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Abstract 

The quinolin-2(1H)-ones ring establish the core structure of many natural and 

synthetic molecules and a broad spectrum of biological properties like, antimicrobial, 

enzymatic and neuro protective activities, have been attributed to these molecules. 

Additionally, 4-hydroxyquinolin-2-ones (4HQs) and 3-hydroxyquinolin-2-ones 

(3HQs), derivatives of quinolin-2-one, have also been reported with promising 

biological properties, and have attracted much attention from the medicinal chemist 

community. The 3HQ core is present in the structure of naturally occurring products 

viridicatin, viridicatol and 3-O-methyl viridicatin first isolated from the mycelium of 

Penicillium viridicatum. Although, due to the reduced knowledge about 3HQs, from a 

synthetic and biological perspective, in the last years, the development of new 

methodologies for their synthesis has been stimulated and strategies based on 

condensations, intramolecular cyclization and ring expansions have been applied. 

Recently reported has nonclassical bioisosteres of α-glycine, 3HQs derivatives are 

potent inhibitors of the Human D-amino acid oxidase (DAAO) and due to their 

ability to chelates metal centres, 3HQs are counted as inhibitors of HIV-1 reserve 

transcriptase associated RNase H activity and as inhibitors of influenza A 

endonuclease. 

In view of the present stat-of-the-art, 3HQs new derivatives were synthetized using 

a new efficient methodology centered on the emergent metal-organo-catalysed 

(MOC) concept. A one-pot protocol using the MOC system NHC-

dirhodium(II)/DBU catalyzed Eistert ring expansion reaction of isatins with ethyl 

diazoacetate to afford the 3-hydroxy-4-ethylesterquinolin-2(1H)-ones core. The 

reaction provides the final products regioselectively and with yields ranging from 

good to excellent. Furthermore, DFT calculations were performed on this system and 

support a mechanism in which the key step is the metallocarbene formation between 

the 3-hydroxyindole-diazo intermediate and the dirhodium(II) complex. 
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After the above mentioned optimized methodology the second part of this work 

is dedicated to the biological activity of 3HQ and its derivatives. Various synthetic 

modifications have been made to introduce specific chemical group keeping the 

3HQs core structure. Several compounds with different properties were synthesized 

and important biological studies were performed on 4-carboxamide-3HQ derivatives 

showed interesting biological activity as a potential anticancer lead molecule. 

Additionally, based on the that 3HQs can complex metallic centers and been an 

isoster of glycine, we hypothesized that 3HQ derivatives could be a useful platform 

to design new modulators of human phenylalanine hydroxylase (hPAH), the enzyme 

responsible by the genetic disease phenylketonuria. The new hPAH modulators were 

simply prepared based on ring-expansion reaction of isatins with NHS-diazoacetate 

catalysed by di-rhodium(II) complexes yielding 4-Carboxamide-3HQs in good-to-

excellent yields. The 7-trifluoromethyl-4-carboxamide-3HQs 134, was identified as 

the most efficient hPAH modulator, with an apparent binding affinity nearly identical 

to the natural allosteric activator L-Phenylalanine. 

Therefore, as 3-hydroxyquinolies have demonstrated to be good scaffolds for the 

design and development of compounds with activity over phenylalanine hydroxylase 

and an excellent starting point for the development of novel therapeutics for a 

phenylketonuria. 

Keywords: 3-Hydroxyquinoline-2(1H)-ones; Eistert Ring Expansion; anticancer 

agents; phenylalanine hydroxylase enzyme. 
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Resumo 

O anel de quinolin-2(1H)-ona é a estrutura central de muitas moléculas tanto de 

origem natural, como sintética, e ao qual tem sido atribuído um amplo espectro de 

propriedades biológicas, como antimicrobianas, enzimáticas e neuro-protetoras. Para 

além das quinolin-2(1H)-onas, os seus derivados 4-hidroxiquinolin-2-onas (4HQs) e 

as 3-hidroxiquinolin-2-onas (3HQs) apresentam também propriedades biológicas 

promissoras e têm atraído muita atenção da comunidade de químicos medicinais. 

Recentemente relatados como bioisósteres não clásicos da α-glicina, os derivados da 

3HQs são potentes inibidores da D-aminoácido oxidase humana (DAO) e devido à 

sua capacidade para quelar centros metálicos, as 3HQs são também apontados como 

inibidores da RNase H associada à transcriptase reserva do HIV-1 e como inibidores 

da endonuclease do vírus Influenza A. Assim, as 3HQs têm sido reconhecidas como 

uma estrutura química com interesse farmacológico. O núcleo 3HQ está presente na 

estrutura dos produtos naturais viridicatina, viridicatol e 3-O-metil viridicatina, 

isolados primeiramente do micélio do Penicillium viridicatum. No entanto, devido a 

reduzido numero de métodos de síntese e falta de conhecimento das propriedades 

biológicas, têm-se assistido nos últimos anos a um crescente interesse da comunidade 

científica e um estimulo no desenvolvimento de novas metodologias de síntese. 

Estratégias baseadas em condensações, ciclizações intramoleculares e expansões de 

anel, têm sido descritas com o objetivo de obter a viridicatina e seus derivados com 

maior eficiência.  

Com base no atual estado da arte, neste trabalho foram sintetizados novos 

derivados da 3HQ utilizando uma nova metodologia centrada no conceito emergente 

metal-organo-catalise (MOC). Esta metodologia, usa o sistema NHC-

diródio(II)/DBU para catalisar a reação de expansão do anel de Eistert entre a isatina 

e o diazoacetato de etilo para se obter o anel de 3-hidroxi-4-etilesterquinolin-2(1H)-

ona. Assim, uma nova e eficiente metodologia de 4 passos foi desenvolvida para a 

síntese dos alcalóides de viridicatina através da reação de acoplamento de Suzuki-

Miyaura entre os ácidos aril-borónicos e a 3-hidroxi-4-bromoquinolin-2 (1H)-ona, 
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preparada a partir da 3-hidroxi-4-etilesterquinolina-2(1H)-ona. A reação ocorre com 

boa regioseletividade e com rendimentos que variam de moderados a excelentes, e em 

que os alcaloides da vidicatina foram sintetizados com rendimentos superiores a 80%. 

Finalmente, cálculos de DFT foram realizados neste sistema, e suportam um 

mecanismo no qual o passo determinante é a formação de metalocarbeno entre o 

intermediário 3-hidroxi-indole-diazo e o complexo di-ródio (II). 

Após a otimização da metodologia, a segunda fase do trabalho desenvolvido, foi 

dedicada à atividade biológica da 3HQ e seus derivados em linhas celulares tumorais. 

Assim, várias modificações sintéticas foram efetuadas para introduzir grupos 

químicos específicos, mantendo a estrutura base do núcleo de 3HQ. Com base na 

reação de expansão do anel de isatinas com diazoésteres catalisados por complexos 

di-ródio (II), sintetizou-se a 4-carboxilato-3HQ, com rendimentos até 92%. 

Utilizando o NHS-diazoacetato, as 4-carboxamida-3HQ foram preparadas de forma 

eficiente e esta metodologia inovadora permitiu a construção de 3HQs "semelhantes 

a peptídeos" com rendimentos até 88%. Entre as séries sintetizadas, a L-leucina-4-

carboxamida-3HQ induziu a morte em linhas celulares tumorais MCF-7 (IC50 = 15,12 

μM), NCI-H460 (IC50 = 2,69 μM) sem causar qualquer citotoxicidade apreciável em 

linhas celulares não tumorais (CHOK1). Assim, os estudos biológicos realizados em 

derivados de 4-carboxamida-3HQ mostraram atividades biológicas apreciáveis e 

demonstraram o seu potencial anti-tumoral.  

Sendo as 3HQs agentes quelantes de centros metálicos e isosteros do amino acido 

glicina, neste trabalho foi colocada a hipótese das 3HQs poderem ser uma interessante 

plataforma para o desenvolvimento de modeladores da enzima fenilalanina 

hidroxilase humana (hPAH). A hPAH pertence a uma família de enzimas de 

hidroxilases de aminoácidos aromáticos, que inclui a hPAH, a tirosina hidroxilase 

(TH) e o triptofano hidroxilase (TPHs). Estas enzimas são mono-oxigenases que 

usam tetraidropterina (BH4) como cofator, um ião Fe(II) não-heme e o oxigénio 

como substrato para a catalise da hidroxilação da fenilalanina (Phe) a tirosina (Try). 

Durante a reação, o oxigénio molecular é clivado heteroliticamente com incorporação 
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sequencial de um átomo de oxigénio em BH4 e no substrato de fenilalanina. Este é o 

primeiro passo na degradação catabólica da Phe, e cerca de 75% da Phe obtida através 

da dieta, é degradada desta forma em condições fisiológicas. A fenilcetonúria, uma 

doença autossómica recessiva que afeta 1 em cada 10000 nados-vivos na Europa, é 

caracterizada por elevadas concentrações fisiológicas de Phe, devido à atividade 

deficiente da fenilalanina hidroxilase. Quando não tratada, a fenilcetonúria pode gerar 

retardo mental progressivo, dano cerebral, epilepsia e problemas neurológicos e 

comportamentais causados por efeitos neurotóxicos. Assim, uma vez que L-Phe é o 

substrato natural da PAH, foi idealizado a incorporação do aminoácido L-Phe na 

posição C-4 do núcleo 3HQs, o que conjuntamente com as propriedades quelantes 

de centros metálicos, teve como objetivo modelar a atividade da PAH. Uma pequena 

biblioteca de derivados L-Phe-3HQs foi sintetizada de modo a avaliar a capacidade 

de modulação da atividade da enzima PAH, por efeito de estabilização em seu 

domínio regulador e centro ativo. Dos compostos avaliados, a 3HQ 141, demostram 

estabilizar o domínio regulador e, além disso, o menor efeito de inibição da atividade 

da PAH. Assim, a com base nos resultados obtidos, a 3HQ 141 foi escolhida como 

ponto de partida para o desenvolvimento de novos derivados através da introdução 

de diferentes aminas na posição C-4 do núcleo de 3HQ. Uma nova biblioteca de 

derivados de 4-carboxamida-F3CO-3HQs foi sintetizada e avaliada quanto ao seu 

efeito na estabilidade térmica de hPAH e na atividade enzimática. Dos compostos 

avaliados, o derivado 134, contendo carboxamida com um grupo fenetilamina, foi 

identificado como o composto mais eficaz, capaz de aumentar diretamente a atividade 

de hPAH por um mecanismo de pré-ativação semelhante ao induzido pelo substrato 

L-Phe. 

Assim, as 3-hidroxiquinolinas demonstraram assim serem bons esqueletos para o 

desenho e desenvolvimento de compostos com atividade sobre a fenilalanina 

hidroxilase e um excelente ponto de partida para o desenvolvimento de novos agentes 

terapêuticos para a fenilcetonúria. 
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General Introduction 

 

Rational and Aims 

Humankind has been enroled in the discovering new drugs for thousands of years.1 

A 90 % percent of the drugs on the market are small, chemically manufactured 

molecules (or SMOLs for short).2 Furthermore, small-molecule drugs still account for 

approximately two-thirds of the candidates in the current robust pharmaceutical 

industry pipeline. 2 Computer technology coupled with emerging protein structures 

for identification and validation of biological target gave a great emphasis on inventive 

design of biologically active small molecules to generate high quality drug candidate.  

To keep up with the demand of new entities, development of new chemical tools for 

the synthesis of these molecules has been equally swift. 

The 3-hydroxyquinolin-2(1H)-one (3HQ) core is an important motif that is present 

in the structure of viridicatin, viridicatol and 3-O-methyl viridicatin naturally 

occurring products.3, 4 These metabolites, isolated from penicillium species, have been 

shown to inhibit the replication of human immunodeficiency virus and to be 

promising lead compounds for the development of new anti-inflammatory agents.5, 6 

Furthermore, this unique heterocycle was recognized to be a valuable bioisoster for 

the carboxylic acid function of α-amino acids. Although less acidic (pKa of 8.7) then 

a carboxylic acid,7, 8 a series of 3HQs were prepared at Pfizer and shown to be potent 

inhibitors of the D-amino acid oxidase activity, eliciting similar binding interactions 

with the enzyme active site as the carboxylic acid containing inhibitors.9 These 

discoveries were not left unnoticed, and recently this pharmacophore was found to 

bind to metal cofactors, by this way inhibiting the influenza A endonuclease. 

Prompted by these results, the main objective of this project is to synthesize novel 

derivatives of 3HQ scaffold and evaluated its biological activity. 
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The specific objectives of this PhD project are: 

o to develop robust synthetic methods for the target 3HQ derivatives based on 

Ring Expansion with ethyl diazo acetate and cooperative Metal-Organo-

Catalysed (MOC)- using di-rhodium(II) complexes in combination with Lewis 

base organo catalysts. These method can allow the creation of small library of 

3HQs and the preparation of Viridicatin alkaloids; 

o to use advanced two-dimensional NMR techniques (COSY, HMQC and 

HMBC) as well as elementar analisis mass and UV to confirm the chemical 

structure of all synthesized derivatives: 

o to understand and get further insight into the reaction mechanism of the ring 

expansion reaction catalyzed by dirhodium complexes by Density Functional 

Theory (DFT)( performed by Dr Nuno Candeias). 

o to evaluate  3-hydroxyquinolin-2(1H)-one derivatives as antiproliferaqtive 

agents and as modulators of PAH 

 Outline of the thesis 

Chapter 1 aims to present an overview of biological activities of compounds 

derived from the quinolin-2(1H)-one. An overview on synthetic methodology and 

biological activity of the 3-Hydroxyquinolin-2(1H)-one scaffold and its isomer 4-

Hydroxyquinolin-2(1H)-one are going to be discussed.  Moreover this chapter aims 

to  point out the important properties of 3HQ scaffolds as  bioisoster of a-aminoacid8  

and  chelator of metallic centers.10 

Chapter 2 will discuss the design and synthetic strategy for the preparation of 3-

hydroxyquinolin-2(1H)-one derivatives via ring expansion protocols based on ethyl 

diazo acetate and MOC system - di-Rhodium (II)/organic bases-. Characterization of 

obtained compounds by several methodologies, like NMR, will be discussed, as well 

as the synthesis and characterization of several intermediates used to achieve these 

derivatives. Also investigation of the mechanism of reaction by DFT calculation is 
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going to be discussed. Finally, the methodologies developed will be used to prepare 

viridicatin alkaloids and its derivatives. 

Chapter 3 will present the evaluation of 3HQs library as anti-cancer agents, against 

a panel of cancer lines: breast cancer cells, human non-small lung cancer cells and 

human colorectal adenocarcinoma cells. Also the library was evaluated for toxicity 

using the non-cancer Chinese hamster ovary cells. 

Chapter 4 aims at designing molecules based on the L-Phenylalanine and 3HQ 

structure to target Phenylalanine hydroxylase enzyme responsible for Phenilkenonuria 

disease.  The objective in this progect is to stabilize the active site and the regulator 

domain without inhibiting severely the enzyme and restore its activity. By exploring 

this double stabilization mechanism we hope to develop a method that can be used 

to rescue the stability of a broad panel of PAH mutations. 

Chapter 5 will integrate all studies described in the previous four chapters and 

provide a global overview of the synthesized 3HQ derivatives. Also biological activity 

of these compounds will be discussed  

Chapter 6 will presente all the experimental procedures used to development in 

the present study. In particular synthetic methodologies, physical-chemical properties, 

biochemical studies and in vitro studies will be described. 
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Chapter I 
 

I. Hydroxy-quinolin-2(1H)-ones: A synthetic and 

biological overview 

 

 

 

 

 

Abstract 

3HQs heterocycle is an aromatic ring system fused to a lactam ring that present an enol hydroxyl 

moieties as bioisoster of carboxylic acid. Although, less acidic than carboxilic acids (pka =8) series 

of 3HQs were shown to be potent inhibitors of the D-amino acid oxidase activity, eliciting similar 

binding interactions with the enzyme active site as the carboxylic acid containing inhibitors. Moreover, 

this acidic feature together with the lactamic nitrogen can mimic the a-aminoacid glycine, registering 

3HQs as one of the limited examples of bioisoster of aminoacid.  
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 The Quinolin-2(1H)-one scaffold 

n the pharmaceutical industry nitrogen heterocycle compounds have paved the 

way for exceptional achievements in the fight against many life threatening 

diseases.11 Quinolin-2(1H)-ones establish the basic structure of many natural and 

synthetic biologically active molecules and their literature has been extensively 

reviewed each year since 1989 in Progress in Heterocyclic Chemistry.12 In figure 1.1 is 

displayed a chart of published papers about quinolin-2(1H)-ones in each year since 

1982. The large number of publications depicted in the chart, suggest with no surprise, 

that the development of new methodologies to synthetize biologically active quinolin-

2(1H)-ones compounds still remains as a very important goal in organic chemistry. 

 

Figure 1.1 – Number of publications referring quinolin -2(1H)-ones since 1982, according to Web 
of Science and using “Quinolin -2(1H)-ones” as keyword. 

Generally, quinolin-2(1H)-ones are mentioned also as carbostyrils, 2-

hydroxyquinolines, 2-quinolonols, or 2-oxaquinolines. Quinolin-2(1H)-ones are an 

important class of compounds since they are a coumarin isoster. They are isomeric to 

quinolin-4-ones and have two tautomeric forms, the lactam form 1 and the phenolic 

form 2 (Scheme 1). However, in the solid state, the compound exists exclusively as 

the lactam form 1.13, 14 

I
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As a “privileged” scaffold, the quinolin-2(1H)-one shows interesting biological 

properties and it is found in many natural products15-18 and medicinal agents. In 

particular, the quinolin-2(1H)-one core is found in rebamipide 3,  a medicinal antiulcer 

agent19, used in a number of Asian countries, or repirinast 4, an antiallergenic 

compound useful in the treatment of allergic asthma (Scheme 1.2).20 

 

Scheme 1.1 – Tautomers of quinolin-2(1H)-one. 

Noteworthy, a broad range of biological activities of quinolin-2-one compounds 

were disclosed in recent years. Members of this class of compound have been 

reported to show potent antimicrobial activity21, possess neuro protective properties22 

and have also proved their potential as excellent inhibitors of acyl co-enzyme A and 

cholesterol acyltransferase.23, 24 

 

Scheme 1.2 – Biologically active Quinolin-2-ones and Medicinal Agents. 
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Furthermore, a group from Bristol-Myers Squibb (BMS) identified  compound 5 

and the related reduced allylic alcohol, as novel and potent maxi-K channel openers 

useful for the treatment of male erectile dysfunction.25 A class of potent KDR (kinase 

insert domain-containing receptor) inhibitors, a primary mediator of tumour-induced 

angiogenesis containing the 1H-indole-2-yl-quinolin-2(1H)-one core structure 6  was 

reported by Merck and show great interest as potential therapeutic agents.26 A 

clinically important quinolin-2(1H)-one was discovered by Johnson & Johnson 

Pharmaceutical Research & Development, with registration number R115777 

(Zanestra) 7 and is currently under phase II clinical trials as a novel orally active 

antitumor agent. Zanestra is a 4-arylquinolin-2(1H)-one that emerged as a selective 

nonpeptide farnesyl protein antitumor inhibitor of Ras , an oncoprotein involved in 

the intracellular signalling pathway leading to cell proliferation.  

A number of derivatives of quinolin-2-one have been reported to show different 

and promising biological properties and have attracted much attention from the 

medicinal chemist community.18, 21, 23, 24, 26-42 In particular, 4-hydroxyquinolin-2-ones 

(4HQs) and 3-hydroxyquinolin-2-ones (3HQs) have demonstrated to be a very 

appealing class of small-size heterocycle molecules. 4HQs and 3HQs are isomeric 

compounds, the OH group changes in the lactam ring position from C-3 to C-4 and 

despite this small variation, the physicochemical properties and the biological activity 

of both compounds change considerably. These properties and the synthetic methods 

used to prepare 4HQs and 3HQs compounds will be discussed in the next section. 

 

Scheme 1.3 – Structure and atom numbering of 4HQs and 3HQs. 
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Overview of 4-hydroxyquinolin-2-ones  

 4-Hydroxyquinolin-2-ones biology 

4-Hydroxyquinolin-2-ones (10) derivatives are important as biologically active 

compounds and synthons in organic synthesis. The main feature of this 

hydroxyquinoline is that it can exist in three tautomeric forms, namely 2-

hydroxyquinolin-4-ones (11) and 2, 4-dihydroxyquinolines (12).  Normally, they exist 

as 10 but solvents can affect the equilibrium.  

 

Scheme 1.4 – Tautomers of 4-Hydroxyquinolin-2-ones 

This ring core is the base of a large number of alkaloids present in many medicinal 

plants, microbial sources and animals. Usually in nature these alkaloids are found 

prenilated (13) in the 4-hydroxy or with a methoxy groups (14) or substituted with 

anellated pyrano rings (15) (e.g. flinderisine, oricine, orixalone D and huajiaosimuline) 

that also display a wide range of biological activities. 

 

Scheme 1.5 – Representative 4-hydroxyquinolin-2-one natural products and pharmaceutical agents. 

 Recently a directed bioassay of the CH2Cl2-MeOH extract of Euodia roxburghiana 

resulted in the isolation of quinolone 13 which was shown to be active against 



Synthesis of 4-Substituted-3-Hydroxyquinolin-2(1H)-ones and Anticancer Activity Evaluation | 7 

 

 

 

infectious HIV-1 in human lymphoblastoid host cells (EC50=1.64 µM, IC50 26.9 µM) 

and to inhibit the activity of the HIV-1 reverse transcriptase assay (IC50 = 8 mM).43  

4-Hydroxyquinolinones have attracted considerable attention for various 

therapeutic areas including applications as antimicrobial agents,44 antimalarial 

agents,45 aldose reductase inhibitors,46 anticonvulsants,47 and RNA polymerase 

inhibitors for the treatment of Hepatitis C.48 

Recently, carboxamide derivatives of 4HQs have been investigated for their 

important activities against auto-immune diseases such as rheumatoid arthritis, 

systemic lupus erythematosis and multiple sclerosis. 49-51 A remarkable representative 

of this derivatives is linomide 16 (Scheme 1.6), an orally active agent that consistently 

inhibits growth of a large series of both rodent and human prostate cancer xenografts 

tested in vivo. The anti-tumour ability of this compound is related to the capacity to 

inhibit tumour angiogenesis. It was demonstrated by a study in rats bearing linomide 

treated tumour, that the agent decrease the number of tumour blood vessels with a 

consequently reduction in the tumour bloodflowin.52-54 A second generation of 3-

carboxamide-hydroquinolin-4-ones such as ABR-215050 (tasquinimod) 17 (Scheme 

1.6) inhibit the growth of a series of four additional human and rodental protate 

cancer model in mice.55 The mechanism for linomide’s therapeutic activities is not 

fully understood.  

 

Scheme 1.6 – Antitumor 3-carboxamide-hydroquinolin-4-ones. 
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However considerable amount of data attribute its therapeutic activities to its 

ability to regulate cytokine production.56-58 Furthermore, the production of 

proinflamatory cytokines involved in tumor angiogenesis by macrophages is also 

involved in the auto-destruction and demyelination in multiple sclerosis (MS). 

Therefore, linomide was tested in a series of phase II and III trials in MS patients, 

although phase III trial had to be discontinued because of undesirable toxicity.59, 60 In 

order to obtain more efficient compounds for the treatment of MS, an optimization 

of the lead compound 16 was performed. Chemical modifications and structure-

activity relationship (SAR) give raise to a new series of 3-quinolinecarboxamide 

derivatives and compound laquinimod 18 gave a similar immune response and 

cytokine balance as the lead compound 16. Currently there is an ongoing study of 

laquinimod in phase II to access the efficacy, safety and tolerability of the oral dose 

in subjects with primary progressive MS. A discontinuation of higher doses 

1.2mg/day of laquinimod has been done, after the occurrence of cardiovascular 

events, none of which was fatal, in eight patients.61 Nevertheless the study for lower 

doses 0.6mg/day is still ongoing. 

 

 4-Hydroxyquinolin-2-ones chemistry 

One of the requirements of any synthetic strategy for drug development is that the 

synthetic pathway must be amenable to provide chemical diversity in order to obtain 

a large number of structural motifs.62, 63 From the chemical point of view, 4HQs, 

possessing this enolic β-dicarbonyl moiety, have attracted chemists not only with the 

aim to develop simple and efficient routes to achieve highly functionalized 4-

hydroxyquinolin-2-ones but also using this 4HQs as synthon for the preparation of 

other natural products such as dimeric quinoline alkaloids  and other polycyclic 

heterocycles.64 There are well documented different synthetic methods for the 

synthesis of 4HQs. Generally, a common route to these compounds is the 

intramolecular Claisen-type condensation of N-acylated anthranilate esters. The N-

acylated anthranilate esters 19 can be acylated with malonyl chlorides 20 and cyclized 
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to 4HQ ester 22 under acidic conditions (Scheme 1.7 method A).65 An alternative 

approach to synthetize new 4HQ derivatives has been proposed by Jonsson et al. 

Starting from aromatic 2,6-difluorobenzonitrile 23, a double nucleophilic aromatic 

substitution was performed to introduce at position 5C of 4HQs core,  substituents 

such as methoxy, dimethylamino, and thiol 27 (Scheme 1.7 method B).61  

 

Scheme 1.7 – General Methodology for the synthesis of 4-hydroxyquinolin-2(1H)-one skeleton 

Also, reaction of indoline 28 heated with an excess of methanetricarboxylates 29 

yielded derivatives of 4HQs in good yield (Scheme 1.8 method C).66Although this 

transformation presents advantages for the synthesis of 4HQs, high reaction 

temperatures (>200 °C), limited availability of a broad range of suitably substituted 

starting materials, and the need to isolate the acylated intermediate prior to cyclization, 

limit the widespread application of the method. The most common employed method 

was develop by Coppola and co-workers which have synthesized 4HQs compounds 

using isatoic anhydrides 32 as precursors and involves an N-alkylation, followed by 

malonate addition-intramolecular cyclization sequence (Scheme 1.8). 67, 68,69  
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Scheme 1.8 Synthesis of 4HQ esters from isatonic Anhydride 32 

 

 Overview on 3-Hydroxyquinolin-2-ones  

 3-Hydroxyquinolin-2-ones biology 

Despite being an isomer of 4HQs, very little is known about 3-hydroxyquinolin-

2(1H)-one (3HQs) from biological and synthetic perspectives. The 3HQ core is an 

important motif that is present in the structure of naturally occurring products 

viridicatin 31, viridicatol 32 and 3-O-methyl viridicatin 33. These metabolites, were 

first isolated from the mycelium of Penicillium viridicatum Westling and later on various 

strains of Penicillium cyclopium Westling4 with the production of a strong, penetrating 

earthy odour.  The earliest biological assay of 31 were done against Escherichia coli, 

Bacillus subtilis, and Staphylococcus aureus (Micrococcus pyogenes, var. aureus) but no 

antibiotic activity was found. Although some activity was observed on in vitro tests 

against Mycobacterium tuberculosis at a dilution of 1:15 000, while no activity against 

Entamoeba histolytica was detected.3 The viridicatin metabolite 33 methylated in the 3-

OH was isolated in 1964 by Austin and Myers from the fungus Penicillium puberulum.70 

It remained unexplored until 1998 when Heguy and co-worker reported its effect as 

inhibitor of replication of the HIV virus induced by tumor necrosis factor (TNF). 

Having an IC50 of 2.5 µM, this compound was recorded as a promising lead for the 

development of new anti-inflammatory agents.5 
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Scheme 1.9 – The 3-hydroxyquinolin-2(1H)-one core present in the structure of naturally 
occurring products. 

These discoveries were not left unnoticed, and recently a group from the University 

of Lille, developed a series of 3HQs with potent activity against HIV-1 reserve 

transcriptase associated RNase H activity.  Ester and amide groups were introduced 

at C-4 position of the 3HQs scaffold and also some modulation was performed in the 

benzenic moiety, which allowed the construction of a library of 19 compounds. The 

rational for choosing 3HQs as pharmacophore was made on the bases of its ability to 

complex some bivalent metals, as showed by the work of Strashnova and co-

workers.10 In their previous studies on the complexation of 2,3-dihydroxypyridine 34 

with metals, they shown that this compound participates in the coordination as mono 

– or dicantonionic species and acts as a bridging ligand. 

 

Scheme 1.10-Structure of 2,3-dihydroxypyridine 34 and tautomeric form of 3HQs. 

3HQ 9 and its tautomeric form, 2,3-dihydroxyquinoline 35, are structural 

analogues of 2,3-dihydropyridine 34 (Scheme 1.10). The main common characteristics 

of these two molecules are: a slight tautomerization, presence of several potential 

coordinative centres, which can yield the cationic, neutral and anionic complexes. The 

complex formation with 2,3- dihydroxyquinoline (HL)2  show that the coordination 
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core structure depends mainly on the characteristics of the central metal atom and on 

the most stable tautomeric form of the ligand under the synthec conditions. The 

authors identified complexes with different metals and summarized the result as 

shown in the Scheme 1.11. HL2 participates in the coordination in the monoanionic 

or neutral forms with the formation of chelate cycles. Two main class of coordination 

species are depicted (Scheme 1.11), first one represented by the formula 

M(HL)2·2H2O containing metal such  Mn, Ni, Cu, where two molecules of 3HQs are 

coordinated with the metal and  two molecules of water giving  chelate cycles. The 

second type of coordination involved the 1:1 coordination of the 3HQ compound 

and the metal Fe(HL)OH· 2H2O 39, Co(HL)OH·H2O 40, while Cadmium participate 

as  Cd(H2L)Cl2 41.  

 

Scheme 1.11 – Schematically representation of coordination cores. 

In a recent review entitled “Viral enzymes containing magnesium: Metal binding 

as a successful strategy in Drug design”71 is shown that metal-activated enzymes are 

important targets in drug discovery and in particular for antivirals discovery. Such 

proteins contain one or more metal ion cofactors, prevalently located in the active 

site, which are essential to perform biological functions. The common features of 

possible efficient inhibitors of metal enzymes are resumed in: highly polar 

pharmacophore motives, ionisable moieties, and coplanar pre-organized structure 

capable of simultaneous binding two Mg2+ ions.71 Based on this rational, the work of 
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Cotelle and co-workers72 aimed at developing derivatives of 3HQs to target the 

catalytic site of the ribonuclease H (HRNase H) function, associated to the viral coded 

reverse transcriptase (RT). In order to complex the bivalent metals in the catalytic site 

of the enzyme, the author introduced a carbonyl function at position C-4 of the 3HQ 

scaffold. By this introduction the 3HQs comprises three oxygens, which is the ideal 

topology to bind two divalent cations, separated by 4–5 Å in the case of an enzyme–

metals–ligand ternary complex. Such a pharmacophore can be observed in the 

structure of most recently discovered RNase H inhibitors.72 The most active 

compounds were the 4-amido series able to inhibit the RT RNase H with an IC50 

between 16 and 22 µM, comparable with a reference compound. The authors also 

performed in silico docking studies in order to determinate the possible binding mode. 

The magnesium chelation was examined in the study and the authors confirmed the 

ability of this three oxygen pharmacophore to chelate both metal cofactors within the 

active site of the enzyme. Compound 42 is an inhibitor of the enzyme with an activity 

of 19 μM. As shown in Figure 1.2, the quinolone scaffold is positioned in such a way 

that the two oxygen atoms of the carbonyl and the enol functions in positions 2 and 

3 target the magnesium cations.72  

Figure 1.2 – Putative binding mode of amide 42 in the RT RNase H catalytic site.72 
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The metal-chelating properties of 3HQs inspired also the work of La Voie to 

develop a series of these compounds as inhibitors of Influenza A Endonuclease. The 

most active molecule was found to be compound 7-(p-fluorophenyl)-3-

hydroxyquinolin-2(1H)-one 43 with and IC50 of 0.5 µM.  An X-ray crystal structure 

of 43 complexed with influenza A endonuclease nicely disclosed that it binds through 

bimetal chelation at the active site as shown in Figure 1.3.73  

 

 

Figure 1.3 – Binding of compound 43 at the endonuclease active site.73 

Chelation of enzyme metal cofactors is not the only property of this interesting 

core. Recently, with the purpose to discover ligands for N-methyl-D-aspartate 

(NMDA) associated glycine binding, a series of 3HQs have been synthetized. NMDA 

receptors (NMDARs) are glutamate-gated cation channels with high calcium 

permeability that play important roles in many aspects of the biology of higher 

organisms. They are critical for the development of the central nervous system (CNS), 

generation of rhythms for breathing and locomotion, and the processes underlying 

learning, memory, and neuroplasticity. Consequently, abnormal expression levels and 

altered NMDA receptor function have been implicated in numerous neurological 

disorders and pathological conditions (including stroke, hypoxia, ischemia, head 

trauma, Huntington’s, Parkinson’s, and Alzheimer’s diseases, epilepsy, neuropathic 

pain, alcoholism, schizophrenia, and mood disorders).74-76  
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Based on the tautomer 45 of quinoxaline derivatives 44, in which the amide and 

the enol hydroxyl moieties mimic a protonated glycine  responsible for bonding with 

NMDA receptors, Sing-Yuen Sit and co-workers77 synthesized twenty-four 3HQs 

derivatives 9, formally isoster of quinoxoxaline tautomer 45 . 

  

Scheme 1.12 – Tautomeric form of quinoxaline. 

 3HQs derivatives were studied and their ability to displace radio ligand (3H)-

glycine from rat cortical membranes was evaluated. All compounds demonstrated a 

60% displacement of the radio ligand at 10 µM and from the results of the assay a 

structure-activity relationship was elucidated, supporting the 3-hydroxyquinolin-2-

one heterocycles as effective structural elements for glycine ligands. Some 

modification on the central core was done leading to improved activity of these 

compounds, namely introduction of an electron withdrawing group in position C-4 

and modification of the benzyl moiety resulted in more affinity for the glycine binding 

site on NMDA, hypothesised to be due to the increase acidity of 3-hydroxyl group. 

However, no activity was detected in the assay where 3-hydroxy group was 

methylated, identifying the free OH group as essential pharmacophore of the 

molecule 
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Scheme 1.13 – Most active compound towards to [H-3]-glycine binding to the site associated with 
the NMDA receptor in the 3HQs series. 

Ultimately, introduction of pyruvate ester moiety at C-4 and a 5,7-dichloro pattern of 

substitution in the aromatic ring resulted in a substantial increase in affinity. The most 

active compound in this series was compound 47 with an IC50 of 29 nM.77 

To better understand the biological properties of these compounds it would be 

important to shed light on the main essential features of this important heterocycle. 

