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Abstract
We revised the existing framework for tuna CPUE standardisation in light of the increasing literature that

advocates the use of mixed effects models to account for the characteristics of logbook data. We apply the

framework on yellowfin tuna (YFT) from the Indian Ocean, caught by the purse seine EU fleet (Spain and

France) from 1984 to 2015. We used a comprehensive list of candidate covariates, including non-

conventional covariates, and run exploratory models to assess the contribution of each covariate. Due to the

large number of covariates, the lasso – least absolute shrinkage and selection operator- method was applied

for data mining and model selection purposes. The results are two standardised YFT CPUE time series for the

period 1984-2015, one for large fish caught in free-school related sets, and one for mainly juveniles caught in

floating object related sets. Issues on the usefulness of highly aggregated data (low resolution: annual and

fleet wide) is discussed along with the need for more detailed information on the use of dFADs, preferably at

the level of a fishing trip.

Introduction
This paper is the result of the Workshop for the development of indices of abundance for the EU tropical

tuna purse seine fishery, held in Fuengirola, Spain, on July 2016. During the workshop, experts on tropical

tuna fisheries set the foundations for the development of a CPUE standardisation framework for the EU tuna

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional Digital del IEO

https://core.ac.uk/display/95151169?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


purse seine fleet. Indian Ocean yellowfin tuna was prioritised as a case study, due to its imminent stock

assessment.

The framework is based on the use of generalised linear mixed models, instead of the generalised linear

models used to date. CPUE calculation and standardisation primarily uses data from logbooks. The inclusion

of random effects in the standardisation model allows us to take into account the special characteristics of

fisheries dependent data:

i. Logbook data are longitudinal (Laird and Ware, 1982; Liang and Zeger, 1986), i.e. several

observations are made over time on the same subjects, here the subject being the vessel and/or the

skipper.

ii. In contrast to the set sampling trajectory of a survey vessel, fishing vessels follow specific strategies

and tend to aggregate in areas where fish abundance is high and stable. Thus, areas assumed to be

poorer in abundance are not “sampled” by the fishing vessels, and the sampling area varies from

one year to the next (Cao et al., 2011).

iii. Closures of Exclusive Economic Zones (EEZs) to the fishery have been observed. Certain EEZs are

avoided for other reasons, such as piracy. Hence, the sampling of EEZs is not a random process, but

fishing sets are grouped within each EEZ (Fonteneau et al., 2016).

iv. Fishing sets extend over different biogeographical provinces (Longhurst, 2010). We can assume that

sets taking place in the same province are not independent observations. In this case the grouping

factor is treated as a random effect (Snijders, 2011).

The proposed framework includes the collation of a comprehensive list of new non-conventional

variables as potential covariates in the standardisation model; these variables are possible drivers of

catchability: fishing strategies technological advances, and environmental factors. The high value on the

acquisition of data on covariates on fishing technology at a highly disaggregated scale has already been

highlighted by (Bishop, 2006). The covariates constitute factors that affect fishing strategy and variables that

describe changes in fishing technology. In the case of the European tropical tuna purse seine fishery



attempts have been made to collate non-conventional information, specifically for dFAD-fishing, and to

integrate it into the CPUE standardization procedure (Gaertner et al, 2016). The number of covariates and

estimated coefficients can be significant (> 50, as categorical variables may have several levels) and is

increasing as new fishing strategies and technologies evolve and more comprehensive data collection

protocols are developed. The increasing number of covariates makes model selection a tedious and

computationally intensive task. Stepwise selection becomes impossible due to the great number of models

one needs to test (for 10 covariates there is 45 different combinations - pairs of covariates - at the 1st step of

the forward stepwise regression). Furthermore, stepwise regression cannot deal with collinearity. Statistical

procedures of model selection were adapted to the large number of available explanatory variables and the

hierarchical structure of the data. For prediction accuracy and interpretation purposes we opt for the lasso –

for least absolute shrinkage and selection operator- method for data mining (to discover relationships

between CPUE and explanatory variables) and model selection, within a parsimonious approach (Tibshirani,

1996). This approach has been used in the dFAD CPUE standardization of bigeye in the Indian Ocean (Katara

et al, 2016). The selection of the final model is based primarily on expert opinion and secondarily on the

results derived from the lasso regression and modelling experiments, pertaining to the inclusion/ exclusion

of candidate covariates, and the examination of the model estimates and the explained deviance. With these

steps we conform to the suggestions given by (Bishop, 2006), and aim for realistic model fits, paying

relatively less attention to precision or maximizing explained variance, while adopting modern statistical

methods to overcome known issues in fisheries-dependent data.

