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ABSTRACT 

 

The issues of boulder in tropically weathered granitic rock masses have 

roused a lot of problems and risks to the work performances and design quality in 

civil engineering. Although the presence of in situ boulder could be predicted 

through several methods and classified in several weathering classification schemes, 

the behaviour of tropically weathered in situ boulder is not well understood. The aim 

of this study is to establish physical classification and engineering characteristics of 

granite boulders and to catalogue the boulders in tropical weathering profile. A total 

of 46 panels of granitic profile consist of 88 in situ boulders from five quarry sites 

located in Johor, Malaysia were investigated involving several field and laboratory 

test programs. The field test programs conducted include geological field mapping, 

discontinuity survey and classification of physical characteristics of boulder as well 

as its surrounding material in various weathering zones. The physical characteristics 

examined include occurrence of boulders in moderately to completely weathered 

zone, shape, size and rindlets characteristics from respective weathering zone.  The 

laboratory test programs involve determination of physico-mechanical properties and 

mineralogical analysis. The field study revealed five dominant weathering profiles 

with different significant types of weathering zone and occurrence of in situ boulder. 

This finding indicated that in situ boulder is the main character in the formation of 

heterogeneous zone in weathering profile especially in the moderately weathered 

(Zone 3), highly weathered (Zone 4) and  completely weathered zone (Zone 5). The 

angularity, size and rindlets characteristics of the boulder from moderately to 

completely weathering zones significantly differ from each other. Due to these 

significant differences, the in situ boulders formed in completely, highly and 

moderately weathered zones are classified into three major types, namely Type A, 

Type B and Type C, respectively. Boulder Type A is surrounded by double rindlets 

zones which classified as inner and outer rindlets, while boulder Type B possess 

single rindlets zone which is classified as inner rindlets. On the other hand, boulder 

Type C has no rindlets and it is surrounded by joints and fractures. The differences in 

physical characteristics of boulders Type A, B and C could be used to predict their 

existence in different weathering zones. The result obtained from the laboratory 

study revealed the physico-mechanical properties which include dry density, 

porosity, durability, strength and permeability of rindlets and saprolites found in 

completely weathered zone showed significant variance compared to highly and 

moderately weathered zone.  In conclusion, the in situ boulders formed in moderately 

to completely weathered zones possessed significant variance of physical and 

mechanical characteristics which can be used as an indicator in weathering 

classification and engineering design purposes. 
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ABSTRAK 

 

Isu kewujudan batuan tongkol dalam jasad batuan granit terluluhawa tropika 

menimbulkan banyak masalah dan risiko kepada prestasi kerja dan kualiti rekabentuk 

kejuruteraan awam. Walaupun kehadiran batuan tongkol dalam jasad batuan 

terluluhawa boleh diramal melalui beberapa kaedah dan dikelaskan dalam beberapa 

skema klasifikasi luluhawa, pencirian granit terluluhawa tropika masih belum 

difahami dengan baik. Tujuan kajian ini adalah mengkaji ciri-ciri fizikal dan 

kejuruteraan batuan tongkol granit semulajadi dan mengkatalog batuan tersebut 

dalam jasad granit terluluhawa tropika. Sebanyak 46 panel profil granit terluluhawa 

terdiri daripada 88 biji batuan tongkol daripada lima lokasi kuari di Johor, Malaysia 

telah dikaji melibatkan program ujian lapangan dan makmal. Program ujian lapangan 

termasuk pemetaan geologi, kajian ketakselanjaran, dan pengkelasan ciri-ciri fizikal 

batuan tongkol serta bahan sekitarnya dalam zon luluhawa berbeza. Ciri-ciri fizikal 

yang dikaji termasuk kewujudan batuan tongkol dalam zon luluhawa sederhana 

hingga zon luluhawa lengkap, bentuk, saiz serta ciri-ciri fizikal rindlets di setiap zon 

luluhawa. Program ujian makmal termasuk penentuan sifat indeks, sifat mekanik, 

dan analisis mineralogi. Kajian ini merungkai lima profil luluhawa dominan yang 

jelas berbeza dengan kewujudan batu tongkol pada zon luluhawa tertentu. Keputusan 

menunjukkan batuan tongkol adalah ciri utama pembentukan zon heterogen dalam 

profil granit terluluhawa terutama dalam zon luluhawa sederhana (Zon 3), zon 

luluhawa tinggi (Zon 4) dan zon luluhawa lengkap (Zon 5). Kesegian, saiz dan ciri-

ciri fizikal rindlets batuan tongkol daripada zon luluhawa sederhana hingga luluhawa 

lengkap adalah jelas berbeza antara satu sama lain. Disebabkan perbezaan ketara ini, 

batuan tongkol dalam profil granit terluluhawa dikelaskan kepada tiga jenis utama 

iaitu Jenis A, B dan C yang terbentuk dalam zon luluhawa lengkap, luluhawa tinggi, 

dan luluhawa sederhana. Batuan tongkol Jenis A dikelilingi oleh dua zon rindlets 

yang dikelaskan sebagai rindlets dalaman dan luaran, manakala Jenis B mempunyai 

rindlets tunggal yang diklasifikasikan sebagai rindlets dalaman. Batuan tongkol Jenis 

C tidak mempunyai rindlets tetapi ia dikelilingi oleh ketakselanjaran dan keretakan. 