This unique molecule, was recently recognized to be a valuable carboxylic acid 

bioisoster .7 The carboxylic acid is an important functional group that often takes part 

of the pharmacophore of different therapeutic agents.7 Furthermore, the aptitude of 

this group to create strong electrostatic interactions and hydrogen bonds, in 

association with its acidity, classify carboxylic acid as a key function in the interaction 

between drug and target. Despite the importance of the carboxylic acid group, it 

exhibit when this moiety is present in a drug, significant drawbacks namely metabolic 

instability, toxicity and limited diffusion across biological barriers are shown. To avoid 

this limitation, the replacement of carboxylic group with a surrogate or bioisoster can 

overcome these problems and can represent an effective strategy in drug 

development. Recently Ballatore and co-workers7 provided an overview of the most 

commonly employed carboxylic acid (bio)isosteres and present some examples to 

show the use and utility of isosteres in drug design. In this review 3HQs are classified 

as bioisosteres of carboxylic acids, despite their lower acidity (pka = 8.7), and the 

authors refer to the work done by Duplantier et al. to exemplify this bioisosterism. 
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Figure 1.4 – Characteristic pKa values of carboxylic acid, benzoic acid 48 and 3HQ 9. 

The described inhibitors in literature of D-amino acid oxidase (DAAO) are small 

aryl carboxylic acids or acid-isosters, such as benzoic acid 48 that are ionized at the 

peroxisomal pH (c.a. 8). In a high-throughput screening in a functional assay to find 

potential inhibitors of DAAO, 3HQ 9 was identified as a potent one (IC50 = 4nM). 

Co-crystallization of 9 with the human DAAO enzyme showed that the 3-hydroxyl 

group of the molecule is involved in two hydrogen bonds, one with the Tyr228-OH 

and the other with the Arg283-NH (Figure 1.5 a).  Furthermore, the 2-carbonyl group 

is also involved in a strong hydrogen bonding with the same Arg residue, while the 

lactam-NH donates a hydrogen bond to the backbone carbonyl of Gly313. Also a 

fundamental π-π interaction with the re-face of the flavin ring of flavin adenine 

dinucleotide (FAD) and Tyr224  is provided by the aromatic moiety of compound 8 

consistent with similar structures of aryl acid bounded to DAAO.78 Figure 1.6 shows 

a schematic diagram comparing the bonding interactions of compound 9 with those 

of carboxylic acids inhibitors (benzoic acid). The hydrogen-bonding interaction of the 

carboxylic moiety of benzoic acid with the enzyme active site and hydroxyquinolin-

2-one behave in a very similar fashion.9 Another important characteristic of these 

compounds is that 3HQs are also classified as non-classical bioisosteres of α-amino 

acids. Whereas classical bioisosteres include replacement of similar atoms (e.g. 

hydrogen with fluorine, carbon with silicon)79 or ring-to-ring transformations (e.g. 

replacement of phenyl group with thiophene) nonclassic bioisosterism includes all 

other forms such as ring-to-chain, chain to ring transformations, functional group 

replacement, as well as regioisosterism.80, 81 

 



18 | Hydroxy-quinolin-2(1H)-ones: A synthetic and biological overview 

 

 

 

 
a) 

 

b) 

 

 

Figure 1.5 – Compound 9 at DAAO enzyme active side. a) Schematic representation of residues in 
DAAO-compound 9; b) Compound 9 (carbon atoms in magenta and oxygen in red) at h-DAAO 

enzyme active site. Side chains of key interacting residues are shown with carbon coloured in green 
and nitrogen in blue. Hydrogen bonding interactions are shown in dash. FAD is shown with 

carbons in cyan; b) structure of compound 9.9 

Bioisosterism of α-amino acids is mainly accomplished by replacement of the α-

carboxylate with a known carboxylic acid bioisoster. In contrast, 3HQs share essential 

features that allow these molecules to mimic an entire α-amino acid. 

 

Figure 1.6 – Schematic representation of bonding interactions of compound 9 with those of 
carboxylic acids inhibitors (benzoic acid).9 

As shown in the Figure 1.7 a, 3HQs present an acidic moiety that together  with 

the lactam carbonil mimic the α-carboxylate of Glycine aminoacid, while the lactam 

nitrogen together with the aromatic ring system, mimic the α ammonium of the 
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aminoacid. The binding mode of the crystalized bioisoster 9 was compared with that 

of the crystalized α -amino acid Glycine that binds in the same domain of the active 

site of DAAO (PDB code: 3G3E) and showed a similar binding interaction as the co-

crystalized amino acids in the same target.78  

a) 

 

b) 

 

Figure 1.7 – a) Schematic representation of 3HQ as a bioisoster of aminoacid Glycine; b) 
compound 9 and cofactor FAD (PDB code: 3G3E). All atoms in type code except ligand carbon 

atoms in orange and FAD carbons in green.8 

The 2-carbonyl together with the 3-hydroxy are involved in a strong hydrogen-

bonding interaction with an Arg residue. Additionally, the 3-hydroxy group functions 

as a hydrogen donor to the HO of a Tyr residue, and the lactam nitrogen engages in 

a hydrogen-bonding interaction with the backbone carbonyl of a Gly residue (Figure 

1.7 b). 

 

 3-Hydroxyquinolin-2-ones chemistry 

Development and implementation of efficient methodologies for the preparation 

of relevant scaffolds, is one of the main challenges for synthetic chemists. Despite 

the relevant biological importance of 3-hydroxyquinolines, only a few synthetic 

strategies have been developed for the construction of this core and its derivatives. 

Several methodologies for the construction of the 3HQ core leading to the synthesis 
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of viridicatin 31 and viridicatiol 32 were performed in the last decades, aiming at 

efficiently synthetize these natural products. The important biological properties of 

these natural products were already discussed in the section 1.2.  In this chapter will 

be further discussed the available synthetic methods for the preparation of 3HQs 

and our contribution to this efforts. 

  

Figure 1.8 – General strategies for the synthesis of the 3-Hydroxyquinolin-2(1H)-one skeleton. 

 

 Extension of Diels-Reese Reaction  

In 1955, inspired by the previous work of the Diels and Reese,  Huntress and co-

workers182 reported for the first time the synthesis of the 2,3-dihydroxyquinoline 35, 

a tautomer of  3-hydroxyquinolin-2(1H)-one based on the degradation of the product 

of Diels–Reese reaction. To confirm the structure of the hitherto, the authors 

prepared a parallel synthesis, in which the compound 35 was synthetized from 5-

methoxy-2-aminobenzaldeyde 49 and chloroacetic anhydride, to give the 

corresponding 2-(N-chloroamino)-benzaldehyde 50 that was readily converted in to 



Synthesis of 4-Substituted-3-Hydroxyquinolin-2(1H)-ones and Anticancer Activity Evaluation | 21 

 

 

 

35 by heating the intermediate 50 in the presence of methanolic aqueous potassium 

hydroxide (Scheme 1.12). The final product was obtained in 92% yield. 

 

Scheme 1.12 – Preparation of 2,3-dihydroxyquinoline 35. 

 

Synthesis of 5-nitro-3-hydroxyquinolin-2-ones 

Another methodology developed for the construction of the 3HQ core was 

implemented by Brimert et al. In this protocol 2-Methyl-N-(2-methyl-5-

nitrophenyl)formamide 51 was treated with potassium tert-butoxide and dimethyl 

oxalate (DMO) for 1 h at 45ºC, yielded by cyclization in 90% compound 55.  

 

Scheme 1.13 – Synthesis of 7-nitroquinolin-2-one 55 from 2-methyl-N-(2-methyl-5-nitrophenyl) 
formamide 51. 

The mechanism proposed by the authors is show in the scheme below and takes 

into account the formation of the imide 52, which becomes deprotonated at the 
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benzylic carbon due to the stabilizing effect of the electron withdrawing nitro group 

in para position An intramolecular attack of the anion at the ester carbonyl gives the 

N-formyl quinolone 53. Deformylation and treatment with water of compound 54 

gives compound 55 as crystals.83 

    Cyclopenin 

Cyclopenin 56 is a metabolite of Renicillium cyclopium and Penicillium viridicatum. This 

metabolite is readily converted into a co-metabolite, viridicatin 31 in both acid and 

basic media. The same transformation, is also observed by an enzyme preparation 

“Cyclopenase” from P.viridicatum.  In the work of White and co-worker the authors 

present the mechanism of acid- and base-catalysed rearrangement of the mould 

metabolite cyclopenin to its congener viridicatin.84  

 

Scheme 1.14 –Mechanism of cyclopenin conversion into viridicatin 31.  

The central feature of the mechanism is the bond formation between C-10 and C-

5a of 56. This bond formation is possible due to little steric hindrance of both centres, 

leading to the formation of a probable tricyclic intermediate A that undergo in the 

formation of viridicatin alkaloids 31. 
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 Studies on benzodiazepinooxazoles 

1,4–Benzodiazepines are known to rearrange to indoles, quinazolines, 

quinoxalines, and quinolones.85 Interested by base-catalyzed intramolecular 

rearrangement of benzodiazepinooxazoles, Terada and co-workers studied the 

treatment of 57 with sodium hydride in dimethyl acetamide. The reaction gave two 

compounds, the ethanol amine derivative 58 in 10 % yield and the 3HQ 59 in 10% 

yield as well. The structure of the 3HQ 59 was confirmed by treatment of 5-choro-2-

(N-methylbromoacetamido)benzophenone 60 with ethanolic sodium hydroxide at 

room temperature overnight, giving the product 59 in 33% yield85 

 

Scheme 1.15 Formation of 3HQs by ring contraction of 52. 

 

 

 Synthesis of 3HQ by Pd-catalyzed coupling reaction of 3-bromo-4-

phenylquinolinone mediated by tert-butyl X-Phos. 

In the attempt to synthetize new bisquinolone-based mono- and diphosphine 

ligands of the aza-BINAP series, Kappe and co-workers prepared a 3-

hydroxyquinolinone core from its bromo precursor using a recent protocol disclosed 
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by Buchwald and co-workers that introduced the use of tert-butyl X-phos as ligand in 

related Pd-catalyzed couplings. With this procedure, under microwave irradiation, the 

authors were able to synthesize 3-hydroxy-4-phenyl-1-methylquinolin-2(1H)-one 62 

in modest yield 68% from the bromo precursor 61.86 (Scheme 1.16). 

 

Scheme 1.16 Pd-catalyzed formation of 62 using 3-bromo-4-phenylquinolinone 61. 

 

Knoevenagel condensation/epoxidation 

A more recent strategy to prepare this family of heterocycles was discloser in 2009 

by Kobayashi and Harayama. The methodology consist in a versatile synthesis of 

viridicatin Alkaloids (isolated in 64-73 % yield) and its derivatives using  

cyanoacetanilides through an one-pot Knoevenagel condensation/ epoxidation of 

cyanoacetanilides followed by arene cyclization.87 The nitrile group in molecule 63 has 

two main functions: as electron-withdrawing group to ease the condensation step, 

and also as a leaving group in the cyclization step. The noticeable feature of this 

methodology is the variety of cyanoacetanilides and aldehydes that can be used in the 

reaction yielding new viridicatin derivatives. When studying the effect of substituent 

R2 on the aromatic ring in the one–pot Knoevenagel condensation/epoxidation 

sequence, the authors found some effect on the yields of desired epoxide. They 

observed that electronic effects influenced the subsequent epoxide –arene cyclization 

in the rate of the reaction. When the reaction is carried out bearing an electron-rich 

aryl group, the reaction took place smoothly and afford quinolone compound in 99% 

yield after 5 h (entry 1, Table 1.1), while the presence of electron withdrawing groups 
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such as halides (entries 2 and 3, Table 1.1) resulted in slow conversion of 64 and good 

yields could be obtained only after 24 h.. The effect of substituent R3 in aryl aldehydes 

was also studied, and despite the absence of any influence on the 

condensation/epoxidation sequence, the cyclization step was determined to be 

favoured by the presence of electron rich aryl groups. Electron poor aryl substituents 

such as trifluorotoluoyl hampered the cyclization step (entry 6, Table 1.1), maybe 

because of the more challenging generation of carbocation species at benzylic 

positions. 

Table 1.1 – 3HQs preparation through one-pot Knoevenagel condensation/epoxidation of 
cyanoacetanilides followed by decyanative epoxide-arene cyclization – substrate scope 

  

entry R1 R2 R3 64 yield,(%)a 65 (yield,%)b

1 PMB Me Ph 49 99 

2 PMB Br Ph 88 85c 

3 Me Cl Ph 69 92c 

4 Me H 4-MeOC6H4 70 89 

5 Me H 1-naphthyl 87 90 

6 Me H 4-CF3 C6H4 78 0 

a) isolated yields in two steps from 63.b) isolated yield from 64. c) were consumed in 24h 

 

Despite the salient features of this methodology, it suffers from some 

disadvantages as it still depends on the synthesis of cyanoacetanilides as starting 

materials, and the cyclization of the epoxide requires use of H2SO4 that leads to the 

formation of the extremely poisonous and flammable hydrogen cyanide during the 

reaction 
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α-Hydroxylation and Intramolecular cyclization of N-

phenylacetoacetamides 

In 2013 Zhao’s group presented a new strategy for the construction of the 3-

hydroxyquinolin-2(1H)-ones. The reaction involved the conversion of N-

phenylacetoacetamides in α-hydroxyanilide using iodobenzene I,I-

bis(trifluoroacetate). The reaction proceeds through an hypervalent iodine reagent-

mediated α-hydroxylation and converts to the cyclized product with 10 equiv. of 

concentrated H2SO4  yielding up to 88 % the final products (Table 1.2).88  

Table 1.2 –Synthesis of 3HQs derivatives. 

 

Entry R1 R2 R3 67 Yield (%)
1 H Me Me 88 
2 H Me Ph 25 
3 H Ph Me 82 
4 H H Me 70 
5 F H Me 74 
6 Me H Me 50 
7 2-Cl H Me 40 
8 para-OMe H Me 35 
9 orto-OMe H Me 30 

 

The reaction scope was studied by decorating the starting material with different 

substituents on the aromatic ring R1, on the nitrogen atom R2 and on the carbonyl of 

the ketone R3. Twenty examples of new 3HQ derivatives were synthetized in modest 

to good yields. A detrimental effect on the cyclization was observed when replacing 

the R3 substituent from an alkyl to a phenyl, resulting in a yield dropping from 88 % 

to 25 % (entries 1and 2, Table 1.2). 
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On the other hand, replacing the methyl group on R2 with a bulkier group as phenyl 

did not affect the yield of the reaction (entry 3). When the authors applied the method 

to synthesise a series of 3HQ resembling viridicatin, without substituents in the anilide 

(R1=H) and unsubstituted nitrogen, the desired products were obtained in good yields 

(entries 4, 5). Orto-substituted substrates, especially with methoxy group, afforded 

products in low yields. A possible explanation for the yield erosion could be the 

formation of an array of unidentified by-products as a result of over oxidations of the 

electron–rich aromatic ring (entries 8, 9). Beside the main advantages of this strategy, 

the ready availability of the substrates and the convenient protocol, the biological 

active viridicatin 31 was afforded only in 60% yield and the precursor of viridicatiol 

was achieved in a lower 40% yield.  

 

Eistert Ring Expansion 

The last route described here is the addition of diazo compounds to cyclic 

ketones.89 This well-known reaction, was reported by Eistert et al. in the early sixties90; 

91 On his seminal work, Eistert found that the aldol reaction between isatin with 

ethydiazoacetate EDA , in the presence of a promoter, acids or zinc chloride, resulted 

in the ring expansion reaction with formation of 3HQ core 69 in 86% yield. Despite 

the good yield of reaction, this first attempt to synthetize the 3HQ core displayed a 

poor breadth of substrate compatibility and consequently was found not practical for 

preparation of derivative libraries.  

 

Scheme 1.17 – Eistert Ring Expantion. 
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Aware of these limitations, an extensive screening of Lewis acid as promoters for 

decomposition of isatin derived α-diazo-β-hydroxy ester 70 was recently performed 

by Pellicciari et al. (Table 1.3).The nature of the Lewis acid and the solvent polarity 

were observed to have a pivotal influence in the chemoselectivity of the 

decomposition. A cationic cascade mechanism or a concerted 1,2-aryl migration 

followed by dinitrogen release was suggested as possible paths for formation of the 

ring expanded product 69. According to the proposed mechanism, hard Lewis acids 

such as BF3•OEt2 and SnCl4 favor the cationic process, resulting in formation of 

products 73 derived from vinyl cation intermediate 72 after 1,2-aryl shift and 

subsequent trapping by the solvent. More polar and more nucleophilic solvents 

favored formation of 71 due to the increased stabilization of the vinyl cation 

intermediate 72. Solvent adducts derived from dihalomethanes and nitriles were 

obtained in 12 – 40 % yields while acetylene compound 73 was the major product. 

Use of methanol as solvent in presence of BF3•OEt2 resulted in exclusive formation 

of 69 due to proton induced expansion by the in situ formed [BF3•OMe]-H+. 92 

Although the existing methods have their own merits in the preparation of certain 3-

hydroxyquinolin-2(1H)-ones, finding a more general method applicable to the 

construction of more diverse structures regarding the aryl substitution patterns 

remains an open challenge.   

 

Scheme 1.18 Synthesis of compound 69 by Pellicciari et al.   
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Table 1.3 – Lewis Acids promoted ring expansion of α-diazo-β-hydroxy ester 70. 

Entry 
Lewis 

Acid 
ratio 69:71:73 Entry Catalyst ratio 69:71:73

1 BF3•OEt2 4:40:56 8 InCl3 95:3:2 

2 SnCl2 100:0:0 9 In(OTf)3 82:9:9 

3 Mg(ClO4)2 100:0:0 10 Yt(OTf)3 65:17:18 

4 Zn(OTf)2 100:0:0 11 Al(OTf)3 43:26:31 

5 ZnCl2 100:0:0 12 Sc(OTf)3 39:28:33 

6 ZnBr2 100:0:0 13 SnCl4 0:40:60 

7 InBr3 99:0.5:0.5    
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Chapter II 
 

2 II. Synthesis of Viridicatin Alkaloids  

 

 

Abstract 

An efficient and novel 4-step route for the synthesis of the viridicatin alkaloids via Suzuki-
Miyaura coupling reaction of aryl-boronic acids with 3-hydroxy-4-bromoquinolin-2(1H)-ones 
prepared from 3-hydroxy-4-ethylesterquinolin-2(1H)-ones will be presented. The 3-hydroxy-4-
arylquinolin-2(1H)-one core, include several natural products like viridicatin, viridicatol and 3-O-
methyl viridicatin, which have been reported as very promising inhibitors against human 
immunodeficiency virus replication induced by tumour necrosis and as promising lead compounds for 
the development of new anti-inflammatory agents. We have developed a new one-pot NHC-
dirhodium(II)/DBU catalysed Eistert ring expansion reaction of isatins with ethyl diazoacetate to 
afford the 3-hydroxy-4-ethylesterquinolin-2(1H)-one core regioselectively and in good to excellent 
yields. The DFT calculations performed on this system support a mechanism in which the key step 
is metallocarbene formation between the 3-hydroxyindole-diazo intermediate and the dirhodium(II) 
complex. Finally, vidicatin alkaloids were synthesised in yields up to 80 % via the abovementioned 
Suzuki-Miyaura cross coupling with aryl-boronic acids. 
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 Introduction 

 Combining transition metal catalysis and organocatalysis: A new 

emerging concept 

Historically, organic synthesis has been dominated by transition metal catalysis.93 

Through extensive efforts, chemists have continued to make remarkable 

achievements in relation to understanding metal properties, rational ligand design and 

applications of their versatile reactivity patterns in various transformations. 

Nevertheless, transition metal catalysts often suffer from being sensitive to air and 

moisture or are present as contaminants in products.94 Therefore, chemists started to 

explore new kinds of catalytic reactions with the "absence of metals", in which small 

organic molecules (organo-catalysis) act as catalytically active species to facilitate 

chemical transformations. This novel type of catalysis has emerged as a major concept 

in organic chemistry, and after experiencing its “golden age”, 95, 96 it is now a mature 

field of research. Organocatalysis has become one of the most popular and 

fundamental tools to target enantiomerically enriched compounds. 

Despite this remarkable progress, organocatalysis suffers from a lack of efficient 

modes to activate relatively inert chemical bonds. In contrast to this, metal catalyst 

are known to activate a varied range of chemical bonds, particularly those inactive 

chemical bonds that organocatalysts are unable to cleave.97 To overcome this 

limitation and develop more efficient approaches for the synthesis of complex 

molecule, the theoretical combination of these two distinct catalytic systems namely 

metal complex catalysis with organocatalysis, gave rise to Metal-organo-catalysed 

(MOC) systems. 

 With this new chemical tool chemists were able to  develop unprecedented 

transformations98 with good chemo- and stereo-selectivity inaccessible through the 

use of single specific catalytic systems.99 For this reason, the concept of combining 

organocatalysis with transition metal complexes has attracted much interest, 

becoming a new research area.  During the last decade, impressive developments in 

new types of catalyst combinations and new reaction types have been disclosed.98, 100 
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A variety of binary catalytic systems involving the use of metals such us  Rh(II), Pd(0), 

Au(I), and Mg(II), and chiral organocatalysts, including chiral phosphoric acids and 

quinine-based bifunctional molecules allowed the execution of many unprecedented 

trasformations.97  

In their last publication, "Combining transition metal catalysis and organocatalysis 

– an update", Du and Shao proposed a general classification for the combination of 

organo and metal catalysis from the catalytic cycle point of view, consisting in three 

main types (Figure 2.1): 

 

 

 

Figure 2.1- (a) The concept of cooperative catalysis. (b) The concept of synergistic catalysis. (c) 
The concept of sequential or relay catalysis. 

1. Cooperative catalysis (a): the organocatalyst and the transition metal 

catalyst are involved in the same catalytic cycle to form a product. 

2.  Synergistic catalysis (b): the catalysts activate the two substrates (A and B) 

by two directly catalytic cycles; the substrates undergo both cycles to the 

formations of the final product.  

3.  Sequential or relay catalysis (c): the two different catalysts (the transition 

metal catalyst and the organocatalyst), that undergo two distinct catalytic 

cycles and consecutive reactions, whereby the substrates (A and B) first react 

to form an intermediate (INT I) in the first catalytic cycle, which can either 

be the organocatalytic cycle or the transition metal catalytic cycle. 

Subsequently, this intermediate is converted to the final product (P) by 

another independent catalyst.  
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The main challenge of combining transition metal and organocatalysed 

transformations is to ensure the compatibility of catalysts, substrates, intermediates 

and solvents throughout the whole reaction sequence. The key to overcome this 

challenge is the judicious selection of appropriate catalyst combinations. Often, the 

combination of a hard Lewis acid with a soft Lewis base or a soft Lewis acid with a 

hard Lewis base is able to avoid the deactivation of catalysts. In addition, the following 

strategies have also been adopted: the use of the site isolation or phase separation 

techniques, and  sequential addition of catalysts and substrates.99  

 

 Generation of metallocarbenes from diazo compounds using di-

rhodium dimers 

Our approach towards the synthesis of 3HQs was built on the long-standing 

interest of the group on the use of dirhodium(II) complexes to promote 

transformations of diazo compound upon combination with the emerging MOC 

protocol.101-106 

Dirhodium (II) catalysts have been widely used as tools in organic synthesis, 

ultimately resulting in myriads of transformations and formation of a variety of 

compounds.107 Dirhodium complexes are bimetallic compounds with one metal-

metal bond (Rh-Rh), four bridge ligands, and two axial ligands arranged in an 

octahedral geometry conferring a lantern-like structure.108 Differently of when using 

metals such as copper and ruthenium, the presence of the Rh-Rh single bond plays 

an important role in the performance of these complexes and the formation and 

reactivity of metallocarbenes. The introduction of new bridge ligands coordinated to 

dirhodium(II) dimers gives distinct degrees of charge to the metal and it enables the 

tuning of  the complex reactivity and selectivity by changing the nature of the bridge 

ligand - i.e. ligands such as amides generate catalysts that are less reactive in reactions 

involving diazo compounds than when using complexes featuring carboxylates 

bridging ligands. The two axial positions of di-rhodium dimers are electrophilic and 

are often occupied by solvent molecules that establish weaker bonds with rhodium 
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centers when compared with the bridge coordination. These labile ligands are easily 

displaced by the substrates in the reaction vessel, and their role in catalysis has been 

somehow overlooked. Recently, Gois et al. 109 showed how the reactivity of these di-

rhodium (II) complexes could be effectively tuned by incrementing the electronic 

density of the terminal Rh atom by simple coordination of N-Heterocyclic carbenes 

(NHCs). These ligands offer good potential, they are neutral, and they are two 

electron donor (o-donating) ligands with negligible π-back bonding tendency.  

The most common catalytic application of dirhodium complexes is the generation 

of metallocarbenes from diazo compounds that can undergo C-H bond110 and 

heteroatom H insertion,  cyclopropanation, and dipolar ylide cycloaddition (Figure 

2.2). 

The mechanism for C-H insertion starts by a solvent decomplexation from the 

catalyst axial position, followed by a nucleophilic attack of the diazo compound onto 

the metal generating an ylide, which upon nitrogen extrusion provides the 

metallocarbene. Then, an electrophilic attack from the metallocarbene to an electron-

rich C-H bond (substrate R-H) furnishes the product, regenerating the catalyst.111 

 

 

Figure 2.2 - General structure and reactivity of dirhodium(II) complexes. 
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 Nakamura and co-workers studies112 describe how the rate limiting step is the 

carbene coordination promoting nitrogen extrusion, and the C-H insertion is the rate 

limiting step of the insertion.113 Moreover, they consider that only one of the two 

rhodium atoms works as a carbene binding site through out the reaction. The second 

rhodium atom acts as mobile ligand, so that the first one enhances the electrophilicy 

of the carbene moiety and facilitates the cleavage of the rhodium-carbon bond. 
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Scheme 2.1 - Schematic representation of the catalytic cycle of the di-Rhodium -catalyzed C-H 
bond activation/ C-C bond forming reaction of an α-diazoacetate with an Alkane. 

For their exquisite reactivity, stability, and tolerance to water and oxygen, 

dirhodium(II) complexes are very desirable catalysts to include in MOC systems. 

 

 Exploring metal organo catalytic systems based on di-Rhodium 

complexes 

In the context of dual catalysis, dirhodium complexes have an important role in 

the development of combined Brønsted acid and transition metal catalysed tandem 

reactions. Generally, Brønsted acids promote organocatalytic reactions through 

protonation to form an ion pair. In the reported work by Wenhao at al,114 di-Rh(II) 

complexes have been used in a MOC reaction based on the addition of ylides to 

aldehydes and imines. The role of the di-Rh(II) complex was to catalyse the ylide 

formation, while the chiral phosphoric acids mediated the enantioselective addition 

of this intermediate (Scheme 2.2). 
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Scheme 2.2- Rhodium catalysed three component reaction using chiral Brønsted acids. 

As aforementioned, the major challenge of developing a MOC system is the 

selection of appropriate catalyst combinations. Dirhodium complexes are quite well 

known as a Lewis acid, and the combination of this catalyst with an organic Lewis 

base, could lead to the deactivation of both catalysts. As far as our knowledge goes, 

only few examples covering the combination of these two types of catalysts in one 

single transformation can be found in the literature.115, 116 In 2005 Doyle and co-

worker117 reported a first example of dual/cooperative catalysts strategy using di-

Rhodium (Lewis acid) and a cinchona alkaloid as the organocatalyst (Lewis base). 

They reported a [2+2] cycloaddition reaction between ethyl glyoxylate 78 and 

trimethylsilylketene 79 catalyzed by a di-rhodium carboxamide (Scheme 2.3). To 

achieve the reaction with high enantioselectivity and to decrease significantly the time 

of the reaction, the authors chose a Lewis base cinchona alkaloid as co-catalyst due 

to its known activation of ketenes. The main problem to use cinchona Lewis base in 

this system was probably the inhibition of the dirhodium complex by Lewis base 

coordination of either the hindered tertiary amine or the quinoline nitrogen to the 

rhodium axial coordination sites. Nevertheless using this MOC catalytic system, the 

author obtained the desired product β-lactone in 68% yield and 90% ee in 20 h at 

room temperature. Despite the success, no information was provided regarding the 

putative reaction mechanism. 
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Scheme 2.3 - [2+2] cycloaddition reaction between ethyl glyoxylate and trimethylsilylketene 
catalyzed by a di-Rhodium carboxamide 

Another example of the use of this MOC catalytic system ( dirhodium(II) 

compounds and cinchona alkaloids) is the asymmetric N-H insertion of 

phenyldiazoacetate with anilines reported by Hashimoto et al. The catalytic system 

based on di-rhodium(II) tetrakis(triphenylacetate)(Rh2(TPA)4) and 

dihydrocinchonine provided phenylglycine derivatives in up to 71% ee. These studies 

clearly demonstrated that this catalytic system is effective for the enantiocontrol in 

the intermolecular N–H insertion reaction of phenyldiazoacetates with anilines 

(Scheme 2.4). 

 

 

 

 

 

 

Scheme 2.4 - Cooperative metal-organo-catalysed reactions based on di-Rh(II) and Lewis base 
organo-catalysts 
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These examples of MOC systems prompted us to study new catalytic systems 

based on di-rhodium catalysts and organic Lewis bases as a useful strategy to find new 

ways to access interesting biological cores. Despite the outstanding ability of di-Rh(II) 

metal complexes to stabilize carbenes via formation of the corresponding 

metallocarbene, such complexes are also known Lewis acids.118 The design of 

cooperative metal-organo-catalysed reactions based on a Lewis acid and a Lewis base 

organocatalyst is considerable more challenging due to the potential mutual catalyst 

inhibition as the Lewis base adds to the di-Rh(II) axial coordination sites (Scheme 

2.5).  

 
Scheme 2.5 - Potential di-Rh(II) inhibition when used in combination with Lewis base 

organocatalysts. 

To tackle the development of new cooperative MOC protocols based on the Lewis 

base/di-Rh(II) concept, we studied the combination of di-Rh(II) complexes with 

organic bases and ring expansion protocols (Scheme 2.6) aiming at the synthesis of 

biologically active molecules. The ring expansion (RE) strategy using diazo 

compounds has been extensively used in synthetic organic synthesis to prepare 

valuable compounds such as: benzo-azepines, quinolinones, cyclic ketones and many 

other small heterocycles.89 This reaction typically involves two steps, the first being 

the installation of the diazo moiety in the substrate via aldol-type nucleophilic addition 

of ethyl diazoacetate (EDA) to a ketone (Scheme 2.6). After this, the ring expansion 

is promoted using HCl, Lewis acid catalysts, temperature or photochemical 

irradiation.119 Bearing this in mind we envisioned that by using a MOC system this 

reaction could be carried out more efficiently in one-pot, using an organic base to 
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catalyse the addition of the EDA and a metal catalyst to promote the ring expansion 

via the generation of a rhodium-carbenoid.  

 

Scheme 2.6 - Molecules that can be prepared via a ring expansion strategy. 

To obtain a MOC system that may efficiently catalyse the ring expansion reaction 

using EDA, the organic base and the metal catalyst should not react between them. 

This is a troublesome step as it requires the discovery of a compatible Lewis base and 

Lewis acid pair that may still catalyse the reaction. In addition to this, the metal 

complex should react solely with the diazo intermediate and not undergo 

metallocarbene formation upon reaction with ethyl diazoacetate (Scheme 2.7). 
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Scheme 2.7 - Unwanted reaction in the Metal-Organo-Catalysed ring expansion using EDA. 

 

 Preliminary Results 

With the aim to discover a MOC system that would smoothly achieve a 

regioselective ring expansion reaction obtained via the formation of a metallocarbene 

using di-Rh(II) complexes, we carefully planned the first experiments.  

Initial studies were performed to synthetize intermediate diazo compound 70, 

typically prepared via addition of ethyl diazoacetate to isatin in the presence of diethyl 

amine in ethanol (1 eq, rt, 2 days). After synthetizing compound 70, we tested the ring 

expansion reaction using a catalytic amount of Rh2(OAc)4 in dichloromethane 

(DCM). To our delight, under these conditions compound 70 rapidly underwent ring 

expansion to afford the 3-hydroxy-4-ethylesterquinolin-2(1H)-ones 69 in 81% yield, 

which precipitated in the reaction medium. Motivated by this interesting result we 

further improved the reaction by using ethanol instead of DCM as solvent, and we 

added 0.5 mol% of Rh2(OAc)4. In these conditions, compound 69 was isolated in 90 

% yield after simple filtration (Scheme 2.6). The product of the reaction was 
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characterized through NMR techniques and the results are in agreement with the 

literature.77 The assignment of the NMR spectra reveals the presence of a triplet at 

1.32 ppm and the quadruplet at 4.40 ppm from the ethyl ester moiety and the singlet 

of the OH in position C-3 of the 3HQ core at 10.28 ppm in 1H NMR (Appentix C, 

Figure C1) . 
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Scheme 2.8 –EDA addition to isatin followed by Eistert ring expansion reaction catalysed by 

Rh2(OAc)2 

Also in 13C NMR can be found the characteristic value of the carbonyl of the ester 

at 165.39 ppm (Appendix C, Figure C1) and further confirmed by X-ray 

crystallography (Figure 2.3). 

 

 
Figure 2.3 – X-ray crystallography of 69. 
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 Rh(II) recycling 

The enormous synthetic value of dirhodium complexes has been proven over the 

years, as they are able to catalyse a wide range of transformations. These complexes 

are usually prepared from exchange of Rh2(OAc)4 ligands with carboxylic acids or 

from the reduction of RhCl3 in the presence of the corresponding carboxylic acid. 

Therefore scarce industrial applications of these complexes have been reported.107  

Rhodium supply depends mostly on South Africa (82%) and Russia (14%) and its 

primary use is in the catalytic converters in automobiles. Since this metal is one of the 

rarest on Earth (rhodium’s annual production is some 1% of gold’s) the price 

performance becomes very unpredictable and extremely dependent on automobile 

industry demands. For instance, after a 20-fold increase from 2003 to 2008 in rhodium 

average price, it fell by more than 90% in 2009 as a result of the sharp decline of the 

global automobile industry and followed by global crisis. Nowadays, rhodium is sold 

at 23 USD g−1 some 50% less than gold and 5% more than platinum, and the annual 

consumption is around 22 tons. Although relatively cheap at the moment, the high 

cost of the metal and the difficulty in recovering and recycling it are still the major 

factors that limit the application of dirhodium complexes at an industrial scale. 

Furthermore, the tight legislation on metal contamination of active pharmaceutical 

ingredients imposes the development of efficient methods for metal 

removal.Reutilisation of metal complexes can be achieved by several methods, based 

on heterogeneous and homogeneous strategies.120 Each of these methods has some 

intrinsic drawbacks and advantages that should be considered depending on the type 

of catalyst and the reaction in focus. Taking in consideration this background and 

impressed by the efficiency of this transformation, the ring expansion reaction was 

repeated with the objective of recycling the catalyst used. Therefore, after filtration of 

69 which precipitates in the reaction medium, the ethanolic solution containing the 

dirhodium(II) complex was charged with more diazo compound 84 and was 

efficiently converted into 69. The catalytic system was then reused for 6 cycles with 

an average isolated yield of 90 % (Scheme 2.9).  
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 Cycle Yield 

1 90 (%)
2 90 (%)
3 88 (%)
4 93 (%)
5 92 (%)
6 90 (%)

Scheme 2.9 - Recycling dirhodium(II) complex ring expansion-reaction. 

