
A Two-tier Overlay Publish/Subscribe System for
Sensor Data Stream Using Geographic Based Load

Balancing
Tatsuya Fukui∗, Satoshi Matsuura∗†, Atsuo Inomata∗, Kazutoshi Fujikawa∗

∗Graduate school of Information Science, Nara Institute of Science and Technology, Japan
Email: {tatsuya-fu, matsuura}@is.naist.jp, {atsuo, fujikawa}@itc.naist.jp
†National Institute of Information and Communications Technology, Japan

Abstract—Publish/Subscribe mechanism is one of the key
technologies for handling a real-time data stream in decen-
tralized environments. While recent studies have showed that
publish/subscribe systems should support not only data filtering
but also in-network data processing, the scalability issue is
addressed here due to data concentrations on specific nodes. To
solve the scalability issue, we propose a Publish/Subscribe system
consisting of a two-tier overlay network: one overlay network
is designed as a geographic overlay network, which is used
to maintain fundamental information, and on the other hand,
data transfer networks are constructed to perform in-network
data processing and dynamic load balancing. By using these two
networks, we were able to implement a geographic based dynamic
subscription re-allocation mechanism. This mechanism enables
achieving scalability and avoiding data/load concentrations on
large-scale Publish/Subscribe systems. We present an evaluation
of our approach through simulation. We compare our approach
with another DHT based Publish/Subscribe system, focusing
on data transfer during subscription. Our results show that
our dynamic subscription re-allocation approach avoids data
concentration on specific nodes.

I. INTRODUCTION

Publish/Subscribe systems are based on content-based net-
working technologies, which have been developed as event
notification systems. Publish/Subscribe systems consist of
loosely coupled nodes. These nodes asynchronously transfer
data to other nodes based on the rules of subscriptions, and
realize push style communication. In recent studies, several
Publish/Subscribe systems adopt overlay network technologies
to manage ID space and to achieve scalability. Therefore
Publish/Subscribe systems are useful for large-scale real-time
data delivery in a decentralized manner.

However, traditional Publish/Subscribe systems only filter
out data in the delivery networks. Subscribers have to carry
out data processing (e.g., comparison, averaging and other
calculations) after gathering data by themselves. However,
data concentration occurs on particular nodes. In order to
remove these concentrations and reduce transfer data, it is
required that nodes collaborate in filtering and calculating
data on Publish/Subscribe networks. On the other hand, this
collaboration possibly increases load concentrations related to
data processing. To achieve scalability and avoid data/load
concentrations, filter/calculation processes should be divided
and reassigned on appropriate nodes.

In this work, we adopt the architecture of geographical
based overlay networks to construct a Publish/Subscribe sys-
tem. Features of our system are efficient contents search,
in-network processing, and a self-organized load balancing
mechanism. To achieve scalability, we propose a multiple
network consisting of two parts. One part is for information
management and the other is for data transfer during subscrip-
tion. The network of information management operates net-
work stabilization, data searching data and node information
management. The transfer network focuses on delivering data
only during subscription and when constructing simple topolo-
gies. On the transfer network, nodes can perform in-network
processing and easily divide/reassign calculation processes. In
addition, our system has geographical based ID space, and we
propose a mechanism of a dynamic calculation reassignments
method by using this geographical ID space. These features
of our system enable achieving scalability and avoid data/load
concentrations on large-scale Publish/Subscribe systems.

The rest of this paper is structured as follows. Section II
presents the related work, Section III provides the basic archi-
tecture of our publish/subscribe system, Section IV describes
the experimental results, and Section V concludes the paper.

II. RELATED WORK

A Publish/Subscribe system is an event notification system
which delivers data by communicating among processing
nodes under distributed environments. There are two types of
nodes on Publish/Subscribe systems: publisher and subscriber.
Publishers generate data synchronously, and subscribers reg-
ister subscriptions which describe the requirements of the
subscribers.

