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Real-time encoding and compression of neuronal
spikes by metal-oxide memristors
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Advanced brain-chip interfaces with numerous recording sites bear great potential for

investigation of neuroprosthetic applications. The bottleneck towards achieving an efficient

bio-electronic link is the real-time processing of neuronal signals, which imposes excessive

requirements on bandwidth, energy and computation capacity. Here we present a unique

concept where the intrinsic properties of memristive devices are exploited to compress

information on neural spikes in real-time. We demonstrate that the inherent voltage

thresholds of metal-oxide memristors can be used for discriminating recorded spiking events

from background activity and without resorting to computationally heavy off-line processing.

We prove that information on spike amplitude and frequency can be transduced and stored in

single devices as non-volatile resistive state transitions. Finally, we show that a memristive

device array allows for efficient data compression of signals recorded by a multi-electrode

array, demonstrating the technology’s potential for building scalable, yet energy-efficient

on-node processors for brain-chip interfaces.
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U
nderstanding brain function relies heavily upon long-term
recording of neuronal populations. Advances in chip-
based neuronal probe technology1–4 have led to recording

systems capable of monitoring in real-time large numbers of
neurons5,6, bearing great potential for fundamental neuroscience
and neuroprosthetic applications7–9. Currently, probes with
multi-electrode-arrays (MEAs) are capable of simultaneously
recording electrical activity from up to 512 sites at 40 k samples
per second in vivo10 and from up to 32,768 sites at 2.4 k frames
per second in vitro11. Further advances, particularly towards fully
implantable autonomous systems, are hindered by real-time
processing of the streamed neuronal signals, which would notably
increase power dissipation along with dropping of signal-to-noise
ratio (SNR)12. Addressing these challenges necessitates the
intelligent compression of big neural data generated13 via
on-node processing, currently pursued by shifting the spike
detection and sorting task on-chip via template matching6,14,15.
However, the resulting scalability issues, the drive for even further
power budget reductions together with the consideration that
neuroprosthetics have been successfully operated with simple,
rate- or spike-count-coded input signals16–20 have kindled
interest in processing neuronal signals in a bio-inspired fashion.
This justifies current interest in leveraging emerging technologies
for resurrecting Carver Mead’s original vision in neuromorphic
systems21, where efficient data processing is implemented for
example through artificial retinas22.

Memristive devices appear to be well suited in providing a
disruptive technological boost to this vision by performing the
role of artificial synapses. Much akin to biological synapses,
they possess the intrinsic ability to simultaneously carry
out computational tasks and store information at aggressively
downscaled volumes and power dissipation23,24. Here we exploit
the intrinsic characteristics of metal-oxide TiOx-based
memristors, such as their analogue memory capacity that
occurs above certain voltage thresholds for encoding and
compressing neuronal spiking activity recorded by MEAs.
We demonstrate how a large part of the computational burden
associated with spike detection can be relegated to single
memristive devices that can be accommodated in the back-end-
of-line of complementary metal-oxide semiconductor (CMOS)
technologies, along with neuronal probe manufacturing.

Results
Memristors as events integrators. As originally proposed by
Chua, memristors are capable of changing their resistive state as a
function of the integral of their input voltage; a phenomenon
known as resistive switching25. As a result of this single-device
integrator property, solid-state implementations of memristive
devices26–28 have been at the center of attention, with potential
applications in emerging memories and neuro-inspired
computing29. In this work, we exploit metal-oxide-based
resistive switches as neuronal spike integrators. Solid-state TiOx

memristors with a metal-insulator-metal architecture, as shown
in Fig. 1a, were fabricated on a Si/SiO2 substrate; detailed process
parameters appear under the Methods section. Subjecting the
device-under-test (DUT) to a train of input programming pulses
in alternating polarities gives rise to gradual resistive state
transitions, provided the pulse amplitude exceeds the device’s
inherent bipolar switching thresholds (fundamental properties of
the device; denoted as Vth� /Vthþ ), as illustrated in Fig. 1b,c
(see Methods). Here we argue that this capability for gradual
switching can be exploited to encode multiple significant spiking
events as small changes in a device’s resistive state. This
assumption is first explored deterministically, by employing
known pulse events. Figure 1d,e show the response of a typical