 

 Implementation of MOC system. 

After confirming that Rh2(OAc)4 was indeed an efficient catalyst for the Eistert 

ring expansion reaction, we turned our attention towards the possibility of 

implementing a one-pot metal-organo-catalysed protocol for the preparation of 3-

hydroxy-4-ethylesterquinolin-2(1H)-ones as shown in Scheme 2.10. As mentioned in 

the introduction of this chapter, one of the main challenges on developing one-pot 

metal-organo-catalysed systems is to prevent the self-quenching of both metal and 

organo catalysts (see Scheme 2.3 section 2.1.2). To verify the practicability of the 

projected route, initial studies focused on the choice of catalytic base for the 

formation of diazo compound 84 were executed. Among the different bases studied 

for catalytic addition of EDA to isatin (Table 2.1), 1,8-Diazabicyclo[5.4.0]undec-7-

ene (DBU) was found to be the most efficient. Using DBU in 15 mol % (entry 4), 

compound  68 was obtained in 78% yield after 24 h at room temperature and 

purification by flash chromatography.  
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Schema 2.10 - A metal-organo-catalytic system for the synthesis of 3HQs 

Lower yields or traces of compound 70 were obtained with other organic bases 

such as trimethylamine (TEA), diethylamine, diisopropyl ethyl amine (DIPEA) (Table 

2.1, entries 1-4) or with t-BuOK inorganic base (Table 2.1, entry 5).  

 

Table 2.1- Screening of base for the aldol-type addition of EDAa 

 

Entry Base Yield  %b 
1 Triethylamine <14 
2 Diethylamine 15 
3 Diisopropyl ethyl amine Traces 

4 
1,8-Diazabicyclo[5.4.0]undec-7-

ene 
78 

      5 t-BuOK 17 
a Reaction conditions: isatin (0.3 mmol), EDA (1.2 eq.), DBU (15 mol %) and 

DCM (1.5 mL), rt, 24 h.; b isolated yield 
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The analysis of the NMR spectra are in agreement with structure of the compound 

and further X-ray crystallography (Figure 2.4) confirm the structure of the diazo 

intermediate 70. 

 

Figure 2.4 – X-ray crystallography of 70. 

Following these preliminary results, DBU was selected to investigate the effect of 

different reaction solvents (Table 2.2).  

 

Table 2.2- Solvent screening for DBU catalysed aldol-type addition of EDA to 

isatina 

 

 

Entry Solvent Time (h) Yield  % 
1 DCM 2 <25 
2 Toluene 2 51 
3 Chlorobenzene 2 47 
4 Et2O 2 68 
5 THF 2 38 
6 EtOH 2 73 
7 EtOH 3 82 

 Reaction conditions: isatin (0.3 mmol), EDA (1.2 eq.), DBU (15 mol %) 
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Despite the good yield observed in DCM after 24 h reaction time (Table 2.2, entry 

4), less than 25 % of product was obtained after 2 h in the same reaction conditions 

(Table 2.2, entry  1).Aromatic solvents, such as toluene and chlorobenzene, allowed 

the formation of the desired product in ca. 50 % yields after 2 h. Considering more 

polar ether solvents, diethyl ether was superior to tetrahydrofuran (THF), leading to 

formation of 70 in 68 % yield. Ethanol was nevertheless the best solvent system 

tested, resulting in formation of the desired compound in 78 and 82 % yields after 2 

and 3 h, respectively (Table 2.2, entries 5 and 6).Smaller amounts of base were 

considered and observed to have a detrimental effect on the reaction yield (Table 2.3).  

 

Table 2.3- Effect of the amount of DBU in the ring expansion reaction in ethanola 

DBU mol % Time (h) Yield  % 
15 a) 2 73 
15 3 82 
10 6 77 
5 3 59 

a Reaction conditions: isatin (0.3 mmol), EDA (1.2 eq.), DBU, and EtOH (1.5 mL), rt. 

 

 

 Eistert Ring expansion of isatins with EDA using a sequential 

DBU/Rh2(OAc)4 system 

After optimizing the EDA addition to isatin, the compatibility between Rh2(OAc)4 

and DBU was tested by adding 1 mol% of this complex to the reaction mixture. 

Pleasantly, the sequential protocol afforded the compound 3-hydroxy-4-

ethylesterquinolin-2(1H)-ones 69 in 63 % yield confirming the possibility to combine 

in the same pot both catalysts (Scheme 2.10). With this promising result in hand, we 

started to investigate the scope of this reaction under the optimized reaction 

conditions [DBU (15 mol %) in EtOH, 25 ºC followed by addition of Rh2(OAc)4 1 

mol %], and the results are shown  in table 2.4.   
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Table 2.4 – Eistert ring expansion of isatins with EDA using a sequential DBU/Rh2(OAc)4 system. 

 

Entry R1 R2 Compound Yield  % 
1 H H 69 63 
2 H F 84 64 
3 H Cl 85 92 
4 H Br 86 90 
5 H CF3O 87 74 
6 Me H 88 75 
7 Me F 89 75 
8 Me Cl 90 81 
9 Me Br 91 78 
10 Me CF3O 92 81 
11 Bn H 93 73 
12 Bn F 94 93 
13 Bn Cl 95 87 
14 Bn Br 96 72 

reaction conditions: isatin (0.3 mmol), EDA (1.2 eq.), DBU (15 mol %) and EtOH (1.5 
mL). 1 mol % of Rh2(OAc)4 was added to the reaction mixture after 3 h  

 

Commercially substituted isatins were used bearing electron withdrawing groups 

on the indoline-2,3-dione nucleus (R2) and different substituents on the nitrogen (R1). 

N-Methyl and N-benzyl isatins were synthetized when necessary from commercial 

isatin (see experimental section). The methodology, shown in Table 2.4, was quite 

tolerant to the substituents present in the aromatic ring. Furthermore, good to 

excellent yields were obtained when using N-unsubstituted (Table 2.4, compounds 

69; 84-87), N-methyl (Table 2.4, compounds 88-92) and N-benzyl (Table 2.4, 93-96) 

isatins. The NMR data of all the compounds are in agreement with the chemical 

structure in addition to the X-ray crystallography of compound 93 (Figure 2.5). 
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Figure 2.5 – X-ray crystallography of 93. 

 

 Eistert ring expansion of isatins with EDA using a one-pot relay 

DBU/Rh2(OAc)4 system. 

Once established the sequential transformation, we considered the possibility to 

have both catalysts present in one-pot from the on-set of the reaction, and assess the 

eventuality of self-quench of the catalytic system or the competitive metallocarbene 

formation of di-Rh(II) complex with EDA. The first attempt to performed the one 

pot relay system was carried out using N-methyl-isatin with EDA in the presence of 

15 mol% DBU and Rh2(OAc)4 in DCM (Scheme 2.11). Aware of the potential 

difficulties already described when performing a one pot reaction, the reaction yielded 

compound 88 in just 30 % after 3h of reaction (Table 2.4, entry 1).  

 

N

O

O

Me
N2

O

OEt

DBU 15 mol% 
 Rh2(OAc)4, 1 mol %

DCM, rt
N

OH

CO2Et

O

Me

+

88  
Scheme 2.11 – One-pot reaction using N-methyl-isatin with EDA in the presence of DBU 15 

mol% and Rh2(OAc)4 in DCM 
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One of the most important characteristics of dirhodium(II) complexes is the fact 

that they are easily tunable in their electrophilicity profile by replacement of the 

ligands (Scheme 2.12), which dramatically reflects on the catalyst reactivity and 

selectivity as demonstrated by Doyle et al.121 

 

  
Scheme 2.12 – Ligands influence on the electrophilicity of dirhodium(II) complexes 

As depicted in Scheme 2.12, dirhodium(II) perfluorobutyrate (Rh2(pfb)4, 99), 

whose ligands are strongly electron withdrawing, showed high reactivity for diazo 

decomposition comparable to that for CuOTf, although in low stereo- and 

regiocontrol. In contrast, dirhodium(II) carboxamidates, including dirhodium 

acetamidate (Rh2(acam)4, 97),122 and di-rhodium caprolactamate (Rh2(cap)4, 98)123 

exhibited lower reactivity and higher selectivity.124, 125 For this reason, different Rh(II) 

catalysts with diverse electronic characters and different ligand were tested in the one-

pot ring expansion reaction (Scheme 2.13). Recently, our group reported that 

dirhodium(II) complexes coordinated in one of their axial positions with N-

heterocyclic carbenes (NHCs) generate metallo-carbenes from diazo substrates giving 

a distinct reactivity from the parent Rh2(OAc)4 complex.126 Based on this, the catalytic 

activity of dirhodium(II) complexes 97, 110-104 were evaluated aiming at reducing the 

interaction of DBU with the metal complex. 
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Scheme 2.13 – Dirhodium(II) catalysts evaluated in the one-pot Eistert ring expansion of isatins 

with EDA. 

Considering the conversions determined based on the 1H-NMR reaction crude 

mixture, (Table 2.4) complex 104 containing an electron-donating axial NHC 

ligand,21a,24 109, 127  was found to be the most efficient catalyst.  

Table 2.4 – Eistert ring expansion of isatins with EDA using a one-pot DBU/Rh2(OAc)4 system.a 

 

Entry Solvent Catalyst Product(%) Diazo(%) Isatin(%)
1 DCM 98 32 <16 51 
2 DCM 100 35 <14 50 
3 DCM 101 25 <7 67 
4 DCM 102 35 <17 47 
5 DCM 99 46 <19 34 
6 DCM 103 43 <20 35 
7 DCM 104 44 <9 45 
8 DCM 105 35 13 53 
9 Toluene 104 51 3 44 
10 DCE 104 49 2 44 
11 EtOH 104 80 1 19 
12 DME 105 45 10 43 

N-methyl isatin (0.3 mmol), EDA (1.2 eq.), DBU (15 mol %), dirhodium complex (1 mol %), solvent (1.5 mL) 
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This complex promoted the formation of product 88 in 44 %, while avoiding the 

build-up of the diazo intermediate which was detected in only 9 % (Table 2.4, entry 

7). Analogously to the sequential protocol, ethanol was the best solvent for the one-

pot protocol affording the desired product 88 in 80 % yield (Table 2.4, entries 9-12). 

Once optimized the reaction conditions, the protocol was extended to other 

substrates with similar or better yields than the ones observed when performing the 

reaction in a sequential manner (Table 2.5)  

 

Table 2.5 - Eistert Ring expansion of isatins with EDA using a one-pot relay DBU/Rh2(OAc)4 

system. 

N2

OEt

O

H

DBU 15 mol%, 26 1 mol%,
EtOH, rt, 3h

N

O

O

R1

+

N

CO2Et

OH

O

R1

R2
R2

 

Entry Compound R1 R2 Yield 

1 69 H H 63 % 

2 92 CH3 CF3O 81 % 

3 90 CH3 Cl 92 % 

4 91 CH3 Br 90 % 

5 93 CH2Ph H 85 % 

6 95 CH2Ph Cl 68 % 

 

 

 Computational Study 

After establishing the ring expansion protocol, we addressed the complex 

preference for the decomposition of the isatin-diazo intermediate instead of EDA. In 

order to understand this and get further insight on the reaction mechanism, the ring 

expansion reaction catalyzed by dirhodium complexes was studied by Density 

Functional Theory (DFT).128  This study was performed by Dr. Nuno Candeias. 
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For the calculation model reactant, we use the diazo compound resultant from the 

addition of EDA to isatin (70), and the mechanism explored starting from the 

formation of the metallocarbene and subsequent ring expansion. The free energy 

profiles obtained are represented in Figure 2.6- 2.8 and a general working model of 

the mechanism is show in Figure 2.9. 

 The metallocarbene formation proceeds through a concerted mechanism in which 

the transition state (ts1) accounts for the C-Rh formation with synchronous release 

of a nitrogen molecule (Figure 2.6). This aspect is evident by the C-Rh decrease from 

2.39 Å in the optimal 70-Rh2(OAc)4 pair to 2.10 Å in ts1, whilst the Wiberg index 

increases from 0.17 to 0.43. Consequently, after the liberation of N2, the 

metallocarbene is formed by strengthening the C-Rh bond as shown by the C-RH 

distance (1.98 Å) and the Wiberg index (0.71) in mc1.  

 
Figure 2.6 - Energy profiles calculated for the metallocarbene formation between the 3-substituted 
3-hydroxy-oxindole (70). The relevant bond distances (Ǻ) are indicated, as well as the respective as 

well as the respective Wiberg indices (WI, italics) 

An intramolecular H-bond formed between the hydroxyl group of the oxindole 

moiety and one of the carboxylates of the metallic complex is observed, stabilizing 

the represented conformation of mc1’ in 7 kcal/mol compared with the conformer 
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in which the O-H bond is kept away from the carboxylate ligands of the dirhodium 

complex (Appendix, Figure A1) For the one pot version of this transformation to be 

successful, ethyl diazoacetate cannot react with Rh2(OAc)4 to form the corresponding 

metallocarbene. After the observation of the preferential formation of the ethyl 

diazoacetate addition to isatin, the mechanism for the formation of the 

metallocarbene derived from that diazo compound was studied, for comparison 

purposes. Analogously to the formation of the metallocarbene derived from 70, the 

one derived from ethyl diazoacetate also proceeds through a concerted nitrogen 

extrusion and C-Rh bond formation as indicated by the strengthening of the C-Rh 

bond and weakening of the C-N bond from the eda+Rh2(OAc)4 pair to tseda (Figure 

2.7). 

 
Figure 2.7 - Energy profiles calculated for ethyl diazoacetate (eda) and dirhodium(II) tetraacetate. 

The relevant bond distances (Ǻ) are indicated, as well as the respective as well as the respective 
Wiberg indices. 

However, this process is thermodynamically unfavorable (ΔG298 = 2.6 kcal/mol) 

and has an energy barrier 4 kcal/mol higher than the one previously discussed (Figure 

2.6), which corroborates the selectivity of the dirhodium catalyst towards reaction 

with oxindole starting material. After formation of the metallocarbene (Figure 2.8 and 
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Figure 2.9), this rearranges from mc1 to mc2, with a concomitant weakening of the 

Rh–C bond, as shown by the corresponding Wiberg indices, 0.7 in mc1 and 0.4 in 

mc2. The geometry changes that occurred from mc1 to mc2 allows migration of the 

aryl ring that will happen in the next step, through transition state ts2. This 

transformation occurs through a three-membered ring in which the bond that is being 

formed and the one that is broken have similar distances and Wiberg indices around 

1.6 Å and 0.7, respectively.  On the other hand, the other C-C bond of the three-

membered ring is kept unchanged during the process. The Caryl-C bond migration 

step, from mc2 to mc3, is thermodynamically favorable by over 18 kcal/mol. 

 

 

Figure 2.8 – Energy profiles calculated for the 1,2-aryl migration of the metallocarbene formed 
between the 3-substituted 3-hydroxy-oxindole and dirhodium(II) tetraacetate. The relevant bond 

distances (Ǻ) are indicated, as well as the respective Wiberg indices. 

  Intermediate mc3 is characterized by the presence of a fused four-membered ring, 

that is formed by the interaction of the free electron pair of the carbonyl oxygen with  
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Figure 2.9 – Mechanistic representation of the dirhodium catalyzed ring expansion reaction of 3-hydroxy oxindole. 
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the 3-carbon of the quinolone moiety in order to stabilize the electronic deficiency of 

that position.  Interestingly, whilst the dirhodium catalyst is determinant to extrude 

the molecular nitrogen and consequently form the metallocarbene, its role along the 

pathway is diminished. Probably due to the bulkiness of the quinolone ring, the C-Rh 

bond length is kept longer than 2.3 Å after this stage, being accompanied by a low 

Wiberg index (WI 0.2 for Rh-C of mc3) when compared with mc1 (C-Rh WI 0.7). 

The following step in the mechanism corresponds to the C-Rh bond cleavage and 

synchronous formation of the C=C bond, going through transition state ts3, with an 

energy barrier of 6 kcal/mol. After the product formation, an intramolecular 

hydrogen bond between the hydroxyl group at the 3 position and the carboxylic ester 

stabilizes the product whilst the dirhodium complex is liberated to reenter in the 

catalytic cycle. A very weak interaction of the final product with the metal complex is 

observed and the conformation obtained for 69 (Figure 2.8) is in strong agreement 

with the X-ray structure determined for the product (with deviations smaller than 0.06 

Å). The mechanism discussed above represents a thermodynamically favorable 

process (ΔG298 = –77 kcal/mol) with metallocarbene formation as the rate 

determining step (i.e., is the first one) and an energy barrier of 13 kcal/mol. The 

metallocarbene formation has been previously determined to be the rate determining 

step in Rh-carbenoid C–H insertions.129 

Lewis acids are known to catalyze the ring expansion of 3-hidroxyindoles bearing 

a diazoethoxycarbonyl at the 3-position, as previously reported by Pellicciari and co-

workers.130 Taking this into consideration, and despite the rather weak Lewis acidity 

of dirhodium complexes,23 we explored alternative mechanisms for the ring 

expansion reaction. This was achieved considering coordination of the substrate to 

Rh through the carbonyl group of carboxylic ester moiety or by the carbonyl of the 

3-oxindole function. In both cases, substrate coordination yielded a stabilization of 

the initial pair of reactants. However, the mechanisms calculated for those starting 

species are not competitive with the one presented above (Appendix A for complete 

energetic profiles). 

In addition, alternative mechanisms accounting for the product formation without 

the intervention of the dirhodium complex were also considered (Appendix A for 
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complete energetic profiles). Two paths were envisaged, one proceeds via a free 

carbene intermediary and the other is a concerted 1,2-aryl migration with nitrogen 

extrusion. In both cases the calculated energy barriers are considerably higher than 

the ones associated with the mechanism discussed above.  

 

 Synthesis of Viridicatin alkaloids  

Once established the efficient regioselective ring expansion reaction of isatins with 

ethyl diazoacetate, we evaluated the possibility of synthesising the viridictin core via a 

Suzuki-Miyaura coupling reaction of aryl-boronic acids with 3-hydroxy-4-

bromoquinolin-2(1H)-ones.  

Suzuki cross coupling reaction of aryl halides with organoboronic acids proved to 

be the most efficient method for the construction of biaryl or substituted aromatic 

moieties.131, 132  

In cross-coupling Suzuki-Miyaura reaction (SMC), the catalytic cycle is thought to 

follow a sequence involving the oxidative addition of an aryl halide to a Pd(0)complex 

to form an arylpalladium(II) halide intermediate. Transmetalation with a boronic acid 

and reductive elimination from the resulting diarylpalladium complex affords the 

corresponding biaryl and regenerates the Pd(0) complex (Figure 2.10).133 Although 

not yet clear, the role of the base has been suggested to encompass the facilitation of 

the otherwise slow transmetalation of the boronic acid, by forming a more reactive 

boronate species that can interact with the Pd center and transmetalate in an 

intramolecular fashion.134. Alternatively it has been proposed that the base replaces 

the halide in the coordination sphere of the palladium complex and facilitates the 

intramolecular transmetalation.135 
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Figure 2.10 - General catalytic cycle for Suzuki-Miyaura couplings. 

For the subsequent palladium-catalysed Suzuki cross coupling reaction the 

activated bromide 105 was prepared. The 3-hydroxy-4-bromoquinolin-2(1H)-ones 

105 was simply set by decarboxylation of the ester moiety of compound 6 in basic 

medium followed by acidification with 2 N HCl solution yielding 9 in 92%. After that, 

compound 9 was reacted with N-bromosuccinimide in DMF according to the 

protocol described in the literature to provide the halide in 90 % yield.77 

 

 
Scheme 2.14- Synthesis of 3-hydroxy-4-bromoquinolin-2(1H)-one 106 

We carried out the the first coupling reaction in refluxing dimethoxyethane (DME) 

for 24h using Pd(dba)3 (3 mol%), P(Ph)3 (12 mol %) and Na2CO3 aqueous solution 

as base. With these reaction conditions we were able to isolate viridicatin 31 in 50 % 

yield after purification by flash chromatography  
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 Table 2.5 - Catalyst screening for Suzuki-Miyaura coupling of 106 and phenylboronic acid 

 

Pd source mol% Isolated Yield (%)

Pd2(dba)3 5 mol% 47 

Pd(dppf)Cl2 · CH2Cl2 10 mol% 66 

Pd(PPh3)4 10 mol% 80 

 

10 mol% 50 

PdCl2 10 mol% 59 
 

 

It is well-known that the Suzuki coupling and other transition-metal-catalysed 

reaction can be significantly shortened by direct in-core microwave heating.136 Taking 

advantage of the rapid automated processing features of modern microwave reactor 

instrumentation,137 the Suzuki reaction was quickly optimized probing different 

catalyst/solvent/base combinations in addition to varying reaction time and 

temperature. The best conversions and isolated product yields were achieved by using 

tetrakis(triphenylphosphine)palladium(0) as catalyst. A 3:1 mixture of DME and water 

proved to be the optimal solvent combination, together with sodium carbonate as 

base. The optimal temperature/time was found to be 150 °C/2h by microwave.  
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Scheme 2.15 – Synthesis of viridicatin alkaloid derivatives based on the Suzuki-Miyaura coupling 
reaction of aryl-boronic acids with 3-hydroxy-4-bromoquinolin-2(1H)-ones 106. 

 

Biologically active viridicatin was obtained in 80 % yield after flash 

chromatography purification and further characterised through NMR techniques. 

The NMR chemical shifts data assigment (Appendix C, Figure C2) are in agreement 

with the chemical structure of the compound and with the previously reported data.87 

The optimized reaction conditions were successfully used in the coupling of 3-

hydroxy-4-bromoquinolin-2(1H)-one with arylboronic acids featuring electron-

withdrawing and electron-donating substituents yielding viridicatin derivatives 107-

110 from good to exelent yields. All the derivatives were characterized by NMR 

techniques (Section 6.6). 
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 Conclusion 

An efficient synthesis of viridicatin alkaloids based on a Suzuki-Miyaura coupling 

reaction of aryl-boronic acids with 3-hydroxy-4-bromoquinolin-2(1H)-ones prepared 

from 3-hydroxy-4-ethylesterquinolin-2(1H)-ones was developed. The 3-hydroxy-4-

ethylesterquinolin-2(1H)-one was simply prepared by a regioselective ring expansion 

reaction of isatins with ethyl diazoacetate catalysed by dirhodium(II) complexes. The 

reaction mechanism was studied by DFT calculations that highlighted the 

metallocarbene formation between the 3-hidroxyindole-diazo intermediate and the 

dirhodium(II) complex as the key step of the mechanism. 

The discovered compatibility of the NHC-dirhodium(II) complex 104 and DBU, 

enabled the implementation of the one-pot addition of ethyl diazoacetate to isatin 

followed by the NHC-dirhodium(II) catalyzed ring expansion reaction, ultimately 

leading to preparation of 3-hydroxy-4-ethylesterquinolin-2(1H)-ones in yields up to 

92 %. Finally, the 3-hydroxy-4-bromoquinolin-2(1H)-one core was simply coupled 

with aryl-boronic acid to afford the expected vidicatin alkaloids in up to 80 % yield. 

 

 

 

 

 

 

 

 

 

 

 



64 | Synthesis of Viriticatin Alkaloids  

 

 

 

 



 

65 

 

Chapter III 

3 III. Synthesis of 4-Substituted-3-

Hydroxyquinolin-2(1H)-ones and Anticancer 

Activity Evaluation  

Abstract 

Herein we shown that the 3-hydroxyquinolin-2(1H)-one (3HQ) core is a suitable platform to 
develop new compounds with anticancer activity against MCF-7 (IC50s up to 4.82 µM), NCI-
H460 (IC50s up to 1.80 µM) and HT-29 (IC50s up to 11.37 µM) cancer cell lines. The ring-
expansion reaction of isatins with diazo esters catalysed by di-rhodium(II) complexes proved to be a 
simple and effective strategy to synthesise 4-carboxylate-3HQs (yields up to 92%). 4-Carboxamide-
3HQs were more efficiently prepared using NHS-diazoacetate, and this innovative methodology 
enabled the construction of “peptidic-like” 3HQs in yields up to 88%. Among this series, the L-
leucine-4-carboxamide-3HQ induced the cell death of MCF-7 (IC50 of 15.12 µM), NCI-H460 
(IC50 of 2.69 µM) cancer cell lines without causing any appreciable cytotoxicity against the non-
cancer cell model (CHOK1).  
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 Cancer hallmarks 

Cancer is a burden of our days. An estimated 14.1 million new cancer cases and 

8.2 million cancer deaths occurred in 2012 worldwide.138 According to GLOBOCAN 

2012 statistic, among the many cancers, lung, breast and colorectum cancer are the 

most frequently diagnosed and are the leading causes of cancer death in both sex and 

in developed and less developed countries (Figure 3.1).139 Currently, as suggested 

from World Health Organization (WHO), primary prevention strategies such as 

tobacco control, vaccination (for liver and cervical cancers), early detection, and the 

promotion of physical activity and healthy dietary patterns are the strategies for 

intervention in cancer control.140 Despite the availability of improved drugs and 

targeted cancer therapies, it is expected that the new cases of cancer will jump to 19.3 

million worldwide by 2025. Unfortunately, cancer remains a highly unmet medical 

need and discovery and development of remarkable chemotherapeutic agents having 

a limited toxicity profile are still needed.138  

 

 

Figure 3.1 - Incidence (blue) and mortality (red) of cancer worldwide. GLOBALCAN 2012 
(IARC). 
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Heterocyclic quinolin-2(1H)-one analogues were already reported as anticancer 

agents in literature. Novel active anti tumour agent as Zanestra 7 and linomide 16 

showed the biological potential of quinolin-2(1H)-ones core and inspired us to 

explore further the 3HQs derivatives. Despite the important biological activities of 

3HQ compounds, the use of this scaffold in the construction of anti-proliferative 

agents remains mostly unexplored. However, while developing new inhibitors of the 

HIV-1 reverse transcriptase associated RNase H activity, Bailly et al observed that a 

series of 4-substituted 3HQs were significantly cytotoxic against non-cancer MT-4 

cells, and this precluded their further use as antiviral agents.72 Keeping these 

observations, we envisioned that a 3HQs library could be further explored as a 

valuable platform to prepare innovative anti-proliferative agents. In continuation of 

our work we envisioned the synthesis of 4-carboxylate and 4-carboxamides 

substituted 3HQs and their anticancer screening studies. 

 

 Anti-proliferative activity and chemical modifications of the 3-

hydroxyquinolin-2-ones lead core  

 

 Preliminary anti-proliferative screening  

Aiming to test our hypothesis, we first set out to prepare a small library of 4-

carboxylate 3HQs derivatives. The synthesis of the 4-carboxylate-substituted-3HQs 

was achieved using the sequential protocol already described in chapter II. As shown 

in Scheme 3.1, exploring our recently described Eistert ring-expantion reaction of 

isatins with diazo acetate (EDA) catalysed by di-rhodium (II) complexes, 4-

carboxylate-3HQs 69 and 84-96 were synthesised in good to excellent yields. 

Once prepared, this set of compounds was evaluated against a panel of different s 

cancer cell lines namely: breast cancer cells (MCF-7), human non-small lung cancer 

cells (NCI-H460) and human colorectal adenocarcinoma cells (HT-29) (Table 3.1).  
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Scheme 3.1 Synthesis of 4-carboxylate substituted 3HQs 69, 84-96 based on an Eistert ring 

expantion reaction of isatins with diazo acetate (EDA) catalysed by di-rhodium complexes. 
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Table 3.1 reports the biological data of anti-proliferative activity for this series of 

3HQs. This assay revealed that 4-carboxylate-3HQs were generally non-active against 

the three cancer lines tested, though the 6-trifluoromethyl-4-ethylacetate-3HQ 87 was 

able to reduce the viability of the NCI-H460 cells in 48% at the concentration of 20 

µM. Encouraged by this result we directed our attention to the 7-trifluoromethyl-4-

ethylacetate-3HQ core and some structural modifications were performed. 

Table 3.1 – Anti-proliferative evaluation of compounds 69 and 84-96 against MCF-7, NCI-H460 
and HT-29 cancer cell lines. 

ENTRY COMPOUND 
20 µM

MCF-7 NCI-H460 HT-29 
1 69 NA NA 87% 
2 84 NA NA NA 
3 85 NA NA NA 
4 86 86% NA NA 
5 87 95% 52% 74% 
6 88 NA 82% NA 
7 89 NA NA NA 
8 90 NA NA NA 
9 91 NA NA NA 
10 92 NA NA NA 
11 93 NA NA NA 
12 94 NA NA NA 
13 95 NA NA NA 
14 96 NA NA NA 

Percentage of cell-viability; NA – Non-active at the concentration of 20 µM 

 

 Structural modifications on the 3-hydroxyquinolin-2-one lead core 87. 

Once compound 87 was identified as lead, we performed some synthetic 

modifications of the compound. First we modified position C-4 of 87 by hydrolysis 

of the ester and further decarboxylation (Scheme 3.2). Product 111 was synthetized in 

75 % yield and characterized by NMR spectroscopy. The assignment of the NMR 

spectra revels the absence of the typical signals of the ester moiety namely the quartet 
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of CH2 at 4.49 ppm and triplet of CH3 at 1.41 ppm and the presence of a singlet with 

a chemical shift of 7.42 ppm corresponding to the hydrogen in position C-4 of the 

3HQ core. 

 

Scheme 3.2 – Synthesis of compound 111 

The second modification was the installation of a benzyl group in the nitrogen 

atom of the trifluoromethoxy quinolinone (Scheme 3.3). To perform this, the 

described Eistert ring expansion reaction of isatins with EDA catalysed by di-rhodium 

(II) complexes (see chapter II) was performed. With this protocol we were able to 

obtain compound 112 in moderate yield. Compound 112 was characterized by 1H-

NMR, 13C-NMR and the results are in agreement with the chemical structure of the 

compound. With these two new hydroquinone derivatives in hand, their biological 

activity against the three cancer cell lines was determined and compared with the lead 

compound 87 (Table 3.2). 

 

Scheme 3.3 Synthesis of compound 112 based on an Eistert ring expansion reaction of isatins with 
EDA catalysed by di-rhodium complexes. 

Unfortunately, these structural modifications, namely the decarboxylated 111 and 

N-benzylated 112 resulted in the loss of the observed activity against the 3 cancer cell 

lines (Table 3.2).  
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Table 3.2. Anti-proliferative evaluation of compounds 111-112 against MCF-7, NCI-H460 and HT-
29 cancer cell lines. 

 

ENTRY COMPOUND MCF-7 NCI-H460 HT-29 
1 87 95% 52% 74% 
2 111 NA NA NA 
3 112 NA NA NA 

Percentage of cell-viability; NA – Non-active at the concentration of 20 µM 

From an early structural relationship (SAR) point of view of our investigation, we 

addressed the influence of the substituent at the position C-4 on the activity of the 

heterocycle. For this reason, with the objective to perform structural modifications 

on position C-4 of the 6-F3CO-3HQ core, a series of diazoacetate compounds were 

prepared and used in the Eistert ring expansion reaction of the 5-trifluoromethoxy-

isatin.  

 Diazo acetates 113-115 were prepared in moderate to high yields as previously 

reported by Fukuyama and co-workers (Scheme 3.4),141 by treatment of 

bromoacetates with N,N‘-ditosylhydrazine (TsNHNHTs). All diazo acetates were 

characterized by 1H-NMR, 13C-NMR and the results are in agreement with the 

literature. 

 

Scheme 3.4 – Synthesis of diazo acetates 113-115 
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With the new α-diazo carbonyl compounds in hand, a new series of ester 3HQ 

derivatives were synthetized as shown in Scheme 3.5, this simple protocol afforded 

3HQ 115-120 in yields ranging from 71 to 86%. All new derivatives were characterized 

by 1H-NMR, 13C-NMR and the results are in agreement with the chemical structure 

of the compounds. Once prepared, the 3HQs were evaluated against the 

aforementioned panel of cancer cell lines.  

 

Scheme 3.5 Synthesis of 4-carboxylate substituted 3HQs 116-120 based on an Eistert ring 
expansion reaction of isatins with different diazo compounds, catalysed by di-rhodium complexes. 

As shown in Table 3.3, the operated structural modifications had a profound 

impact on the heterocycles activity. Promisingly, the introduction of a benzyl ester on 

compound 118, resulted in an increased activity against the 3 cancer cell lines with an 

IC50 as low as 1.8 µM, against the NCI-H460 cells. Analogously, the 3HQ 120 

featuring a slightly longer alkyl chain also showed an IC50 of 2.10 µM against the same 
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cell line. However, the indiscriminate activity observed for these molecules, suggested 

the possibility of these 3HQs beeing also significantly toxic against non-cancer cell 

lines. To study this, compound 118 was evaluated against the non-cancer Chinese 

hamster ovary cells (CHOK1), and as expected, the 3HQ 118 proved to be quite 

cytotoxic on this model (IC50 of 5.65±1.05 µM). The incorporation of alkyl esters at 

position C-4 clearly induced a higher anti-proliferative effect against cancer cells but 

regrettably, also a significant toxicity towards non-cancer cell lines. Therefore, to 

improve the toxicity profile of these compounds, we studied the anti-proliferative 

properties of 6-trifluoromethoxy-4-carboxamide-3HQs.  

Table 3.3 – Anti-proliferative evaluation of compounds 116-120 against MCF-7, NCI-H460 and HT-
29 cancer cell lines 

ENTRY COMPOUND 
µM

MCF-7 NCI-H460 HT-29 
1 116 10.75±1.12 10.36±1.86 NA 
2 117 13.39±2.50 6.05±1.05 NA 
3 118 10.11±2.10 1.80±1.15 11.37±1.10
4 119 12.07±1.00 7.34±1.22 NA 
5 120 15.99±1.16 2.10±1.10 NA 

 

This study was initiated with the synthesis of 4-carboxamides-3HQs following 

reported protocols, in which the ethyl ester is typically hydrolysed to the acid under 

basic conditions, converted into the acyl chloride and then coupled with primary and 

secondary amines, as shown in Scheme 3.6. Unfortunately, and despite our many 

attempts, when starting with 6-trifluoromethoxy-4-ethylacetate-3HQ 88, this simple 

protocol invariably resulted in the decarboxylation of the corresponding acid to yield 

compound 6-F3CO-3HQ. Interestingly, the reported synthesis of 4-carboxamides-

3HQs using this method also proceeds in yields not higher than 40%.72 Based on this, 

we conceived that a more direct route to prepare 4-carboxamide-3HQs, avoiding the 

carboxylic acid intermediate would be to perform the Eistert ring expansion reaction 

with NHS-diazo acetate,142 followed by a simple amidation step (Scheme 3.7).  
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Scheme 3.6- Synthesis of 4-carboxamides-3HQs. 