Scalable Internet Event Notification Architectures (SIENA)
[1] is one of the Publish/Subscribe systems. SIENA was
developed to reduce network traffic. SIENA filters data close
to the data ’s publisher. Through a broadcast subscription
process, SIENA constructs a distribution tree and routing
tables. Each server publishes data and assigns subscriptions
according to routing tables. In addition, SIENA can adjust the
transition path dynamically by overlapping publications among
subscriptions. The delivery methods of SIENA are good, and
these features contribute to reducing network traffic. However,
SIENA only performs filtering and routing, and does not have a

processing mechanism (e.g., averaging, counting) in a delivery
process. Routing tables based on broadcasting cause much
network traffic. Therefore SIENA is not suited for handling
stream data.

Domain space mapping and distributed 2-dimensional trees
over DHT [2] is one of the overlay-based Publish/Subscribe
systems. This study focuses on a particular attribute. It maps
the value range (Min,Max) from a subscription’s require-
ment to corrdinates on the X-Y axes in ghe logical space called
the “Domain Space”. Also, an event generated by the publisher
is mapped to Domain Space as coordinates (V alue, V alue). In
this Domain Space, publication will be delivered to subscribers
if subscription coordinates are in the upper-left side of the
event’s coordinates.

In addition, this research builds a 2-dimensional tree struc-
ture to search for all subscriptions in the Domain Space. The
space is divided on the x-axis an the d y-axis alternatively as
parts of the tree, and all the subscriptions are stored in leaf
nodes of the tree. When a new event is generated, leaf nodes
transfer data to a subscriber directly. If a leaf node becomes
overloaded, the area of this node is divided into two half
spaces and two new leaf nodes are assigned to the divided
area. This method is efficient for scalable search and delivery
in distributed environments. On the other hand, this method
needs a lot of extra nodes for load balancing, because adding
new nodes on leaf nodes is the only way for load distribution.
This method is not suitable for managing sensor networks
where many sensors constantly generate a large number of
events.

A stream processing engine (SPE) is a system for handling
stream data. Stream data is continuous and high-frequency
data, such as sensor data or market stock data. Borealis [3]
is one of the distributed style SPE. This system is based on
Aurora [4] and Medusa [5].

Borealis generates an operator tree for each query. In this
tree, contents and sequences of query processing are defined.
After generating the operator tree, each operator is assigned to
distributed computing resources. Borealis supports pre-defined
operators located with fixed operators. This is inefficient oper-
ator placement, and a non-dynamic stream management style
remains a problem for a large scale system with thousands of
nodes and queries.

[6][7] are an extension of Borealis focusing on dynamic
optimization for stream management. [6] proposes a stream-
based overlay network (SBON). SBON has a layer between
a stream processing system and the physical network. This
layer manages operator placement for SPE. This research
is based on a cost space, an abstract representation of the
network and on-going streams, which permits decentralized,
large-scale multi-query optimization decisions. SBON uses a
spring relaxation algorithm to optimize operator allocation.
This method requires that each node exchange a meta-message
every time, so there is still a scalability issue. [7] solves
distributed load shedding problems as a linear optimization
problem. For this problem, they propose two alternative ap-
proaches to a solution : a solver-based centralized approach,

and a distributed approach based on meta-data aggregation and
propagation. They keep the CPU load lower by adjusting the
input rate of the stream. The centralized approach takes too
much time to solve each operator placement, and the state is
changed during calculation. The distributed approach makes
the tree adjust the input rate and send meta-data from the
leave node to the root node. Scalability is not guaranteed if
there are hundreds of nodes or more.

There is research on large scale Publish/Subscribe systems
for a sensors network[8]. The system consists of 4 types of
nodes, the first being the publisher which generates data. The
second type of node is the subscriber which receives the data
requested. The third type of node is the processing node,
which performs delivery and calculation of data requested. The
fourth type of node is an administration node which performs
maintenance management of the system. This system builds
a delivery tree. The root node of the tree connects to the
subscribers, and leaf nodes connect to the publishers. This
system can not only deliver raw data, This system can perform
not only the delivery of raw data but can also calculate these
data inside the Publish/Subscribe network. This system can
also divide and reassign the processing operator based on
subscriptions, if a processing node becomes over loaded. A
subscription consists of a chain of filters and calculations.
This structure for a subscription is useful when subscriptions
are divided and merged. Processing nodes can divide and
reassign subscriptions based on the subscriptions ’attributes
(e.g., geographical location, sensor ID and etc.). From this
research, we found that the main factor causing high CPU
load is the data input/output rate during data transition in
Publish/Subscribe networks. This research shows the direction
of a load balancing method for in-network processing of the
Publish/Subscribe system. It has not, however, considered the
data transition topology and the dynamic optimizing method.
In addition, the system depends on the administrator node for
various processes, so that the administrator node is the one
critical point of failure.

