that can be used for a path finding algo-
rithm (such as the popular A* or any of its variations) in order to be able to
find a valid path between the current position of the agent and a goal position
in the virtual world.

2.1.1 Regular Grids

In this approach, the navigational graph is constructed by overlapping a 2D grid
with the virtual scene. Each cell of the grid is then marked as accessible if it is
in the free space or obstacle otherwise. The accessible cells represents the nodes
of the graph and an edge is created between each pair of adjacent and accessible
cells.

In 2001, Tecchia et al. [15] presented a complete framework for crowd render-
ing and simulation of multi agent systems. The described system, called Agent
Behavior Simulator (ABS), is based on a 2D-grid with an associated four-layered
structure that determines the local rules applied to each autonomous agent in
the simulation. Each layer can be seen as a map aligned with the underlying
grid and describes a different aspect of an agent’s behavior. Therefore, each
cell of the grid corresponds to an entry to each layer. The four different layer
behaviors proposed are the following ones:

1. Inter-collision detection layer: This layer gathers the agent-to-agent colli-
sion detection. Before moving to a new cell, an agent checks if the target
cell is already occupied by another agent or it is free.

2. Collision detection layer: It corresponds to collision detection against the
static geometry of the environment. An image is used as an input, where
white pixels determine accessible cells whilst black pixels determine the
location of an obstacle (see figure 2.1(a)).

3. Behavior layer: This third layer encodes more complex behaviors for each
local region of the grid. A color map is used as an input file where the
user associates a specific color with a specific behavior. An example of
behavioral map is shown in figure 2.1(b), where reddish pixels reflects
how agents are attracted by some points of interest, such as a bus stop or
a shop-window.

2.1. GLOBAL MOVEMENT 21

4. Callback layer: The last layer allows the user to associate a callback func-
tion to a cell of the grid in order to simulate more complex behaviors such
as pushing a button to call the elevator or climbing aboard a bus on its
arrival.

Figure 2.1: (a) An example of a collision map for a flat terrain. Obstacles are
encoded in black and accessible areas are encoded in white. (b) depicts an

example of attraction map for the behavior layer. (Tecchia et al., 2001 [15])

The combination of the aforementioned layers, determine the final behavior
of the autonomous agent. For example, this system could be used to simulate
an agent walking along the street whilst avoiding other agents (layer 1) and
typical obstacles of an urban environment such as rubbish bins and streetlights
(layer 2). When it reaches the cell corresponding to the bus stop, it waits for
the bus (layer 3) and finally, when the bus arrives, a callback is activated and
makes the agent climbing into the bus (layer 4).

In 2004, Chenney [7] introduced a grid-based technique called flow tiles,
aimed to simulate flows ranging from environmental effects such as the the flow
of a river within its banks, to the flow of autonomous characters in urban virtual
environments. Each flow tile describes a small, stationary region of velocity field
and different flow tiles can be pieced together in order to construct a larger
stationary field. The tiles presented in this work are stationary, meaning that
the velocity field does not change over time.

An important limitation of flow tiles is that streamlines never cross. This
means for example that using this technique, we cannot simulate characters
crossing each other at the middle of an intersection. Furthermore, the work does
not consider collision detection nor any behavior other than flowing through the
velocity fields. Therefore, the situations where flow tiles can be used for crowd
simulation are very limited.

Loscos et al. [56] proposed another method based on 2D-grids for simulating
pedestrians that automatically generates sidewalks and crossing regions for a
given urban virtual environment. First, a 2D map of a certain resolution is
automatically constructed by rendering the virtual environment from the top

22 CHAPTER 2. STATE OF THE ART

Figure 2.2: The flow tiles mapped to the accessible area of an urban
environment (left) and some characters flowing through the streets driven by

the velocity fields described by the flow tiles (right). (Chenney, 2004 [7])

using an orthographic camera. The fragments corresponding to ground are
colored in white, whilst the fragments corresponding to buildings are colored in
black. Then, the sidewalks are constructed on the previous 2D map by enlarging
the area covered by the buildings using a convolution filter. Next a graph of
goals is constructed by detecting the corners on the 2D map. Finally, for every
pair of goals, a crossing area is created if they are on opposite sides of the street.
Figure 2.3 shows an example of the application of the proposed method.

Figure 2.3: On the left, the 2D color color map encodes the ground (white),
buildings (black), sidewalks (dark gray) and crossings (light gray). On the

right, an example of a simulation in a urban virtual environment. (Loscos et
al., 2003 [56])

Grid structures can also be extended to handle multi-layered terrains as
in [2]. The idea consists of considering only the cells on the upper surface of
objects on which humans can walk. Cells are connected based on whether they
are considered insurmountable obstacles (human can not climb, cross or pass
through), or surmountable obstacles (human can step on, step down, cross or
step over).

2.1. GLOBAL MOVEMENT 23

2.1.2 Roadmaps

The roadmap approach captures the connectivity of the free space by using a
network of standardized paths (lines, curves). Different approaches can be used
to compute a roadmap. The visibility graph connects vertices of the environment
geometry if the segment joining the two points does not intersect with the
geometry of the scene. In [1], a visibility graph representation is proposed for
the particular problem of path-planning in a Real Time Computer Strategy
Game. Typically on such applications, a virtual battle is modeled by simulating
the behaviors of a large number of individual objects that move on a 2D terrain
or attack other objects on the user’s orders. In addition, the user is only able
to see a portion of the scene at a time, so the method proposed simulates in
an accurate form only the agents that are visible from the point of view of the
user. The behavior of the rest of the agents is determined with an approximated
method, but much faster. This allows them to support a large number of agents
at interactive rates.

The main issue with the visibility graph representation is the trade-off be-
tween paths quality and performance, since the cost of computing the search
algorithm is greatly related to the number and position of the vertices of the
visibility graph. Hence if we want to obtain smooth paths, we need to sparse a
large number of vertices on the geometry scene, but the search algorithm time
will increase and it can be problematic especially in applications that require a
real-time response. On the contrary, if we want to improve the performance of
the graph search algorithm, the number of vertices spread must be low, which
may lead to unnatural trajectories for the characters, as if they were walking
on rails.

An alternative representation for roadmaps is to compute the generalized
Voronoi Diagram [62]. An approximation of the generalized Voronoi Diagram
can be computed using the graphics hardware [31]. The property of roadmaps
generated by this way is to maximize the clearance with obstacles. In [87], a
system entitled AERO is presented that uses a generalized Voronoi Diagram to
compute a roadmap that defines the free space with respect to static geometry.
In addition, the roadmap can be updated in real-time in order to avoid collisions
with dynamic obstacles, such as other agents. The links between two points
of the free space can be deformed in presence of a dynamic obstacle. Those
links have a maximum elasticity and are broken (removed) when this value is
exceeded, disconnecting both points. Figure 2.4 illustrates this situation. When
a link is removed, it is placed in a list and reinserted when the straight line path
between the two points is free of obstacles. The most important limitation of
the system proposed is that the dynamics formulation to update the links can
potentially result in an agent getting stuck in a local minimum of the geometry.
In other words, they are not able to provide convergence guarantees on the
existence of a collision-free path for each agent in all environments.

24 CHAPTER 2. STATE OF THE ART

Figure 2.4: The obstacle O1 is moving towards link l2 (left) and it is deformed
(center). When the elasticity of the link is exceeded, the link l2 is removed

(right). (Sud et al., 2007 [87])

An important limitation of the roadmap approach is that it is usually re-
stricted to a single 2D environment. However, virtual applications such as video
games may offer real 3D scenarios where the roadmap approach is hard to apply.
In [75], Rodriguez et al. use a roadmap data structure that can work in building-
like environments conformed by levels and stairwells connecting adjacent levels.
Each level represents a 2D floor and a visibility graph is constructed as usual
(sample some positions on the floor, then connect all those samples that do
no intersect with the geometry). The individual visibility graphs of each level
are connected on the stairwells, conforming this way the roadmap of the whole
scene.

One limitation of this approach is that it only works in very specific scenar-
ios, basically building like environments. Additionally, there is the lack of an
automatic method for connecting the different visibility graphs of each individ-
ual level and also as we have seen previously, visibility graphs are not the best
way of computing roadmaps.

In [57], the Probabilistic Roadmap (PRM) approach is introduced. First, a
roadmap is constructed by sampling the virtual environment and determining
if whether such samples are valid (i.e., they lie in the free space of the scene) or
not. Valid samples conforms the nodes of the graph and each node is intended
to connect to some neighboring nodes, typically either the k-nearest neighbors
or all neighbors inside a specific radius. The connection between the node and
each of the chosen neighbor is checked for intersections with the obstacles. If
the connection is free of collisions, an edge is added to the graph. Samples
and connections are added to the graph until the resulting roadmap is dense
enough. Once the roadmap is constructed, a path between two points on the
virtual scene is found by adding the start and goal position to the graph and
applying some path finding algorithm, such as A*.

The PRM approach is provably probabilistically complete, meaning that as
the number of sampled points increases without bound, the probability of not
finding a path if one exists approaches to zero. The rate of convergence com-
pletely depends on the properties of the virtual scene. Intuitively, if each sample
can ‘see‘ a large fraction of the free space, the algorithm will converge faster
than in those virtual scenes with low visibility, containing intricate corridors
and obstacles.

2.1. GLOBAL MOVEMENT 25

Many variants exists of the basic PRM technique, which vary in the sam-
pling strategy and/or the connection strategy in order to improve the overall
performance. In the work by Geraerts and Overmars [19], several approaches
are discussed and compared in a common set of environments.

In [3], Bayazit et al. explore the use of roadmaps applied to groups of agents
moving in some kind of coordinated form. This type of group behaviors, usually
referred as flocking behaviors are very common in nature. For example, birds
fly in flocks, fish swim in schools, and sheep move as a herd. The addition of a
global data structure (a roadmap in this specific work) adds crucial information
of the virtual environment, resulting in more sophisticated flocking behaviors
that would not be possible using only local information.

Agents in the flock are able to share information between them by updating
the common roadmap. For example, one of the simulated behaviors consist on
making some agents in the flock to visit every vertex and edge of the roadmap.
In this case, the weight of each edge is initialized to one. As members of the
flock traverse an edge, its weight is increased, therefore the individual flock
members are biased toward relatively unexplored areas of the roadmap due to the
cost computation on the path finding stage [26]. Although this way of sharing
information is fast, each flock behavior may require a different initialization
and update of the underlying roadmap, so in order to simulate multiple groups
exhibiting different behaviors, a copy of the roadmap for each group would be
necessary.

Roadmaps also have been used to simulate shepherding behaviors. In the
work by Lien et al. [51] a group of shepherds can work cooperatively in order
to efficiently control the flock. This work assumes that each shepherd is inde-
pendent of the other shepherds and that there is no communication between
them. The tasks of the shepherds is to steer the flock to desired locations or
along desired routes. Additionally, shepherds unites separated flock groups.

The roadmap of the scene is used in order to define milestones (the position
towards which the shepherd attempts to steer the flock) and steering points (the
position towards the shepherd moves himself in order to influence the movement
of the flock) for each shepherd. Those concepts are depicted in figure 2.5 (left).
The steering points are placed in a way such that the shepherds will be arranged
in a particular formation with respect to the flock and the desired direction of
movement. The position of each shepherd in the formation is decided by using
the distance between shepherds and the steering points. Figure 2.5 (center,
right) shows different two different shepherding formations.

Wein et al. introduce the Visibility-Voronoi Complex [98], which as the name
indicates, combines visibility graphs with Voronoi diagrams by evolving from the
first one to the second one based on a parameter. The resulting diagram can be
used for calculating short and smooth paths with clearance.

The work by Pettré et al. [68] creates a navigation graph that is suitable
for multi-layered terrains. It fist computes a roadmap of the static environment

26 CHAPTER 2. STATE OF THE ART

Figure 2.5: The different concepts used on the multiple shepherding behavior
(left); two different shepherding formations: straight line formation (center)

and arc formation (right). (Lien et al., 2005 [51])

using Voronoi diagrams, and then creates cylinders in a compact manner along
the Voronoi diagram 2.6. Each cylinder is a cell of the navigation graph and
the intersection between adjacent cylinders represents an edge between their
corresponding cells in the graph.

Figure 2.6: Geometric representation of a navigation graph created with
cylinders along the Voronoi diagram (Pettré et al., 2005 [69])

In the work by Wardhana et al. [97], they generate navigation graphs by
computing relevant way points and then creating transitions between those way
points based on whether the character can move between them. One of the
main advantages of their method is the ability to handle a variety of movement
for the characters, such as walking, jumping or flying. However, they need to
create a roadmap per each kind of movement.

2.1. GLOBAL MOVEMENT 27

2.1.3 Corridors

The corridors technique can be seen as an extension of the classic roadmaps, but
the resulting graph also contains some kind of clearance information. This is
acquired by sampling the edges of the graph and for each sample, a radius value
is added which implicitly defines a 2D disk centered on that point. The radius
value must guarantee that the disk does not intersect any virtual obstacles, thus
an autonomous character can move freely inside the disk without colliding with
the static geometry. When querying for a path between two specific positions
in the map, the result is a backbone path with clearance information, formerly
known as corridor.

In [40], corridors are used in order to keep coherence for groups of agents.
This is particularly useful for example in any Real Time Strategy (RTS) game,
as all agents integrating the same unit should move as a whole and must exhibit
coherence at all time, like passing on the same side of obstacles and waiting
for fellow group mates to catch up, maintaining the group together. In this
approach, a Probabilistic Roadmap is used in order to compute a corridor for a
specific agent of the unit. The corridor must guarantee that at any point, the
sampled clearance is greater or equal than the agent radius. Then, all agents
integrating the unit are forced to follow this path. In order to avoid agents
lining up at the center of the path, the agents are distributed along the corridor
by applying social forces which avoids collisions between agents but keeps the
group altogether by limiting the maximum longitudinal and lateral dispersion.

The Corridor Map Method (CMM) was firstly introduced by Geraerts and
Overmars [20]. This data structure represents the free space of a scene using
a graph whose edges correspond to collision-free corridors. The CMM is used
to extract a corridor, which connects the current position of the autonomous
character with its desired goal location. Such a corridor consists of a backbone
path that is used to steer the movement of the characters.

An efficient way of computing the CMM for a given virtual scene was pro-
posed in [21]. The CMM is constructed by first computing the Generalized
Voronoi Diagram (GVD) of the scene, which is a decomposition of the free
space into Voronoi regions such that all points p in a Voronoi region R(p) are
closer to a particular obstacle than to any other obstacle in the environment.
The boundaries of the Voronoi defines a graph, where each node is located at a
non-convex corner (induced by at least two obstacles) or at a location at which
three or more edges of the graph meet. An edge connects two nodes and is
created in the boundary between two adjacent Voronoi regions. A GPU based
method is used in order to efficiently compute an approximation of the GVD
[31] (see figure 2.7(a-c)).

Once the GVD has been computed, the Corridor Map is extracted by sam-
pling the edges of that graph. This step is illustrated in figure 2.7(d). Each
sample point also stores the radius of the largest empty disk centered at that
point, defining a maximum clearance disk. A sequence of contiguous disks is

28 CHAPTER 2. STATE OF THE ART

referred as a Corridor (figure 2.7(e)).

Notice that the corridors created this way guarantees a maximum amount
of clearance with the obstacles. However, it is not easy to compute the shortest
minimum-clearance path because this type of corridor does not provide a proper
description of corridor’s boundaries. Another disadvantage of having samples
is that the free space is not fully covered. There is a trade-off between space
coverage and path computation efficiency.

In order to overcome the previous limitations, the Explicit Corridor Map
(ECM) was proposed [18], which allows to compute the shortest path with any
desired amount of clearance inside a corridor. The ECM is constructed by
assigning to some selected samples of the original CMM, their left and right
closest points on the obstacles. This produces an explicit description of the
corridor’s boundaries, as can be seen in figure 2.7(f-h). An Explicit Corridor
can be shrunk in order to provide a sequence of way-points defining the shortest
path with clearance [43] (see figure 2.7(i)).

2.1. GLOBAL MOVEMENT 29

Figure 2.7: Construction of the Generalized Voronoi Diagram (a-c) using the
GPU; the Corridor Map Method (d) and an example of (Implicit) Corridor

(e); the Explicit Corridor Map (f-g) and an example of Explicit Corridor (h);
the shortest path with a specific amount of clearance in a given (shrunk)

Explicit Corridor(i). (Geraerts, 2010 [18])

30 CHAPTER 2. STATE OF THE ART

2.1.4 Navigation Mesh

The main limitation of the roadmap representation is that it only contains infor-
mation about which locations of the scene are directly connected, but it does not
describes the geometry of the scene nor where the obstacles are, and avoidance
of dynamic obstacles is usually a hard task and not always possible, as exposed
in [86]. The Cell Decomposition method consists of the partition of the navi-
gable geometry of the scene into convex regions, guaranteeing that a character
can move from two points on the same cell following a straight line, without
getting stuck in local minima. This particular decomposition is usually known
as navigation mesh (NavMesh) [80] and a Cell-and-Portal Graph (CPG) can
be obtained to compute paths free of obstacles. The collisions against movable
obstacles such as other agents, is solved by using a local movement algorithm
[74] or by dynamically modifying the NavMesh. We can classify the naviga-
tion mesh methods into methods that partitions the scene using polygons of a
fixed number of sides (usually triangles or quads) or methods that produces a
partition into cells of an arbitrary number of sides.

2.1.4.1 Fixed cell-shaped NavMeshes

Valve’s Game Engine has an automatic NavMesh generator method based on
subdividing the virtual map by Axis-Aligned quads of arbitrary size [91]. This
method gives satisfactory results mostly for scenes with Axis-Aligned obstacles,
such as some indoor scenes. However when there are complex obstacles with
random positions and orientations, the partition obtained does not adapt well
to the contour of the obstacles, as can be seen in figure 2.8. In addition, the
method has important limitations when handling geometry that contains very
steep stairs, ramps or hills. In these situations, the resulting NavMesh would
not cover the entire map, thus requiring that the user manually completes the
NavMesh.

Triangular meshes are commonly used to represent a navigation mesh. In
[39, 35], a dynamic Constrained Delaunay Triangulation (CDT) is used to rep-
resent the walkable area of a scene. The resulting NavMesh adapts perfectly to
the contour of the obstacles compared to old grid based methods. In addition,
the resulting Cell-and-Portal Graph (CPG) obtained is much smaller, therefore
reducing the time to compute the path between two given points in the scene.
The method proposed in [39, 35] can be divided in 3 main steps: Given a set
of polygonal obstacles, a Constrained Delaunay Triangulation having as con-
straints the edges of the obstacles is constructed. During run-time obstacles are
allowed to be inserted, removed or displaced and the CDT is able to dynamically
take into account these changes. Once the CDT is computed, given a starting
and a goal point, a graph search is performed over the adjacency graph of the
triangulation defining the shortest channel connecting both points. A channel is
the sequence of adjacent triangles from the starting point to the goal point. Ob-
tained channels are equivalent to triangulated simple polygons, and thus the last

2.1. GLOBAL MOVEMENT 31

Figure 2.8: Axis-Aligned quads do not adapt well to the contour of general
obstacles. (VALVE, 2005 [91])

step consists in computing the shortest path joining the starting and the goal
points inside the channel. For this, the funnel algorithm [6, 28, 48] is applied.
The funnel algorithm is able to compute the shortest path inside a triangulated
simple polygon in linear time. It is a very popular method in games to calcu-
late the exact character’s trajectories. Extensions have been made to include
clearance or to compute shortest paths for disks of a specific radius [54, 37, 55].
However shortest paths may not always be the most desirable trajectory, and
sometime what we need is to determine the exact subsegment over the portal
that the character could walk through without collision, as we will describe in
chapter 7.

The CDT provides support for dynamic obstacles, although the performance
of the application greatly depends on the complexity of the CDT, as well as on
the complexity and number of constraints being moved.

In [10] the CDT technique is compared against grid-based maps of real com-
mercial video games. The results show that the use of a CDT to represent
the walkable space dramatically reduces the computation time to find a path
between two points, compared to the grid representation of the same map. In
[36], more uses of triangular NavMeshes are explored, such as the automatic
placement of agents in the free space and efficient computation of ray-obstacle
queries. In a recent publication [71], a method for computing the CDT using
the GPU has been presented. The implementation is done using the CUDA
programming model [61] on NVIDIA GPUs and the results show that it runs
several times faster than any CPU method.

32 CHAPTER 2. STATE OF THE ART

In [37, 38], a new type of triangulation called Local Clearance Triangulation
(LCT) based on a CDT is presented. It allows computing paths free of obstacles
with arbitrary clearance. Given a triangle of a channel, it will be traversed by
crossing two edges. Let a, b, c be the vertices of this triangle and consider that
the free path crosses the triangle by first crossing the edge ab and then the edge
bc. In this case, the shared vertex b is called traversal corner. This particular
traversal is called τabc. The traversal sector is defined as the circle sector between
edges ab, bc and of radius min(dist(b, a), dist(b, c)) and the traversal clearance
cl(a, b, c) is the distance from the traversal corner to the closest constrained
edge inside the traversal sector. If such constraint does not exist, the traversal
clearance is the radius of the traversal sector. Figure 2.9 (left) illustrates this
situation.

Figure 2.9: The traversal sector and the traversal clearance of a triangle
traversal τabc (left); the vertex v is a disturbance of the traversal τabc (right).

(Kallmann, 2014 [38])

Given the situation depicted on the figure 2.9 (right), a vertex v is a distur-
bance to traversal τabc if v can be orthogonally projected on ac, v is not shared
by two collinear constraints, dist(v, s) < cl(a, b, c) and dist(v, s) < dist(v, c).
Given the definition of disturbance, a traversal τabc has local clearance if it does
not have disturbances. The Local Clearance Triangulation (LCT) is therefore,
a CDT with all traversals having local clearance. The local clearance property
of the LCT guarantees that simple local clearance test per triangle traversal
is enough for determining if a character of a determined bounding radius can
traverse a given channel without any intersection with constraints. In the case
of the CDT, the local clearance test is not enough to guarantee that the path
has enough clearance.

The proposed procedure for achieving a LCT is based on iterative refinements
of disturbed traversals. The algorithm starts with the computation of the CDT
of the initial set of constraints. If all traversals are free of disturbances, we
have obtained the LCT and the process ends. On the other hand, if there are
traversals with disturbances, those must be refined. That is, the constraint of
the disturbance is refined with one subdivision point in the constraint, as can
be seen in figure 2.10. Every time a constraint is refined, it is replaced by two

2.1. GLOBAL MOVEMENT 33

new sub-segments. After all disturbed traversals have been processed, a new set
of constraints and a new triangulation is obtained. However, this triangulation
is not guaranteed to be free of disturbances and the process has to be repeated
until a triangulation free of disturbances is obtained.

Figure 2.10: The point of refinement Pref is computed as the midpoint of the
intersection points with the constrained edge s and the circle(u,v,c) (left); once
Pref has been computed, all the vertices are joined to this new point (right).

(Kallmann, 2014 [38])

Once the LCT has been computed, a graph search is performed to find the
channel joining the starting and the goal point. Triangle traversals are only
accepted if the local clearance test is satisfied, guarantying that the resulting
channel will have enough clearance. Then, the problem is reduced to find the
path inside a channel and an extended version of the funnel algorithm to take
into account clearance is presented. The result is a set of straight segments and
arcs that defines a path free of obstacles, with enough clearance.

The main limitation of the representation proposed is that the refinement
process to obtain the LCT from the initial CDT, introduces new segments into
the triangulation and hence, the resulting number of cells is increased with
respect to the original CDT, dealing to an over-segmented partition. As proven
in the work by Kallmann [37] the iterative process to obtain the LCT converges.

In addition, the support for dynamic obstacles seems not to be possible as
described in the dynamic CDT (at least in real-time), because the insertion and
movement of constraints may introduce disturbances in triangle traversals that
must be refined to obtain the corresponding LCT.

Topoplan [46] is an application that automatically generates a Cell-and-
Portal Graph given a virtual environment defined as a mesh of triangles. Firstly,
they apply a simplification step consisting in representing the mesh with 3D pla-
nar polygons instead of triangles. Those polygons are computed by partitioning
the set of mesh triangles into sets of coplanar and connected triangles. Then,
an exact 3D prismatic spatial subdivision of the 3D model is computed. The
aim of this step is to organize a set of 3D polygons in order to capture ground
connectivity and identify floor and ceiling constraints. It represents the envi-

34 CHAPTER 2. STATE OF THE ART

ronment by a set of vertical 3D prisms dividing the 3D model into layers. The
workflow of the algorithm is described in figure 2.11. Step (1) presents a simple
environment composed of two triangles. The first step consists of projecting the
boundaries of each 3D planar polygon on the XZ plane. This produces a set of
2D segments (3) on which a CDT is computed (4). The prismatic subdivision
is then obtained by associating to each 2D triangle of the CDT, the set of 3D
polygons partially projecting on it. It is computed through ray casting. Once
this relation is computed, for each triangle t of the CDT and for each associated
polygon p, a 3D cell is computed such as this cell is supported by the plane
supporting p and its projection on XZ plane is exactly t (5). Let prism(t) be
the list of all 3D cells which are exactly projecting on a triangle t of the CDT.
The prism(t) is ordered along the vertical axis in the increasing order of the
average vertical coordinates of the vertices of the 3D cells. This spatial subdivi-
sion allows them to identify floor and ceiling. Once the prism decomposition has
been obtained the navigable zones of the environment are extracted taking into
account some humanoid characteristics, such as the maximum traversable slope
and the maximum height that a character can overcome with a step. Those
zones are then grouped into a set of 2.5D surfaces. A 2.5D surface is defined as
the union of interconnected zones that do not overlap. A Constrained Delaunay
Triangulation is computed over each of this surface to obtain the final CPG
usable for path planning.

The first problem of Topoplan is that it needs as an input a clean mesh,
i.e. it does not contain degenerated triangles nor triangle intersections (except
obviously, on shared vertices and edges). This is a strong requirement that
hardly will be accomplished, because during the modeling process, intersections
on the geometry are something common. In addition, the method that they
use to sort the set of cells in a prism could deal to a wrong sort on some
cases and hence, the identification that they do into floor and cell would not be
correct. And finally, the method proposed is very costly, as can be deduced by
the description of the method. The results show that it requires more than 15
minutes to compute the CPG for an environment of just 120k triangles.

Recently, Berseth et al. [4] presented ACCLMesh, a triangular navigation
mesh based on acceleration and curvature between adjacent triangles. Since
the resulting mesh is built using the triangles of the input geometry, it avoids
mesh intersections and it adjusts well to the geometry. A limitation of curvature
based methods, is the inability to handle steps.

2.1. GLOBAL MOVEMENT 35

Figure 2.11: Different steps of the subdivision into prisms of the 3D model.
(Lamarche, 2009 [46])

36 CHAPTER 2. STATE OF THE ART

2.1.4.2 Arbitrary cell-shaped NavMeshes

An important drawback of techniques based exclusively on polygons of a deter-
mined number of sides (typically triangles and quads) is the over-segmentation
obtained in the most scenes. The partition obtained is only optimal (or near-
optimal) in very specific cases. Also, in the case of navigation meshes based on
quads, they are not really extensible to general scenes, with obstacles randomly
complex. To address these problems, convex-partitioning techniques based on
N-gons (polygons of 3 or more sides) have been proposed.

Lerner et al. [50] presented a method to automatically generate a Cell-and-
Portal Graph that worked both for interior and outdoor scenarios. The goal of
their algorithm was to solve visibility problems, so the cells are not guaranteed
to be convex. However, this algorithm could be easily adapted to create a
navigation mesh using a post-processing step to convert the resulting cells into
convex, for example, using the Hertel-Mehlhorn method [30] that is used to
decompose a simple polygon without holes into convex regions.

In [89], a method to generate a convex partition for a virtual scene is pre-
sented. The geometry representing the terrain and the geometry representing
the obstacles are treated separately. First of all, the process begins by looking
at the raw geometry of the terrain. Typically, this data will be a huge list of tri-
angles. The walkable surface is extracted by iterating over all of the polygons of
the terrain and determining which ones has a slope low enough to be traversable
by the character. Then, the Hertel-Mehlhorn algorithm [30] is applied to the
resulting mesh to remove unessential diagonals, obtaining a partition of the
walkable surface into convex N-gons.

Once the NavMesh of the terrain has been determined, the objects repre-
senting the obstacles are subtracted from the NavMesh. That is, for a given
obstacle, find the set of cells of the initial NavMesh that intersects the obstacle
and recursively subdivide them into smaller cells. To subdivide a cell, the center
of the polygon is computed and an edge is created that joins the center of the
polygon with the midpoint of every edge of the cell. Note that the resulting
polygons are always four-sided. For each sub-cell generated from the initial cell,
it is not further subdivided (if it is totally outside of the obstacle), it is dis-
carded (if it is entirely inside of the obstacle) or it is subdivided again (if it is
partially outside/inside the obstacle) until a maximum number of subdivision
steps. Finally, a merging process is applied to eliminate redundant cells as much
as possible.

A problem of the method proposed is that it needs to separate the geometry
of the terrain from the geometry of the obstacles, instead of simply launching all
the geometry of the scene and obtain the resulting NavMesh. However, the most
important problem is that the subdivision method proposed does not adapt well
to the contour of the obstacles, as can be seen in figure 2.12. In addition, many
little sub-cells are generated that cannot be easily merged during the merging
process, resulting on an over-segmented partition of the scene.