In order to synthesise the NHS diazo compound , firstly Mukherjee and co-

worker’s protocol was attempted.143 p-Toluenesulfonylhydrazide was condensed in 

acid conditions with glyoxylic acid yielding 2-(2-tosylhydrazono)acetic acid 122 in 

60%  yield and its purity was assessed by melting point determination (white solid; 

mp: 150-152ºC). 

 

Scheme 3.7 Alternative synthetic route for synthesis of 4-carboxamides-3HQs 

The coupling reaction of 122 in presence of N,N'-Dicyclohexylcarbodiimide 

(DCC) and NHS to unveil the α-diazo carbonyl compound failed despite our many 

attempts (Scheme 3.8, Method A). To avoid this inconvenience (Scheme 3.8, Method 

B), carboxylic acid 122 was converted into the corresponding acyl chloride 123 by 

treatment with thionyl chloride144 to afford the desired compound as pale yellow 

prism crystals (m.p. 101-112ºC). The acyl chloride was finally converted into the 

desired compound 124 in 40 % yield, as reported by Doyle and co-workers.4 The 

activated succinimidyl diazoacetate 124 was then tested in the amidation with N-

benzyl-isatin under different conditions. Various source of bases, organic and 

inorganic, and solvents were examined and the results observed are summarized in 

(Table 3.4).  
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Scheme 3.8 Preparation of succinimidyl diazoacetate 124. 

We started by screening different amounts of base in THF, which regardless the 

base strength provided only traces of product. Assuming a weaker basicity of the alfa 

carbonyl positions of 124 than EDA, NaH was then used to screen different solvents 

as 1-4 dioxane and dichloromethane. Upon unsuccessful formation of the desired 

product we hypothesized that the aldol type reaction was incomplete due to the 

reversibility of the process. Hence, the solvent was changed to ethanol and using only 

20 mol% of triethylamine the product precipitation was visible in the reaction 

medium. This procedure allowed the formation of the product in 88 % yield after 3h, 

as the equilibrium was shifted towards the product. Furthermore, this allowed the 

product isolation by simple filtration of the reaction mixture while avoiding any 

chromatography. The analysis of 1H and 13C NMR data allowed to confirm the 

formation of the intermediate 125 and the assignment all protons and carbons, with 

exception of the carbon attached to the diazo moiety, which was not observed in the 

13C NMR (Appendix C, Figure C3 a).  
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Table 3.4 – Optimization of reaction conditions of NHS-diazo addition on N-benzyl-isatin.  

 
Entry Base (Eq) Solvent Time Yield  

1 NaH 1.0 CH2Cl2 24 h Traces 
2 NaH 1.0 dioxane 24 h No reaction
3 NaH 2.0 THF 24 h Traces 
4 tBuOK 2.0 THF 24h > 3 % 
5 DBU 2.0 THF 24 h No reaction
6 LHMDS 2.0 THF 24 h No reaction
7 tBuOK 2.0 i-PrOH 24 h > 7 % 
8 DBU 0.2 THF 24 h Traces 
9 DBU 1.0 THF 24 h Traces 
10 TEA 0.2 THF 24 h Traces 
11 DBU 0.2 THF 24 h Traces 
12 DIPEA 0.2 THF 24 h No reaction
13 TEA 0.2 CH2Cl2 24 h Traces 
14 TEA 0.2 EtOH 3h 88 % 
15 TEA 0.2 EtOH 24h 80% 
16 TEA 0.2 EtOH 24h 75 % yield

 

Furthermore, the presence of a 1H singlet at 2.73 ppm, corresponding to four 

protons and a 13C signal with δc 25.75 corresponding to two carbon, corroborates the 

introduction of the NHS-diazo moiety. After that, the diazo intermediate 125 was 

then submitted to the ring expansion reaction catalysed by 0.5 mol% of Rh2(OAc)4. 

The reaction proceeded smoothly in EtOH, and compound 126 was isolated by 

filtration in 84% yield. The product of the reaction was characterized by NMR 

spectroscopy, and elemental analysis. The assignment of NMR spectra reveals the 

apparence of a 13C signal with δc 110.49 corresponding to C-4 and 13C signal with δc 

145.87 corresponding to the C-3 linked to OH of the 3HQ core (Appendix C, Figure 

C3 b). After obtained the key intermediate 126 (Scheme 3.9) the benzylamine was 
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added in the presence of sodium carbonate, and this afforded the targeted 4-

carboxamide 3HQ 127 in good yield (Scheme 3.10).  

 

Scheme 3.9 Synthesis of 4-NHS -3HQs based on Eistert ring expansion reaction of protected 
isatins with NHS-diazo acetate, followed by an amidation step.  

Notably, this method proved to be compatible with more complex amines, and L-

glycine and L-phenylalanine afforded the peptidic-like6 4-carboxamides-3HQs 128 

and 129 in 79% and 70% yields respectively.  

 

Scheme 3.10 Synthesis of 4-carboxamide-3HQs 127-129  
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 All the 4-carboxamides-3HQs were characterized by NMR techniques, elemental 

analysis (section 6.9). The results are in good agreement with the chemical structure 

of the compounds. Once demonstrated the feasibility of this synthetic scheme, the 

same protocol was used to functionalize the 6-trifluoromethoxy-isatin (Scheme 3.11). 

 

Scheme 3.11 Synthesis of 6-F3CO-4-NHS -3HQs based on Eistert ring expansion reaction of 

protected isatins with NHS-diazo acetate, followed by an amidation step.  

 The presence of an unprotected amide group was not detrimental for the 

preparation of the diazo intermediate 130 which was obtained in 93% yield. The 

analysis of 1H and 13 C NMR data confirmed the formation of the intermediate 130 

and all protons and carbons, were assigned with exception of the carbon attached to 

the diazo moiety, which was not observed in the 13C spectrum (Appendix C, Figure 

C4 a). After, compound 130 underwent in ring expansion reaction, afford the 3HQ 

heterocycle 131 almost quantitatively using 0.5 mol% of Rh2(OAc)4. As expected, 

primary and secondary amines also reacted smoothly with the 6-trifluoromethoxy-4-

NHS-3HQ 131 to yield the carboxamides 132-137 in yields up to 90%. The reaction 

was performed in DCM, where 131 proved to be quite insoluble. However, the 

addition of the amines deprotonates the nitrogen of the 3-HQ it becames soluble. 

With the progress of the reaction, the concentration of H+ increases in the solution, 

the nitrogen protonates and the product of the reaction precipitates from the reaction 

medium. Similarly, the 6-trifluoromethoxy-4-NHS-3HQ 131 reaction with protected 

amino acids also afforded the 4-carboxamides-3HQs 138-143 in good to excellent 

yields without any chromatographic step.  
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Scheme 3.12 Synthesis of 4-carboxamide-3HQs based on Eistert ring expansion reaction of 6-
trifluoromethoxy-isatin with NHS-diazo acetate, followed by an amidation step. 



Synthesis of 4-Substituted-3-Hydroxyquinolin-2(1H)-ones and Anticancer Activity Evaluation | 81 

 

 

 

The products of both reactions were characterized by NMR spectroscopy. The 

assignments of the NMR spectra are in good agreement with the chemical structure 

of the compounds. 

The anti-proliferative activity of compounds 132-143 was evaluated. 

Considering the results depicted on Table 3.9, the assayed 4-carboxamides-3HQs 

were shown to be less toxic against the non-cancer cell model (CHOK1) than the 4-

carboxylate-3HQs series. For instance, compound 133 which was only slightly less 

potent towards MCF-7 and NCI-H460 cancer cell lines then the matching 4-

carboxylate-3HQ 118, was clearly less toxic to CHOK1 cells at a concentration of 20 

µM (Table 3.3, Entry 2). This profile was even more pronounced in the case of 

compounds 134 and 136 that showed a good selectivity towards the MCF-7 (IC50 of 

4.82 µM) and NCI-H460 (IC50 of 7.27 µM) cancer cell lines respectively (Table 3.3, 

Entries 3 and 6), maintaining a low toxicity towards the CHOK1 cells.  

Table 3.3 Anti-proliferative evaluation of compounds 132-143 against MCF-7, NCI-H460, HT-29 

AND CHOK1 cell lines. 

Entry Compound 
µM

MCF-7 NCI-H460 HT-29 CHOK1
1 132 NA NA NA NA
2 133 12.03±1.04 9.46±1.20 NA NA
3 134 4.82±1.24 NA NA NA
4 135 17.50±2.40 NA NA NA
5 136 NA NA NA ND
6 137 NA 7.27±1.25 NA NA
7 138 NA NA NA ND
8 139 12.57±1.11 NA NA NA
9 140 NA NA NA ND
10 141 9.44±7.52 8.40±1.67 NA NA
11 142 9.49±1.02 11.35±1.11 NA NA
12 143 15.12±1.91 2.69±1.38 NA NA

Determined IC50 of the compounds in MCF-7, NCIH460 and HT-29 cancer cell lines and CHOK1 
non-cancer cell model after 48 hours incubation; NA – Non-active at the concentration of 20µM; ND 
- not determined. 

The peptidic-like 4-carboxamides-3HQs 138-143 were also active against the MCF-7 

and NCI-H460 cell lines. In particular, compound 143 elicited an IC50 of 2.69 µM 

against the NCI-H460 cells (Table 3.3, Entry 12), which compares well with the best 
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result obtained with the 4-carboxylate-3HQ series (Table 3.3, Entry 5). Furthermore, 

due to their interesting activity both in NCI-H460 and MCF-7 cells, compound 120 

and 143 were further tested as to their ability to induce cell death in these cell lines by 

LDH release. Interestingly, exposure to compound 120 or 143, at IC50 and 2x IC50, 

significantly increased general cell death in both cell lines, confirming the anticancer 

potential of these compounds. 

 

 Conclusion 

In this study the cytotoxic potential of 3HQs was addressed for the first time. The 

Eistert ring expansion reaction of isatins with diazo compounds catalysed by 

Rh2(OAc)4 was shown to be a versatile methodology to prepare 3HQs. The direct 

addition of structurally diverse diazo compounds to isatins enabled the construction 

of a series of 4-carboxylate-3HQs (in yields up to 86%) which were shown to possess 

anti-proliferative activity against a panel of MCF-7, NCI-H460 and HT-29 cancer cell 

lines. Regrettably, this series of compounds also induced severl cytotoxicity against a 

model of non-cancer cell lines (CHOK1, IC50 of 5.65±1.05 µM) and this motivated 

the evaluation of 4-carboxamide-3HQs. These compounds troublesome preparation 

was simplified by performing the ring expansion reaction of isatin derivatives with 

NHS-diazo acetate. This methodology afforded the targeted 4-carboxamides-3HQs 

in yields up to 90%, and this series of cytotoxic 3HQs were shown to have an 

improved selectivity towards MCF-7 (3HQ 132, IC50 of 4.82 µM) and NCI-H460 

(3HQ 135, IC50 of 7.27 µM) cancer cell lines. 
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Chapter IV 

 

4 IV. Phenylalanine Hydroxylase Activation 

Studies 

 

 

 

 

 

Abstract 

Phenylketonuria (PKU) is caused by an inborn mutation in human phenylalanine hydroxylase 
(hPAH). Most missense mutations on PAH gene result in a misfolding of PAH enzyme leading to 
a loss-of-fuction of it.  PAH enzyme is required to metabolise L-Phenylalanine to L-Tyrosine, the 
deficiency of the enzyme leads to a toxic accumulation of Phe and its metabolites in tissues and body 
fluids. Herein we report the discovery of new modulators of hPAH inspired on the structure of its 
substrate and regulator L-Phenylalanine and 3HQs core. These new hPAH modulators were simply 
prepared based on ring-expansion reaction of isatins with NHS-diazoacetate catalysed by di-
rhodium(II) complexes yielding 4-Carboxamide-3HQs in good-to-excellent yields. 7-trifluoromethyl-
4-carboxamide-3HQs C14,  was identified as the most efficient hPAH modulator, with an apparent 
binding affinity nearly identical to the natural allosteric activator L-Phenylalanine. 
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 Phenylketonuria: an introduction. 

Phenylketonuria (PKU; OMIM #261600) is the most common inborn error of 

amino acid metabolism.145 This genetic disease was first described by the Norwegian 

physician Asbjorn Folling in 1934.146 Approached by a mother of two impaired 

siblings, Dr Asbjorn Folling studied a sample of her children’s urine to understand if 

that overwhelming smell of the urine was related to the observed intellectual 

impairment. Those urines, were characterized by a strange musty odor and after 

addition of ferric chloride, a normal procedure to reveal the presents of ketones in 

urine of diabetic patients, a strange dark-green color was developed. This unusual 

result encouraged Dr Folling to proceed with additional chemical assays which also 

involved extraction and purification procedures to isolate the responsible compound. 

Finally, he postulate that the observed unusual color was due to the presence of 

phenylpyruvic acid.147  Therefore, in his paper from 1934, he speculated that 

Phenylpyruvic Oligophrenia (now known as PKU) was caused by an inherited error 

in the metabolism of the essential amino acid L-phenylalanine (L-Phe), which had a 

chemical structure almost identical to that of phenylpyruvic acid. 

The incidence of PKU is ≈ 1:10000 live births in Europe148 and if left untreated, 

this disorder is accompanied by progressive mental retardation, brain damage, 

epilepsy, and neurological and behavioral problems caused by the neurotoxic effect 

of hyperphenylalaninemia (HPA).149  It is now known that this high level of L-Phe 

concentration in plasma is related to a deficient activity of phenylalanine hydroxylase 

(PAH; EC # 1.14.16.1). On the basis of blood L-Phe concentrations, PAH deficiency 

can be classified into classical PKU (L-Phe >1200 μmol/L), mild PKU (L-Phe = 600–

1200 μmol/L) and mild HPA, where blood L-Phe level (<600 μmol/L) is elevated 

above upper reference range (120 μmol/L).150 The decrease in PAH activity found in 

most forms of PKU and HPA are caused by mutations in the PAH gene. To date, 

more than 900 PAH gene mutations (as annotated in the Phenylalanine Hydroxylase 

Gene Locus-Specific Database PAHvdb; http://www.biopku.org) have been 

reported (May 23, 2016), of which 60% represent missense mutations leading to single 
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amino acid substitutions.151-153  At present, a lifelong dietary restriction of L-Phe is 

the recommended approach for PKU treatment. Therefore, patients must follow a 

low protein diet L-Phe-free, which often leads to malnutrition and psychosocial 

complications.  

 

 Phenylalanine Hydroxylase 

Phenylalanine is an essential amino acid and it is obtained exclusively by diet or by 

intracellular proteolysis. This amino acid is important for the synthesis of proteins, as 

well as for the synthesis of L-tyrosine (L-Tyr, 146) and its derivatives, namely 

dopamine, norepinephrine and melanin.  The metabolic pathway of L-Phe is initiated 

by PAH that catalyzes the para-hydroxylation of L-Phe to L-Tyr (Figure 1.4). This is 

the rate-limiting step in the catabolic degradation of L-Phe, and under physiological 

conditions about 75% of the L-Phe from the diet, is degraded by this pathway. 
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Figure 4.1 - conversion of L-Phe to L-Trr is via a pathway involving the para-hydroxylation of the 
benzene by PAH, the cofactor BH4 snf molecular oxygen. 

Human PAH (hPAH) belongs to the family of aromatic amino acid hydroxylases, 

which includes PAH, tyrosine hydroxylase (TH) and tryptophan hydroxylase 

(TPH).147 These monooxygenases are tetrahydropterin (BH4) and non-haem Fe (II)-

dependent, and therefore, they catalyse the hydroxylation of the respective substrate 

(L-Phe, Tyr or Tryptophan) in the presence of the cofactor BH4 and a non-heme 

mononuclear iron ion, with oxygen as co-substrate (Figure 4.1). The catalytic 
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mechanism of hPAH has been studied with experimental and computational tools.147 

This mechanism seems to occur by O2 binding and activation via a Fe–O–O–BH4 

bridge, followed by heterolytic cleavage of the O–O bond to form the Fe(IV)=O 

hydroxylation intermediate, whose existence was proven experimentally, and 

subsequent hydroxylation of the amino acid substrate ( Scheme 4.1).154 
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Scheme 4.1 - Catalytic mechanism of catalytic mechanism of PAH and its intervenients: Fe (II), O2 

and BH4.155 

 

 Regulation of phenylalanine hydroxylase 

The normal product of the PAH gene (located on chromosome 12q23.2) is the 

PAH protein, containing 452 amino acids. In vitro PAH can exist in an equilibrium of 

homotetramers and homodimers, although the tetramers have been considered the 

biological active forms.149 Each monomer is about 50 kDa in size and presents three 

structural and functional domains: i) an N-terminal regulatory domain (RD) (Figure 

4.2, yellow), containing the serine residue which is thought to be involved in activation 

by phosphorylation (Ser16 in hPAH); ii) the catalytic domain (Figure 4.2, green), 
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containing the non-heme iron atom; and iii) the C-terminal domain, which consist in 

a dimerization and tetramerization motif (Scheme 4.2, blue).154  

Regulation of PAH activity is known to occur at several levels, including allosteric 

activation by the substrate L-Phe, inhibition by the cofactor BH4 and also activation 

by phosphorylation of Ser16 (as mentioned before).  Some of these regulatory 

properties are mediated by the N-terminal RD. In particular L-Phe has been proposed 

to bind not only to the catalytic domain, but also to an allosteric site localized in the 

hPAH N-terminal RD. Notably, the hPAH-RD contains the ACT (Aspartate kinase, 

Chorismate mutase and TyrA) domain, a structural motif found in a variety of 

allosteric proteins involved in the binding of small activator molecules, usually amino 

acids and pyrimidines. Recent studies supported an allosteric regulation of hPAH, 

which involve the stabilization of this ACT domain upon binding of L-Phe during 

the enzyme activation.156 

 

Figure 4.2 - The domain structure of hPAH. Each hPAH subunit is classified into three structural 
and functional domains which are involved in regulation, catalytic activity, and oligomerization. 
Regulatory domain (yellow), catalytic domain (green) and tetramerization domain (blue) of the 

hPAH. 
 

Recently, Patel et al. provided, for the first time, a structural evidence that a L-Phe 

binding site exists in the hPAH RD, and its binding, results in dimerization of hPAH-

RD (Figure 4.3). In fact, the report crystal structure of hPAH-RD bound with L-Phe 
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(PDB 5FII; 1.8 Å resolution), revealed that the ACT domain forms homodimers, 

being the L-Phe bound at the dimer interface.. 

 

Figure 4.3 - Proposed model of PAH activation by Phenylalanine. 

Therefore, these data support the emerging model of an PAH allosteric regulation, 

whereby L-Phe binds to the hPAH-RD mediating the dimerization of the regulatory 

modules that would induce conformational changes to activate the 

enzyme.151Moreover this important discovery open a new rationale for the structure-

guided drug design of small molecules, using the hPAH-RD as a target for protein 

activation 

 

 Treatment and emerging PKU therapies 

As already mentioned, more than 900 PAH gene mutations have been identified 

in PKU patients. The majority of these DNA changes consist in missense mutations 

resulting in single amino acid substitutions in the translated protein leading to 

impaired stability and folding of the hPAH variants. In general, misfolded proteins 

can form aggregates which present a cytotoxic function (gain-of-function) or 

alternatively, the misfolded protein is recognized by the cellular protein quality control 

machinery and targeted for degradation (loss-of-function).157 It is now accepted that 
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the majority of misfolded hPAH variants are degraded leading to low intracellular 

levels and as such PKU is considered a conformational disorder with loss-of-function.  

The PAH mutations are very prominent and through newborn screening tests, it 

is possible to prevent the major manifestation of the disease, including mental 

retardation, by initiating the adequate therapy as soon as possible after birth. A rigid 

low L-Phe diet is still, at present, the main therapeutic approach available. This dietetic 

restriction has, as major advantage, applicability towards all mutations with and 

adequate outcome. However, and despite the recent improvement of low-Phe dietetic 

products, this rigid long-term diet can lead to social boundary and malnutrition. 

Therefore, there is an urgent need for alternative pharmacological therapies to 

partially or totally substitute the low–Phe diet. 

BH4 supplementation, has been demonstrated to reduce plasma L-Phe levels, in 

the short and long term, and increase L-Phe tolerance mainly in patients presenting 

the mild PKU phenotype. The efficacy and safety of BH4 supplementation treatment 

using the commercial form of the synthetic BH4, i.e. KuvanTM (sapropterin 

dihydrochloride, BioMarin Pharmaceuti-cal Inc, USA) has been demonstrated in 

clinical trials. About 40% of mild PKU patients reach a stable reduction of >30% of 

plasma L-Phe levels with this treatment, increasing their dietary L-Phe tolerance. Also, 

the use of supplementation with large neutral amino acid (LNAA), has led to reduced 

cerebral concentrations of L-Phe. Both these supplementations with sapropterin and 

LNAA may allow less (but still) restrictive L-Phe diets. 

Currently, two therapeutic strategies, that envision a complete substitution of the 

classic low-Phe diet, has been developed, namely gene therapy and enzyme 

replacement therapy.  Over the last decade, different groups could demonstrate 

promising results in murine PKU animal models using adeno-associated virus.158 

Recombinant PAH gene, targeted into liver or skeletal muscle, allowed a decrease in 

blood L-Phe in animal models.159, 160 However, translation into a clinical setting in 

humans has not yet been accomplished, since according to “clinicaltrials.gov” no 

clinical trials for gene therapy of PKU have been conducted.158 Regarding enzyme 
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replacement therapy a PEG-modified phenylalanine ammonia lyase (PEG-PAL) has 

recently finished Phase II clinical trials. PEG-PAL administration allowed a reduction 

of blood Phe levels of PKU patients. However immunogenic side effects have been 

reported.  

One emerging therapeutic approach to treat conformational disorders is the use of 

pharmacological chaperones (PCs). These small molecular weight compounds usually 

resemble natural ligands of the target proteins, and can rescue the misfolded 

conformers of these proteins by stimulating their renaturation or scaffolding the final 

folded structure. In the case of PKU, the cofactor BH4 is a natural ligand, and can be 

considered a PC when given as therapeutic supplementation for BH4 –responsive 

HPA/PKU patients. In 2008, Pey et al161 performed a high-throughput ligand 

screening for the identification of PCs to treat PKU (Scheme 4.2). From the over 

1000 pharmacological agents tested, they identified 4 compounds (Scheme 4.2) that 

improved the thermal stability of hPAH and did not show substantial inhibition of 

hPAH activity.  

 

Scheme 4.2 - Chemical structure of compound with potential pharmacological chaperone ability 

hits from Pey at al. 161 
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Specially, they found that compounds 153 and 152 stabilized the functional 

tetrameric conformation of recombinant wild-type hPAH (WT-hPAH) and some 

hPAH variants. Moreover, these compounds also significantly increased the activity 

and the steady-state hPAH protein levels in cells transiently transfected with either 

WT-hPAH or the hPAH variants. Furthermore, PAH activity in mouse liver increased 

after a 12-day oral administration of low doses of compounds 151 and 152.  Interesting 

results were also found with compound 154, which mimic the binding mode of BH4 

to hPAH.162 

Another important study for the development of PCs by virtual screening 

approach, was performed by Santos–Sierra et al.163 The authors used BH4 as query 

structure for shape-focused virtual screening of NCI structural data base and 

identified 84 candidates with the potential to bind the active site of hPAH.  

 

Scheme 4.3 - Compounds with potential pharmacological chaperone ability. Hits from Santos-

Sierra et al. 163 

The physical interaction of selected compounds with hPAH was screened using 

surface plasmon resonance (SPR) and led to the selection of 6 compounds (Scheme 

4.3). The scaffolds found presented different structural basis. Three of the 

compounds (155, 156, 157) are based on a (thio)hydantoin scaffold with a short linker 

to a phenyl or furan moiety. Other compounds are based on uracil (158) and guanine 

(159, 160) scaffolds. In the literature hydantoin derivatives can be found in the urine 
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of PKU patients and relates with hydantoin-based compounds such as 155, which 

showed inhibitory activity on hPAH164. Compounds related to 158, such as 

pyrimidines, have been identified and investigated with regard to their function as 

cofactors of hPAH.163 The in vitro evaluation of these six compounds suggested that 

they were able to restore the enzymatic activity of the unstable rat PAH (rPAH) 

V106A variant and to increase its stability against proteolytic degradation (cell-based 

assays). In vivo studies allowed to demonstrate that two (155 and 158) of the six 

compounds, substantially improved the in vivo L-Phe oxidation and blood L-Phe 

concentrations on PKU mice models (Pahenu1). Notably, benzylhydantoin (157) was 

twice as effective as tetrahydrobiopterin.  

As already mentioned an important study of Patel at al.165 concerning the allosteric 

regulation by L-Phe binding to the hPAH-RD, disclose the possibility to develop a 

new generation of PCs that specifically target the RD domain in order to activate the 

variant hPAH proteins.151 The possibility to synthetize L-Phe-like molecules that 

could act in such manner would be also an opportunity to target the allosteric domain 

as a stabilization strategy. Recently our group reported the synthesis of L-Phe-like 

modulators166 with an apparent binding affinity as L-Phe substrate, for the active site 

of hPAH. The most effective activator of hPAH was compound 161 prepared with 

L-Phe, para-methoxy-salylaldehyde and phenyl boronic acid. This compound showed 

to improve hPAH activity by 1.8-fold (P< 0.0001), maintaining a high apparent 

binding affinity (C0.5 of 14.8 ± 4.9 µM).  

 

Scheme 4.4 - Structure of compound 161, a Phe-like modulator with affinity to the active site of 

hPAH. 
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 Phenylanlanine Hydroxylase Activation  

 Based on this knowledge we hypothesized that 3HQ derivatives could be a 

useful platform to design new hPAH modulators. 3-HQs, as already describe in 

chapter I, have a unique set of properties which are ideal to develop modulators of 

the hPAH protein:  they can complex metallic centers and they are an isoster of 

glycine (Figure 4.4). As already mentioned, hPAH is an iron-dependent enzyme, 

presenting an atom of Fe in the catalytic domain.  

N
H

OH

O

C4

L-Phenylalanine

Complex metal 
centers

Bioisoster of Glycine

Me

 

Figure 4.4 - Rational for the design of new PAH modulators 

The possibility to chelate this center by the 3HQ core, namely with the OH group 

in position C3 of the quinolone and the oxygen of the lactamic function, could rise 

to a stability of the hPAH tetramer, preventing misfolding, aggregation and 

proteolytic degradation. Furthermore, since L-Phe is the hPAH substrate, the 

molecules were design to incorporate L-Phe in position C4 of the 3HQs core. The 

incorporation of L-Phe into the 3HQ core, lead to the construction of a “peptidic-

like” structure that can also effectively target the more solvent exposed regulatory 

domain. To test this idea, L-Phe-3HQ compounds 141,165, 166, and 167, depicted in 

Scheme 4.5, were prepared. 
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Scheme 4.5 - Synthesis of 4-L-Phe-3HQs 141 and 165-167. 

These compounds were easily achieved using our sequential protocol based on 

Ring-Expansion reaction of isatins with NHS-diazoacetate catalysed by dirhodium(II) 

complexes yielding NHS-3HQ derivatives in moderate yields. After that, by a simple 

amidation with L-Phenylalanine ester, NHS-3HQ were converted in L-Phe-3HQ 
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derivatives in good yields. All L-Phe-3HQ derivatives were characterized by NMR 

spectroscopy and the assignment of the NMR spectra are in good agreement with the 

chemical structure of the compounds. 

Once prepared, compounds 141 and 165-167 were evaluated for their effect on 

stabilizing the tetrameric wild-type hPAH enzyme and for their effect over the hPAH 

enzymatic activity. One of the methods used to monitor the stabilizing effect of small 

molecules is the Thermal shift or Thermofluor® stability assay. This method, uses 

differential scanning fluorimetry (DSF), and is based on the fact that low-molecular-

weight ligands can bind and stabilize purified proteins. The coupling between the 

binding molecule and the protein, lead to an increase in the mid-point denaturation 

temperature (Tm ) of the protein.167 The experimental procedure is rapid and relatively 

economic. After mixing the compounds with the protein and a fluorescent probe 

(Figure 4.5a) the temperature is slowly increased and the thermal unfolding is then 

measured by the increase in fluorescence (Figure 4.5b). 

a) 

 

 

b)

 

Figure 4.5 – Differential scanning fluorimetry (DSF) assay 

This assay can be performed in a conventional instrument for real-time PCR. The 

fluorescent probe (usually SYPRO Orange) must have an affinity for hydrophobic 

residues, as such at low temperatures, when the protein is folded hydrophobic 

residues are not exposed and the fluorescence of the probe is quenched by water 
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(Figure 4.5b). When the temperature is increased, and the protein starts to unfold, the 

fluorescent probe will interact with the exposed hydrophobic patches of the protein 

and become unquenched. Thus, when appropriate scaling and baseline correction are 

applied, the fluorescence intensity allows to calculate the fraction of unfolded protein 

and the apparent Tm can then easily be obtained. The difference in the temperature 

(∆Tm) of this midpoint in the presence and absence of ligand is related to the binding 

affinity of the small molecule, with a decrease and increase being related to a 

destabilizing and stabilizing effect, respectively The native hPAH enzyme presents an 

unfolding mechanism with two denaturation transitions associated with the unfolding 

of the regulatory (Tm1 = 43.4 ± 0.7 ºC) and catalytic domains (Tm2 = 53.5 ± 0.5 ºC) 

(Figure 4.6).   

 

Figure 4.6 – Thermal denaturation of hPAH followed by differential scanning fluorimetry (DSF). 
Assay Conditions: recombinat hPAH WT tetramer: 1 mg/ml hPAH (2.5 SYPRO Orange) CFX96 
Touch Real-Time system (Bio-Rad); FRET channel Melting curve: 20 to 70 ºC with increasing steps 
of 0.2 ºC with 1 s incubation time, using the for fluorescence acquisition 

Our library of compounds was tested by this technique and all compounds which 

increase the melting temperature by more than a selected threshold value (2 °C) where 

regarded as hits in the screening. Tests for statistical significance were also performed 

using 1-way ANOVA by comparing the compound data to the DMSO control assay 

for DSF studies. Data was considered statistical different when P < 0.01 

The Figure 4.7, shows the effect of compounds 141 and 165-166 on Tm of the 

regulatory (Tm1) and catalytic domain (Tm2) of hPAH. As depicted, compound 141 

Tm1 

Tm2 



98 | Phenylalanine Hydroxylase Activation Studies 

  

 

 

(Figure 4.7a) binds to the regulatory domain and lead to an increase of 8.3 ºC in Tm1 

(P < 0.0001). Similarly, compound 166 exhibited the same ability to bind to the 

regulatory domain as compound 141.  However, for this compound an increment of 

only 2.6 ºC was observed for Tm1 (P < 0.01). Interestingly, compounds 165 and 167 

(as shown in Figure 4.7a) are strong destabilisers of the regulatory domain. 

Concerning the catalytic domain (Tm2, Figure 4.7b), we found that compound 166 

exhibited not only a stabilizing effect on the regulatory domain, but also on the 

catalytic domain as it increased the Tm2 in 4.2 ºC (P < 0.001). Compound 141 was not 

able to increase the stability of the catalytic domain, while compound 165 increased 

Tm2 in 2.4 ºC (P < 0.01). Additionally, compound 167 still persist as a destabiliser of 

the hPAH enzyme. Data obtained with this first screening suggest that the observed 

different stabilizing properties are related with the withdrawing group present on 

compounds 141 and 166. 

a) b)

Figure 4.7 - DSF analysis of compounds 141 and 165-167 on the mid-point denaturation 

temperature of the a) regulatory domain (Tm1) and b) catalytic domain (Tm2) of hPAH. 

After the DSF assay, we evaluated this set of compounds for their effect on the 

activity of tetrameric WT-hPAH, employing three experimental conditions. The first 

condition (I) the assay was performed adding the substrate L-Phe and L-Phe-3HQs 
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simultaneously, at time zero without pre-incubation step to avoid the stability effect 

that can activate the enzyme (‘non-activated’ condition). The second condition (II) 

involved pre-incubation with the tested L-Phe-3HQs alone, to establish its ability to 

pre-activate the enzyme, mimicking L-Phe-promoted pre-activation (‘compound-

activated’ condition). The third and last condition (III) of the assay, involved pre-

incubation of hPAH with substrate L-Phe and compound L-Phe-3HQs to evaluate 

the competition between them (‘substrate-activated’ condition). Control assays with 

each L-Phe-3HQ alone and omitting L-Phe were performed to rule out L-Phe release 

from the L-Phe-3HQ bearing this moiety and consequent conversion to L-Tyr. We 

tested the activity of compounds 141 and 165-167 (Figure 4.8), and we found that all 

of them were able to activate the tetrameric hPAH enzyme in the “non-activated 

condition” assay (assay I).  

  

Figure 4.8 Activity of compound 20-22 and 2 in hPAH enzyme assay. 

In contrast, for what concern the ‘compound-activated’ condition (assay II), all 

compounds inhibit the enzyme and clearly do not demonstrate any ability to mimic 

L-Phe-promoted pre-activation effect. Nevertheless, compounds 165 and 141 were 

less effective in the inhibition of the enzyme than compounds 166 and 167. In the last 

condition of the assay, ‘substrate-activated’ condition, only compound 141 and 165 

showed a mild inhibition of the enzyme. Based on these results, and the statistical 

analysis performed in the DSF assay, we found that compounds 141 and 165 were the 
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most suitable compounds to pick as hits for the development of new hPAH 

modulators. For this reason, we embarked on a modification campaign to optimize 

the structure of these two lead L-Phe-3HQs compounds. The first modification 

performed in the scaffolds was to alkylate, with a benzyl group, the NH of the 3HQ 

moiety, aiming to understand if the NH position is important for their activity. We 

synthetized compound 129 and 169 using the protocol already describe in Chapter 3 

(Scheme 4.6).  

 

Scheme 4.6 - Synthesis of 4-L-Phe-3HQs 129 and 166. 

The two compounds were synthetized in good yield and both reaction products 

were characterized by NMR spectroscopy. The assignment of the NMR spectra are 

in good agreement with the chemical structure of the compounds. Once prepared, 

compounds 129 and 169 were tested by DSF (Figure 4.9). Only compound 129 

showed for the capacity to stabilize the regulatory domain as it increased the Tm1 of 

WT-hPAH in 7.7 ºC (Figure 4.9a). No stabilizing capacity was found for compound 
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169, showing that free NH could be important for the effect of that series of 

compounds. Furthermore, these two compounds were evaluated for their effect on 

the enzymatic activity of tetrameric WT-hPAH. Unluckily, both compounds showed 

to strong inhibit the enzyme (Figure 4.9b). 

a)  

 
b) 

Figure 4.9 - a) DSF analysis of compounds 129 and 169 on the mid-point denaturation 
temperature of the regulatory (Tm1) and catalytic domain (Tm2) of WT-hPAH. b) Results of the 

activity assay for compounds 129 and 169. 