DUT to trains of 200 identical square-wave events of negative and
positive polarities30, respectively, as illustrated in the insets. Each
writing pulse has a fixed 100ms duration and suitable amplitude
to induce a resistive state change. It is followed by a reading
pulse of fixed 0.5V amplitude and an automatically determined
duration, ta (ref. 31). Notably, the pulse amplitude required to
elicit a resistive state change of similar strength but in the
opposite direction could differ, indicating an inherent asymmetry
in the device’s characteristics. This bidirectional, gradual
(analogue), saturating switching, could be fitted by second
order exponential functions of input voltage integral
(Supplementary Table 1), thus defining the input-output
relation of an integrating sensor for distinct stimulation
protocols. Notably, as our TiOx device prototype acts as a
thresholded integrator, it can be described by the generalized
definition of memristor as ‘zero phase-shift dynamic system’32.
We name hereafter the device as memristive integrating sensor
(MIS) and show that this thresholded-integrator attribute can be
particularly useful for compressing information and suppressing
noise in signals with low SNR, such as data recorded from the
activity of neurons/cells. Hence, our approach only allows for
significant, supra-threshold events to be registered as measurable
changes in the device memory state, whilst sub-threshold events
are suppressed.

Neural spiking integration with metal-oxide memristors. The
ability of memristors to integrate significant events provides
an efficient way of encoding and compressing information on
neuronal firing in real-time, as recorded by neuronal probes. The
basic concept of the proposed MIS platform is exemplified in
Fig. 2a. An external front-end platform (for example a MEA)
senses neuronal electrical activity which is fed into the MIS
system as a series of voltage-time samples. The MIS begins by
pre-amplifying the incoming signal to voltage levels suitable for
operating the memristor sitting at the core of the MIS and then
proceeding to apply the pre-amplified signals to the memristor in
real-time. Periodically, the memristor’s resistive state is assessed
periodically and when a significant change in comparison to the
previous state is detected, the system registers a spiking event.

We validated experimentally the MIS system implementation
on spiking activity of retinal ganglion cells. At first, the activity of
dissected retinal cells was pre-recorded by an external MEA
front-end system2,33–36 (see Methods, CMOS MEA). The MEA
employed records the raw bio-signals, which lie in the 0.1mV–
1mV range, and then uses its own in-built amplifiers to boost
them to the 10mV–100mV range. The resulting, boosted
recordings are then stored off-line as voltage-time series. For
this work, we have used these stored recordings as inputs to our
MIS platform in isolation from the front-end, that is the front-
end has not been connected to the MIS platform in real-time
(Supplementary Fig. 3). The processing of neural signals through
MIS platform begins when the stored voltage-time series are
subjected to amplification and offset in software on the PC that
runs the platform (Fig. 2a—box (i) and Methods section). This
set-up offers the option of adjusting the MIS detection threshold
and consequently allowing the integration of significant spiking
events with a pre-determined SNR. For example in Fig. 2c, the
offset and scaling parameters were chosen such that only the most
significant events (largest amplitude extracellular spikes) would
exceed the threshold. The resulting, pre-conditioned waveform is
then transmitted from the PC to the memristor testing and
operation instrument (see Methods, Hardware Infrastructure),
which physically implements the MIS system. The instrument, in
turn, plays back the waveform to a target memristive device.

In order to assess the distinct resistive state changes during
the streaming of recorded neural activity (Fig. 2b—see Methods),
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the DUT is periodically disconnected from the neural signal feed,
for example once every 200 input samples, and connected to a
read-out circuit that captures the device’s state, digitizes it and
subsequently sends the resistive state reading back to the PC.
Importantly, only a limited amount of data is returned to the PC
when compared with the full voltage time series in conventional
systems (box (ii) in Fig. 2a and see Methods, MEA neural
recording signal-processing). A software converts the incoming
series of resistive state readings into a series of resistive state
changes, subsequently keeping only the largest ones that are
marking significant events in the neural signal (Fig. 2a marked
(iii), Methods and Supplementary Fig. 6). Noteworthy this
filtering process, based on an assessment of resistive state changes
in absentia of an input signal (see Methods section) may be
engineered in order to fine-tune SNR on neuronal activity.