2.1. GLOBAL MOVEMENT 37

Figure 2.12: The subdivision process applied with two different obstacles. In
red it is marked the walkable space that it is discarded due to the subdivision
method does not adapts well to the shape of the obstacles. (Tozour, 2002 [89])

In [24], an automatic NavMesh generator method is described, that consists
in spreading a certain number of unitary quad seeds on the scene. Those quads
are expanded as much possible, adjusting to the contour of the obstacles even
if they are not Axis-Aligned. Note that during the adjustment process, the cell
generated can have more than 4 sides. When the algorithm ends, a merging
process is applied to reduce the number of resulting cells. Although the authors
say that it can handle complex obstacles, the fact is that the algorithm only gives
a reasonably good partition with Axis-Aligned obstacles. In the rest of the cases,
the algorithm proposed creates many narrow cells that in most cases cannot be
removed during the merging process. In addition, the spreading method of
the initial quads remains obscure. They do not give any notion of how many
initial seeds have to be spread. Note that the resulting partition is completely
dependent on the number of initial quads and its position. Another issue is that
there can be intersection of portals which could be problematic when applying
a local-movement method, leading to unnatural movement of the characters.
The merging process helps to reduce the final number of cells, but the result
is far from the optimal subdivision. In addition to these problems, the method
only works if every obstacle is convex, so a previous step to decompose the
obstacles into convex parts is required. A volumetric version of this algorithm
was proposed in [23], but it has the same limitations than the 2D version.

Toll et al. [94] presented an automatic NavMesh generator for a multi-layered
environment, such as an airport or a multi-story car-park, where the different
layers of the scene are connected by elements such as stairs or ramps. Each
layer is represented as a set of 2D polygons that lies in the same plane, and the
medial axis set for the layer is computed. The connections between layers are
used to iteratively merge the different sets of medial axis and create a single
data structure. Then, they extend this structure by adding segments with the
closest obstacle to create a convex partition of the scene. The main problem is

38 CHAPTER 2. STATE OF THE ART

that a large number of unnecessary cells are created. This could be mitigated in
part by reducing the noise on the computed medial axis. An approximation of
the medial axis set can be computed using the GPU, as described in [31]. The
implementation of this NavMesh generation method, restricted to one single
layer, can be found in [17]. It requires to manually create a file that describes
the contour of the obstacles, so the process is not fully automatic.

Unreal Engine [90] has also its own NavMesh generator. Firstly, a high-
density grid that covers all the walkable area is automatically generated. Start-
ing by a position placed by a designer, the map is “flood filled”. That is,
according to some seed size, each segment of the map is examined via raycasts
and once verified, added to the grid. Figure 2.13 (left) shows the resulting
grid. One disadvantage of this approach is that objects which are slightly out
of phase with the seed size being used for exploration can end up being far
away from the boundary of the mesh. To alleviate this, when an obstacle is hit
the seed size will be subdivided N times to achieve the desired level of accu-
racy, as illustrated in figure 2.13 (right). Once the high-density grid has been
obtained, a process to merge the squares is applied to reduce the number of
polygons. Those polygons are then merged into concave slabs separated only
by differences in slope and height. Note that this can lead to an over-segmented
partition in irregular terrains. Finally, these concave slabs are decomposed into
convex shapes. The main problem of the method proposed by Unreal Engine
is that it creates many ill-conditioned cells that can introduce artifacts on the
movement of the characters. In addition, the partition obtained on irregular
terrains is over-segmented.

Figure 2.13: The resulting high density grid (Left). The cell size is adapted to
fit with the shape of the obstacles (Right). (UDK, 2004 [90])

Recast [59] is an automatic open-source NavMesh generator broadly used in
popular video games and other complex virtual applications. The method used
by Recast is inspired by the work by Haumont et al. [27]. Recast computes a
partition of the scene by applying the Watershed Transform (WST) [76] on the
Distance Map Field [77] of the scene. Figure 2.14 illustrates this idea.

As an input, Recast takes an arbitrary geometry that is voxelized. This
process makes the method robust against degeneracies of the model (such as
interpenetrating geometry, cracks or holes) as well as simplifies the furniture

2.1. GLOBAL MOVEMENT 39

Figure 2.14: The Distance Map Field of a scene (left) and the resulting
partition after applying Watershed (right). (Mononen, 2009 [59])

of the scene. The navigable space is built from the voxel model. A voxel
is marked as navigable if it passes the following tests: First, the top of the
voxel is at least a minimum distance from the bottom of the voxel above it,
which means that the agent can stand on the voxel without colliding with an
obstruction above. Second, the top of the voxel represents geometry with a
slope low enough to be traversable by agents. Once the walkable space has
been obtained, its distance map is constructed by estimating of how far each
traversable voxel is from its nearest border voxel. A border voxel is a voxel that
represents the boundary between the traversable surface and either obstructions
(such as walls) or empty space. The distance map describes a topological surface
and hence, the Watershed Transform can be applied to obtain a partition of the
scene. The cells generated using the WST are not necessarily convex, but it
ensures that does not contain holes, so it is easy to convert into convex those
regions. What they do is to apply a modified version of the ear-clipping method
to triangulate the cells and then, unessential diagonals are removed.

The strong point of Recast is that it can handle any kind of scene. It works
on indoor and outdoor scenes and those scenes can contain multiple levels (such
as a building). However, the main drawback is the over-segmentation produced,
even in very simple scenes, as illustrated on figure 2.15. A better partition
could be obtained by applying a post-process to try to merge adjacent cells
into biggest cells, while maintaining the convexity condition. Another problem
is that the adjustment of the NavMesh to the original virtual scene strongly
depends on the voxel resolution being used.

40 CHAPTER 2. STATE OF THE ART

Figure 2.15: A partition (colored cells) obtained using Recast on a very simple
scene in which however, suffers from over-segmentation. (Mononen, 2009 [59])

2.2. LOCAL MOVEMENT 41

2.2 Local Movement

Local movement techniques aim to provide a mechanism for the autonomous
characters to move from one location to the next in a path in a smooth and nat-
ural manner, while avoiding collisions with dynamic obstacles. These methods
are generally driven by setting way points within the portals of the NavMesh
that work as attractors to steer the agents in the right direction.

In [73] a dynamic method for simulating flocks is presented, contrary to the
traditional technique that consists of scripting the individual behavior of each
character conforming the flock. The main target is to simulate the aggregate
behavior of groups of agents that can be seen in the nature such as a flock
of birds, a herd of land animals or a school of fishes. The simulated flock is
represented as a particle system, with the simulated characters being the par-
ticles. In this approach, each character is an independent actor that navigates
according to its local perception of the dynamic environment, the physics laws
present on the virtual world and a programmed set of behaviors that guides the
characters through the environment, avoiding collisions static obstacles and the
other agents in the flock. The aggregate motion of the simulated flock is the
result of the dense interaction of the relatively simple behaviors of the individual
simulated characters.

The resulting simulations built from this model seem to correspond to the
observer’s intuitive notion of “flock-like motion” (see figure 2.16). However, it
is difficult to objectively measure how valid these simulations are. The user can
tweak the different parameters of the simulation in order to improve and refine
the model, as well as to achieve many variations of a flock-like behavior.

Figure 2.16: A simulated flock of bird-like agents. (Reynolds, 1987 [73])

42 CHAPTER 2. STATE OF THE ART

Additionally, the behaviors presented in this work are simplistic and of low
complexity, it basically consists of a set of rules to avoid collisions and to go
to a desired point in the virtual world. However, a real character may have
more complex motivations. For example, if we think in a real flock of animals,
it would be also interesting to simulate more elaborated behaviors such as take
into account hunger, finding food, fear of predators, a periodic need to sleep
and so on.

The motion behaviors introduced in [73] are further explained, generalized
and extended in [74]. These behaviors, formerly named steering behaviors are
basically a set of simple algorithms for guiding autonomous characters in the
virtual world in a life-like manner. More specifically, a steering behavior is
described in terms of the geometric calculation of a vector representing a desired
steering force. This work proposes behaviors such as seek or flee to a point in
the scene (that can be static or another moving character), obstacle avoidance
(restricted to sphere shaped obstacles), path following, agent grouping and many
others (figure 2.17. The steering behaviors are independent of the mean the
character is using for locomotion, i.e., it can be applied to a character walking
on foot or driving a car indistinctly.

Figure 2.17: Examples of some of the steering behaviors proposed. From left
to right, seek and flee, collision avoidance and path following. (Reynolds, 1999

[74])

The steering behaviors can also be combined or blended together in order
to achieve higher level goals. For example, a character can get from A to B
while avoiding obstacles, following a specific corridor or joining a group of other
characters. The most straightforward way of blending is simply to compute
each of the component steering behaviors and sum them together, usually with
a weight factor for each component. However, the main drawback of this method
is that some component behaviors may cancel each other out, as each steering
behavior is basically a vector. Also, it is hard to find a proper combination for
the weights in order to find the desired global behavior. These problems can be
mitigated by blending the different component behaviors in smarter way, such
as giving a certain priority to each steering behavior. For example, first priority
is obstacle avoidance, second is seek to the target point, so if the steering force of
the obstacle avoidance is non-zero (meaning a potential collision), this is used to
steer the character; otherwise, it steers the character using the seek component
and so on.

2.2. LOCAL MOVEMENT 43

In [67], a system called HiDAC (for High-Density Autonomous Crowds) is
presented. This software system focuses on the problem of simulating the local
motion and global pathfinding behaviors of large and dense crowds moving in
a natural manner. The main novelty of this work is that it introduces a set of
psychological (e.g., impatience, panic) and physiological (e.g., locomotion, en-
ergy level) attributes, so each character may have its own personality, creating
a truly heterogeneous crowd. Those psychological and physiological rules are
combined with other typical geometrical and physical rules for collision avoid-
ance and basic character steering, providing a high realism for the crowd being
simulated (see figure 2.18). HiDAC can be tuned to simulate the behavior of dif-
ferent types of crowds, ranging from extreme panic situations (fire evacuation)
to high-density crowds under calm conditions (leaving a cinema after a movie).
It also can exhibit different behaviors simultaneously, allowing the simulation
of heterogeneous crowds.

Figure 2.18: By combining psychological and locomotion rules, HiDAC
improves the realism on the simulated crowds. In this example, red-haired

characters are highly impatient, so they are able to look for alternative paths
and avoid bottlenecks (pay especial attention to the characters at the bottom

right corner). (Pelechano et al., 2007 [67])

However, the user have to understand some of the lower level methodologies
of HiDAC and manually tweak the different parameters in order to obtain the
desired crowd behavior. Additionally, agents should have a wider variety of
actions other than locomotion, in order to provide an even more realistic crowd
simulation.

44 CHAPTER 2. STATE OF THE ART

One frequent problem when simulating crowded multi-agent systems is that
agents tend to present unrealistic oscillating trajectories. Imagine the following
situation. Two agents A and B are moving in a velocity (movement direction
and speed) vA and vB respectively, such that the engine detects that they are
going to collide in the immediate future. As a result, agent A alters its velocity
to vA′ , so the new velocity avoids the collision with B. At the same time, agent
B also alters its velocity to vB′ in order to avoid the collision with A. The
problem is that in the next frame, as agent A is moving with velocity vA′ and
agent B is moving with velocity vB′ that guarantee collision avoidance, both
agents could select again the previous velocities vA and vB , because for example
these velocities leaded them directly to their respective goals. In the next cycle,
these velocities will result in a collision, so they change their velocity again, and
so on. Thus the agents oscillate between these two velocities, even if the agents
initially choose the same side to pass each other.

The Reciprocal Velocity Obstacle (RVO) approach [92], [93] addresses this
problem by taking into account the relative behavior of the other agents, as-
suming that the other agents will make a similar collision avoidance reasoning.
Under this assumption, RVO guarantees oscillation free motions. There is no
explicit communication with other agents, so each agent navigates in an inde-
pendent form. Therefore, the problem can be reduced to navigating a single
agent to its goal location while avoiding any obstacle and the other agents in
the environment. The only information each agent is required to have about
the other agents is their current position and velocity (movement direction and
speed) and their shape, usually represented as discs in the 2D case or cylinders
in the 3D case.

Recalling the previous example with agents A and B trying to avoid an
imminent collision, the RVO of agent B to agent A RVO(B, A) is computed.
The result is a cone-shaped obstacle that describes all the potential velocities
vA′ that would result in a collision with B. In order to avoid collision with
agent B, agent A should choose a new velocity vA′ that is outside RVO(B, A),
but assigning this velocity directly to the agent would result in the previous
oscillation problem described before. So the average of the current velocity vA
(that already lies in RVO(B, A)) and vA′ (a safe velocity for collision avoidance)
is finally computed as the new velocity for agent A. Figure 2.19 shows an
example of applying this approach with several characters.

The original description of Reciprocal Velocity Obstacles has some limita-
tions, particularly that in dense crowds it frequently causes agents to enter in a
reciprocal dance, an artifact that is produced when two agents cannot reach an
agreement on which side to pass each other and they end up choosing a new ve-
locity that does not resolves the collision. An extension called Hybrid Reciprocal
Velocity Obstacles is presented in [79], aimed to solve this specific problem by
enlarging the RVO on the side that the agent should not pass. Consequently, if
agent A attempts to pass agent B on the wrong side, then agent A has to give
full priority to agent B.

2.2. LOCAL MOVEMENT 45

Figure 2.19: In dark-gray, the different RVO produced by the light-gray agents
surrounding the green one. In this situation, the green agent selects the new
velocity that is closest to its preferred velocity and does not intersects any of

the RVO. (van den Berg et al., 2008 [93])

Another common problem to some local movement algorithms is that char-
acters tend to line up as they share the same intermediate attractor point to
steer the agents in the crowd. Some methods for achieving variety in characters’
routes have been proposed. For example Pettré et al. [70] presented a solution
for roadmaps based on having a denser sampling of nodes, which allows for a
better use of the free space at the expense of longer computational time.

The obtained paths enable individual behaviorial diversity, while ensuring
the achievement that the character reaches its goal. The solution proceeds in two
stages. First a dense roadmap is built from the 3D definition of the environment
and agents’ bounding box. Then, given a specific start and goal position, a set
of feasible paths is extracted from the roadmap using a customized iterative
Diskstra’s algorithm implementation that returns a set of paths ranging from
the shortest to less optimal ones fulfilling some user criterion (number of paths
found or relative length from the optimal path overpassed).

The main drawback of this approach is precisely that in order to produce
a wide variety of different solution paths, the built roadmap needs to be dense
and contain redundant connections between nodes, ideally covering the whole
free space, which has a direct impact in the time performance when computing
the path solution and makes this solution hard suitable for crowd simulation.
Figure 2.20 shows the density of the roadmap generated for a simple scene.

Other approaches using skeletons [22] allow for larger or smaller distances to
the skeleton depending on crowd density. The problem with this later approach
is that characters are spread as the density increases, but when densities are
low they all tend to follow the same trajectories.

46 CHAPTER 2. STATE OF THE ART

Figure 2.20: Roadmap construction stage. From left to right, the initial scene,
the sample points in the free that conforms the nodes of the roadmap, and
finally the edges of the roadmap covering practically the whole free space.

(Pettré et al., 2005 [70])

Another usual way of constructing roadmaps is by computing the straight
skeleton of the free space of the scene. In [22] a method for distributing pedes-
trians in a urban environment is described.

In [9] an improvement to traditional way points is introduced by extending
the definition of an intermediate attractor point to a line segment called way
portal, thus avoiding the problem of having agents lining up and allowing a
better use of the available free space, as the whole portal is able to be used for
steering agents. The way portal concept is general and it is independent of the
specific local navigation algorithm being used, as well as it can be applied to
any Navigation Mesh data structure, where the way portals are directly mapped
to the portals of the NavMesh.

Given an start and goal position, the way portal path is defined as the set of
portals that must be crossed from the start to the goal positions. Notice that
this defines a space of paths, contrary to a common way point path that defines
a single path. When an agent traverses the environment, one single path must
be selected from the space. The strategy to select the point over the next portal
pi is as follows: The equation of the line between the agent’s current position
and the center of portal pi+k is computed for a user defined value k >= 0.
If the line intersects portal pi, the steering point for the agent is set to the
intersection point. Otherwise, it is set to the endpoint of the portal pi that is
closest to the previously defined line. Each time the agent crosses a portal, the
same computation is performed again in order to compute the steering point
over the next portal and so on, until the agent reaches the target position.

Notice that as the computation of the steering point takes into account
the current position of the autonomous agent, the resulting paths are better
distributed along all the free space in comparison to traditional way points, as
can be seen in figure 2.21. However, the parameter k is completely dependent
on the scene complexity and the underlying NavMesh quality, so this value
must be tweaked in order to obtain a proper agent behavior. An automatic
strategy to select k is proposed, which consists of selecting pi+k as the next non-
visible portal from the current agent’s position, but it is more computationally
expensive than having a predefined value. Additionally, for the last portal in

2.2. LOCAL MOVEMENT 47

the path the steering point of all the characters will be the center point of the
portal, so all the agents will tend to converge towards the center of the portal.

Figure 2.21: A comparison between the space used by traditional way points
(left) and way portals (right). The space utilization in the case of way portals
is improved as agents make a better use of the available free space. (Curtis et

al., 2012 [9])

Finally, agents in a crowd are usually not point agents but they have a
bounding radius and therefore, they should keep a minimal safe distance with
respect to the static geometry to avoid having characters sliding along the walls
of the virtual world. This distance is formerly known as clearance, and it is equal
to the bounding radius of an agent. A common strategy to address this problem
consists of enlarging the set of obstacles by a specific amount of clearance, known
as the Minkowski sum. An example of an application using this method is
Recast [59] (figure 2.22).

The main advantage of this approach is that characters will move respecting
the desired amount of clearance calculated offline. Therefore this method does
not have an impact on the performance of the algorithm being used. However,
its major drawback is that it is bounded to a specific value of clearance that is
defined by the size of the biggest agent in the simulation. Notice that characters
with a smaller bounding radius won’t be able to use the whole available free
space, thus producing unnecessary bottlenecks and collisions in highly crowded
environments.

Some NavMeshes data structures are created with the goal of solving the
clearance problem, as the Local Clearance Triangulation (LCT) [37] described
in Section 2.1.4. Although the LCT allows computing free paths with any
desired value of clearance, one drawback is that this technique is not general,
it only works with this specific data structure. Furthermore, the initial CDT

48 CHAPTER 2. STATE OF THE ART

of the scene will be in the general case, a non-optimal convex partition, as any
NavMesh based on a specific cell shape. Therefore, by introducing new portals
in the CDT, the result is an over-segmented convex partition that will contain
many unnecessary cells and this will have an impact to the global performance
of the pathfinding algorithm.

Figure 2.22: Recast is able to generate NavMeshes respecting a defined value
of clearance by enlarging the obstacles using the Minkowski sum. This figure
shows the same portion of the generated NavMesh for a clearance value of 0.3

(left) and 1.0 (right). (Mononen, 2009 [59])

2.3. PATH FINDING 49

2.3 Path Finding

As we have described in Section 2.1, the ultimate goal of any global movement
algorithm is to end up with an abstraction of the virtual scene, which can usually
be treated as a connected graph. Therefore, when a character needs to find a
path from its current position to a goal position in the scene, this problem is
reduced to search a valid path from the node containing the current position of
the character and the node containing its desired goal position. In this section
we review the most important path finding algorithms on graphs.

The A* algorithm [26] uses a cost function to restrict the number of states
that must be evaluated before finding the true optimal path between the given
initial and goal nodes. As A* traverses the graph, it builds up a tree of partial
paths. The leaves of this tree are stored in a priority queue that orders the leaf
nodes by a cost function, which combines a heuristic estimate of the cost to
reach the goal and the cost from the initial node to the current one. Given a
node n, the cost function is defined as:

f(n) = g(n) + h(n) (2.1)

Where g(n) is the known cost of the optimal path to go from the initial
node to the current node n. This value is tracked by the algorithm; h(n) is
an heuristic that estimates the cost to go from the current node n to the goal
node. The quality of the heuristic greatly influences the efficiency of the search.
In the specific case of path finding in a CPG, a typical heuristic consists of the
euclidean distance between the current node n and the goal node. Notice that
in order to find the optimal path, h(n) must be admissible. That is, h(n) is
necessarily less or equal than the real cost from the node n to the goal node.

The A* algorithm guarantees that the path found (if it exists) is the minimal
possible one between the initial and the goal nodes and due to its simplicity on
implementation and performance, A* is widely used in the field of path finding
in real-time applications, and it is the base of a large amount of subsequent
work. However, A* algorithm can be very time consuming for large scenarios,
with high memory requirements.

In the most challenging real-time applications, the time to obtain a solution is
critical and sometimes there is no need (nor time) to find the optimal solution,
but a suboptimal one is enough. In that context, Anytime planers are well
suited for these problems. On this general approach, a suboptimal solution is
quickly given and then it is continually improved until a given limit time runs
out. Anytime Repairing A* (ARA*) [53] is one of the most popular anytime
heuristic search algorithm.

Contrary to the common A* implementation, the ARA* algorithm uses an
inflated heuristic. That is, using ε ∗ h(s) for ε > 1. Inflating the heuristic often
results in much fewer state expansions and consequently, the search is faster.

50 CHAPTER 2. STATE OF THE ART

However, this may violate the admissibility property of the heuristic, so the
result is no longer guaranteed to be optimal. ARA* starts with a given ε and
it iteratively improves the solution by reducing ε and reusing previous search
efforts to accelerate subsequent searches. The solution is refined until the given
limit time is reached or when ε is equal to 1, resulting to the standard A* and
therefore, retrieving the optimal solution. Although ARA* does not guarantee
optimality, the sub-optimal solution is bounded by the factor ε, so the found
solution is no longer than ε times the length of the optimal solution.

In some applications like planetary exploration or military reconnaissance,
the virtual environment is not known beforehand but it is constructed whilst
is being discovered. In those situations, an autonomous robot equipped with
a number of sensors (figure 2.23) has the mission of finding the path between
two points in the space without any previous knowledge of the environment,
nor where the obstacles are. The Dynamic A* (D*) [81] tackles this specific
problem. The autonomous robot sweeps the terrain for obstacles, records its
progress through the environment and builds a map of sensed areas containing
the location of the obstacles. With each addition to the map, the D* algorithm
is able to optimally replan the global path and recommend steering commands
to reach the goal.

Figure 2.23: The Navigational Laboratory II (NAVLAB II) was the robot used
for testing the capabilities of the proposed algorithm. It successfully found a

path between the initial position and a goal position set in an unknown area of
500 x 500 meters. (Stentz et al., 1995 [81])

The D* finds the optimal path between the current position of the robot
and the goal using the partial information of the environment that the robot
has acquired so far. Then, the robot moves along the path until either it reaches
the goal or the sensors detect an obstacle, updating the map accordingly and

2.3. PATH FINDING 51

replanning a new optimal path from the robot’s current position to the goal.
The path replanning is done efficiently, allowing the algorithm to run in real-
time. The D* Lite [45] approach is a revision of the original D*, offering a new
implementation at least as efficient as D* but substantially shorter.

The Anytime Dynamic A* (AD*) [52] is an anytime replaning algorithm
that combines previous algorithms described before. It efficiently generates
solutions for complex and dynamic environments. ARA* is used in order to
find a suboptimal solution in the specified limit time. When changes in the
environment are detected, D* is applied in order to repair previous solution
incrementally, without the need of recomputing the solution from the scratch.
Therefore, AD* is highly suitable for those applications with limited or not
knowledge at all about the environment, where the computation time is more
important than finding the optimal path and a suboptimal path is enough.

Most of the work on path finding focuses on planning the path for individ-
ual agents through the virtual environment. However, sometimes agents join
together to form groups and from the point of view of the path planner algo-
rithm, the whole group should be treated as a single agent. Huang et al. [88]
addresses the problem of group path planning while maintaining group coher-
ence and persistence as much as possible. The group of agents is modeled as a
deformable and splittable shape. The coherence property of a group of agents
tries to minimize the dispersion and this is achieved by introducing a deforma-
tion penalty to the cost computation. When the deformation penalty reaches a
threshold value, the group may split in two or more subgroups that are merged
together again later on. The persistence property is modeled by introducing
split and merge actions of the group, and penalizing the split action in the cost
computation. Therefore, the computed paths to given goals tries to minimize
the three-tuple cost vector of distance, deformation and splitting.

Although paths can be computed efficiently in reasonably complex environ-
ments, the introduced possibility of splitting groups can considerably increase
the computational cost of the path finding algorithm as the search space in-
creases because we need to compute a valid path for each subgroup generated.
This can be mitigated by increasing the deformation threshold to split a group,
so limiting in some way the maximum number of possible splits in order to meet
performance constraints.

Hierarchical graph representations [78], have been also introduced in order
to improve the efficiency of the desired path finding algorithm by representing
the search space as a hierarchy. In particular, it is possible to create a simpler
search graph by grouping a number of nodes of the original search graph into a
single node in an abstract search graph. Abstract edges are then added based
on the edges that exist in the original search graph. This process can be done
recursively, giving as a result a hierarchy of abstractions. An approximate solu-
tion can be found by a search in the abstract graph, which can then be refined
to a solution in the original search space. This way, time requirements are bet-
ter affordable even in really complex domains. Notice that a hierarchical graph

52 CHAPTER 2. STATE OF THE ART

is an abstract representation that can be applied regardless the path planning
algorithm being used. For example, Holte et al. applied the hierarchical graph
representation to the popular A* algorithm [33].

In [82], Sturtevant describes the path finding strategy used in the Dragon
Age Origins video game. The algorithm is restricted to grid-based maps and it
abstracts the grid into sectors and regions. A sector is a 16 x 16 grid of cells.
A region is a set of cells in a sector that are mutually reachable without leaving
the sector. A sector may have multiple regions, and a region is always in only
one sector. Figure 2.24 exemplifies the subdivision of a grid-based map into 4
sectors which results in a graph with 9 regions and 10 edges.

Figure 2.24: Abstract graph created with a 16 x 16 overlay on a grid-based
map. Gray cells represent obstacles. (Sturtevant, 2008 [82])

The previous described approach is further improved in the work presented
by Sturtevant and Geisberger [84] in order to handle a number of situations.
The main problem they faced with the first approach is that on the largest maps,
path finding requests could run out of time when planning in the abstractions,
while on smaller maps such as indoor virtual scenarios, the abstraction was not
adequately representing the underlying terrain. In order to solve this problem,
they added an additional layer of abstraction, built on top of the previous de-
scribed abstraction. Figure 2.25 illustrates this step. Sector 0 in this figure
is the same as 2.24 but is now contained into a single high-level sector. This
extra abstraction layer was built using a sector size twice the size of the original
sector abstraction. Depending on the size of the original map, the final game
used sectors of size 8 x 8 to 16 x 16 for the first abstraction layer and 16 x 16
to 32 x 32 sector size for the additional abstraction layer.

The DBA* approach [49] is another grid-based path finding algorithm that
uses a database of pre-computed paths to reduce the time to solve search prob-
lems. DBA* starts by performing an offline pre-computation before online path
finding. The offline stage abstracts the grid into sectors of size n x n and regions
just as previously described in [82]. The algorithm proceeds by constructing a
database of optimal paths between adjacent regions using A*. Each path found

2.3. PATH FINDING 53

Figure 2.25: Additional level of abstraction. (Sturtevant et al., 2010 [84])

is stored in a compressed format as proposed in [47].

In the work of Sturtevant and Jansen [85], several abstraction methodologies
for graphs are evaluated in a testbed formed by different 2D grid-based maps.
The clique abstraction (CA) was introduced by Sturtevant and Buro [83] and
it basically consists of grouping connected nodes into cliques at each level of
abstraction. The maximum clique size allowed is 4-connected nodes. Figure
2.26 illustrates the whole process of cliques abstraction over a simple graph.
The left figure (a) shows the initial graph. The dotted lines indicate two cliques
sample. The middle figure (b) is one possible result the previous graph can be
abstracted. The same abstraction mechanism can be applied more than once in
(b) to obtain the graph in (c).

Figure 2.26: The clique abstraction process. (Sturtevant et al., 2010 [85])

The sector abstraction (SA) technique was suggested by Botea et al. [5] and
it is limited to grid-based maps. This abstraction is parametrized by a fixed
sector size k. At the first level of abstraction, sectors of size k × k are overlaid
onto the grid-based map. At the ith level of abstraction, sectors of size ki × ki
are used. Figure 2.27 exemplifies this abstraction process with a sector size of 2.
In graphs depicted at (a) and (b), the dotted lines determine two of the sectors
(4x4) used for constructing the final graph depicted at (c). As only nodes which
form a connected component within a single sector can be abstracted together,

54 CHAPTER 2. STATE OF THE ART

the top left sector is split into two separated nodes when abstracted. This results
in one extra node in the most abstract graph on the right, (c). Note that if we
apply an extra level of abstraction, the entire graph would be abstracted into
a single node, because all the nodes in graph (c) are connected within an 8x8
sector.

Figure 2.27: The sector abstraction process. (Sturtevant et al., 2010 [85])

The radius abstraction (RA), originally named STAR abstraction was intro-
duced by Holte et al. [32]. This abstractions mechanism works by first selecting
a reference node. All the neighboring nodes to this node within a fixed radius
r are abstracted into the same abstract node. Figure 2.28 illustrates this ab-
straction process for a radius r = 1. The reference nodes are marked in gray.
In (a), all the immediate neighbors (r = 1) connected to the selected nodes are
abstracted into the same abstract node, conforming the graph depicted in (b).
This process is repeated again, giving as a result the graph in (c). An additional
abstraction step would completely abstract the graph into a single abstract node.
Notice that the result completely depends on the radius parameter as well as
the methodology used to select the reference nodes.

Figure 2.28: The radius abstraction process with r = 1. (Sturtevant et al.,
2010 [85])

The line abstraction (LA) technique consists of finding sequences of nodes
length k, and abstracts them together. The strategy used to select the sequences
of nodes as well as the length of the sequences, determines the final result. In the
example depicted in figure 2.29, the strategy used consists of first abstracting
horizontally and then vertically for a sequence of nodes length k = 2. So taking
as an input the graph represented in (a) each node is attempted to be abstracted
with its neighbor to the right, resulting in the graph on (b). Next, each node

2.3. PATH FINDING 55

in (b) is attempted to be abstracted with its neighbor below, resulting in the
graph on (c).

Figure 2.29: The line abstraction process with k = 2. First abstract
horizontally, then vertically. (Sturtevant et al., 2010 [85])

In [16] a GPU-based technique is presented for multi-agent path planning
in extremely large, complex and dynamic environments. The method consists
of an adaptive subdivision of the environment with efficient indexing, update
and neighbor finding operations on the GPU. The proposed method works as
follows. On the CPU, the virtual scene is subdivided using a hierarchical quad
tree representation, which is ported onto the GPU to compute an initial plan.
Changes on the virtual environment are monitored on the CPU which triggers
local repairs in the quad tree. The GPU representation of the quad tree is
updated in order to reflect those changes, and the plan is efficiently repaired by
updating only the costs which have been invalidated as a result of the change.
Figure 2.30 illustrates this approach on a simple map.