Material and Methods
The analysis was based on logbook data from two of the main fleets: the French and Spanish purse

seiners targeting tuna in the Indian Ocean. The database was subset into 2 datasets: i. free-school sets,

which capture large yellowfins and ii. floating object-related sets whose yellowfin component is mainly

composed by juveniles. CPUE was calculated and standardised for each dataset. For details on the size

frequencies caught per set type see annex I.



The logbook database is managed by the Tuna Observatory of IRD and by the IEO), for the French and

Spanish fleets, respectively. Complementary data from other sources were compiled, to be used as

covariates in the CPUE standardization models. A full list of the covariates and their sources is given in table

1.

CPUE was defined as the catch per set. Due to the zero-inflated nature of the response variable, a delta

log-normal model was applied. The model comprises 2 sub-models:

i. A binomial model that standardises the probability of a positive set, and

ii. A lognormal model that standardises catch per positive set.

The candidate covariates in table 1 were considered fundamental by the working group of experts that

took part in the workshop on the development of indices of abundance for the EU tropical tuna purse seine

fishery in Fuengirola, Spain. However, some variables were collinear or interacting, and overfitting was

examined. The model selection exploration began by applying the lasso regression (GLM) in search of a

simple model with high goodness of fit, but most importantly a model that accounts for changes in

catchability. Variables with regression coefficients greater than 0 are selected and exploratory models are

built based upon this original selection.. In cases where the number variables selected in lasso regression

was too large to allow for an ordinary least-squares (OLS) regression, a stricter regression coefficient cut off

point was chosen. The basis for this choice was to balance the ratio of the number of necessary variables to

the number of observations in the data. To test for this we run models with different numbers of variables

based on different regression coefficient cut-off points. In conjunction with lasso regression we run some

simple models and examined changes in the model fit, attributed to adding or excluding covariates. Such

exploratory models are recommended when the inclusion of a variable is dubious. The final model was

based on the results of these data mining techniques, on the hierarchical structure of the data and on prior

knowledge of the fishery and its evolution in time.



From the full list of covariates discussed by the working group in Fuengirola, Spain, some were ignored

due to their low resolution and high collinearity. Annual time series of covariates that refer to whole fleets

proved problematic, causing rank deficiency. The phenomenon is common when the variance of the

predictor is inadequate for model estimation, i.e. there is no signal reflected in the dependent variable

. In the binomial models, searching time was added as an offset.

Lasso regression estimates can be biased; as recommended by (Friedman et al. (2009); Tibshirani ( 2011,

1996), after model selection, the final models were estimated using OLS. Predictions were made with

lsmeans (Lenth, 2014). Memory leakage issues were dealt with by manually constructing the data reference

grid (an array of factor and predictor levels, as described in Lenth, 2014) upon which predictions in lsmeans

are based. Confidence intervals were calculated with the delta method (Sobel, 1982; Casella and Berger,

2002). The analysis was performed in R.

Results

Sets on Free Schools
The lasso GLM for the probability of a positive free school set, given searching time, gave the following

list of explanatory variables with coefficients > 0.01: year, month, vessel age, EEZ, grid cell, vessel ID,

biogeographical province, fishing time, the interaction between year and month, and the interaction

between year and grid cell. As mentioned previously, Lasso GLMs narrowed down the number of possible

predictors for the final model. Some of the selected variables, e.g. the vessel ID and the interaction between

year and grid cell, were considered as random effects, since they relate to the longitudinal structure and the

sampling of the data. Fishing time and searching time being correlated, only the second one was used as an

offset in the model. The interaction between year and month was also excluded as it caused convergence

errors, because of the large number of regression coefficients to be estimated, given the number of available

observations. Models with different random effects were also tested and the final model included year,



month, vessel age, and grid cell. The lsmeans predictions for the probability of a positive (catch > 0) free-

school set, derived from the final standardisation model are shown in Fig. 1.

The lasso GLM for the YFT catch per positive free school-related set gave the following list of variables

with coefficients > 0.01: vessel length, vessel capacity class, ratio of free schools sets vs floating object

related sets, fishing time, vessel ID, EEZ, the interaction between year and month, and the interaction

between year and grid cell. Based on exploratory mixed models (Figs 2 and 3) and our knowledge of the data

structure and derivation, vessel ID, the interaction between year and grid cell, EEZ, and grid cell were

included as random, instead of fixed, effects: The standardised YFT CPUE for free-school sets (that is to say,

the product of the two sub-models) is shown in Fig. 4.