After these unsuccessful modifications, we focus our attention on compound 141 

which showed the most interesting result on the DSF and the activity assays. To 

improve the properties of these compounds, we studied the possibility to modify 

position C-4 of the F3CO-3HQ core (Scheme 4.7). 
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Scheme 4.7 - Compounds 7-trifluoromethyl-4-carboxamide-3HQs. 
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  In position C-4, different amines were installed, namely primary and secondary 

amines and different amino acids (L-isoleucine, L-glycine and L-glutamate) instead of 

the L-Phe. These compounds were synthetized following the protocol already 

discussed in Chapter III in good yields. 

All compounds were evaluated for their effect on the hPAH thermal stability 

(DSF) and enzymatic activity using the three experimental conditions already 

described. The different amines introduced in the 6-F3CO-3HQ core showed, mostly 

in DSF assay, no significant stabilizing effect (Scheme 4.10) for the two domains of 

hPAH. Nevertheless, with compounds 132 and 133 no thermographs were possible 

to obtain and as such it was not possible to calculate the respective Tms. From this last 

set of compounds, only one interesting result was found. Compound 138, holding a 

L- glycine in position C-4, increase the Tm1 of 4.0 ºC suggesting a stabilization of the 

regulatory domains. 

a) b)

Figure 4.10 – Results of 7-trifluoromethyl-4-carboxamide-3HQs in DSF assay. 
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In the activity assay, all compounds were tested using the previous assay conditions: 

non-activated, compound-activated and L-Phe- activated (Figure 4.10). An interesting 

result was found for compound 138, which showed the capacity to stabilize the 

regulatory domain.  The compound showed to be a strong inhibitor of the enzyme, 

suggesting to be a strong competitor of L-Phe amino acid, but enabled L-Phe 

activation. Tertiary amide 135 showed to inhibit the enzyme and being a strong 

competitor of L-Phe amino acid. Cyclic amine, pyrolidine 136 and piperidine 137 that 

showed in the DSF assay to stabilize the regulatory domain proved to be strong 

inhibitors in the enzymatic assay. The best result was found for compound 134 

featuring a phenethyamine moiety. This compound showed in the DSF assay not have 

any relevant stabilizing effect on both the regulatory and catalytic domains, 

maintaining both Tm similar to those obtained in the absence of compounds. 

However, in the activity assay 134 showed a mild inhibition in the non-activated and 

compound activated assays.  

 

Figure 4.11 – Activity assay of compounds on tetrameric wild-type hPAH enzyme. 

However, in condition III (substrate activated) the compound allowed the hPAH 

protein to respond to L-Phe activation, thus without competing with the amino acid 
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substrate. Moreover, statistica evidence was found for this compound (P<0.001). 

Finally, for what concerned the last peptide like compounds 139, 140, 143 they exhibit 

only mild inhibition for the L-Phe activated assay. 

 

 Conclusion 

In this study, we have evaluated the biological properties of 3HQ derivatives as 

new modulators of PAH enzyme activity and stability. Starting with the idea to 

incorporate L-Phenylalanine in the 3HQs core to modulate the capacity to bind to 

the hPAH enzyme, either on its regulatory domain and/or active site, we synthetized 

a short library of L-Phe-3HQ derivatives. From this library, compound 141 showed 

the most interesting results, stabilizing the regulatory domain and furthermore with a 

low inhibition effect on hPAH activity assay. For this reason, compound 141 was 

selected as a hit. To improve the biological properties of this lead, different amines 

were introduced in position C-4 of the 3HQs core.  A new library of 4-carboxamide-

F3CO-3HQs compounds was synthetized and evaluated for their effect on the hPAh 

thermal stability (DSF) and enzymatic activity. From this library of 4-carboxamide-

F3CO-3HQs compound 134, featuring a phenethylamine moiety, was identified as the 

most effective compound, able to directly increment hPAH activity by a pre-

activation mechanism similar to the one induced by the substrate L-Phe.  
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 Introduction  

The 3-hydroxyquinolin-2(1H)-one (3HQ) 9 core is an important motif that is 

present in the structure of viridicatin 31, viridicatol 32 and 3-O-methyl viridicatin 33 

naturally occurring products.3, 4, 70 These metabolites, isolated from penicillium 

species, have been shown to inhibit the replication of human immunodeficiency virus 

and to be promising lead compounds for the development of new anti-inflammatory 

agents.5, 6 Furthermore, this unique heterocycle was recognized to be a valuable 

bioisoster of α-amino acids showing similar binding interaction as the co-crystalized 

amino acid in DAOO enzyme.7, 8 9 In addition, recent publications found this 

pharmacophore to bind metal cofactors present in viral enzymes, namely HRNase H 

associated to RT 72 and Influenza A Endonuclease,73 showing to be a potent inhibitor. 

Based on this important property of this core we decided to initiate a line of research 

to discover a methodology to synthetize 3HQ derivatives in a highly efficient 

regioselective way with the aforementioned MOC concept. 

N
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O
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Scheme 5.1 - The 3-hydroxyquinolin-2(1H)-one (3HQ) core present in the structure of natural 
occurring compounds, as a carboxylic acid bioisoster and as an enzyme inhibitor. 
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 Synthesis of 3HQs derivatives 

3HQs derivatives, 4-carboxylate-3HQs, were synthesized through an efficient 

regioselective Eistert ring expansion reaction using the new emergent MOC 

methodology. According to the route depicted in Scheme 5.2., reaction of isatins with 

diazo compounds catalysed by dirhodium(II) complex and DBU enabled the 

generation of 3-hydroxy-4-ethylesterquinolin-2(1H)-ones 69. The scope of the 

reaction was investigated using the sequential protocol.  The methodology was quite 

tolerant with substituents present in the aromatic ring of isatins, namely withdrawing 

groups as F, Cl, Br, and F3OC, and also when using N-substituted isatins as N-CH3 

and N-CH2Ph. Furthermore, all the products were easily isolated by simple filtration, 

avoiding any chromatography yielding the desired compounds from good to excellent 

yields (Table 2.4 compounds 69, 84-96). One-pot protocol of the ring expansion 

reaction of isatin and EDA was also performed. A NHC-dirhodium(II) complex/ 

DBU was found to be the best system to implement the one-pot addition of EDA to 

isatins followed by ring exapansion of 69. Analogously to the sequential protocol, the 

scope of the reaction was extended to other substrates with similar or better yields 

than the ones obtained by the sequential method (Table 2.5 compounds 69, 90-93, 

95). The ring expansion reaction catayzed by dirhodium complexes was studied by 

DFT calculations. The study indicated the formation of metallocarbene between the 

product of the addition of diazo compounds in isatins 74 and the dirodium complex 

as the rate-limiting step of the mechanism. 

The ring expansion reaction of isatins, catalysed by di-rhodium (II) complexes, was 

also performed with different diazo esters, proving to be an effective strategy to 

synthesize 4-Ester-3HQs (Scheme 3.4, compounds 115-119). Viridicatin 31 and 

derivatives 107-110 were synthesized from intermediate 106 after decarboxylation of 

69 and subsequently reaction with NBS. Suzuki-Miyaura coupling of 106 in the 

presence of phenyl boronic acids, 10 mol% Pd(PPh3)4 using microwave irradiation 

yield viridicatin 31. Expected compound 31 was obtained in 80% yield and viridicatin 



General Discussion and Conclusions | 111 

 

 

 

derivatives 107-110 could also be obtained in good yields using different aryl boronic 

acids.  

For the synthesis of 4-carboxamide-3HQs (Scheme 5.2) it was necessary to firstly 

synthesize NHS-diazo acetate and to further perform the Eistert ring-expansion 

reaction with isatins catalysed by 0.5 mol% of Rh2(OAc)4 using TEA as base.  

 

Scheme 5.2 - Synthesis of 4-Ester-3HQs, 4-Carboxamide-3HQs and viridicatin derivatives 31. a) 
DBU, dirhodium complex (1 mol%), absolute EtOH, r.t., 3h; b) (i) NaOH, H2O, reflux, 7h; (ii) aq 
HCl; (iii) NBS, DMF; c) 10 mol% Pd(PPh3)4, Na2CO3/H2O, DME:H2O 3:1, MW, 150ºC, 2h; f) 

TEA, Rh2(OAc)4 (1 mol%), DCM, r.t.; g)HNRR’, Na2CO3, DMF, r.t., overnight. 

The methodology proved to be a simple and effective strategy to synthetize 4-

NHS-3HQs, by simple filtration in yields up to 97%. Finally, reaction of 4-NHS-

3HQs with different type of amines, namely primary and secondary amines in DCM 

and in presence of Na2CO3   proceeded smoothly to yield the 4-Carboxamide-3HQs 

127, 132-143. Additionally, protected amino acids were used in the reaction with 4-

NHS-3HQs affording the 4-Carboxamide-3HQs “peptide like” 128-129, 138-143 in 
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good to excellent yields without any chromatographic step. Structures of all key 

intermediates and final compounds were establish on the basis of NMR techniques. 

 Biological evaluation of 3-HQs  

 In vitro Anticancer Activity SAR 

The synthesized 3HQs derivatives (Table 3.1, compounds 69, 84-96) were 

evaluated in vitro for their anticancer activity against MCF-7, NCI-H460 and HT-29 

cancer cell lines. 4-carboxylate-3HQs series shown to be generally not active against 

the three cancer cell lines. However, there is an evidence that an electro withdrawing 

group (F3CO) in position 7 of the 4-carboxylate-3HQ 87 was able to reduce the 

viability of the NCI-460 cells in 48% at the concentration of 20 µM. Based on this 

result compound 87 was chosen as lead compound to perform structural 

modifications with the aim to increase the anti-proliferative activity.  

Decarboxylation of ester moiety in C-4 position of compound 87 giving 

compound 111 and N-benzylated 112 resulted in a loss of activity. This results clearly 

indicate that the presence of free N-H is a requirement for the anti-proliferative 

activity and the reason could be addressed to the ability of NH group to perform a 

hydrogen bond. Furthermore, the replacement of the ethyl ester group in position C-

4 of hydroquinone 87, remarkably reduced the anti-proliferative activity against the 

cancer cells enabling the substitutents’ importance in that position. 

Different esters were introduced at position C-4 of compound 87, leading to an 

increased activity against the 3 cancer cells line. Compound 118 with a benzyl ester in 

position C-4 resulted in an IC50 of 1.80 µM against NCI-H460. Analogously, 

compound 120 holding a three carbons chain showed an IC50 of 2.10 µM against NCI-

H460. The introduction of more steric bulky esters was also evaluated for the anti-

proliferative activity. Compounds 117 and 119, showed to be less active compared to 

compounds 118 and 120 in the NCI-H460 cancer cell line showing IC50 of 6.05 µM 

and 7.34 µM respectively. The presence of a phenyl ketone instead of an ester group 
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was also evaluated.  Compound 116 showed to be active against both cancer cell lines 

with an IC50 of 10.75 µM for MCF-7 and 10.36 µM for NCI-H460. Because of the 

indiscriminate activity of compound 118 in the three cancer cells lines, this compound 

was evaluated against a non-cancer CHOK1 and proved to be quite toxic on this 

model (5.6±1.0 µM). From a SAR point of view, incorporation of alkyl esters in 

position C-4 in 87 core clearly induced higher anti-proliferative effect against cancer 

cell but unfortunately a significant toxicity was also detected. This effect could be 

addressed to metabolic issues since esters can be rapidly cleaved in vivo. The 6-

trifluoromethoxy-4-carboxamide-3HQs derivatives were found to be active against 

MCF-7, NCI-H460 and not against HT-29 cancer cell lines and less toxic. The 

introduction of benzyl amide on compound 133 resulted in a less anti-proliferative 

activity compared to the isosteric compound 118 with a benzyl ester group. 

Compound 133 showed an IC50 of 12.0 µM in MCF-7 and 9.5 µM in NCI-H460 

moreover it shown to be less cytotoxic towards the CHOK1 cells. A slightly longer 

alkyl chain (two carbons) featuring in compound 134 showed more selectivity towards 

MCF-7 (IC50 4.8 µM), while the introduction of aniline in the core 132 results in a loss 

of activity. Methylated benzyl amide 135 showed to be significantly more selective 

against MCF-7 than the parent compound 133, nevertheless a no activity was found. 

Cyclic amines were introduced, namely pyrolidine 136 and piperidine 137 but only 

compound 137 showed to be active and selective against NCI-H460 with an IC50 4.8 

µM.  

 
Scheme 5.3 – Structure-activity-relationship of compound 143 towards cancer cells. 
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The peptide-like 4-carboxamides -3HQs 140-143 were also evaluated showing some 

activity against MCF-7 and NCI-H460 cancer cell lines. Between the two peptide-like 

holding L-Glycine amino acid, only compound 137 showed selectivity against the 

MCF-7 cell line (IC50 12.6 µM) while compound 136 was not active. Among this series 

of peptide-like L-leucine-4-carboxamide-3HQ 143 (Scheme 5.3) showed an 

interesting activity against NCI-H460 cell line with an IC50 of 2.7 µM. 

 

Table 5.1 – Anti-proliferative activity of 7-OCF3-3HQ series against MCF-7, NCIH460 and HT-29 

cancer cell lines and CHOK1 non-cancer cell lines. 

 

Entry Compound 
µM 

MCF-7 NCI-H460 HT-29 CHOK1

1 87 95%*  52%* 74%* NA 

2 111 NA NA NA NA 

3 112 NA NA NA NA 

4 116 10.75±1.12 10.36±1.86 NA ND 

5 117 13.39±2.50 6.05±1.05 NA 7.59±1,33

6 118 10.11±2.10 1.80±1.15 11.37±1.10 5.6±1.05 

7 119 12.07±1.00 7.34±1.22 NA ND 

8 120 15.99±1.16 2.10±1.10 NA ND 

9 132 NA NA NA NA 

10 133 12.03±1.04 9.46±1.20 NA NA 

11 134 4.82±1.24 NA NA NA 

12 135 17.50±2.40 NA NA NA 

13 136 NA NA NA ND 

14 137 NA 7.27±1.25 NA NA 

15 138 NA NA NA ND 

16 139 12.57±1.11 NA NA NA 

17 140 NA NA NA ND 

18 141 9.44±7.52 8.40±1.67 NA NA 

19 142 9.49±1.02 11.35±1.11 NA NA 

20 143 15.12±1.91 2.69±1.38 NA NA 

* Percentage of cell-viability; NA – Non-active at the concentration of 20 µM; Determined IC50 of 
compounds in MCF-7, NCIH460 and HT-29 cancer cell lines and CHOK1 non-cancer cell model after 48 
hours incubation; NA- Non-active at the concentration of 20 µM; ND- Not determined. 
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 Biochemical studies of PAH modulators  

The 3HQs derivatives 141, and 165-167 featuring L-Phenylalanine in position C-4 

were synthetized (Scheme 4.5) and evaluated for their activity against hPAH protein 

either upon the stabilization of the regulatory and/or catalytic domain or upon an 

effect on the catalytic activity. From the first screening of the library, compound 141 

holding a F3CO group on 3HQ moiety displayed the most interesting results and for 

this reason was selected as hit for further modifications. 

The first modification performed on the hit 141, was the introduction of a benzyl 

group in the quinolinic nitrogen of the F3OC-3HQ (Scheme 4.6) and compound 169 

was evaluated by DSF and enzymatic activity assays. This modification resulted in the 

loss of the stabilizing effect on the regulatory domain of hPAH and furthermore 

compound 169 showed to be a strong inhibitor of the protein. From a structural 

relationship (SAR) point of view, we found that the free NH of this series of 

compounds is detrimental for the stabilizing capacity effect on the regulatory domain 

on hPAH enzyme.  

 With the objective of improving the biological activity of these compounds we 

performed structural modification on C-4 of the 6-F3OC-3HQ core. Different amines 

in position C-4 namely primary, secondary amines and different amino acids were 

installed. From this 6-F3CO-carboxamide-3HQ, compound 134 (scheme 5.4) showed 

to be the only compound able to rescue the hPAH activity in the substrate compound 

activated assay (condition III). The compound allowed the protein to respond to L-

Phe activation, thus without competing with the amino acid substate.  

As a result we now have in hands to sets of chemical structures to be further 

improved. The first set of compounds will be derived from 141 and aims to restore 

the stability of the hPAH protein, thus acting as pharmacological chaperones. It is 

currently accepted that reversible competitive inhibitors of misfolded enzymes can 
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act as pharmacological chaperones as long as they present low affinity for the 

enzyme.168 Binding of the inhibitor to the misfolded enzyme is expected to  stabilize 

the protein preventing its premature degradation by the protein quality control system 

of the cell. To this end the designed compounds should be characterized concerning 

the inhibitory constants (Ki). A different approach to restore the activity of deficient 

enzymes is to identify compounds that could act as enzyme activators. In this 

prespective, the second set of compounds, derived from 134, could act as hPAH 

activators.  
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Scheme 5.4 – Structure-activity relationships (SAR) of 6-F3OC-carboxamide-3HQ over hPAH. 

 

 Conclusions 

The main objective of this project was to synthesise, in an efficient way using the 

new emergent MOC methodology, novel derivatives of 3-hydroxyquinolin-2(1H)-

ones and test their biological activity as antiproliferative agents and as modutators of 

phenylalanine hydroxylase enzyme  

The synthesisis of the 3-hydroxy-4-ethylesterquinolin-2(1H)-one and its 

derivatives was achived by a regioselective ring expansion reaction of isatins with ethyl 

diazoacetate catalysed by dirhodium(II) complexes. The reaction mechanism, was 

studied by DFT calculations, and highlighted the metallocarbene formation between 
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the 3-hidroxyindole-diazo intermediate and the dirhodium(II) complex as the key step 

of the mechanism. 

 Moreover, we also discovered an efficient cooperative system, NHC-

dirhodium(II) complex and DBU, which  was able to catalyze, in one-pot, the Eistert 

ring expansion of isatins with ethyl diazoacetate. This system showed to overcome 

the self-quench of the catalytic system and any competitive metallocarbene formation 

of di-Rh(II) complex with EDA . Therefore, the one pot reaction catalyzed by NHC-

dirhodium(II) complex and DBU was able to afford 3-hydroxy-4-ethylesterquinolin-

2(1H)-one and its derivatives. Using the 3-hydroxy-4-ethylesterquinolin-2(1H)-one as 

a plataform, we were also able to synthesize viridicatin alkaloids in a 4-steps route, via 

Suzuki-Miyaura coupling reaction of aryl-boronic acids with 3-hydroxy-4-

bromoquinolin-2(1H)-ones prepared from 3-hydroxy-4-ethylesterquinolin-2(1H)-

ones. 

 

The ring-expansion reaction of isatins catalysed by di-rhodium(II) complexes was 

also extended to synthesize a series of 4-carboxylate-3HQs by direct addition of 

structurally diverse diazo compounds to isatins. This series of compounds were tested 

for the first time against a panel of MCF-7, NCI-H460 and HT-29 cancer cell lines. 

Unfortunately, a severe cytotoxic against a model of non-cancer cell lines was also 

found. Instead, 4-carboxamides-3HQs, simply prepared by ring expansion reaction 

of isatin derivatives with NHS-diazo acetate, showed an improved selectivity towards 

MCF-7 and NCI-H460 cancer cell lines and no cytotoxic against the same model of 

a non-cancer cell lines. 

In this study, was also evaluated the biological properties of 3HQ derivatives as 

new modulators of PAH enzyme activity. We synthetized a small library of L-Phe-

3HQ derivatives which was tested for PAH enzyme activity. From this library, 

compound 141 showed the most interesting results, stabilizing the regulatory domain 

and furthermore with a low inhibition effect on hPAH activity assay. A new library 

of 4-carboxamide-F3CO-3HQs compounds was synthetized and evaluated for their 

effect on the hPAH thermal stability (DSF) and enzymatic activity. Compound 134, 
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featuring a phenethylamine moiety, was identified as the most effective compound, 

able to directly increment hPAH activity by a pre-activation mechanism similar to the 

one induced by the substrate L-Phe.  

Overall, 3HQs scaffold has been confirmed as usefull scaffold to development new 

agents active against tumor cancer cell lines and also as potential lead structures for 

the development of new modulator of PAH enzyme. 
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Chapter VI 
 

6 VI. Material and Methods 

 

 

“An experiment is a question which science poses to Nature, and a measurement is the 

recording of Nature's answer” 

Max Planck 

'The Meaning and Limits of Exact Science', Science (30 Sep 1949), 110, No. 2857, 325.  

Advance reprinting of chapter from book Max Planck, Scientific Autobiography (1949), 110 
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 General 

 Chemicals  

Reagents were purchased from Aldrich Chemical Company LDTd or Alfa 

Aesar Thermo Fisher Scientific and were used as received from commercial 

suppliers unless otherwise stated. 

 Dichloromethane (DCM) Dimethoxyethane (DME) as reaction solvent was 

freshly distilled over calcium hydride while Ethanol and DMF were used without any 

purification. All reactions were performed in oven-dried glassware. Microwave 

reactions were carried out in oven dried 10 mL reaction vessels. Reaction mixtures 

were analysed by thin layer chromatography using Merck silica gel 60F254 aluminium 

plates and visualized by UV light and with phosphomolybdic acid solution. In column 

chromatography it was silica gel 60 M purchased from MN (Ref. 815381).  

 

 Instrumentation  

Nuclear Magnetic Resonance (NMR): NMR spectra were record in a Bruker 

ultrashield 400 MHz (9.4 T) spectrometer equipped with a 5 mm Quad Nuclear Probe 

(QNP), operating at 400.1 MHz for 1H NMR and 100.6 MHz for 13C NMR (Faculty 

of Science, University of Lisbon ) or recorded in a Bruker ultrashield 300 MHz (7.05 

T) spectrometer (Avance-300) equipped with a 5 mm single-axis Zgradient quattro 

nucleus probe, operating at 300.1 MHz for 1H NMR and 75.5 MHz for 13C NMR 

(School of Pharmacy and Pharmaceutical Sciences, University of Lisbon) using 

CDCl3, (CD3)2SO as deuterated solvents. Chemical Shifts (δ) are reported in parts per 

million (ppm), using solvent as internal reference, tetramethylsilane (TMS). All 

coupling constants are expressed in Hz Data are reported using the following 

convention: s (singlet), d (doublet), dd (double doublet), dt (double triplet), t (triplet), 

td (triple triplet), tt (triple triplet), q (quartet), quint (quintuplet) and m (multiplet). 
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Mass spectrometry (MS): Mass spectra were recorded in a mass spectrometer 

(Micromass Quattro Micro API, Waters, Ireland) with a Triple Quadrupole (TQ) and 

with an electrospray ion source (ESI) operating in positive mode. 

 

High Resolution Mass Spectrometry (HRMS): The utilized instrument was a 

LTQ Orbitrap XL mass spectrometer (Thermo Fischer Scientific, Bremen, Germany) 

controlled by LTQ Tune Plus 2.5.5 and Xcalibur 2.1.0. The capillary voltage of the 

electrospray ionization (ESI) was set to 3000 V. The capillary temperature was 275ºC. 

The sheath gas flow rate (nitrogen) was set to 5 (arbitrary unit as provided by the 

software settings). The capillary voltage was 36 V and the tube lens voltage 110 V. 

Performed in U. Porto CEMUP centro de materiais de Universidade do Porto 

 

Elemental analysis (EA): Elemental analysis was performed in a Flash 2000 

CHNS-O analyzer (ThermoScientific, UK). 

 

Microwave reactions: were performed using a Discover SP CEM microwave. 

 

 Methods 

Thin-layer chromatography (TLC): Reactions were followed by thin-layer 

chromatography using coated silica gel plates (Merck, aluminum sheets, silica gel 60 

F254, 200 μm layer-thickness, 25 μm particle size) or in aluminium oxide matrix (60 

Å medium pore diameter and 200 μm layerthickness) with fluorescent indicator in 

PET support. 

 

Colum chromatography: Flash column chromatography was performed using 

silica gel 60 (230-400 mesh, Merck and co.). 
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 General method for the tandem synthesis of 3-hydroxy-2(1H)-

oxoquinoline-4-ethylesters :  

A round bottom flask equipped with a magnetic stirrer was charged with a solution 

of isatin (0.3 mmol) in absolute ethanol (1.5mL), ethyl diazoacetate (1.2 eq), 1,8-

Diazabicyclo[5.4.0]undec-7-ene (DBU) (15 mol %) and Rh2(OAc)4 (1 mol %). The 

mixture was then stirred for 3 hours at room temperature after which the reaction 

mixture was centrifuged and the product isolated by filtration. The collected solid was 

washed with water, Et2O, and dry under reduced pressure to furnishing the expected 

3-hydroxy-4-ethylesterquinolin-2-(1H)-ones 

 

 General method for the sequential synthesis of 3-hydroxy-4-

ethylesterquinolin-2-(1H)-ones  

Ethyl diazoacetate (1.2 eq) and DBU (15 mol %) were added to a stirred solution 

of isatin (0.3 mmol) in absolute ethanol (1.5 ml). The reaction mixture was stirred for 

3 hours at room temperature and then Rh2(OAc)4 (1 mol%) was added to afford the 

ring expansion product, which readily precipitated from the reaction mixture and was 

isolated by filtration. The collected solid was washed with Et2O, and dry under 

reduced pressure to furnish the expected 3-hydroxy-4-ethylesterquinolin-2-(1H)-

ones.5 

 

Experimental data 

 

Compound 6977 was obtained in 63 % yield (using the sequential 

or the tandem protocols). 

1H NMR (400 MHz, DMSO): 12.34 (s, 1H), 10.28 (s, 1H), 7.25 – 

7.42 (m, 3H), 7.20 (t, J = 7.4 Hz, 1H),) 4.40 (q, J = 7.1 Hz, 2H), δ 

1.32 (t, J = 7.1 Hz, 3H); 
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13C NMR (100 MHz, DMSO): 165.39, 157.97, 143.70, 133.04, 127.07, 123.30, 122.77, 

117.16, 116.95, 115.48, 61.37, 14.16. 

 

Compound 8472 was obtained in 64% yield (using the sequential 

protocol).  

1H NMR (400 MHz, DMSO): δ 12.41 (s, 1H), 10.57 (s, 1H), 

7.34 (dd, J = 9.0, 5.1 Hz, 1H), 7.25 (td, J = 8.7, 2.6 Hz, 1H), 7.18 

(dd, J = 10.1, 2.4 Hz, 1H), 4.40 (q, J = 7.1 Hz, 2H),1.32 (t, J = 7.1 Hz, 3H); 

 13C NMR (100 MHz, DMSO): 158.37, 144.10, 133.44, 127.47, 123.70, 123.17, 

117.56, 117.35, 115.88, 108.75, 108.50, 61.53, 14.11  

 

Compound 8572 was obtained in 92% yield as white solid. 

(using the sequential procedure).    

1H NMR (400 MHz, DMSO): δ 12.48 (s, 1H), 7.20 – 7.56 (m, 

3H), 4.40 (q, J = 6.8 Hz, 2H), 1.31 (t, J = 6.7 Hz, 3H). 

13C NMR (100 MHz, DMSO): δ 165.41, 158.23, 146.04, 132.07, 127.16, 122.65, 

119.12, 117.73, 115.58, 61.91 14.52. 

 

Compound 86 was obtained in 90% yield as white pure solid 

(using the sequential procedure);  

1H NMR (400 MHz, DMSO): 12.46 (s, 1H), 10.64 (s, 1H), 7.53 

(s, 2H); 7.26 (d, J = 9.0 Hz, 1H), 4.40 (dd, J = 13.9, 7.0 Hz, 2H) 

1.31 (t, J = 6.9 Hz, 3H); 

13C NMR (100 MHz, DMSO): δ 164.97, 157.79, 145.46, 132.02, 129.52, 125.17, 

119.15, 117.60, 115.14, 114.62, 114.29, 61.53, 14.14; 

HRMS EI+: m/z [M+H]+ Calculated for C12H10BrNO4 +: 310.9793 found 310.9795 
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Compound 87 was obtained in 74% as white pure solid;  

1H NMR (400 MHz, DMSO): δ 12.53 (s, 1H), 10.71 (s, 1H), 

7.39 (t, J = 12.5 Hz, 3H), 4.40 (q, J = 7.1 Hz, 2H), 1.31 (t, J = 

7.1 Hz, 3H); 

13C NMR (100 MHz, DMSO): δ 164.84, 157.80, 145.83, 143.31, 131.85, 121.47 (d, J 

= 263.21 Hz), 120.22, 118.92, 117.28, 115.42, 61.54, 14.06;  

LRMS (ESI): m/z [M+H]+ 318, 319 

Elemental analysis calculated. (%) for  C13H10F3NO5: C 49.22, H 3.18, N 4.42; 

found (%): C 49.36, H 3.33, N 4.39 

 

Compound 88 was obtained in 75% yield (using the sequential 

procedure).  

1H NMR (400 MHz, CDCl3 8.46 (s, 1H), ): 7.85 (dd, J = 8.1, 1.1 

Hz, 1H), 7.50 – 7.43 (m, 1H), 7.37 (d, J = 8.1 Hz, 1H), 7.27 – 7.33 

(m, 1H), 4.53 (q, J = 7.1 Hz, 2H), 3.82 (s, 3H), 1.46 (t, J = 7.1 Hz, 3H), 

13C NMR (100 MHz, CDCl3): δ 166.24, 158.61, 144.75, 134.30, 127.88, 125.50, 

123.80, 118.20, 114.57, 113.92, 30.85, 14.39.  

LRMS (ESI): m/z [M+H]+ 248; 

Elemental analysis calculated. (%) for C14H16NO4: C, 63.15; H, 5.30; N, 5.67; 

found (%): C, 63.51; H, 5.52; N, 5.65; 

 

Compound 89 was obtained in 75% yield as pale yellow solid 

(using the sequential procedure); 

1H NMR (400 MHz, CDCl3): 7.70 (dd, J = 10.3, 2.8 Hz, 1H), 

7.33 (dd, J = 9.2, 4.7 Hz, 1H), 7.15– 7.23 (m, 1H), 4.53 (q, J = 

7.1 Hz, 2H), 3.80 (s, 3H), 1.47 (t, J = 7.1 Hz, 3H);  

13C NMR (100 MHz, CDCl3): δ 166.34, 158.83 (d, J= 240.7 Hz), 157.96, 147.27, 

130.59, 119.32 (d, J = 9.5 Hz), 115.91 (d, J = 8.7 Hz), 115.32, 115.08, 111.49, 111.23, 

62.43, 31.07, 14.24. 

HRMS EI+: m/z [M+H]+ calculated for C13H12FNO4+ : 265.0750 found 

265.0741 
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Compound 90 was obtained in 81% (using the sequential 

procedure) or 92% yield (using the tandem procedure) as a 

yellow solid; 

1H NMR (400 MHz, CDCl3): 7.92 (d, J = 2.2 Hz, 1H), 7.39 (d, 

J = 9.2 Hz, 1H), 7.32 – 7.22 (m, 1H), 4.53 (q, J = 7.1 Hz, 2H), 3.78 (s, 3H), 1.47 (t, J 

= 7.1 Hz, 3H);  

13C NMR (100 MHz, CDCl3): δ 166.23, 158.20, 146.91, 132.72, 129.43, 127.70, 

124.99, 119.36, 115.86, 112.16, 62.56, 31.05, 14.33; 

LRMS (ESI): m/z ([M-H]-): 280; 266; 252 

Elemental analysis calculated. (%) for  C13H12ClNO4: C 55.43, H 4.29, N 4.97; 

found (%): C 50.72, H 3.96, N 4.85 

 

Compound 91 was obtained in 78% (sequential procedure) or 

(tandem procedure) as a yellow solid;  

1H NMR (400 MHz, CDCl3): 8.10 (d, J = 2.1 Hz, 1H), 7.55 (dd, 

J = 9.0, 2.2 Hz, 1H), 7.20 – 7.30 (m, 1H), 4.56 (q, J = 7.1 Hz, 

2H), 3.80 (s, 3H), 1.49 (t, J = 7.1 Hz, 3H); 

13C NMR (100 MHz, CDCl3): δ 166.22, 158.21, 146.85, 133.15, 130.52, 128.00, 

119.77, 117.02, 116.13, 112.07, 62.59, 31.03, 14.34; 

LRMS (ESI): m/z  [M-H]-: 324.3; 310  

Elemental analysis calculated. (%) for C13H12BrNO4: C 47.87, H 3.71, N 4.29; 

found (%): C 47.41, H 3.96, N 4.58; 

  

Compound 92 was obtained in 81% yield as pale yellow solid 

(using the sequential or the tandem procedures); 

1H NMR (400 MHz, CDCl3): 7.92 (d, J = 1.6 Hz, 1H), 7.37 

(d, J = 9.2 Hz, 1H),  7.31 (d, J = 1.9 Hz, 1H), 4.53 (q, J = 7.1 

Hz, 2H), 3.80 (s, 3H), 1.46 (t, J = 7.1 Hz, 3H); 

13C NMR (100 MHz, CDCl3): δ 166.62, 158.07, 148.37, 144.91, 132.51, 121.78 (d, J 

= 263.21 Hz), 120.31, 119.05, 117.72, 115.74, 111.60, 62.56, 31.03, 14.08; 
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LRMS (ESI): m/z  [M-H]-:330; 302 

Elemental analysis calculated. (%) for C14H12F3NO5: C 50.76, H 3.65, N 4.23; 

found (%): C 50.72, H 3.96, N 4.85; 

 

Compound 93 was obtained in 73% (sequential procedure) or 

85% yield (tandem procedure) as a pale yellow solid; 

1H NMR (400 MHz, CDCl3): 8.33 (s, 1H), 7.83 (dd, J = 8.0, 0.9 

Hz, 1H), 7.12 – 7.40 (m, 8H), 5.63 (s, 2H), 4.56 (q, J = 7.1 Hz, 

2H), 1.48 (t, J = 7.1 Hz, 3H);  

13C NMR (100 MHz, CDCl3): δ 166.01, 158.84, 144.17, 135.19, 133.57, 128.96, 

127.82, 127.66, 126.51, 125.41, 123.74, 118.29, 115.40, 114.48, 62.26, 47.26, 14.30; 

LRMS (ESI): m/z  [M+H]+  324; 

Elemental analysis calculated. (%) for  C19H17NO4: C 70.58, H 5.30, N 4.33; found 

(%): C 70,08, H 5,26, N 4.41. 