Our effort to reduce data bandwidth echo current research in
on-chip spike-sorting8, with our approach being disruptive in
exploiting the inherent data-compression capability of highly
scalable, low-power nanodevices that could extend the scaling and
processing capacity of neural recording platforms substantially.
Our approach reproduces in its essence the strategy adopted by
natural synapses for signal compression, where information on
spikes number and firing rate is stored into gradual changes
of the postsynaptic membrane conductance. In contrast,
present state-of-art neural activity monitoring platforms, like
the MEA-based system described in ref. 33, rely entirely on

front-end circuitry for detecting and transmitting all data offline
for processing (Supplementary Fig. 7).

MIS system performance. MIS system performance was
investigated in three separate experiments. First, the capability of
handling input signals where neuronal spikes span both negative
and positive voltages was tested including a repeatability
check. Second, the spike detection performance was benchmarked
against a state-of-art template-matching system22. Finally,
robustness checks were carried-out.

In the case of in vivo recording spikes often span both negative
and positive voltage polarities, depending on experimental
conditions, for example the position of the recording electrode
relative to neuronal compartments and their associated ionic
conductances5,37. It is thus relevant to demonstrate the MIS
operation for both signal polarities, as explored here at a proof-of-
concept level. Figure 2c depicts a waveform consisting of four,
concatenated copies of a retinal recording. Each copy was
subjected to appropriate scaling and offsetting, and two of the
copies were polarity-inverted. The corresponding resistive state
transient response throughout this test is shown in Fig. 2d.
Significant changes in resistive state correspond to clear,
supra-threshold events. We demonstrate that spike detection
successfully occurs at both polarities, achieving qualitatively
similar modulation over two signals. This is better illustrated in
Fig. 2e, where the normalized resistive state changes between
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Figure 1 | Device architecture and electrical characterization of solid-state TiOx resistive random access memory devices. (a) Schematic illustration of

a solid-state TiOx memristive device and atomic force microscopic (AFM) image of 32� 32 crossbar array. (b,c) Resistive state changes (bottom trace)

accumulate visibly, and in opposite direction depending on polarity, only in response to input pulses with above-threshold amplitudes

(top trace; input writing pulses, VWþ and VW�, indicated in red and reading pulses of amplitude Va in light blue). In bipolar devices two inherent thresholds

exist, one for each voltage polarity. For this device we obtained Vthþ ¼ þ 1.45V and Vth� ¼ � 1.65V as indicated by the shadowed areas of the plot.

(d,e) Show gradual resistive switching under a pulse train stimulation (200 pulses per train). The devices response is fitted with a second-order exponential

function (continuous line). Typical biasing scheme parameters (insets): negative write pulse voltage Vw� ¼ � 1.2 V, positive write pulse voltage

Vwþ ¼ þ0.8V, read pulse voltage Va¼0.5V, write pulse width tw¼ 100 ms and read pulse width ta automatically determined by the measurement system.
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consecutive reads is plotted as a function of the maximum voltage
magnitude of interceding events. In the same figure, the grey
horizontal band denotes resistive state changes that have been
discarded (see Methods section). The remaining points are used
to define the memristor’s effective operating threshold voltages
(Vethþ /� ), which partition the plot into three distinct areas:
two of them correspond to significant resistive state modulation
(larger than Veth� and less than Vethþ ) and the last one
([Vethþ , Veth� ]) containing resistive state changes that are
indistinguishable from the estimated background noise. The
range of effective threshold voltages for the TiOx prototypes
employed throughout this study was � 0.8V to � 1.8V
(Supplementary Fig. 2). Importantly, whilst the inherent
threshold of the device performs a coarse filtering action, the
effective threshold ultimately determines SNR. Moreover, since
the MIS system detects normalized changes in the resistive state,
this approach is inherently robust against the devices threshold
variability as identified in Supplementary Fig. 2b.

