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Vortices and antivortices in two-
dimensional ultracold Fermi gases
G. Bighin1 & L. Salasnich2,3

Vortices are commonly observed in the context of classical hydrodynamics: from whirlpools after 
stirring the coffee in a cup to a violent atmospheric phenomenon such as a tornado, all classical 
vortices are characterized by an arbitrary circulation value of the local velocity field. On the other 
hand the appearance of vortices with quantized circulation represents one of the fundamental 
signatures of macroscopic quantum phenomena. In two-dimensional superfluids quantized vortices 
play a key role in determining finite-temperature properties, as the superfluid phase and the normal 
state are separated by a vortex unbinding transition, the Berezinskii-Kosterlitz-Thouless transition. 
Very recent experiments with two-dimensional superfluid fermions motivate the present work: we 
present theoretical results based on the renormalization group showing that the universal jump of the 
superfluid density and the critical temperature crucially depend on the interaction strength, providing a 
strong benchmark for forthcoming investigations.

Quantized vortices are characterized by a circulation of the velocity field quantized in multiples of ħ/m*, where 
ħ is Planck’s constant and m* is the mass of a superfluid particle, in the case of a bosonic superfluid, or the 
mass of a Cooper pair, in the case of a fermionic superfluid. Quantized vortices are a fundamental feature of 
superfluid and superconducting systems1 and have been observed in a wide variety of systems, including type-II 
superconductors2–4, superfluid liquid Helium5,6, superfluid liquid Helium nanodroplets7,8, ultracold gases9,10, and 
exciton-polaritons inside semiconductor microcavities11,12.

From a phenomenological standpoint quantized vortices resemble non-quantized vortices in classical hydro-
dynamical systems. The quantization of circulation is a peculiar consequence of the existence of an underlying 
compact real field, whose spatial gradient determines the local superfluid velocity of the system13,14. This compact 
real field, the so-called Nambu-Goldstone field, is the phase angle of the complex bosonic field which describes, 
in the case of attractive fermions, strongly-correlated Cooper pairs of fermions with opposite spins14.

In two-dimensional (2D) superfluid systems there can not be Bose-Einstein condensation and off-diagonal 
long-range order at finite temperature, as a consequence of the Mermin-Wagner-Hohenberg (MWH)  
theorem15–17. Nevertheless a vortex-driven phase transition at a finite temperature TBKT is still present due to the 
Berezinskii-Kosterlitz-Thouless (BKT) mechanism18,19. Below the critical temperature TBKT the system is super-
fluid and characterized by bound vortex-antivortex pairs and algebraic long-range order. Above TBKT, on the 
other hand, vortex-antivortex pairs unbind, free quantized vortices proliferate, and the system loses its superfluid 
properties with exponential decay of coherence. Within this scenario it is clear that quantized vortices play a key 
role in determining the finite-temperature properties of a 2D superfluid.