 

Compound 94 was obtained in 93% yield as a yellow solid (using 

the sequential procedure); 

1H NMR (400 MHz, CDCl3): 7.68 (dd, J = 10.2, 2.8 Hz, 1H), 7.37 

– 7.21 (m, 5H), 7.17 (d, J = 7.1 Hz, 2H), 7.05 (d, J = 7.1 Hz, 1H), 

5.61 (s, 2H), 4.56 (q, J = 7.1 Hz, 2H),  1.49 (t, J = 7.1 Hz, 3H);  

13C NMR (100 MHz, CDCl3): 166.29, 158.9 (d, J= 241 Hz), 158.53, 146.81, 135.09, 

130.03, 129.15, 127.90, 126.58, 119.72, 117.03 (d, J = 8.6 Hz), 115.43 (d, J = 23.1 

Hz),111.59 111.34, 62.60, 47.68, 14.38; 

LRMS (ESI): m/z  [M+H]+  342; 

Elemental analysis calculated. (%) for C19H16FNO4: C 66.86, H 4.72, N 4.10; 

found (%):C 66.11, H 4.79, N 4.18; 
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Compound 95 was obtained in 87% (sequential procedure) or 

68% yield (tandem procedure) as a yellow solid; 

1H NMR (400 MHz, CDCl3): δ 7.92 (d, J = 2.2 Hz, 1H), 7.37 

– 7.24 (m, 6H), 7.21 (d, J = 9.1 Hz, 1H), 5.60 (s, 2H), 4.56 (dt, 

J = 7.1, 5.8 Hz, 2H), 1.41 – 1.54 (m, 3H); 

13C NMR (100 MHz, CDCl3): δ 166.10, 158.68, 146.46, 134.96, 132.06, 129.51, 

129.15, 127.93, 127.76, 126.57, 125.03, 119.73, 116.82, 112.95, 62.61, 47.54, 14.37; 

LRMS (ESI): m/z  [M+H]+ 358; 

Elemental analysis calculated. (%) for C19H16ClNO4: C 63.78, H 4.51, N 3.91; 

found (%): C 63.89, H 4.67, N 3.98; 

 

 

Compound 96 was obtained in 72% yield as a yellow solid 

(using the sequential procedure); 

1H NMR (400 MHz, CDCl3): 8.06 (d, J = 2.2 Hz, 1H), 7.22 – 

7.45 (m, 5H), 7.07 – 7.22 (m, 3H), 5.59 (s, 2H), 4.56 (q, J = 7.1 

Hz, 2H), 1.49 (t, J = 7.1 Hz, 3H); 

13C NMR (100 MHz, CDCl3): δ 166.07, 158.63, 146.34, 134.92, 132.51, 130.59, 

129.17, 128.04, 127.95, 126.56, 120.08, 117.09, 112.86, 62.66, 47.51, 14.37; 

LRMS (ESI): m/z  [M+H]+: 404; 

Elemental analysis calculated. (%) for  C19H16BrNO4: C 56.73, H 4.01, N 3.48; 

found (%): C 56.74, H 4.17, N 3.65; 

 

Compound 112 was obtained in 53% yield as white solid  

(using the sequential procedure); 

1H NMR (400 MHz, CDCl3) δ 7.85 (s, 1H), 7.31 – 7.14 (m, 

5H), 7.11 (d, J = 6.8 Hz, 3H), 5.54 (s, 2H), 4.49 (q, J = 7.1 

Hz, 2H), 1.41 (t, J = 7.1 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 166.41, 158.45, 147.76, 144.92, 134.81, 131.88, 129.07, 

127.85, 126.48, 121.75, 120.39, 119.33, 117.78, 116.67, 112.31, 62.64, 47.58, 14.12. 

LRMS (ESI): m/z  [M+H]+  404; 
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Elemental analysis calculated (%), C, 58.97; H, 3.96; F, 13.99; N, 3.44; found (%): 

C, 58.27; H, 4.44; N, 3.52. 

 

 Synthesis of 3-hydroxyquinolin-2(1H)-one 9. 

Compound 69 (5 mmol) was added to a solution of NaOH (10 mmol) in H2O 

(50mL). The reaction was then stirred at reflux for 7 h. The formed precipitate after 

acidification until pH 1-2 with aqueous HCl solution (2 M), was filtered, washed with 

water and dried under reduced pressure to yield the 3-hydroxyquinolin-2-(1H)-one in 

92% (74.4 mg).  

Compound 972 was obtained in 92% yield as a white solid. 

1H NMR (400 MHz, (CD3)2SO) δ 12.01 (s, 1H), 9.46 (s, 1H), 7.48 

(d, J = 7.6 Hz, 1H), 7.27 (dd, J = 6.1, 1.3 Hz, 2H), 7.18 – 7.05 (m, 2H); 

 13C NMR (101 MHz, (CD3)2SO): δ, 159.01, 146.65, 133.98, 126.70, 126.23, 122.49, 

121.15, 115.18, 112.89 

. 

 

 Synthesis of 4-bromo-3-hydroxyquinolin-2(1H)-one 

Compound 106 was performed according with the protocol described in the 

literature: Sit, Sing-Yuen; Ehrgott, Frederick J.; Gao, Jinnian; Meanwell, Nicholas A. 

Bioorganic & Medicinal Chemistry Letters, 1996, 6, 499 - 504.  

Compound 10672 was obtained in 72% yield as a gray solid. 

1H NMR (400 MHz, (CD3)2SO) δ 12.32 (s, 1H), 10.40 (d, J = 14.5 

Hz, 1H), 7.70 (d, J = 8.0 Hz, 1H), 7.44 – 7.15 (m, 3H); 

13C NMR (101 MHz, (CD3)2SO): 157.11, 145.45, 132.93, 127.93, 125.66, 123.42, 

120.19, 115.74, 109.75. 
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 Optimization of the microwave-assisted Suzuki-Mayura reaction. 

An oven dried 10 mL microwave reaction vessel was charged with 4-bromo-3-

hydroxyquinolin-2(1H)-one (0.4 mmol), phenyl-boronic acid (2.2 equiv.) and freshly 

dried DME (1.1 ml). Then a Pd source and a solution 2 M of Na2CO3/ H2O (0.4 mL) 

were added to the reaction mixture. The vessel was capped and the mixture was stirred 

for 5 minutes at room temperature. The sealed vessel was then heated by microwave 

irradiation at 150 C for 2 hours. After cooling to the room temperature, the resulting 

dark-colored mixture was purified by flash chromatography using a Combiflash Rf 

teledyne isco system and 1:1 mixture of Hexane/EtOAc to afford 3-hydroxy-4-

phenylquinolin-2(1H)-one.  

 

 

Pd source mol% Yield (%)

Pd2(dba)3  5mol% 47

Pd ferroceno 10mol% 65.7

Pdtetrakis 10mol% 80

Pd NHC 10mol% 50

PdCl2 10mol% 59
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Compound 3187 obtained as a white solid 80 %.   

1H NMR (400 MHz, (CD3)2SO): δ 12.24 (s, 1H), 9.21 (s, 1H), 7.51 

(dd, J = 7.4, 7.2 Hz, 2H), 7.45 (d, J = 7.4 Hz, 1H) 7.26 – 7.39 (m, 

4H), 7.03 – 7.06 (m, 2H),  

13C NMR (100 MHz, (CD3)2SO): δ 158.32, 142.47, 133.78, 133.19, 129.88, 128.37, 

127.69, 126.46, 124.33, 123.98, 122.16, 120.93, 115.30; 

 

 

Compound 107 was obtained in 71% yield as a white solid; 

1H NMR (400 MHz, (CD3)2SO): δ 12.20 (s, 1H), 9.14 (s, 1H), 7.37– 

7.26 (m, 4H), 7.21 (d, J = 8.0 Hz, 2H), 7.10 –7.02 (m, 2H), 2.38 (s, 

3H); 

13C NMR (100 MHz, (CD3)2SO): δ 170.8, 168.4, 163.2, 138.9, 137.0, 

128.3, 122.3, 120.8, 120.3, 110.3, 106.0, 62.8, 23.4, 13.7;  

HRMS EI+ : m/z [M+H]+ calculated for C16H13NO2 +: 251.0946 found 251.0945  

 

 

Compound 108 was obtained in 65% yield as a white solid; 

1H NMR (400 MHz, (CD3)2SO): δ 12.29 (s, 1H), 9.50 (s, 1H), 7.88 

(d, J = 7.2 Hz, 2H), 7.59 (d, J = 7.2 Hz, 2H), 7.36 (s, 2H), 6.86-7.22 

(m, 2H); 

13C NMR (100 MHz, (CD3)2SO): δ 158.57, 143.25, 138.76, 133.67, 

131.38, 128.57, 127.12, 125.79, 124.78 (d, J = 275 Hz), 124.46, 123.00, 122.83, 120.77, 

115.85. 

HRMS EI+: m/z [M+H]+ calculated for C16H10F3NO2+: 305.0664 found 305.0665 
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Compound 109 was obtained in 65% yield as a white solid; 

1H NMR (300 MHz, (CD3)2SO): δ12.24 (s, 1H), 9.30 (s, 1H), 

7.44– 7.26 (m, 6H) , 7.13– 7.00 (m, 2H); 

13C NMR (75 MHz, (CD3)2SO): δ 162.07 (d, J = 245 Hz) 158.66, 

143.16, 133.61, 132.47, 130.43, 126.96, 124.63, 123.41, 122.68, 

121.31, 115.92, 115.76. 

HRMS EI+: m/z [M+H]+ Calculated for C15H10FNO2+: 255.0696 found 255.0685 

 

Compound 110 was obtained in 72% yield as a white solid; 

1H NMR (400 MHz, (CD3)2SO): δ 12.19 (s, 1H), 9.11 (s, 1H), 7.44 

– 7.21 (m, 4H), 7.09 (m, 4H), 3.82 (s, 3H); 

13C NMR (100 MHz, (CD3)2SO): δ 206.97, 159.17,158.78, 142.95, 

133.65, 131.59, 126.85, 126.08, 124.89, 124.17, 122.54, 121.62, 

115.73, 114.27, 55.59 

HRMS EI+: m/z [M+H]+ Calculated for C16H13NO3+  267,0895 found 267.0945. 

 

 

Single crystal X-ray diffraction for compounds 70, 69 and 93: 

 

Crystals of 70, 69 and 93 suitable for X-ray 

diffraction studies were mounted on a loop 

with protective oil. X-ray data were collected 

at 150K on a Bruker AXS-KAPPA APEX II 

diffractometer using graphite 

monochromated Mo-Kα radiation (=0.71069 Å) and operating at 50kV and 30 mA. 

Cell parameters were retrieved using Bruker SMART software and refined using 

Bruker SAINT169 on all observed reflections. Absorption corrections were applied 

using SADABS170. Structure solution and refinement were performed using direct 

methods with program SIR97171 and SHELXL97172, both included in the package of 
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programs WINGX-Version 1.80.05173. A full-matrix least-squares refinement was 

used for the non-hydrogen atoms with anisotropic thermal parameters. All hydrogen 

atoms connected to carbons were inserted in idealized positions and allowed to refine 

riding in the parent carbon atom; hydrogen atoms bonded to nitrogen atoms were 

located in a difference map.  

Crystallographic data for compound 70 (CCDC 939410): C12H11N3O4, fw=261.24, 

monoclinic, space group P21/c, a=19.2024(16) Å, b=11.8604(8) Å, c=11.0525(10) Å, 

β= 105.828(4) °, V =2421.8(3) Å3, Z=8, T=150K, dcalc=1.433 mg.m-3, μ =0.110 mm-

1, F(000)=1088, yellow block crystal (0.22 x 0.10 x 0.08 mm). Of 19885 reflections 

collected, 5328 were independent (Rint= 0.0430); 345 variables refined with 5328 

reflections to final R indices R1(I > 2(I))=0.0472, wR2(I > 2 (I))=0.1163, R1(all 

data)=0.0724, wR2(all data)=0.1255, GOF= 1.054. A disorder model was applied to 

one methyl group.   

 

Crystallographic data for compound 69 (CCDC 

939411): C12H11NO4, fw=233.22, trigonal, space 

group R-3, a=25.034(5) Å, b=25.034(5) Å, 

c=8.926(5) Å, V =4856(3) Å3, Z=18, T=150K, 

dcalc=1.435 mg.m-3, μ =0.109 mm-1, 

F(000)=2196, colourless needle (0.2 x 0.02 x 0.02 

mm). Of 10137 reflections collected, 1972 were independent (Rint= 0.1573); 158 

variables refined with 1972 reflections to final R indices R1(I > 2(I))=0.0483, wR2(I 

> 2 (I))=0.0795, R1(all data)=0.1650, wR2(all data)=0.0938, GOF= 0.749.  

 



134 | Material and Methods 

 

 

Crystallographic data for compound 93 

(CCDC 939640): C19H17NO4, fw=323.34, 

triclinic, space group P-1, a=6.8034(6) Å, 

b=10.6251(8) Å, c=11.2680(8) Å, = 

92.853(4), β= 102.984(4) °, = 95.613(4), V 

= 787.73(11) Å3, Z=2, T=150K, dcalc=1.363 mg.m-3, μ =0.096 mm-1, F(000)=340, 

colourless block crystal (0.20 x 0.04 x 0.02 mm). Of 9515 reflections collected, 3236 

were independent (Rint= 0.0413); 219 variables refined with 3236 reflections to final 

R indices R1(I > 2(I))=0.0451, wR2(I > 2 (I))=0.1123, R1(all data)=0.0807, wR2(all 

data)=0.1255, GOF= 1.059.  

 

Synthesis of 3-hydroxyquinolin-2(1H)-one 111: 

 

Compound 69 (5 mmol) was added to a solution of NaOH (10 mmol) in H2O 

(50mL). The reaction was stirred at reflux for 7 h and acidified until pH 1-2 with 

aqueous HCl solution (2 M). The formed precipitate was filtered, washed with water 

and dried under reduced pressure to yield the 3-hydroxyquinolin-2-(1H)-one in 75% 

yield. 

 

1H NMR (300 MHz, (CD3)2SO): δ 12.52 (s, 1H), 10.43 (s, 

1H), 7.89 – 7.81 (m, 2H), 7.66 (t, J = 7.4 Hz, 1H), 7.50 (t, J = 

7.6 Hz, 2H), 7.42 (d, J = 9.0 Hz, 1H), 7.37 – 7.29 (m, 1H), 

6.90 (d, J = 1.6 Hz, 1H).  

13C NMR (13C NMR (75 MHz, (CD3)2SO) δ 158.69, 147.69, 143.45, 132.69, 122.10, 

119.94, 118.96, 118.17, 116.78, 112.26. 

HRMS EI+ m/z [M+H]+: Calculated C10H7F3NO3+ : 246,0373 found 246.03706. 
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 Preparation of α-Diazo carbonyl compounds 

Diazo acetates 113-115 were prepared as previously reported by Fukuyama and co-

workers, according to the following scheme.  

 

Br
Br

O
1) ROH, NaHCO3, MeCN, r.t.
2) TsNHNHTs, DBU, THF

O

O
N2R

113 : R = CH(CH3)Ph
114 : R = CH(CH3)CH2CH2Ph

TsNHNH2

TsCl
pyridine

CH2Cl2

TsNHNHTs

O O
N2Br

TsNHNHTs, DBU
THF

115

 

 

 

 

Synthesis of N,N'-ditosylhydrazine 

  

A flame-dried, 50mL, round-bottomed flask fitted with a magnetic stir bar was 

charged with p-toluenesulfonyl hydrazide (3.47 g, 18.4 mmol) and p-toluenesulfonyl 

chloride (5.27 g, 27.06 mmol) in 18.4 mL of anhydrous CH2Cl2. The suspension was 

stirred at room temperature while pyridine (3.2 mL, 27.06 mmol) was added dropwise 

over 1 min. During the addition, the reaction mixture became homogenous and 

turned yellow. White precipitate was observed within 3 min and the reaction mixture 

was stirred for 1.5 h. Et2O (20 mL) and H2O (10 mL) were added and stirred at 0 °C 

for 15 min. The suspension was filtered through a Büchner funnel and washed with 

Et2O (10 mL). The solid thus obtained was dissolved in boiling MeOH (40 mL), 

which precipitated after cooling to room temperature. The mixture was concentrated 

to half volume by rotary evaporation and cooled to 0 °C. The precipitate was collected 
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by filtration in a Büchner funnel and washed with cold MeOH (10 mL) and Et2O (50 

mL) to give N,N'-ditosylhydrazine (5.24 g, 72%); 

 

 1H NMR (300 MHz, (CD3)2SO) δ 9.59 (s, 1H), 7.65 (d, J = 8.3 Hz, 2H), 7.39 (d, J = 

8.0 Hz, 2H), 2.39 (s, 3H).  

13C NMR (100 MHz, (CD3)2SO) δ 143.7, 135.7, 129.7, 128.0, 21.3;  

 

 

Preparation of diazo acetates 113 - 114 

 

The secondary alcohol (150 mg, 1.0 mmol) and NaHCO3 (252 mg, 3.0 mmol) were 

dissolved in acetonitrile (5.0 mL) and bromoacetyl bromide (131 µL, 1.5 mmol) was 

added slowly at 0 °C. After stirring 10 min at that temperature, the reaction was 

quenched with H2O (5.0 mL). The solution was extracted with CH2Cl2 (3 x 5 mL). 

The organic phase was washed with brine and dried over Mg2SO4. The solvent was 

evaporated, and the residue was used in the next reaction without purification. The 

bromoacetate thus obtained and N,N'-ditosylhydrazine (681 mg, 2.0 mmol) were 

dissolved in THF (5.0 mL) and cooled to 0 °C. DBU (750 mL, 5.0 mmol) was added 

dropwise and stirred at that temperature for 10 minutes. After the quenching of the 

reaction by addition of saturated NaHCO3 solution (5.0 mL), this was extracted with 

Et2O (3 x 5 mL). The organic phase was washed with brine, dried over Mg2SO4 and 

concentrated under vacuum. The desired product was obtained after purification by 

flash chromatography in silica gel. 

 

4-Phenyl-2-butanyl 2-diazoacetate 

99.1 mg, 45% Yield 

1H NMR (300 MHz, CDCl3) δ 7.34 – 7.10 (m, 5H), 5.13 

– 4.92 (m, 1H), 4.72 (s, 1H), 2.77 – 2.51 (m, 2H), 2.04 – 1.90 (m, 1H), 1.90 – 1.75 (m, 

1H), 1.28 (d, J = 6.3 Hz, 3H); 

13C NMR (100 MHz, CDCl3) δ 166.3, 141.3, 128.3, 128.2, 125.8, 71.0, 46.1, 37.6, 

31.6, 20.1; 
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1-Phenylethyl 2-diazoacetate 

42.7 mg, 64% Yield 

 1 H NMR (CDCl3, 400 MHz) δ 7.44-7.30 (m, 5H), 5.97 (q, J = 

6.4 Hz, 1H), 4.76 (s, 1H), 1.56 (d, J = 6.4 Hz, 3H); 

13 C NMR (CDCl3, 100 MHz) δ 166.0, 141.4, 128.4, 127.8, 125.9, 72.6, 46.3, 22.2; 

 

 

Preparation of α-Diazoacetophenone 115 

 

α-Bromoacetophenone (199 mg, 1.0 mmol) and N,N'-ditosylhydrazine (681 mg, 2.0 

mmol) were dissolved in THF (5.0 mL) and cooled to 0 °C. DBU (750 μL, 5.0 mmol) 

was added dropwise and the reaction was stirred at that temperature for 10 minutes. 

After the quenching of the reaction by the addition of saturated NaHCO3 solution 

(5.0 mL), the mixture was extracted with Et2O (3 x 5.0 mL). The organic phase was 

washed with brine, dried over Mg2SO4 and concentrated under reduced pressure. The 

obtained residue was purified by flash chromatography in silica gel to give pure α-

diazoacetophenone as a yellow solid (68.3mg, 94%). 

 

1H NMR (CDCl3, 400 MHz) δ 7.77 (d, J = 7.3 Hz, 2H), 7.55 (m, 

1H), 7.46 (m, 2H), 5.91 (s, 1H). 

13C NMR (CDCl3, 100 MHz) δ 186.3, 136.6, 132.7, 128.6, 126.6, 

54.2; 

 

 

 

Preparation of succinimidyl diazoacetate 124 

Compound 122 was prepared according to literature procedures and its purity 

assessed by melting point determination (white solid; mp: 150-152ºC). Compound 

O

Me O
N2



138 | Material and Methods 

 

 

123 was also prepared according to literature procedures and its purity assessed by 

melting point determination (Pale yellow prism crystals; m.p. 101-112ºC). 

Compound 124 was prepared as described by Doyle and co-workers142, and obtained 

as light yellow crystals with the following spectral characterization: 

1 H NMR (300 MHz, CDCl3) δ 5.21 (s, 1H), 2.84 (s, 4H). 

 

p-Ts

H
N

NH2 p-Ts

H
N

N
OH

O

O

OH
OH

HO

p-Ts

H
N

N
Cl

O

SOCl2,
Toluene

N2

O

O

N

O

O N OO

OH

Na2CO3,

2.5M HCl
H2O

122

123124

CH2Cl2

Org. Synth. 
1969, 49, 22

JOC , 1996, 61, 2179

JOC , 2010, 75, 5643

 

 

 

 General synthesis of 4-carboxylate-3HQs: 

N O

OH

O R''

H

H

N2

R''

O+
2. 1 mol% Rh2(OAc)4

1. DBU 15 mol%, EtOH, rt F3CO
N

O

O

H

F3CO

 

Synthesis compounds (116 - 120): Appropriate diazo compound (1.2 eq) and 

DBU (15 mol%) were added to a stirred solution of 5-(trifluoromethoxy)isatin (0.3 

mmol) in absolute ethanol (1.5 mL) at room temperature. The reaction mixture was 

stirred for 3 hours, the solvent was removed under reduced pressure and the diazo 

intermediate purified by flash chromatography. The diazo intermediate and 

Rh2(OAc)4 (1 mol %) were dissolved in absolute ethanol and stirred at room 



Material and Methods | 139 

 

 

 

temperature for 20 minutes to afford the ring expansion product, which readily 

precipitated from the reaction mixture and was isolated by filtration. The collected 

solid was washed with Et2O, and dried under reduced pressure to furnish the expected 

4-substituted 3-hydroxy-quinolin-2-(1H)-ones. 

 

 Compound 116 was obtained in yield 77% as white solid; 

1H NMR (300 MHz, (CD3)2SO): δ 12.52 (s, 1H), 10.43 (s, 

1H), 7.89 – 7.81 (m, 2H), 7.66 (t, J = 7.4 Hz, 1H), 7.50 (t, J = 

7.6 Hz, 2H), 7.42 (d, J = 9.0 Hz, 1H), 7.37 – 7.29 (m, 1H), 

6.90 (d, J = 1.6 Hz, 1H). 

13C NMR (75 MHz, (CD3)2SO): δ 194.24, 157.94, 144.66, 143.24, 143.21, 143.18, 

136.01, 132.46, 125.18, 121.79, 120.78, 119.20, 118.40, 115.01,  

LRMS (ESI): m/z  [M+H]+: 349.6; 337.9. 

Elemental analysis calculated (%),C, 58.46; H, 2.89; N, 4.01; found: 59.05; H, 3.01; 

N, 4.63; 

 

 Compound 117 was obtained in 86% yield as white solid; 

1H NMR (400 MHz, (CD3)2SO) δ 12.49 (s, 1H), 10.57 (s, 

1H), 7.40 (s, 2H), 7.24 (s, 1H), 1.56 (s, 9H).  

13C NMR (101 MHz, (CD3)2SO) δ 164.50, 158.36, 145.38, 

143.70, 132.27, 121.88, 120.59, 118.54, 117.79, 117.06, 

115.01, 83.28, 28.23; 

 LRMS (ESI): m/z  ([M+H]+): 385;  

Elemental analysis calculated (%) C15H14F3NO5: C 59.37, H 5.24, N 14.58, found: 

C 59.48, H 5.55, N 14.25; 
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Compound 118 was obtained in 71% yield as white solid; 

1H NMR 1H NMR (300 MHz, (CD3)2SO) δ 12.53 (s, 1H), 

10.78 (s, 1H), 7.59 – 7.21 (m, 8H), 5.44 (s, 2H). 

 13C NMR (75 MHz, (CD3)2SO) δ 164.71, 157.74, 146.00, 

143.26, 135.59, 131.88, 128.50, 128.45, 128.35, 121.82, 

120.29, 118.12, 117.25, 115.63, 114.94, 67.03; 

LRMS (ESI): m/z ([M+H]+): 380;  

Elemental analysis calculated (%) for C18H12F3NO5: C, 57.00; H, 3.19; N, 3.69; 

found: C, 56.87; H, 3.44; N, 3.77. 

 

Compound 119 was obtained in 76% yield as orange pure 

solid; 

1H NMR (300 MHz, CDCl3) δ 12.65 (s, 1H), 11.31 (s, 1H), 

8.22 (s, 1H), 7.36-7.22 (m, 6H), 7.22 (s, 1H), 6.29 (q, J = 6.3 

Hz, 1H), 1.80 (d, J = 6.6 Hz, 3H). 

 13C NMR (75 MHz, CDCl3) δ 168.32, 158.79, 145.20, 139.88, 130.65, 128.88, 128.75, 

126.42, 126.42, 122.22, 120.95, 118.82, 118.08, 117.97, 117.72, 76.29, 21.99; 

LRMS (ESI): m/z M+H]+: 394; 337.9; 289.6; 104.7. 

Elemental analysis calculated (%) for: C19H14F3NO5: C, 58.02; H, 3.59; N, 3.56; 

found: C, 57.93; H, 3.86; N, 3.58: 

 

Compound 120 was obtained in 77% yield as orange 

solid; 

 1H NMR (300 MHz, CDCl3) δ 12.74 (s, 1H), 8.12 (s, 

1H), 7.46 (d, J = 8.7 Hz, 1H), 7.31 – 6.92 (m, 6H), 

5.32 (dd, J = 12.1, 6.6 Hz, 1H), 2.82 – 2.59 (m, 2H), 

2.16 - 2.12 (m, J = 14.6, 7.3 Hz, 1H), 2.04 – 1.90 (m, 

1H), 1.44 (d, J = 6.2 Hz, 3H). 

 13C NMR (75 MHz, CDCl3) δ 168.76, 158.90, 152.97, 145.25, 140.88, 130.88, 128.63, 

128.40, 126.25, 122.38, 120.87, 118.21, 117.55, 111.77, 74.59, 37.48, 31.86, 20.15; 
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LRMS (ESI): m/z  [M+H]+ 422; 289.6;132.7. 

 Elemental analysis calculated (%) for C21H18F3NO5: C, 59.86; H, 4.31; N, 3.32; 

found: C, 60.50; H, 4.54; N, 3.54 

 

 Synthesis of 4-NHS-3HQs 125-126, 130-131 

A round bottom flask equipped with a magnetic stirrer was charged with isatin 

derivative (0.3 mmol), absolute ethanol (1.5 mL), NHS-diazoacetate (1.2 equiv) and 

triethylamine (20 mol%). The mixture was stirred for 3 hours at room temperature 

until formation of a precipitated. The reaction mixture was centrifuged to recover the 

solid which was then washed with hexane. The isolated diazo compound was then 

dissolved in 2.5 mL of dry DCM and reacted with Rh2(OAc)4 (1 mol%) at room 

temperature over a period of 20 minutes. The ring expansion product precipitated 

from the reaction mixture and was collected by filtration and then washed with 

hexane. 

 

Compound 125 was obtained in 88% yield as grey solid; 

1H NMR: (300 MHz, CDCl3) δ 7.52 (dd, J = 7.5, 0.8 Hz, 1H), 

7.30 – 7.19 (m, 6H), 7.05 (td, J = 7.6, 0.9 Hz, 1H), 6.67 (d, J = 

7.7 Hz, 1H), 4.86 (AB q, J = 15.8 Hz, 2H), 4.51 (s, 1H), 2.73 (s, 

4H).  

13C NMR: (75 MHz, CDCl3) δ 174.37, 169.18, 159.58, 142.53, 

134.89, 131.12, 129.01, 127.94, 127.38, 125.31, 123.93, 110.18, 71.25, 44.39, 25.55; 

HRMS EI-: (m/z) [M]-Calculated for C21H16N2O3- 415,0912; found 415,09006. 

 

Compound 126 was obtained in 84 % yield as grey solid; 

1H NMR (300 MHz, (CD3)2SO) δ 11.29 (s, 1H), 7.89 (d, J = 7.2 

Hz, 1H), 7.51 – 7.38 (m, 2H), 7.48-7.24 (m, 6H), 5.65 (s, 2H), 

2.94 (s, 4H).  
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13C NMR (75 MHz, (CD3)2SO) δ 170.25, 161.22, 157.73, 145.87, 136.00, 133.21, 

128.79, 127.73, 127.30, 126.53, 123.95, 123.51, 117.32, 115.83, 110.49, 46.04, 25.72;  

LRMS (ESI): m/z [M+H]+ 310;  

Elemental analysis calculated (%) for C21H16N2O6: C, 64.28; H, 4.11; N, 7.14, 

found: C, 64.28; H, 4.11; N, 7.14. 

 

Compound 130 was obtained in 93% yield as grey solid; 

1H NMR (300 MHz, (CD3)2SO) δ 10.79 (s, 1H), 7.69 (s, 

1H), 7. 58 (m, 1H), 7.28 (d, J = 1.6 Hz, 1H), 6.91 (d, J = 

8.5 Hz, 1H), 2.73 (s, 4H).  

13C NMR (75 MHz, (CD3)2SO) δ 175.96, 170.59, 159.51, 

143.84, 141.84, 131.12, 124.16, 120.62 (d, J =255.6 Hz), 

119.64, 70.24, 61.23, 25.76; 

Elemental analysis calculated (%) for C, 43.49; H, 2.19; N, 13.52 found: C, 43.49; 

H, 2.79; N, 12,82. 

 

Compound 131 was obtained in 97% yield as grey solid; 

1H NMR (300 MHz, (CD3)2SO) δ 12.67 (s, 1H), 7.85 (s, 1H), 

7.42 (s, 2H), 2.90 (s, 4H). 

 13C NMR (75 MHz, (CD3)2SO) δ 170.31, 160.77, 157.19, 

149.00, 143.59, 131.77, 120.63 (d, J =255.6 Hz), 118.48, 

117.65, 117.51, 115.75, 109.39, 25.69. 

LRMS (ESI): m/z [M+H]+ 386.9; 355.2; 338.2;303.9. 

Elemental analysis calculated (%) for C15H9F3N2O7 + 0,33H2O: C, 46.00; H, 2.48; 

N, 7.15, found: C, 45.93; H, 2.48; N, 7.14. 
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Compound 162 was obtained in 60% yield as grey solid; 

1H NMR (300 MHz, (CD3)2SO) δ 12.41 (s, 1H), 7.83 (s, 1H), 

7.38 – 6.99 (m, 3H), 2.89 (s, 4H). 

 13C NMR (75 MHz, (CD3)2SO) δ 172.26; 162.92; 157.13; 

142.49; 136.95; 132.55; 127.69; 123.20; 122.97; 120.22; 115.64; 

25.73. 

 

Compound 163 was obtained in 60% yield as grey solid; 

1H NMR (300 MHz, (CD3)2SO) 12.47(s, 1H); 7.69 (dd, 1H); 

7.34 (dd, 1H), 7.26 (td, 1H); 2.9 (s, 4H); 

13C NMR (75 MHz, (CD3)2SO) δ 170.81, 161.20, 159.90, 

157.32, 156.75, 149.11, 129.94, 118.15, 116.82, 116.50, 109.34, 

108.99, 25.66 

 

 Compound 164 was obtained in 50% yield as grey solid; 

1H NMR (300 MHz, (CD3)2SO) δ 12.59 (s, 1H), 7.92 (d, J = 

2.1 Hz, 1H), 7.43 (d, J = 2.2 Hz, 1H), 7.35 (d, J = 8.7 Hz, 1H), 

2.92 (s, 4H). 

13C NMR (75 MHz, (CD3)2SO) δ 170.34, 160.85, 157.25, 

149.27, 131.46, 127.13, 126.96, 122.44, 118.32, 117.48, 108.77, 25.69. 

 

 

 Compound 168 was obtained in 80% yield as grey solid; 

1H NMR (300 MHz, (CD3)2SO) δ 7.93 (s, 1H), 7.54 (d, J = 

9.3 Hz, 1H), 7.44 (dd, J = 9.3, 1.8 Hz, 1H), 7.38 – 7.30 (m, 

2H), 7.26 (t, J = 5.8 Hz, 3H), 5.64 (s, 2H), 2.93 (s, 4H). 

13C NMR (75 MHz, (CD3)2SO) δ 173.37, 161.56, 158.92, 

146.88, 143.72, 136.69, 133.07, 129.23, 127.74, 126.90, 

123.10, 121.01120.81 (d, J =255.6 Hz, 119.95, 118.99, 117.08, 112.17, 46.13, 25.65. 
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Synthesis of 4-carboxamide-3HQ 127-129 and 132-143: 

The appropriate amine (1.1 equiv) and Na2CO3 (10 equiv) were added to a stirred 

solution of 4-NHS-3HQ 15 or 20 (87 μmol) in dry DCM (1 mL). The mixture was 

stirred overnight at room temperature after which the volatiles were evaporated under 

reduced pressure and the crude mixture acidified with HCl (2 N). The precipitate was 

then centrifuged and collected by filtration. Finally, the isolated solid was thoroughly 

washed with H2O to furnish targeted 4-carboxamide-3HQs. 

 

Compound 127 was obtained in 76% yield as grey pure solid  

1H NMR (300 MHz, (CD3)2SO) δ 9.96 (s, 1H), 9.10 (t, J = 6.1 Hz, 

1H), 7.53 – 7.09 (m, 14H), 5.63 (s, 2H), 4.54 (d, J = 6.0 Hz, 2H); 

 13C NMR (75 MHz, (CD3)2SO) δ 173.24, 164.75, 159.03, 141.46, 

139.61, 136.88, 133.92, 129.14, 128.75, 127.75, 127.69, 127.55, 

127.30, 127.00, 125.02, 123.34, 121.28, 119.54, 115.76, 45.95, 42.75. 

HRMS EI+: m/z [M + H]+ Calculated for C24H21N2O3+ 385.1547 ; found 385.15437 

 

 

Compound 128 was obtained in 79% yield as grey pure solid  

1H NMR 1H NMR (300 MHz, (CD3)2SO) δ 9.96 (s, 1H), 9.07 

(t, J = 5.6 Hz, 1H), 7.71 (d, J = 7.5 Hz, 1H), 7.44 – 7.20 (m, 9H), 

5.63 (s, 2H), 4.08 (d, J = 5.8 Hz, 2H), 3.72 (s, 3H).  