The performance of the introduced MIS concept was
benchmarked against a state-of-art template-matching-based
system22 (Supplementary Fig. 7). The resulting performance

comparison between the two approaches is presented in Fig. 3. In
this case, we employed an offset (Voff¼ 0) and amplification
(G¼ 2.8) on the recording shown in Fig. 3a and the device’s
resistive state was assessed as per the standard scheme described
in the Methods section and in more detail in Supplementary
Fig. 5. Figure 3b illustrates the resistive state evolution of the
tested MIS in response to the input signal shown in Fig. 3a. One
can observe clear changes in the device’s resistance corresponding
to spiking events whose magnitude exceeds Veth� , in a similar
manner to the first period of events shown in Fig. 2c,d. In this
example, the incoming spikes mainly occur in negative
polarity hence there is an overall inscrease in resistance, from
approximately 2.5 to 5.5 kO. However, the presence of a few
events in opposite polarity that exceed Vethþ , cause occasional
resistive state drops. A clear example indicated by j in Fig. 3g,h
can be observed at B1.4 s in Fig. 3a,b,e,f where the resistive state
reduces fromB4.5 to 4 kO. However, optimizing the value of Voff

provides additional flexibility for compensating for this effect.
Noteworthy, as the MIS is capturing and storing significant events
as non-volatile resistive changes, one can afford to use relatively
low sampling rates for minimizing the overall requirements in
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Figure 2 | MIS concept and operation. (a) Block diagram of the signal processing in the proposed spike-detection system. An external frontend (a CMOS

MEA system) located externally to the MIS platform records extracellular neuronal signals and amplifies them. The pre-amplified, acquired neural

recordings are then fed into our instrument, suitably gain-boosted (G) and offset (Voff) to render them compatible with the memristors’ voltage operating

regimes (i). The conditioned waveform is fed into a memristor and its resistive state is then periodically assessed (ii). Changes in resistive state caused by

spiking events are extracted offline (iii). (b) Conceptual read-out scheme for evaluating the time evolution of the resistive state of test devices subjected to

input stimulation for one batch. The resistive state (red line) is assessed at the beginning of each neural recording batch (blue trace), then every chosen

number of samples termed as bin (B) and finally at the end of each batch (assessment points marked by crosses). Changes in test device resistive state

(DR) are extracted from consecutive resistive state assessments. Resistive state changes occurring between the last measurement of each batch and the

first measurement of the next batch, with no interceding pulse biasing, (N) are considered to result from measurement uncertainty and can be used to

determine the noise band. (c,d) Shows an arbitrary input waveform consisting of four concatenated copies of the same retinal cell recording and artificially

inverted to produce spike trains with alternating polarities. This waveform was employed to validate the concept of memristive integrating sensors, the

response of which is shown in d. The collated recording copies in c have been subjected to appropriate scaling and offsetting in order to accommodate the

device’s asymmetric threshold voltages, resulting in balanced resistive state SET and RESET. The extracted threshold voltages are identified here as,

Vethþ ¼ 1.1 V and Veth� ¼ � 1.4V represented in the green and pink band, respectively; x axis for both (c,d) is given in S.I. units—each data sample lasts