The rapid developments in the realization and manipulation of ultracold gases allow for the observation of 
dilute atomic vapors trapped in quasi-two-dimensional configurations. In 2006 the BKT transition and the asso-
ciated unbinding of vortices has been observed in an atomic Bose gas by Hadzibabic et al.9; in this experiment, the 
proliferation of free vortices is directly imaged by letting two 2D clouds expand and interfere with each other; the 
free vortices can then be counted individually by looking at the number of defects in the interference pattern. The 
same transition was also observed by Schweikhard et al.10 in an optical lattice, using the usual absorption imaging 
technique of the vortex cores. Recent experiments20–23 deal with 2D attractive Fermi gases in the crossover from 
the weak-coupling BCS regime of largely overlapping Cooper pairs to the strong-coupling BEC regime of com-
posite bosons and provide motivation for the present theoretical investigation.
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Results
Single-particle and collective excitations in ultracold Fermi superfluids. In a fermionic superfluid 
with tunable s-wave interaction the mean-field theory predicts the existence of fermionic single-particle excita-
tions, whose low-energy spectrum is
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where m is the mass of a fermion, μ is the chemical potential of the system, and Δ 0 is the pairing energy gap. The 
inclusion of beyond-mean-field effects, namely quantum fluctuations of the pairing field, gives rise to bosonic 
collective excitations24, whose low-energy spectrum across the BCS-BEC crossover is25,26
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These collective excitations are density waves reducing to the Bogoliubov-Goldstone-Anderson mode 
Ecol(k) =  csħk in the limit of small momenta. Here cs is the speed of sound, while λ and γ are parameters taking into 
account the increase of kinetic energy due to the spatial variation of the density and depend on the strength of the 
attractive interaction: in the deep BEC regime one finds λ =  1/4 and γ =  0 such that Ecol(k) =  ħ2k2/(4m) for large 
momenta. It has been demonstrated that the inclusion of collective excitations in the equation of state, as briefly out-
lined in the Methods and derived in refs 27 and 28, recovers the correct composite boson limit at zero temperature28,  
also providing qualitatively good results for many observable quantities across the whole crossover27,29;  
we follow this approach in the present work.

The superfluid (number) density ns of the two-dimensional (2D) fermionic system can be written as

= − = − −n n n n n n , (3)s n n sp n col, ,

where n is the 2D total number density and nn =  nn,sp +  nn,col is the 2D normal density due to both single-particle 
and collective elementary excitations30. For a uniform superfluid system at zero temperature nn =  0 and ns =  n. As 
the temperature is increased the normal density nn increases monotonically and, correspondingly, the superfluid 
density ns decreases. According to Landau’s approach30,31, the two contributions to the normal density read
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where β =  1/(kBT), kB the Boltzmann constant and T the absolute temperature. The superfluid density ns can also 
be inferred from the coefficient governing phase fluctuations in an effective action for the system32; it turns out 
that for a Gaussian-level action this approach is equivalent to setting ns =  n −  nn,sp, ignoring the contribution from 
collective excitations to the superfluid density; this contribution, however, will turn out to be fundamental in the 
strong coupling regimes that have become recently accessible21.

More generally, in the extreme BCS (BEC) limit only the fermionic (bosonic) excitations contribute to the 
total superfluid density. As already discussed in ref. 27, the present approximation, considering the fermionic 
and bosonic excitations as separate, neglects the Landau damping that hybridizes the collective modes with the 
single-particle excitations33. It should be stressed, however, that the Landau damping is absent at T =  0, making 
our approximation reliable in the low-temperature limit. Moreover we also discussed27 that Landau damping 
would affect the bosonic contribution nb in the BCS region, where the physics is dominated by the fermionic 
contribution. This interplay makes the Landau damping less relevant as far as the present work is concerned, 
justifying the present choice of approximation.

The effective low-energy Hamiltonian of a fermionic superfluid can be recast as that of an effective 2D XY 
model34–36:

∫ θ= ∇H J r r
2

d ( ( )) , (6)
2 2

having introduced the pairing field Δ (r) =  |Δ (r)|eiθ(r) with θ(r) the so-called Nambu-Goldstone field13. The phase 
stiffness J is a function of the fermion-fermion attractive strength and of the temperature; it measures the energy 
cost associated to space variation in the phase angle θ(r) of the pairing field. Moreover the phase stiffness J is pro-
portional to the superfluid number density ns, namely37
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The compactness of the phase angle field θ(r) implies that θ π∇ ⋅ =∮ qr r( ) d 2


 for any closed contour . Here 
q =  0, ± 1, ± 2, …  is the integer number associated to the corresponding quantum vortex (positive q) or antivortex 
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(negative q). Consequently the circulation of the superfluid velocity v(r) =  (ħ/m*)∇ θ(r) is quantized according to 
�

C
π⋅ =∮ ⁎d m qv r (2 / )  where m* =  2m is the mass of a Cooper pair. Formally, one can rewrite the phase angle as 

follows

θ θ θ= +r r r( ) ( ) ( ), (8)v0

where θ0(r) has zero circulation (no vortices) while θv(r) encodes the contribution of quantized vortices. 
Consequently, the Hamiltonian in Eq. (6) can be rewritten37 as H =  H0 +  Hv where H0 =  J/2∫d2r(∇ θ0(r))2 is the 
Hamiltonian of density oscillations, while
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is the Hamiltonian of quantized vortices located at position ri with quantum numbers qi, interacting through a 
2D Coulomb-like potential

π
ξ

= −










V r J r( ) 2 ln ,
(10)

where ξ is healing length, i.e. the cutoff length defining the vortex core size, and μc the energy associated to the 
creation of a vortex38,39.

Renormalization group analysis for a Fermi superfluid. The total number of quantized vortices varies 
as a function of the temperature: at zero temperature there are no vortices, however as the temperature increases 
vortices start to appear in vortex-antivortex pairs. Due to the logarithmic energy cost the pairs are bound at low 
temperature, until at the critical temperature TBKT an unbinding transition occurs above which a proliferation of 
free vortices and antivortices is observed18. Vortex-antivortex pairs with small separation distance can screen the 
potential in Eq. (10) between a vortex-antivortex pair with larger distance r; as a consequence, the phase stiffness 
J and the vortex energy μc are renormalized40. In particular analyzing the effect of increasing the spatial cutoff ξ, 
thereby excluding vortex-antivortex configurations with distance smaller than ξ, Nelson and Kosterlitz obtained 
the renormalization group equations38–40
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subsequently extended by Amit41 and Timm42, including next-to-leading order terms, in order to describe higher 
vortex densities
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for the running variables K ( ) and y ( ), as a function of the adimensional scale  subjected to the initial condi-
tions K(0) =  βJ = βħ2ns/(4m) and y(0) =  exp(− βμc). As discussed in ref. 39, the choice of μc, slightly affecting the 
final results, is still an open problem. The 2D XY model on a lattice with a finite difference approximation of 
spatial derivatives implies μc =  π2J/238. However, for the 2D XY model in the continuum it has been suggested 
µ π J/4c

2  within the Ginzburg-Landau theory of superconducting films43–45 and, more recently, µ π J3 /c  
within a phenomenological BCS approximation39. In our study of the 2D BCS-BEC crossover with Eqs (11) we 
adopt μc =  π2J/4, that is currently the most rigorous choice for superconductors and superfluids43–45. The renor-
malized phase rigidity J(R) and the renormalized vortex energy38,44 εc

R( ) are then derived from K(∞ ) and y(∞ ). 
Finally, one obtains the renormalized superfluid density as
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The renormalized superfluid density ns
R( ) is a monotonically decreasing function of the temperature, as is the 

bare (unrenormalized) superfluid density ns; however, while ns is continuous, ns
R( ) jumps discontinuously from a 

finite value to zero as the temperature reaches the BKT critical temperature TBKT, implicitly defined by the 
Kosterlitz-Nelson condition40:
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Let us verify the validity of the perturbative treatment of the renormalization group analysis. Combining Eq. (7), 
Eq. (14) and the definition of μc one readily sees that the expansion parameter y is a monotonically increasing func-
tion of the temperature, increasing from = =y ( 0) 0 at T =  0, to π= = − .� �y exp( 0) ( /2) 0 208 at T =  TBKT. 
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This fact suggests that even the leading-order renormalization group in Eq. (11) could give accurate results for the 
present problem, and in fact including the next-order correction as in Eq. (12) modifies our estimates of the critical 
temperature TBKT by at most 1.5% over the whole crossover (see below), confirming the validity of the renormaliza-
tion group analysis.