Figure 2.30: Method overview. (a) shows the initial subdivision of the
environment into quads. (b) shows the plan computed for the top goal (red
circle) for any quad. The colors represents each quad’s g-value of the cost

equation relative to a scale where green = 0, blue = max g-value and white =
not computed. In (c), an obstacle is introduced with respect to the the

previous image and the corresponding quads are locally repaired. In (d) the
plan for the bottom goal is depicted. Finally, (e) shows the computed plan for

all the autonomous agents. (Garćıa et al., 2014 [16])

The proposed adaptive representation of the environment reduces the mem-
ory requirements by an order of magnitude compared to other GPU based ap-
proaches, which enables path planning environments larger than 2048m2 for
hundreds of autonomous agents with different goal targets. Additionally, the
computational speed is up to 1000X faster compared to previous work.

56 CHAPTER 2. STATE OF THE ART

Path finding techniques usually assume that all agents have the same naviga-
tional capabilities, which means that if a region of the terrain is not traversable
by one agent, it is not traversable by anyone. Another common assumption
consists of considering that all agents have the same size. Such assumptions
limit the applicability of these techniques to homogeneous autonomous agents
in homogeneous environments. The aforementioned problems are addressed in
the work of Harabor and Botea [25] by introducing a new clearance-based hierar-
chical planner for grid-based maps, named Annotated Hierarchical A* (AHA*).
In this approach, a clearance value is associated to each cell of the graph for
each traversal capability. In order to better illustrate this, let us consider the
simple example depicted in figure 2.31 featuring two terrain types: Ground
(white tiles) and Trees (grey tiles). Hard obstacles are colored in black. In this
example, the set of capabilities C required to traverse the map is defined as
C = {{Ground}, {Trees}, {Ground ∨ Trees}}.

Figure 2.31 (a) to (d) illustrates the iterative process to compute the clear-
ance value for a specific traversable tile. The clearance value is initialized to 1
and subsequent iterations (figures 2.31 (b) and (c)) uniformly extend the square
and increment the clearance value until the square contains an obstacle (2.31
(d)) or it extends beyond the map boundary. Figures 2.31 (e) to (g) shows
the clearance values associated to {Ground}, {Trees}, and {Ground ∨ Trees}
traversal capabilities respectively. Additionally to the clearance annotation, a
cluster-based hierarchical abstraction is used in order to build a highly compact
representation of the original virtual environment.

Figure 2.31: (a)-(d) Computing clearance. (e)-(g) Clearance values for
different capabilities. (Harabor et al., 2008 [25])

Jorgensen presented an automatic structuring method based on a hierarchy
that separated buildings into floors linked by stairs and represents floors as
rooms linked by doorsteps [34]. This method has a strict hierarchy and does not
scale to large outdoors environments such as the ones often presented in video
games. Zlatanova [99] presented a framework of space subdivision exclusively for
indoor navigation, by identifying rooms and corridors and including semantical
information.

2.3. PATH FINDING 57

There are other approaches that focus on allowing agents to be more envi-
ronment aware [42]. In this work, planning is based on an Anytime Dynamic
A*, and it is carried out satisfying multiple special constraints imposed on the
path, such as: Stay behind a building, walk along walls or avoid the line of
sight of other agents. In [41] a multi-domain anytime dynamic planning frame-
work is presented which can efficiently work across multiple domains, by using
plans in one domain to accelerate and focus searches in more complex domains.
It explores different domain relationships including the use of way points and
tunnels. The different domains use only two representations in terms of spacial
subdivision, a 2D grid, and a triangular mesh.

Hierarchical representations have been used to calculate agents moving be-
tween two points at different levels of complexity [95], from finding a route to
animating the 3D characters.

58 CHAPTER 2. STATE OF THE ART

2.4 Discussion

As mentioned in the previous chapter, our main objective is to solve the problem
of autonomous character navigation in complex virtual environments, which is
a central problem in the fields of robotics, video games and crowd simulation.
The limitations of the previous exposed methods that address this problem,
have pushed us to develop a new approach that introduces improvements in
both the global movement and the local movement.

Regarding to regular grid based partitions, an important drawback is that
autonomous agents can only move to an adjacent free cell. This checkerboard
approach offers realistic results only on lower density crowds, but looks unreal-
istic when trying to simulate high-density crowds. Additionally, the resulting
connectivity graph used for path finding will be inevitably oversized and the
adjustment to the contour of the obstacles greatly depends on the grid resolu-
tion, making it hard to fit general environments containing obstacles with an
arbitrary shape.

The main limitation of the roadmap technique is that it only contains in-
formation about which points of the space are directly connected, but does not
provide a proper description of the scene nor where the obstacles are. Therefore,
calculating collision against dynamic obstacles is usually a hard task, not guar-
anteeing that it will always be possible to avoid collisions, and often characters
get stuck stuck in local minima of the geometry.

In the case of corridors, the main limitation is that it is hard (and usually not
possible at all) to cover the whole free space of a scene by using a finite number
of 2D discs. Additionally, although this representation can give satisfactory
results in 2D environments, there is no clear way of how to apply this approach
on real 3D scenes. If we think in a multi-layered environment such as a building,
problems may arise at the regions where two different layers meet. Moreover, a
2D disc cannot correctly represent the topology of the terrain, so it only works
in perfectly flat floors.

The cell decomposition technique (i.e. navigation mesh) fits better with our
requirements as it provides a more accurate description of the free space of a
virtual scene, but the methods studied suffers mainly from over-segmentation,
ill-conditioned cells or poor adjustments to the contour of the obstacles missing
some portions of the walkable space.

As for the local movement there are mainly two problems that need to be
addressed. On one hand, some current work sets a fixed steering point over
the portal shared by all the autonomous agents. This increases the collisions
against other agents, creates bottlenecks and agents tend to line up towards the
steering point, so the available free space is poorly used. On the other hand,
the clearance problem is usually limited to a single clearance value or bounded
to a specific NavMesh data type.

2.4. DISCUSSION 59

Finally, when a NavMesh is used in order to create the connectivity graph
for the path finding stage, the graph generated could contain cycles i.e., a char-
acter needs to pass more than once through the same cell, but this case is not
supported by the path finding algorithms. Although some special NavMeshes
such as the Local Clearance Triangulation [38] already guarantee that the gener-
ated graph does not contain cycles by construction, little research has been done
on this specific problem because many of the path finding algorithms studied
are restricted to grid-based maps, where the problem of having cycles does not
appear. Therefore, there is a need for a general solution to handle this specific
problem correctly.

In this thesis, we will present a novel and complete framework for au-
tonomous characters that solves some of the limitations of the current state
of the art. Firstly, we will introduce NEOGEN, our automatic global movement
technique based on navigation meshes that produces a near-optimal convex par-
tition of the scene, eliminates almost all the ill-conditioned cells and perfectly
fits with the original geometry. Secondly, we will introduce ExACT, our novel
local movement technique based on rules that allows computing paths free of
obstacles with any desired amount of clearance for any NavMesh data structure,
and dynamically computes the steering point of the agent based on its position
with respect to the portal, so all agents have a different steering point, con-
siderably improving the free space usage and reducing collisions against both
the static and the dynamic geometry. Finally, we propose a new encode of the
connectivity graph in order to avoid the problem of having cycles when the un-
derlying data structure used is a navigation mesh. Our approach is general and
can be applied to any type of NavMesh.

60 CHAPTER 2. STATE OF THE ART

Chapter 3

Computing Navmeshes for
2D simple polygons

In this chapter we present our main contributions to the generation of NavMeshes
in 2D environments. First, we introduce a novel automatic method for comput-
ing NavMeshes for a given environment represented as a 2D simple polygon (i.e.,
no self intersections) that can contain holes. The area delimited by the outer
polygon can be seen as the floor plan of the scene, whilst the holes represent
the static obstacles. Our algorithm, entitled NEOGEN-2D , takes this input
and splits it into a near-optimal subdivision of convex polygons that are highly
suited to path finding by avoiding the presence of both degenerated polygons
and almost all ill-conditioned polygons. The cells generated are not restricted to
a particular shape but they can contain an arbitrary number of sides. We refer
to our subdivision as being near-optimal, because we can guarantee a number
of partitions within the bounds of optimality. Moreover as we will proof in the
results section, our methods leans towards the first half of the optimality bound.

Our second contribution is the introduction of the convexity relaxation con-
cept, that exploits the fact that, depending on the characteristics of the un-
derlying local movement algorithm being used to steer the movement of the
autonomous characters through the environment, we can allow cells with cer-
tain small concavities. This allows us to further reduce the number of cells,
which has a direct impact in the performance of the path finding stage.

To summarize, the overall goals of our navigation mesh generator are:

1. To achieve as few cells as possible

2. To achieve portals as short as possible (since it introduces less inaccuracies
when setting attractors to drive the natural movement of the agents).

3. To avoid cells with interior angles close to zero, since it complicates the

61

62 CHAPTER 3. NAVMESHES 2D

local movements and leads to agents being physically in more than two
cells simultaneously.

3.1 Overview

The problem of subdividing a polygon into convex regions has many applica-
tion areas such as computational geometry, robotics and graphics. An optimal
solution to this problem can be found in polynomial time for the case of simple
polygons without holes [44] and code is available in the CGAL library [29]. How-
ever when the initial polygon contains holes, finding the optimal decomposition
into convex polygons allowing Steiner points becomes NP-hard [44].

There are two possibilities when subdividing a polygon into convex cells. The
first one consists of subdividing by adding diagonals, which are edges between
pairs of vertices in the original geometry. The second one consists of using
segments which are edges between a vertex of the geometry and a new point that
is created on the boundary of the original geometry (also known in the literature
as boundary Steiner points). The algorithm presented in this chapter carries out
a partition based on segments, and thus we are not limited by the position of
the vertices in the original geometry. Our motivation to follow such approach is
that the resulting portals lead to better way-points to drive steering algorithms
(short portals and minimum ill-conditioned cells, i.e. cells with interior angles
close to zero)

As NavMeshes are usually constructed in a pre-processing stage, we are
not concerned about the time complexity of our algorithm, and given that it
only deals with static geometry, no further changes need to be made at run
time. Dynamic obstacles and other agents are avoided through local movement
techniques based on Reynolds’ steering behaviors [74]. However, some game
companies prefer to do these computations online while a game is loaded or when
a level needs to be dynamically updated. Therefore although not necessary, it
may be desirable to keep computational times as low as possible.

Once the subdivision is created, we automatically generate the Cell-and-
Portal Graph (CPG) representing the environment, where cells are the convex
polygons resulting from the subdivision, and portals are the segments created
to subdivide the original polygon into convex cells.

We finally present an example of a multiplayer game where path finding is
carried out through A* over the generated NavMesh and movement within cells
and dynamic obstacle avoidance are performed through steering behaviors. The
physics library Bullet [8] has been integrated for several purposes including:
speed up of the local movement simulation, guarantee non overlapping between
agents, and keeping track of agents’ within each cell to quickly update their
mental maps in cases where agents are accidentally pushed through portals.
Section 3.5 shows results of NEOGEN-2D as well as multi-agent navigation in

3.2. ALGORITHM DESCRIPTION 63

a game application.

3.2 Algorithm Description

The approach followed by our algorithm consists of subdividing the input poly-
gon by first detecting which are the notches (concave vertices, i.e. interior angle
larger than π) that appear in the polygon and then splitting them by creating
portals so that for each original notch in the geometry, we will split it into two
new angles that are both convex (i.e. interior angle smaller than π). In this
way, we guarantee that if all the notches in the original polygon are split into
convex angles we will obtain a partition consisting only of convex cells.

To guarantee that only one portal will be necessary to split a notch into two
convex vertices, we introduce the definition of area of interest:

Definition 3.2.1. The area of interest, Ii of a notch vi is given by two edges of
the geometry, ei−1,i and ei,i+1 as the resulting interior area of prolonging ei−1,i
and ei,i+1 as we indicate in figure 3.1 (left), where ei−1,i is the edge that joins
vi−1 with vi.

Figure 3.1: On the left, we show the area of interest, Ii of a notch vi. Green
vertices are convex, and blue vertices are notches that need to be split (left).
On the right, we show a simple example of an input given to the algorithm,
with the order of the vertices implying polygon (in white) or holes (in grey).

The main advantage of creating a portal within this area of interest Ii is
that it guarantees that only one portal is needed to break the notch into two
convex vertices.

Given a notch with interior angle 2π − β > π, we need to create a portal
that will split the notch into two new vertices with interior angles α and γ.
The portal needs to be created within the area of interest so that it satisfy that
α ∈ [π − β, π].

Proof. Let first proof that if we create the portal outside that area, we will end
up with still one notch. If α > π, by definition of a notch, the vertex with

64 CHAPTER 3. NAVMESHES 2D

internal angle being α would be a notch. Let evaluate the case where α < π−β.
Since 2π = β + α+ γ then 2π− β − γ = α which turns into 2π− β − γ < π− β
and so π < γ which means that the vertex with internal angle γ would be a
notch.

Proof. Now we will proof that any portal created within the range α ∈ [π−β, π].
guarantees that both α and γ will be convex. Similarly as before, if α < π by
definition the vertex with interior angle α will be convex and since α is the upper
bound of the range, then every value within the range will give a convex node.
So to guarantee that we only need one portal we need to show that if α > π−β
then the vertex with interior angel γ will also be convex. As in the previous
proof we know that 2π = β + αγ, so if α > π − β then we have 2π − β − γ = α
which turns into 2π − β − γ > π − β and so finally π > γ. Therefore this range
of values guarantee that both α and γ will be smaller than π

The floor plan of the virtual environment where we want our characters to
navigate is given as a simple polygon 2D, and the vertices are given in counter-
clockwise order. Any obstacle within the virtual environment will be given as a
polygon with its vertices in clockwise order. Obstacles can be seen as holes in
the main polygon that represents the entire map (figure 3.1, right).

The input geometry consists of a polygon P enclosing other polygons H1,
..., Hm, where all holes are simple empty polygons. Let δP be the boundary
of the polygon P, and δHi the boundary of the hole δHi. We assume that the
following conditions apply:

1) δP
⋂
δHi = ∅, ∀i = 1, ..., h

2) Hi

⋂
Hj = ∅, ∀i 6= j

The first step of the algorithm consists of determining which vertices are
notches. This step is performed through an orientation test based on calculating
the signed area of the triangle defined by three consecutive vertices, vi, vi+1,
vi+2:

A (vi, vi+1, vi+2) = 1
2

∣∣∣∣ vivi+1,x vi+1vi+2,x

vivi+1,y vi+1vi+2,y

∣∣∣∣
If the area A(vi, vi+1, vi+2) is positive, it means that vertex vi+2 is on the

left hand side of edge ei,i+1 given by the previous vertices vi and vi+1. If it is
negative, it means that vi+2 is on the right hand side of edge ei,i+1. So for the
main polygon which is given in counter-clockwise order, if the area is negative
it means that vi+1 is a notch and thus needs to be split, whereas for the holes,
given in clockwise order, we will also find a notch when the area is negative.
We will introduce all notches of the geometry in a vertex list V to be treated

3.2. ALGORITHM DESCRIPTION 65

in order. This step has cost O(n) where n is the total number of vertices of the
geometry.

3.2.1 Creating portals

For each notch vi in V, the algorithm looks for the closest element in the geom-
etry that falls within its area of interest Ii to create a portal with it. This has
cost O(n·r), where n=number of vertices, and r=number of notches. The closest
element to a notch can be another vertex, an edge of the original geometry or a
previously created portal. Depending on the element being selected, we classify
three types of portals: vertex-vertex, vertex-edge, vertex-portal. Each of these
cases needs to be treated differently. In any case, a portal is represented as two
oriented edges with the same endpoints but in the opposite order one from the
other. Algorithm 1 describes the way we create the portals, according to the
closest element to the notch.

Algorithm 1 Portal creation algorithm

1: procedure portalCreation
2: for all vi ∈ V do
3: c← computeClosestElementInAOI(vi)
4: if c is vertex then
5: createPortalV ertexV ertex(vi, c)
6: else if c is edge then
7: createPortalV ertexEdge(vi, c)
8: else
9: createPortalV ertexPortal(vi, c)

3.2.1.1 Case 1: Vertex-Vertex portals

When the closest element to vi is another vertex vj of the geometry, the algo-
rithm simply needs to create a portal pi between vi and vj . As can be seen
in figure 3.2, the portal created guarantees that vi gets split into two convex
regions, and thus no further processing of vi is necessary to subdivide the orig-
inal polygon into convex cells. If the other vertex vj was also contained in V
(which means that it is also a notch), then the algorithm also checks whether
by creating portal pi, vj gets split into two convex angles. This will happen
exclusively when vi falls within Ij as we can see in the example shown in figure
3.2.

3.2.1.2 Case 2: Vertex-Edge portals

When the closest element to vi is an edge ej,j+1 of the geometry, the algorithm
needs to create a portal pi between vi and a point q in the segment ej,j+1. Since

66 CHAPTER 3. NAVMESHES 2D

Figure 3.2: Vertex-Vertex portal creation. On left, vi also falls within Ij , so it
can be removed from V, on the right, vi does not fall within Ij and since it is a

notch it still needs to be split.

we want portals to be as short as possible, we first consider the closest point
within the segment, which is calculated as the projection of vi over ej,j+1, so in
this case q = (projevi).

If q falls within Ii then a new portal is created and the algorithm proceeds
with the next notch in V (see figure 3.3, left). But it could be possible that even
though the edge ej,j+1 is the closest element to vi, we could have its projection
falling outside ej,j+1 or outside the interest area, Ii, and thus the portal between
those two points would not be enough to split vi in two convex angles (see figure
3.3 center and right).

Therefore if the projection is not a good candidate to create a unique portal,
the algorithm considers four new candidates:

1. the two end vertices of ej,j+1, vj and vj+1 (see figure 3.3, center).

2. the two intersection points ql and qr (if they exist) where ql is the inter-
section between the closest edge ej,j+1, and the result of extending the
segment ei−1,i (segment on the left of vi), and qr is the intersection be-
tween ej,j+1, and the result of extending the segment ei,i+1 (segment on
the right of vi) (see figure 3.3, right). There is a chance that depending
on the orientation of each segment, none of those intersections exist, and
therefore only the ends of segment ej,j+1 are considered.

Among the four possible vertices mentioned above, the algorithm selects the
closest one that falls within Ii and a new portal is created between vi and the
selected vertex. Algorithm 2 contains the pseudocode of this step (with AOI
meaning area of interest).

In figure 3.3 we can see the three different types of portals created in the
category of vertex-edge portal. As we can see the cases on the left (projection)
and the right (intersection points) are the only cases where new vertices are
added into the geometry. By construction, these new vertices can never be
notches because they are the result of splitting an edge in two, therefore the
algorithm does not need to do any further processing with them.

3.2. ALGORITHM DESCRIPTION 67

Algorithm 2 Portal Vertex-Edge algorithm

1: procedure createPortalVertexEdge(Notch vi, Edge ej,j+1)
2: q ← projevi
3: if isInAOI(vi, q) then
4: createPortalV ertexV ertex(vi, q)
5: else
6: Let L be a new Dynamic List.
7: L.insert(ej)
8: L.insert(ej+1)
9: ql ← lineSegmentIntersection(ei−1,i, ej,j+1)

10: if pointInSegment(ql, ej,j+1) then
11: L.insert(ql)

12: qr ← lineSegmentIntersection(ei,i+1, ej,j+1)
13: if pointInSegment(qr, ej,j+1) then
14: L.insert(qr)

15: q ← closestPointInAOI(vi, L)
16: createPortalV ertexV ertex(vi, q)

Figure 3.3: Vertex-Edge portal. Candidate point q being the projection (left),
candidates being the end points of segment vj+1 (center), and candidate

points being the intersections (right).

68 CHAPTER 3. NAVMESHES 2D

Note how this is the only step of the algorithm that may introduced new
vertices in the geometry, known as boundary Steiner points.

3.2.1.3 Case 3: Vertex-Portal portals

In the case where the closest element to vi in the geometry is a previously
created portal, the treatment when creating portals differs from the vertex-edge
portal since we do not want to have intersecting portals (or T-shapes), which
would be the case for calculating a projection or intersection over an existing
portal.

Therefore we assume that when the closest element is a portal pk, we will
need to create a new portal pi with either end vertex of portal pk. The algorithm
selects the closest vertex that falls within Ii (figure 3.4, left and center). But
since only vertices that fall within Ii can guarantee that vi will get split into two
convex areas, if none of the end vertices of pk satisfy that requirement (figure
3.4, right), then the algorithm needs to create two portals instead of one. The
new portals will be pi which joins vi with the left end of pk and pi+1 which
joins vi with the right end of pk. Notice that given the type of geometry we are
dealing with, the interior angle between pi and pi+1 will always be smaller than
π, and therefore we guarantee that when adding these two portals, vi will get
split in three convex regions. In order to avoid intersection problems when the
endpoints of pk are not actually visible from the notch, we check for intersections
between the segment formed by the notch and the endpoint of the portal and
the rest of edges in the scene. If there are no intersections, then the portal
can be created; otherwise, the portal is created with the best candidate of the
closest intersected element.

Figure 3.4: Vertex-Portal portal. Only one end of pk falls within Ii (left), both
ends of pk fall within Ii (center), and none of the ends of pk fall within Ii

(right).

Notice that when a vertex-portal portal pi is created between a vertex vj
and a previously created portal pk, we will have at least one vertex vi, where
both portals meet, since portals always meet at their ends which are located
over existing vertices. In order to determine whether we could merge the two
cells divided by portal pk, the algorithm checks whether pk is still a necessary
portal, since it is possible that by adding pi to vertex vj , this vertex already
gets split into two convex regions, and thus there is no need to have two portals

3.2. ALGORITHM DESCRIPTION 69

splitting one vertex.

To be able to remove portal pk it is necessary to check whether both the left
and right vertices of the portal need pk not to be a notch. This step is performed
by calculating the interior angle between the two neighboring segments of portal
pk at each end vertex (which can be edges of the geometry or other portals) and
testing for convexity. If they both pass the convexity test, then we can remove
pk, and thus merge two convex cells into one larger convex cell (see figure 3.5).
The pseudocode of the whole step is described at Algorithm 3.

Figure 3.5: Removal of previously created portal, pk when creating a new set
of portals pi and pi+1 (left), or several cases of just one new portal being

created (right).

Algorithm 3 Portal Vertex-Portal algorithm

1: procedure createPortalVertexPortal(Notch vi, Portal pk)
2: if isInAOI(vi, pk[0]) & isInAOI(vi, pk[1]) then
3: q ← closestPoint(vi, pk[0], pk[1])
4: createPortalVertexVertex(vi, q)
5: else if isInAOI(vi, pk[0]) then
6: createPortalVertexVertex(vi, pk[0])
7: else if isInAOI(vi, pk[1]) then
8: createPortalVertexVertex(vi, pk[1])
9: else

10: createPortalVertexVertex(vi, pk[0])
11: createPortalVertexVertex(vi, pk[1])

12: if isNonEssentialPortal(pk) then
13: removePortal(pk)

Therefore, the vertex-portal case is the only case of portal creation that may
require up to two new portals instead of just one per notch, but in most cases
when creating these portals we will be able to remove the original portal pk,
and thus we are on average creating one portal per notch.

3.2.2 Cell and Portal Graph construction

At this point we have split all the notches into convex regions, formerly named
cells. All that remains is to identify each of this cells and compute its connectiv-

70 CHAPTER 3. NAVMESHES 2D

ity to create the Cell and Portal graph (CPG) that will be used later on by the
pathfinding algorithm in order to find a valid path between the current position
of the agent and its goal position.

The Edge data structure stores a pointer to the next edge that is properly
updated when creating the portals. So to identify the cells, we just have to
iterate over all the previously created portals and keep following the next pointer
until we reach the portal edge we started with. By construction, the resulting
polygon will be a convex one, i.e., a cell.

Finally, the cells connectivity (edges of the CPG) is computed by determin-
ing the neighbors of each cell. Two cells are neighbors if they share the same
portal, so in one of the cells we are traversing the edge in a specific order, whilst
in the other cell we are traversing the same cell in the opposite order.

3.3 Convexity Relaxation

The purpose of navigation meshes is to have a decomposition of space into
walkable cells with portals joining those cells. Path planning algorithms are
used to find the path between two cells of the navigation mesh, and a local
movement algorithm usually deals with the character’s displacement within a
cell. Local movement algorithms, use different techniques to avoid obstacles
that can also be used against small concavities in walls. Therefore, we can
further reduce the number of cells in the final navigation mesh if we take this
into consideration and relax the notion of convexity.

A vertex is defined to be convex if its internal angle is smaller or equal than
π, otherwise it is a notch. This is the mathematical definition of convexity, but
in some applications such as the creation of navigation meshes, it may not be
necessary to consider such a strict definition. As described previously in this
thesis, the purpose of navigation meshes is to have a decomposition of space into
walkable cells with portals joining those cells. Path planning algorithms are used
to find the path between two cells of the navigation mesh, and a local movement
algorithm usually deals with the autonomous character’s displacement within a
cell. Local movement algorithms, use different collision avoidance behaviors to
avoid obstacles that we can exploit also to overcome small concavities in walls.
Therefore, depending on the local movement algorithm being implemented, we
can relax the definition of convexity by allowing a certain convexity threshold α.
Relaxing the definition of convexity results in a smaller number of portals since
more cells can be merged together into α–convex cells. Note that the concept
of convexity relaxation can also have applications in other areas, for example
recently it has been used to accelerate ray tracing computation for rendering
purposes [58].

Our first approach of exploiting this concept consisted on slightly increasing
the internal angle of the Area of Interest of a notch, thus increasing the number

3.3. CONVEXITY RELAXATION 71

of candidates to create a portal. The target here is to increase the probability
of finding another notch vj in the Area of Interest of a given notch vi and so
a single portal is sufficient in order to break both notches if vj is inside the
α–convex Area of Interest of vi, and vi is inside the α–convex Area of Interest
of vj . Therefore, the following definitions are provided:

Definition 3.3.1. A vertex vi is said to have α–convexity if its internal angle
is smaller than π + α. Relaxing convexity affects not only the classification of
vertices into notches, but also the definition of the Area of Interest of a notch.

Definition 3.3.2. An area of interest Ii is said to have α–convexity if its
internal angle is βi + α, where βi is the original internal angle of Ii before
applying convexity relaxation.

In order to avoid obtaining degenerated or non-simple polygons, it is neces-
sary to refine the definition of the threshold per vertex, so that we ensure that
the best candidate for any given vertex vi, will never be laying over the same
edge as vi, or causing an intersection with the boundary of the original polygon.
This is achieved by limiting β + α to always be smaller than π. And this leads
us to the next definition:

Definition 3.3.3. A simple polygon with holes P is said to have been split into
α–convex cells, when all its vertices have at most α–convexity.

The effect of increasing the internal angle of the Ii with the threshold α,
implies a larger area to look for candidates, which not only reduces the total
number of cells, but also implies a reduction in the number of ill-conditioned
polygons (see figure 3.6).

Figure 3.6: On the left a cell created with strict convexity, on the right the
same scenario but applying the concept of convexity relaxation.

However, when running the first tests, we realized that this solution does not
always give good results since it does not guarantee to reduce the number of
created portals for all scenarios. If we observe the previously mentioned figure
3.6, there is no guarantees that the chosen value of convexity relaxation will be
enough to break both notches using a single portal. Moreover, increasing the
angle of the Area of Interest may lead to the creation of more ill-conditioned
cells, which is precisely one of the of issues we want to avoid.

Therefore, we maintain the key idea of the convexity relaxation concept
described before, but we further refine our approach in order to overcome those

72 CHAPTER 3. NAVMESHES 2D

limitations. Our final approach has some similarities with the Ramer-Douglas-
Peucker algorithm [11], which is commonly used to reduce the number of points
in a curve that is approximated by a series of points. Our method focuses
exclusively on notches in the floor plan, since our goal is to determine which
notches can be ignored when creating portals. So the algorithm is run for every
sequence of notches found between two convex vertices (by sequence we mean
1 or more). Given the input threshold τ , the algorithm recursively finds the
notches that need to be kept in order to create portals. So at each step it finds
the center notch of the sequence and calculates the distance between the center
notch and the line segment joining the first and last vertex of the sequence. If the
distance is bigger than τ then that notch needs to be kept and the algorithm calls
itself recursively for the sequence of notches before and after the center notch.
The recursivity stops when the distance is smaller than τ , and all notches not
marked as kept are ignored. Note that we are not eliminating these notches, we
are simply not creating portals to split these notches into convex vertices. The
following definitions are provided:

Definition 3.3.4. A vertex vi is said to have α–convexity if its internal angle
is smaller than π+α. This affects only the classification of vertices into notches,
the Area of Interest of a notch is not affected.

Definition 3.3.5. A sequence of notches N is said to have τ–convexity if all
notch vi in N is at a distance less or equal than τ with respect to the segment
formed by the initial and final endpoint of such a sequence.

Definition 3.3.6. A simple polygon with holes P is said to have been split into
α + τ–convex cells, when all its vertices are α–convex and all the sequence of
notches are τ–convex.

The user is able to manually tune the α and τ thresholds in order to find
the best compromise between number of cells generated and crowd behavior.
Figure 3.7 shows the benefits of applying the convexity relaxation method over
a relative complex scenario. This solution allows us to keep a detailed geometry
for local movement purposes, yet reduces the final number of cells to speed up
path planning.

3.4. DISCUSSION ON THE NAVIGATION MESH CREATED. 73

Figure 3.7: The resulting CPG with τ = 0 (left) contains 69 cells. This is the
case where we consider only strict convexity. In the same example, the CPG

produces only 29 cells with τ = 0.5.

3.4 Discussion on the Navigation Mesh Created.

The optimal number of cells when decomposing a polygon without holes by
diagonals is known to be within the following bounds [13]:⌈r

2

⌉
+ 1 ≤ OPT ≤ 2r + 1

where OPT is the optimal number of convex sub-polygons into which a
polygon P may be partitioned, and r is the number of notches.