Perbezaan ketara ciri-ciri fizikal batuan Jenis A, B dan C ini dapat meramal 

kewujudan batuan tongkol dalam zon luluhawa berbeza. Keputusan kajian makmal 

juga menunjukkan ciri-ciri fizikal-mekanikal termasuk ketumpatan kering, keliangan, 

ketahanan, kekuatan dan kebolehtelapan  rindlets dan saprolites yang terbentuk di 

sekeliling batuan tongkol  dalam zon luluhawa lengkap mempunyai perbezaan 

signifikan berbanding zon luluhawa tinggi dan sederhana. Dapat disimpulkan 

kewujudan batuan tongkol dalam zon luluhawa sederhana hingga ke zon luluhawa 

lengkap mempamerkan ciri-ciri perbezaan yang signifikan daripada segi ciri-ciri 

fizikal dan mekanikal yang boleh digunakan sebagai petunjuk dalam 

pengklasifikasian luluhawa dan reka bentuk kejuruteraan. 
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CHAPTER 1  

INTRODUCTION 

1.1  Introduction 

 

The presence of in situ boulder in saprolite zone beneath ground level has 

resulted in the formation of heterogeneous zone in the weathering profile. This issue 

has also brought a lot of difficulty in tunneling, borehole drilling, foundation 

excavation and slope cutting which significantly affects the work performance and 

quality of construction (Tang and Quek, 1986; Boone et al., 1998; Poot et al., 2000; 

Medley, 2002; Veneziano and Van Dyck, 2005; Jee and Ha, 2007; Felletti and 

Beretta, 2009; Filbà et al., 2016). In most cases, the presence of in situ boulders 

beneath the ground level has caused significant construction schedule delays, 

increased claims and unexpected cost related to the civil engineering works due to 

boulder removal and redesigning of earthworks plans. It becomes worst when the 

presence of in situ boulder was misjudged as bedrock, which may eventually lead to 

the misjudgment in engineering design. The misjudgment of engineering design can 

definitely cause high risks and possible death to the civilians. Furthermore, the 

occurrence of in situ boulder beneath the ground surface is difficult to be predicted 

due to the fact that the boulder is naturally formed in scattered and unpredictable 

manner as well as presented individually or clustered with various sizes and shapes 

(Veneziano and Van Dyck, 2005; Jee and Ha, 2007; Felletti and Beretta, 2009; Filbà 

et al., 2016). It has been reported by many researchers that in situ boulders could be 

found abundantly in different weathering zones such as moderately weathered zone 

(Zone 3), highly weathered zone (Zone 4) and completely weathered zone (Zone 5) 
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which are located in between the bedrock zone and residual soil zone (Ruxton and 

Berry, 1957; Raj, 1985; Komoo 1985, 1989; Tsidzi, 1997; Tuğrul and Gürpinar, 

1997; Fookes, 1997; Shaw, 1997; Alavi et al., 2016; Borrelli et al., 2016). 

Unfortunately, the understanding on the behaviour and characteristics of in situ 

boulder exists in various weathering zones, especially in tropical granite, which is 

still not well understood and further investigated. Therefore, the current research acts 

as an attempt to better understand the characteristics of in situ boulder in weathering 

granite profile of wet tropics. 

1.2  Problem Statement 

 

In recognising that in situ boulder has been affecting most of the earthworks, 

several methods have been developed to predict the occurrences boulder in 

weathered rock mass as a preliminary study for further action purposes. However, 

most of the prediction methods are biased to the boulder size and distributions. These 

limited parameters have caused minimum understanding of the physical 

characteristics of boulder in weathered rock mass. Furthermore, the occurrence of in 

situ boulders in weathering profile was used as one of the parameters in mass 

weathering classification. Unfortunately, the use of boulder in weathering 

classification is limited and mostly referred to rock to soil ratio. A few studies had 

used the boulder shape and its surrounding material as one of the weathering 

classification parameters. However, the physical and engineering characteristics of 

boulder and its surrounding material in different weathering zones of weathered 

granite are not completely understood, determined and classified. It is believed that 

these parameters are important in weathering classification for geotechnical and 

geological engineering designs. Therefore, a classification scheme of in situ boulder 

in weathered granite profile is highly needed for engineering purposes. 
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1.3  Research Aims and Objectives 

 

The primary aim of the current research is to establish the physical and 

engineering characteristics of in situ boulders and to catalogue the boulders in the 

weathering profile, which can be achieved through the following objectives: 

 

i. To catalogue the pattern and relationship of occurrences of in situ boulders 

with topography, weathering profile and geomorphology of rock mass in wet 

tropical region. 

 

ii. To investigate the physical characteristics of in situ boulder formed in 

weathering profile of wet tropical region. 

 

iii. To determine the distinction of engineering properties of in situ boulder 

within different weathering zones in wet tropical region. 

 

iv. To develop a catalogue of in situ boulder in weathered granite profile of wet 

tropical region based on its geomorphology and physico-mechanical 

properties for engineering purposes. 

1.4  Scope of the Study 

 

In order to carry out the research in effective and manageable manners, the 

research scopes of this study are presented as follows: 

 

i. The samples of in situ boulders studied are naturally formed in weathered 

granite mass. Five locations in Johor, Malaysia, namely Ulu Tiram, Batu 

Pahat, Kulai, Pulai and Kota Tinggi were selected for the field study and as 

the sampling for laboratory testing. The laboratory study was carried out in 

geological laboratory of Universiti Teknologi Malaysia and Universiti Tun 

Hussein Onn Malaysia. 
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ii. The main elements analysed, tested and classified in this study are corestone 

boulder, the natural material that is formed at the surrounding of the boulder 

and the saprolites where the boulder is formed in weathering granite profile. 

 

iii. The assessments of weathering profile are mainly based on the physical 

characteristics, the degree of weathering, the frequency and distribution of 

boulder, its shapes and sizes and its surrounding material in various 

weathering zones. 

 

iv. Engineering properties are selected based on the basic parameters that are 

commonly applied in geotechnical and geological engineering designs such 

as bulk density, porosity, slake durability index, jar slake index, point load 

strength, uniaxial compressive strength and permeability. 