In Fig. 1 we report the renormalized and bare superfluid densities for three different values of the interacting 
strength, in the BCS, intermediate and BEC regimes. The renormalization of superfluid density as analyzed in 
Eq. (13) is more evident at higher temperatures, as the universal jump defined by Eq. (14) is approached. We also 
note that, although always a monotonically decreasing function of the temperature, the superfluid density exhib-
its different behaviors across the BCS-BEC crossover, as it can be dominated either by fermionic, single-particle 
excitations, in the weakly-coupled regime, or by bosonic, collective excitations, in the strongly-coupled regime.

Phase diagram. The finite-temperature phase diagram in the present 2D case is profoundly different with 
respect to a three-dimensional Fermi gas as a result of the BKT mechanism just analyzed and also as a result of 
the MWH theorem15–17 prohibiting symmetry breaking at any finite temperature. These striking qualitative dif-
ferences render a complete analysis of the 2D Fermi gas compelling both from the theoretical and experimental 
point of view. Let us briefly discuss the three possible phases14:

Condensation. A 2D superfluid system exhibits condensation and off-diagonal long-range order (ODLRO) only 
strictly at T =  0: this zero-temperature regime is characterized by a non-decaying phase-phase correlator 
θ θ ~e e Cri ( ) i (0) , where C is independent of r, and by a finite condensate density46.

Quasi-condensation. The intermediate phase from T =  0+ to TBKT is characterized by the phase-phase correlator 
showing algebraic quasi-long-range order θ θ α−~e e rri ( ) i (0)  for an opportune exponent α > 0. Although the con-
densate density is strictly zero, a finite superfluid density is still present.

Normal state. Finally for T >  TBKT the system enters the normal phase, characterized by the exponential decay 
of the phase-phase correlator, ξ−θ θ ~e e exp r( / )ri ( ) i (0)  and by the absence of both superfluid and condensate.

The gray dashed line in Fig. 1 corresponds to the Kosterlitz-Nelson condition in Eq. (14), identifying the crit-
ical temperature TBKT, separating the normal state from the phase characterized by quasi-condensation. A deter-
mination of the critical temperature across the whole crossover is reported in the upper panel of Fig. 2, black solid 
line. The rapid decrease of TBKT approaching both the BCS and the BEC limit is a consequence of the fermionic 
single-particle excitations and bosonic collective excitations dominating the superfluid density, respectively, rap-
idly decreasing the normal density as either limit is approached. A consequence of this interplay is that the critical 
temperature is higher in the intermediate regime (ε ε∼B F), where the superfluid density is neither 
fermion-dominated nor boson-dominated.

The current approach, involving the inclusion of Gaussian fluctuations in the equation of state, the inclusion 
of bosonic collective excitations in the superfluid density along with a renormalization group analysis is able to 
reproduce the downward trend as the interaction get stronger; the renormalization group analysis on top of a 
mean-field theory would not have been sufficient to reproduce the correct trend, as shown by the gray dashed line 
in the upper panel of Fig. 2. In other words, as also observed elsewhere27–29, Gaussian fluctuations are required in 
order to correctly describe the physics of an interacting Fermi gas in the strongly-coupled limit.

The underestimation of experimental data21, as observed in Fig. 2 may have different causes:

Figure 1. The superfluid density, for three different values of the interaction, ranging from the BCS 
to the BEC regime. The solid lines represent the results of the renormalization group analysis which is the 
central point of the present paper, whereas the dashed lines represent the unrenormalized result obtained 
from the single-particle and collective contributions to superfluid density, as done in ref. 27. The gray dotted 
line corresponds to the Nelson-Kosterlitz condition in Eq. (14), showing that the contribution from the 
renormalization group lowers the critical temperature. The universal jump as a consequence of the BKT appears 
for every value of the interaction; however the size of the universal jump and the related critical temperature are 
strongly interaction-dependent.
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•	 In the experiment there is a harmonic trap also in the planar direction. The effect of the trap can enhance the 
critical temperature with respect to the uniform system, as found in the 3D case by Perali et al.47,48.