82 ms (sampling frequency: 12.2 kHz). (e) Fractional resistive state modulation (DR/R0) extrapolated from (d) showcasing significant resistive state

modulation occurring only above Vethþ and below Veth� while intermediate bias values (noise) leads to no significant change.
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data storage/handling. Along this line, the output of our system
is quantified at discrete time bins containing one or more
detected events (see for example Fig. 3e, f–h at B0.96 s). For this
recording, our system identified 74 bins containing significant
events denoted in Fig. 3d, while the template-matching-based
system overall distinguished 81 significant events shown in
Fig. 3c. Comparing the MIS and template-matching approaches
within a representative time-window of 1 s duration, indicates a
similar performance in spike detection, as noted via asterisk
symbol (*) marks in Fig. 3g,h. It is interesting to note that our
approach results into registering apparent events (for example at
0.83, 1.05, 1.1 s) that are missed by the template-matching
method while it fails recognizing other possible events (for
example at 0.59, 1.22, 1.25 s), presumably due to a conservative
selection of signal conditioning gain. Overall, benchmarking the
efficiency of the MIS approach indicates a rate of true positives of
B60%, (Supplementary Fig. 6) assuming that the template-
matching approach is an ideal spike detector.

The robustness of the observed behaviour and its potential for
data compression via improvement of SNR is further demon-
strated by showcasing: (a) the response of a single MIS to blocks
of neural recording data containing significantly different
patterns of activity (Fig. 4a–d) and (b) the response of different
devices to a common neural recording obtained from MEA as
exemplified in Fig. 4e–h. In the former one device—many
recordings case we observe how intense activity leads to a larger
overall resistive state modulation and how particularly strong
events tend to cause distinct non-volatile changes in memory
states. Thus, resistive state traces compress information on both
the firing rate and spikes amplitude. Instead, in the latter one
recording—many devices case we observe that despite the
quantitative variability in device behaviour, most of the marked
resistive state transitions tend to concur in time with significant
events present in the input waveform (see also Supplementary
Table 2).

Towards array-level MIS operation. The concept introduced in
Fig. 2a, when directly interfaced with front-end-circuitry, can be
exploited for advancing the present state-of-art in high-density

neural recording platforms38. The presented concept is amenable
for scaling to a multi-channel array level, as illustrated in Fig. 5a,
for capturing the activity of neural networks in real-time. We
envisage an overall system architecture very similar to standard
active pixel sensor CMOS imagers39. In this hybrid system, data
from each of the N pixels in the array arrives as an analogue
current from the MEA and is multiplexed onto one of the M on-
chip trans-impedance amplifier (TIA) blocks, which are followed
by on-chip offset stages. Thus, a small number of both gain and
offset stages are time-shared by every pixel in the array. The
conditioned recording data points are then de-multiplexed to a
memristor bank, that can be integrated into the back-end of the
chip, in good proximity to the MEA recording sites. MIS output is
then generated by sequentially measuring the resistive states of
each memristor in the bank. The low frequency at which
memristor read-outs are generated (for example 200 times lower
data rate vis-à-vis input stream arriving from the MEA if a
standard scheme is used as described in Methods section) allows
the MIS system to carry out all measurements through a single or
few, time-shared TIA feeding into analogue-to-digital converter.
The digitized results are then sent off-chip. We foresee that,
a practical implementation of a monolithically integrated
system will involve addressing the challenges associated with
the integration of a MIS array with CMOS-based front-end
circuitry, while the required MIS control can be accommodated
as peripheral circuitry with sneak-path issues existing in
dense resistive random access memories crossbar configuration
mitigated via selector topologies40.

In this work, this concept was validated via a hybrid approach
that is capable of processing 224 distinct recording traces
stemming from a 16� 14 pixel subset of the previously employed
MEA system2,34, atop which retinal ganglion cells were cultured.
The sub-array was found to cover three cells after processing all
recordings with a state-of-art array-level template matching
system, using an extended principal component analysis method
(described in Supplementary Fig. 8). As before, an initial MIS
calibration was performed in order to set suitable values for G and
Voff. This entailed selecting a spatially sparse subset of 23 pixels
(see Supplementary Fig. 9, cells marked in orange), and
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examining their recording waveforms to gauge average
maximum/minimum voltage amplitudes as well as the typical
levels of background activity. In this experiment, we particularly
set G¼ 2.8 and Voff¼ 0 for all memristive devices to ensure a
suitable SNR. These parameters were kept fixed for all recordings,
they were not changed for accommodating individual memristive
device behavioural variations, or distinct features of the employed
recordings. Every utilized memristive device was initialized to a
common low-resistive state (Supplementary Fig. 1) in the range of
2–4 kO that for the given parameters yielded a useful MIS
operating range up to the set 15 kO high-resistive state.

