
101

特集●ネットワーク技術

Stable Load Balancing with Overlapping

ID-space Management in Range-based

Structured Overlay Networks

Kimihiro Mizutani　Takeru Inoue　Toru Mano　Osamu Akashi

Satoshi Matsuura　Kazutoshi Fujikawa

Structured overlay networks that support range queries cannot hash data IDs for load balancing, in order

to preserve the total order on the IDs. Since data and queries are not equally distributed on the ID-space

without hashing in range-based overlay networks, uneven loads are imposed on the overlay nodes. Existing

load balancing techniques for range-based overlay networks distribute the loads by using data reallocation or

node migration, which makes the networks very unstable due to heavy data reallocation or frequent churn.

This paper proposes a novel scheme that distributes, fairly, the loads without node migration and with

little data reallocation, by sharing some ID-space regions between neighboring nodes. Our “overlapping”

ID-space management scheme derives the optimal overlap based on kernel density estimations; the query

loads based on the statistical theory are used to calculate the best overlap regions. This calculation is

executed in a distributed manner with no central coordinator. We conduct thorough computer simulations,

and show that our scheme alleviates the worst node load by 20–90 % against existing techniques without

node migration and with least data reallocation.

1 Introduction

A structured overlay network with N nodes

provides scalable search with just O(logN) mes-

sages [14] [17] [19]. Each node in the network main-

tains a small portion of “range” of the ID-space,

which is structurally coordinated by pointers be-

tween the nodes for efficient message routing. Con-

ventional structured overlay networks provide only

exact match searches, so only the data with the

specified ID is returned. Users, however, are de-

manding support for range queries, which retrieve

範囲探索可能な構造化オーバレイにて Overlap ID-Space

を用いた安定的な負荷分散手法
水谷后宏, 井上武, 間野暢, 明石修, NTT 未来ねっと研究
所, NTT Network Innovation Labs.

松浦知史, 東京工業大学, Tokyo Institute of Technology.

藤川和利, 奈良先端科学技術大学院大学, Nara Institute

of Science And Technology.

コンピュータソフトウェア,Vol.32,No.3 (2015),pp.101–110.

[研究論文] 2014 年 7 月 18 日受付.

all the data in the given ID range [1] [4] [9] [13].

Range queries are an efficient way to retrieve data,

since they eliminate the need to issue individual

queries for all IDs in the range. Unfortunately,

overlay networks that support range queries can-

not hash the data IDs since doing so would dis-

turb the total order, a property essential for range

queries. Note that hashed IDs are indispensable to

distribute query loads over nodes in conventional

overlay networks. As a result, the loads tend to

become heavily skewed for supporting the range

queries (Fig. 1(a)).

There are two major solutions to load balanc-

ing with range queries. One is range reallocation;

like NIX [12] (Fig. 1(b:top)), each node expands or

shrinks its own ID-space range in response to its

load, but this range reallocation can cause global

reallocation involving very distant nodes and the

transfer of massive amounts of data among nodes.

The other is node migration; as shown by Mer-

cury [5] (Fig. 1(b:bottom)), unloaded nodes are

moved into heavily loaded ID-space regions, and

102 コンピュータソフトウェア

Fig. 1: Unbalanced loads in overlay networks with

range queries; each box with alphabet tag represents

a node, each node maintains an ID-space range of box

width with the capacity being the box area. (a) Since

data IDs are not hashed for range queries, queries can

be unevenly distributed over the ID-space. (b) Existing

techniques realize load balancing by reshaping boxes to

fit the load function, and/or by moving some boxes from

highly-loaded regions to lightly loaded regions. These

techniques involve massive data transfers at several box

boundaries or frequent node migration.

share the region with overloaded nodes to suit the

load function. Such node migration raises churn

frequently, which makes overlay networks very un-

stable. Very few existing works have attempted

load balancing without relying on data or node

migration [16], but these approaches often fail to

balance the loads since they handle the loads indi-

rectly.

This paper proposes a novel ID-space manage-

ment scheme with overlapping ID-space regions. As

shown in Fig. 2, nodes share some ID-space regions

with neighboring nodes, and this “overlap” allows

the nodes to reshape their capacity function locally.