 

v. The mineralogical studies that include the scanning electron microscopy 

(SEM), petrographical study and X-Ray Diffraction (XRD) analysis are 

focused on the concentric sheets of weathered rock at the surrounding of the 

boulder. 

 

 Both field and laboratory test programs are carried out to establish the 

physical and engineering properties of in situ boulders in the weathering profile. The 

combination of all these parameters are used to catalogue and classify the in situ 

boulders in weathered granite mass for engineering purposes. 

1.5  Significance of the Study 

 

The classification of physical and engineering properties of in situ boulder in 

weathered granite profile is developed in this study. The presence and characteristics 

of boulder in weathered granite mass could be possibly predicted during earthwork 

explorations by understanding and classifying the characterisation of in situ boulder 

in various weathering zones. Furthermore, the parameters that are developed and 
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classified can be used as a reference or guideline in geotechnical and geological 

engineering designs in tropical weathered granite profile. This classification is hoped 

to be useful in geotechnical and/or geological fields which are related to the 

occurrence of in situ boulder in the tropics. It is also expected to massively contribute 

to the knowledge and enhancement of the tropical rock engineering field. 

1.6  Expected Outcomes 

 

The ultimate aim of this study is to develop a catalogue of in situ boulder in 

weathered granitic profile based on its different physical characteristics and 

engineering properties. Therefore, the expected outcomes are as follows: 

 

i. Contribution to the knowledge on the occurrence, pattern and relationship of 

in situ boulders in weathering granite mass in the wet tropical region. 

 

ii. Contribution to the knowledge on the weathering profile of boulder as well as 

its physical and geomechanical characteristics in wet tropical region. 

 

iii. Contribution to the knowledge on the distinction of engineering properties 

and geomechanical characteristics between in situ boulder and different 

weathered granite zones in wet tropical region. 

 

iv. Development of weathering profile classification which consists of in situ 

boulders with different physical and engineering properties in wet tropical 

region which could be used for engineering purposes, especially in 

geotechnical and geological designs. 

 

 



6 

 

 

 

1.7  Outline of the Thesis 

 

This thesis is organised into five chapters and the outlines are briefly 

summarised as follows: 

 

Chapter 1 introduces the context and briefly discusses the background of the 

recent study. This chapter also outlines the problem statement of the recent study, 

research aims and objectives, scopes of the study, significance of the study and 

finally, the expected outcomes of the study.  

 

Chapter 2 provides some reviews of previous studies related to the current 

study. This chapter further discusses the definition of boulder, boulder types and its 

general issues affecting the civilians and engineering constructions. This chapter also 

discusses the formation of in situ boulder, the boulder prediction methods, the use of 

boulder in weathering classification and the physical characteristics of boulder used 

for engineering purposes. At the end of this chapter, the gaps of this study are 

discussed and revealed for further investigation. 

 

Chapter 3 presents the methodology of laboratory and field test programs 

conducted in this study. It also describes the procedure involved in the field and 

laboratory tests programs in order to obtain the data for physical and engineering 

classification purposes. The field sampling is also discussed in this chapter. 

 

Chapter 4 summarises and discusses the data obtained from the field and 

laboratory test programs. The result from both programs are analysed, discussed and 

classified in detail for the purpose of establishing the physical characteristics and 

engineering properties of boulder in different weathering zones of weathered granite 

profile. At the end of this chapter, the catalogue of weathered granite profile that 

consists of different boulder characteristics is classified, discussed and presented for 

engineering purposes. 

 

Chapter 5 summarises the findings of this study. The conclusions are made 

according to the findings and the objectives stated in the early chapter of this study. 
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Some recommendations are also provided for future direction of the research related 

to this study. 
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CHAPTER 2  

LITERATURE REVIEW 

2.1  Introduction 

 

This chapter provides background of the thesis and detailed analysis of 

relevant aspects of boulder assessments method, rock weathering parameters and 

boulder characteristics in weathering profile for the purpose of revealing the gap of 

this study. Section 2.2 emphasizes the definition of boulder according to different 

field of studies. Next, boulder types and its general issues related to civilians and 

civil engineering works are highlighted in Section 2.3. In the following section, a 

discussion on weathering in granite rock mass is included. The morphology of in situ 

boulder is outlined in Section 2.5. Another important discussion related to the 

physical characteristics of in situ boulder is identified in Section 2.6. The methods 

established by previous researchers to predict the occurrence of boulder in weathered 

rock mass are included in Section 2.7. The next section is followed by an analysis of 

the use of in situ boulder in weathering classification, including its parameters in 

prediction and classification purposes. Finally, section 2.9 analyses the problems of 

in situ boulders in weathering profile for engineering purposes as well as emphasizes 

the gap of this study. These reviews are expected to further help the author to reveal 

the gap of this study and identify the necessary parameters in order to achieve the 

aim and objectives of this study. 
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2.2  Definition of Boulder 

 

There are various definitions of boulder provided by different field of studies. 

In geological and geomorphological study, “bowlder” or also known as boulder is a 

corestone that is made of various sizes and shapes as well as surrounded by 

concentric shell, sheets, or layers of weathered rock caused by spheroidal 

weathering, spalling, chemical exfoliation, disintegration and fracturing (Ollier, 

1971; Twidale, 1982; Sarracino et al., 1987; Sarracino and Prasad 1989; Turkington 

et al., 2005; Gordon and Dorn, 2005; Elliott, 2006; Smith, 2009). In the study of 

chemical geology, boulder is referred as a corestone that is formed as a result of the 

reaction of spheroidal weathering on fractured bedrock and surrounded by some 

concentric of weathered rock with the thickness ranging from 0.2 cm to 2.0 m, which 

is known as rindlets (Turner et al., 2003; Fletcher et al., 2006; Buss et al., 2008; 

Brantley et al., 2011). From the engineer's point of view, boulder is defined as an 

obstruction or problematic material that is discovered during underground 

excavations which is usually found in various spherical shapes and size that is larger 

than 0.3 m, which is located at unpredictable locations in weathered rock mass (Tang 

and Quek, 1986; Boone et al., 1998; Poot et al., 2000; Medley, 2002; Veneziano and 

Van Dyck, 2005; Felletti and Beretta, 2009). According to the definitions provided 

by previous researchers, it can be concluded that boulder is one of the weathered 

products that consist of a corestone surrounded by some concentric sheets of 

weathered rock. It is formed through the reaction of spheroidal weathering 

mechanisms and its presence in weathered rock mass might cause problems to the 

civil engineering works. 

