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Multiplexing is a strategy to augment the transmission capacity of a communication system. It consists
of combining multiple signals over the same data channel and it has been very successful in classical
communications. However, the use of enhanced channels has only reached limited practicality in quantum
communications (QC) as it requires the manipulation of quantum systems of higher dimensions. Considerable
effort is being made towards QC using high-dimensional quantum systems encoded into the transverse
momentum of single photons, but so far no approach has been proven to be fully compatible with the existing
telecommunication fibers. Here we overcome such a challenge and demonstrate a secure high-dimensional
decoy-state quantum key distribution session over a 300-m-long multicore optical fiber. The high-dimensional
quantum states are defined in terms of the transverse core modes available for the photon transmission over the
fiber, and theoretical analyses show that positive secret key rates can be achieved through metropolitan distances.
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I. INTRODUCTION

Over the last decades we have witnessed the advances
of telecommunication technologies by experiencing a huge
increase in our capacity to send or download data. This has
been vastly based on the development of new techniques to
multiplex information in different degrees of freedom of light
transmitted over an optical fiber, which have allowed their
information capacity to be increased around tenfold every four
years [1]. Analogously, in quantum communications (QC), the
use of high-dimensional quantum systems allows for more
information to be transmitted between the communicating
parties [2–5]. Fortunately, it turns out that such systems can
be created by also exploring the degrees of freedom of faint
light pulses and, therefore, most of the multiplexing strategies
developed for classical telecommunications are to some
extent connected to the implementation of high-dimensional
secure QC.

Experimental high-dimensional quantum cryptography is
still in its infancy, but secure communications based on
the use of high-dimensional quantum systems encoded into
the transverse momentum of single photons has been the
subject of many recent experimental efforts [6–10], and
theoretical analyses [5,11–16]. The motivation comes from
the versatility it provides since it can be used to define
an infinite-dimensional Hilbert space in terms of the orbital
angular momentum (OAM) of Laguerre-Gaussian modes [17],
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or also in terms of the number of linear transverse modes
available for photon transmission [18]. OAM-encoded quan-
tum systems are suitable for communication over free-space
links due to their resilience against atmospheric turbulence
[19], while on the other hand, path-encoded states are suitable
for communications systems based on waveguide integrated
circuits [20]. However, no research so far has accomplished a
secure QC session while propagating such quantum states over
the available telecommunication optical fibers, thus severely
limiting real-world applications.

Here we take a major step to overcoming this challenge and
demonstrate a secure high-dimensional quantum key distribu-
tion (HD-QKD) session between two parties communicating
over a 300-m-long telecommunication optical fiber, whose
security is guaranteed by resorting to the decoy-state method
[21–23]. Our technique is built upon multicore optical fibers,
now used in classical telecommunications for space-division
multiplexing [1]. In our scheme we are able to coherently
propagate quantum signals over the entire multicore fiber,
thus, allowing high-fidelity transmission of four-dimensional
quantum systems that are encoded into the four core modes
available in the fiber. Using a standard InGaAs gated single-
photon detector, with a detection efficiency of 6% and a dark
count probability of 2.25 × 10−7, we obtain a secret key bit
generation rate per pulse of (4.31 ± 1.19) × 10−6. This is
equivalent to the generation of approximately 15 secret bits
per hour at the system current clock rate of 1 KHz. We
prove the HD-QKD session to be highly stable, maintaining an
overall quantum bit error rate (QBER) of (10.25 ± 0.6)% over
more than 20 hours of continuous operation. The decoy-state
analysis also shows that our technique enables a positive secret
key rate over metropolitan distances.
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Compared to conventional qubit-based QKD over a single
spatial mode, our results reflect that HD-QKD is still in
a very early stage of development. Nonetheless, it is in
this context that this work becomes relevant. It proves the
viability of transmitting with high-fidelity high-dimensional
BB84 QKD states encoded into the transverse momentum of
single-photons, and also paves the way for future research on
the use of multicore fibers for HD quantum cryptography. As
we discuss in the concluding remarks and Appendix C, there
are new technological developments on solid-state devices
compatible with multicore fibers, which shall allow for much
faster and longer distance HD-QKD schemes in the near future.