The benefits of our overlapping ID-space manage-

Fig. 2: Basic idea of our scheme. Overlapping regions,

in which the boxes are accumulated, provide larger ca-

pacity for query processing. Our scheme can find a ca-

pacity distribution function (the ridge of boxes) that

approximately fits the query distribution by minimiz-

ing the difference with D.

ment scheme comes at the cost of duplicated data

storage, but it is freed from the globally cascading

range reallocation or any node migration. We use

kernel density estimation in deriving the optimal

overlap ranges [15], and the node capacity function

is changed to well fit the load function. Kernel den-

sity estimation is a well-studied statistical method

that yields a function that well fits a set of given

data points, and so our scheme has the mathemati-

cal rationale unlike existing techniques. We design

this optimization process to run in a distributed

manner. Our scheme is evaluated by intensive com-

puter experiments, the results of which reveal that

our scheme provides fairer load balancing than ex-

isting techniques with no significant overheads.

The rest of this paper is organized as follows. Sec-

tion 2 discusses related work. Section 3 describes

our scheme and Section 4 reports the extensive ex-

periments conducted and their results. Section 5

concludes this paper.

2 Related work

This section discusses related work on load bal-

ancing for range-based structured overlay networks.

Neighbor item exchange (NIX) [12] is a range re-

allocation scheme. A node changes its range and

transfers the out-of-range data to its neighbors,

when the amount of data stored on it exceeds a

Vol. 32 No. 3 Aug. 2015 103

predefined limit. This transfer process continues

until the nodes satisfy the limit, and so realloca-

tion can cascade on a massive scale. Reference [2]

proposed a range reallocation scheme that uses skip

graphs [3]. This scheme rearranges ID-space ranges,

called buckets, based on the amount of data in a

bucket. The clustering approach introduced in [18]

exchanges data within a cluster, locally if possible,

but inter-cluster reallocation may be needed if the

load distribution is heavily unbalanced. Massive

data reallocation is a common problem with these

schemes.

Mercury [5] is a node migration scheme designed

for efficient load balancing, which moves unloaded

nodes to heavily loaded regions in order to balance

the load among more nodes. The load distribu-

tion is estimated using O(log2 N) load query mes-

sages; a node sends a load query to O(logN) ran-

domly selected nodes, which also send the query

at random. Another load estimation method was

proposed in [11]. This method realizes 99 % ac-

curate estimations with O(log3 N) messages. Ref-

erence [20] employs a tree-like overlay network to

collect load information, but we note that the tree

root can be a single point of failure. These schemes

rely on frequent node migration to balance the load,

and heavy churn is triggered as shown in the exper-

iments.

Reference [12] proposed a hybrid scheme that

fuses range reallocation and node migration. This

scheme, named NIXMIG, deals with slightly un-

balanced load distributions by range reallocation,

while heavily unbalanced loads are corrected by

node migration.

There are few studies that try to avoid heavy

data exchange and frequent churn. Saturn [16] em-

ploys data replication to balance the load without

data or node migration, like our scheme. Saturn

takes, as node load, the product of the amount of

data per node and the number of get queries per

data. Saturn only controls the number of queries

per data and ignores the amount of data per node.

As a result, Saturn can fail to balance the node

load. In contrast, our scheme directly handles the

node load, as shown in Fig. 2.

We define two methods for determining the D, in

the following subsections.

3 Load balancing with overlapping

ID-space management

This section describes our novel ID-space man-

agement scheme that assigns ID-space ranges to

overlay node allowing some overlaps with the neigh-

bors. Routing mechanisms for the ID-spaces are

also discussed. We assume one dimensional ID-

space in this paper, but we believe our scheme

can easily be extended to cover multi-dimensional

spaces. Our scheme is agnostic as to the routing

protocol, and so we do not assume any particular

routing protocol unless otherwise noted.