2.3  Boulders and Its General Issues 

 

Generally, boulder was reported to have been naturally formed in different 

weathered igneous rock mass such as granite (Ruxton and Berry, 1957; Dearman and 

Fookes, 1974; Durgin, 1977; Dearman et al., 1978; Raj, 1985; Komoo, 1989; Tsidzi, 

1997; Braga et al., 2002; Kirschbaum et al., 2005; Dethier and Bove, 2011), quartz 
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diorite (Turner et al., 2003; Fletcher et al., 2006; Buss et al., 2008; Brantley et al., 

2011; Chabaux et al., 2013) and basalt (Gurocak and Kilic, 2005; Røyne et al., 2008; 

Ehlmann et al., 2008).  Boulder can be found at ground surface (Turner et al., 2003; 

Buss et al., 2004; Alejano et al., 2010; Chabaux et al., 2013) or embedded beneath 

ground surfaces (Ruxton and Berry, 1957; Twidale 1982, 1986; Veneziano and Van 

Dyck, 2005; Jee and Ha, 2007; Alavi et al., 2016). Essentially, boulder can be 

divided into four types, namely (1) landslide boulder (Komoo, 1997; Alejano et al., 

2010; Chigira et al., 2011; de Almeida and Kullberg, 2011), (2) sedimentary boulder 

(Ditlevsen, 2005; Kumar et al., 2007; Ehlmann et al., 2008; Velde and Meunier, 

2008), (3) tsunami boulder (Imamura et al., 2008; Switzer and Burston, 2010; Paris 

et al., 2010; Nandasena and Tanaka, 2013) and (4) in situ boulder (Ruxton and 

Berry, 1957; Komoo, 1985; Raj, 1985; Tsidzi, 1997; Tuğrul and Gürpinar, 1997; 

Fookes, 1997; Alavi et al., 2014a, 2016). It is important to note that each boulder 

type possesses some issues. 

2.3.1  Landslide Boulder 

 

Landslide boulder refers to the remnant boulder that rolls down the slopes or 

rock fall avalanche due to the instability of the slope during rainy periods (De Costa 

Nunes, 1969; Barata, 1969; Durgin, 1977). The landslide or slope failure is caused by 

the infiltration of rainwater that changes the pore water pressure and shear strength 

which is located in the unsaturated zones (Rahardjo et al., 2009; Alejano and 

Carranza-Torres, 2011). The force of gravity leads to the movement of a large 

amount of soil and boulder of various sizes from the unstable condition on the slope 

to a stable condition at the lower plains (Barata, 1969; Velde and Meunier, 2008; 

Chigira et al., 2011). Landslide commonly occurs in the border of highly weathered 

(Zone 4) and completely weathered zone (Zone 5) and in the border of slightly 

weathered (Zone 2) and moderately weathered zone (Zone 3), which are dominated 

by boulders (Komoo, 1995). In many cases, the presence of boulder in the landslide 

is usually the result of massive damage caused by public facilities, housing, injuries 
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and death (Barata, 1969; Chigira et al., 2011). For instance, Figure 2.1 shows the 

hazard of landslide boulders to the civilian as reported by the news. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Hazards of landslide boulders to civilians and properties 
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2.3.2  Sedimentary Boulder 

 

Sedimentary boulder refers to boulder that settled in the river bed or alluvial 

fans caused by the erosion activity and soil movement along the river bank 

(Ditlevsen, 2005; Kumar et al., 2007; Ehlmann et al., 2008; Velde and Meunier, 

2008). Sedimentary boulder commonly possesses spherical to lozenge shapes with 

smooth surfaces (Twidale 1982, 1986; Tang and Quek, 1986; Felletti and Beretta, 

2009; Filbà et al., 2016). The rounding and the size decrement of the boulder are 

caused by water reaction, particle breakage, wear and attrition, which tend to be 

more progressive along the river (Stanley and Victoria 2006). Sedimentary boulders 

can also be found embedded in many soil deposits such as sedimentary deposits 

(Tang and Quek, 1986; Jee and Ha, 2007) and glacial tills deposits (Ditlevsen, 2006; 

Felletti and Beretta, 2009). The densely accumulation and settlement of the boulders 

in the alluvial fan help to reduce the performance of underground excavation, 

especially the tunneling works (Jee and Ha, 2007; Felletti and Beretta, 2009; Filbà et 

al., 2016). The presence of sedimentary boulder causes the cutter tools and the 

structure of the cutter head to be seriously broken during excavation (Filbà et al. 

2016). 

2.3.3  Tsunami Boulder 

 

Tsunami boulder or Tsunami deposited boulder which is also called tsunami-

ishi (stone) refers to transported rock block from offshore that are deposited on the 

beach or inland due to high velocity and energy of tsunami waves (Imamura et al., 

2008; Switzer and Burston, 2010; Paris et al., 2010; Nandasena and Tanaka, 2013). 

The tsunami wave with high energy is able to remove and transport huge boulder of 

more than 10 ton over a few hundred meters on the ground from the tidal flat (Nott, 

2000; Imamura et al., 2008; Paris et al., 2009). The transportation of tsunami boulder 

is the result of rolling or saltation and it depends on the shape and hydraulic force of 

the tsunamis (Goto et al., 2007; Goff et al., 2010). The boulder can be further 
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transported after the process of rolling and saltation through sliding movement due to 

the reduced friction and the effect of centrifugal force (Imamura et al. 2008).  