II. IMPLEMENTATION AND RESULTS

By far the most widely used QKD protocol is BB84,
which requires a prepare-and-measure scheme [24]. The BB84
QKD session consists of Alice (the transmitter) randomly
encoding bits of information onto single photons and then
sending them to Bob (the receiver) over an optical fiber or a
free-space link. Alice’s encoding procedure randomly chooses
between states from two mutually unbiased bases (MUBs),
and Bob independently also randomly chooses states between
the same two MUBs to perform a projective measurement on
each photon [2]. The four-dimensional BB84 QKD session
requires that Alice and Bob prepare eight states spanning
two MUBs. These states will be denoted by |ϕ(j )

i 〉, where
i = 1,2,3,4 refers to the ith state of the j th MUB, with
j = 1,2. The states of the first MUB are defined by 〈ϕ(1)

1 | =
1
2 [1,1,1,1], 〈ϕ(1)

2 | = 1
2 [1,−1,1,−1], 〈ϕ(1)

3 | = 1
2 [1,1,−1,−1],

and 〈ϕ(1)
4 | = 1

2 [1,−1,−1,1]. The second MUB states are

〈ϕ(2)
1 | = 1

2 [1,1,1,−1], 〈ϕ(2)
2 | = 1

2 [1,1,−1,1], 〈ϕ(2)
3 | = 1

2 [1,−1,

1,1], and 〈ϕ(2)
4 | = 1

2 [−1,1,1,1]. They are written on the basis
of the four core modes shown in Fig. 1.

One major problem in QKD implementations is the fact
that practical single-photon sources are not available, such
that attenuated lasers producing weak coherent states must
be used. The main issue when using these sources is that
an eavesdropper may perform the so-called “photon-number
splitting” attack on pulses that contain more than one photon
[25]. The solution to this problem is the decoy-state method
[21–23], where Alice and Bob can estimate more precisely
the fraction of detected single-photon pulses and determine
whether an eavesdropper is present. Due to its relatively
straightforward implementation, the decoy-state method has
been widely used [26–32]. In our implementation we use
its generalization for the HD-QKD BB84 protocol [5,11].
We employ an attenuated telecom distributed feedback laser,
whose emission wavelength is 1546.32 nm, as our light source
(Fig. 1). The laser operates in continuous wave mode and
is externally modulated by a Mach-Zehnder electrooptical
modulator (MZ), generating 500-ps-wide optical pulses. A
calibrated optical attenuator (ATT) is used to set the desired
average photon number per pulse, μ, at Alice’s output. In our
work, the highest average photon number per pulsed adopted
was μ = 0.27. In this case, pulses containing only one photon
are the vast majority of the nonnull pulses generated (∼90%).
The repetition frequency for the optical pulses is set to 1 kHz in
this first demonstration. Nonetheless, much faster clock rates

FIG. 1. (a) Experimental setup: Alice encodes the four-
dimensional BB84 QKD states using a deformable mirror (DM1).
The communication link consists of a 300-m-long four-core multicore
fiber. Bob uses a deformable mirror (DM2) and a SPD to implement
his measurements. See main text. (b) The multicore fiber’s cross
section. (c) The deformable mirror is composed of a 6 × 6 mirror
matrix. Light coming from each MCF’s core is mapped to an
individual mirror. As an example, in (c) cores | 1 〉, | 3 〉, and | 4 〉
have a relative phase of 0 applied, while | 2 〉 has a π relative phase
shift. (d) Simulated FF distribution with the pinhole area indicated by
red circle. The first case is when Bob’s projection is performed on the
same state as the one Alice sent. It displays constructive interference.
The second case is with an orthogonal projection, leading to no
detection. The last case is when Alice and Bob use different MUBs.
HWP (QWP): half (quarter) wave plate. PBS: polarizing beamsplitter.

can be obtained as we discuss in the concluding remarks. Last,
note that since the period between consecutive pulses is longer
than the coherence time of the laser (∼0.1 μs), there is no need
of active phase randomization of the pulses to avoid security
loopholes [33].