3. 1 Overlapping ID-space management

In our scheme, ID-space range Ri, assigned to

node i, is given by,

Ri = [si,max(suci, si +D)),

where si is node ID and suci is the ID of its succes-

sor (e.g., the clockwise neighbor in Chord). Here,

D is a key variable in our scheme; larger D such

that si+D > suci allows the range to overlap with

that of the successor, unlike conventional struc-

tured overlay systems.

Figure 2 shows basic idea of our scheme. The

overlapping ID-space regions provide more query

processing capacity, as shown in the figure. This

capacity function defined over the ID-space is called

capacity distribution in this paper. Queries not cov-

ered by the capacity distribution cannot be pro-

cessed. Here, we define load balancing as the prob-

lem of maximizing query distribution coverage by

rearranging the distributed capacity. The query

distribution is statistically estimated by the sim-

ilar method as Mercury. With the estimated query

distribution, each node updates D independently

and tries to balance skewed loads without data and

node migration†1. Our scheme is executable at all

times; e.g. when a load factor [6] calculated by the

query distribution exceeds certain threshold.

3. 2 Average-based estimation method

Our first method is simple in that it takes advan-

tage of the average width of the ID-space ranges;

existing load balancing techniques often rely on the

†1 Each node calculates D independently, but these

values are theoretically matched. Therefore, we

denote these values by the single symbol.

104 コンピュータソフトウェア

average value. We extend ranges that are shorter

than the average, and so mitigate the skewed load

distribution. Each node independently estimates D

as follows,

D =

∑
i∈P suci − si

|P | ,

where P is the set of nodes from which ranges

suci − si are sampled. Nodes of P are randomly

selected following [5], and only O(log2 N) messages

are required to estimate the average.

3. 3 Distribution-based estimation

method

Our second method utilizes the query distribu-

tion, not its simple average; the method normalizes

the query and capacity distribution functions, and

then determines D so as to minimize their differ-

ence. It results the heavy load regions are covered

from many nodes and the skew loads are flatted in

overall overlay network. This method employs ker-

nel density estimation [15], which is used to mini-

mize the difference between a set of data samples

and a function. The normalized query distribution

function, f(x), is estimated as,

f(x) =
Lx∑
j∈Q Lj

,

where x is a point in the ID-space, Lx is the query

load at x, and Q is the set of IDs at which query

loads are sampled; we can also use the sampling

method of [5]. The normalized capacity distribu-

tion is given by,

f̂(x,D) =
1

ND

N∑
j=1

K
(x− j

D

)
,

where the number of nodes, N , is estimated by the

sampling technique as well, and K(x−j
D

) is a kernel

function that is equal to one if node j maintains ID

x as follows,

K(x) =

{
1 if |x| < 1/2,

0 otherwise.

We minimize the square error of these distribution

functions as follows,

arg min
D

∑
j∈Q

|f̂(j,D)− f(j)|2. (1)

Fig. 3: Routing tables in conventional overlay net-

works like Chord [19] and our scheme with D = 15.

In our scheme, nodes that maintain a common region

are stored together in a routing table, in order to query

the region; e.g., nodes B and C have to be added to the

table, since their ranges overlap those of nodes A and

D.

To simplify the computation, we solve this opti-

mization problem approximately by assuming that

binary search is a convex function. It can be com-

pleted in a logarithmic time against the ID-space

size. The minimum error is not bounded theoret-

ically, and node loads are evaluated in the experi-

ments.

3. 4 Message routing

In our scheme, data is stored on all nodes that

maintain the data’s ID, and is retrieved from one

of these nodes at random. All nodes maintaining

common IDs must populate the same routing table,

as shown in Figure 3; such common nodes can be

found easily in a structured overlay network. This

duplication of data and routing entries imposes

storage overhead on nodes. The duplicated rout-

ing entries might detour a message, and increase

hop counts to a destination. We evaluated these

overheads in the experiments. We do not discuss

data synchronization issues among nodes maintain-

ing overlapping ranges, since they have been stud-

Vol. 32 No. 3 Aug. 2015 105

Fig. 4: Message routing in put and get queries. The

put query is routed to all nodes maintaining the data

ID, while the get query is routed to one of them at ran-

dom. We assume the top node has the routing table

shown in Figure 3 (bottom).