[9] investigated differences in the transfer performance
focusing on the topologies balanced binary Tree, star, and
three-step tree. According to this study, these topologies ware
selected to compare topologies having a different number of
joint nodes which have many edge nodes when filter operators
are used to exclude unnecessary sensor data in an early phase
of delivery. This research shows that a three-step tree was
much better for in-network processing due to the flexibility of
its methods of operator allocation and ease of constructing the
tree.

III. SYSTEM ARCHITECTURE

As shown in Figure1, our system has three components:
processing nodes, publisher and subscribers. Processing nodes
are connected to each other. They operate forwarding and
processing of sensor data according to subscriptions, which
are determined by the target data type, the processing, and
the requiring area. We define the publisher nodes as sensor
devices such as weather sensor and river level sensor, that

Subscriber

Core

Network

Transfer

Network

Publisher

Filter

Filter
Calculation

Filter

Filter

Fig. 1. System Overview

are connected to the networking devices. Finally, we define
subscriber nodes as those clients who require the data.

Our system construct is constructed with two types of net-
works: a core network and a transfer network (Figure1). The
core network manages the information of processing nodes,
publisher, and routing path. Transfer networks are built on the
core network to deliver data to subscribers during the sub-
scription period. Thanks to this multiple network architecture,
we achieve flexibility and scalability in our system. The core
network is useful for dealing with a huge number of publishers
and processing nodes, so it should to be able to manage data
with astute communication and quick searching. In contrast,
the transfer network is specialized in the transfer of subscribed
data, so this network focuses on only a small quantity of
nodes which are related to the subscription. In addition, the
transfer network needs to gather data to perform processing
based on the subscription without too much data concentration,
so readjustment of the delivery path and modification of the
place of processing are needed to operate. Therefore the roles
of these two networks are totally different.

A. Geolocation based Overlay Network

The core network is constructed as a geographic-based
overlay using ID space with a Z-ordering function. Each
processing node and publisher is assigned a geographical-
location based ID calculated by the Z-ordering function. Z-
ordering enables mapping multidimensional data (e.g., 2D
surfaces) to one dimension without losing locality in the
original dimension. The world is split into a grid cells based
on latitude and longitude, as consecutive IDs, as depicted
in Figure 2. Thanks to this ID space, we can look up data
with range-based queries. In our system, subscribers request
geographical related information, and therefore this feature
contributes to reducing the number of search queries [10].

Processing nodes are connected to single-hop neighbors
in the ID space. At the same time, they are also connected
to relatively distant neighbors according to the skip graph
algorithm [10]. This algorithm is based on matching ID length.
This utilize the characteristic of the Z-ordering area division
mechanism, such as the division of neighboring areas into
consecutive IDs. Figure 3 shows how nodes are connected

000 001 010 011 100 101 110 111

000

001

010

011

100

101

110

111

1
000001

0
000000

2
000010

3
000011

4
000100

5
000101

6
000110

7
000111

8
001000

9
001001

10
001010

11
001011

12
001100

13
001101

14
001110

15
001111

16
010000

17
010001

Fig. 2. Z-ordering ID Space

4bit

corresponding

2bit

corresponding
0bit

corresponding

a) Real Space Connection b) Logical Space Connection

Fig. 3. Connection Image

in the physical 2-D space and in the Z-ordering logical ID
space. The first two bits of the ID of a node match the first
two bits of the ID of the other nodes. For example, 001010
(10) has an initial four bits matching with 001011 (11) and
001000 (8), and an initial matching two bits with 000110 (6),
001110 (12). We focus on the last two bits of matching IDs.
These two bits have four different patterns: 00, 01, 10 and 11.
For example, 001010 (10) has different pattern areas: 0000xx,
0001xx, and 0011xx. With this algorithm, our system can find
information in O(log(N)) [10].