Proof. Our algorithm has the same bounds as the subdivision based on diago-
nals. Just like in the case of diagonals we know that at most two portals are
needed per notch which gives the upper bound in the number of cells being
2r + 1 (corresponding to case 3 of our algorithm vertex-portal portals, and the
lower bound of

⌈
r
2

⌉
+ 1 corresponds to case 1 of our algorithm vertex-vertex

portals).

The case of decomposing a polygon with holes has similar bounds, but in-
cluding the number of holes in the equation. As proven by Fernandez et. al.[14],
we can consider that each hole can be joined to the boundary of the polygon
with one portal, so this portal does not create a cell. Therefore we need to
subtract the number of holes to both limits of the optimal number of cells.

The optimal number of cells, OPT, for a convex decomposition of a polygon
with holes is within the bounds:⌈r

2

⌉
+ 1− h ≤ OPT ≤ 2r + 1− h

74 CHAPTER 3. NAVMESHES 2D

Where r is the number of notches, and h the number of holes (which represent
obstacles in our case). The lower bound corresponds to the ideal case where
all portals created join two notches, and the higher bound corresponds to the
case where a portal needs to be created for each notch to turn it into a convex
vertex.

Our NavMesh generator decomposes the polygon with holes by creating
either one portal per notch within the Area of Interest, or else two portals per
notch at most when necessary (typically the case of the closest element being
another portal). Therefore the proof given by Fernandez et al. [14] for the case
of diagonals, applies also to our solution. Moreover, since our algorithm favors
the creation of portals within the area of interest, this guarantees that in most
cases only one portal will be needed per notch. As we will see in the results
section the number of cells created by our algorithm tends to be below r − h.
We will show this in the results section through a testbed of scenarios that have
been evaluated. Note how the lower bound corresponds to situations where it
is possible to create all portals between two notches of the polygon with holes.
The number of pairs of notches that can both be broken into convex vertices by
adding a single portal depends strongly on the geometry of the polygon with
holes.

Also, since at most two diagonals are essential for any notch as stated by
Hertel et al. [30], then any subdivision without inessential diagonals is within
four times of the minimum subdivision (which gives us the upper bound). The
lower bound is given by the best case scenario where we only need one portal
to join pairs of notches.

In the case of subdivision based on diagonals, there may be more than one
edge created per concave vertex, since it is possible that no vertex of the geom-
etry fall within the area of interest. If we create an edge outside this area, we
will split the current concave vertex into two regions, one convex and one con-
cave, therefore, we will still need additional edges to guarantee that all the final
regions are convex. With our heuristic based on the definition of an Area of In-
terest we narrow down the number of notches that need two portals. Moreover
even in the exclusive situation of notch-portal where two portals are needed,
we also evaluate whether the initial portal is not needed anymore (similar to
the case of deleting inessential diagonals). When this occurs, we are then also
creating only one more portal in the total portal count.

3.5 Results

The method presented in this chapter generates navigation meshes that can suc-
cessfully be used for path finding and driving local movement between cells. The
convex space partition generated in all cases contains a number of cells lower
than the number of notches in the geometry. Since calculating the optimal con-
vex space partition for a simple 2D polygon with holes is NP-hard, we consider

3.5. RESULTS 75

that any algorithm that can guarantee a maximum number of cells equal to the
number of notches can be considered a good near-optimal subdivision.

Another advantage of our method is that we obtain NavMeshes without
degenerated polygons, and almost no ill-conditioned polygons. Therefore our
NavMeshes can be used with any local movement technique guaranteeing natural
looking movement of the characters.

Even though the time complexity of our method was not the main concern,
the NEOGEN-2D can generate NavMeshes with a temporal cost of O(r · n),
where r is the number of notches, and n the number of vertices.

We have tested scenarios with increasing numbers of vertices. For each
scenario, we have fixed the α parameter of Convexity Relaxation to be 5◦ (this
means that a vertex needs to have an internal angle greater than 185◦ in order
to be considered a notch) and for the τ parameter, we have applied 5 different
values ranging from not applying convexity relaxation at all to the maximum
value allowed by our implementation (0, 0.25, 0.5, 0.75 and 1). The obtained
results are organized into three different tables, depicting the number of real
notches taken into account to generate the convex partition (table 3.1), the
total number of portals generated (table 3.2) and the number of cells of the
resulting NavMesh (table 3.3). For further clarity, we also show the percentage
of notches left on average after applying convexity relaxation (Figure 3.8).

For the results provided in this paper we have used scenarios with the number
of vertices ranging from 52 to 3012. We have included scenarios from the liter-
ature both with holes and without holes, to show how our algorithm works well
in both cases. Figure 3.12 shows some of the scenarios with the decomposition
given by our algorithm without convexity relaxation. For further quantitative
evaluation of our results against state of the art methods, we refer the reader to
the detailed comparative evaluation presented in the paper by Toll et al. 2016
[96].

Let us study the ratio C/r, where C is the number of cells in the decomposi-
tion, and r is the number of notches. From the Optimality discussion in Section
3.4, we can extract that the Optimal decomposition occurs when C/r ∈ [0.5, 2].
Figure 3.9 shows the ratio obtained for the scenarios in our testbed. The orange
shaded area indicates the optimal bound based on the number of notches. The
graph shows the ratio for the original case without applying convexity relaxation
(τ = 0) and the resulting ratio as the τ value increases. From this graph, we
can clearly see that our results appears to be always under the value 1, which
corresponds to our algorithm generating at most one cell per notch. This value
would be in the middle of the optimal bound. We can also observe in this graph
the benefit of using convexity relaxation. In our experiments we could observe
how convexity relaxation can allow us to obtain results even lower than the
minimum bound of optimality, when considering the initial number of notches.

76 CHAPTER 3. NAVMESHES 2D

If we plot the number of cells against the number of notches that were not
discarded due to convexity relaxation, we can see how our results still holds
below the ratio 1 (See figure 3.10).

Figure 3.11 shows an example of a NavMesh obtained with our method.
The associated video shows the result generated step by step as well as its final
Cell-and-Portal Graph. 1

Finally, our automatic NavMesh generator system has been successfully in-
tegrated into Ninja Flag, a tactical multiplayer online game, inspired by the
famous outdoor sport called Capture The Flag, that we have developed.

To determine how a character moves from one cell to another and to describe
its behavior inside a convex cell, we use several steering behaviors [74]. Attrac-
tors are set based on the agents’ projection over the portals, as they move within
a cell. This avoids agents sharing the same attraction points when crossing and
leads to natural looking movement.

Overlapping is solved by integrating the physical library Bullet [8]. To keep
track of characters within a cell at all times, we employ Bullet’s GhostObjects,
which are special physic bodies that do not interact with the rest of the standard
physics bodies of the simulation, but they track an updated list of the objects
they are in contact with.

Map Vertices Notches
(cr=0)

Notches
(cr=0.25)

Notches
(cr=0.5)

Notches
(cr=0.75)

Notches
(cr=1)

circle1 52 32 32 32 20 20
circle2 80 48 48 32 20 20
funny 100 42 39 30 23 20
box100 100 56 56 35 35 28
guitar 144 76 48 27 23 19
debug 200 79 18 5 1 1
circle3 256 128 36 36 20 20
bird 275 102 27 16 14 9
superior 518 172 60 34 27 21
crazybox1 812 728 584 530 458 440
nazca heron 1036 272 78 42 34 29
nazca monkey 1204 374 186 125 99 86
crazybox2 3012 2212 845 624 495 441

Table 3.1: Number of notches for the testbed environments, applying different
values of convexity relaxation.

1http://www.lsi.upc.edu/˜npelechano/videos/MIG2011 NavMesh.avi

3.5. RESULTS 77

Map Vertices Portals
(cr=0)

Portals
(cr=0.25)

Portals
(cr=0.5)

Portals
(cr=0.75)

Portals
(cr=1)

circle1 52 31 31 31 20 20
circle2 80 41 41 28 17 17
funny 100 63 60 48 37 30
box100 100 54 54 34 34 28
guitar 144 59 38 23 20 16
debug 200 140 24 4 1 1
circle3 256 126 36 36 20 19
bird 275 99 26 16 14 9
superior 518 179 69 34 33 22
crazybox1 812 634 492 444 387 369
nazca heron 1036 258 73 42 31 29
nazca monkey 1204 362 181 123 94 85
crazybox2 3012 2157 816 612 486 433

Table 3.2: Number of portals for the testbed environments, applying different
values of convexity relaxation.

Map Vertices Cells
(cr=0)

Cells
(cr=0.25)

Cells
(cr=0.5)

Cells
(cr=0.75)

Cells
(cr=1)

circle1 52 28 28 28 17 17
circle2 80 38 38 25 14 14
funny 100 53 50 40 31 26
box100 100 48 48 28 28 22
guitar 144 57 36 21 18 14
debug 200 108 22 5 2 2
circle3 256 123 33 33 20 19
bird 275 100 27 17 14 9
superior 518 168 58 28 25 21
crazybox1 812 562 420 372 315 297
nazca heron 1036 258 73 43 32 30
nazca monkey 1204 361 181 123 94 86
crazybox2 3012 2085 744 540 414 361

Table 3.3: Number of cells for the testbed environments, applying different
values of convexity relaxation.

78 CHAPTER 3. NAVMESHES 2D

Figure 3.8: Percentage of notches left on average after applying convexity
relaxation with cr ∈ [0, 1]

Figure 3.9: Ratio C/r as the convexity relaxation increases, when considering
the original number of notches in the environment.

3.5. RESULTS 79

Figure 3.10: Ratio C/r as the convexity relaxation increases, and we consider
only those notches that are not discarded due to convexity relaxation.

Figure 3.11: Example of a NavMesh with 106 notches and 62 cells. Green lines
represent portals.

80 CHAPTER 3. NAVMESHES 2D

Figure 3.12: Testbed of scenarios

3.6. CONCLUSIONS 81

3.6 Conclusions

The method described in this chapter provides an automatic convex cells sub-
division for any simple polygon with our without holes. The polygons can
represent the floor plan of a given environment, with holes representing static
objects such as walls.

We have introduced a novel algorithm which focuses on the idea of sequen-
tially splitting notches into convex areas instead of being limited to some pre-
liminary triangle subdivision. Since our approach is based on subdividing the
original polygons with segments, instead of diagonals, we achieve on average a
smaller number of convex cells in the environment than previous work in the
literature based on diagonals. Even though the optimal solution cannot be
guaranteed for the case of simple polygons with holes, our algorithm follows a
number of heuristics that help us to get as close as possible to the lower bound
of the optimal range. These heuristics are: (1) The concept of Area of Interest
driving the creation of portals allow us to break most notches using only one
portal (thus creating a cell per notch); (2) Having the fist step of the algorithm
focused on creating notch to notch portals whenever possible, which allows to
break two notches with just one portal (thus creating one cell for each pair of
nodes); (3) creating two portals per notch only when encountering the situation
of the closest element to a portal being a notch with both endpoints outside the
Area of Interest ; and finally (4) a convexity relaxation method to further reduce
the number of cells. Note how (1,2,3) guarantee a result within the bounds of
optimality, and (4) can reduce the number of cells even bellow the bounds of op-
timality. This has allowed us to obtain a navigation mesh generator that creates
the lowest number of cells when compared to other state of the art methods.
For a detailed quantitative comparison we refer the reader to the comparative
paper by Toll et al. [96].

Our goal with this first contribution was to develop a method that could cre-
ate navigation meshes with the smallest number of cells possible. This comes at
the cost of having more complex cells, i.e. more vertices per cell. It is important
to emphasize that in general the cost of path finding depends on the size of the
graph, so our solution offers a good general navigation mesh for this purpose.
However there are other contributions in the literature that have focused their
effort in methods that obtain higher performance by having a compact repre-
sentation of the navigation mesh. In those cases it is preferable to have simpler
cells (for example triangles) despite having larger graphs. So in the end it de-
pends on the path finding algorithm chosen and on the implementation, but for
the general case of simply computing A* (or any variant of A*) performance
benefits from having smaller graphs.

Note that in this chapter we have introduced an algorithm to decompose a
single polygon with holes into convex (or almost convex) cells. Therefore if we
had the case of a game scenario composed of several islands, the current method
would need to be extended to handle such environments. One straight forward

82 CHAPTER 3. NAVMESHES 2D

solution would be to run our algorithm for each island, and then include special
portals that allow the character to move between navigation meshes.

Chapter 4

Computing NavMeshes for
2.5D geometry

In the previous chapter we have presented a novel method to obtain a near-
optimal navigation mesh from a floor map given as a polygon with holes. But
this is rarely the case in a video game or any virtual reality application. Most of
the time, the given scenario will be a complex 3D geometry given as a large set
of objects. Each of this objects, together with the walkable surface will be most
likely given as triangle mesh or a polygon soup. Therefore the immediate next
step in this thesis, was to develop a method to be able to process such input
and convert it into a polygon with holes so that we can automatically obtain
the desired navigation mesh.

In this chapter we present a novel, robust and efficient GPU based tech-
nique to automatically generate a navigation mesh for complex 3D scenes. Our
method consists of two steps: firstly, starting with a 3D scene representing a
complex environment of one floor with slopes, steps, and other obstacles, it
automatically generates a 2D representation based on a single polygon (floor)
with holes (obstacles). This step can handle degeneracies of the starting 3D
scene model, such as interpenetrating geometry. Secondly, a novel method that
exploits the GPU efficiency is used to automatically generate a near-optimal
convex decomposition which will represent the cell and portal graph of the en-
vironment. Such convex decomposition is a 2D representation of the walkable
areas of the environment with portals indicating the crossing borders. In the
results section we will show how the presented technique is not only more robust
than previous CPU methods, but also how for the tested environments with up
to 1000 vertices we obtain results up to five times faster.

The main contribution of this chapter is a novel GPU based method to
generate a NavMesh for a given 3D scene, representing a complex environment
of a single floor. Our method has two main steps: firstly it abstracts away

83

84 CHAPTER 4. NAVMESHES 2.5D

the information of the 3D model that represents the scene (with its slopes,
steps and other obstacles) to automatically convert it into a 2D representation
based on a single simple polygon (floor) that can contain holes (obstacles).
Secondly, it automatically generates a near-optimal convex decomposition of this
2D representation. Our method is robust against degeneracies of the starting
3D model, such as interpenetrating geometry.

Unlike the previous chapter that worked directly processing vertices of the
input geometry (exact method), the one in this chapter does not need a clean
geometry to work with. The filtering process acts as a sampling that allows
to generate a simple polygon with holes from a polygon soup. This is a very
important advantage because very often the geometry obtained from modeling
tools is far from perfect. So typical artifacts that we can find include inter-
sections, gaps, non-manifolds or degenerate triangles. Sampling methods such
as Recast and ours, allow us to handle imperfect geometry. The usual tradeoff
when compared to exact methods, is that the resulting navigation mesh is not
as adjusted as in exact methods. However as we will show in the results section,
our algorithm obtains a NavMesh with a very good adjustment to the input
geometry.

4.1 Converting a 3D World into 2D Polygons

As most NavMesh generation methods, the navigation mesh is constructed in
2D. However, especially in the case of video games, the virtual world is typically
generated using a 3D software modeler. Since we want the method to be fully
automatic, the first step of our method transforms the 3D input data into a
2D representation. In particular, the input required by the navigation mesh
Generator consists of a single polygon defining the floor, with the vertices given
in counter-clockwise order, and holes representing the static obstacles with the
vertices given in clockwise order. The 2D Abstraction step is subdivided in
several stages, as can be seen in figure 4.1.

4.1.1 Normal and Depth Map Extraction

The first stage of the pipeline takes the 3D model of the scene as input and
performs a render of the model from a top view, using an orthographic camera.
A texture is created using the fragment shader, that stores the normal per frag-
ment (red, green and blue channels) and its normalized depth (alpha channel).
Figure 4.2 shows the resulting Normal-and-Depth Map for a given scene.

4.1. CONVERTING A 3D WORLD INTO 2D POLYGONS 85

3D Scene model

Normal&Depth
Map Extraction

Obstacle Detection

Contour Expansion
& Refinement

Polygon Reconstruction
& Simplification

2D Polygon Set

Normal & Depth Map

Rough Binary
Partition

Rough Contour
Table

Binary Partition Contour Table

Figure 4.1: This figure describes the data flow of the pipeline of the 2D
Abstraction step to convert from the 3D world to the 2D representation.

86 CHAPTER 4. NAVMESHES 2.5D

Figure 4.2: The initial 3D scene (Left) and its Normal-and-Depth Map
generated with the shader (Right).

4.1.2 Obstacle Detection

The target of this stage is to identify walkable space (floor) vs. non-walkable
(obstacles). The obstacle detection is solved using a flood fill algorithm, where
the seed is introduced by the user over a walkable area (notice that this is
the only input required by the user). The Normal-and-Depth map is used to
determine if a neighboring fragment is similar to our current fragment. Two
adjacent fragments are similar if the character can overcome the angle formed
by their normals and the difference of depth. These parameters are configured
through the application and depend on the walking abilities of the characters.
If the neighbor fragment is reachable from the current one, then it belongs to
the walkable area; otherwise it belongs to the frontier of an obstacle (contour).

The output of this stage are a Rough Binary Partition (RBP) and a Rough
Contour Table (RCT). The former is a binary image representing the walkable
areas (white pixels) and the obstacles (black pixels), and the latter is a table
containing those pixels marked as contour (black pixels in the RBP that have
at least one white neighbor). In Figure 4.3 we can see the binary partition with
the walkable areas and the obstacles. Notice that the torus is treated as a solid
obstacles seen from above and thus the floor underneath it, will not be treated
as walkable.

4.1.3 Contour Expansion and Refinement

In order to ensure a one pixel wide continuous contour with an area greater
than zero (i.e. no obstacles of size one pixel or line obstacles) the RBP and
RCT need to be further refined.

This stage is subdivided into two sub-steps. Firstly, the contour is expanded
by iterating over all the pixels in the Contour Table marking as contour those

4.1. CONVERTING A 3D WORLD INTO 2D POLYGONS 87

Figure 4.3: The Rough Binary Partition resulting of the Obstacle Detection
stage.

adjacent pixels that in the binary partition belong to the floor, i.e. white pix-
els. The target of this sub-step is to avoid future degeneracies such as having
obstacles mapped into a single vertex.

The Contour Refinement step removes those contour pixels that have end
up completely surrounded by black pixels i.e. pixels of an obstacle, and hence,
they do not belongs to the frontier of an obstacle anymore. Figure 4.4 shows
these two steps over a given obstacle.

Figure 4.4: The initial contour of an obstacle (Left); the expanded contour
(Center); the refined contour (Right).

At the end of this process we obtain the final Contour Table and Binary
Partition adequate to carry out polygon reconstruction.

88 CHAPTER 4. NAVMESHES 2.5D

4.1.4 Polygon Reconstruction and Simplification

This step will generate the 2D model representing the floor and obstacles to feed
the NavMesh generator. Firstly, the pixels on the Contour Table are sorted by
its x coordinate, i.e., they are sorted from left to right. If the x coordinate of
two contour pixels is the same, they are sorted by the y coordinate from top
to bottom. Each contour pixel is considered a vertex of a polygon and then a
simplification method is used to reduce the final number of vertices. Initially
all contour pixels are marked as not-visited.

The algorithm proceeds by iterating over all the pixels on the Contour Ta-
ble, until it finds the first not-visited contour pixel. The order of the Contour
Table guarantees that this pixel is the most left one of a polygon on the Bi-
nary Partition. When reconstructing the floor, the vertices have to be given
in counter-clockwise order, so for the most left contour pixel, we have to start
moving to the S, SE or E neighbor pixel that is contour. If we are reconstructing
an obstacle, the vertices have to be given in clockwise order, so we have to start
moving to the N, NE or E. Figure 4.5 exemplifies the process of reconstructing
an obstacle from its most left contour pixel C. In this case, the vertices have to
be given in clock-wise order, so the neighbor chosen is the one marked with E.

Once the first neighbor has been decided, the process continues by selecting
and setting as visited at each iteration the contour pixel that is closest to the
current one, that has not been visited yet. In this case, all the adjacent neighbors
of the current pixel are checked. The Contour Expansion and Refinement stage
ensures that we always have an unequivocal neighbor contour pixel to choose as
next. It also ensures that every reconstructed polygon has an area greater than
0, and that we do not have degeneracies such as obstacles reconstructed as a
single point. The process of reconstructing a polygon ends when the start pixel
is reached and the process of reconstructing all the polygons finishes when all
the pixels on the Contour Table have been marked as visited.

Figure 4.5: The most left contour pixel C of an obstacle and the potential
neighbors that can be chosen as next.

4.2. AUTOMATICALLY GENERATING NAVMESHES 89

To reduce the total number of vertices per polygon, the first straight forward
simplification consists of eliminating all vertices that belong to segments aligned
horizontally, vertically or with 45o angle and are not end points. This pre-
simplification step is done during the reconstruction process. Next the Ramer-
Douglas-Peucker Algorithm [72, 11] is applied in order to further simplify the
polygon (figure 4.6).

Figure 4.6: A polygon on the Binary Partition (Left); A high density
pre-simplified polygon (Center); The final simplified ¡polygon (Right).

4.2 Automatically Generating NavMeshes

The algorithm presented in the previous Chapter 3, which was fully implemented
on the CPU, consisted on identifying the notches (vertices with an angle greater
than π) and transforming them into convex vertices. Notches are vertices that
cause concavities in the geometry, and our algorithm is able to transform them
into convex vertices, providing a near-optimal convex partition of the input
polygon. The transformation from concave to convex is performed by creating a
portal between each notch and the closest element (vertex, edge or portal) lying
inside the Area of Interest of the notch. The Area of Interest is determined by
the area formed by prolonging the incident edges of the notch. The method
ensures that in the cases where the closest element is a vertex or an edge, only
one portal needs to be created per notch. In the cases when the closest element
is a portal with neither endpoints lying inside the Area of Interest, it is required
to create two portals to transform the notch into a convex vertex. In this section
we present a novel GPU version of the aforementioned CPU solution which aims
to improve the efficiency of computing the closest element to a notch.

4.2.1 The GPU based version

The CPU solution presented in Chapter 3 has a cost of O(n·r), where n=number
of vertices and r=number of notches. So if r is similar to n, the algorithm to
generate NavMeshes has a O(n2) cost to solve the problem. This is not an
important handicap a priori, since the NavMesh construction is normally an
offline process, but it becomes an issue when dealing with dynamic environments
that require continuous updates of the NavMesh, as it happens in video games.

90 CHAPTER 4. NAVMESHES 2.5D

The proposed method based on GPU, starts by assigning a unique identify-
ing color to each edge of the scene. Then, the 2D scene is rendered from the
point of view of every notch, with the parameters of the camera set based on
the characteristics of the notch. The position of the camera is given by the
position of the notch, the FOV of the camera is equal to the angle formed by
the prolongation of the edges that define the Area of Interest of the notch and
the forward direction of the camera is defined as the sum of the unitary vectors
that define the Area of Interest. Once the camera has been configured, the scene
is rendered and the result is stored on a one-dimensional texture that contains
those elements visible from the point of view of the notch, as can be seen in
figure 4.7.

Figure 4.7: A simple scene with all edges drawn with a unique color (Left) and
the texture generated from the point of view of the notch (Right).

To recover the edges visible from the notch, we check every pixel of the
texture. The color of such pixel identifies the edge. Then, we determine which
of those edges is the closest one to the notch and we create a portal with its
best candidate. We cannot simply read the depth of each pixel, because we need
Euclidean distances to the notch.

A critical parameter that affects directly the performance of the algorithm is
the zFar of the camera. To avoid rendering an unnecessary number of elements
that are occluding each other, the zFar is dynamically updated. Initially the
zFar is set to 1/10th of the diagonal of the bounding box of the scene. After each
render, if no element has been rendered, the zNear is set to the current zFar and
the zFar is doubled in order to carry out another render. This process continues
until at least one element has been found that lies on the Area of Interest of
the notch with the current zFar. Notice that this implies several renders for
some notches, but we have found empirically that the zFar converges towards
an optimal value that results in the most efficient render for a large number of
the notches in the given scene. The entire process is described on figure 4.8.

4.2. AUTOMATICALLY GENERATING NAVMESHES 91

Initialize zF Scene

zFar=sFarScene

Render Scene

Create Portal With
Best Candidate

Yes

Any Element
Rendered?

Update zFarScene
with distance to best

candidate

Are There
more notches?

zNear = zFar
zFar *= 2

No

No

End
Yes

Figure 4.8: Diagram that describes the GPU based version.

92 CHAPTER 4. NAVMESHES 2.5D

4.2.2 The Portal Vertex-Portal case

The most complicated case that our algorithm must handle is when the closest
element to the notch is a previously created portal. In order to avoid inter-
sections between portals, we create a portal between the notch and one of the
endpoints of the portal that is inside the Area of Interest of the notch. If neither
endpoint lies within the Area of Interest, then two portals are created to join
the notch with each of the endpoints of the previous portal.

In order to avoid intersections with the geometry, the CPU version checks
if any of the existing edges already intersects the portal that we want to create
with either endpoint of the closest portal. In GPU mode this problem is solved
by using one extra render step. The new Area of Interest is defined as the one
delimited by the segments that join the notch with the endpoints of the previous
portal as can be seen in figure 4.9.

Figure 4.9: The original Area of Interest of a notch nk (Left). When the
closest element is a portal pi, the new Area of Interest is defined by the notch

and the endpoints of the portal (Right).

The camera parameters are thus updated accordingly and a new render of
the scene is performed. Then the algorithm checks for intersections between the
segments joining the notch with the endpoints and the edges that appear on
the new render. Notice that the GPU version needs to check against a reduced
number of edges unlike the CPU version that checks against all edges in the
scene.

4.3 Results

In this chapter we have presented a framework to obtain Navigation Meshes
from 3D complex environments consisting of one layer where we could carry
out navigation for characters. Firstly a method has been described to abstract
the 3D geometry into a 2D simple polygon with holes. The results shown in
figures 4.10 and 4.11 demonstrate the robustness of the method to deal with

4.3. RESULTS 93

environments containing complex obstacles. The method provides the flexibility
of being adjusted to the walking abilities of the characters, to determine the
height of the steps, and the angle of a ramp that a character can easily overcome.
Secondly we described a novel GPU based approach to speed up the search for
closest element to a notch.

Figure 4.10: The resulting NavMesh of the scene described in figure 4.2.

The experimental results have been obtained on a NVIDIA GeForce 8800
GTX and an Intel Core 2 Quad Q6700 at 2.66GHz with 8 GB of RAM. We
have tested the new GPU based algorithm presented in this chapter to generate
automatically NavMeshes against the previously proposed CPU version.

To test the overall performance of the algorithm, we created 10 scenarios of
increasing complexity ranging from 23 vertices to 965. The algorithm applied
dynamic zFar calculation. Figure 4.12 shows the time taken by both CPU and
GPU implementations. As we can see, the time taken by the CPU version to
solve the problem increases quadratically, whereas the GPU version increases
nearly linearly with the number of vertices of the environment. Notice that the

94 CHAPTER 4. NAVMESHES 2.5D

Figure 4.11: The resulting Navigation Mesh for the scene containing 965
vertices and 650 notches.

GPU algorithm can be quadratic in the worst case, but in practical scenarios
it performs with nearly linear time, since it applies geometry culling using an
octree to render the 1D texture for each notch.

The experimental results were obtained performing renders over a viewport
of 1x32 pixels that were then mapped onto a texture. The size of the texture
(and thus the viewport) used is important for the overall performance of the
algorithm, as can be seen in figure 4.13. We have found empirically that a size
of 32 pixels for the texture is adequate to correctly identify the closest element.
This comparison table was obtained with the largest scene of 965 vertices, since
for smaller scenes the difference is less significant.

The value of the zFar chosen for performing the render from each notch
has also an impact on the performance, since it determines how many segments
get discarded at an earlier stage of the graphics pipeline. A large zFar will
guarantee that all segments visible from the given notch are rendered, but with
a high cost, whereas a small zFar will result in faster renders but may not render
segments that are visible and relevant for creating the NavMesh. The optimal
zFar, is thus the shortest one that allows the closest element to be rendered
without rendering many additional segments that are far away and thus either
not visible or simply not relevant.

In order to calculate the optimal zFar, we have carried out an experiment
with the largest scenario. Empirically we found that for the given scenario,
the optimal zFar was 2. Figure 4.14 shows the time results of generating the
NavMesh with increasing zFar starting with the optimal value 2 (any value
under 2 would not guarantee that the closest element is found for all notches).

Our goal with this experiment was to test whether the automatic method
for calculating the zFar dynamically would solve the problem in similar times.

4.3. RESULTS 95

Figure 4.12: Time comparison between the CPU and GPU versions of 10
scenarios with different complexity.

Figure 4.13: Time spend to solve the most complex test environment, for
different sizes of texture.

96 CHAPTER 4. NAVMESHES 2.5D

Figure 4.14: Time spend to solve the most complex test environment, for
different values of fixed zFar.

Therefore we then tested that same scenario with the method presented in
Section 4.2.1. The resulting time was 0,312 seconds, with an average zFar of
1,25 which is automatically calculated and changes dynamically when necessary.
This shows that our automatic method achieves time results similar to the
optimal zFar calculated manually.

4.4 Conclusions

In this chapter we have presented a novel GPU based method to automatically
compute a navigation mesh for a complex 3D scene, representing a single floor
plant. Our method has two main steps: first a 2D abstraction is constructed
from the 3D model. Then the NavMesh is computed using this 2D abstraction.

Additionally, we have presented a GPU version of the same algorithm de-
scribed in Chapter 3. Results show that the GPU based version is more efficient
and scalable than the CPU version, as it makes use of the underlying space par-
tition used by the rendering engine.