Fig. 5: Message routing in a range query. The query is

forwarded to the appropriate nodes to cover the whole

range to be queried. Overlapping regions like [10, 15)

can be covered by any node maintaining the region; e.g.,

queries sent from the top node are (1) [8, 15) to A and

[15, 28) to B, or (2) [8, 10) to A and [10, 28) to B; then,

B sends query [25, 28) to C. We assume the top node

has the routing table shown in Figure 3 (bottom).

ied intensively [8].

Figures 4 and 5 show routing procedures for put,

get, and range queries. They do not include any

procedure specific to a particular routing protocol,

so our scheme can be integrated with any routing

protocol; the only requirement is that the proto-

col maintains routing entries for nodes of common

Table 1: Mandelbrot-Zipf

distribution of P2P traffic

AS # Parameters q and α

AS1 5, 0.47

AS2 25, 0.78

AS3 55, 0.6

AS4 25, 0.55

regions.

4 Experiments

We evaluated our scheme against existing

schemes including NIX [12], Mercury(α = 0.8) [5],

NIXMIG [12], and Saturn [16] through computer

simulations. Similar to Mercury, we set node,

data, and query distributions following Zipf distri-

butions. Though our scheme is designed not to

be application specific, we consider a kind of geo-

location application in the experiments; the ID-

space represents locations in Japan sorted in de-

scending order of population and the size is 231.

It roughly follows a Zipf distribution†2. We first

generate 1,000 nodes with their IDs, assuming that

these nodes are carried by people. The nodes then

construct an overlay network with coordination by

Chord protocol [19] unless otherwise noted. We

place 105 data on the overlay network and pub-

lish 107 get queries for the data. These data

and queries are randomly generated following the

Mandelbrot-Zipf distribution [7] [10], as measured

in real P2P traffic for certain ASes(Autonomous

Systems) [10] (Table 1). Finally, a load balancing

scheme runs to distribute the query load, and an-

other set of 107 queries were published to measure

the load at each node.

4. 1 Estimation errors

We first evaluate estimation errors of our

distribution-based estimation method. Figure 6

shows relative errors of D yielded by the method.

We repeated the sampling process for the estima-

tion for one to five rounds. As shown in the fig-

ure, 90 % of nodes estimated D with less than 7

% error in the first round, while 99 % of them had

errors under 2 % in the fifth round. We present no

evaluation result for the average-based estimation

†2 http://www.stat.go.jp/data/jinsui/2011np/

106 コンピュータソフトウェア

Fig. 6: Cumulative distribution functions of relative

error of D as estimated by the distribution-based es-

timation method. Errors shrink with sampling round

number and D calculated by each nodes went to ap-

proximately 1.5 × 106. Estimation error for 99 % of

nodes was less than 2 % after just five rounds.

Fig. 7: Load distribution f(x), and capacity distri-

butions f̂(x)’s with the average-based and distribution-

based estimation methods. In this figure, load distribu-

tion is plotted as a function of original load values mea-

sured at node points, while capacity distributions are

given as functions of node capacities at the correspond-

ing node points. The capacity distributions roughly

follow the load distribution thanks to our estimation

methods.

method, but it shows similar behavior. We ignore

these small estimation errors in the following ex-

periments.

Figure 7 shows load distribution f(x) and ca-

pacity distributions f̂(x)’s created by our average-

Fig. 8: Most loaded nodes yielded our schemes and the

existing schemes. Our schemes with the two estimation

methods yield smaller loads for the other schemes.

based and distribution-based estimation methods.

We present only the result of AS1’s load distribu-

tion, other ASes exhibited identical behavior. The

capacity distributions based on the D well fit the

load distribution. The distribution-based method

is slightly better than the average-based method;

it has no large error, and the square error (1) of

the distribution-based method was 13 % smaller

than that of the average-based method. This is be-

cause the distribution-based method considers the

whole distribution, while the average-based method

focuses on just a single mode.

4. 2 Load balancing performance

In order to evaluate the load balancing perfor-

mance, we compare the Most heavily loaded nodes

yielded by our scheme and the existing schemes.