Processing nodes manage a part of ID-space. Each node
has the responsibility to handle an ID-space which is larger
than the node’s own ID and smaller than next larger node’s
ID. When publishers are in a node’s covering space, they send
their data to the node, and the node manages the information
(ID, data type) of publishers. Also, when a new processing
node joins the network or an existing node leaves the network,
the node’s covering ID-space will be re-arranged in the same
manner.

a) Operator Tree Example

F1

C2

F2

C1

F2

C3

F1: Select river water height

F2: Select rainfall

C1: Calculate average river height

C2: Calculate average rainfall

C3: Combinate rainfall and river height

b) Dependent Operator Tree

F1

C2
a

F2

C1

F2

C4

F1: Select river water height

F2: Select rainfall

C1: Calculate average river height

C2: Calculate average rainfall of area a/b

C4: Combine rainfall and river height

C2
b

C3

C3: Calculate average of average rainfall

Fig. 4. Example of Operator Trees

B. Transfer Network with Dynamic Optimization

We constructed a network which specialized for data trans-
fer during the time of subscription. The purpose of this
network is to facilitate readjustment of the delivery path and
modification of the place of processing.

When we think about construction of transfer networks, we
need to consider the composition of the subscription. The
subscription is composed of operators, of which there are
two kinds: Filter and Calculation. A filter operator defines
the passage of data according to a predicate (e.g., data type,
data size, and value size). While the calculation operator does
averaging, aggregation and a general calculations. The transfer
tree is constructed combining these operators. For example, a
alarm system for the rise of river-water can predict danger by
combining operators.

One of the operators operate the averages the rain precipita-
tion measured at the river upstream, and another calculates the
average height of the river-water level. The operator tree in this
case is represented as (Figure 4(a)). Some operators have an
order or dependency. The prerequisite of the dependent process
is a follows: the processing operator has both types of data
inputs, which are the output result of calculation operators that
include other data types of streams. All patterns of dependent
operators are a combination of these conditions. For example,
one is the average rise of river-water, and another is the
average of precipitation in area A and the average precipitation
of the area B (Figure 4(b)). In this case, we need to consider
the operators allocation patterns.

The main difference between the transfer network and the
core network is the routing path. We make a routing path
only for data transfer while the subscription is in the transfer
network. This is in contrast to SIENA [1] and other research
[11] [12]. This is because it is obviously more efficient to
transfer data from edge nodes to the root of the trees node
directly without broker nodes. However, in this case the
root node may be overloaded due to too much data input.
Therefore, we provide joint nodes as a buffer for data merging
and processing. This Edge-Joint-Root style tree we call a
three-steps tree [9].

Subscriber

Required Area

1) Register Subscription

2) Define Joint Node of Tree

3) Allocate Operators

000000

000001

000010

000100 000110

000011

Root

Edge

Subscriber

Publisher

S

Pu Pu Pu

Joint

Pu

3 Step Tree

Fig. 5. Initial Operator Placement Algorithm

The research [8] constructs a multistage tree as a data
transfer topology, but their method is not maintained once
the tree has been constructed. If some nodes are overloaded
during data transfer, their system moves operators to the leaf
side nodes. This movement of operators has the effect of
decreasing the granularity of the data input. A multistage tree
is useful to deal with complex operator allocation because
it has many conjunctions for operator placement, but the
tree has a scalability issue. When a node of our 3-step tree
is overloaded, a new joint node is simply added and the
overloaded node moves operators to the new joint node. This
load shedding approach is easily performed.

Another advantage of th three-steps tree approach is that we
can adjust the combination of operators easily. For example,
when we need to monitor a moving typhoon, we need to
change the monitoring area to follow the typhoon. In this case,
the three-steps tree can be modified quickly by simply cutting
the no longer necessary joint of the tree which is no longer
necessary. Then, the system finds a new joint, which covers
the new area’s edges. On the other hand, multiple trees of
complex construction cannot cope with this typhoon, because
the topology of such trees cannot be readjusted, and too much
time is required to construct a new tree.