The attenuated pulses are used by Alice to encode the
required high-dimensional quantum states. For this purpose
they are initially coupled into a 10-m-long multicore fiber
(MCF1), composed of four single-mode cores, by means of a
10× objective lens (L1) [See Figs. 1(a) and 1(b)]. The core
mode field diameter is 8.5 μm and the cores are separated by
d = 36.25 μm to ensure that cross-talk effects are negligible.
All cores of the fiber are equally illuminated. Thus, the
probability amplitudes for the photon transmission by each
core are equally weighted. Contrary to standard fiber arrays,
the cores of multicore fibers lie within the same cladding,
ensuring that random phase-fluctuations induced by thermal
and mechanical stress are strongly suppressed. Therefore,
the state of the photons transmitted over the MCF1 is a
coherent superposition given by |�〉 = 1

2

∑4
1 eiφl |l〉, where

|l〉 denotes the state of the photon transmitted by the lth
transverse core mode, and φl is the relative phase acquired
during the propagation over the lth core. This is the fiducial
state which is then used to prepare the required ones for the
four-dimensional BB84 QKD session. This is done by imaging
the output face of MCF1 onto a deformable mirror (DM1)
by means of a second 10× objective lens (L2). The 10×
magnification factor is chosen such that the image of each
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core is formed at different mirrors, as shown schematically
in Fig. 1(c). Each mirror’s longitudinal position can be set
individually. By defining different offset positions for the four
mirrors, the residual phases φl are compensated and the first
state |ϕ(1)

1 〉 prepared. The other QKD states are generated with
the mirrors at positions that correspond to phase-shifts ϕl = π .

The attenuated pulses are then coupled to a 300-m-long
multicore fiber (MCF2), comprising the transmission channel.
After transmission through MCF2, the photon is detected at
Bob’s station for state analysis. Bob’s detection scheme is
similar to the one used by Alice. The output face of MCF2
is magnified at a second deformable mirror (DM2) and the
relative-phase of each core is addressed individually by four
independent mirrors. To define a common shared referential
frame, like in fiber-based polarization schemes, Bob first
defines the offset positions of the four mirrors for detecting
the state |ϕ(1)

1 〉, when Alice is also sending such state. Thus,
compensating residual phase-shifts φ′

l acquired over MCF2.
By placing one “pointlike” single-photon detector (SPD) at
the DM2’s far-field (FF) plane, and properly adjusting the
mirrors longitudinal positions to set phase-shifts, Bob can
detect any state |ϕ(j )

i 〉 required for the four-dimensional BB84
QKD session. In our case the “pointlike” SPD is composed of
a pinhole (PH) fixed at the center of the FF plane of a lens L5
(fL5 = 7.5 cm), a single-mode fiber, and an InGaAs avalanche
detector. The probability of photon detection at the center of
the FF plane Cs is proportional to the overlap between the
generated and detected states (see Refs. [8,34] and Fig. 1(d)).
Note that the use of the “single detector scheme” for the
implementation of the four-dimensional QKD is just for sake
of practicability to demonstrate the viability of multicore fibers
for secure HD-QC. It does not represent a limiting issue of the
presented technique as we discuss in the concluding remarks.
Lastly, for the sake of completeness, we show in Appendix A
that this single detector four-dimensional BB84 scheme can
still outperforms some traditional qubit based approaches.

The multicore fiber is intrinsically robust against random-
phase fluctuations. Nonetheless for long multicore fibers, like
MCF2, slowly varying phase-drifts can still be observed. This
effect deteriorates the referential frame shared by Alice and
Bob, resulting in a mean QKD state fidelity (F̄ ≡ 1 − QBER)
that varies over time. The typical behavior observed is shown
in Fig. 2(a). This renders HD-QKD over long multicore fibers
not practical if not addressed. To overcome this problem we
developed a control system. It checks the shared referential of
Alice and Bob over time intervals of 30 s and the control routine
is initialized if the QBER surpasses a defined threshold value.
During the control procedure the QKD session, explained
next, is interrupted. The control system is composed of a
laser that is multiplexed into the multicore fibers and two
field-programmable gate arrays (FPGA1 and FPGA2) elec-
tronic modules that actively control the deformable mirrors.
Based on a custom designed closed-loop maximum-power-
point-tracking algorithm, the control system varies the offset
positions of all the active mirrors used on the QKD session
until the recorded QBER is below our threshold of 12%.
Then, it is turned off and the QKD session restarts. The
resulting effect of the control system is shown into Fig. 2(a).
It allows the stabilization of the shared referential frame,