Figure 8 shows the results for the four ASes. Our

schemes reduced the maximum load by 90% for Sat-

urn and by 20% for the others. Of our schemes,

the distribution-based estimation method slightly

outperforms the average-based estimation method.

This great reduction comes from the estimation ac-

curacy shown in Figure 7. Since Saturn yielded

very poor performance, we drop Saturn from the

following discussion.

4. 3 Data and node migration

We evaluated data and node migration in the

load balancing process. Figure 9 shows the num-

Vol. 32 No. 3 Aug. 2015 107

Fig. 9: The number of data moved/replicated to other

nodes during load balancing. Our scheme with the two

estimation methods migrated/replicated much less data

than the other schemes.

Fig. 10: The number of data moved/replicated at the

most loaded node. Our scheme with the two estimation

methods migrated/replicated less data than the other

schemes.

ber of data moved/replicated to other nodes. NIX

moved nearly 20 % of all data for load balanc-

ing due to the cascade of data reallocation; the

other schemes needed much less data migration.

Mercury and NIXMIG migrated slightly more data

than ours, which was caused by node migration.

Figure 10 shows the maximum number of data mi-

grated/replicated to other nodes per node. This

paper mainly focuses on the load balancing over

get queries, and our scheme has to replicate data

Fig. 11: Number of nodes moved for load balancing.

Our proposal with the two estimation methods needed

no node migration.

Fig. 12: (left) Average number of entries in a rout-

ing table, and (right) average number of hops routed

to a destination node per get query. Three routing

protocols, Chord and Mercury were executed with and

without our scheme with distribution-based estimation

method. No significant overhead was found in our

scheme. Load distribution of AS1 was used for the plots.

for put queries. However, it was still least loaded

in terms of the most loaded node.

Figure 11 shows the number of node moved in

the load balancing process. Our scheme and NIX

issues no join nor leave messages for node reloca-

tion, while Mercury and NIXMIG moved several

nodes. The results confirm that our scheme real-

ized fair load balancing without churn and with less

data reallocation.

108 コンピュータソフトウェア

4. 4 Overheads of our scheme

We evaluate the overheads of our scheme, such as

duplicated routing entries and extra routing hops.

We used routing protocols including Chord [19] and

Mercury [5], in order to examine the dependency

of the overheads to routing protocols. Figure 12

(left) shows average number of entries per routing

table for each routing protocol with and without

our scheme. As shown in the figure, our scheme

yielded 10 % to 30 % duplication in routing en-

tries; Chord had the largest duplication, since it is

based on the ID distance while others are based on

the hop counts. Figure 12 (right) shows average

number of hops to route a get query to a destina-

tion. Only Chord incurred overhead here because

it is based on ID distance. As the results show

that overhead of our scheme is acceptable, and did

not significantly depend on routing protocol. Fi-

nally, we discuss storage cost. Our scheme repli-

cated each data item to twenty nodes on average

among all ASes; this roughly matches Saturn, and

is much larger than the other schemes. However,

it is worth noting that despite the data replication,

our scheme moved (copied) much less data than the

others (Fig. 9). If storage cost is relatively cheaper

than processing and network costs (this is the most

likely scenario in current computer systems), the

proposal offers a better trade-off for fair load bal-

ancing.

5 Conclusion

This paper introduced a new load balancing

scheme for range-based structured overlay net-

works. Our scheme allows the ranges of overlay

nodes to overlap, and reshapes the node capacity

distribution to fit the load distribution. Kernel

density estimation is used to determine the opti-

mal value of range width D, for curve fitting. Our

scheme was evaluated against existing work includ-

ing NIX, NIXMIG, Mercury, and Saturn. Simula-

tions showed the value of D can be estimated with

only 2% error in a distributed manner. The load of

most heavily loaded node was eased by more than

20-90 % without churn and with minimal data re-

allocation. The routing table overhead was quite

small and not significant.

In this paper, we formulated load balancing as

curve fitting, and implemented it as a distributed

algorithm. This idea is quite general and not lim-

ited to structured overlay networks. We believe

that our work sheds new light on the traditional

load balancing problem through its new viewpoint

of using statistical techniques.