The three-steps tree is constructed as follows:
1) Initial Operator Placement

As a first step of the transfer, operators (filter and
calculation) are placed on processing nodes. This step
is composed of the following 3 sub-steps; register the
subscription, define the joint node and allocate operators,
as shown in Figure 5. After these steps, the proposed
system adjusts the topology of the transfer network
and the operator’s location to avoid an overload of the
processing nodes.

a) Subscription Registration: The subscriber sends
subscriptions to the geographically neighbor pro-
cessing node. The selected processing node is
assigned as the root node of the transfer tree for this
subscription. The root node converts the requested
geographic area to a range of IDs in the Z-ordering

Subscriber

Required Area

1)Incremental Search

2) Decremental Search

3)1bit Extend Search

000000

000001

000010

000100 000110

000011

000101 000111 001101 001111

001100 001110

001001 001011

001000 001010

010000

010001

Orverloaded

Joint Node

Fig. 6. New Joint Search Algorithm

ID space. After resolving the IDs, the root node
looks up a joint node, as described in the next sub-
step.

b) Joint node assignment: In the joint node allocation
step, a joint node is allocated to each requested
geographical area (i.e., cells in Figure 2). A joint
node is selected in the group of nodes with IDs
larger than request range of IDs. If among the
candidates with the smallest ID is capable of
working as a joint node in terms of CPU load,
the root node specifies that node as the joint. The
root node repeats this step until the joint node is
specified. If the resolved ID-space form latitude
and longitude is one, the joint node is only one.
If there are multiple ID-space groups, there will
many joint nodes as ID-spaces.

c) Operator Allocation: In this step, the root node
sends the subscription to the joint node after
parsing the subscription into a set of separated
operators. Then, the joint node re-allocates oper-
ators to the other nodes as an initial allocation.
Filter operators are mainly allocated to the edge
nodes of the transfer trees to reduce redundant data
forwarding [8] [9]. On the other hand, calculation
operators are assigned to joint nodes. When the
joint node cannot cover the required data or when
summarization of the processing result is needed,
operators are allocated to the root node.

2) Operator Reallocation
When a joint node is overloaded, it node searches nodes
around itself for re-allocation of operators. To re-allocate
operators, the overloaded joint node selects the node,
which has an ID larger than the ID of the over-loaded
node. The selected candidate nodes checks its own CPU
time to answer whether re-allocation of the operator is
acceptable or not. If acceptable, the candidate becomes
a new joint of the tree. Then, the overloaded joint node
sends the operator’s information to the new joint node,

S

Pu Pu

S

Pu Pu PuPu

a)Bad Reallocation Case

S

Pu PuPu

b)Good Reallocation Case

F1: Select river water height

F2: Select rainfall

C1: Calculate average river height

C2: Calculate average rainfall of area a/b

C4: Combine rainfall and river height

C3: Calculate average of average rainfall

F2

Pu

F1 F2

C1 C2a,C2b,C3

C4

F2 F2

C2b C2a,C3

Pu

F2

C2a

F2

C2b

C4

F1

C1

F1

C1

C3,C4

Fig. 7. Operator Reallocation Pattern

transmits the new destination to the edge node, adds a
new source to the root node, and finally the overloaded
node sends operators to the new joint node. Incidentally,
the reallocated operator’s covering area must be different
from, or having no dependency on, operators which
are assigned to the overloaded node. If the candidate
node cannot allocate the new operator, the overloaded
joint node asks the processing node of the next larger
ID. This process is repeated until a new joint node is
defined. When the matching ID length of a candidate
node differs from that of the overloaded joint node
during the incremental candidate searching process, the
over-loaded joint node searches the candidate node from
smaller ID-space than over-loaded node’s ID. If the new
joint node is not defined in a smaller ID-space, the
overloaded node searches for a new joint node in a wider
ID area in which the length of the ID is decreased one
bit (Figure6).
When operators have some order relations or depen-
dencies, combinations of operators must be taken into
account for proper results.
Figure 7 shows a good case and a poor case of operator
reallocation. Here, overloaded joint nodes have operators
C2a,C2b, C3. Operator C3 requires calculating the
results of C2a and C2b. In Figure 7a), the new joint
node has C2b, C3, so C3 cannot get the result from
C2a. This is a bad example of operator re-allocation. In
contrast, C3 can get the results from both C2a and C2b
in figure 7b).
This is the ideal operator re-allocation example of this
operator set. In this operator set, the overloaded joint
node needs to send the operators which is requiring
multiple source type to root node, and send single source
type operator to new joint node. The joint searching
algorithm is the same as initial joint selection algorithm.
Basically, the processing load of a root node does not