We further monitored the spatio-temporal changes in the
array’s memory state, snapshots of which are shown in Fig. 5b–d
for distinct time instances: t1¼ 1.63 s, t2¼ 3.27 s and t3¼ 5.16 s
respectively. Since the neuronal activity is encoded as non-volatile
resistive state changes we were able to observe an accumulation of
activity clustered around three major centres: at pixel (row,

column) locations (3,4), (7,10) and (11,7). Particularly the final
array state, shown in Fig. 5d, qualitatively resembles the activity
extracted by the conventional template matching method to the
same neural recording data set as shown in Supplementary Fig. 8.
We note that while the system in Supplementary Fig. 8 outputs a
spike count that is insensitive to the amplitude of the detected
spikes, the proposed MIS array results into a ratiometric change
in resistive state that is strongly correlated to the strength of the
individual spiking events. This allows us to preserve information
on both event amplitude and polarity, which in principle
improves the data compression rate. We also note a few pixels
exhibiting strong resistive state changes despite not appearing to
belong to any well-defined cluster of activity (see Supplementary
Fig. 10). This discrepancy follows the argument presented
previously for Fig. 3g,h, hinting that single, exceedingly strong
events may lead to resistive state changes comparable to those
arising as a result of accumulated activity.
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Discussion
Future autonomous and fully implantable neuroprosthetic
platforms will have to rely on innovative strategies for low-power
on-chip processing of neuronal signals. In neuron-to-neuron
communication, information carried by spikes is effectively
compressed in changes of synaptic strength. In a similar fashion,
information of spikes recorded by neural implants can be stored,
in a compressed form and with minimal power consumption,
via single memristive devices. In this work, we demonstrated this
concept that a memristor-based neural activity sensor could
operate as a neuronal spike encoder, by compressing information
on the spikes amplitude and firing rate. By extending the idea to
the array level, we demonstrate that our approach is potentially
suitable for monitoring the activity of multiple cells at
large-scales.

The required power budget of our approach can be optimized
by mapping the highest amplitude neural recording samples
onto B5V pulses at o100 ns due to the known voltage-time
trade-off41 (see Supplementary Fig. 11). Under the realistic
assumption of operating devices at resistive states of 100 kO,
every 1,000 samples (one data batch, as per the standard
schematic) we would spend a maximum of 250mW multiplied
by 100 ns¼ 25 pJ for biasing a device with neural recording data.
Simultaneously, the read-out operation would cost 0.8 mW
multiplied by 100 ms¼ 80 pJ (based on 0.4V read out voltage),
rendering an average power dissipation of approximately 300 nW
per channel. Clearly, the memristor read-out and biasing circuitry
will require an additional power. Nevertheless, estimated
figures are already significantly less than the present state-of-art
continuous time spike-detectors15. Most importantly, the
proposed technology is demonstrated here at a proof of
concept-level via large prototype devices and clearly the
presented power/density considerations are not a reflection of
the technology’s full potential. We can expect that substantial
improvements in power consumption can be achieved by further

downscaling and/or operating memristors at even higher resistive
state ranges, for example operating the device in 1MO region can
further reduce the power dissipation remarkably by two orders of
magnitude. In addition, the bandwidth required to assess the
resistive state should be rather low as compared with the raw
input data-rate. Additional power efficiency gains can be expected
by integrating the MIS elements atop state-of-art CMOS thus
minimizing parasitic capacitances.

Finally, the key focus for driving this work forward in the
future is to improve on the detection accuracy rates. A plausible
performance-limiting factor is the programming saturation of
memristive devices. This can however be counteracted by
optimizing the main operational parameters that is gain and
offset settings (Supplementary Fig. 12) or via employing memory
state resets, as depicted in Supplementary Fig. 13. Another
possible line of investigation towards MIS-based spike-sorting lies
in determining how much information on spike amplitude/
duration can be extracted from the history-dependent magnitude
of resistive state changes. In conclusion, the introduced MIS
concept shows real promise for advancing and complementing
the current state-of-art neural recording systems towards
improving the power and area requirements of emerging
bioelectronics.