•	 It has been argued49 that the algebraic decay of the first-order correlation function, presented in ref. 21 as the 
signature of the superfluid state, could be interpreted in terms of the strong-coupling properties of a nor-
mal-state. Experimental data in ref. 21 would then overestimate TBKT.

•	 The determination of the critical temperature may be affected by three-dimensional effects, the superfluid not 
being trapped in a strictly 2D configuration.

•	 On more general grounds one may argue that TBKT >  0.125εF, as experimentally observed in the BCS regime, 
is not compatible with the Kosterlitz-Nelson condition, signaling different mechanisms at work27.

For the sake of completeness, in the lower panel of Fig. 2 we plot the BKT critical temperature TBKT obtained 
with the Kosterlitz-Thouless renormalization group equations (11) and the generalized renormalization group 
equations (12), starting with the bare superfluid density derived from the Gaussian theory. As previously stressed 
the relative difference in the determination of TBKT is below 1.5% in the whole crossover. Moreover, the figure 
shows that this very small difference is larger in the intermediate coupling regime. (ε ε∼B F).

Discussion
In the present work we have analyzed the role of vortex proliferation in determining the finite-temperature prop-
erties of a 2D interacting Fermi gas, throughout the BCS-BEC crossover, as the fermion-fermion interaction 
strength is varied. Using the Kosterlitz renormalization group equations we have shown that the bare superfluid 
density is renormalized as the vortex-vortex potential is screened at large distances. The renormalization of super-
fluid density lowers the BKT critical temperature, correctly reproducing the trend observed in experimental data 
through a non-trivial interplay between the single-particle and collective excitations. As previously pointed out, 
and analyzed in ref. 49, currently available experimental data may overestimate the BKT critical temperature of 
the uniform system and our theoretical predictions are providing a benchmark for forthcoming experiments.

Methods
Equation of state. The pairing gap Δ 0 and the chemical potential μ are calculated self-consistently by jointly 
solving the gap and number equation, as done e.g. in refs 29 and 27. The Gaussian pair fluctuations scheme50,51 
has been adopted which, as opposed as the Nozières-Schmitt-Rink52 approach, leads to finite, converging results 
in 2D. The spectrum of fermionic and collective excitations, Esp(k) and Ecol(q) as introduced in Eqs (1) and (2), are 

Figure 2. The Berezinskii-Kosterlitz-Thouless critical temperature as a function of the bound-state binding 
energy εB. Upper panel. The dashed line is the result of renormalization group (RG) analysis, i.e. Eq. (11), of the 
mean-field results, whereas the solid line uses the Gaussian theory as the starting point. The blue dots represent 
experimental data from ref. 21. The decrease of the critical temperature in the BCS and BEC limits is due to 
single-particle excitations and collective excitations contributing to superfluid density, respectively. This 
interplay results in a higher BKT critical temperature in the intermediate regime, i.e. when ε ε∼B F. It is 
important to note that experimental data may be affected by systematic errors, as analyzed in the main text. 
Lower panel. Comparison between the Kosterlitz-Thouless renormalization group (RG) equations (11) and the 
next-to-leading order RG equations (12). Here, in both cases the bare superfluid density is calculated within the 
Gaussian theory.



www.nature.com/scientificreports/

6Scientific RepoRts | 7:45702 | DOI: 10.1038/srep45702

calculated by looking at the poles of the respective Green’s functions, as analyzed e.g. in ref. 24. Accordingly, the 
corresponding thermodynamical grand potential has two contributions, namely the mean-field, fermionic part

∑βΩ = + β−e2 ln(1 )
(15)F

E k

k

( )sp

and the bosonic part

∑βΩ = − .β−e1 ln(1 )
(16)

B
E q

q

( )col

We stress that ΩF accounts for the mean-field description of a tunable Fermi gas, whereas ΩB includes the 
contribution of density waves on top of the mean-field picture.

Data availability. The data is available upon request. Requests should be addressed to either author.
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