The method presented in this chapter works with complex 3D scenes repre-
senting a single layer with 3D geometry (meaning that we can handle ramps,
steps, holes, etc,). If the original scene consisted of more levels, the user would
need to manually subdivide it, treat each level independently and connect its
NavMeshes manually. The natural extension to this work, that will be explained
in the following chapter, is to add the capability to deal with several floors au-
tomatically to handle also multi-layered scenes. The advantage of the method

4.4. CONCLUSIONS 97

is that it can handle complex 3D geometry, with degenerated triangles, inter-
secting geometry, and even non-manifolds and automatically recover a simple
polygon with holes.

98 CHAPTER 4. NAVMESHES 2.5D

Chapter 5

Computing NavMeshes for
multi-layered 3D
environments

In the previous chapter, we presented a fully automatic method that takes as an
input a 3D scene representing a single floor plan, and abstracts a representation
consisting of a 2D simple polygon with holes that fits the input required by the
underlying 2D NavMesh generator. This chapter further extends the work in
order to support 3D multi-layered environments such as buildings, which are
basically a concatenation of several floor plans.

The main difficulty when handling multiple layers in complex 3D geometry,
is to clearly identify each layer. Our approach to solve this problem consists of
creating a voxelization similar to the one done by Recast. But unlike Recast that
uses such voxelization to generate the NavMesh, we only use the voxelization
to split the geometry into layers and then use the voxels corresponding to each
layer as a filter to extract an accurate contour of the underlying geometry.

The main contribution of this chapter is a novel GPU based method to
generate a CPG for a given 3D scene (with slopes, steps and other obstacles)
represented simply as a polygon soup. The algorithm starts by performing a
GPU voxelization of the geometry to classify the different layers and calculate
a cutting shape, CS. The CS is a depth filter used by the fragment shader to
flatten each layers’ geometry into a 2D high resolution texture encoding the
depth map of each layer. Then each layer is encoded as a single simple polygon
with holes which is the required input for the NavMesh generator (see Chapters
3 and 4). The NavMesh generator provides a convex decomposition with a
number of cells close to the optimal value, since for most cases it only needs to
create one portal per notch of the polygon with holes. Finally all the layers’
CPG are automatically linked together to obtain the final CPG of the entire

99

100 CHAPTER 5. NAVMESHES MULTI-LAYERED

scene. Figure 5.1 shows the flow of the algorithm in a very simple but illustrative
scenario.

As we will see in the results, among the benefits of this method is the fact that
it can still handle complex geometry with intersections, degenerate polygons or
holes among others.

Figure 5.1: Near optimal navigation mesh construction for a simple example of
a 3D environment with 2 layers. From left to right we can see the original

scene, the result of the layer extraction step after the coarse voxelization, the
2D floor plan of each layer, and finally the near optimal navigation mesh.

To the best of our knowledge this is the first fully automatic architecture
that can provide an accurate navigation mesh, with an almost optimal number of
cells, ready for path planning from just a polygon soup (with degeneracies such
as intersections and holes). Previous work studied is either not fully automatic,
not robust to degeneracies or produces an over-segmented CPG. The presented
system is efficient enough to allow the scene modeler to make changes and
observe the impact on the final navigation mesh at interactive rates and is of
high importance to the fields of video games, robotics, movies and character
simulation.

5.1 Algorithm Description

Our system entitled NEOGEN-ML (the ML sufix comes from Multi-Layered),
takes as an input a polygon soup describing a multi-layer 3D environment and
provides as an output a CPG that can be directly used for character navigation
without any manual work required by the user. The user only needs to specify
four input parameters:

• maximum step height, hs, indicates the maximum difference in terrain
height that the character can overcome.

• maximum walkable slope angle, αmax, indicates the maximum angle of
the slope that the character can walk up or down.

• height of the character, hc.

• walkable seed, sw, introduced by the user to indicate one point of the
geometry where the characters can navigate.

5.1. ALGORITHM DESCRIPTION 101

Note that the first two are character navigation skills and thus could be
calculated automatically from the set of animation clips available, and the third
one can also be automatically calculated.

In figure 5.1 we can see an example with some intermediate results provided
by NEOGEN-ML, and the final CPG. Figure 5.2 shows the steps followed by
the NEOGEN-ML framework in order to generate a navigation mesh from a 3D
multi-layer environment.

The first step of the presented method consists of performing a GPU coarse
voxelization. This step classifies the voxels based on whether they are empty,
positive, or negative. Geometry does not need to be axis aligned, and the
discretization at this level will not affect in any way the final result. This GPU
voxelization is then processed by the Layer Extraction and Labeling step to
classify the voxels into layers.

Once the layers have been detected, the Layer Refinement step performs a
high resolution orthogonal render of each individual layer in order to obtain
a 2D image of the layer that preserves the original geometry. From this 2D
image it calculates the floor plan of each layer. Finally a near optimal convex
decomposition of each floor plan is carried out and linked to the adjacent layers
in order to obtain the CPG of the scene.

In our method, the voxel size is not used directly to define walkable areas,
but to serve as a filter to process the underlying geometry. Therefore the dis-
cretization at this level does not have an impact on the adjustment of the cells
to the geometry. The only thing that matters is not to have an overhanging
walkable area over another within the same voxel, which is guaranteed by having
the voxel height equal to the characters’ height.

5.1.1 GPU coarse voxelization

GPU voxelization is employed to speed up the navigation mesh generation which
is of great importance for the artist modeling the scene. By achieving interactive
rates in this process we greatly help in the time consuming task of creating and
modifying scenarios.

The voxelization method is an extension of the GPU method described in
[12], where they perform in just one rendering pass a voxelization based on a
slicing method. A grid is defined by placing a camera above the scene and ad-
justing its view frustum to enclose the area to be voxelized. This camera has
an associated viewport with (w, h) dimensions. The scene is then rendered,
constructing the voxelization in the frame buffer. A pixel (i, j) represents a
column in the grid and each voxel within this column is binary encoded using
the kth bit of the RGBA value of the pixel. Therefore, the corresponding im-
age represents a w × h × 32 grid with one bit of information per voxel. This
bit indicates whether a primitive passes through a cell or not. The union of
voxels corresponding to the kth bit for all pixels defines a slice. Consequently,

102 CHAPTER 5. NAVMESHES MULTI-LAYERED

3D Scene Model Coarse Voxelization

Layer Extraction
& Labeling

NavMesh Generator

Yes

All Layers
refined?

Layer Refinement

Voxel Grid

No

Select next Layer

Scene Layers

Layers

NavMesh Layer

Figure 5.2: Multilayer framework for the automatic navigation mesh
generator.

5.1. ALGORITHM DESCRIPTION 103

the image/texture encoding the grid is called a slicemap. When a primitive is
rasterized, a set of fragments are obtained. A fragment shader is used in order
to determine the position of the fragment in the column based on its depth.
The result is then OR− ed with the current value of the frame buffer.

Since faces near-parallel to the viewing direction do not produce any frag-
ment, we have extended the previous technique by carrying out three separated
slicemaps, one for each viewing direction (along the X, Y and Z axis respec-
tively). A final slicemap is then created by merging these separated slicemaps
into a single one.

In this step, we need a coarse voxelization that provides information regard-
ing the walkable areas of the scene. Each voxel will be of size w×w× hs where
w can be a user input, or else can be automatically initialized as the diameter
of the cylinder enclosing a character, and hs is the maximum step height. Each
voxel will be classified into positive, negative or empty, therefore we will use
two slicemaps, one to store positive fragments and the second one to store neg-
ative fragments. This can be done in a single pass using Multiple Render Target
(MRT) and a shader that outputs each fragment in the corresponding texture
depending on its classification.

For each drawn fragment we classify the voxel as:

Vijk =

{
positive cos (αmax) > (~n · ~UP)
negative otherwise

where αmax is the maximum walkable angle, ~n is the normal of the polygon
corresponding to that fragment and ~UP is the world up vector that in the
coordinates system we use corresponds to (0, 1, 0).

The main problem is that positive and negative surfaces can fall in the same
voxel. Since in our application we are only interested in detecting the voxels
with walkable surfaces, we will classify those voxels also as positive. The refine-
ment step performed later on will solve the ambiguity. Figure 5.3 shows the
decomposition into positive and negative voxels of a simple scene.

Figure 5.3: Original scene and its corresponding GPU coarse voxelization.
Red indicates negative voxels and blue positive voxels (i.e. where the slope is

within the walkable capabilities of the character).

104 CHAPTER 5. NAVMESHES MULTI-LAYERED

Currently the maximum resolution for the coarse voxelization is 128×128×
128. This resolution is limited by having MRT that can render into 8 textures in
a single pass and we need 2 for each slicemap (positive and negative). Therefore
we can count on 4 textures to encode each slicemap, with 8 bits/channel and 4
channels (RGB).

The size of the environment that we can currently handle is restricted by
the resolution of the voxelization step. However it could easily be extended to
larger environments by subdividing the scene into smaller regions to fit with
the resolution of the voxelization, treat each of these regions as an individual
multi-layered map applying the current method, and finally join the resulting
NavMeshes into a single one.

5.1.2 Layer extraction and labeling

After the coarse voxelization step, we know which voxels of the scene contain
potentially walkable geometry. The potentially walkable area is formed by all
those voxels:

WA = ∪{Vijk = positive}

In this step, we need to split the potentially walkable area WA into layers,
as well as eliminate all those voxels that are unreachable due to the character’s
maximum step height hs, or the character’s height, hc. A Layer, Li, will be
composed by a set of connected accessible voxels such that it is not possible to
have in the same layer Vijk and Vijk′ (i.e. it can contain at most one voxel per
column of the voxelization). An accessible voxel is a positive voxel where the
character can stand without colliding with any geometry above:

Vijk =

{
accessible Vij(k+{1..n}) = empty, n =

⌈
hc

hs

⌉
non accessible otherwise

Two accessible voxels Vijk and Vijk′ , (where k ≤ k′) are connected when the
distance in both i and j is at most 1 and Vijk′′ = positive,∀k′′ = [k + 1, k′ − 1],
when k′ − k > 1.

An ordered flooding algorithm is performed to extract all the different layers
and assign them layer IDs, Lid. Initially accessible voxels are stored ordered
from bottom to top and assigned an invalid Lid. Starting from the most bottom
accessible voxel, an Lid is created and its connected accessible voxels are checked
for an Lid propagation step, in which we can encounter the following three cases:

• The voxel has an invalid Lid: the current Lid will be assigned, as long as
there is no voxel below it that already has the current Lid. Otherwise the
voxel will remain with an invalid Lid until the flooding method reaches it.

5.1. ALGORITHM DESCRIPTION 105

• The voxel has a valid Lid different from the current one: A layer merging
can be carried out between the two layers if there are no voxels from one
layer in the same column as a voxel from the other layer.

• The voxel already has the same Lid: in this case nothing needs to be done.

The flooding algorithm proceeds iteratively from bottom to top. Figure 5.4
shows the result of the layer extraction step.

Figure 5.4: Result of the layer extraction step. Each color indicates the set of
voxels belonging to the same layer.

Finally, layers that are unreachable for the seed sw provided by the user are
eliminated. Figure5.5 shows the result of the layer connectivity step.

Figure 5.5: After the layer connectivity step, unreachable layers are
eliminated (for this example, the orange and green layers are eliminated.

106 CHAPTER 5. NAVMESHES MULTI-LAYERED

5.1.3 Layer refinement

At this stage, we have subdivided the real walkable space into Layers. The
navigation mesh could be computed from this representation, but since we want
to obtain a fine adjustment to the obstacles, we need to further increase the
resolution. The goal is to obtain a 2D high resolution floor plan of each layer.
This is a key step of our algorithm, since it will solve any ambiguities contained
in the voxels due to the coarse voxelization step, and provide as an output an
accurate high resolution description of the original geometry. In order to do this
we have implemented a fragment shader that for each layer will only render the
geometry that corresponds to such layer. Once the fine floor plan is rendered we
can calculate the polygon bordering the layer, as well as the obstacles. We will
now explain in detail each of the sub-steps followed by the Layer Refinement
process as shown in figure 5.6.

5.1.3.1 Layer contour expansion

For each layer obtained from the coarse voxelization we have two types of voxels:
accessible and obstacle. It is possible though that obstacle voxels neighbors of
accessible voxels partly contain walkable geometry. Contour expansion is thus
computed in order to consider these voxels for the cutting shape calculation.
Figure 5.7 shows the result of this step around obstacles or floating geometry.

5.1.3.2 Cutting Shape

The Cutting Shape, CS, is calculated from the accessible voxels of each layer.
The CS can be seen as a shape that wraps each layer in order to filter the
geometry that should be rendered into a 2D high resolution texture to obtain
the floor plan of each layer.

This CS stores for each pixel the depth of the top of the accessible voxels
with the offset hc and the type of voxel. The output texture stores:

• Channel R: the type of voxel (1 for accessible voxel, 0.5 for voxels which
contain a portal between layers, and 0 for non-accessible voxel).

• Channels GBA: the depths of the cutting plane for each column of the
voxelization grid.

5.1.3.3 Depth map extraction

An orthogonal top view camera is defined enclosing the scene. The depth map
of the layer is calculated with a fragment shader, using the cutting shape as a
filter. The fragment shader will discard a fragment (i, j) if it satisfies any of the
following conditions:

5.1. ALGORITHM DESCRIPTION 107

Initial Layout
Layer Contour

Expansion

Cutting Shape
Computation

Polygon
Reconstruction &

Simplification

Obstacle Detection

Layer

Depth Map
Extraction

Cutting Shape

Depth Map

Contour Table

3D Scene Model

Binary Partition

2D Polygon Set

Figure 5.6: Layer refinement diagram.

108 CHAPTER 5. NAVMESHES MULTI-LAYERED

Figure 5.7: From left to right we can see a close up of the scene. On the left,
the output of the layer extraction, in the center the result of the voxel

expansion step to better capture the original geometry around obstacles, and
on the right the calculated Cutting Shape (in white).

1. textureCS
ij .R = 0. If channel R of the cutting shape contains a 0, it means

it is a non-accessible voxel.

2. fragmentij .depth < textureCS
ij .GBA. If the current fragment’s depth is

smaller than the cutting shape depth (stored in channels GBA) then those
fragments do not belong to the geometry of the current layer, but to some
other higher layer.

3. cos (αmax) > (~n · ~UP). This means that the current surface, with normal
~n cannot be overcome by the character for the given maximum walkable
slope angle αmax.

In any other case, the fragment is passed to the next step of the graphics
pipeline. Since the CS can intersect with vertical walls, and those walls will
not produce any fragment on the rasterization process, we need to deal with
near-perpendicular polygons separately in order to not to lose any details of the
original geometry. This is done by storing those polygons and then for each layer
rendering polygons that intersect with accessible voxels directly onto the depth
map of the corresponding layer. Figure 5.8 shows the result of this process for
the bottom and top layer of the example scene. Notice that black areas indicate
non-walkable space (obstacles, or empty) and in grey scale we can see the depth
of the walkable areas. Notice how the ramp has been split between the two
layers.

5.1.3.4 Obstacle detection and polygon reconstruction

To identify floor vs. obstacles, a flood fill algorithm is performed over the depth
map. Obstacles are detected when the difference in height between neighboring

5.1. ALGORITHM DESCRIPTION 109

Figure 5.8: Depth maps for the bottom and top layers of the example scene.

pixels is bigger than the character’s step height, hs. The output of this flooding
is a binary file where 1 means floor, and 0 means obstacle. Pixels belonging
to the contour of an obstacle are considered vertices of the obstacle shape.
To reduce the final number of vertices, we apply the Ramer-Douglas-Peucker
algorithm [11].

Note that we are reconstructing the shape of each polygon from depth map,
therefore the resolution used to generate this map will have an impact on the
quality of the reconstructed shapes. Finer resolution will provide a tighter
adjustment to the original geometry with a higher computation cost whereas
coarser resolution will be faster but provide a lower quality adjustment (i.e.
vertices of the polygons may be slightly displaced from the vertices of the original
geometry).

5.1.3.5 NavMesh Generation

The final step of the algorithm consists of generating a navigation mesh of the
scene. The floor plans generated previously are in the input format required
by the underlying navigation mesh generator described at Chapter 3: a single
polygon with holes representing floor vs. obstacles. The resulting CPG is a
near optimal convex subdivision of the space, since the results obtained show
that the final number of cells is close to the minimum value of the range where
the optimal solution lies (as proven in [63]).

Since our method provides a decomposition that is always guaranteed to be
within the optimal bound, and in fact our experimental results show a tendency
towards the lower values of this bound, we can determine that our algorithm
provides a near-optimal decomposition.

110 CHAPTER 5. NAVMESHES MULTI-LAYERED

Figure 5.9: Floor plans of bottom and top layers. White polygons provide the
shape of each layer, and red polygons represent obstacles.

5.1.3.6 Merging layers

During the layer extraction step, the red channel (R) of the cutting shape texture
stores the value 0.5 when a pixel could belong to boundary between layers. This
information is used to determine the portals that join a layer with its neighboring
layers.

This process consists of for each boundary pixel, find the two closest vertices
between neighboring layers and merge them into a single vertex. The position
of the merged vertex is calculated as the average between the two positions of
the vertices (note that the resolution of the cutting shape may lead to numerical
differences in positions and thus the need to calculate the average position). This
can have the undesirable effect of adding an extra notch to the map. However
this effect can be easily mitigated with the convexity relaxation method.

The algorithm iterates through these possible portal edges to merge them
together. After the merging process is finished, the navigation mesh could end
up with some non-essential portals. A non-essential portal is defined as a portal
that if removed will not leave a notch in the navigation mesh. For example in
Figure 5.10 we see that a portal has been created in the center of the ramp
to join the bottom and top layers (black dotted line) that could be removed
merging the cells of the ramp. Therefore the final step of the algorithm consists
of searching for non-essential portals around the merged areas.

5.2. RESULTS 111

Figure 5.10: The merging step will join the top and bottom Navigation
Meshes into one, and will also eliminate the non-essential portals around

merged areas (black dotted line).

5.2 Results

We have tested our algorithm in several scenarios of increasing complexity and
number of vertices. NEOGEN-ML has successfully generated the navigation
mesh for all the multi-layered 3D environments tested. In table 5.1 we have
a summary of some different scenarios in which we have tested our algorithm.
Figures 5.11 and 5.12 show the visual results obtained. It is important to
mention that our algorithm is robust against intersecting geometry, cracks and
holes (which would be treated as obstacles). This is a very important advantage,
since it makes easier the task of designing scenarios.

scene #Fig #triangles #layers #cells τcr
map1 1 18,431 2 29 0.5
map2 16 7,308 3 86 0.5
map3 15 19,510 4 50 0.75

Table 5.1: Summary of the scenes tested (with references to the Figure
number in the chapter) with the number of triangles and layers for each scene

and the final number of cells generated by NEOGEN-ML for the given
convexity relaxation threshold, τcr.

In figure 5.13 we show the time taken by NEOGEN-ML to output the
NavMesh for each scene (tested with Intel Core 2 Quad Q9300 @ 2.50GHz,
4GB of RAM and a GeForce 460 GTX). Even though the execution time of the
algorithm is not a major goal, it is important that the process run as fast as
possible, to make it easier for the designer to make changes to the geometry and
see the impact on the resulting navigation mesh at interactive rates.

112 CHAPTER 5. NAVMESHES MULTI-LAYERED

Figure 5.11: Comparison between the results given by Recast (left) and
NEOGEN-ML (right) in map3. As we can see, our method calculates a

navigation mesh with a much lower number of cells. Note also that the shape
of obstacles is perfectly adjusted by our cell decomposition (cells rendered

slightly above the geometry for clarity), without increasing unnecessarily the
number of cells in the final CPG.

Figure 5.12: Two views of the Navigation Mesh for the scene map2.

5.2. RESULTS 113

We also compare our results against Recast, since it is one of the most widely
used open source tools for the computation of NavMeshes in complex virtual
applications. As we can observe, our method takes considerably less time to
compute the Navigation Mesh, and this difference increases with the size and
complexity of the environment. Regarding the number of generated cells, for
map1 Recast created 121 cells, whereas NEOGEN-ML needed only 53 (without
convexity relaxation) and can be further reduced to 29 (with τcr = 0.5).

Figure 5.13: Computation time (in seconds) taken for each of the tested
scenes.

Another advantage of our method is that it creates cells that adjust tightly
to the geometry. Figure 5.14 compares the adjustment to the contour offered
by NEOGEN-ML and Recast. As we can observe, NEOGEN-ML provides a
better adjustment to the contour of the obstacles, and hence, our description
of the walkable space is more accurate as can be seen in the contour around
the columns (notice that the small visual offset between the cell limits and the
contours in our method is due to the cell edges being rendered slightly above the
terrain). The voxelization used in Recast provides a coarse approximation of the
geometry that can be refined by reducing the size of the voxels, but at the cost of
generating significantly more cells (this issue arises regardless of the character’s
size used to calculate clearance through Minkowski sum). NEOGEN-ML offers
a tight fit to the geometry without adding unnecessary cells.

Our results show that our system is faster than previous work in the liter-
ature, with minimal user input. In fact the information required from the user
could be limited to the walkable seed sw. The rest of the input elements (hc,
hs, αmax and τcr) could be automatically extracted from the walking abilities
of the characters.

114 CHAPTER 5. NAVMESHES MULTI-LAYERED

Figure 5.14: Adjustment to the geometry of the NavMesh in our method (a)
and Recast (b,c,d). Recast results are calculated with agents radius being 0
(to eliminate the object enlargement carried out by Recast to account for

clearance). In (b) we can observe a good adjustment to the geometry when the
original cell size for the voxelization is 0.1, which has the drawback of creating
too many cells (see (d) where cells are shown with different colors), and taking

too long to compute. When the cell size is big (0.9), the number of cells
generated by Recast drops (c), but at the cost of losing precision in the

adjustment to the geometry and even producing intersections (notice the
bottom of the columns). In our result (a) we combine small number of cells
with tight adjustment (cell borders drawn slightly above the geometry for

clarity).

5.2. RESULTS 115

Finally, it is worth to mention that we have participated in the comparative
study of Navigation Meshes carried out by Wouter van Toll and Roland Geraerts
[96], where NEOGEN-ML is compared against other state of the art software
such as LCT, ECM, CDG, Recast and a Grid. Results show that NEOGEN-
ML produces the smallest graph to represent the navigation mesh in most of the
scenarios being evaluated. This means that our resulting Cell-and-Portal Graph
(CPG) contains a lower number of nodes (|V |) and edges (|E|) compared to the
rest of implementations, which can improve the efficiency of pathfinding queries.
Note however that some methods achieve speedups by having a dedicated imple-
mentation that takes advantage of compact representations. By compact they
refer to the size of the information stored per cell. In those cases they benefit
from having simple cells consisting of three or four edges. Our work focuses on
providing smaller graphs to reduce the cost of path finding independently of the
implementation details. Tables 5.2 and 5.3 shows an extract of those results for
2D maps and multi-layered maps respectively (note that a 2D map can be seen
as a multi-layered map consisting of a single layer, so NEOGEN-ML is still valid
on this type of geometry). For a complete set of results and metrics, please see
the aforementioned study [96].

116 CHAPTER 5. NAVMESHES MULTI-LAYERED

Environment Method CPG Complexity
|V | |E|

Military LCT 120 134
ECM 58 72
CDG 1168 2078
Recast 101 115
NEOGEN-ML 52 66
Grid 36844 72755

University LCT 732 812
ECM 329 409
CDG 3309 4369
Recast 402 481
NEOGEN-ML 261 341
Grid 8363 15460

Zelda LCT 564 608
ECM 289 344
CDG 3579 4233
Recast 321 376
NEOGEN-ML 205 260
Grid 5681 10193

Zelda2x2 LCT 2248 2472
ECM 1148 1372
CDG 5636 8850
Recast 1281 1505
NEOGEN-ML 820 1044
Grid 22663 40658

Zelda4x4 LCT 9007 9911
ECM 4580 5484
CDG 11996 16564
Recast 5105 6009
NEOGEN-ML 3289 4193
Grid 90591 162537

City LCT 2553 2732
ECM 1442 1621
CDG 3451 5278
Recast 1527 1706
NEOGEN-ML 1164 1343
Grid 207575 408383

Maze8 LCT 26 25
ECM 30 29
CDG 68 59
Recast 14 13
NEOGEN-ML 12 10
Grid 31 30

Maze16 LCT 81 80
ECM 84 83
CDG 310 319
Recast 42 41
NEOGEN-ML 39 36
Grid 126 124

Maze32 LCT 363 362
ECM 358 357
CDG 1084 1138
Recast 184 183
NEOGEN-ML 168 157
Grid 511 510

Maze64 LCT 1422 1421
ECM 1392 1391
CDG 4805 4488
Recast 602 572
NEOGEN-ML 636 591
Grid 2045 2041

Maze128 LCT 5674 5673
ECM 5567 5566
CDG 25135 44910
Recast 2590 2480
NEOGEN-ML 2574 2410
Grid 8184 8176

Table 5.2: CPG complexity of each evaluated NavMesh generation algorithm
on the 2D virtual scenarios.

5.2. RESULTS 117

Environment Method CPG Complexity
|V | |E|

ParkingLot ECM 61 68
CDG 779 873
Recast 60 66
NEOGEN-ML 24 31
Grid 1866 3493

Library ECM 216 218
CDG 1758 2173
Recast 111 113
NEOGEN-ML 74 76
Grid 3191 5801

OilRig ECM 603 629
CDG 4858 6316
Recast 324 353
NEOGEN-ML 253 279
Grid 75898 147409

Neogen1 ECM 438 444
CDG 1017 1651
Recast 103 114
NEOGEN-ML 193 202
Grid 4519 8494

Neogen2 ECM 390 403
CDG 2170 2911
Recast 198 213
NEOGEN-ML 295 312
Grid 9430 17962

Neogen3 ECM 439 439
CDG 2070 3319
Recast 275 276
NEOGEN-ML 218 218
Grid 9430 17962

Table 5.3: CPG complexity of each evaluated NavMesh generation algorithm
on the multi-layered virtual scenarios.

118 CHAPTER 5. NAVMESHES MULTI-LAYERED

Figure 5.15: The resulting NavMesh using NEOGEN-ML for some of the 2D
test maps (Military, University, Zelda, Zelda2x2, City and Maze64).

5.2. RESULTS 119

Figure 5.16: The resulting NavMesh using NEOGEN-ML for some of the
multi-layered test maps (ParkingLot, Library, OilRig, Neogen1, Neogen2,

Neogen3).

120 CHAPTER 5. NAVMESHES MULTI-LAYERED

5.3 Conclusions

We have presented a novel fully automatic system entitled NEOGEN-ML, to
compute a Near Optimal convex decomposition from a multi-layered complex
3D environment given as a polygon mesh. Our method can be divided into
the following steps: firstly, a coarse voxelization of the scene is done in order
to obtain a first approximation of the walkable area. Secondly, the poten-
tially walkable area is subdivided into layers, using an ordered flooding process,
and the layers that are not connected with the user seed, sw, are discarded.
Then, each remaining layer is further refined by using the fragment shader at
higher resolution and the NavMesh is computed. Finally, all those individual
NavMeshes are merged into a single one, that represents the walkable space of
the entire scene.

The results show that convexity relaxation is a powerful tool to reduce the fi-
nal number of cells, especially when the scenario contains many rounded objects,
and hence, the resulting CPG fits well with the requirements of an application
that needs a real-time response as it keeps a low number of cells, while main-
taining an accurate adjustment to the original geometry.

Finally, we have compared our results against a well known tool used in
many popular games, Recast, and show how we obtain better results in terms
of number of cells, adjustment to obstacles and computational times.

The strongest feature of NEOGEN-ML is the fact that it can handle non-
perfect geometry, i.e: polygons with collinear edges, intersecting geometry, small
gaps due to bad adjustments, etc. This is a useful feature, because usually the
available SW to generate virtual environments, introduces this kind of artifacts.
Therefore other methods in the literature that require “clean” geometry, need to
pre-process or manually fix the geometry before creating the navigation mesh.
So NEOGEN-ML shares this advantage with Recast, but with the additional
benefits showed in this paper. However, our system depends on a voxelization
step which introduces limitations concerning for example the size of the graph.
Additionally the filtering step depends on the resolution and thus on the voxel
size. In the following chapter we will start by providing detailed descriptions
and figures of where the limitations of our method may arise, and we will use
this as the basis for the final contribution of this thesis in the area of navigation
meshes.

Chapter 6

Computing NavMeshes for
arbitrary 3D environments

In the previous chapter we presented a novel method, entitled NEOGEN-ML,
to automatically generate NavMeshes for any given 3D multi-layered virtual
environment represented as a polygon soup. The main advantage of NEOGEN-
ML is that it provides a tight adjustment to the input geometry while keeping
the total number of cells within the bounds of optimality. Moreover, the use
of the GPU helps to deal with any type of geometry described as a simple
polygon soup that may contain degeneracies, such as cracks, holes and even
non-manifold edges in a straight forward way. However, the implementation
presented in previous chapter has certain limitations, mainly:

1. The voxel size can have an impact on the classification of the original ge-
ometry into layers. If the voxels were too large, there could be scenarios
where it would be difficult to clearly classify the voxels into different layers,
however a voxel size too small would increase unnecessarily the computa-
tional time. We have determined empirically that a good estimate for the
voxel size is the character’s radius.

2. Our experimental results show that NEOGEN-ML works best for building-
like environments where there are typically flat floors, stair and ramps.
It also works well with outdoor environments as long as the changes in
geometry are not very drastic (e.g. too many consecutive bumps and
non-smooth surfaces with a variety of heights and layers). An example
where we could get a bad partition in layers would be a cave with many
holes, stalactites, or stalagmites as the shown in figure 6.1. This particular
example would be difficult to capture by our voxelization due to the coarse
representation in the Y axis.

3. It is also important to keep in mind that the tight adjustment is only guar-

121

122 CHAPTER 6. NAVMESHES 3D

anteed on the 2D projection of each layer, which means that the polygons
reconstructed do not store height information. As we show in Figure 6.2
the cells in the navigation graph are 2D, thus losing the information re-
garding the bumps in the terrain. However, for the purpose of having
characters moving through this navigation meshes, height fields can be
used to store the elevation of the terrain.

4. Finally, the resolution of the depth map will have an impact on the adjust-
ment of the reconstructed polygons to the original geometry. In Figures
6.2 and 6.3 we can see examples of the consequences of using a coarse
resolution. The figures show how a coarse resolution may introduce extra
notches in the polygon reconstruction phase.