FIG. 2. (a) Mean QKD fidelity of the four-dimensional BB84
states transmitted through the 300-m-long multicore fiber. With the
control system off, the fidelity slowly degrades. With the control
on, the fidelity remains above the threshold, enabling stable QKD
sessions. (b) Two examples of measured fidelities after 1.08 hours,
for the states |ϕ(1)

2 〉 and |ϕ(2)
3 〉.

critical for long-term QKD sessions. In Fig. 2(b) we show the
fidelity for the states |ϕ(1)

2 〉 and |ϕ(2)
3 〉 at 1.08 hours. The mean

fidelity is F̄1.08 = (92.05 ± 0.03)% and the fidelity of each
state is (96.31 ± 0.03)% and (92.93 ± 0.03)%, respectively.
Note that at Alice’s site polarizing optics are used to ensure
no coupling between the polarization and the core modes.
It is also important to consider that polarization drifts may
occur over long fibers, such that the core modes get marked by
different polarizations. Fortunately, this effect is compensated
with a polarization filter to erase the which-path information
(see Fig. 1).

The four-dimensional QKD session is also implemented by
the FPGAs. Alice’s FPGA1 generates a 1-kHz synchronization
signal which is shared to Bob’s FPGA2. Then, FPGA1 reads
a number from an idQuantique quantum random number
generator (QRNG), which determines whether MUB j = 1
or j = 2 will be used, and which of the |ϕ(j )

i 〉 states from
that MUB will be created at the DM1. Bob’s FPGA2 will
receive the same sync pulse almost simultaneously as Alice
generates it. He then also takes a number from his QRNG and
chooses one of the two MUBs and one of the corresponding
four states in which to project the incoming photon. A delayed
version of the synchronization pulse is fed in the gated-mode
single-photon detector (idQuantique id210), with the gate
width adjusted to 0.85 ns. FPGA2 then checks whether there
was a photon detection in the SPD for each sync pulse.
Both FPGAs record the chosen MUB and states. The FPGAs
compare the detected strings after basis reconciliation to
calculate the QBER.

The secret key rate (R) as a function of the dimen-
sion d is given by R � Q0log2d + Q1[log2d − Hd (e1)] −
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FIG. 3. (a) Measured QBER over time (blue dots). The brown
line is the average QBER of 10.25%. The dashed black and cyan
lines are the bounds to achieve positive key rate against individual
(25%) and coherent (18.93%) attacks, respectively. (b) Secret key rate
(R) as a function of distance for the weak decoy + vacuum protocol.
The point is the actual key generation rate in our QKD session.

QμHd (Eμ)f (Eμ), where Q0 and Q1 are the gains of the vac-
uum and single photon states, respectively. Qμ is the gain for
an average μ photon number. Hd (x) = −xlog2[x/(d − 1)] −
(1 − x)log2(1 − x) is the d-dimension modified Shannon
entropy of the QBER [11]. e1 is the single-photon error rate,
Eμ is the overall quantum bit error rate (QBER), and f (Eμ)
is the inefficiency of the error correction function. Q0,Qμ,
and Eμ can be directly measured, while Q1 and e1 must be
estimated by the decoy state method [35].