increase because the root node receives a processing
result. The processing result is aggregated as usual.
Moreover, the root nodes only send a result to the
subscriber , this operation is not so high loaded.
When a root node is overloaded, the root node sends
a new aggregation operator to the joint node that is
sending data at a high frequency. This new aggregation
operator makes the joint node buffer sending data, which
reduces the output rateby half.

IV. EVALUATION

In this section we present the results of a simulation
study of our system. We measured the effect of our load
balancing mechanism and system scalability. We focus on
transfer or messages during subscription delivery, because it
is the primary factor in the CPU load. Maintenance messages
are also important, but these have a lower data frequency than
the sensor data stream because sensors continuously generate
data more than once a second. Therefore we focus on only data
transfer according to the subscription. In addition, we compare
the results with another Publish/Subscribe system, which is
based on an overlay network based on Domain Space Mapping
(DSM-Pub/Sub) [2]. Our system and DSM-Pub/Sub have such
similarities such as an overlay based Publish/Subscribe system
with a dynamic load balancing mechanism. But there are
differences between our system and DSM-Pub/Sub in data
transfer topology and in the load balancing mechanism. Ba-
sically, we use the Filter-Calculation-Merge flow subscription
in our system, but DMS-Pub/Sub transmits data directly to the
subscribers after filtering data in the edges.

A. Simulation Details

Our simulation consisted of three stages. First, we checked
the effect of the publisher ’s population change. Then, we
evaluated the performances of load balancing. Finally, we
install an in-network mechanism in to DSM-Pub/Sub and
investigate the difference between these systems.

In this simulation, we assumed the use case was weather
monitoring covering some cities. The parameters in table I
show the number of processing nodes (num nodes), the num-
ber of publishers (num pubs), the publishing rate (pub rate),
and the data size rate remaining after processing the filter
operator (rate fil) and the calculation operator (rate calc).
These parameters are sufficient to get detailed information on
a range of cities. Processing nodes and publishers are arranged
at equal intervals. We use the geographical information as
attributes of domain space in DSM-Pub/Sub. Also, we use
our core network as the base DHT for their system. The
geo-location based ID fits in their mechanism because it
needs some kind of continuous space to manage information.
Therefore DSM-Pub/Sub can use the same ID-space as our
system without any changes. Each of the subscription comes
from a different subscriber and requires a different areas, but
the systems use the same subscriptions.

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850
Num of Messages

20

40

60

80

100

120

140

160

N
u
m
 o
f
N
o
d
e
s

0.2

0.4

0.6

0.8

1.0

a
cc
u
m
.
ra
ti
o

DSM-Pub/Sub
Proposed

Fig. 8. Distribution of I/O messages (without load balancing, pub rate = 1)

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850
Num of Messages

20

40

60

80

100

120

140

160

N
u
m
 o
f
N
o
d
e
s

0.2

0.4

0.6

0.8

1.0

a
cc
u
m
.
ra
ti
o

DSM-Pub/Sub
Proposed

Fig. 9. Distribution of I/O messages (without load balancing, pub rate = 3)

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850
Num of Messages

20

40

60

80

100

120

140

160

N
u
m
 o
f
N
o
d
e
s

0.2

0.4

0.6

0.8

1.0
a
cc
u
m
.
ra
ti
o

DSM-Pub/Sub
Proposed

Fig. 10. Distribution of I/O messages (with load balancing, pub rate = 3)

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850
Num of Messages

20

40

60

80

100

120

140

160

N
u
m
 o
f
N
o
d
e
s

0.2

0.4

0.6

0.8

1.0

a
cc
u
m
.
ra
ti
o

DSM-Pub/Sub
Proposed

Fig. 11. Distribution of I/O messages (with load balancing, pub rate =
3, fil rate = 0.25)