Figure 6.1: Example of complex cave-like environment that would be difficult
to process due to the lower resolution used in the Y axis. The grid shows an
example of voxelization, where voxels with both ground and ceiling geometry

have been highlighted in red.

Figure 6.2: Examples of cases where a coarse depth map can lead to extra
notches appearing around obstacles during polygon reconstruction. Another

undesirable outcome may be polygons that are not an exact adjustment to the
original geometry.

6.1. ALGORITHM DESCRIPTION 123

Figure 6.3: Polygon reconstruction over the original geometry, where we can
see another example of poor adjustment due to a coarse depth map.

The main contribution of this chapter is a new method and implementation
entitled NEOGEN-3D that is not restricted only to 3D multi-layered environ-
ments but it is able to automatically generate a near optimal NavMesh for any
given arbitrary 3D environment. The original NEOGEN-ML approach, con-
sisted on simplifying the 3D environment to a set of 2D simple polygons with
holes, which works as the input for the core NavMesh generator algorithm pre-
sented in 3. However, this simplification that flattens each layer, implies that
we lose valuable information regarding the Y component of the input geometry.
The new method and implementation described in this chapter is a novel ap-
proach that works always on the 3D space so the input geometry is respected at
all stages. Therefore, the resulting NavMeshes perfectly adjust to the contour
of the obstacles while respecting the bumps present on the terrain. This new
approach overcomes the limitations of the original NEOGEN-ML, while keeping
all its benefits. Although at the time of writing this is work in progress, we have
acquired promising preliminary results that deserve to be highlighted.

6.1 Algorithm Description

The process of our algorithm is depicted in figure 6.4. Firstly, we take the
input geometry and create a special internal data structure, called the Terrain,
that contains all the information required for the following steps. Next, a first
approach of the walkable space is constructed by determining which faces have
a slope low enough for a character to be able to overcome them. This walkable
space is further refined by applying the constraints provided by the geometry
above it, i.e: when height of the geometry above it is too low for the characters to
walk underneath it. This step gives an exact 3D partition into floor and holes
that is finally used to compute the NavMesh of the whole scene. Note that

124 CHAPTER 6. NAVMESHES 3D

unlike the previous NEOGEN-ML that processed the input geometry (filtering
and projection) to obtain a simplified representation, this new algorithm works
directly on the 3D input geometry, thus creating a partition without any kind of
simplification. This allows us to obtain a navigation mesh that adjusts exactly
to the input geometry, as it respects its original vertices and edges. The tradeoff
with this method is that we need to treat every possible degeneracy of the input
geometry, which has a cost in terms of the complexity of the implementation.

3D Scene model

Terrain Creation

Slope Constraint

Ceil Constraint

3D NavMesh Generator

NavMesh

Figure 6.4: NEOGEN-3D framework data flow.

6.1.1 Constructing the Terrain

The initial step takes as an input a 3D triangle soup representing the scene an
outputs a special data structure, called Terrain, that gathers all the information
required for the subsequent steps. The Terrain contains a set of Vertices (3D
positions in the space), Edges (oriented segments with an start and end Vertex)

6.1. ALGORITHM DESCRIPTION 125

and Faces (ordered lists of Edges that lie on the same plane).

We compute the area of each input triangle. If the area equals zero, then we
have a degenerated triangle (its vertices are almost collinear) and it is ignored
for the purpose of finding walkable surfaces. Otherwise, it is a valid triangle
and a new Face is created, with the corresponding Edges and Vertices.

A second step simplifies the Terrain by joining adjacent coplanar Faces into
a new single Face. Two faces are adjacent if they share the same Edge (i.e.,
same endpoints) but in opposite direction (to guarantee that they have their
front facing the same direction). By doing this, we improve the computational
cost of the following steps since we are reducing the total number of Faces.
Figure 6.6(a) shows the resulting Terrain of a sample scene.

6.1.2 Slope Constraint

In this step we determine which faces have a slope that can be overcome by the
walking abilities of the autonomous character. Therefore, each Face f of the
Terrain is classified as:

f =

{
positive cos (αmax) > (~n · ~UP)
negative otherwise

where αmax is the maximum walkable angle, ~n is the normal of the face and
~UP is the world up vector, that by convention we use (0, 1, 0).

This step gives us a first coarse approximation of the walkable and non-
walkable areas (see figure 6.6(b)). However, this partition must be further re-
fined in order to take into account the height of the character and the distance
between the walkable area and the geometry above it.

We define a walkable Face with the symbol, ϕ, and represents a face of the
terrain with a positive value in the previous equation.

6.1.3 Ceil Constraints

For each walkable Face ϕi, we compute its ceil constraints, i.e., the set of Faces
(walkable or not) that are at a distance in the Y direction that is less than or
equal to the character’s height. Each ceil constraint cj must be refined in order
to determine the exact subpolygon that limits ϕi on the Y direction. To do so,
we compute the distance from each of the vertices of cj along the -Y direction
onto the plane defined by ϕi. Then, for each edge of cj , we can compute the
exact subsegment that limits ϕi applying linear interpolation (i.e. calculate
the point along the edge with the smallest distance to the plane, so that the
character can walk underneath). The resulting subsegments are joined in order
to obtain the final subpolygon of cj that limits ϕi along the Y direction, and

126 CHAPTER 6. NAVMESHES 3D

we call this a refined ceil constraint, c′j . Figure 6.5(left) illustrates this process,
from the cell constraint B we compute the refined constraint B′. An Octree
space partition is used in order to compute the ceil constraints efficiently.

Each refined ceil constraint c′j is projected onto the plane defined by ϕi to
calculate proj(c′j , ϕi) and then the boolean difference operation between ϕi and
proj(c′j , ϕi) is applied in order to get the exact walkable contour of ϕi as shown
in figure 6.5(right). Note that this operation can also create holes if proj(c′j , ϕi)
is completely contained in ϕi.

Once all the walkable faces have been processed, the result is an exact 3D
partition into walkable space (floor) and holes as depicted in figure 6.6(c), which
serves as an input to construct the final NavMesh of the scene.

Figure 6.5: Face B is a ceil constraint of face A, so B’ is the resulting
subpolygon of B with all points in the polygon being at a distance along the Y

axis smaller than or equal to the character’s height h (left). B’ is projected
onto A and the boolean difference operation A− proj(B′) is applied (right).

6.1.4 Constructing the NavMesh

The method used to construct the NavMesh is conceptually the same algorithm
that we have described in chapter 3, but we have generalized it in order to work
in the 3D space. Therefore, there is no need of projecting onto the 2D space and
no information is lost in the process. With the extended 3D method presented
in this chapter, we obtain an exact navigation mesh in R3. Cells in this new
navigation mesh will consist of a set of one or more adjacent triangles instead
of a 2D convex polygon. An interesting feature of the new cells is that their
projection onto the XZ plane would be a convex polygon.

In terms of character local motion our new cells in R3 allow characters to
walk in a straight line between any two points located within the cell because
the projection of the cell onto XZ is convex, and the changes in the Y direction
between adjacent triangles have passed the maximum slope test presented in
section 6.1.2.

6.1. ALGORITHM DESCRIPTION 127

Figure 6.6: Terrain construction (a). Original coplanar and adjacent faces
have been merged into a single face; the result of applying the slope constraint

(b). Walkable faces are colored in blue, whilst obstacle faces are colored in
red; the exact floor and holes partition after applying the ceil constraints (c);
the resulting notches with its Area of Interest (d). Convexity relaxation is set
to 0.5; the portals (in green) resulting after breaking the previously detected
notches (e); the final NavigationMesh, where each color identifies a single cell

(f).

128 CHAPTER 6. NAVMESHES 3D

6.1.4.1 Creating the portals

For each vertex of the partition, we determine if it is a notch by checking the
inner angle αi. Since we are working in R3, we need to define the internal angle
which we calculate in R2.

Given edges ei−1,i and ei,i+1, we compute the planes Πi−1,i and Πi,i+1 as
the planes that are perpendicular to the XZ plane, where Πi−1,i contains ei−1,i
and Πi,i+1 contains ei,i+1. The internal angle αi is the angle between the planes
Πi−1,i and Πi,i+1 on the side of the walkable surface.

If αi > π then we have a notch, vi and a portal needs to be created in
order to turn it into two convex vertices. The Area of Interest of a notch is
the virtual area delimited by the semiplanes supported by the edges incident
to the notch that causes the concavity (Πi−1,i and Πi,i+1). Notice that if we
create a portal with any element inside this area, we automatically break the
concavity (definition and proof similar to the one given in section 3.2). The
convexity relaxation concept (see Section 3.3) is also applied in order to discard
some notches. Figure 6.6(d) shows the notches with τcr = 0.5.

For each notch vi, we look for the closest edge in the list of possible candidate
edges, ε, that lies inside its Area of Interest, Ii. Those edges are the ones defining
the faces ϕ sharing the notch plus the edges of the holes contained in those faces.
Note that we must discard those edges at a distance 0 from the notch, i.e., the
incident edges to the notch.

The break notch function proceeds differently depending on four possible
cases:

1. The closest element is an endpoint, vj of an obstacle edge of the partition.
In this case, we create a vertex-vertex portal and if the other vertex is also
a notch, we check whether after creating the portal, the notch condition
is broken in this second notch so that it will not be necessary to process
it.

2. The closest element is a point in between the endpoints of an obstacle edge
of the partition. In this case, we create a vertex-edge portal by subdividing
the edge at the closest point to the notch (the orthogonal projection of the
notch over the obstacle edge, which implies creating a Steiner boundary
point, si).

3. The closest element is a previously created portal, pk. In this case, we
create a vertex-vertex portal. This case has to be treated differently de-
pending on the location of the previous portal endpoints, pk[0] and pk[1]
relative to the Area of Interest, Ii of the notch vi. Independently of which
of the following cases applies, after breaking the notch we need to evaluate
whereas pk is still an essential portal.

(a) First, we check if any of the endpoints of the portal is inside the area

6.1. ALGORITHM DESCRIPTION 129

of interest of the notch:

(pk[0] ∈ Ii)or(pk[1] ∈ Ii)
In such case, it is safe to create a portal, pi between the notch, vi
and the endpoint lying inside Ii. This will break the notch.

(b) If both endpoints lie inside the Area of Interest :

(pk[0] ∈ Ii)&(pk[1] ∈ Ii)
we choose the closest one to vi to create the new portal pi.

(c) If both endpoints are outside the Area of Interest :

(pk[0] /∈ Ii)&(pk[1] /∈ Ii)
we split the notch vi into two notches vi1 and vi2 , sharing the same
position than the original notch. The Area of interest, Ii1 , of vi1 is
defined by the supporting ray pk[0]− vi and the closest ray limiting
the previous Area or interest, Ii. Similarly, the area of interest, Ii2 ,
of vi2 is defined by the ray pk[1]− vi and the closest ray limiting the
previous Area or interest, Ii. See figure 6.7 to better illustrate this
case. The break notch function is called for both notches vi1 and vi2 .

4. The closest element is a walkable edge that connects to another walkable
face. In this case, we repeat the algorithm by selecting the edges of this
face (and its holes) as possible candidates until case 1, 2 or 3 is reached.

Note that by doing this, we are using the floor and holes partition as
a space partition itself, so we are overcoming the main drawback of the
original method explained in Chapter 3, as the cost of computing the
closest element is no longer n2.

Whenever a portal is created, all the faces intersected by the portal are split
into two new faces, as each portal will delimit two adjacent Cells. Figure 6.6(e)
depicts the resulting portals. Algorithm 4 contains the pseudocode for the portal
creation of NEOGEN-3D. Note that the functions createPortalV ertexV ertex()
and createPortalV ertexEdge() have not been included since they are straight
forward.

130 CHAPTER 6. NAVMESHES 3D

Algorithm 4 Portal creation algorithm for NEOGEN-3D

1: procedure portalCreation(Notch vi, EdgeList ε)
2: c← computeClosestElementInAOI(vi, ε)
3: if c is vertex then
4: createPortalV ertexV ertex(vi, c)
5: else if c is EdgeObstacle then
6: createPortalV ertexEdge(vi, c)
7: else if c is EdgePortal then
8: createPortalV ertexPortal(vi, c, ε)
9: else

10: . c is EdgeWalkable
11: ε← c.getOtherFace().getEdges()
12: portalCreation(vi, ε)

Algorithm 5 Portal Vertex-Portal algorithm

1: procedure createPortalVertexPortal(Notch vi, Portal pk, EdgeList
ε)

2: if isInAOI(vi, pk[0]) & isInAOI(vi, pk[1]) then
3: q ← closestPoint(vi, pk[0], pk[1])
4: createPortalV ertexV ertex(vi, q)
5: else if isInAOI(vi, pk[0]) then
6: createPortalV ertexV ertex(vi, pk[0])
7: else if isInAOI(vi, pk[1]) then
8: createPortalV ertexV ertex(vi, pk[1])
9: else

10: . Create subnotch vi1 and call to main portalCreation procedure
11: r1 ← pk[0]− vi
12: n1 ← createNotch(vi, r1, getClosestLimit(r1, Ii))
13: portalCreation(vi1 , ε)
14: . Create subnotch vi2 and call to main portalCreation procedure
15: r2 ← pk[1]− vi
16: n2 ← createNotch(vi, r2, getClosestLimit(r2, Ii))
17: portalCreation(vi2 , ε)

18: if isNonEssentialPortal(pk) then
19: removePortal(pk)

6.2. RESULTS 131

vi vi1 vi2

Ii Ii1 Ii2

pk pk

pk[0] pk[1]

Figure 6.7: The closest element of the notch vi is a previously created portal
pk (left). In order to avoid T-joints, we split the original notch vi into two
virtual notches vi1 and vi2 , sharing the same position as vi, but the Area of

Interest of each notch is defined by the endpoints of pk (right).

6.1.4.2 Creating the Cells

The last step consists of grouping the resulting walkable faces into Cells. Start
with the first face that has not been assigned to a Cell yet, the algorithm
proceeds recursively adding all the adjacent walkable faces that are separated
by a current walkable edge (non-portal). The process is repeated until all the
walkable faces have a Cell assigned. Figure 6.6(f) shows the resulting cells in a
simple environment.

Note how the resulting cells perfectly match the variations of the Terrain
and are also perfectly adjusted to the obstacles (as they are built based on the
original polygons of the input geometry).

6.2 Results

NEOGEN-3D is work in progress that we expect to have finished soon, so this
section contains only a discussion and some preliminary qualitative results. We
do not show other metrics such as time performance nor memory efficiency,
as we are currently focusing on obtaining a robust implementation against all
possible geometry that we could encounter. Once all degeneracies are correctly
handled we will polish the implementation to further speed up the method.
Therefore in this current chapter we have not provided quantitative metrics as
they will not be relevant until the implementation is fully finished. However as

132 CHAPTER 6. NAVMESHES 3D

indicated in this chapter, we have reduced the cost of the algorithm greatly by
using the connectivity described by the input geometry itself as a way to achieve
significant speedups at the step of searching for closest elements in the geometry.
In terms of the relationship between number of notches and resulting cells, the
results are similar to the ones presented in previous NEOGEN versions as the
core ideas in terms of partitioning the geometry, still hold in NEOGEN-3D.

Our current implementation has proven to be robust against intersecting
geometry and it can also deal with degenerated input polygons (i.e., models
containing triangles where some vertices are almost collinear). An example of
geometry with intersecting geometry can be observed in the example scenario
used to highlight each NEOGEN-3D step (figure 6.6). Notice that the obstacle
at the top-right corner is in fact formed by two intersecting cubes. Moreover,
the cross-like obstacle is modeled as two separated and intersecting meshes, as
well as the ramp is intersecting also with the floor. NEOGEN-3D is able to
deal with those degeneracies and correctly generates the NavMesh for this type
of scenarios. However, it is currently restricted to manifold geometry. We are
focusing our efforts on handling also non-manifold geometry, thus producing a
truly general system. Note how unlike NEOGEN-ML where we could filter out
degeneracies of the input geometry (even non-manifolds) in a straight forward
way by using the GPU, our new NEOGEN-3D works directly over the input
geometry (what is known as an exact method). This leads to a more complicated
implementation where all degeneracies need to be carefully treated to obtain a
robust code.

Finally, We are also preparing a paper for submission that will include the fi-
nal results of NEOGEN-3D with a robust version of the code. In figure 6.6(f) we
have already shown the resulting NavMesh for a simple scenario. This figure al-
ready allows us to show the differences in the final NavMesh. With NEOGEN-3D
the resulting cells adjust to the geometry also along the Y axis, thus achieving
a complete 3D adjustment (see Figure 6.8 for a comparison between NEOGEN-
ML and NEOGEN-3D). The previous NEOGEN-ML system presented earlier
in this Dissertation, could only guarantee tight adjustment in 2D (along X and
Z axis) since each floor plan was computed by a projection method onto 2D
planes. Although the 2D level of adjustment is enough for most scenarios, as
we have shown through a large number of scenarios, NEOGEN-3D presents yet
one more dimension of adjustment which will make it suitable for a much larger
number of scenarios. Figure 6.9 shows the results of using NEOGEN-3D on a
floor plan represented as a polygon with holes, a multi-layered environment and
a general 3D map, thus demonstrating that it is our most general approach.

6.2. RESULTS 133

Figure 6.8: The resulting NavMesh using NEOGEN-ML (top) and
NEOGEN-3D (bottom) on the same map. Notice how the later one offers a

more rich and detailed NavMesh, perfectly adjusting also on Y and respecting
the bumps of the terrain.

134 CHAPTER 6. NAVMESHES 3D

Figure 6.9: The resulting NavMesh for a 2D simple polygon with holes (top), a
multi-layered environment (center) and a general 3D scene (bottom) using

NEOGEN-3D.

6.3. CONCLUSIONS 135

6.3 Conclusions

In this chapter we have presented NEOGEN-3D, a new algorithm with also a
completely new implementation that overcomes all the limitations of the pre-
vious NEOGEN-ML algorithm described in Chapter 5. This novel approach is
able to automatically compute a Navigation Mesh for any 3D environment with
arbitrary topology that may contain degeneracies such as intersecting geometry.

Our new approach has been developed from scratch to avoid the main limita-
tions due to the voxelization and projections steps, while keeping all the benefits
of the previous version (such as: near-optimal partition, convexity relaxation
and tight adjustment to geometry). The NavMesh generated with the new algo-
rithm contain a near-optimal number of cells, avoids the creation of degenerated
cells and the convexity relaxation concept allows us to further reduce the num-
ber of cells. In addition, the face connectivity described by the 3D model is used
as a space partition when computing the closest element to a notch, improving
the cost of the algorithm by an order of magnitude.

Contrary to most of the reviewed previous work, our method ensures that the
created Navigation Mesh perfectly follows the contour of the obstacles. Further-
more, the shape of the cells also adjusts perfectly to the terrain and maintains
its bumps and variations. This is useful in order to avoid problems when lo-
cating the cell where a character stands. Therefore, our data structure can be
used not only for path planning, but also for those methods that needs a precise
definition of the walkable space, for example, to solve the problem of setting the
feet of the characters in the ground.

136 CHAPTER 6. NAVMESHES 3D

Chapter 7

Computing Exact Arbitrary
Clearance for NavMeshes

In Chapters from 3 to 6 we have described our contributions in the field of navi-
gation meshes, by developing algorithms to automatically create data structures
encoding the free space of the scene by splitting it into convex polygons, known
as cells. A Cell-and-Portal Graph (CPG) is obtained where a node represents
a cell of the partition and a portal is an edge of the graph that connects two
adjacent cells. Then, given a start and a goal position, paths can be calculated
through a variant of the classic A* algorithm. Finally, at every step of the
simulation, a local movement algorithm is applied in order to guide the agent
through the obtained path by computing intermediate goal positions (commonly
known as way points) that connect the different nodes of the path. In this chap-
ter we describe our novel local movement algorithm, which takes into account
clearance and makes a dynamic way point assignation for each character. We
also extend the NavMesh with clearance information to adapt global navigation
to the dimensions of the characters.

There are two frequent artifacts in crowd simulation caused by navigation
mesh design. The first appears when all agents attempt to traverse the nav-
igation mesh and share the same way points through portals, thus increasing
the probability of collisions with other agents or queues forming around portals.
The second is caused by way points being assigned at locations where clearance
is not guaranteed, which causes the agents to either walk too close to the static
geometry, slide along walls or get stuck. To overcome these issues we use the
full length of the portal and propose a novel method to calculate way points
dynamically.

This chapter presents a novel system to guarantee character trajectories with
clearance that make the most of the available free space in the NavMesh. We
present three contributions. The first allows computing paths with any desired

137

138 CHAPTER 7. EXACT CLEARANCE FOR NAVMESHES

amount of clearance for cells of any shape (even with concavities). Secondly, we
propose a new method for computing the exact region of a portal that guarantees
the desired clearance condition. Finally, way points are dynamically assigned for
each character over the portal with clearance, based on current trajectory and
destination, therefore guaranteeing that agents in a crowd will have different
way points assigned over the same portal.

7.1 Clearance Value of a Cell

When simulating a variety of characters, it is convenient to be able to calculate
the shortest route for the characters based on their size. If we think of applica-
tions such as video games, this would allow a skinny character to escape from
a large monster by running through a narrow passage. The algorithm imple-
mented must also be efficient, as for a large scenario the paths for all characters
need to be calculated within a small fraction of a second. In order to be able
to calculate paths with clearance in real time it is necessary to pre-compute
and store clearance values per cell. This can be a difficult problem to tackle
especially if the NavMesh allows for small concavities in the cells as in our case.
We propose an algorithm to compute per cell clearance that works for any given
polygon, without the need of being strictly convex.

Given a cell C, we define a cell cross as the pair (P1, P2) of C, where P1

is the entry portal and P2 is the exit portal. We classify the obstacle edges of
the cell into edges to the left (stringLeft) and edges to the right (stringRight)
in respect to the path that crosses the cell from the entry portal to the exit
portal (see Figure 7.1). Note that it is not necessary to have strictly convex
cells, as cells generated by NEOGEN are allowed to have certain concavities
depending on the convexity relaxation threshold chosen when creating the mesh
(see Section 3.3).

The algorithm examines every portal endpoint and notch (i.e., a vertex such
that its internal angle is greater than π) present in stringLeft and determines
the closest edge in stringRight. The distance between the notch and the closest
edge is the clearance value of this notch. Note that in this case, the endpoints
of each string must be treated as if they were notches. If the closest edge to the
notch is a portal edge, the algorithm recursively checks the distance between the
notch and the edges lying in the adjacent cell through the portal. The clearance
value of the left string clL is the minimum of those distances. To compute the
clearance value of the right string clR, we proceed in the same way. Finally, the
clearance value of the described path is computed as follows:

cl (P1,P2) = min (clL, clR) (7.1)

It is only necessary to check the distance of the notches of the string against
the edges of the opposite string, as in the case of a convex vertex, the distance

7.1. CLEARANCE VALUE OF A CELL 139

to the opposite string must be greater than or equal to the clearance value of
the cell. This process is done off-line once the NavMesh of the virtual scenario
has been generated and, for each cell, we store in a table the clearance value of
every possible cell cross. This is because it is possible to have a cell with three
or more portals, where an agent with a large radius can walk for example from
portal P1 to P2, but not from portal P1 to P3 (see Figure 7.2).

Figure 7.1: Clearance calculation for a given cell.

Algorithm 6 Clearance computation for a given Cell and Cross

1: function computeClearanceCrossCell(Cell c, Portal p1, Portal p2)
2: stringLeft← computeV ertexStringLeft(p1, p2)
3: stringRight← computeV ertexStringRight(p1, p2)
4: clL ← computeClearanceStringString(stringLeft, stringRight)
5: clR ← computeClearanceStringString(stringRight, stringLeft)
6: return min(clL, clR, p1.length, p2.length)

Algorithm 7 Vertex string to Vertex string clearance computation

1: function computeClearanceStringString(Vertex[] V1, Vertex[] V2)
Ensure: V2.length ≥ 2
2: c←∞
3: for all vi ∈ V1 do
4: if isNotch(vi) then
5: for j ← 0 . . . V2.length− 2 do
6: tmp← pointToSegmentDistance(vi, V2[j], V2[j + 1])
7: if tmp < c then
8: c← tmp

9: return c

140 CHAPTER 7. EXACT CLEARANCE FOR NAVMESHES

Figure 7.2: Example of different clearance depending on the crossing path
through a cell.

7.2 Finding Portals with Enough Clearance

In order to avoid artifacts such as characters bouncing, sliding or getting stuck
on the edges of the geometry, we should only assign way points that have enough
clearance (i.e. that they have the required distance from the static geometry
for the character to traverse the portal without collision). Note that fixing way
points to the center of the cell does not always guarantee collision free traversals,
as shown in Figure 7.3.

As we discussed in the related work chapter, there has been a large amount of
work on computing shortest paths with clearance or paths for disks of arbitrary
radius. However our goal was not to compute one single crossing point over
portals that guarantees the shortest paths with clearance, but instead computing
the sub-segment of possible crossing points. By doing this, we allow the local
movement algorithm to have the flexibility of assigning any crossing point over
the sub-segment with the guarantee that it will be collision-free.

Let CA be the cell where the character is currently located, CB be the next
cell in the path and P the portal that joins both cells. We want to calculate
the sub-segment P ′ of P such that all points in P ′ have enough clearance.

7.2. FINDING PORTALS WITH ENOUGH CLEARANCE 141

Figure 7.3: Examples of fixed way points that cause collisions. On the left,
the way point is fixed at the center of a cell which causes a collision with the
geometry. On the right the way point is assigned at a distance r of the portal

endpoint also causing collision.

The algorithm for finding portals with enough clearance proceeds by reduc-
ing the size of the original portals based on the following three cases:

1. Limitations given by the endpoints of the current portal.

2. Limitations given by the endpoints of the portals that must be crossed to
go from the current cell to the target cell in the path (usually portals in
either CA, CB or their neigboring cells).

3. Limitation given by obstacle edges of the adjacent cells (or neighbors).

Cases 1 and 2 assume that the endpoints of portals are located over obstacles
as occurs in most navigation meshes. In the case of grid based navigation meshes
or when T-joints exist between portals, this would not be the case for certain
portals and thus the algorithm should only consider those endpoints that are
located over obstacles. The complete pseudocode to treat cases 1,2 and 3 is
described in Algorithms 8, 9 and 10 respectively.

Case 1: The algorithm starts by displacing each endpoint of P a distance
of r units towards the center of the portal as we can see in Figure 7.4. The
resulting sub-segment P ′ has enough clearance only if the other edges in CA and
CB are at a distance greater than or equal to r from P ′. If not , this sub-segment
must be further refined to guarantee collision-free traversability.

In order to further shrink portal P ′ based on cases 2 and 3, we need to
consider portals and edges as if they were defined for each cell in counter-clock
wise order (Figure 7.5 depicts this situation). CA and CB are thus two polygons
with vertices given in counter-clockwise order. P can then be treated as two
identical overlapping segments given in opposite order depending on which cell
they belong to. We refer to them as PAB for the oriented edge that belongs to
CA, and PBA for the oriented edge that belongs to CB .

142 CHAPTER 7. EXACT CLEARANCE FOR NAVMESHES

Figure 7.4: Example portal P that connects CA and CB . The shrunk portal
P ′ is initialized by displacing the endpoints of the original portal P a distance

r towards its center.

Figure 7.5: CA and CB separated by P are in fact two independent polygons
with their vertices oriented in counter-clockwise order, so P is the overlapping

of PAB and PBA.

7.2. FINDING PORTALS WITH ENOUGH CLEARANCE 143

Case 2: Let CB be an intermediate cell on the character’s path (i.e., a cell
that is neither the starting cell of the path nor the final one). In this case we have
to cross the cell by crossing two portals, an entry portal P and an exit portal
PBC (portal that connects cell CB with the next cell in the path CC). In such a
situation, it is possible that the endpoints of P ′ are determined by the endpoints
of any exit portals in PE1, ...,PEn, where PEi indicates a portal in the sequence
of portals that needs to be crossed to go from CB to the final cell in the path
CGoal. This occurs when one (or both) endpoint of a portal PEi is at a distance
less than or equal to the desired clearance value from the entry portal P. To
handle this situation, we check if a circumference (of radius=agent’s clearance)
centered on the endpoints of the first exit portal PBC intersects with P ′. If
this intersection exists, we update P ′ accordingly and the process continues
iteratively by checking the next exit portal. The algorithm stops when we find
the first exit portal PEi that fails the test (none of its endpoints determines the
endpoints of P ′) or when CGoal is reached.

We take the polygons with oriented edges from Figure 7.5, and define PBA [0]
as the origin of the oriented portal PBA, and PBA [1] as the end. As the portals
are also given in counter-clockwise order, we can state that the origin of any
portal can only limit the clearance of the end of the portal for which we are
calculating clearance, so PBC [0] can only shorten P ′BA [1], and PBC [1] can only
shorten P ′BA [0]. The algorithm to further shorten P ′BA continues through the
following two cases:

• If the circumference centered on PBC [0] intersects P ′BA at a single point,
then P ′BA [1] is set to be this intersection point.

• If the circumference centered on PBC [0] intersects P ′BA at two points,
then P ′BA [1] is set to be the intersection point that is furthest from
PBA [1].

Similarly, a circumference centered on PBC [1] is checked for intersections
against P ′BA to determine if P ′BA [0] needs to be updated. Figure 7.6 shows
the result of the algorithm using an example cell. Figure 7.7 illustrates the
importance of respecting the ordering of the portals when calculating portals
with clearance. Even though in both cases the characters can walk through the
portals, in the first case (Figure 7.7 top) the way points assigned over the portals
would continuously push the characters to collide with the static geometry.

Case 3: The final case to consider takes into account whether any obstacle
edge limits the clearance of the portal. This can happen when an edge or portal
of the current cell is at a distance smaller than the clearance value of the portal
that we are shrinking. In the case of portals, the process must be repeated
recursively.