In the experiment, we first performed a long-term
automated measurement to demonstrate the stability achieved
in our experiment by performing a BB84 QKD session over
the 300 m of multicore fiber, while employing an average
photon number per pulse μ = 0.27. The results are shown in
Fig. 3(a), where we have an average of 44.5 detections per
hour, with an overall QBER of 10.25% (basically limited by
optical mismatch and accidental counts). Then we performed
a key exchange QKD section whose security is guaranteed by
the practical vacuum + weak decoy protocol (see Appendix B
for details). We employed a passive modulation of the
decoy protocol with the value of μ = 0.2 for the signal,
and the decoy states defined by ν = 0.1 and vacuum. The
measured parameters used to calculate the key rate R at the
distance of 300 m were Qμ = (9.31 ± 0.63) × 10−6, Eμ =
(10.8 ± 1.4)%,Qν = (4.89 ± 0.30) × 10−6, Eν = (9.0 ±
1.3)%, Y0 = (2.06 ± 0.23) × 10−7, and E0 = (71.1 ± 3.4)%.
We obtain a secret key generation rate per pulse of
(4.31 ± 1.19) × 10−6, plotted as the red dot in Fig. 3(b).
Our calculation returns a lower bound for the single-photon
gain QL

1 = (6.96 ± 1.30) × 10−6 and an upper bound of

the single-photon error rate eU
1 = (7.53 ± 2.20)%. Note that

within the experimental errors, the obtained value of eU
1 is

in accordance with the expected one of eU
1theo

= 9.70%. The
blue curve in Fig. 3(b) represents the expected key rate as
a function of the MCF based channel length in our actual
experimental configuration (see Appendix B for details),
showing its viability for parties separated by more than 20 km.

III. CONCLUSION

The presented technique has the potential to provide a
transformative HD-QKD network. Recent engineering devel-
opments, compatible with MCFs, will allow our experiment
to be translated to an operational system capable of out-
performing qubit communication. For instance, the adopted
bulk single detector scheme (responsible of 24.5 dB of losses
due to the use of a pinhole) can now be replaced by a fully
integrated and low-loss d detector scheme (see Appendix C).
It is based on the recent development of a MCF multiport
beamsplitter that is built using a new technique to cut and splice
MCFs [36]. Thus, allowing HD-QKD over distances similar to
the qubit-based approach. The HD-QKD clock repetition rate
can also be increased to the limits achieved with qubit systems
(>1 GHz), while providing more information per round. As
shown in Appendix C, a new MCF demultiplexer [37] can be
used to couple fast fiber-based phase-modulators [38] to each
core mode, thus allowing faster encoding or decoding of the
BB84 QKD high-dimensional states. In our case, the limitation
of the 1-KHz rate was mainly due to the response time of the
DMs. Lastly, note that the viability of using MCFs with silicon
chips [39], to multiplex classical and quantum signals [40], and
to propagate entangled states [41], highlights MCFs as a new
tool for several QC tasks.

Quantum key distribution is the most successful protocol of
QC with many different demonstrations performed across sev-
eral distinct scenarios. The interest on QKD is only expected
to grow and considerable effort is being made to increase
QC’s information content by using the transverse momentum
of a single-photon [6–10]. In our work we demonstrate the
first fiber-based automated and secure decoy-state HD-QKD
session, which relies on four-dimensional systems encoded
onto the transverse core modes available for the photon
transmission over a 300-m-long multicore optical fiber. Our
results set the stage for future implementations of high-
dimensional QC over the telecommunication infrastructure.
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FIG. 4. Secret key rate for d-dimensional Hilbert spaces when
considering a single-detector and a d-detector scheme configuration.
Here we perform secret key rate simulations considering the infinite
decoy case, while using as input parameters the experimental data
from [42]. In the d-detector case, as expected, the rate increases for
shorter distances and the cutoff point in the secret rate versus distance
curve occurs for shorter distances, as d increases. In the single-
detector case, the probability of correctly projecting the transmitted
state onto itself decreases linearly with d , while the information gain
per transmitted photon only increases with O[log(d)]. Thus, the case
of d = 8 always generates a lower secret key rate when compared to
d = 4. Nonetheless, as shown on the inset, our implementation (i.e.,
the d = 4 case) is capable of beating the d = 2 case.