 

 The tsunami boulders can be found accumulated on coastal rock platforms, 

cliff tops and ramps as well as presented either in isolated or single boulder in 

scattered or clustered form (Switzer and Burston, 2010; Nandasena and Tanaka, 

2013). The characteristics of tsunami boulder such as size, shapes and distribution 

are dependent on the morphology of the boulder sources which can possibly be coral 

reef, beach rock, platform, or seawall (Nott 2000; Paris et al. 2009, 2010). The 

weight and shape of the boulder can be used to determine the minimum current 

velocity or wave height (Nott, 2003; Noormets et al., 2004). Tsunami boulder can be 

found in angular block, cubic, well-rounded, or ellipsoid shape, without sharp broken 

edges (Goto et al., 2007; Imamura et al., 2008; Paris et al., 2010; Nandasena and 

Tanaka, 2013). It is well known that tsunami has resulted in massive damage of 

facilities, housing injuries and death, not only because of the moving boulder but also 

the massive impact of energy and velocity of water flow (Nott and Bryant, 2003; 

Paris et al., 2009; Nandasena and Tanaka, 2013). 

2.3.4  In Situ Boulder 

 

In situ boulder is also known as residual boulder which is formed in 

weathered rock mass due to the reaction of spheroidal weathering on the jointed rock 

block (Ruxton and Berry, 1957; Dearman, 1974; Twidale, 1982). It can be seen on 

the exposed slope cutting, quarries and natural cliffs (Twidale, 1982; Tsidzi, 1997; 

Dethier and Lazarus, 2006; Alavi et al., 2016). In situ boulder is commonly 

surrounded by discontinuities or concentric sheets of weathered rock that are 

naturally formed in situ, which is not found on transported boulder (Ollier, 1971; 

Raj, 1985; Sarracino and Prasad, 1989). Therefore, it can easily be distinguished 

from the transported boulder based on the roughening, the fracturing surfaces and the 

texture preservation of the concentric sheets at the surrounding of the boulder (Ollier, 

1967, 1971; Twidale, 1982; Ehlmann et al., 2008). 
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In situ boulder can be found to be fully embedded or half exposed in the 

outcrop or ground surface (Ditlevsen, 2006). For those exposed to the ground 

surface, it is the result of the evacuations of friable weathered debris on the upper 

surface during the erosion or denudation process (Twidale, 1982, 1986). This 

phenomenon might expose some fracturing patterns that are formed in the rock mass, 

which is the so called hierarchical fractures (Røyne et al., 2008). Through the 

hierarchical fractures, the rock mass is broken up into smaller sub domain through 

the reaction of reactive surface (Røyne et al., 2008). The formation of sub domain is 

due to the process of onion skin spalling on the fractured block and the increment of 

internal elastic stress until it becomes large enough to crack the entire unit (Røyne et 

al., 2008; Jamtveit and Hammer, 2011). The reaction of spheroidal weathering on the 

rock block finally alters the sizes of fractured block from smaller sub domain into 

rounded shapes (Røyne et al., 2008). 

 

In civil engineering practice, the occurrence of in situ boulder or rock block 

beneath soil stratum are often predicted based on the Rock Quality Designation 

(RQD) analysis from borehole drilling (Tang and Quek, 1986; Şen and Eissa, 1991; 

Lu and Latham, 1999; Medley, 2002). Unfortunately, the core run sample from 

borehole drilling does not necessarily represent the rock block or the boulder (Tang 

and Quek, 1986; Palmström, 2001). In addition, the presence of irregular and 

discontinuous jointing in weathered rock mass results in the formation of in situ 

boulder which makes it difficult to be recognised and predicted (Şen and Eissa, 1991; 

Choi and Park, 2004; Palmström, 2005). Furthermore, some drilling methods such as 

hollow sterm-augering cannot be used to penetrate the boulder, thus it has caused 

difficulties in studying the characteristics of in situ boulder from drilling sample 

(Strickland and Korleski, 2007).  

 

The insufficient information of in situ boulder can lead to the misjudgement 

of the material and hence, could result to error in sub-structure design (Boone et al., 

1998; Frank et al., 2000; Felletti and Beretta, 2009). This problem may cause project 

delays and an increase of unexpected cost. For instance, as reported by The Sunday 

Daily (2013), the presence of boulder beneath soil stratum has delayed the 

construction work of eight storeys of car park near the foot of Penang Hill, Malaysia. 

The delay was up to six months due to the occurrence of massive quantity of rocks 
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and boulders beneath the construction site that needed to be removed during piling 

works. The removal work of the boulders and delay probability could increase the 

cost of the project from RM6.75 million to RM10 million (The Sunday Daily, 2013). 

 

There are four types of boulder that can be found, namely landslide, 

sedimentation in the river or at the alluvial fans, tsunami boulder and in situ boulder. 

Due to their movement from one location to another, three types of boulders 

including landslide boulder, sedimentary boulder and tsunami boulder can be 

concluded as transported boulder or non in situ boulder. In contrast, in situ boulder is 

formed in situ without any disturbance by preserving the original structure and 

texture at the surrounding of the boulder. According to the fact that the in situ 

boulder is a problematic material in underground earthworks, therefore, this chapter 

reviews in detail the characteristics of the in situ boulder and its influence on civil 

engineering works. 