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850
Num of Messages

20

40

60

80

100

120

140

160

N
u
m
 o
f
N
o
d
e
s

0.2

0.4

0.6

0.8

1.0

a
cc
u
m
.
ra
ti
o

DSM-Pub/Sub
Proposed

Fig. 12. Distribution of I/O messages (with load balancing, pub rate = 3,
DMS-Pub/Sub with caluclation)

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850
Num of Messages

20

40

60

80

100

120

N
u
m
 o
f
N
o
d
e
s

0.2

0.4

0.6

0.8

1.0

a
cc
u
m
.
ra
ti
o

DSM-Pub/Sub
Proposed

Fig. 13. Distribution of I/O messages (with load balancing, pub rate = 4,
DMS-Pub/Sub with caluclation)

TABLE I
SIMULATION PARAMETERS

num nodes 500 (num)
num pubs 20000 (num)
pub rate 1, 3, 4 (data/sec)

num subscribers 20 (num)
rate fil 0.5, 0.25 (%)
rate calc 0.1 (%)

B. Simulation Results

Figure 8 is the result of 20 Subscriptions. This figure is
one of the criteria for this simulation. We also measured the
number of messages at two or three times of the publishing rate
case. Figure 9 equals three times the publishing rate. Figures
8 and figure 9 show the same tendency. The message size of
DSM-Pub/Sub at the lower x-axis side is twice that of our
system. This is because DSM-Pub/Sub uses binary tree type
topology as the data managing topology. This means that their
system can use at most only half of a processing node as
the edge node. Therefore edge nodes of DSM-Pub/Sub have
to manage twice the number of publishers compared to the
edge nodes in our system. This difference becomes remarkable
when the data volume is increased.

Figure 9 does not include the load-balancing mechanism.
In figure 10, we use the load-balancing mechanism with the
same publishing rate and subscriptions as shown in Figure 9.
We define the threshold of load balancing as 500 messages.
In figure 9, the numbers of messages increases in proportion
to the publishing rate. In contrast, figure 10 shows that no
processing Node exceeds 500 in our system. This is thanks to
the functioning of our load balancing method and the dynamic
finding of operator re-allocation nodes. DSM-Pub/Sub also has
a load balancing mechanism so that edge nodes can reduce by
half the dealing with data with every load balancing operation,
but it only works at the edge nodes. Therefore the root node
receives the same data size as it did before the load balancing,
because the load balancing mechanism of DSM-Pub/Sub only
divides the covering area of the edge nodes. In addition,
their mechanism requires the addition of a new node, because
most nodes are already used for constructing the binary tree.
Adding a new node for each load balancing operation is clearly
inefficient. Furthermore, one of their load balancing operations
can save only a narrow area by adding a new node to the
specific point. Our load balancing mechanism, on the other
hand, can collaborate with nodes around an overloaded node
and avoid a sudden heavy load on a specific node.

Figure 11 is a case of a high filtering rate at the edges. This
figure is also three times the publishing rate of the criterion
pattern. In this case, DSM-Pub/Sub compares favorably with
our system.

Finally, we installed an in-network calculation mechanism
in their system. Figure 12 and figure 13 are the results of in-
network calculation of both systems. Figure 12 is three times
the publishing rate, showing a reduction in the large message
size nodes of DSM-Pub/Sub. The peak message size of their

system is less than that of in our system. Figure 13 is four
times the publish rate. In this result, the peak message of their
system was increased, but our system kept the proper data size
range. However, their peak node was also still lower than the
non-calculation version of the peak load node. However their
load balancing is only for the edge node, and the root node’s
message size will be increased straightforward if the publish
message size increases. In addition, we performed simple cases
of subscription such as calculating the single data average.
Their system gives good results in for simple subscriptions,
but they cannot adapt to complex dependent subscriptions
because their processing node only covers a static area and
cannot collaborate between processing nodes. This complex
subscription durability shows one of differences between our
system and theirs.

V. CONCLUSION

In this paper, we introduced a scalable geographic Pub-
lish/Subscribe system. The system provides a mechanism of
in-network processing and dynamic load balancing.