We have demonstrated a novel recording system concept
exploiting the intrinsic synapse-like attributes of metal-oxide
memristive devices to compress information on neuronal firing.
Our results show that single devices are capable of identifying
significant spiking events while suppressing noise, thus paving the
way towards highly area- and energy-efficient on-node neural
recording processing. Contrary to time-domain sampling, the
proposed MIS encode the presence of events in non-volatile
resistive state changes, allowing the flexibility to trade off
sampling rates for timing resolution. This is particularly useful
when information is rate- or spike-count-coded and where only a
measure of overall activity within given time bins is requested.
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Typically, this is the case for brain-chip interfaces and
neuroprostheses, where power dissipation linked to processing
remains a major challenge. Moreover, as the memristor resistive
state changes are linked to amplitude and polarity of the input
waveform (signal envelope) this information is preserved in the
magnitude of resistive state modulation. Finally, we note that this
concept can be generalized for enabling smart data compression
in distinct sensing platforms, particularly relevant to pervasive
sensing systems.

Methods
Fabrication. All the devices exploited in this work were fabricated according the
following flowchart; 200 nm of insulating SiO2 was thermally grown on 6-inch
Silicon wafer. Then three main patterning steps were processed, each contains
optical lithography, film deposition and lift-off process. In the first step, 5 nm
Titanium (Ti) and 10 nm Platinum (Pt) films were deposited via electron-beam
evaporation technology to serve as bottom electrodes, Ti was used for adhesion
purposes. In the second, magnetron reactive sputtering system was used to deposit
the TiOx (x¼ 0.06) active core from Ti metal target. Two plasma sources were used
to ensure near stoichiometric film. 25 nm thick TiOx was deposited. In the final
step, 10 nm Pt top electrodes were deposited using electron-beam evaporation
system. At the end of processing, the wafer was diced into 9 by 9mm2 chips, which
were then wire-bonded in standard packages for measurements and 60 by 60 mm2

devices were used for the experiments.

Device characterization. The TiOx devices initially undergo an electroforming
step42 (inset of Supplementary Fig. 1). A voltage sweep is applied on a pristine
sample until a sudden, non-volatile memory transition to the ON (low resistive
state) state is observed. This typically occurs at Bþ 6.5 V. Thereafter the device
enters its normal operating regime, where it supports reversible resistive switching.
Notably in such regime, and similarly many families of practical resistive random
access memories, the intrinsic voltage threshold accounts for the response to
voltage pulsing events. This memristive behaviour is apparent in Fig. 1b,c where a
DUT was subjected to trains of input programming pulses in alternating polarities
at a fixed duration 100 ms (write operation). The device memory state was read after
each programming pulse at approximately 0.5 V. Significant changes in resistive
state are observed, that is switching of devices to high-resistive state (RESET) and
low-resistive state (SET) with negative and positive polarity, respectively, in Fig. 1c,
only after the voltage of the stimulus pulse exceeds the inherent thresholds of the
DUT, here identified as Vthþ ¼ 1.45V and Vth� ¼ � 1.65 V, respectively. The
inherent threshold voltage of TiOx devices in our case varies in the range of
approximately ±0.6 V–2.5V (see Supplementary Fig. 2).

Hardware infrastructure. The biasing protocol was implemented using custom
made hardware developed in-house (Supplementary Fig. 4). It consists of a
microcontroller-based printed circuit board (PCB)-mounted system43 capable of
addressing devices embedded in crossbar arrays of up to 1 kb in size (32� 32). The
system has the capability of either testing packaged arrays or communicating to a
multi-channel probe card for direct testing on the wafer. The hardware is
supported by custom-made software that permits exhaustive, device-by-device
testing of entire crossbar array or an array of individual devices in one, fully
automated round of measurements. The biasing schemes applied for read and write
operations are the Vr (Fig. 3 in ref. 44) and Vr/2 (Fig. 10b in ref. 45) schemes,
described in detail in their respective references. This helps in mitigating the sneak
path effects.