APPENDIX A: d DETECTOR VERSUS 1
DETECTOR QKD SCHEME

Similarly to classical communications, the use of higher
dimensions to encode more information has interesting conse-
quences. In the case of a HD-QKD, there are two approaches:
a single-detector randomly placed at each possible output
(the one done in this work), or having d detectors, one at
each output. In the d detector case, as expected, the rate
increases for shorter distances and the cutoff point in the secret
rate versus distance curve occurs for shorter distances, as d

increases (Fig. 4). This is due to the fact that for each detection
round, the total dark count probability is higher, compared
to the two-dimensional case, as there are d detectors. The
single-detector case is more interesting, as can be also be seen
in Fig. 4. In this case, the probability of correctly projecting the
transmitted state onto itself decreases linearly with d, while
the information gain per transmitted photon only increases
with O[log(d)]. Nonetheless, as shown on the inset of Fig. 4,
our implementation (i.e., the d = 4 case) is capable of beating
d = 2 for all distances until the dark count probability gets too
strong at the cutoff point.

APPENDIX B: DECOY-STATE SECRET KEY
GENERATION RATE PROBABILITY

Here we show how the secret key generation prob-
ability R of our HD-QKD system is derived using the

decoy-state approach [21–23]. Our analysis follows the
method of Ref. [35], and modifications are performed when
necessary for dealing with the high-dimensional case. We also
show how the key rate is estimated as a function of the distance.

The secret key generation probability for d-dimensional
systems is given by [35,43]

R � Q0 log2 d + Q1[log2 d − Hd (e1)] − QμHd (Eμ)f (Eμ),

(B1)

where Q0 and Q1 are the gains of the vacuum and single-
photon states, respectively. Qμ is the overall gain (i.e., the
probability of obtaining a detection when the signal state is
sent), Eμ is the overall error rate, while e1 is the error rate
of the single-photon states. Hd (x) = −x log2 [x/(d − 1)] −
(1 − x) log2 (1 − x) is the d-dimensional modified Shannon
entropy of the QBER [11]; f (Eμ) is the inefficiency of the
error correction function. We employ f (Eμ) = 1.05 [44] and
consider the use of the efficient BB84 protocol [45].

The values of Qμ and Eμ are directly obtained from the
experimental data when Alice sends signal pulses. On the other
hand, the parameters associated to single-photon pulses (Q1

and e1) and vacuum (Q0) cannot be directly measured. They
must be inferred through the use of a numerical approach based
on the decoy-state technique [46]. A practical implementation
of the decoy technique consists on using only one weak (with
average photon flux ν < μ) and vacuum decoy states. Under
this approach, Q0 can be directly estimated as Q0 = e−μY0,
where Y0 is the measured yield of the vacuum states (i.e., the
probability of detection measured when no photons are sent
from Alice). On the other hand, a lower bound QL

1 on Q1, and
an upper bound eU

1 of e1, can be written as [35]

QL
1 = μ2e−μ

μν − ν2

[
Qνe

ν − ν2

μ2
Qμeμ − μ2 − ν2

μ2
Y0

]
, (B2)

and

eU
1 = (EνQνμeν − μe0Y0)/

(
νQL

1 eμ
)
, (B3)

with Qν and Eν measured with the weak decoy state. These
values are fed into Eq. (B1) to calculate the experimental secret
key rate.

The same method can be exploited to derive the expected
key rate as a function of the channel length. In this case
the values of Qμ,Qν,Eμ, and Eν can be estimated by
assuming the propagation in a lossy channel. When using a
photon source modelled as an incoherent mixture of Fock
states, given by the Poisson distribution Pn = μne−μ/n!, the
overall gain and QBER values are computed through the
summation over all possible states. Thus, Qμ = ∑∞

n=0 YnPn

and Eμ = (1/Qμ)
∑∞

n=0 enYnPn. In the above expression Yn

is the n-photon yield, defined as the probability of detection
at Bob’s station when Alice sends an n-photon Fock state and

TABLE I. System parameters for estimation of the secret key generation probability as a function of transmission distance.