Given a cell CX , with a set of vertices in counter-clockwise order {v0, v1, ..., vn},
where each consecutive pair of vertices in the sequence defines an oriented edge
of the cell, i.e: ~e(i,i+1) is the edge starting in vertex vi and ending in vertex

144 CHAPTER 7. EXACT CLEARANCE FOR NAVMESHES

Figure 7.6: The endpoint P ′BA [1] of the entry portal is determined by the
endpoint PBC [0] of the exit portal, as the circumference centered on PBC [0]
intersects P ′BA. The other end of P ′BA is not modified, as the circumference

centered on PBC [1] does not intersect P ′BA.

Figure 7.7: On the top we can see an example of what the character’s
trajectory would be if P ′ was not shrunk respecting the direction of the

portals. The trajectory leads to a collision with the static geometry. On the
bottom we can see the trajectory when clearance is calculated correctly.

7.2. FINDING PORTALS WITH ENOUGH CLEARANCE 145

vi+1, for i = [0, n− 1]. We define the shrinking direction of an edge, ~s(i,i+1),
as the unit vector perpendicular to the edge with its direction pointing towards
the interior of the cell (Figure 7.8).

The algorithm proceeds by displacing each edge ~e(i,i+1) a distance of r units
along its shrinking direction, ~s(i,i+1), if the shrinking direction points towards
the portal (otherwise there is no chance of intersection). After displacement
we obtain v′ (i) and v′ (i+ 1) as the results of displacing vertices vi and vi+1 .

For each displaced edge ~e′(i,i+1), we calculate its intersection against P ′BA, and
if such an intersection exists, the corresponding endpoint of P ′BA is updated
depending on the direction of ~e′(i,i+1)as follows:

1. if the edge is an obstacle edge:

(a) If v′(i) is on the side of CB and v′(i+1) is on the side of CA, then PBA [0]
is set to be the intersection point.

(b) If v′(i) is on the side of CA and v′(i+1) is on the side of CB , then P ′BA [1]
is set to be the intersection point.

2. if the edge is a portal leading to CD:

(a) If v′(i) is on the side of CB and v′(i+1) is on the side of CA, then repeat

the algorithm for the edges in CD to update PBA [0] if necessary.

(b) If v′(i) is on the side of CA and v′(i+1) is on the side of CB , then repeat

the algorithm for the edges in CD to update P ′BA [1] if necessary.

Figure 7.8 shows this process over the example scenario with a magnified
view of the area of interest. The same process is performed for P ′AB and
finally, P ′ is computed as the resulting sub-segment of the intersection between
P ′AB and P ′BA. Every point in P ′ is guaranteed to have enough clearance.
Figure 7.9 shows the result of the algorithm.

To accelerate the computation of the shrunk portal, we store the result of the
transformation for a particular value of clearance in a table. The next time that
the portal needs to be shrunk, the table is checked for that particular clearance
value so it does not need to be computed again.

In general, Case 3 will always be the most restrictive and thus the key
calculation, however there can be exceptions such as illustrated in Figure 7.10
where case 3 does not limit the clearance of the portal. Therefore all three
cases are necessary, as if we simply use distance from endpoints we would fail
to generate natural paths in certain scenarios.

In Figure 7.11 we show an example where the recursive step would be nec-
essary to compute exact clearance over the portal. Without recursivity the
clearance on the left extreme of the portal would be given by the end point on
the left hand side of the neighboring portal, but with recursivity it is further
reduced to the new intersection point a.

146 CHAPTER 7. EXACT CLEARANCE FOR NAVMESHES

Figure 7.8: Close up of the top left of Figure 7.6 with the shrinking process
due to displacing edges.

Figure 7.9: Final result P ′ after calculating the merging of the intermediate
solutions P ′AB and P ′BA. The resulting shrunk portal before merging

illustrates the application of the three cases: Case 1 can be seen in c, Case 2
results in b and case 3 in a and d. P ′ is given in this example by the most

limiting endpoints which are a and b.

7.2. FINDING PORTALS WITH ENOUGH CLEARANCE 147

Figure 7.10: These examples show different situations where portal clearance
is not defined simply by Case 3, and thus Cases 1 and 2 are necessary.

Figure 7.11: Example where the recursive step is necessary to compute
clearance correctly.

Algorithm 8 Algorithm for computing portals respecting a minimum value of
clearance r

1: function shrinkPortal(Cell c, Portal p, Real r)
2: . Case 1
3: v1 ← p[0] + p.direction× r
4: v2 ← p[1]− p.direction× r
5: . Case 2
6: v1, v2 ← shrinkPortalByPortalEndpoints(c, v1, v2, r)
7: . Case 3
8: v1, v2 ← shrinkPortalByCell(c, v1, v2, r)

148 CHAPTER 7. EXACT CLEARANCE FOR NAVMESHES

Algorithm 9 Algorithm for computing portal shrinkment due to the influence
of other portals r

1: function shrinkPortalByPortalEndpoints(Cell c, Vertex v1, Vertex
v2, Real r)

2: while c 6= cgoal do
3: p← getPortalToNextCellInPath(c)

. Check if p[0] influences v2
4: tmp← segmentCircleIntersection(v1, v2, p[0], r)
5: if tmp.isIntersection then
6: if tmp.isSingleIntersection then
7: v2 ← tmp.intersectionPoint1
8: else
9: v2 ← furthestPoint(v2, tmp.intersectionPoint1, tmp.intersectionPoint2)

. Check if p[1] influences v1
10: tmp← segmentCircleIntersection(v1, v2, p[1], r)
11: if tmp.isIntersection then
12: if tmp.isSingleIntersection then
13: v1 ← tmp.intersectionPoint1
14: else
15: v1 ← furthestPoint(v1, tmp.intersectionPoint1, tmp.intersectionPoint2)

16: c← getNextCellInPath(c)

17: return v1, v2

Algorithm 10 Algorithm for computing portal shrinkment due to the influence
of obstacle edges in a cell r

1: function shrinkPortalByCell(Cell c, Vertex v1, Vertex v2, Real r)
2: for all Edge e ∈ c.edges do
3: pdir ← (v2 − v1)
4: if pdir.dot(e.shrinkDirection) < 0 then
5: . e is an edge pointing towards the portal we are shrinking
6: v′i ← e[0] + e.shrinkDirection× r
7: v′i+1 ← e[1] + e.shrinkDirection× r
8: tmp← segmentSegmentIntersection(v1, v2, v

′
i, v
′
i+1)

9: if tmp.isIntersection then
10: if e.isPortal then
11: v1, v2 ← shrinkPortalByCell(e.getNextCell(), v1, v2, r)
12: else
13: . e is an obstacle edge. Determine the point that needs

to be updated.
14: if pdir.shrinkDirection.dot(e.direction) < 0 then
15: v1 ← tmp.intersectionPoint
16: else
17: v2 ← tmp.intersectionPoint

18: return v1, v2

7.3. CRITICAL RADIUS: 149

7.3 Critical Radius:

All our calculations are required to perform in real time and we have already
described an approach to speed up the system by storing information about
clearance for agents of different radii. Other agents with radius similar to those
already stored can then look up the information from a table instead of re-
calculating. An additional technique implemented to speed up the process con-
sists of pre-calculating a critical radius, ρ. The critical radius is defined as the
maximum radius for which clearance depends exclusively on keeping a distance ρ
from the portal endpoints. It is calculated by computing the minimum distance
to an obstacle edge with its shrinking direction pointing towards the current
portal. During run time, only agents of radius larger than ρ need to compute
the portal clearance algorithm described in this section. Agents with radius r
below ρ only need to keep a distance of r from the portal endpoints. As the
critical radius is calculated off-line, this provides a speed up of 1.15 times faster
on average during the real-time calculations. This speed up has been calculated
over a variety of scenarios, most of them handmade to fully test the method.
However in most of the scenarios obtained with NEOGEN, portal clearance is
influenced exclusively by the portal endpoints, and thus the number of portals
for which the full clearance algorithm needs to be executed will be minimal.

7.4 Dynamic Way Points

The method used to steer the character from one cell to another is a key aspect
to create natural routes in navigation meshes. When way points are assigned
at a fixed position, usually the center of the portals, animation artifacts arise
(Figure 7.12). The most common artifacts are line formation among characters
that move in the same direction, and bottlenecks caused by characters crossing
cells in opposite directions and being forced to pass through the same point. A
typical approach in video games consists of setting the way points at a distance
r from the closest endpoint of the portal (where r is the radius of the character).
This solution provides slightly more natural paths since paths are apparently
shorter and at least two way points are available for each portal, but it does
not completely solve the problem. Our work focuses on dynamically calculating
way points over the shrunk portal (Figure 7.13).

Our dynamic way point assignation is based on the position of the character
within the cell. First of all, we check if the goal position of the character is
visible from its current position (i.e., the segment joining the current and the
goal position of the character only produces an intersection with portal edges).
In that case, the attractor point is simply the goal position. If the segment
does intersect with at least one obstacle edge, we need to compute a way point
over the next portal in the path to steer the character towards the next cell of
the path. Our target is to avoid characters having the same attractor point,

150 CHAPTER 7. EXACT CLEARANCE FOR NAVMESHES

Figure 7.12: Typical lining up artifacts and bottlenecks when way points are
set at either the center (left) or the closest endpoint of the portal (right).

so we compute the orthogonal projection point q of the current position of the
character p over P ′, where P ′ is the shrunk portal after applying the algorithm
described in Section 7.2 over the portal P. If q lies outside the limits of P ′, then
the furthest endpoint of P ′ with respect to the current position of the character
is selected as a temporal attractor, until q is valid.

The position of the characters is given by the local movement algorithm
used to steer them. This algorithm will naturally move characters away from
each other to avoid collision. Each character’s position approaching a portal
will be different, so their projection over the portal will also be different making
it virtually impossible for two different characters to share the same attractor
point over the portal if the characters are at risk of colliding.

We have determined empirically that in the case of q being invalid, the
furthest endpoint of P ′ is a better candidate as a temporal attractor than the
closest one. This is because when the steering attractor is the closest endpoint,
the character tends to move too close to the walls, producing a bad quality
route.

7.4. DYNAMIC WAY POINTS 151

Figure 7.13: The attractor point of the red character is its own goal since it is
visible from its current location. The green character has its orthogonal

projection, q2, over the portal as its way point, whereas the blue character has
the farthest away endpoint of the portal assigned as its way point, since its

current orthogonal projection lies outside the portal with clearance P ′.

152 CHAPTER 7. EXACT CLEARANCE FOR NAVMESHES

7.5 Local Movement

The local movement algorithm is based on a simple steering behavior with some
extension to include physical forces as described in HiDAC [67]. Collision detec-
tion and repulsion forces between agents are calculated using the Bullet Physics
Engine [8]. We have also used this library to perform calculations to speed up
the detection of agents crossing portals. Agents move towards their next as-
signed dynamic way point while avoiding the static geometry and other moving
obstacles. In order to keep track of the cell in which the character is located
we have taken advantage of some of the features that the Bullet Physics Engine
offers. By assigning a rigid body to the floor of each cell, we can efficiently com-
pute the intersection between the character and the cells using Bullet’s space
partitioning.

This solves artifacts that usually appear when agents approach their assigned
way point, and end up moving back and forth trying to reach the threshold
distance to the target point. With our technique, a portal can be crossed at any
point independently of the distance to their next assigned way point.

Note that with the method described above to detect when agents cross
portals, we improve the local movement of both centered and dynamic way
points. Traditional center way points require the agents to be a certain distance
from the way point in order to assign the next portal. In many cases this leads
to agents moving back and forth around portals as they attempt to reach a
specific distance from an attractor. In our implementation this is not strictly
necessary, as agents may cross portals despite not having reached their next way
point. When this happens, they are immediately assigned to a new way point
in the next portal without losing track of their current cell information. This
avoids a common problem that arises in many simulations where the agents only
update their current cell when they have reached their assigned way point, and
thus agents may end up ”lost”.

7.6 Results

In order to evaluate the results obtained with our algorithm, we have carried
out both qualitative and quantitative analysis. We have examined whether our
clearance method combined with dynamic way points achieves a better use of
space, and whether the performance of our algorithm is sufficient to work with
large groups of agents in real time whilst computing paths with clearance and
collision free way points.

Figure 7.14 (and the accompanying videos1) shows a comparison between
using traditional way points (WP) at the center of portals and our method with
dynamic way points (DWP) for two example scenarios. The first scenario is

1www.lsi.upc.edu/~npelechano/videos/C&G2014_Clearance.mov

7.6. RESULTS 153

shaped as a donut and the second is shaped as a cross with static obstacles
randomly located. The local movement algorithm is the same for all scenarios,
and it is based on a simple rule based model with collision avoidance, steering
towards attractors (way points) and collision response. For each character, a
random cell of the environment is selected as its destination cell. A path finding
algorithm based on A* calculates the sequence of cells that the character needs
to walk through to go from its current cell to the destination. Way points are
assigned over portals connecting consecutive cells. Once a character reaches its
destination cell, a new one is randomly assigned. Characters are considered to
cross a portal as soon as the Bullet Physics Engine [8] detects that the character
has arrived in the next cell of the path. Dynamic way points make better use
of the space, use straight trajectories whenever possible and offer more natural
looking trajectories for the characters, even when using a very simple rule based
model for their local movement. When way points are fixed at the center of
portals, we can observe that not only do the paths not make use of the available
space but also that they are more chaotic as characters bounce around portals
trying to get close to the way point while avoiding each other.

Dynamic way points offer a better distribution of agents over portals which
allows more agents to cross portals simultaneously. This increases flow rates
through portals since it avoids artificial line formation. For example, in the
donut scenario with 200 agents walking in the same direction, we observe 22%
higher flow rates.

154 CHAPTER 7. EXACT CLEARANCE FOR NAVMESHES

Figure 7.14: Comparison between having way points at the center of portals
(on the left) and dynamic way points (on the right) for the donut scenario

with 25 agents (top row), large cross scenario with 50 agents (middle row) and
close up of the paths crossing a portal (bottom row).

7.6. RESULTS 155

7.6.1 Performance

The following results have been obtained in an Intel Core i7-3770 CPU @
3.40GHz, 16GB of RAM, NVIDIA GeForce 680GTX . Figure 7.15 compares the
time spent per query (microseconds) of different versions of the portal shrinking
method:

• SimpleShrink(-/+): A fast and simple method, commonly used on
video games and other virtual applications, that simply displaces the end-
points of the portal r units towards its center. The (+) version uses a
lookup table to store previously computed shrunk portals, and the (-)
calculates it at every simulation step.

• ExactShrink(-/+): Our exact clearance solution described in Section 7.2.
The (+) version uses a lookup table to store previously computed shrunk
portals while the (-) calculates it at every simulation step.

Each test case consists of a set of queries where, for each query, we randomly
chose a cell of the NavMesh, a trajectory to cross this cell (i.e. an entry portal
and an exit portal) and a clearance value (0.5, 1 or 1.5).

Figure 7.15: Comparison of the time taken per query (in microseconds) as the
number of queries increases for the different shrinking techniques.

The results of this experiment highlight the efficiency of our exact clearance
method (ExactShrink(+)). The efficiency of the algorithm increases with the
number of queries as the chance of producing a redundant query is higher, and
eventually, every query will be redundant. Results show that for the case of
1000 random queries, the cost of ExactShrink(+) is just 1.41 times the cost
of the most efficient version (in this case SimpleShrink(-)) and 1.2 times for
2000 random queries. This means that the algorithm for calculating portals
with exact clearance presented in this chapter (ExactShrink(+)) is around 20%
more time consuming for 2000 queries than simpler implementations, but it
also guarantees that every computed path will have enough clearance with the

156 CHAPTER 7. EXACT CLEARANCE FOR NAVMESHES

static geometry. As the number of queries increases, this percentage is further
reduced. For the given example, we get a probability of hit of 50% for 1000
queries, which means that one in two queries does not need to be computed
since it is already stored in the lookup table, and 90% probability of hit when
it reaches 6000. The time taken by the ExactShrink(+) algorithm converges
towards the SimpleShrink(+) method.

It is also important to emphasize that this increment in time does not have
a big impact on the overall simulation since it is insignificant compared to the
cost of AI, rendering or physics.

Including the recursive step when calculating clearance makes our method
more robust without introducing a noticeable impact on the computational time.

The memory requirements to store the lookup table are minimal, since for
each radius size we only need two 3D point coordinates for the corresponding
shrunk portal. For example, in the cross scenario with 208 portals, 3 character
sizes and 12Bytes per 3D point, the total memory required is less than 15K.

As there are many elements that affect the resulting frame rate of an ap-
plication, such as: rendering engine, physics library, local movement algorithm,
size of the scenario, size of the crowd, and so on, we are not interested in how
many characters we can simulate in real time, but in comparing our method
for paths with clearance against the standard solution where characters walk
towards way points fixed at the center of portals without checking for any kind
of clearance against the static geometry. Figure 7.16 shows a comparison of
the average frame rate achieved as the number of characters increases with and
without our technique, when all the other elements of the simulation stay the
same. This graph compares the standard solution (in red) against our technique
(in blue). The results are practically the same (less than 5% smaller frame rate
on average with our method), meaning that the computational time required to
calculate portals with clearance and dynamic way points is insignificant within
the overall simulation time. Both simulations can handle up to 500 characters
in real time.

Therefore we can claim that the computational cost of our technique is in-
significant for the overall simulation time and that it provides results that are
perceptually more convincing and make better use of the space, as shown in
Figure 7.17 and the accompanying videos.

7.6. RESULTS 157

Figure 7.16: Average frame rates obtained in the large ”‘cross”’ scenario as
the number of characters increase for our method and a standard solution

158 CHAPTER 7. EXACT CLEARANCE FOR NAVMESHES

7.6.2 Path finding

To show the results achieved by the path finding algorithm with clearance, we
can observe in Figure 7.17 the different paths used by the characters depending
on their size. The larger characters only traverse those cells with a clearance
larger than their radius. Another nice outcome of the presented method is the
use of space made by the characters depending on their size. We can observe in
the image how as the characters’ size decreases, the final emerging trajectories
of their color are wider, since their way points are assigned over larger shrunk
portals.

Figure 7.17: Trajectories followed by characters of different size. From left to
right, the larger characters (red, r = 2.0) will not use the narrower portals and

thus they can only walk through 97 of the 130 cells in the NavMesh, the
medium characters can already get through most of the portals (yellow,

r = 1.5) therefore being able to walk through 110 cells, and finally the smaller
size characters (green, r = 0.5) can walk through all the portals having the

largest shrunk portals (walkable cells=130).

7.6.3 Comparison of dynamic collisions

To demonstrate quantitatively that having dynamic way points not only pro-
vides better visual results independently of the local movement algorithm used,
but also drastically reduces the number of collisions by spreading the crowd
over the length of the portal, we have run several experiments to compare the
average number of collisions for both fixed center way points and dynamic way
points.

We account for a collision between two rigid bodies at every tick of the
physics engine (60x per second). Collisions are considered when an agent is in
contact with the geometry (which also accounts for agents being stuck next to
a wall due to a badly located way point)

As shown in Figure 7.18, for up to 100 agents the number of collisions be-
tween agents is almost zero, since at low densities there are not many chances
of collisions and basic avoidance behavior can steer agents away from collisions.
However once the densities start increasing we can observe how even when all
the agents move in the same direction, collisions start appearing. As the graph
shows, the number of collisions for fixed center WP is much higher than for

7.6. RESULTS 159

DWP, since forcing all the agents to move towards the same point leads to
chaotic behavior with loops in the agents’ trajectories. This occurs for up to
175 agents for the donut scenario, since from this point onwards the density of
agents in the environment is so high that bottlenecks are almost impossible to
avoid.

Figure 7.18: Comparing the average number of collisions per second between
agents for the donut scenario as the number of agents increases. We compare

dynamic way points against fixed center way points. On the top right we show
the scenario with 100 agents and on the top bottom with 175 agents

In Figure 7.19 we can observe a comparison between the average number
of collisions per clock tick as the number of agents increases for fixed centered
versus dynamic way points. Our method to dynamically assign way points
achieves a much lower number of collisions between agents which not only re-
duces artificial bottlenecks in the environment, but also results in smoother and
more natural trajectories. As in the donut scenario, once the number of agents
increases beyond 125, differences in the number of collisions start emerging be-
tween DWP and fixed center WP, until the total number is higher than 225. At
this point, the high density of agents makes collisions inevitable, independent
of the method used.

While the graphs vary depending on the size of the scenario, length of portals
and local navigation method, we observe that in all of our experiments, dynamic
way points achieve better results than fixed center WP.

160 CHAPTER 7. EXACT CLEARANCE FOR NAVMESHES

Figure 7.19: Comparing the average number of collisions per clock tick
between agents for the cross scenario as the number of agents increases. We

compare dynamic way points against fixed center way points. On the top right
we have the cross scenario with 125 agents, and on the bottom right the same

scenario with 225 agents.

7.6.4 Comparison of collisions against geometry

The main advantage of having exact clearance calculations is that we guarantee
that way points will only be assigned over portals where collision free paths
exist. To evaluate this quantitatively, we have run several experiments using
different scenarios and compared the following methods: (1) dynamic way points
(DWP) over portals with exact clearance, (2) DWP over portals with simple
clearance, and (3) fixed center way points. For the three methods, the local
movement algorithm is the same, and the agents’ goal cell is chosen randomly
every time they reach their destination. For each case we have counted the
number of collisions against the geometry that results from way points being
badly assigned.

Obviously the results depend strongly on the quality of the portals created
and the overall geometry. To show the potential of our method, we have designed
scenarios with several examples of problematic portals (mostly ill-conditioned
portals).

Figure 7.20 shows the results of each of the methods in terms of paths fol-
lowed by agents, and situations where they can easily get stuck trying to walk
through a portal that does not guarantee clearance. As shown in Cases 2 and
3, agents may even get completely stuck against the geometry, whereas with
our exact clearance method, agents are always steered towards way points that
guarantee traversability. This holds even for maps with many ill-conditioned
cells, such as the ones created manually for these experiments.

7.6. RESULTS 161

Figure 7.20: Comparing paths between the three methods. From left to right:
(1) DWP over portals with exact clearance, (2) DWP over portals with simple
clearance, and (3) fixed center way points. The areas where agents get stuck
due to an ill-conditioned cell with a portal too close to the geometry (narrow

cell) are circled.

The quantitative results in terms of number of collisions against the geometry
for this particular scenario are shown in Figure 7.21. The three methods use the
same local movement algorithm, therefore the only difference comes from how
and where way points are assigned. Our method outperforms previous work
with regards to reducing the number of collisions against the geometry. We
have performed comparisons for different crowd sizes. We have demonstrated
that the differences become less significant as the crowd size increases. This
occurs because there is a point where collisions are due to the high density of
the crowd and not just the location of way points. In all cases, exact clearance
provides the lowest number of collisions against the geometry. If we compare
fixed center against dynamic way points with simple clearance, fixed center
performs better when it comes to avoiding collisions against the static geometry,
since in most cases the center way point will be located at the furthest point
from the geometry.

Finally, Figure 7.22 shows the importance of using our exact clearance cal-
culation when there are ill-conditioned cells. In this example we can see the
portal calculated with our exact method against the simple method often used
in video games. In both cases the segments over the portals that are traversable
for each method are shown with a thin blue line. The character for which this
clearance has been calculated is also circled in blue. In both examples, a red
agent is trying to move from cell A to cell B. Our exact clearance algorithm
provides the exact segment over the portal that can be crossed without collisions
or errors. In the case of simple clearance, we can observe how the character is
being steered towards a position that will lead to the wrong cell and to collisions
against the geometry.

162 CHAPTER 7. EXACT CLEARANCE FOR NAVMESHES

Figure 7.21: Average number of collisions against the geometry for each
method tested (collisions counted at each clock tick, which corresponds to

60Hz).

Figure 7.22: Clearance calculated with our exact algorithm (left) and with
the simple clearance method (right).

7.7. LIMITATIONS OF PATH FINDING WITH CLEARANCE 163

7.7 Limitations of Path finding with Clearance

When generating the CPG from a NavMesh, a problem may arise that consists
of having cycles on the graph due to the characteristics of the agents and the
environment. Let us take as an example the situation described in figure 7.23.
In this case, there are two possible solutions when computing the path from
start to goal :

• A, B, F

• A, B, C, D, E, B, F

Figure 7.23: An arbitrary NavMesh that could be the result of partitioning the
environment into cells (letters from A to F) and portals (dashed blue lines).

Depending on the desired amount of clearance, a cycle will occur when
computing the path from start to goal as a character may need to pass twice

through the cell B.

The chosen path will depend on the desired amount of clearance. However,
the second path is not valid, as it contains a cycle, i.e., the agents needs to pass
twice through cell B. Note that this is not an exclusive problem of NEOGEN,
but a general problem that may arise in any kind of NavMesh, excluding a few
examples where the data structures used already guarantee a CPG free of cycles
by construction [38].

Our solution lies in the observation that although in the second path we pass
through the same cell twice, we use a different cross each time, i.e., the first time
we cross cell B, we enter by the portal connecting A and B, and we exit by the
portal connecting B and C. Similarly, the second time we cross cell B, we enter
using the portal connecting E and B, and we exit by the portal connecting B
and F. Therefore, our A* Node data structure is defined as a cell cross, instead
of simply containing the identifier of a cell as it is usually done. This way the
problem of having cycles is solved because a single cross will appear once and
only once in the path. The data structure used to represent a Node in our A*
version is as follows:

164 CHAPTER 7. EXACT CLEARANCE FOR NAVMESHES

struct CrossNode {
Portal porta lEntry
Portal po r ta lEx i t
Cell c e l l
Real c l e a r a n c e

}

The pseudocode of our method is described in Algorithms 11 and 12. For the
sake of clarity, we have used the well known A* as a base for our path finding
algorithm. However, notice that this technique can be applied to any existing
path finding algorithm such as the ones described in the state of the art chapter.

7.7. LIMITATIONS OF PATH FINDING WITH CLEARANCE 165

Algorithm 11 Path finding algorithm based on A*

1: function computePath(Cell start, Cell goal, Real clearance)
2: . Create the open and closed sets of Nodes.
3: Let closedSet be a new Set.
4: Let openSet be a new Set.
5:

6: . Create the auxiliary sets to store the g and f value of each Node.
7: Let gV alue be a new Set.
8: Let fV alue be a new Set.
9:

10: . Initialize the data structures with the initial set of Nodes.
11: initialNodes← generateNodes(start, null)
12: for all CrossNode ni ∈ initialNodes do
13: gV alue[ni]← 0
14: fV alue[ni]← computeHeuristic(ni, goal)

15: openSet.add(initialNodes)
16:

17: while openSet.hasV alues do
18: . Get the node in openSet with the lowest f value.
19: current← getNextNode(openSet)
20: if current.cell = goal then
21: return reconstructPath(cameFrom, current)

22:

23: openSet.remove(current)
24: closedSet.add(current)
25: cellNext← current.cell.getAdjacentCell(current.portalExit)
26: neighbors← generateNodes(cellNext, current.portalExit)
27: for all CrossNode ni ∈ neighbors do
28: if (ni.clearance ≥ clearance) & !closedSet.contains(ni) then
29: g ← gV alue[current] + distance(current, ni)
30: if !openSet.contains(ni) then
31: openSet.add(ni)
32: else if g < gV alue[ni] then
33: . This path is the best until now. Record it.
34: cameFrom[ni]← current
35: gV alue[ni]← g
36: fV alue[ni]← g + computeHeuristic(ni, goal)

37: return null

166 CHAPTER 7. EXACT CLEARANCE FOR NAVMESHES

Algorithm 12 Algorithm to generate the A* nodes, given a Cell c and an entry
portal.

1: function generateNodes(Cell c, Portal pEntry)
2: Let S be a new Set.
3: for all Portal pi ∈ c.portals do
4: if pi 6= pEntry then
5: n← new CrossNode
6: n.portalEntry ← pEntry
7: n.portalExit← pi
8: n.cell← c
9: n.clearance← computeClearanceCrossCell(c, pEntry, pi)

10: S.add(n)

11: return S

7.8. CONCLUSIONS 167

7.8 Conclusions

We have presented a general technique to compute paths free of obstacles with
an arbitrary value of clearance that can be easily integrated in any existing
navigation mesh system.

Our method can be divided into the following three steps. Firstly, during
the construction of the NavMesh, the clearance value of each cell is computed in
order to obtain paths that guarantee clearance when applying the A* algorithm.
Secondly, the portals of the path are refined by shrinking them depending on
the clearance required for each character and the surrounding geometry. Finally,
way points over the shrunk portals are computed based on the character position
and hence, it mostly avoids two characters sharing the same attractor point.

Bullet Physics Engine [8] has been integrated in order to improve the overall
quality of the simulation. Although its main purpose is to solve the collisions
against moving and static geometry, we have used Bullet to efficiently detect
when a portal crossing has been produced and avoided artifacts that arise in
traditional methods as characters approach their target position.

Results show that our method is fast enough compared to simplest implemen-
tations, but produces paths of higher quality as it takes into account clearance
for both path planning and way point calculations, and its dynamic assignation
of way points along portals avoids characters lining up when crossing portals or
causing bottlenecks.

We have tested our algorithm with NavMeshes of a variety of scenarios
created by NEOGEN-ML [65] which is a NavMesh generator that provides an
almost near-optimal number of cells with very few ill-conditioned cells. To show
the potential of our method even for other kinds of NavMeshes, we have also
manually generated navigation meshes with ill-conditioned cells.

For the qualitative evaluation of this work we have considered that higher
quality paths are those that tend to use most of the available space, avoid
artificial line formation, reduce bottlenecks and collisions. In this chapter we
have also provided a quantitative evaluation of the improvements achieved with
our exact clearance method by counting collisions against static and dynamic
geometry. Results show how our method provides not only smoother paths with
better usage of space, but also reduces the average number of collisions that are
caused by way points not being correctly assigned. Compared to our previous
work [64], we have made significant improvements in terms of generality as our
new algorithm can handle a larger variety of navigation meshes, while improving
performance with the introduction of the critical radius and a revised version
of the code.