13C NMR (75 MHz, (CD3)2SO) δ 170.62, 165.52, 158.99, 

141.49, 136.88, 133.88, 129.16, 127.70, 127.59, 126.99, 125.44, 

123.31, 120.86, 119.60, 115.65, 52.34, 45.96, 25.69;  

LRMS (ESI): m/z  [M+H]+  367; 

Elemental analysis calculated (%) for: C20H18N2O5 + 0.5H2O: C, 63,99; H, 5,10; 

N, 7.46,  

found: C, 64.35; H, 5,00; N, 7.61. 
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Compound 129 was obtained in 70% yield as grey pure solid  

1H NMR (300 MHz, DMSO) δ 12.45 (s, 1H), 9.28 (d, J = 5.7 

Hz, 1H), 7.39 – 6.79 (m, 13H), 5.55 (s, 2H), 4.65 (s, 1H), 4.03 (s, 

2H), 3.04 (s, 2H), 1.10 (s, 3H);  

13C NMR (75 MHz, DMSO) δ 172.93, 169.75, 164.25, 162.38, 

137.98, 137.65, 129.91, 129.76, 128.97, 128.74, 127.28, 126.86, 

124.98, 122.09, 121.71, 114.62, 60.45, 54.51, 46.23, 38.41, 14.51; 

HRMS EI+: m/z [M + H]+Calculated for C28 H27N2O5 : 471,1914, found 471,19091 

Elemental analysis calculated (%) for C28H26N2O5 + 2H2O: C, 66.39; H, 5.97; N, 

5.53 found: C, 66.61; H, 5.16; N, 5.83  

 

 

Compound 132 was obtained in 90% yield as grey pure solid; 

1H NMR (300 MHz, (CD3)2SO) δ 12.49 (s, 1H), 10.59 (s, 

1H), 7.74 (d, J = 7.6 Hz, 2H), 7.47 – 7.29 (m, 5H), 7.13 (t, J 

= 7.4 Hz, 1H); 

13C NMR (75 MHz, (CD3)2SO) δ 162.47, 158.28, 143.93, 

143.31, 138.82, 132.05, 128.92, 123.97, 121.87, 120.06, 119.72, 119.49, 119.14, 117.18, 

115.54;  

HRMS EI+: m/z [M + H]+ Calculated for C17H11F3N2O4+ 365,0744; found 

365,07405 

 

 

 

Compound 133 was obtained in 86% yield as grey pure solid; 

1H NMR (300 MHz, (CD3)2SO) δ 12.43 (s, 1H), 10.25 (s, 

1H), 9.09 (t, J = 6.1 Hz, 1H), 7.50 – 7.18 (m, 8H), 4.51 (d, J 

= 6.0 Hz, 2H); 
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 13C NMR (75 MHz, (CD3)2SO) δ 163.90, 158.23, 143.54, 143.19, 139.20, 132.01, 

128.28, 127.22, 126.89, 121.86, 119.96, 119.78, 119.39, 118.47, 117.04, 115.62:  

LRMS (ESI): m/z  [M+H]+  379;  

Elemental analysis calculated (%) for C18H13F3N2O4 + 1,50 H2O: C, 53.34; H, 

3.98; N, 6.91; found: C, 53.65; H, 3.64; N, 6.96;  

 

Compound 134 was obtained in 90% yield as grey pure 

solid; 

1H NMR (300 MHz, (CD3)2SO) δ 12.42 (s, 1H), 8.71 (d, J 

= 6.9 Hz, 1H), 7.42 (d, J = 8.9 Hz, 1H), 7.37 – 7.17 (m, 

6H), 7.14 (d, J = 2.6 Hz, 1H), 3.54 (q, J = 6.8 Hz, 2H), 2.84 

(t, J = 7.2 Hz, 2H). 

13C NMR (75 MHz, (CD3)2SO) δ 163.80, 158.35, 143.93, 143.13, 139.28, 131.85, 

128.72, 128.27, 126.11, 121.87, 119.58, 119.49, 118.48, 116.88, 115.91, 35.06;  

LRMS (ESI): m/z  [M+H]+ 393; 338.1; 142.9. 

Elemental analysis calculated (%) for C19H15F3N2O4 + H2O: C, 55.61; H, 4.18; N, 

6.83; found: C, 55.38; H, 3.84; N, 6.75; 

 

Compound 135 was obtained in 89% yield as grey pure 

solid; 

1H NMR mix of rotamers (300 MHz, (CD3)2SO) δ 12.45 

(s, 0.61H), 12.45 (s, 0.39H), 10.47 (s, 0.35H), 10.45 (s, 

0.65H), 7.49 – 7.04 (m, 8H), 4.77 (dd, J = 50.2, 14.8 Hz, 

1.3H), 4.43 (dd, J = 35.2, 15.6 Hz, 0.70H), 2.94 (s, 1H), 2.80 (s, 2H). 

13C NMR: (75 MHz, (CD3)2SO) δ 170.12, 164.57, 143.17, 138.15, 128.55, 127.51, 

126.84, 125.20, 124.85, 122.07, 118.69, 115.34, 111.93, 111.18, 110.92, 53.86, 49.29, 

34.89, 31.80; 

HRMS EI+: m/z [M + Na]+ Calculated for C19H15F3N2NaO4+ 415,0876; found 

415,08725 
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Compound 136 was obtained in 74% yield as grey pure solid; 

1H NMR (300 MHz, (CD3)2SO) δ 12.41 (s, 1H), 10.30 (s, 

1H), 7.49 – 7.30 (m, 2H), 7.14 (s, 1H), 3.60-3.45 (m, 2H), 3.07 

(dd, J = 10.5, 6.0 Hz, 2H), 1.99 – 1.60 (m, 4H).  

13C NMR (75 MHz, (CD3)2SO) δ 162.66, 158.13, 143.28, 

142.59, 132.32, 121.86, 120.08, 118.71, 118.47, 117.07, 115.62, 46.24, 45.09, 25.29, 

24.08. 

HRMS EI+: m/z [M + H]+ Calculated for C15H14F3N2O4+ 343.0900; found 

343.08973. 

 

 

 

Compound 137 was obtained in 90% yield as grey pure 

solid; 

1H NMR (300 MHz, (CD3)2SO) δ 12.45 (s, 1H), 10.22 (s, 

1H), 7.56 – 7.27 (m, 2H), 7.07 (s, 1H), 3.85 (d, J = 10.8 

Hz, 1H), 3.49 (d, J = 12.1 Hz, 1H), 3.21 (br. s, 2H), 1.58 

(br. s, 5H), 1.24 (br. s, 1H).  

13C NMR (75 MHz, (CD3)2SO) δ 162.59, 157.91, 143.20, 142.54, 132.38, 121.89, 

120.05, 118.97, 118.90, 117.19, 115.30, 46.92, 41.61, 26.44, 25.54, 23.97. 

HRMS EI+: m/z [M + H]+ Calculated for C16H16F3N2O4+ 357.1057; found 

357.10538. 

 

 

Compound 138 was obtained in 88% yield as grey pure 

solid; 

1H NMR (300 MHz, (CD3)2SO) δ 12.43 (s, 1H), 10.23 (s, 

1H), 9.14 – 8.90 (m, 1H), 7.60 (m, 1H), 7.56 – 7.27 (m, 

2H), 4.19 – 3.95 (m, 2H), 3.75 (s, 3H). 
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13C NMR (75 MHz, (CD3)2SO) δ 170.05, 164.64, 158.13, 143.51, 143.25, 131.98, 

121.90, 119.95, 119.45, 118.51, 116.87, 116.28, 51.82, 40.89. 

HRMS EI- : m/z [M]- Calculated for C14H10F3N2O6- 359,0496; found 359,04977. 

 

 

Compound 139 was obtained in 57% yield as grey pure 

solid; 

1H NMR (300 MHz, (CD3)2SO) δ 12.45 (s, 1H), 10.24 (s, 

1H), 9.06 (t, J = 5.9 Hz, 1H), 7.63 (s, 1H), 7.44-7.33 (m, 

7H), 5.21 (s, 2H), 4.12 (d, J = 5.8 Hz, 2H). 

 13C NMR (75 MHz, (CD3)2SO) δ 169.57, 164.68, 158.15, 

143.63, 143.28, 135.88, 131.96, 128.44, 128.12, 128.03, 121.90, 119.92, 119.45, 116.87, 

116.35, 66.08, 41.00;  

HRMS EI+: m/z [M + Na]+ Calculated for C13H17NO3Na 258.1101; found 

258.1074 

 Elemental analysis calculated (%) for: C20H15F3N2O6 + 2H2O: C, 50.85; H, 4.05; 

N, 5.93; found:C, 50.40; H,3.74; N, 5.87. 

 

 

Compound 140 was obtained in 57% yield as grey pure 

solid; 

1H NMR (300 MHz, (CD3)2SO) δ 12.43 (s, 1H), 10.21 

(s, 1H), 9.04 (d, J = 7.0 Hz, 1H), 7.59 – 7.27 (m, 3H), 

4.48 (d, J = 2.4 Hz, 1H), 3.70 (s, 3H), 3.60 (s, 3H), 2.50 

(2H, overlapped with solvent peaks), 2.18 – 1.81 (m, 

2H).  

13C NMR (75 MHz, (CD3)2SO) δ 172.40, 171.53, 164.04, 157.90, 143.31, 142.97, 

131.74, 119.75, 119.26, 119.17, 118.27, 116.67, 115.74, 51.76, 51.25, 51.19, 29.32, 

25.33;  

LRMS (ESI): m/z [M+H]+ 446.8 ; 414.8; 347.8; 338.1; 142.9 
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Elemental analysis calculated (%) for: C18H17F3N2O8 + H2O: C, 44.82; H, 4.39; N, 

5.81; O, 33.17; found: C, 44.44; H, 3.99; N, 6.05. 

 

 

Compound 141 was obtained in 57% yield as grey pure 

solid; 

1H NMR (300 MHz, (CD3)2SO) δ 12.27 (d, J = 5.9 Hz, 

1H), 11.58 (s, 1H), 9.21 (s, 1H), 7.39 – 7.07 (m, 7H), 

6.86 (d, J = 6.8 Hz, 1H), 4.63 (q, J = 6.6 Hz, 1H), 4.01 

(q, J = 6.9 Hz, 2H), 3.08 – 2.92 (m, 2H), 1.08 (t, J = 7.1 

Hz, 3H). 

 13C NMR (75 MHz, (CD3)2SO) δ 172.40, 169.28, 164.39, 163.01, 143.07, 137.43, 

129.28, 128.28, 127.90, 126.48, 124.95, 115.88, 115.05, 113.28, 103.79, 60.06, 53.86, 

37.95, 14.02; 

HRMS EI+: (m/z) [M+ Na]+ Calculated for C22H19F3N2NaO6+ 487,1087; found 

487,1082. 

Elemental analysis calculated (%) for C22H19F3N2O6 + 3H2O: C, 54.77; H, 4.39; 

N, 5.81; found: C, 54.51; H, 3.71; N, 6.18. 

 

 

Compound 142 was obtained in 71% yield as grey pure 

solid; 

1H NMR (300 MHz, (CD3)2SO) δ 12.43 (d, J = 19.0 

Hz, 1H), 9.13 (d, J = 7.4 Hz, 1H), 7.49 – 7.04 (m, 8H), 

4.68 (ddd, J =9.5, 7.4, 5.3 Hz, 1H), 3.67 (s, 3H), 3.15-

2.99 (m, 2H).  

13C NMR: (75 MHz, (CD3)2SO) δ 172.82, 171.72, 164.16, 158.16, 143.65, 143.15, 

137.18, 131.90, 129.19, 128.25, 126.58, 119.84, 119.40, 116.80, 116.15, 53.99, 51.93, 

36.35, 25.26.  

LRMS (ESI): m/z [M+ Na]+ 450.9; 419.1; 392.2; 338.17; 244.9.  
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Elemental analysis calculated (%) for: C21H17F3N2O6 +0.5H2O C, 54.91; H, 3.85; 

N, 6.10; found: C, 54.41; H, 3.75; N, 6.19 

 

 

Compound 143 was obtained in 70% yield as grey 

solid; 

1H NMR  (300 MHz, (CD3)2SO)  δ 12.40 (s, 1H), 

10.12 (s, 1H), 8.98 (s, 1H), 7.38 (s, 3H), 4.47 (s, 1H), 

3.69 (s, 3H), 1.83 – 1.44 (m, 3H), 0.91 (s, 6H). 

13C NMR: (75 MHz, (CD3)2SO) δ 174.05, 169.40, 

164.33, 163.13, 143.10, 127.95, 124.94, 122.12, 115.95, 115.18, 113.39, 103.91, 51.59, 

50.13, 24.54; 

LRMS (ESI): m/z  [M+ Na]+ 439; 416.9; 338.1; 142.9. 

Elemental analysis calculated (%) for: C18H19F3N2O6 + 0.5H2O: C, 50.83; H, 4.74; 

N, 6.59; found: C, 49.46; H, 4.10; N, 6.25; 

 

 

Compound 165 was obtained in 93% yield as grey solid; 

1H NMR (300 MHz (CD3)2SO) δ 12.03 (s, 1H), 9.71 (s, 1H), 

7.60 – 6.82 (m, 33H), 4.86 – 4.50 (m, 3H), 4.09 (q  J = 6.9 Hz, 

2H), 3.04 (ddd, J = 22.8, 13.9, 7.6 Hz, 1H), 1.15 (t, J = 7.0 Hz, 

11H).  

13C NMR: (75 MHz, (CD3)2SO) δ 171.66, 165.56, 160.02, 

142.03, 137.36, 132.34, 129.37, 128.38, 126.62, 125.66, 124.12, 

123.31, 122.08, 121.71, 119.50, 114.94, 60.64, 54.00, 14.08. 

LRMS (ESI): m/z  [M+ Na]+  403.69; 396,90; 193.88 

Elemental analysis calculated (%) for: C21H20N2O5 + 0.5H2O: C, 61.10; H, 5.76; 

N, 6.79; found: C, 60.87; H, 5.56; N, 6.65; 
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Compound 166 was obtained in 84% yield as grey solid; 

1H NMR (300 MHz, (CD3)2SO) δ 12.09 (s, 1H), 9.83 (s, 1H), 

7.67 – 7.16 (m, 36H), 7.08 (t, J = 7.0 Hz, 4H), 4.65 (dd, J = 

14.1, 7.7 Hz, 2H), 4.10 (q, J = 7.0 Hz, 2H), 3.04 (ddd, J = 22.8, 

13.8, 7.5 Hz, 1H), 1.21 (t, J = 7.0 Hz, 3H) 

13C NMR: (75 MHz, (CD3)2SO) 13C NMR (75 MHz, 

DMSO) δ 172.00, 169.59, 164.21 (d, J = 248 Hz), 159.61, 

156.42, 137.69, 130.03, 129.69, 128.69, 127.65, 127.01, 120.31, 119.43, 108.29, 106.24, 

61.03, 54.43, 37.17, 14.57. 

LRMS (ESI): m/z  [M+ H]+  399.3 

Elemental analysis calculated (%) for: C21H19FN2O5 + 0.7H2O: C, 61.37; H, 5.00; 

N, 6.82; found: C, 61.06; H, 5.09; N, 7.21; 

 

 

Compound 167 was obtained in 87% yield as grey solid; 

1H NMR (300 MHz, (CD3)2SO) δ 12.31 (s, 1H), 9.10 (s, 1H), 

7.46 – 7.10 (m, 8H), 4.63 (q, J = 14.2, 8.0 Hz, 6H), 4.12 (q, J 

= 7.0 Hz, 2H), 3.04 (ddd, J = 23.1, 13.9, 7.6 Hz, 2H), 1.17 (t, 

J = 7.1 Hz, 3H). 

13C NMR: (75 MHz, (CD3)2SO) δ 171.60, 164.51, 164.47, 

158.42, 143.73, 137.49, 132.07, 129.54, 128.60, 126.98, 

126.84, 126.73, 123.22, 120.18, 119.57, 117.28, 61.06, 54.44, 14.36 

LRMS (ESI): m/z  [M+ Na]+: 436,62;380.75; 193.88 

Elemental analysis calculated (%) for: C21H19ClN2O5 + 1.1H2O: C, 58.03; H, 4.92; 

N, 6.45; found: C, 58.24; H, 4.87; N, 6.25; 
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Compound 169 was obtained in 80% yield as grey solid; 
1H NMR (300 MHz, DMSO) δ 10.32 (s, 1H), 9.25 (s, 

1H), 7.48 (d, J = 9.3 Hz, 1H), 7.38 – 7.07 (m, 12H), 5.63 

(q, J = 16.2 Hz, 2H), 4.67 (dd, J = 14.7, 7.5 Hz, 1H), 4.12 

(q, J = 7.1 Hz, 2H), 3.06 (ddd, J = 23.1, 13.9, 7.5 Hz, 2H), 

1.17 (t, J = 7.1 Hz, 3H). 

13C NMR: (75 MHz, (CD3)2SO) δ 172.05, 169.40, 164.33, 

163.13, 143.65, 143.15, 137.18, 131.90 130.10, 129.72, 

129.15, 128.27, 127.36; 127.95, 124.94, 122.12, 115.95, 115.18, 113.39, 103.91, 77,11, 

76. 54.99, 14.37  

HRMS EI+: m/z [M + Na]+ Calculated for C29H26F3N2NaO6+ 555,1737; found 

555,17270 
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A. Computational details 

All calculations were performed using the Gaussian 03 software package1,and the 

PBE1PBE functional, without symmetry constraints. That functional uses a hybrid 

generalized gradient approximation (GGA), including 25 % mixture of Hartree-

Fock2exchange with DFT3exchange-correlation, given by Perdew, Burke and 

Ernzerhof functional (PBE).4The optimized geometries were obtained with the 

lanl2dz basis set5augmented with a f-polarization function6for Rh, and a standard 6-

31G(d,p)7for the remaining elements (basis b1). Transition state optimizations were 

performed with the Synchronous Transit-Guided Quasi-Newton Method (STQN) 

developed by Schlegel et al,8following extensive searches of the Potential Energy 

Surface. Frequency calculations were performed to confirm the nature of the 

stationary points, yielding one imaginary frequency for the transition states and none 

for the minima. Each transition state was further confirmed by following its 

vibrational mode downhill on both sides and obtaining the minima presented on the 

energy profile. The electronic energies (Eb1)obtained at the PBE1PBE/b1 level of 

theory were converted to free energy at 298.15 K and 1 atm (Gb1) by using zero point 

                                              
1Gaussian 03, Revision C.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.;Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., 

J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; 
Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, 
Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, 
R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; 
Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, 
K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; 
Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; 
Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C. &Pople, J. A. Gaussian, Inc., Wallingford CT, (2004). 

2Hehre, W. J.; Radom, L.; Schleyer, P. v.R. &Pople, J. A. Ab Initio Molecular Orbital Theory, John Wiley & Sons, NY, (1986) 

3 Parr, R. G. & Yang, W. in Density Functional Theory of Atoms and Molecules; Oxford University Press: New York, (1989). 

4 (a) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1997, 78, 1396. (b) Perdew, J. P. Phys. Rev. B1986, 33, 8822. 

5 (a) Dunning Jr., T. H.; Hay, P. J. Modern Theoretical Chemistry, Ed. Schaefer, H. F. III (Plenum, New York, 1976), vol. 3, p. 1. (b) Hay P. J.; 
Wadt, W. R. J. Chem. Phys.1985, 82, 270. (c) Wadt W. R.; Hay, P. J. J. Chem. Phys.1985, 82, 284. (d) Hay P. J.; Wadt, W. R. J. Chem. Phys.1985, 
82, 2299. 

6 Ehlers, A. W.; Böhme, M.; Dapprich, S.; Gobbi, A.; Höllwarth, A.; Jonas, V.; Köhler, K. F.; Stegmann, R.; Veldkamp A.; Frenking, G. 
Chem. Phys. Lett.1993, 208, 111. 

7 (a) Ditchfield, R.; Hehre W. J.; Pople, J. A. J. Chem. Phys.1971, 54, 724. (b) Hehre, W. J.; Ditchfield R.; Pople, J. A. J. Chem. Phys.1972, 56, 
2257. (c) Hariharan, P. C.; Pople, J. A. Mol. Phys.1974, 27, 209. (d) Gordon, M. S. Chem. Phys. Lett.1980, 76, 163. (e) Hariharan, P. C.; 
Pople, J. A. Theor. Chim.Acta1973, 28, 213. 

8 (a) Peng, C.; Ayala, P.Y.; Schlegel, H.B.; Frisch, M.J. J. Comp. Chem., 1996, 17, 49. (b) Peng, C.; Schlegel, H.B. Israel J. Chem., 1994, 33, 449. 
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energy and thermal energy corrections based on structural and vibration frequency 

data calculated at the same level. 

Single point energy calculations were performed using an improved basis set (basis 

b2) and the geometries optimized at the PBE1PBE/b1 level. Basis b2 consisted of 

the same base (b1) for Rh and a standard 6-311++G(d,p)9 for the remaining elements. 

Solvent effects (ethanol) were considered in the PBE1PBE/b2//PBE1PBE/b1 

energy calculations using the Polarizable Continuum Model (PCM) initially devised 

by Tomasi and coworkers10as implemented on Gaussian 03.11 The molecular cavity 

was based on the united atom topological model applied on UAHF radii, optimized 

for the HF/6-31G(d) level. 

The free energy values presented along the text (Gb2soln) were derived from the 

electronic energy values obtained at the PBE1PBE/b2//PBE1PBE/b1 level, 

including solvent effects (Eb2soln), according to the following expression:Gb2soln = 

Eb2soln + Gb1 – Eb1 

                                              
9 (a) McClean, A. D.; Chandler, G. S. J. Chem. Phys.1980, 72, 5639. (b) Krishnan, R.; Binkley, J. S.; Seeger, R. Pople, J. A. J. Chem. Phys.1980, 

72, 650.(c) Wachters, A. J. H. J. Chem. Phys.1970, 52, 1033. (d) Hay, P. J. J. Chem. Phys.1977, 66, 4377. (e) Raghavachari, K.; Trucks, G. W. 
J. Chem. Phys.1989, 91, 1062. (f) Binning Jr., R. C.; Curtiss, L. A. J. Comp. Chem., 1990, 11, 1206. (g) McGrath, M. P.; Radom, L. J. Chem. 
Phys.1991, 94, 511. (h) Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer, P. v. R. J. Comp. Chem.1983, 4, 294. (i) Frisch, M. J.; Pople, 
J. A.; Binkley, J. S. J. Chem. Phys.1984, 80, 3265. 

10(a) Cancès, M. T.; Mennucci, B.; Tomasi, J. J. Chem. Phys.1997, 107, 3032. (b) Cossi, M.; Barone, V.; Mennucci, B.; Tomasi, J. Chem. Phys. 
Lett.1998, 286, 253. (c) Mennucci B.; Tomasi, J. J. Chem. Phys.1997, 106, 5151. 

11(a) Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999. (b) Cossi, M.; Scalmani, G.; Rega, N.; Barone, V. J. Chem. Phys.2002, 
117, 43. 



 Appendix | 175 

 

 

 

 

Figure A1 - Metallocarbene conformations with and without intramolecular hydrogen bond 
determined at PBE1PBE/b1//PBE1PBE/b2level of theory. The energy corresponds to Gibbs 

Free Energy in ethanol, after thermal correction and the energy values are referred to the 70 
+Rh2(OAc)4 pair of reactants. The relevant bond distances (Å) are indicated, as well as the 

respective Wiberg indices (WI, italics) 

 

 

Figure A2 - Energy profiles calculated for the dirhodium catalyzed quinolone formation. The 
minima and the transition states were optimized and the energy values (kcal/mol) are referred to 

pair of starting materials (70+Rh2(OAc)4) after thermal correction to Gibbs Free Energy in ethanol 
(in black) or to Gibbs free energy in vacuum at the PBE1PBE/b1 level of theory (in red).   
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Figure A3 - Energy profiles calculated for rhodium free quinolone formation, via a concerted 
pathway. The minima and the transition states were optimized with at the pbe1pbe/6-31G** level 
of theory. The energy values (kcal/mol) are referred to the Gibbs Free Energyof the 3-hydroxy-

oxindole (70) in the A conformation represented. 

 

Figure A4 - Energy profiles calculated for rhodium free quinolone formation, via a free carbene 
pathway. The minima and the transition states were optimized at the pbe1pbe/6-31G** level of 

theory. The energy values (kcal/mol) are referred to the Gibbs Free Energyof the 3-hydroxy-
oxindole (70) in the A conformation represented. 
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Figure A5 - Energy profiles calculated for the rhodium catalyzed quinolone formation, via 
coordination to the carbonylic ester of the 3-hydroxy-oxindole (70). The minima and the transition 

states were optimized at the PBE1PBE/b1level of theory. The energy values (kcal/mol) are 
referred to the Gibbs Free Energyof the pair of starting materials represented (J). 

 

Figure A6 - Energy profiles calculated for the dirhodium catalyzed quinolone formation, via 
coordination to the carbonyl of the oxindole ring. The minima and the transition states were 

optimized at the PBE1PBE/b1level of theory. The energy values (kcal/mol) are referred to the 
Gibbs Free Energyof the pair of starting materials represented (M). 
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Atomic coordinates for all the optimized species (PBE1PBE/b2) 

 

5-Rh2(OAc)4 
45 1.574574 0.782673 -0.819868 
45 -0.122120 -0.274816 0.491276 
8 2.826632 0.480689 0.743026 
1 3.030686 -1.001261 3.638526 
1 -1.742121 1.792363 -3.765798 
6 2.435027 -0.188272 1.743946 
8 -1.441924 0.133299 -1.019416 
6 -1.021390 0.701125 -2.065555 
8 0.170618 1.092267 -2.277990 
8 1.266751 -0.647666 1.923858 
6 3.467474 -0.461383 2.798912 
6 -2.007296 0.910227 -3.181642 
1 3.899623 0.483994 3.136236 
1 -1.972333 0.039989 -3.845137 
8 1.919563 -1.066961 -1.646774 
8 -0.511287 1.536061 1.334069 
6 1.275807 -2.085691 -1.230698 
6 0.144854 2.542247 0.949180 
1 4.273426 -1.045320 2.346115 
1 -3.018135 0.995790 -2.781854 
8 1.054829 2.548464 0.060175 
8 0.353960 -2.060143 -0.374153 
6 1.671601 -3.409222 -1.816971 
6 -0.168487 3.865076 1.591777 
1 1.037058 -4.205446 -1.429784 
1 -0.497591 4.573152 0.826046 
1 2.717427 -3.603634 -1.562015 
1 -0.945932 3.748684 2.346028 
1 1.600219 -3.367292 -2.907165 
1 0.739674 4.268888 2.047274 
7 6.511186 0.213890 -1.565330 
6 5.185744 -0.115883 -1.448493 
8 4.724965 -0.955293 -0.713059 
6 4.429002 0.638961 -2.598687 
8 3.787769 -0.281413 -3.417828 
6 5.572125 1.319198 -3.322693 
6 5.588274 2.092319 -4.470744 
6 6.802977 2.623049 -4.915163 
6 7.976686 2.372539 -4.209154 
6 7.976745 1.581730 -3.058769 
6 6.763754 1.059087 -2.636098 
6 3.391093 1.703359 -2.069989 
8 4.896645 2.405269 -0.451791 
6 3.963924 2.737687 -1.142083 
8 3.490291 3.982278 -1.037050 

6 2.107829 5.885470 -1.201309 
6 2.422550 4.538839 -1.809704 
7 2.660761 2.088049 -3.134034 
7 2.029531 2.240478 -4.051109 
1 7.204095 -0.159292 -0.937482 
1 3.180619 -0.791187 -2.839300 
1 4.678152 2.272787 -5.034970 
1 6.831363 3.226782 -5.816609 
1 8.914748 2.792365 -4.560702 
1 8.896297 1.380376 -2.517935 
1 1.309001 6.372814 -1.768033 
1 2.988790 6.532282 -1.212965 
1 1.780348 5.763295 -0.166225 
1 2.750075 4.659626 -2.849383 
1 1.546073 3.887755 -1.760126 
ts1 
45 1.667064 0.742218 -0.830296 
45-0.090372 -0.245142 0.510194 
8 2.892175 0.355046 0.741904 
1 3.057670 -1.175865 3.611830 
1 -1.827533 2.107999 -3.476372 
6 2.472678 -0.303561 1.741661 
8 -1.408407 0.240013 -0.981032 
6 -0.972882 0.786367 -2.026591 
8 0.240500 1.110614 -2.253873 
8 1.288333 -0.702857 1.930719 
6 3.505872 -0.631051 2.781448 
6 -1.952214 1.079473 -3.130046 
1 3.966607 0.293689 3.138056 
1 -1.741793 0.420347 -3.977618 
8 1.917927 -1.125543 -1.649799 
8 -0.358165 1.596012 1.354062 
6 1.216355 -2.110859 -1.237907 
6 0.348512 2.563026 0.967593 
1 4.291889 -1.227681 2.310732 
1 -2.972630 0.914217 -2.785821 
8 1.246544 2.529813 0.062314 
8 0.297583 -2.044619 -0.384154 
6 1.543596 -3.447521 -1.838802 
6 0.118672 3.900859 1.616374 
1 0.872530 -4.213939 -1.452982 
1 -0.285115 4.597494 0.875591 
1 2.580154 -3.697298 -1.594752 
1 -0.581825 3.805392 2.445336 
1 1.465622 -3.392772 -2.928018 
1 1.071264 4.305215 1.967463 
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7 6.487167 0.281092 -1.437653 
6 5.195295 -0.168319 -1.384363 
8 4.782897 -1.086631 -0.720332 
6 4.394163 0.611594 -2.500880 
8 3.807997 -0.311249 -3.362837 
6 5.513490 1.373688 -3.187083 
6 5.513570 2.167956 -4.320439 
6 6.705144 2.774948 -4.728763 
6 7.876075 2.579722 -4.002182 
6 7.895955 1.766202 -2.868164 
6 6.706271 1.166832 -2.483916 
6 3.320799 1.525528 -1.857793 
8 4.757260 2.438081 -0.362947 
6 3.904975 2.721889 -1.177043 
8 3.540987 3.989341 -1.337602 
6 2.034665 5.801971 -1.513381 
6 2.383818 4.435246 -2.054820 
7 2.561206 2.019878 -3.465980 
7 1.755046 1.924789 -4.219300 
1 7.201151 -0.105999 -0.842098 
1 3.189539 -0.843721 -2.819182 
1 4.610005 2.307484 -4.904848 
1 6.716696 3.395409 -5.619172 
1 8.795452 3.059833 -4.324465 
1 8.813650 1.603927 -2.311364 
1 1.173440 6.206823 -2.053386 
1 2.873808 6.492600 -1.630248 
1 1.784763 5.735443 -0.451933 
1 2.631301 4.498811 -3.120612 
1 1.558407 3.736847 -1.898619 
mc1 
45 1.853666 0.747870 -0.615515 
45-0.168913 -0.071972 0.454641 
8 2.833853 0.049118 1.022821 
1 2.462620 -1.692949 3.747415 
1 -1.015444 2.715962 -3.573668 
6 2.209810 -0.582954 1.933229 
8 -1.230419 0.697048 -1.115581 
6 -0.612902 1.252110 -2.059783 
8 0.650898 1.404863 -2.148207 
8 0.969251 -0.805661 1.971464 
6 3.060177 -1.092980 3.061684 
6 -1.421840 1.766844 -3.219221 
1 3.495718 -0.241844 3.592392 
1 -1.357373 1.047437 -4.041516 
8 1.983348 -1.108295 -1.488179 
8 -0.270838 1.728770 1.414370 
6 1.072704 -1.987625 -1.289759 
6 0.586349 2.614943 1.164603 
1 3.886337 -1.679436 2.652866 

1 -2.466544 1.877770 -2.929245 
8 1.554605 2.519209 0.338260 
8 0.069105 -1.840377 -0.553125 
6 1.247205 -3.286504 -2.022448 
6 0.454181 3.933951 1.874878 
1 0.474822 -3.995297 -1.726381 
1 -0.201265 4.586818 1.288854 
1 2.238924 -3.695038 -1.812290 
1 -0.005178 3.783778 2.852586 
1 1.187403 -3.100834 -3.099022 
1 1.428154 4.414916 1.971059 
7 6.735866 0.679350 -1.443602 
6 5.561027 0.002865 -1.259929 
8 5.361504 -0.963467 -0.574883 
6 4.492789 0.676525 -2.255296 
8 3.920569 -0.286682 -3.063733 
6 5.396999 1.596689 -3.051641 
6 5.124379 2.347197 -4.181192 
6 6.146298 3.126248 -4.732059 
6 7.412213 3.136170 -4.150667 
6 7.703969 2.358312 -3.028249 
6 6.681953 1.584655 -2.499502 
6 3.559285 1.419286 -1.354561 
8 4.868096 2.427204 0.231564 
6 4.123460 2.628721 -0.704225 
8 3.792835 3.847635 -1.098739 
6 1.921549 5.126127 -1.858953 
6 2.886131 4.017135 -2.202902 
7 1.722085 0.540327 -5.213128 
7 1.240664 -0.406465 -4.920221 
1 7.573752 0.409985 -0.952079 
1 3.284114 -0.802703 -2.528324 
1 4.139900 2.309787 -4.638325 
1 5.954889 3.719802 -5.620388 
1 8.196599 3.749735 -4.583941 
1 8.699470 2.351413 -2.595551 
1 1.262454 5.320722 -2.710540 
1 2.459686 6.047932 -1.621151 
1 1.312905 4.839570 -0.999245 
1 3.491257 4.265816 -3.080021 
1 2.343491 3.083572 -2.398887 
 
 
mc1’ 
45 1.854224 0.742528 -0.610380 
45 -0.176490 -0.081672 0.441000 
8 2.821858 0.063514 1.044602 
1 2.405660 -1.565270 3.834187 
1 -1.219103 2.783144 -3.383090 
6 2.187256 -0.548127 1.961673 
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8 -1.218688 0.636446 -1.166878 
6 -0.591568 1.195018 -2.102778 
8 0.670005 1.375423 -2.163859 
8 0.946041 -0.768778 1.991812 
6 3.025258 -1.041333 3.107024 
6 -1.381012 1.707041 -3.276659 
1 3.524968 -0.191249 3.578771 
1 -1.021118 1.230215 -4.192196 
8 2.005749 -1.120709 -1.465695 
8 -0.317409 1.735811 1.363391 
6 1.113575 -2.013413 -1.247383 
6 0.543620 2.621694 1.126322 
1 3.804714 -1.703114 2.721024 
1 -2.442077 1.501585 -3.139521 
8 1.533117 2.520883 0.326221 
8 0.102138 -1.868770 -0.520859 
6 1.329312 -3.333645 -1.929882 
6 0.388268 3.946403 1.821792 
1 0.524914 -4.024889 -1.681553 
1 -0.268337 4.585915 1.222499 
1 2.291976 -3.747019 -1.616974 
1 -0.081583 3.799932 2.795141 
1 1.373256 -3.183361 -3.012198 
1 1.355293 4.439428 1.926786 
7 6.700171 0.594071 -1.552877 
6 5.509754 -0.054243 -1.369178 
8 5.294430 -1.037362 -0.713054 
6 4.441944 0.687830 -2.315254 
8 3.818686 -0.222280 -3.146833 
6 5.356422 1.610572 -3.095565 
6 5.084775 2.410342 -4.190865 
6 6.117751 3.179556 -4.734721 
6 7.394857 3.130767 -4.180458 
6 7.685614 2.302908 -3.094197 
6 6.651754 1.539999 -2.572839 
6 3.553123 1.414791 -1.357469 
8 4.919772 2.345381 0.224001 
6 4.153526 2.591853 -0.683431 
8 3.832647 3.829363 -1.024966 
6 2.023477 5.218432 -1.732127 
6 2.907560 4.053004 -2.104254 
1 7.539013 0.284513 -1.087323 
1 3.207690 -0.761921 -2.605286 
1 4.090456 2.419139 -4.627373 
1 5.926068 3.811405 -5.596157 
1 8.188290 3.737177 -4.607256 
1 8.689003 2.250594 -2.683379 
1 1.348981 5.450922 -2.561825 
1 2.623309 6.106690 -1.515364 
1 1.427708 4.970408 -0.851764 