In future work, we will evaluate its estimation

stability under dynamic loads. We will investigate

another estimation method with more variables to

handle more complicated load distributions.

References

[1] Aguilera, M. K., Golab, W. and Shah, M. A.: A

practical scalable distributed B-tree, Proc. VLDB

Endow., Vol. 1, No. 1(2008), pp. 598–609.

[2] Aspnes, J., Kirsch, J. and Krishnamurthy, A.:

Load balancing and locality in range-queriable data

structures, in Proc. the twenty-third annual ACM

symposium on Principles of distributed comput-

ing, PODC ’04, New York, NY, USA, ACM, 2004,

pp. 115–124.

[3] Aspnes, J. and Shah, G.: Skip graphs, ACM

Transactions on Algorithms, Vol. 3, No. 4(2007),

pp. 1–25.

[4] Beltran, A., Sage, P. and Milligan, P.: Skip

Tree Graph: a Distributed and Balanced Search

Tree for Peer-to-Peer Networks, in Proc. IEEE In-

ternational Conference on Communications, 2007,

pp. 1881–1886.

[5] Bharambe, A. R., Agrawal, M. and Seshan, S.:

Mercury: supporting scalable multi-attribute range

queries, ACM SIGCOMM Computer Communica-

tion Review, Vol. 34, Issue 4 (2004), pp. 353–366.

[6] Drougas, Y., Repantis, T. and Kalogeraki, V.:

Load balancing techniques for distributed stream

processing applications in overlay environments, in

Proc. IEEE International Symposium on Object

and Component-Oriented Real-Time Distributed

Computing, 2006, pp. 1–8.

[7] Gabaix, X.: Zipf’s Law for Cities: An Explana-

tion, The Quarterly Journal of Economics, Vol. 114,

No. 3(1999), pp. 739–767.

[8] Gilbert, S. and Lynch, N.: Brewer’s conjec-

ture and the feasibility of consistent, available,

partition-tolerant web services, SIGACT News,

Vol. 33, No. 2(2002), pp. 51–59.

[9] Harvey, N. J., Jones, M. B., Saroiu, S., Theimer,

M. and Wolman, A.: SkipNet: A Scalable Overlay

Network with Practical Locality Properties, in Proc.

USENIX Symposium on Internet Technologies and

Systems, Vol. 274, 2003.

[10] Hefeeda, M. and Saleh, O.: Traffic Modeling

and Proportional Partial Caching for Peer-to-Peer

Systems, IEEE/ACM Transactions on Networking,

Vol. 16, No. 6(2008), pp. 1447–1460.

[11] Hsiao, H.-C., Liao, H., Chen, S.-T. and Huang,

K.-C.: Load Balance with Imperfect Information

Vol. 32 No. 3 Aug. 2015 109

in Structured Peer-to-Peer Systems, IEEE Transac-

tions on Parallel and Distributed Systems, Vol. 22,

No. 4(2011), pp. 634–649.

[12] Konstantinou, I., Tsoumakos, D. and Koziris,

N.: Fast and Cost-Effective Online Load-Balancing

in Distributed Range-Queriable Systems, IEEE

Transactions on Parallel and Distributed Systems,

Vol. 22, No. 8(2011), pp. 1350–1364.

[13] Matsuura, S., Fujikawa, K. and Sunahara,

H.: Mill: A geographical location oriented over-

lay network managing data of ubiquitous sensors,

IEICE transactions on communications, Vol. 90,

No. 10(2007), pp. 2720–2728.

[14] Maymounkov, P. and Mazieres, D.: Kadem-

lia: A Peer-to-Peer Information System Based on

the XOR Metric, Peer-to-Peer Systems, Druschel,

P., Kaashoek, F. and Rowstron, A.(eds.), Lec-

ture Notes in Computer Science, Vol. 2429, Springer

Berlin Heidelberg, 2002, pp. 53–65.

[15] Parzen, E.: On estimation of a probability den-

sity function and mode, The annals of mathematical

statistics, Vol. 33, No. 3(1962), pp. 1065–1076.