2.4  Weathering in Granite Rock Mass 

 

Weathering reaction plays an important role in the formation of granite 

boulder beneath soil stratum (Ollier, 1971; Ehlmann et al., 2008; Smith, 2009; 

Dethier and Bove, 2011). Weathering can be defined as a coupled process that 

involves physical disintegration and chemical decomposition on the rock structure 

caused by the exposure of the rock to the denudation agents such as water, 

temperature, wind and organic fluids (Dearman, 1974; Fookes, 1997; Borrelli et al., 

2014). 

 

Physical disintegration is commonly influenced by open fracture and nature 

of discontinuity (Baynes et al., 1978; Panthi, 2006; Hall et al., 2012). The 

discontinuity presents in rock mass provides the avenue for the water to infiltrate the 

discontinuity, disintegration and decomposition of the rock mass to be turned into 

weathered rock (Twidale, 1982, 1986; Ehlmann et al., 2008; Velde and Meunier, 

2008). The presence of water decomposed and rotted the rock through the reaction of 
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mineral dissolution, which finally creates a weathered zone known as regolith 

(Twidale, 1986; Buss et al., 2004; Dethier and Lazarus, 2006; Dethier and Bove, 

2011). 

 

Meanwhile, chemical decomposition is defined as the decomposition of 

minerals through the process of solution, hydration, carbonation and oxidation 

(Eggleton and Banfield, 1985; Lednicka and Kalab, 2012; Freire-Lista et al., 2015). 

The chemical decomposition on granite is identified based on the behavior of a single 

group of minerals, named feldspar and biotite (Dearman, 1974; Eggleton and 

Banfield, 1985). During granite alteration, the feldspar and biotite turn into clay and 

chlorite  respectively, but the quartz grains still remain (Ollier, 1983; Dearman, 1974; 

Baynes and Dearman, 1978a; Que and Allen, 1996; Kirschbaum et al., 2005; 

Lednicka and Kalab, 2012; Borrelli et al., 2016). In other words, feldspar and biotite 

could be indicators for weathered granite in determining its weathering stages 

(Ollier, 1983; Thuro and Scholz, 2003; Kirschbaum et al., 2005). The alteration of 

mineral contents could increase the action of chemical decomposition as well as the 

porosity of weathered rock (Baynes and Dearman, 1978b; Thuro and Scholz, 2003; 

Freire-Lista et al., 2015). 

 

Due to the weathering reaction in weathered granite mass, various weathering 

profiles with several weathering zones were formed. Komoo (1989) found that there 

are two weathering profiles of weathered granite, which are classified as Type-A and 

Type-B. The difference between both of them is the presence of boulder in 

moderately weathered zone. Alavi et al. (2014a) reported that there were four 

dominant weathering profiles in tropical weathered granite that possess three to four 

weathering zones, which are classified as Type A, Type B, Type C and Type D. 

However, boulder is not the main character in classifying the weathering profile. 

Based on Alavi et al. (2014a) classification, the occurrence of boulder is only found 

in highly weathered zone in dominant weathering profile Type D. 
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2.5  Morphology of In Situ Boulder 

 

In humid tropics, deep weathering is one of the triggering factors in creating 

boulder through the joints present in the weathered rock mass (Ruxton and Berry, 

1957; Huber, 1987; Koita et al., 2013). Deep weathering occurs in the thickness of 

down to 100 m from ground level and up to 10 m to 30 m deep for granitic 

weathered rock (Komoo 1985, 1989; Chigira et al., 2011). The presence of water 

triggers the weathering reaction in the rock mass (Twidale, 1986; Velde and 

Meunier, 2008; Alejano and Carranza-Torres, 2011). Additionally, the presence of 

discontinuities in the rock mass provides avenues for water to attack the rock and 

continue the weathering process in the rock mass to form rock blocks as shown in 

Figure 2.2 (Twidale, 1982). This process obviously indicates that the presence of 

mutual intersection of discontinuity with different spacing and orientation in the rock 

mass can lead to the formation of individual rock block (Raj, 1985; Goodman and 

Shi, 1985; Lu and Latham, 1999; Wang et al., 2003; Palmström, 2005; Stavropoulou, 

2014). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Stage of boulder development; (i) percolation of water into the rock 

joints, (ii) sub-surface weathering process, (iii) evacuation of friable weathered 

debris exposes the corestones (Twidale, 1982) 
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The rock block commonly interlocks and possesses angular edges and corners 

on the outer surface (Hoek, 1983; Twidale, 1986; Cai et al., 2004; Jamtveit and 

Hammer, 2011). The continuous spheroidal weathering at steady-state denudation 

transforms the angular rock block into spherical or rounded shape (Ruxton and 

Berry, 1957; Ollier, 1971; Sarracino et al., 1987; Sarracino and Prasad, 1989). In 

addition, the angular surfaces of rock block expose a greater surface area to the 

weather, which is faster than the flat surfaces to become rounded or spherical boulder 

(Ruxton and Berry, 1957; Røyne et al., 2008; Alejano et al., 2010). 

 

The spheroidal weathering reaction at the surrounding of the rock block 

includes chemical decomposition and physical disintegration such as exfoliation, 

flaking, spalling and fracturing (Ruxton and Berry, 1957; Ollier, 1967, 1971; 

Sarracino et al., 1987; Sarracino and Prasad, 1989; Røyne et al., 2008; Jamtveit and 

Hammer, 2011). The chemical decomposition and physical disintegration in 

spheroidal weathering are the most vital processes in the formation of rounded 

boulder (Ruxton and Berry, 1957; Ollier, 1971). The alteration of chemical-mineral 

composition and physical disintegration at the surrounding of the rock block can be 

seen in Figure 2.3, Table 2.1 and Table 2.2 (Ruxton and Berry, 1957).  