1 3.500023 4.268227 -2.998783 
1 2.305231 3.153472 -2.283579 
 
mc1’’ 
45 2.759227 -0.497778 -0.015293 
45 1.581462 -2.118199 1.356740 
8 4.424423 -1.033667 1.023941 
1 5.531157 -3.036057 3.341671 
1 -1.495659 0.704980 -1.263616 
6 4.371617 -1.949462 1.904535 
8 -0.144244 -1.589638 0.396048 
6 -0.090302 -0.723223 -0.514087 
8 0.951969 -0.102980 -0.905953 
8 3.343731 -2.586894 2.259911 
6 5.679033 -2.285699 2.565533 
6 -1.365206 -0.379406 -1.235832 
1 6.115322 -1.378078 2.989694 
1 -1.293763 -0.728414 -2.270081 
8 3.104316 -2.038161 -1.309877 
8 1.303412 -0.628908 2.735937 
6 2.633015 -3.190266 -1.063524 
6 1.741681 0.524552 2.493234 
1 6.374142 -2.658582 1.808439 
1 -2.216887 -0.852668 -0.748114 
8 2.338552 0.898800 1.430073 
8 1.941255 -3.527268 -0.062129 
6 2.942586 -4.249642 -2.086706 
6 1.520552 1.584294 3.539451 
1 2.512433 -5.205696 -1.789580 
1 0.546437 2.054563 3.368250 
1 4.026849 -4.338819 -2.192460 
1 1.504645 1.128592 4.530273 
1 2.542873 -3.942577 -3.056759 
1 2.294249 2.350550 3.477130 
7 6.704287 1.183995 -2.401040 
6 5.842784 0.156208 -2.118677 
8 6.121517 -0.968954 -1.807066 
6 4.365793 0.730369 -2.389432 
8 3.597089 -0.115464 -3.179744 
6 4.698178 2.058922 -3.045351 
6 3.872204 2.963996 -3.689758 
6 4.434353 4.127048 -4.223728 
6 5.803283 4.359980 -4.109516 
6 6.650138 3.436962 -3.492231 
6 6.077197 2.284213 -2.976552 
6 3.783526 0.850787 -1.020297 
8 5.398609 1.866242 0.254086 
6 4.296638 2.002164 -0.234624 
8 3.573032 3.095588 -0.051349 
6 1.384041 3.974169 0.305240 
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6 2.264020 3.194392 -0.641016 
1 7.699536 1.073249 -2.287147 
1 4.081171 -0.266438 -3.998297 
1 2.810346 2.757912 -3.790282 
1 3.803579 4.849216 -4.732228 
1 6.228177 5.270667 -4.521177 
1 7.719581 3.612732 -3.431076 
1 0.395343 4.116755 -0.141393 
1 1.814201 4.957621 0.514092 
1 1.270858 3.431077 1.245011 
1 2.375477 3.714936 -1.597255 
1 1.851464 2.194606 -0.822542 
 
mc2 
45 1.974712 0.689102 -0.936831 
45 -0.235525 0.177243 -0.079968 
8 2.627467 0.640333 0.992884 
1 1.767431 -0.287149 3.965944 
1 -0.824182 1.634602 -4.602598 
6 1.809172 0.357082 1.924910 
8 -0.934196 0.256750 -2.002843 
6 -0.127645 0.507681 -2.935313 
8 1.123361 0.725216 -2.814841 
8 0.579585 0.111298 1.788931 
6 2.374433 0.346412 3.318625 
6 -0.679739 0.583066 -4.333892 
1 2.354792 1.366821 3.715264 
1 0.029087 0.150061 -5.042171 
8 2.242515 -1.332331 -1.177578 
8 -0.545528 2.186403 0.117978 
6 1.311739 -2.139248 -0.822833 
6 0.361364 2.983503 -0.237785 
1 3.411886 0.009897 3.300128 
1 -1.641715 0.073560 -4.388678 
8 1.499507 2.670482 -0.719322 
8 0.205424 -1.809959 -0.330833 
6 1.608477 -3.600451 -1.006760 
6 0.099742 4.455620 -0.061009 
1 0.732414 -4.200787 -0.764239 
1 0.486388 5.013285 -0.916313 
1 2.442447 -3.877988 -0.355756 
1 -0.967055 4.638089 0.067238 
1 1.924976 -3.789304 -2.035840 
1 0.629313 4.803672 0.831532 
7 6.663552 1.087016 -2.787863 
6 5.977169 -0.134754 -2.715869 
8 6.488641 -1.216214 -2.684939 
6 4.473370 0.192809 -2.696686 
8 3.699057 -0.667471 -3.394210 
6 4.468245 1.736013 -3.012226 

6 3.459463 2.570829 -3.538608 
6 3.812756 3.818197 -4.016884 
6 5.158514 4.220700 -4.013216 
6 6.186190 3.389613 -3.577961 
6 5.839022 2.127203 -3.107657 
6 3.999790 0.929044 -1.541496 
8 5.527644 0.171055 0.046219 
6 4.976277 1.142774 -0.418035 
8 5.215635 2.348006 0.096134 
6 4.026346 4.189869 1.030027 
6 4.464593 3.518301 -0.251310 
1 7.671446 1.115521 -2.825450 
1 3.054420 -1.044327 -2.763876 
1 2.432032 2.220629 -3.511444 
1 3.052316 4.491942 -4.397167 
1 5.413949 5.208523 -4.387430 
1 7.223845 3.701228 -3.639393 
1 3.501744 5.122753 0.799996 
1 4.883265 4.421837 1.668415 
1 3.347608 3.531844 1.578442 
1 5.128776 4.166066 -0.834678 
1 3.594537 3.258274 -0.852710 
 
ts2 
45 1.970649 0.686301 -0.953452 
45 -0.245194 0.192381 -0.102539 
8 2.613442 0.682481 0.979467 
1 1.916708 -0.412692 3.876917 
1 -0.798738 1.560374 -4.657393 
6 1.790707 0.410565 1.910372 
8 -0.929108 0.244652 -2.033434 
6 -0.114802 0.462483 -2.966389 
8 1.139448 0.667120 -2.844046 
8 0.562700 0.157124 1.770856 
6 2.340450 0.418769 3.310618 
6 -0.658266 0.513348 -4.369473 
1 2.034691 1.346074 3.805597 
1 0.053270 0.066944 -5.066539 
8 2.245654 -1.333185 -1.166401 
8 -0.554807 2.205380 0.067332 
6 1.312982 -2.132879 -0.801893 
6 0.351154 2.996259 -0.303654 
1 3.428725 0.362030 3.294410 
1 -1.621414 0.005683 -4.420788 
8 1.486269 2.674619 -0.787218 
8 0.201883 -1.797045 -0.323543 
6 1.614389 -3.597577 -0.947470 
6 0.092925 4.471481 -0.148085 
1 0.713327 -4.189837 -0.791499 
1 0.453403 5.011553 -1.026001 



182 | Appendix  

 

 

 

1 2.369093 -3.875713 -0.205650 
1 -0.969584 4.656936 0.007884 
1 2.040537 -3.797279 -1.933364 
1 0.650117 4.838225 0.719838 
7 6.637608 1.118187 -2.822993 
6 5.970045 -0.111656 -2.799002 
8 6.494676 -1.186662 -2.839670 
6 4.463891 0.171396 -2.705581 
8 3.696970 -0.656458 -3.424263 
6 4.427617 1.804294 -2.916692 
6 3.420235 2.646553 -3.442998 
6 3.775224 3.870292 -3.973684 
6 5.126749 4.250888 -4.024894 
6 6.151122 3.408919 -3.607969 
6 5.800184 2.163275 -3.095057 
6 4.016856 0.926554 -1.566669 
8 5.549667 0.079299 -0.006112 
6 4.992044 1.066466 -0.427470 
8 5.233638 2.250536 0.138616 
6 4.168756 4.124049 1.147356 
6 4.475976 3.429136 -0.159576 
1 7.642749 1.153449 -2.903926 
1 2.964646 -0.946208 -2.846058 
1 2.386956 2.324549 -3.364420 
1 3.012298 4.545707 -4.345983 
1 5.386955 5.223615 -4.433701 
1 7.192238 3.693888 -3.721005 
1 3.641295 5.063722 0.954162 
1 5.084026 4.348154 1.702167 
1 3.532860 3.485591 1.766056 
1 5.090108 4.062444 -0.811457 
1 3.549849 3.174685 -0.673477 
45 1.970649 0.686301 -0.953452 
45 -0.245194 0.192381 -0.102539 
8 2.613442 0.682481 0.979467 
1 1.916708 -0.412692 3.876917 
1 -0.798738 1.560374 -4.657393 
6 1.790707 0.410565 1.910372 
8 -0.929108 0.244652 -2.033434 
6 -0.114802 0.462483 -2.966389 
8 1.139448 0.667120 -2.844046 
8 0.562700 0.157124 1.770856 
6 2.340450 0.418769 3.310618 
6 -0.658266 0.513348 -4.369473 
1 2.034691 1.346074 3.805597 
1 0.053270 0.066944 -5.066539 
8 2.245654 -1.333185 -1.166401 
8 -0.554807 2.205380 0.067332 
6 1.312982 -2.132879 -0.801893 
6 0.351154 2.996259 -0.303654 

1 3.428725 0.362030 3.294410 
1 -1.621414 0.005683 -4.420788 
8 1.486269 2.674619 -0.787218 
8 0.201883 -1.797045 -0.323543 
6 1.614389 -3.597577 -0.947470 
6 0.092925 4.471481 -0.148085 
1 0.713327 -4.189837 -0.791499 
1 0.453403 5.011553 -1.026001 
1 2.369093 -3.875713 -0.205650 
1 -0.969584 4.656936 0.007884 
1 2.040537 -3.797279 -1.933364 
1 0.650117 4.838225 0.719838 
7 6.637608 1.118187 -2.822993 
6 5.970045 -0.111656 -2.799002 
8 6.494676 -1.186662 -2.839670 
6 4.463891 0.171396 -2.705581 
8 3.696970 -0.656458 -3.424263 
6 4.427617 1.804294 -2.916692 
6 3.420235 2.646553 -3.442998 
6 3.775224 3.870292 -3.973684 
6 5.126749 4.250888 -4.024894 
6 6.151122 3.408919 -3.607969 
6 5.800184 2.163275 -3.095057 
6 4.016856 0.926554 -1.566669 
8 5.549667 0.079299 -0.006112 
6 4.992044 1.066466 -0.427470 
8 5.233638 2.250536 0.138616 
6 4.168756 4.124049 1.147356 
6 4.475976 3.429136 -0.159576 
1 7.642749 1.153449 -2.903926 
1 2.964646 -0.946208 -2.846058 
1 2.386956 2.324549 -3.364420 
1 3.012298 4.545707 -4.345983 
1 5.386955 5.223615 -4.433701 
1 7.192238 3.693888 -3.721005 
1 3.641295 5.063722 0.954162 
1 5.084026 4.348154 1.702167 
1 3.532860 3.485591 1.766056 
1 5.090108 4.062444 -0.811457 
1 3.549849 3.174685 -0.673477 
 
mc3 
45 1.856744 0.873458 -1.214242 
45 -0.305867 0.404890 -0.237732 
8 2.278836 1.904772 0.514573 
1 0.978365 2.750260 3.390772 
1 -0.319583 -0.828398 -4.944507 
6 1.403368 1.971454 1.439108 
8 -0.812077 -0.639746 -1.918736 
6 0.026814 -0.736779 -2.844504 
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8 1.199374 -0.223664 -2.822098 
8 0.257277 1.454608 1.410727 
6 1.795312 2.742229 2.670179 
6 -0.344341 -1.500453 -4.081809 
1 2.058252 3.766536 2.392323 
1 0.391658 -2.288882 -4.260475 
8 2.538191 -0.833453 -0.307091 
8 -0.989280 2.120769 -1.102696 
6 1.727228 -1.538768 0.371976 
6 -0.199780 2.800388 -1.819061 
1 2.682202 2.286505 3.119545 
1 -1.339248 -1.931177 -3.976660 
8 1.021852 2.540252 -2.049455 
8 0.505378 -1.289674 0.570641 
6 2.287363 -2.775773 1.020194 
6 -0.758050 4.025383 -2.490169 
1 1.572939 -3.595960 0.928232 
1 -1.077026 3.756442 -3.502288 
1 2.430110 -2.581832 2.088096 
1 -1.623618 4.397321 -1.941367 
1 3.244254 -3.045475 0.573648 
1 0.013160 4.792570 -2.573566 
7 5.776500 2.300847 -4.108820 
6 5.369174 1.018106 -4.349281 
8 5.897242 0.309451 -5.178034 
6 4.178320 0.552716 -3.501313 
8 3.242002 0.104003 -4.323469 
6 4.272131 2.836030 -2.267250 
6 3.752490 3.818464 -1.422728 
6 4.158454 5.146550 -1.514112 
6 5.088240 5.524119 -2.477339 
6 5.607790 4.572010 -3.344052 
6 5.208743 3.238626 -3.240079 
6 3.918129 1.387324 -2.219846 
8 4.785696 -0.526711 -2.563099 
6 4.716307 0.369724 -1.612106 
8 5.350732 0.145784 -0.514992 
6 5.514361 0.462087 1.837562 
6 5.353016 1.167015 0.515110 
1 6.522659 2.608291 -4.717900 
1 2.403613 -0.068405 -3.828760 
1 3.018166 3.525792 -0.683215 
1 3.739261 5.885914 -0.838348 
1 5.406749 6.558810 -2.562944 
1 6.329913 4.855653 -4.105932 
1 5.566725 1.202454 2.641260 
1 6.429383 -0.135651 1.860536 
1 4.660060 -0.194597 2.020348 
1 6.191154 1.835949 0.297886 
1 4.414031 1.720080 0.469516 

 
ts3 
45 1.811490 0.926430 -1.221499 
45 -0.347183 0.385898 -0.245499 
8 2.107505 2.078131 0.449697 
1 0.732239 2.965248 3.275462 
1 -0.127484 -1.159595 -4.891996 
6 1.214772 2.144873 1.355882 
8 -0.765118 -0.796481 -1.877875 
6 0.081289 -0.911455 -2.782621 
8 1.239962 -0.341821 -2.750925 
8 0.102636 1.557257 1.341309 
6 1.535232 3.012958 2.540792 
6 -0.212244 -1.760364 -3.981662 
1 1.670891 4.045679 2.207272 
1 0.528030 -2.562776 -4.048462 
8 2.570733 -0.669813 -0.192915 
8 -1.092857 2.017440 -1.232479 
6 1.788920 -1.387836 0.506032 
6 -0.330785 2.694186 -1.978783 
1 2.476549 2.686521 2.990556 
1 -1.213634 -2.181714 -3.907051 
8 0.905605 2.481403 -2.189851 
8 0.548048 -1.207678 0.667816 
6 2.412773 -2.550278 1.228901 
6 -0.933975 3.862744 -2.710264 
1 1.718509 -3.391894 1.248819 
1 -0.955064 3.642625 -3.781779 
1 2.609745 -2.256382 2.265100 
1 -1.947351 4.052902 -2.358086 
1 3.353663 -2.832682 0.756162 
1 -0.307071 4.746454 -2.571405 
7 5.651267 2.457566 -4.242028 
6 4.870652 1.458711 -4.722972 
8 5.034090 0.903494 -5.787838 
6 3.760065 1.026265 -3.760738 
8 2.877239 0.364542 -4.353594 
6 4.410751 2.775748 -2.179361 
6 4.075160 3.659471 -1.150330 
6 4.675226 4.908801 -1.023323 
6 5.628266 5.324951 -1.945979 
6 5.949239 4.494274 -3.009756 
6 5.340218 3.245098 -3.128205 
6 3.829624 1.378884 -2.313175 
8 4.821783 -0.721364 -2.644562 
6 4.706123 0.230283 -1.878520 
8 5.416719 0.209861 -0.759345 
6 5.651124 0.335235 1.591000 
6 5.218823 1.088464 0.353561 
1 6.393436 2.754073 -4.861040 
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1 2.127036 -0.010784 -3.711830 
1 3.329690 3.351636 -0.430297 
1 4.388293 5.558594 -0.201893 
1 6.105500 6.295965 -1.854703 
1 6.664474 4.812141 -3.764592 
1 5.558696 0.980389 2.470457 
1 6.691952 0.010179 1.509841 
1 5.022049 -0.546815 1.734950 
1 5.827738 1.985977 0.203401 
1 4.169796 1.376614 0.422385 
 
6-Rh2(OAc)4 
45 1.746767 1.230702 -1.433779 
45 -0.475910 0.953880 -0.637056 
8 1.791538 3.019665 -0.456750 
1 0.455289 4.650056 1.888616 
1 0.130232 -2.278014 -4.066699 
6 0.768201 3.395166 0.189676 
8 -0.552371 -0.833282 -1.604475 
6 0.460937 -1.203726 -2.266075 
8 1.553752 -0.568035 -2.371858 
8 -0.317900 2.753911 0.302587 
6 0.846887 4.732201 0.872460 
6 0.361374 -2.499713 -3.019939 
1 0.213869 5.443332 0.333020 
1 1.319141 -3.022028 -2.992662 
8 2.399574 0.264502 0.252814 
8 -1.153594 1.880462 -2.317600 
6 1.537672 -0.117403 1.102193 
6 -0.299314 2.287806 -3.159069 
1 1.875049 5.094138 0.882062 
1 -0.433731 -3.121032 -2.607718 
8 0.959054 2.172958 -3.051277 
8 0.284589 0.027676 1.010325 
6 2.054771 -0.778437 2.350438 
6 -0.811093 2.975293 -4.392518 
1 1.365842 -1.560825 2.672405 
1 0.010469 3.174348 -5.080485 
1 2.109473 -0.029536 3.146933 
1 -1.567504 2.348151 -4.870399 
1 3.052551 -1.185385 2.184193 
1 -1.297019 3.912478 -4.105900 
7 3.941981 3.899008 -3.259283 
6 3.597285 2.826291 -4.031452 
8 3.197479 2.934726 -5.174720 
6 3.816870 1.508768 -3.363167 
8 3.608916 0.498537 -4.159375 
6 4.604779 2.643988 -1.303336 
6 5.026796 2.694090 0.035944 
6 5.293557 3.897950 0.668051 

6 5.134980 5.104932 -0.014190 
6 4.690518 5.092251 -1.323912 
6 4.416677 3.878016 -1.960561 
6 4.283092 1.414762 -2.042480 
8 4.508626 -0.938503 -2.343485 
6 4.722886 0.054958 -1.647632 
8 5.412886 -0.026205 -0.519790 
6 7.154501 -1.710484 -0.795210 
6 5.851156 -1.339657 -0.122472 
1 3.806356 4.792266 -3.712749 
1 3.810219 -0.321976 -3.621905 
1 5.131800 1.771296 0.586027 
1 5.623655 3.895150 1.702338 
1 5.350991 6.049906 0.475279 
1 4.545042 6.020829 -1.870406 
1 7.507191 -2.672578 -0.411045 
1 7.923061 -0.958875 -0.595187 
1 7.018207 -1.802186 -1.874988 
1 5.966739 -1.261812 0.961025 
1 5.061011 -2.057526 -0.353621 
 
eda-Rh2(OAc)4 
45 1.699291 0.812298 -0.724886 
45 -0.080423 -0.158835 0.531003 
8 2.973705 0.198817 0.740959 
1 3.025585 -1.490037 3.526303 
1 -1.840113 2.560868 -3.128916 
6 2.500374 -0.414011 1.747977 
8 -1.360184 0.447801 -0.947087 
6 -0.897043 1.052134 -1.951737 
8 0.326991 1.346161 -2.150833 
8 1.284764 -0.706875 1.937957 
6 3.484860 -0.805130 2.814046 
6 -1.864693 1.472627 -3.023601 
1 3.815226 0.097426 3.336868 
1 -1.555382 1.044971 -3.980886 
8 1.950436 -0.984441 -1.662394 
8 -0.315484 1.634049 1.473639 
6 1.185333 -1.946994 -1.334886 
6 0.439880 2.594214 1.152838 
1 4.366479 -1.258435 2.356073 
1 -2.874528 1.147341 -2.776387 
8 1.353844 2.565925 0.269249 
8 0.259761 -1.903243 -0.477170 
6 1.432911 -3.261581 -2.021746 
6 0.224936 3.904459 1.859175 
1 0.563837 -3.911789 -1.923301 
1 -0.430800 4.533393 1.248018 
1 2.293617 -3.747833 -1.551671 
1 -0.257858 3.737975 2.822367 
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1 1.676174 -3.096838 -3.072980 
1 1.175727 4.424620 1.986042 
6 3.512456 1.629670 -1.845384 
8 4.906019 2.956448 -0.522458 
6 3.991725 2.951840 -1.304197 
8 3.416402 4.093786 -1.688822 
6 1.463215 5.421720 -1.905320 
6 2.162091 4.169896 -2.381362 
7 3.146895 1.556174 -3.133230 
7 2.770263 1.472175 -4.187753 
1 4.179512 0.808464 -1.588152 
1 0.519243 5.547859 -2.444294 
1 2.082498 6.305799 -2.077662 
1 1.251127 5.344285 -0.836546 
1 2.363920 4.223549 -3.458743 
1 1.548711 3.290697 -2.169416 
 
tseda 
45 1.724972 0.817032 -0.728287 
45 -0.077093 -0.176871 0.535066 
8 2.962617 0.197943 0.774955 
1 2.982650 -1.399697 3.616429 
1 -1.807555 2.516450 -3.173236 
6 2.480608 -0.417169 1.779403 
8 -1.347555 0.421316 -0.959741 
6 -0.882544 1.022851 -1.959858 
8 0.343710 1.329128 -2.150284 
8 1.269735 -0.718856 1.961071 
6 3.468715 -0.803809 2.844551 
6 -1.836497 1.430379 -3.049238 
1 3.891351 0.103480 3.285106 
1 -1.519707 0.984547 -3.995921 
8 1.991127 -0.979261 -1.657497 
8 -0.317832 1.631281 1.462888 
6 1.234444 -1.950471 -1.324620 
6 0.429782 2.592012 1.140356 
1 4.293672 -1.361526 2.394922 
1 -2.849346 1.111333 -2.806307 
8 1.352536 2.570440 0.260426 
8 0.303044 -1.916813 -0.477026 
6 1.512482 -3.263353 -2.004626 
6 0.209116 3.908320 1.835285 
1 0.664710 -3.938080 -1.887762 
1 -0.347743 4.574541 1.168416 
1 2.395395 -3.718096 -1.544460 
1 -0.369758 3.760473 2.746792 
1 1.735255 -3.101100 -3.060909 
1 1.168101 4.379976 2.058131 
6 3.343369 1.583031 -1.643775 
8 4.839849 2.827002 -0.466786 

6 3.928724 2.899830 -1.260424 
8 3.453562 4.075182 -1.654290 
6 1.572082 5.510153 -1.847034 
6 2.196853 4.223587 -2.333325 
7 2.900085 1.629223 -3.480079 
7 2.252471 1.297014 -4.313065 
1 4.147641 0.867498 -1.833058 
1 0.631468 5.689387 -2.376832 
1 2.236701 6.359964 -2.023063 
1 1.365222 5.442809 -0.776467 
1 2.397087 4.271120 -3.410483 
1 1.543792 3.374200 -2.119647 
 
mceda 
45 1.835585 0.958666 -0.540107 
45 -0.061293 -0.105578 0.536353 
8 2.952957 0.242249 1.001788 
1 2.784831 -1.512119 3.743400 
1 -1.420998 2.776458 -3.231390 
6 2.408393 -0.447315 1.924667 
8 -1.258957 0.587793 -0.967209 
6 -0.732789 1.255176 -1.891541 
8 0.501164 1.569630 -1.987091 
8 1.190895 -0.758044 2.001439 
6 3.332042 -0.916696 3.013298 
6 -1.614104 1.722844 -3.017423 
1 3.786227 -0.048984 3.498943 
1 -1.371457 1.152035 -3.919020 
8 2.159607 -0.776862 -1.557524 
8 -0.330384 1.650915 1.560580 
6 1.366039 -1.756660 -1.355380 
6 0.442278 2.620947 1.349662 
1 4.141910 -1.505443 2.575095 
1 -2.662957 1.570325 -2.764899 
8 1.419615 2.647602 0.527329 
8 0.380095 -1.772580 -0.573373 
6 1.652890 -2.998331 -2.154682 
6 0.191100 3.894333 2.110201 
1 1.011449 -3.816598 -1.829296 
1 -0.331687 4.601350 1.457747 
1 2.705115 -3.271608 -2.045824 
1 -0.432526 3.694570 2.981454 
1 1.475248 -2.790048 -3.213954 
1 1.137985 4.349442 2.405750 
6 3.342742 1.770117 -1.420225 
8 4.854827 2.957364 -0.333788 
6 3.929587 3.073436 -1.112741 
8 3.494442 4.228224 -1.573138 
6 1.280008 5.069728 -1.982038 
6 2.402640 4.213386 -2.514302 
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7 2.413071 0.784682 -4.613947 
7 1.696570 -0.042737 -4.740498 
1 3.941995 1.152295 -2.099337 
1 0.473510 5.121120 -2.719881 
1 1.628429 6.086248 -1.779775 
1 0.889168 4.635332 -1.059391 
1 2.804369 4.599692 -3.455966 
1 2.053669 3.185044 -2.673271 
 
mc’eda 
45 1.880615 0.810222 -0.451669 
45 -0.189655 -0.048426 0.475525 
8 2.798521 0.013231 1.179553 
1 2.233621 -1.610380 3.947654 
1 -1.113181 2.988246 -3.227404 
6 2.118187 -0.609335 2.059016 
8 -1.191516 0.726792 -1.125459 
6 -0.533319 1.338376 -2.002943 
8 0.728905 1.530641 -2.001785 
8 0.873171 -0.795192 2.042132 
6 2.904376 -1.169583 3.210823 
6 -1.278333 1.908466 -3.179069 
1 3.502946 -0.376305 3.664810 
1 -0.887606 1.474730 -4.103418 
8 2.109207 -0.958400 -1.434454 
8 -0.369772 1.738746 1.464044 
6 1.215059 -1.857094 -1.283141 
6 0.511674 2.624220 1.313742 
1 3.597670 -1.928588 2.837824 
1 -2.343601 1.698526 -3.089802 
8 1.548449 2.545170 0.571299 
8 0.174549 -1.767655 -0.580473 
6 1.459464 -3.148018 -2.015777 
6 0.340001 3.920725 2.057231 
1 0.573781 -3.781240 -1.973858 
1 0.073842 4.710301 1.347550 
1 2.301600 -3.668075 -1.549520 
1 -0.449109 3.827281 2.802769 
1 1.734689 -2.940808 -3.052235 
1 1.283372 4.205839 2.527631 
6 3.514027 1.448183 -1.243211 
8 5.087609 2.507355 -0.110862 
6 4.221167 2.691450 -0.942301 
8 3.940168 3.867751 -1.465417 
6 1.826141 4.879786 -2.004191 

6 2.905876 3.932736 -2.467219 
1 4.070681 0.750975 -1.881574 
1 1.071587 4.991473 -2.788757 
1 2.243873 5.865754 -1.782798 
1 1.348615 4.482632 -1.105930 
1 3.392119 4.278755 -3.384242 

1 2.483930     2.934538      -2.643692 
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B. Biological Evaluation 

Biological assay were performed in collaboration with Cellular Function and 

Therapeutic Targeting group of iMed.ULisboa of Professor Cecília Rodrigues.  

Biochemical assay were performed in collaboration with Metabolism and Genetics 

group of iMed.ULisboa of Professor Ana Paula Leandro. 

B1. Cell viability assays  

Human cancer cell lines from breast (MCF-7), colon (HT-29) and lung (NCI-

H460) were purchased from ATCC and cultivated in RPMI-1640 with L- glutamine 

and 10% fetal bovine serum (FBS) in a humidified atmosphere with 5% CO2 at 37 

ºC.  Cells were plated in 96-well plates with a density of 5x104 (NCI-H460), 1x105 

(HT-29) and 1.5x105 (MCF-7) cells/well and cultured for 24 hours. Stock solutions 

of the compounds to be tested were prepared in DMSO and then diluted with the 

cell culture medium with 0.5% FBS (final concentration of organic solvent <1%). 

Cells were incubated with the compounds at 0-20 µM concentration for 48 hours. 

Cells were then washed with PBS and incubated with 0.5% FBS cell culture medium 

containing 50 µg/ml neutral red. Three hours later, cells were washed again with PBS 

and the amount of neutral red retained by the cells was extracted with an organic 

solution (20 ml distilled water, 20 ml ethanol and 400 µl glacial acetic acid). 

Absorbance of the samples was measured at 540 nm in a plate reader after gentle 

shaking. Viability was determined by the ratio of absorbance of treated and control 

cells. Two independent experiments were performed, each with 4 replicates for each 

experimental condition. IC50 were determined using GraphPad Prism 5. 

B2. Cell death assays 

For cell death assays, general cell death was evaluated using lactate dehydrogenase 

(LDH) Cytotoxicity Detection KitPLUS (Roche Diagnostics GmbH, Mannheim, 

Germany), by measuring the amount of cytosolic LDH released from plasma 
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membrane-damaged cells into the extracellular medium. Briefly, 50 µL of culture 

supernatant was collected from each well and added to a new 96-well plate to evaluate 

LDH release. In parallel, cells on the original plate were incubated for 15 min with 

lysis solution diluted in 50 µL of medium, to completely disrupt the remaining cells 

and release the intracellular LDH into medium. Subsequently, supernatant samples 

and total cell lysates were incubated with 50 µL of assay substrate for 10 to 30 min, at 

room temperature, protected from light. Absorbance readings were measured a t490 

nm, with 620 nm reference wavelength, using a Model 680 microplate reader (Bio-

Rad). Percentage of LDH release was determined as the ratio between the released 

LDH (supernatant) and total LDH (supernatant + cell lysate) in each well. Results are 

displayed as fold-change to vehicle (DMSO) control ± SEM 

B3. Enzymatic activity assays 

The hPAH activity was measured essentially as previously described in a 200 µL 

final volume reaction mixture, containing 100 µM L-Phe, 0.1 M Na-Hepes, pH 7, 0.1 

mg·mL-1 catalase, 5 μg of recombinant wild-type hPAH tetramers, 100 µM of each 

compound or 1% DMSO (vehicle control). After 4 minutes of pre-incubation, 100 

µM (NH4)2Fe(II)SO4 was added and, unless otherwise stated, the reaction was started 

by addition of 75 µM BH4 (together with 5 mM ascorbic acid) after 1 minute 

incubation with he iron (condition I in Figure C1; ‘substrate-activated’ condition). To 

study the specific activity of the non-activated hPAH, 100 µM L-Phe and 100 µM of 

each compound were added together with 75 µM BH4 at the start of the 

hydroxylation reaction (condition II in Figure C1; ‘non-activated’ condition). To 

evaluate pre-activation of the enzyme by the compound, hPAH was pre-incubated 4 

minutes with each compound whereas the L-Phe substrate was only added at the start 

of the reaction, together with 75 µM BH4 at the start of the reaction (condition III in 

Figure C1; ‘compound-activated’ condition. Blank reactions where the substrate L-

Phe was omitted were also made for each compound. The amount of L-Tyr produced 

after 1 min was quantified by a HPLC method23 using a LiChroCART® 250-4 

LiChrospher® 60 RP-select B (5 µm) column (Merck KGaA, Darmstadt, Germany), 
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a 5% ethanol mobile phase pumped at 0.7 mL·min-1 and fluorimetric detection 

(λexc= 274 nm and λem= 304nm). Specific activities are presented as mean ± SEM 

obtained from three independent experiments.  

I) 

II) 

II) 

 
Figure B3.1 - Depiction of the enzymatic reactions used in this study for evaluation of competition 

between substrate and compound (I - Substrate-activated condition), and activation by the 
compound (II - Non-activated versus III – Compound-activated condition). A blank reaction 

without the substrate was included and subtracted for each condition in order to rule out 
contribution of the compound to tyrosine formation. 

 

 

B4. Differential Scanning Fluorimetry 

Differential scanning fluorimetry (DSF) was performed in a C1000 Touch thermal 

cycler equipped with a CFX96 optical reaction module (Bio Rad). For all fluorescence 

measurements, samples containing purified recombinant wild-type hPAH tetramers 
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at 100 µg·mL-1 in 20 mM NaHepes, 200 mM NaCl, pH 7, 2.5-fold Sypro Orange 

(Invitrogen; 5000-fold commercial stock solution), 1% DMSO (unless otherwise 

stated) and 100 µM of each compound were incubated at 20 ºC for 10 minutes. The 

PCR plate was sealed with Optical-Quality Sealing Tape (Bio-Rad) and centrifuged at 

500xg for 1min. The DSF assay was carried out by increasing the temperature from 

20 to 90 °C, with a 1 s hold time every 0.2 °C and fluorescence acquisition using the 

FRET channel. Control experiments in the absence of DMSO and/or compounds 

were routinely performed in each microplate. Data were processed using CFX 

Manager Software V3.0 (Bio-Rad) and the GraphPad Prism 6. Temperature scan 

curves were fitted to a biphasic dose-response function and the Tm values were 

obtained from the midpoint of the first and second transitions. Tests for statistical 

significance were performed using 1-way ANOVA by comparing the compound data 

to the DMSO control assay (for DSF studies) or the L-Phe activated condition III to 

the compound activated condition II (for the catalytic activity assays). Data was 

considered statistical different when P < 0.01 
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C. NMR chemical shift assignment 

 

 

Figure C1 – Assignment of 1H and 13C NMR spectra of 69.  

 

Figure C2 – Assigment of 1H and 13C NMR spectra of  31. 
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a) 

 

b) 

 

Figure C3 – Assignment of the 1H and 13C NMR spectra of a) 125 and b) 126. 

a) 

 

 

b)

 

Figure C4 – Assignment of the 1H and 13C NMR spectra of a) 130 and b) 131. 
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D. Structures tested in biological assays. 
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