Finally, we address the problem of having cycles when computing paths with
clearance on NavMeshes. Our solution consists in a new encoding of the classic
A* algorithm, which uses a special data structure to encode the Nodes as the

168 CHAPTER 7. EXACT CLEARANCE FOR NAVMESHES

different ways of crossing a cell. This way the problem is naturally solved, as
a specific cell cross appears once and only once on a given path. Although we
have used A* as a base, any other path finding algorithm can be extended using
the same idea.

Chapter 8

Conclusions & Future Work

8.1 Conclusions

In this thesis we have presented a complete framework for the navigation of
autonomous characters in complex virtual environments. As most approaches
in the literature, our solution splits this problem into two sub-problems. First,
we have introduced solutions for global movement algorithms by developing a
novel technique for the generation of navigation meshes for a given virtual scene.
Then, a novel local movement technique has been introduced, that exploits the
information of the free space of the scene provided by the previous data structure
in order to guide the agents through the scene in a natural manner. Our system
introduces several improvements in both fields with respect to the current state
of the art.

In the case of the global movement technique, first we have presented NEOGEN-
2D, a novel automatic NavMesh generator that takes as an input any simple
2D polygon (which may contain holes) and outputs a near-optimal partition
consisting of convex polygons. The polygons can represent the floor plan of a
given environment, with holes representing static objects such as walls. Our al-
gorithm focuses on the idea of sequentially splitting notches into convex areas by
creating a portal with the notch and the closest element in its Area of Interest.
Since our approach is based on subdividing the original polygons with segments
instead of diagonals, we achieve on average a smaller number of convex cells in
the environment than previous work in the literature based only on diagonals.

We have also introduced the concept of convexity relaxation, based on the
fact that small concavities in the environment can be easily overcome by most
local movement algorithms, and thus we state that for navigation meshes we
can relax the notch condition by ignoring small concavities. The ultimate goal
of this step is to further reduce the number of generated cells, especially ill-
conditioned ones. Results show that convexity relaxation is a powerful tool to

169

170 CHAPTER 8. CONCLUSIONS & FUTURE WORK

reduce the final number of cells, especially when the scenario contains many
rounded objects. To the best of our knowledge, this is the first time that a
NavMesh generator applies this concept successfully to reduce the size of the
CPG. In fact our results show that the convexity relaxation concept can reduce
the final number of cells even below the smallest value of the optimality bound.

Then, we have presented our system NEOGEN-ML, a method for automati-
cally computing a near-optimal convex decomposition for any multi-layered 3D
environment. In this approach we start by doing a coarse voxelization of the
scene in order to get an approximation of the walkable area. This walkable area
is subdivided into several layers by using a flooding process that guarantees
each layer is a 2.5D floor plant representation. Then, for each layer, we obtain a
high resolution depth map and a contour detection algorithm is applied in order
to obtain a 2D simple polygon with holes. The individual NavMesh of each
layer is computed by applying the algorithm described in Chapter 3. Finally,
all the individual NavMeshes are joined into a single NavMesh representing the
navigable space of the whole scene. The main properties of NEOGEN-ML are
given by the voxelization structure used to split the layers and filter each 2D
projection. This offers the advantage of providing and accurate reconstruction
of the 2D contour of the geometry, which simplifies the process of dealing with
non-perfect geometry (holes, intersections, non-manifolds, etc). However the
need of a voxelization brings some limitations such as: maximum map size,
resolution of the depth map for the filtering step, and also resolution on the Y
dimension. For this reason we evaluated for some time how to overcome those
limitations while still keeping the core of the method, but in the end we realized
that we could develop a new method that will keep the core ideas behind the
partitioning but would free us from the voxelization.

The new system NEOGEN-3D, fully supports any 3D input geometry and
overcomes all the limitations detected on the previous NEOGEN-ML. The al-
gorithm can be described as follows. First, we classify all the faces of the 3D
model into walkable or obstacle depending on the angle formed by the normal of
the face and a user defined world-up vector. Then, the walkable area is further
refined by applying a ceil-constraint algorithm that detects the exact portion of
the walkable area that is not accessible due to the geometry above it. Finally,
the NavMesh of the scene is constructed by applying the 3D version of our
core algorithm that is able to detect the closest element to a notch by following
the face connectivity described by the input 3D model itself. Notice that our
approach completely respects the input geometry at any time, so the resulting
NavMesh perfectly fits the virtual environment. This is of main importance
when applying the local movement algorithm as it avoids problems on character
location and other artifacts such as foot-floating. Initial results from the latest
version of NEOGEN-3D are promising, as it handles a larger number of 3D sce-
narios. This method not only provides an exact adjustment to the geometry but
also it is not limited in any way by the resolution of the voxelization described
in Chapter 5.

8.2. FUTURE WORK 171

Regarding the local movement part of this thesis, we have presented ExACT,
a general technique to compute paths free of obstacles with an arbitrary value of
clearance that can be easily integrated in any existing Navigation Mesh system.
Our method can be divided into the following steps: Firstly, during the con-
struction of the NavMesh, the clearance value of each cell is computed in order
to obtain paths that guarantee clearance when applying the A* algorithm. Sec-
ondly, the portals of the path are refined by shrinking them depending on the
clearance required for each character and the surrounding geometry. Finally, an
attractor point over the shrunk portal is computed depending on the character’s
position and hence, avoids two characters sharing the same attractor point.

Results show that our method is fast enough compared to much simpler im-
plementations, although produces paths of higher quality as it takes into account
clearance for both path planning and way point calculations. Assigning dynam-
ically way points along portals avoids characters forming lines when crossing
portals, since the avoidance behavior of the local movement algorithm will steer
their trajectories correctly and thus modify the projection of their positions over
portals.

Finally, we have addressed a problem that arises due to the fact that path
planning algorithms such as A* do not admit loops, so a character can pass on
a given node of the graph once and only once. However, due to the underlying
NavMesh and agent characteristics, this is not always possible. We solve this
problem by using a special data structure to encode the Nodes as the different
ways of crossing a cell. This way the problem is naturally solved, as a specific cell
cross appears once and only once on a given path. To the best of our knowledge,
this is the first time that a general solution is proposed for this specific problem.

8.2 Future Work

Regarding the global navigation algorithm, we need to integrate support for
dynamic scenes. The current implementation of our NavMesh generator, only
takes into account the static geometry which is enough for most applications,
as collisions against dynamic obstacles such as other agents are driven by the
local movement algorithm. However, it is common in applications such as video
games to have dynamic worlds that are constantly changing (for example, an
explosion that creates a crack on the floor, a tree that falls and blocks a path,
a door that blocks or makes accessible a region of the scene, etc.). In those
situations, the NavMesh needs to be modified. We would like to further improve
our global movement algorithm to also handle such dynamic events in real time
and modify the NavMesh in consequence. We believe that our latest method
NEOGEN-3D, could easily deal with dynamic environments, as it is now free
from recalculating the voxelization, and it also has a much smaller cost when
searching for closest elements.

172 CHAPTER 8. CONCLUSIONS & FUTURE WORK

Another key improvement would be to include support for a wider range
of character skills. Currently, our system assumes that a character can only
reach its goal point by walking or running. However, a real character can do
other richer actions, such as crouching, jumping or climbing, just to mention a
few. Such actions give access to parts of the scenario that are not accessible by
walking animations. So it is necessary to develop techniques to automatically
identify the main features of the scene and associate such information to the
portals of the NavMesh, so the agent knows what animations can be played at
each moment, and also plan paths across the NavMesh accordingly.

Additionally, we would need our system to be able to identify in a semi-
automatic form, which actions the characters can perform depending on the
zone they are. This information is not only needed for the aforementioned goal,
but also we could use it to modify the behavior of the characters depending
on which zone they are. For example, if we think on a university campus,
the system should be able to determine what could be a library, an office or a
classroom. People behave differently in each of these scenarios, so the agents
could also exhibit different behaviors based on their role and on the type of cell
being visited.

Regarding to the local movement part of our framework, we would like to
enhance the agent behavior against dynamic obstacles since our current im-
plementation is based on a simple rule based model which does not predict
trajectories of other moving obstacles. Also, more rules needs to be imple-
mented. Currently, agents just move from one starting point to a goal point on
the scene while avoiding collisions against static geometry and other agents, but
they could exhibit more complex behaviors such as grouping and collaborating
to realize a group task.

In addition, for the simulation of truly realistic crowds, we need to introduce
psychological rules for the agents. The skills of a real character depends not only
on its physical attributes (strength, size, speed, etc) but also on its psychological
attributes (leadership, fear, doubt, etc). A really strong character can be totally
paralyzed if he is in a panic state. This would allow us to simulate complex
situations such as a violent protest or a terrorist attack as well as it can be used
to study how the emotions are propagated from individual to individual.

Finally, we would like to do research on parallel programming and comput-
ing techniques, both CPU (multi-threading) and GPU accelerated techniques
(CUDA and OpenCL), in order to improve the general performance and scal-
ability of the whole framework presented in this thesis. In the case of the
global movement part, it not only would reduce the time needed to generate
the NavMesh, but also it would be of main importance when introducing the
dynamic changes support, as it requires to modify the NavMesh online in real-
time. Regarding to the local movement part, we can exploit parallelism in order
to be able to simulate large crowds exhibiting really complex behaviors, both in
the per-agent level as well as at the crowd level.

Bibliography

[1] O. Arikan, S. Chenney, and D. A. Forsyth. Efficient multi-agent path plan-
ning. In Proceedings of the Eurographic workshop on Computer animation
and simulation, pages 151–162, New York, NY, USA, 2001. Springer-Verlag
New York, Inc.

[2] S. Bandi and D. Thalmann. Space discretization for efficient human navi-
gation. Comput. Graph. Forum, 17(3):195–206, 1998.

[3] O. B. Bayazit, J.-M. Lien, and N. M. Amato. Roadmap-based flocking for
complex environments. In Pacific Conference on Computer Graphics and
Applications, pages 104–115. IEEE Computer Society, 2002.

[4] G. Berseth, M. Kapadia, and P. Faloutsos. Acclmesh: Curvature-based
navigation mesh generation. In Proceedings of the 8th ACM SIGGRAPH
Conference on Motion in Games, MIG ’15, pages 97–102, New York, NY,
USA, 2015. ACM.

[5] A. Botea, M. Müller, and J. Schaeffer. Near optimal hierarchical path-
finding. Journal of Game Development, 1(1):7–28, 2004.

[6] B. Chazelle. A theorem on polygon cutting with applications. In Proceed-
ings of the 23rd Annual Symposium on Foundations of Computer Science,
SFCS ’82, pages 339–349, Washington, DC, USA, 1982. IEEE Computer
Society.

[7] S. Chenney. Flow tiles. In Proceedings of the 2004 ACM SIGGRAPH/Eu-
rographics Symposium on Computer Animation, SCA ’04, pages 233–242,
Aire-la-Ville, Switzerland, Switzerland, 2004. Eurographics Association.

[8] E. Coumans. Bullet physics library. http://bulletphysics.org/, 2013.

[9] S. Curtis, J. Snape, and D. Manocha. Way portals: efficient multi-agent
navigation with line-segment goals. In Proceedings of the ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games, I3D ’12, pages 15–22,
New York, NY, USA, 2012. ACM.

173

174 BIBLIOGRAPHY

[10] D. Demyen and M. Buro. Efficient triangulation-based pathfinding. In Pro-
ceedings of the 21st National Conference on Artificial Intelligence - Volume
1, AAAI’06, pages 942–947. AAAI Press, 2006.

[11] D. H. Douglas and T. K. . Algorithms for the reduction of the number of
points required to represent a digitized line or its caricature. Cartograph-
ica: The International Journal for Geographic Information and Geovisual-
ization, 10(2):112–122, 1973.

[12] E. Eisemann and X. Décoret. Fast scene voxelization and applications.
In ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games,
pages 71–78. ACM SIGGRAPH, 2006.

[13] J. Fernandez, L. Canovas, and B. Pelegrin. Algorithms for the decomposi-
tion of a polygon into convex polygons. European Journal of Operational
Research, 121(2):330–342, March 2000.

[14] J. Fernández, B. Tóth, L. Cánovas, and B. Pelegŕın. A practical algorithm
for decomposing polygonal domains into convex polygons by diagonals.
TOP, 16(2):367–387, 2008.

[15] R. C. Franco Tecchia, Céline Loscos and Y. Chrysanthou. Agent be-
haviour simulator (abs): A platform for urban behaviour development. In
In GTEC’2001, pages 17–21, 2001.

[16] F. Garcia, M. Kapadia, and N. Badler. Gpu-based dynamic search on
adaptive resolution grids. In Robotics and Automation (ICRA), 2014 IEEE
International Conference on, pages 1631–1638, May 2014.

[17] R. Geraerts. Explicit corridor map. http://www.staff.science.uu.nl/

~gerae101/motion_planning/ecm.html, 2010.

[18] R. Geraerts. Planning short paths with clearance using explicit corridors.
In IEEE International Conference on Robotics and Automation, (ICRA),
pages 1997–2004. IEEE, 2010.

[19] R. Geraerts and M. Overmars. A comparative study of probabilistic
roadmap planners. In J.-D. Boissonnat, J. Burdick, K. Goldberg, and
S. Hutchinson, editors, Algorithmic Foundations of Robotics V, pages 43–
57, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[20] R. Geraerts and M. Overmars. The corridor map method: A general frame-
work for real-time high-quality path planning: Research articles. Comput.
Animat. Virtual Worlds, 18(2):107–119, May 2007.

[21] R. Geraerts and M. Overmars. Enhancing corridor maps for real-time path
planning in virtual environments. pages 64–71, 2008.

BIBLIOGRAPHY 175

[22] M. Haciomeroglu, R. G. Laycock, and A. M. Day. Distributing pedestrians
in a virtual environment. In Proceedings of the 2007 International Con-
ference on Cyberworlds, CW ’07, pages 152–159, Washington, DC, USA,
2007. IEEE Computer Society.

[23] D. H. Hale and G. M. Youngblood. Full 3d spatial decomposition for the
generation of navigation meshes. In C. Darken and G. M. Youngblood,
editors, AIIDE. The AAAI Press, 2009.

[24] H. D. Hale, M. G. Youngblood, and P. N. Dixit. Automatically-generated
convex region decomposition for real-time spatial agent navigation in vir-
tual worlds. Artificial Intelligence and Interactive Digital Entertainment
AIIDE, pages 173–178, 2008.

[25] D. Harabor and A. Botea. Hierarchical path planning for multi-size agents
in heterogeneous environments. In P. Hingston and L. Barone, editors,
CIG, pages 258–265. IEEE, 2008.

[26] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic
determination of minimum cost paths. Systems Science and Cybernetics,
IEEE Transactions on, 4(2):100–107, July 1968.

[27] D. Haumont, O. Debeir, and F. X. Sillion. Volumetric cell-and-portal gen-
eration. Comput. Graph. Forum, 22(3):303–312, 2003.

[28] J. Hershberger and J. Snoeyink. Computing minimum length paths of
a given homotopy class. Comput. Geom. Theory Appl., 4(2):63–97, June
1994.

[29] S. Hert. Cgal 4.8.1 - 2d polygon partitioning. http://doc.cgal.org/

latest/Partition_2/index.html, 2016.

[30] S. Hertel and K. Mehlhorn. Fast triangulation of simple polygons. In
Proceedings of the 1983 International FCT-Conference on Fundamentals
of Computation Theory, pages 207–218, London, UK, UK, 1983. Springer-
Verlag.

[31] K. E. Hoff, III, J. Keyser, M. Lin, D. Manocha, and T. Culver. Fast
computation of generalized voronoi diagrams using graphics hardware. In
Proceedings of the 26th Annual Conference on Computer Graphics and In-
teractive Techniques, SIGGRAPH ’99, pages 277–286, New York, NY, USA,
1999. ACM Press/Addison-Wesley Publishing Co.

[32] R. Holte, T. Mkadmi, R. Zimmer, and A. J. MacDonald. Speeding up
problem solving by abstraction: A graph oriented approach. Artificial
Intelligence (AIJ), 85:321–361, 1996.

[33] R. C. Holte, M. B. Perez, R. M. Zimmer, and A. J. MacDonald. Hierarchical
a: Searching abstraction hierarchies efficiently. In W. J. Clancey and D. S.
Weld, editors, AAAI/IAAI, Vol. 1, pages 530–535. AAAI Press / The MIT
Press, 1996.

176 BIBLIOGRAPHY

[34] C.-J. Jorgensen and F. Lamarche. From geometry to spatial reasoning:
automatic structuring of 3d virtual environments. In Proceedings of the
4th international conference on Motion in Games, MIG’11, pages 353–364,
Berlin, Heidelberg, 2011. Springer-Verlag.

[35] M. Kallmann. Path planning in triangulations. In Proceedings of the IJ-
CAI Workshop on Reasoning, Representation, and Learning in Computer
Games, pages 49–54, Edinburgh, Scotland, July 31 2005.

[36] M. Kallmann. Navigation queries from triangular meshes. In Proceedings
of the Third international conference on Motion in games, MIG’10, pages
230–241, Berlin, Heidelberg, 2010. Springer-Verlag.

[37] M. Kallmann. Shortest paths with arbitrary clearance from navigation
meshes. In Proceedings of the 2010 ACM SIGGRAPH/Eurographics Sym-
posium on Computer Animation, SCA ’10, pages 159–168, Aire-la-Ville,
Switzerland, Switzerland, 2010. Eurographics Association.

[38] M. Kallmann. Dynamic and robust local clearance triangulations. ACM
Trans. Graph., 33(5):161:1–161:17, Sept. 2014.

[39] M. Kallmann, H. Bieri, and D. Thalmann. Fully dynamic constrained
delaunay triangulations. In G. Brunnett, B. Hamann, H. Mueller, and
L. Linsen, editors, Geometric Modeling for Scientific Visualization, pages
241–257. Springer-Verlag, Heidelberg, Germany, 2003. ISBN 3-540-40116-4.

[40] A. Kamphuis and M. Overmars. Finding paths for coherent groups using
clearance. In R. Boulic and D. K. Pai, editors, Symposium on Computer
Animation. The Eurographics Association, 2004.

[41] M. Kapadia, F. M. Garcia, C. D. Boatright, and N. I. Badler. Dynamic
search on the GPU. In 2013 IEEE/RSJ International Conference on In-
telligent Robots and Systems, Tokyo, Japan, November 3-7, 2013, pages
3332–3337, 2013.

[42] M. Kapadia, K. Ninomiya, A. Shoulson, F. Garcia, and N. Badler.
Constraint-aware navigation in dynamic environments. In Proceedings of
Motion on Games, MIG ’13, pages 89:111–89:120, New York, NY, USA,
2013. ACM.

[43] I. Karamouzas, R. Geraerts, and M. Overmars. Indicative routes for path
planning and crowd simulation. In Proceedings of the 4th International
Conference on the Foundations of Digital Games, pages 113–120, 2009.

[44] J. M. Keil. Decomposing a polygon into simpler components. SIAM Journal
on Computing, 14(4):799–817, 1985.

[45] S. Koenig and M. Likhachev. D*lite. In Eighteenth National Conference on
Artificial Intelligence, pages 476–483, Menlo Park, CA, USA, 2002. Amer-
ican Association for Artificial Intelligence.

BIBLIOGRAPHY 177

[46] F. Lamarche. Topoplan: a topological path planner for real time human
navigation under floor and ceiling constraints. Comput. Graph. Forum,
28(2):649–658, 2009.

[47] R. Lawrence and V. Bulitko. Database-driven real-time heuristic search in
video-game pathfinding. IEEE Trans. Comput. Intellig. and AI in Games,
5(3):227–241, 2013.

[48] D.-T. Lee and F. P. Preparata. Euclidean shortest paths in the presence of
rectilinear barriers. Networks, 14(3):393–410, 1984.

[49] W. Lee and R. Lawrence. Trading space for time in grid-based path finding.
In M. desJardins and M. L. Littman, editors, AAAI. AAAI Press, 2013.

[50] A. Lerner, Y. Chrysanthou, and D. Cohen-Or. Efficient cells-and-
portals partitioning: Research articles. Comput. Animat. Virtual Worlds,
17(1):21–40, Feb. 2006.

[51] J.-M. Lien, S. Rodŕıguez, J.-P. Malric, and N. M. Amato. Shepherding
behaviors with multiple shepherds. In ICRA, pages 3402–3407. IEEE, 2005.

[52] M. Likhachev, D. Ferguson , G. Gordon, A. T. Stentz, and S. Thrun.
Anytime dynamic a*: An anytime, replanning algorithm. In Proceedings
of the International Conference on Automated Planning and Scheduling
(ICAPS), pages 262–271, June 2005.

[53] M. Likhachev, G. J. Gordon, and S. Thrun. Ara: Anytime a with provable
bounds on sub-optimality. In S. Thrun, L. K. Saul, and B. Schölkopf,
editors, NIPS, pages 767–774. MIT Press, 2003.

[54] Y.-H. Liu and S. Arimoto. Finding the shortest path of a disc among
polygonal obstacles using a radius-independent graph. IEEE Transactions
on Robotics and Automation, 11(5):682–691, 1995.

[55] R. Lopez-Padilla, R. Murrieta-Cid, and S. M. LaValle. Optimal gap nav-
igation for a disc robot. In Algorithmic Foundations of Robotics X, pages
123–138. Springer, 2013.

[56] C. Loscos, D. Marchal, and A. Meyer. Intuitive crowd behaviour in dense
urban environments using local laws. In TPCG, pages 122–129. IEEE Com-
puter Society, 2003.

[57] J.-c. L. Lydia Kavraki, Petr Svestka and M. Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. In
IEEE International Conference on robotics and automation, pages 566–580,
1996.

[58] M. Maria, S. Horna, and L. Aveneau. Constrained convex space partition
for ray tracing in architectural environments. In Computer Graphics Forum.
Wiley Online Library, 2016.

178 BIBLIOGRAPHY

[59] M. Mononen. Recast navigation toolkit. http://code.google.com/p/

recastnavigation/, 2009.

[60] A. C. I. Norman Jaklin and R. Geraerts. Real-time path planning in
heterogeneous environments. Computer Animation and Virtual Worlds,
5(24):285–295, 2013.

[61] NVIDIA. Cuda. a parallel computing architecture developed by nvidia for
graphics processing. http://www.nvidia.com/object/cuda_home_new.

html, 2007.

[62] A. Okabe, B. Boots, and K. Sugihara. Spatial Tessellations: Concepts and
Applications of Voronoi Diagrams. John Wiley & Sons, Inc., New York,
NY, USA, 1992.

[63] R. Oliva and N. Pelechano. Automatic generation of suboptimal navmeshes.
In Proceedings of the 4th international conference on Motion in Games,
MIG’11, pages 328–339, Berlin, Heidelberg, 2011. Springer-Verlag.

[64] R. Oliva and N. Pelechano. A generalized exact arbitrary clearance tech-
nique for navigation meshes. In Proceedings of Motion on Games, MIG ’13,
pages 103–110, New York, NY, USA, 2013. ACM.

[65] R. Oliva and N. Pelechano. Neogen: Near optimal generator of naviga-
tion meshes for 3d multi-layered environments. Computers & Graphics,
37(5):403–412, 2013.

[66] R. Oliva and N. Pelechano. Clearance for diversity of agents’ sizes in nav-
igation meshes. Computers & Graphics, 47:48–58, 2015.

[67] N. Pelechano, J. M. Allbeck, and N. I. Badler. Controlling individual agents
in high-density crowd simulation. In Proceedings of the 2007 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, SCA ’07, pages
99–108, Aire-la-Ville, Switzerland, Switzerland, 2007. Eurographics Asso-
ciation.

[68] J. Pettre, J.-P. Laumond, and D. Thalmann. A navigation graph for real-
time crowd animation on multilayered and uneven terrain. First Interna-
tional Workshop on Crowd Simulation, 43(44):194, 2005.

[69] J. Pettre, J. P. Laumond, and D. Thalmann. A navigation graph for real-
time crowd animation on multilayered and uneven terrain. In Proceedings
of the 1st International Workshop on Crowd Simulation, pages 81–90, 2005.

[70] J. Pettre and D. Thalmann. Path planning for crowds: From shared goals
to individual behaviors. pages 45–48, 2005.

[71] M. Qi, T.-T. Cao, and T.-S. Tan. Computing 2d constrained delaunay
triangulation using the gpu. In Proceedings of the ACM SIGGRAPH Sym-
posium on Interactive 3D Graphics and Games, I3D ’12, pages 39–46, New
York, NY, USA, 2012. ACM.

BIBLIOGRAPHY 179

[72] U. Ramer. An iterative procedure for the polygonal approximation of plane
curves. j-CGIP, 1(3):244–256, nov 1972.

[73] C. W. Reynolds. Flocks, herds and schools: A distributed behavioral model.
SIGGRAPH Comput. Graph., 21(4):25–34, Aug. 1987.

[74] C. W. Reynolds. Steering behaviors for autonomous characters. In Pro-
ceedings of Game Developers Conference 1999, GDC ’99, pages 763–782,
San Francisco, California, 1999. Miller Freeman Game Group.

[75] S. Rodriguez and N. M. Amato. Roadmap-based level clearing of buildings.
In Proceedings of the 4th international conference on Motion in Games,
MIG’11, pages 340–352, Berlin, Heidelberg, 2011. Springer-Verlag.

[76] J. B. Roerdink and A. Meijster. The watershed transform: Definitions,
algorithms and parallelization strategies. Fundam. Inf., 41(1,2):187–228,
Apr. 2000.

[77] A. Rosenfeld and J. L. Pfaltz. Sequential operations in digital picture
processing. J. ACM, 13(4):471–494, Oct. 1966.

[78] E. D. Sacerdoti. Planning in a hierarchy of abstraction spaces. In N. J.
Nilsson, editor, IJCAI, pages 412–422. William Kaufmann, 1973.

[79] J. Snape, J. van den Berg, S. J. Guy, and D. Manocha. The hybrid recip-
rocal velocity obstacle. Trans. Rob., 27(4):696–706, Aug. 2011.

[80] G. Snook. Simplified 3d movement and pathfinding using navigation
meshes. In Game Programming Gems, pages 288–304. Charles River Media,
2000.

[81] A. Stentz and M. Hebert. A complete navigation system for goal acquisition
in unknown environments. Autonomous Robots, 2:127–145, 1995.

[82] N. Sturtevant. Memory-efficient pathfinding abstractions. In AI Program-
ming Wisdom 4. Charles River Media, 2008.

[83] N. Sturtevant and M. Buro. Partial pathfinding using map abstraction and
refinement. In Proceedings of the 20th National Conference on Artificial
Intelligence - Volume 3, AAAI’05, pages 1392–1397. AAAI Press, 2005.

[84] N. R. Sturtevant and R. Geisberger. A comparison of high-level approaches
for speeding up pathfinding. In G. M. Youngblood and V. Bulitko, editors,
AIIDE. The AAAI Press, 2010.

[85] N. R. Sturtevant and M. R. Jansen. An analysis of map-based abstraction
and refinement. In I. Miguel and W. Ruml, editors, SARA, volume 4612
of Lecture Notes in Computer Science, pages 344–358. Springer, 2007.

180 BIBLIOGRAPHY

[86] A. Sud, E. Andersen, S. Curtis, M. Lin, and D. Manocha. Real-time path
planning for virtual agents in dynamic environments. In ACM SIGGRAPH
2008 Classes, SIGGRAPH ’08, pages 55:1–55:9, New York, NY, USA, 2008.
ACM.

[87] A. Sud, R. Gayle, E. Andersen, S. Guy, M. Lin, and D. Manocha. Real-time
navigation of independent agents using adaptive roadmaps. In Proceedings
of the 2007 ACM symposium on Virtual reality software and technology,
VRST ’07, pages 99–106, New York, NY, USA, 2007. ACM.

[88] N. I. B. Tianyu Huang, Mubbasir Kapadia and M. Kallmann. Path plan-
ning for coherent and persistent groups. In Proceedings of the IEEE Inter-
national Conference on Robtics and Automation, ICRA ’14. IEEE, 2014.

[89] P. Tozour. Building a near-optimal navigation mesh. In S. Rabin, editor, AI
Game Programming Wisdom, pages 171–185. Charles River Media, 2002.

[90] UDK. Unreal navmesh generator. http://udn.epicgames.com/Three/

NavigationMeshReference.html, 2004.

[91] Valve. Valve navmesh generator. http://developer.valvesoftware.

com/wiki/Navigation_Meshes, 2005.

[92] J. van den Berg, M. Lin, and D. Manocha. Reciprocal velocity obstacles for
real-time multi-agent navigation. In 2008 IEEE International Conference
on Robotics and Automation, pages 1928–1935. IEEE, May 2008.

[93] J. van den Berg, S. Patil, J. Sewall, D. Manocha, and M. Lin. Interactive
navigation of multiple agents in crowded environments. In Proceedings of
the 2008 symposium on Interactive 3D graphics and games, I3D ’08, pages
139–147, New York, NY, USA, 2008. ACM.

[94] W. van Toll, A. F. C. IV, and R. Geraerts. Navigation meshes for realistic
multi-layered environments. In IROS, pages 3526–3532. IEEE, 2011.

[95] W. van Toll, N. Jaklin, and R. Geraerts. Towards believable crowds: A
generic multi-level framework for agent navigation. In ASCI.OPEN, 2015.

[96] W. van Toll, R. Triesscheijn, M. Kallmann, R. Oliva, N. Pelechano,
J. Pettré, and R. Geraerts. A comparative study of navigation meshes.
In Submitted to Motion in Games, pages 1–12. ACM, 2016.

[97] N. M. Wardhana, H. Johan, and H. S. Seah. Subregion graph: A path
planning acceleration structure for characters with various motion types in
very large environments. Computational Visual Media, 1(2):105–118, 2015.

[98] R. Wein, J. P. Van Den Berg, and D. Halperin. The visibility–voronoi
complex and its applications. In Proceedings of the twenty-first annual
symposium on Computational geometry, pages 63–72. ACM, 2005.

BIBLIOGRAPHY 181

[99] S. Zlatanova, L. Liu, and G. Sithole. A conceptual framework of space sub-
division for indoor navigation. In Proceedings of the Fifth ACM SIGSPA-
TIAL International Workshop on Indoor Spatial Awareness, ISA ’13, pages
37–41, New York, NY, USA, 2013. ACM.