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Spheroidal weathering surrounding a corestone (Ruxton and Berry, 1957) 
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Table 2.1 Stages of chemico-mineralogy change surrounding the corestone (Ruxton 

and Berry, 1957) 

 

 

Table 2.2 Stages of physical disintegration surrounding the corestone (Ruxton and 

Berry, 1957) 

 

 

Through the reaction of spheroidal weathering, the process begins from a 

network of fractures and fissures surrounding the corestone surface (Ruxton and 

Berry, 1957). The presence of water that infiltrates along the fractures and fissures 

decomposes the main minerals such as plagioclase, K-feldspar and biotite between 

corestone and saprolites zone (Ruxton and Berry, 1957; Ollier, 1983; Fletcher et al., 

2006; Buss, 2006; Buss et al., 2004, 2008). Simultaneously, the water penetrates into 

polygonal form surrounding the corestone and disintegrates the rock structure at the 

surrounding of the corestone to become soil (Ruxton and Berry, 1957). This process 

continuously occurs at the outer part of the corestone and gradually produces some 

concentric ellipsoidal and spherical shells of weathered rock with varying thickness 

Chemico-mineralogical change Effect Symbol 

Reddening and argillization. Formation of reddish-brown silt and clay. D 

Complete decomposition of feldspars 

and biotite. 

Formation of light-coloured kaolinitic 

debris. 

C 

Partial decomposition of feldspars 

and biotite 

Formation of gruss. B 

Partial decomposition of biotite. Formation of brown margin to joint block 

and corestones 

A 

State of physical 

disintegration 
Cause Symbol 

Differentiated debris Further disaggregation, illuviation or 

eluviation. 

Z 

Residual debris Disintegration and disaggregation. Y 

Gruss Spheroidal scaling. X 

Corestone Penetration of weathering agents’ inward 

normal to open structure surfaces. 

W 
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ranging from 0.02 to 2.0 m (Ollier, 1971; Sarracino et al., 1987; Sarracino and 

Prasad, 1989; Turner et al., 2003; Fletcher et al., 2006; Buss et al., 2008). The result 

from spheroidal weathering on the rock producing some spheroids types which 

consist of (Sarracino and Prasad, 1989):  

 

i. Unweathered cores,  

ii. Partially decomposed and leached shells and  

iii. Reprecipitated Fe-rich zones.  

 

The formation of boulder due to spheroidal weathering reaction on a rock 

block can be seen in Figure 2.4 (Scholz, 1999; Thuro and Scholz, 2003). The 

spheroidal weathering reaction on a rock block comprises of several repeated 

processes, which begins at the outer part of the fresh rock block and at the end of the 

process; the whole of the fresh rock became sand or clay/silt (Scholz, 1999; Thuro 

and Scholz, 2003). The spheroidal weathering reaction attacks the outer part of the 

fresh rock to form a typically reddish-brown rust front. This reaction gradually 

moves from the outer part into the core of the rock block to form a zone of 

microscopic weathered granite (grade III). The presence of bleached light-brown to 

yellow-white zone at the outer part of the corestone denotes that the solid rock was 

decomposing to become soil (grade II to III). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 Grades of weathering in a Königshain granite block (Scholz, 1999) 
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The continuous process of spheroidal weathering was to shape the corestone 

to become spherical and reduce its volume (Sarracino and Prasad, 1989) as well as to 

increase the disintegrated zone at the surrounding of the corestone which comprises 

of decomposed clay and silt (Thuro and Scholz, 2003). The decomposed material at 

the surrounding of the corestone is the most dangerous material due to its low 

friction angle and tendency to shear along the existing discontinuities (Scholz, 1999; 

Thuro and Scholz, 2003). The end product of the spheroidal weathering is a mixture 

of sandy and/or clayey and silty material (Scholz, 1999).  

2.6  Physical Characteristics of In Situ Boulder 

 

This sub-chapter highlights the physical characteristics of boulder that is 

commonly used in engineering application and classification. There are four main 

physical characteristics of in situ boulder that have been reviewed, which are size, 

shape, material at the surrounding of the boulder or rindlets and saprolites zone 

where the in situ boulder is formed. These parameters are commonly used for 

prediction methods in the occurrence of boulder beneath the ground surface (Frank et 

al., 2000; Medley, 2002; Veneziano and Van Dyck, 2005; Jee and Ha, 2007; Felletti 

and Beretta, 2009) as well as weathering profile classification (Raj, 1985; Fookes, 

1997; Tsidzi, 1997; Tuğrul and Gürpinar, 1997; Yang and Wu, 2006; Alavi et al., 

2016) for geotechnical or geological engineering design (Irfan and Powell, 1985; 

Aydin, 2006; Arıkan et al., 2007; Ehlmann et al., 2008; Alejano et al., 2010; Arıkan 

and Aydin, 2012; Filbà et al., 2016). 

2.6.1  Shape 

 

In weathered rock masses, the in situ boulders can be found in variety of 

shapes and sizes. The shapes of the boulders are influenced by the discontinuities 

characteristics that are formed at the surrounding of the boulder in the rock mass 
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(Dearman, 1991; Palmström, 2001). In situ boulder can also be found in lozenge or 

flat shape, spherical to ellipsoidal or spheroidal shape and some of them are almost 

perfect spheres and/or cubic, but the corners and edges of the original blocks are 

rounded (Ruxton and Berry, 1957; Twidale, 1982, 1998; Shaw, 1997; Orso, 2014; 

Alavi et al., 2016). 

 

In the engineering perspective, the boulder shape is commonly assumed as 

block or cubic shape due to the characteristics of discontinuities (Goodman and Shi, 

1985; Maerz and Germain, 1996; Lu and Latham, 1999; Wang et al., 2003; 

Kalenchuk et al., 2006; Kim et al., 2007a; Stavropoulou, 2014). Some of the 

researchers assumed boulder to be in spherical shape (Tang and Quek, 1986; Medley, 

2002) or cylindrical shape (Veneziano and Van Dyck, 2005) in order to easily predict 

the size. In fact, there is no specific shape of in situ boulder formed in weathered 

rock mass (Huddart et al., 1998; Kirschbaum et al., 2005). Some researchers had 

classified the shape of the boulder using several approaches for engineering purposes 

such as sphericity/angularity chart (Crofts, 1974), eigenshape analysis (MacLeod, 

2002), shape index (Wang et al., 2003; Dunlop, 2006; Yang and Wu, 2006), digital 

shape visualisation (Stückrath et al., 2006) and block diagram (Feng et al., 2010). 