Our system uses two types of networks. One network fo-
cuses on managing fundamental information such as publisher
and processing nodes, while the other network focuses on
transfering data for subscriptions. Using geographical infor-
mation, the system can search contents and divide or reassign
overload operators among neighboring nodes. The transfer
network in this system is based on a three-steps tree. Edge
nodes are suitable for allocating filtering operators, while joint
nodes are the proper place to allocate the calculation operators.
With this topology and optimization based on geographical
locations, our system can avoid overloading processing nodes.

Simulation results showed that our system can transfer
sensor data while avoiding load concentration. This indicates
that the load-balancing mechanism was effective in the sim-
ulation scenarios. The next step in our research will be to
investigate various query patterns to improve the dynamic
operator mapping mechanism to avoid overload cases.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Num-
ber 24700068

REFERENCES

[1] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, “Design and evalu-
ation of a wide-area event notification service,” ACM Transactions on
Computer Systems, vol. 19, pp. 332–383, August 2001.

[2] W. Li and S. Vuong, “Towards a Scalable Content-Based Pub-
lish/Subscribe Service over DHT,” in 2010 IEEE Global Telecommu-
nications Conference GLOBECOM 2010. IEEE, 2010, pp. 1–6.

[3] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack,
J.-H. Hwang, W. Lindner, A. Maskey, A. Rasin, E. Ryvkina, N. Tatbul,
Y. Xing, and S. B. Zdonik, “The Design of the Borealis Stream
Processing Engine,” in Second Biennial Conference on Innovative Data
Systems Research, January 2005, pp. 277–289.

[4] D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman,
M. Stonebraker, N. Tatbul, and S. Zdonik, “Monitoring streams: a new
class of data management applications,” in Proceedings of the 28th
International Conference on Very Large Data Bases, 2002, pp. 215–
226.

[5] S. B. Zdonik, M. Stonebraker, M. Cherniack, U. Cetintemel, M. Bal-
azinska, and H. Balakrishnan, “The aurora and medusa projects,” Pro-
ceedings of IEEE Data Eng. Bull., pp. 3–10, 2003.

[6] P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos, M. Welsh, and
M. Seltzer, “Network-aware operator placement for stream-processing
systems,” in Data Engineering, 2006. ICDE ’06. Proceedings of the
22nd International Conference on, april 2006, p. 49.

[7] N. Tatbul, U. Çetintemel, and S. Zdonik, “Staying fit: efficient load
shedding techniques for distributed stream processing,” in Proceedings
of the 33rd international conference on Very large data bases, ser. VLDB
’07. VLDB Endowment, 2007, pp. 159–170.

[8] R. Miyagi, S. Nguchi, S. Matsuura, A. Inomata, and K. Fujikawa,
“A divide and merge method for sensor data processing on large-
scale publish/subscribe systems,” in The 3rd Workshop on Enablers for
Ubiquitous Computing and Smart Services (EUCASS), jul 2012.

[9] T. Fukui, S. Noguchi, S. Matsuura, A. Inomata, and K. Fujikawa,
“Analysis of transmission topology and operator location strategy of pub-
lish/subscribe system for sensor network,” in Multimedia, Distributed,
Cooperative, and Mobile Symposium, no. 4A-4, 2012.

[10] S. Matsuura, K. Fujikawa, and H. Suahara, “Mill: A geographical
location oriented overlay network managing data of ubiquitous sensors,”
IEICE TRANSACTIONS on Communications, vol. E90-B, no. 10, pp.
2720–2728, 2007.

[11] M. Matos, A. Nunes, R. Oliveira, and J. Pereira, “Stan: exploiting shared
interests without disclosing them in gossip-based publish/subscribe,” in
Proceedings of the 9th international conference on Peer-to-peer systems,
ser. IPTPS’10. USENIX Association, 2010, pp. 9–9.

[12] S. K. Gero Mühl, Arnd Schröter, Helge Parzyjegla and J. Richling,
“Stochastic analysis of hierarchical publish/subscribe systems,” vol.
5704/2009, 2009, pp. 97–109.