[16] Pitoura, T., Ntarmos, N. and Triantafillou, P.:

Saturn: Range Queries, Load Balancing and Fault

Tolerance in DHT Data Systems, IEEE Transac-

tions on Knowledge and Data Engineering, Vol. 24,

No. 7(2012), pp. 1313–1327.

[17] Rowstron, A. and Druschel, P.: Pastry: Scal-

able, Decentralized Object Location, and Routing

for Large-Scale Peer-to-Peer Systems, Middleware

2001, Guerraoui, R.(ed.), Lecture Notes in Com-

puter Science, Vol. 2218, Springer Berlin Heidelberg,

2001, pp. 329–350.

[18] Shen, H. and Xu, C.-Z.: Locality-Aware

and Churn-Resilient Load-Balancing Algorithms in

Structured Peer-to-Peer Networks, IEEE Transac-

tions on Parallel and Distributed Systems, Vol. 18,

No. 6(2007), pp. 849–862.

[19] Stoica, I., Morris, R., Karger, D., Kaashoek,

M. F. and Balakrishnan, H.: Chord: A scalable

peer-to-peer lookup service for internet applications,

in Proc. ACM SIGCOMM Annual Conference, SIG-

COMM ’01, New York, NY, USA, ACM, 2001,

pp. 149–160.

[20] Zhu, Y. and Hu, Y.: Efficient, proximity-aware

load balancing for DHT-based P2P systems, IEEE

Transactions on Parallel and Distributed Systems,

Vol. 16, No. 4(2005), pp. 349–361.

Kimihiro Mizutani

is a researcher in NTT Network

Innovation Labs. He received the

M.S. degree in information system

from Nara Institute Science and

Technology in 2010. His research

interests include future Internet architectures. He

received the best student paper from International

Conference on Communication Systems and Appli-

cation(ICCSA) in 2010. He also received research

awards from IPSJ and IEICE in 2010 and 2013,

respectively. He is a member of IEEE Communica-

tion Society and IEICE.

Takeru Inoue

is a senior researcher in NTT Lab-

oratories. He was an ERATO

researcher at the Japan science

and technology agency from 2011

through 2013. His research inter-

ests range widely and cover the design and control

of network systems. He received the best paper

award from Asia-Pacific conference on communi-

cations in 2005, and also research awards of the

IEICE Information Network Group in 2002, 2005,

and 2012. He received the B.E., M.E., and Ph.D.

degrees from Kyoto University, Kyoto, Japan, in

1998, 2000, and 2006, respectively. He is a member

of IEEE and IEICE.

Toru Mano

is a researcher in NTT Network

Innovation Labs. He received the

B.E. and M.E degrees in Informa-

tion Science and Technology from

the University of Tokyo in 2009 and

2011, respectively. His research interests include

network architectures and network optimization.

Osamu Akashi

is a senior research scientist in NTT

Network Innovation Laboratories.

He received the M.S. degree in in-

formation science and the Ph.D. de-

gree in mathematical and comput-

ing sciences from Tokyo Institute of Technology, in

1989 and 2001, respectively. His research interests

include distributed systems, multi-agent systems,

and network architectures.

110 コンピュータソフトウェア

Satoshi Matsuura

He received the M.E. and Ph.D. de-

grees in information sciences from

Nara Institute Science and Technol-

ogy in 2005 and 2008, respectively.

Currently, he is an associate profes-

sor in Tokyo Institute of Technology. His research

interests include overlay networks and sensor net-

works.

Kazutoshi Fujikawa

has been an Associate Professor in

the Graduate School of Information

Science, Nara Institute of Science

and Technology since 2002. He was

　

　　
a visiting researcher of the Multimedia Commu-

nications Laboratory at Boston University from

March 1996 through January 1997. He has been

engaged in the project of bioIT related R&D called

“BioGrid Project,” which consists of several insti-

tutes in the Kansai area of Japan. His research

interests cover distributed systems and multime-

dia systems. Now he is very interested in Grid

systems for scientific simulations. He received the

M.E. and Ph.D. degrees in information computer

sciences from Osaka University in 1990 and 1993,

respectively. He is a member of IEICE, IEEE and

ACM.