Mathematical model. For the DUT, curve-fitting was carried out using standard
curve-fitting tool in MATLAB. The data from the resistive state of the devices
for negative (Fig. 1c) and positive (Fig. 1d) pulses were separately fitted to
second-order exponential function, that is f(

R
Vdt)¼Aeb

R
VdtþBeU

R
Vdt, where V

is the fixed pulse voltage indicating non-volatile resistive states transitions. The
data for the mathematical model is tabulated in Supplementary Information
(Supplementary Table 1).

CMOS MEA. Neural activity from the portions of dissected mid-peripheral
rabbit retinal ganglion cells was recorded using extended CMOS technology35,36

(Supplementary Fig. 3). The surface of CMOS multi-transistor array comprising of
128� 128 sensor sites is insulated by a thin, inert TiO2/ZrO2 layer. A thin metal
layer beneath the oxide layer is connected to the gate of the field-effect-transistor
via metallic pathway. The source drain current of the MOSFET in the silicon-based
field effect transistor is modulated by the application of local voltage changes
within the interfaced neural tissue above the recording sites. The CMOS MEA
termed as front-end consists of the MEA itself, which operates at a 12.2 k frame
per second sampling rate and outputs current time-series in blocks of B63 k
samples. The board-mounted TIAs convert the signal into voltage and boost it
from the 0.1mV–1mV to the 10mV–100mV range. There was no modification on

the front-end system and the pre-recorded blocks of dissected rabbit retinal
ganglion cells placed atop the chip are measured.

MEA neural recording signal-processing. In the implementation of the neural
activity sensor used for our experiments, an external front-end of the MEA-based
CMOS system in ref. 31 was used (see Methods section, CMOS MEA and
Supplementary Fig. 3). Each neural recording is 63 k samples in length and was fed
to an in-house developed memristor characterization instrument31,43. The
customized hardware handled the software-implemented linear gain and offset
conditioning operations, electrically interfaced test memristors (Supplementary
Fig. 4) and carried out the DUT resistive state assessment procedures (Fig. 2b and
Supplementary Fig. 5). Neural signal voltage time-traces were fed into the target
device in batches of 1,000 data-points. Resistive state was assessed at the beginning
of each batch, then every 300 samples and at the end of the batch (standard
scheme: assess initial resistive state and after application of the 300th, 600th, 900th
and 1,000th data-points). Since the events are transduced as non-volatile resistive
state transitions one can afford smaller sampling rates that benefits further
time-resolution data-rate. Subsequently, changes in DUT resistive state (DR) can be
extracted from pairs of consecutive resistive state readings, while resistive state
changes occurring between the last measurement of each batch and the first
measurement of the next batch, that is with no interceding pulse biasing, (N)
provide an estimate of measurement uncertainty thus generating the noise band.
Thus, for a single neural recording we obtain 316 DR values, corresponding to 252
DR bins and 64 noise level sample which helps in determining the extracted
thresholds (Veth� ) separating significant from insignificant resistive state switching
activity (Supplementary Fig. 6). The range of extracted threshold voltages for TiOx

family in our case is � 0.8 V to � 1.8 V (Supplementary Fig. 2). Importantly, noise
band limits are set using the 6s method that is, mean (m) ± three s.d. (s) of noise
level samples. Everything outside the noise band is considered as a significant
resistive state change. Moreover, measuring the noise band helps in filtering out the
insignificant resistive state changes caused due to weak amplitude neural signals.
Furthermore, since the MIS system detects normalized changes in the resistive state
rather than absolute values, the device variability is heavily compensated for such
that MIS operation is routinely available.

Data availability. All data supporting this study are openly available from the
University of Southampton repository at http://dx.doi.org/10.5258/SOTON/
400411.
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