Qμ Eμ Q1 e1

d detectors Y0 + 1 − e−μη e0Y0+eopt (1−e−μη)
Y0+1−e−μη (Y0 + η)μe−μ e0Y0+eopt η

Y0+η

Single detector Y0 + 1−e−μη

d

e0Y0d+eopt (1−e−μη)
Y0d+1−e−μη (Y0 + η

d
)μe−μ e0Y0d+eopt η

Y0d+η
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en is the corresponding error. The n-photon gain, Qn = YnPn,
results from the product of the yield Yn and the probability Pn

of the state being produced by Alice.
In a lossy channel the expected value of Yn is Yn ≈ Y0 + ηn,

where Y0 is the vacuum yield related to the dark count prob-
ability of the SPD (Pdark). The parameter ηn = 1 − (1 − η)n

is related to the overall efficiency η of the channel given by
the detector efficiency and the internal transmittance of Bob’s
apparatus (ηSPD = 6.09% and ηBob = 24.5 dB respectively,
corresponding to values of our implementation). The link
transmittance is given by 10−αL/10, with the attenuation
coefficient represented by α [dB/km] and the transmission link
length given by L [km]. In our case, the multicore fiber used
(Fibercore) has α = 0.4 dB/km. The error associated to the n-
photon states can be estimated to be en = (e0Y0 + eoptηn)/Yn,
where eopt is due to the optical misalignment of the detection
system and is estimated to be eopt = (9.64 ± 0.98)% in our
case.

In a d-dimensional QKD system employing d outputs (one
single-photon detector at each output), the yield of the vacuum
states is Y0 = 1 − (1 − Pdark)d which, for small values of Pdark,
increases linearly with the dimension Y0 ≈ dPdark. The QBER
associated to vacuum states is e0 = (d − 1)/d, corresponding
to the probability of a random dark count to occur in an SPD
which is not expected to fire when Alice and Bob’s bases are
matched.

With one single-photon detector in the d-dimensional case,
the vacuum yield is independent of the dimension and limited
to Y0 = Pdark. On the other hand, some nonvacuum states sent
by Alice will not be measured by Bob, even in the case of
compatible bases between Alice and Bob, and the overall
efficiency is reduced to ηn = [1 − (1 − η)n]/d.

The expected values of Qμ and Eμ and the parameters
associated to single-photon events, Q1 and e1 for a given
overall channel efficiency η and a d-dimensional QKD system,
are summarized in Table I for both single and d detector cases.
The curve for the secret key rate as a function of the multicore
fiber length, shown on Fig. 3 of the main text, is computed
using the parameters of Table I into Eq. (B1).

APPENDIX C: IMPROVED d DETECTOR SCHEME

In our experiment, one of the main issue was the high losses
introduced by the bulk single detector scheme. There are two
reasons for this and they can now be avoided by using new
engineered devices. The first cause of losses is the absence
of a device, known as a multiport beamsplitter, capable of
combining the four propagation core modes without resorting
to diffraction. The other cause of losses is the absence of a

(a) (b)

(c)

(d)

BS MCF DEMUX

BS MCF + DEMUX + SPDs

DEMUX + PMs + DEMUX + BS MCF + DEMUX + SPDs

FIG. 5. Schematic setup of a d detector integrated detection
scheme for HD-QKD based on MCFs. See text for details.

second device capable of demultiplexing (DEMUX) each core
of the fiber into individual single-mode fibers, requiring the
use of only one detector at Bob stage.

Nonetheless, recently, there have been the development of
a MCF based multiport beamsplitter (BS MCF) that relies
on a new technique to cut and splice multicore fibers [36].
Moreover, the fiber-producing Fibercore company has been
able to develop the demux device required for our research,
which is now available commercially [37]. The device allows
the coupling of one detector to each core of the multicore
fiber. These new devices are shown schematically in Figs. 5(a)
and 5(b), respectively. The concatenation of the BS MCF
device and the DEMUX will allow a d detector, low-loss,
and waveguide coupled detection scheme for quantum cryp-
tography in higher dimensions [Fig. 5(c)].

Lastly, note that by using extra DEMUX devices one can
replace the deformable mirrors by much faster fiber-based
phase modulators (PMs) [38], as shown schematically in
Fig. 5(d). This allows faster encoding and decoding of the
BB84 QKD high-dimensional states, since these PMs are
capable to work up to a clock repetition rate of 30 GHz.
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