Unfortunately, the classification of boulder shape in different weathering zones is 

still not well understood. 

2.6.2  Size 

 

Various sizes of boulders can be found on the ground or in weathered rock 

mass. The occurrence of in situ boulders with various sizes in weathered rock mass 

are the result of discontinuities formation such as joint spacing, joint persistence, 

joint orientation, faults and bedding (Goodman and Shi, 1985; Maerz and Germain, 

1996; Palmström, 2001, 2005; Kim et al., 2007b). On top of that, the size of in situ 

boulder embedded in weathered rock mass is difficult to be measured (Jee and Ha, 

2007). However, it can still be done based on the long and short axis of the in situ 

boulder that are exposed to the ground surface due to evacuation and soil erosion 
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(Ditlevsen, 2005, 2006). The size of boulder can be described by its volume 

(Stückrath et al. 2006), in which the block volume of boulder can be estimated based 

on the interpretation of laser scanning result except for rounded or spheroidal boulder 

(Alejano et al., 2010). 

 

 The boulder size can be as small as 0.25 m or up to 20 m huge (Ruxton and 

Berry, 1957; Twidale, 1982). If the size of the boulder is large enough, it is classified 

as bornhardts or also known as bald domical hills with unknown size (Twidale, 1995, 

1998; Bourne and Twidale, 2002). According to the classification of grain size 

criteria by New Zealand Geotechnical Society (2005), the particle size larger than 

200 mm or 0.2 m is classified as boulder. In the engineering practice, the size of 

boulder is commonly classified to be more than 300 mm or 0.3 m (Boone et al., 

1998; Poot et al., 2000; Felletti and Beretta, 2009; Chandramohan, 2014). This 

measurement is always used to assess boulder size from borehole sample as carried 

out by previous researchers (Tang and Quek, 1986; Medley, 2002). In tropical 

weathered rock, there is no specific boulder size that had been classified (Raj, 1985; 

Komoo, 1985). In addition, the size of boulder in various weathering zones is not 

well understood and should be studied further. 

2.6.3  Rindlets 

 

Boulders are commonly found surrounded by several concentric sheets or 

layers of weathered rock (Ruxton and Berry, 1957; Ollier, 1971). The concentric 

sheets of weathered rock are identified as system of onion skin referring to the 

presence of concentric layers of weathered rock as thick as 3 to 50 cm surrounding 

the boulder with yellow-brownish colour (Braga et al., 2002; Turner et al., 2003; 

Buss et al., 2004; Fletcher et al., 2006; Chabaux et al., 2013). There are different 

names for the decomposed concentric layers of the boulder which includes 

concentric shells as called by most of the earlier researchers (Ruxton and Berry, 

1957; Ollier, 1971; Sarracino et al., 1987; Sarracino and Prasad, 1989; Sørensen et 

al., 2003; Patino et al., 2003). Other names given for it are onion-skin layers 
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(Twidale, 1982) or spherical shell (Røyne et al., 2008; Jamtveit and Hammer, 2011). 

However, most recently, researchers classified the decomposed concentric sheets of 

weathered rock surrounding the corestone as rindlets (Turner et al., 2003; Fletcher et 

al., 2006; Buss et al., 2008; Brantley et al., 2011; Chabaux et al., 2013). 

 

The terms rindlets was used by Turner et al. (2003) to describe the partially 

of weathered zone dominated by the weathering of plagioclase to kaolinite in Rio 

Icacos saprolite. Fletcher et al. (2006) used the term rindlets to refer to the alteration 

on the concentric fractures layers on the corestone outer surface that was found in 

Rio Icacos, Puerto Rico. Buss et al. (2008) used the term rindlets to describe the 

concentric layers with the thickness of 0.2 to 2 m formed around the corestone of 

quartz diorite bedrock. Similar to Brantley et al. (2011), the term rindlets adopted 

from Buss et al. (2008) was to define the onion skin-like shell that is formed around 

the corestone during spheroidal weathering as found at hill shale and Rio Blanco 

quartz diorite. The term rindlets as suggested by Turner et al. (2003) and used by 

Fletcher et al. (2006) and Buss et al. (2008) was used by Chabaux et al. (2013) to 

refer to concentric fracture shell with the thickness of 40 cm that was formed at the 

surrounding of the quartz diorite corestone found in tropical rain forest, Rio Icacos, 

Puerto Rico. 

 

Rindlets that are commonly found consists of three to six concentric sheets of 

weathered rock surrounding the corestone (Ruxton and Berry, 1957; Turner et al., 

2003; Fletcher et al., 2006; Buss et al., 2008; Brantley et al., 2011; Chabaux et al., 

2013). The first layer located near the boulder is corestone-rindlets interface, which 

is then followed by rindlet zone (~0.2 to 2.0 m thick which ~2.5 cm each), rindlet-

saprolite zone , protosaprolite layer (~ 7 cm) and saprolite zone (2-8 m thick) and the 

upper layer near the ground surface is soil with the thickness of 0.5 to 1 m thick 

(Fletcher et al., 2006; Buss et al., 2008; Brantley et al., 2011; Chabaux et al., 2013). 

Due to the development of cracks in rindlets layer, the thickness of the rindlets 

decreased with the increased of distance from corestone as shown in Figure 2.5 

(Fletcher et al., 2006). 
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