Sets on floating objects (dFADs and logs)
The lasso GLM for the probability of a positive floating object-related set, given searching time, gave the

following list of variables with coefficients > 0.0001: year, month, grid cell, vessel ID, EEZ, time at sea, the

ratio of free school to floating object related sets, the interactions between year and month, and between

year and grid cell. As with free school sets, we applied different exploratory random effect models and

assessed their fit to conclude to the final model with: (i) year, month, grid cell, and the ratio of free school to

floating object related sets as fixed effects, and (ii). vessel ID, EEZ, and the interaction between year and grid

cell as random effects. Time at sea was not included due to its correlation to searching time.

The lasso GLM for the YFT catch per positive floating object-related set, given searching time, gave the

following list of variables with coefficients > 0.01: year, month, grid cell, vessel ID, biogeographical province,

EEZ, time at sea, fishing time, searching time, the ratio of free school to floating object related sets, the ratio

of YFT to skipjack price, the number of supply vessels, the proportion of BSE type dFADs (dFADs equipped

with satellite GPS and ecosounder), the interactions of year and month and of year and grid cell. Of these

variables, 3 were automatically dropped from the GLMMs (rank deficiency); these were the ratio of YFT to

skipjack price, the number of supply vessels, and the proportion of BSE type FADs. The biogeographical

provinces were also excluded because the contribution of the factor was low (exploratory models and



BIC).The final selection of fixed effects consists of year, month, fishing time, the ratio of free school to

floating object related sets, and the grid cell. The following were included as random effects: vessel ID, the

interaction of year and EEZ, and the interaction of year and grid cell.

The lsmeans predictions for the two sub-models, and for the standardised CPUE for floating object

related sets (as the product of the two sub-models) are presented in Fig. 5.

Discussion
Two main issues arise from the standardisation exercise presented in this paper: the need for accurate and

high resolution covariates and the need for a framework that takes into account the spatial structure of

fishing effort and the hierarchical structure of the data.

Good quality of covariates refers to the relevance, the accuracy, and the resolution of the covariates. For

example the number of supply vessels given at an annual and fleet wide scale, has a low resolution and is

discarded from the models. However it is well documented that the use of supply vessels increases the

capacity of the fishing vessels. A more relevant and informative covariate could refer to than the number of

times the fishing vessel used a supply vessel per fishing trip. Similarly, the use of dFADs and the related

strategies, developed by the skippers, are fairly complex; they cannot only be captured by an annual time

series of the number of dFADs in the Indian Ocean. We need to understand the use of dFADs in depth to be

able to choose the right covariates. Our understanding to date dictates that disaggregated information,

possibly at the level of the fishing trip or fishing day, is needed for dFADs related covariates to be

informative in the framework of CPUE standardisation. Such annual time series or trends could not be used

in CPUE standardisation models, in the current study because they were collinear – as trends tend to be due

to their underlying temporal autocorrelation. Their resolution is low and they were automatically dropped

from the models or they were selected out during model selection procedures, as non-informative. For small

subsets of the fleet, where information at a set level was available (e.g. the distance of the set from the main

dFADs area, the number of dFADs in the vicinity of the set) the covariates relating to dFADs were successfully



included in the CPUE standardization models (e.g., Gaertner et al, 2016 for the results of the EU research

project CECOFAD on these aspects ). Considering that the tuna targeting purse seine fleets are a unique

source of information on juvenile YFT, a data call on dFADs usage for the EU fleet seems imperative.

Despite some data deficiencies this paper sets the basis for a new CPUE standardisation framework,

applied for the first time on a combination of logbook data and non-conventional variables from the EU fleet

(Spanish and French). A review of the CPUE standardisation framework was needed in light of new statistical

techniques and the increasing literature on the advantages of mixed modelling. Indeed, mixed models prove

useful for the standardisation of CPUE because they allow us to analyse longitudinal data, and to account for

impacts of large spatial heterogeneity of fishing efforts and for spatial/temporal dependencies. Mixed

modelling is an active research field for statisticians and fisheries scientists alike. As algorithms improve we

will be able to overcome computational hitches and develop models that fully capture the complexity of the

data.
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Tables
Table 1 List of candidate available covariates for CPUE standardisation models.

Covariate Unit /
format

Type Source

Year of fishing operation year factor Derived from date of activity, i.e. d_act of the
table ACTIVITY of BALBAYA

Month of operation month factor Derived from date of activity, i.e. d_act of the
table ACTIVITY of BALBAYA

5x5 grid square / cell CWP factor Sheet CWP grid;
http://www.fao.org/fishery/cwp/en

Unique vessel identifier factor c_quille from TURBOBAT
Fleet segment: FRA from French and
associated flags (ITA, MYT, etc.) and ESP for
Spanish and associated flags (SYC, etc.)

FRA
or
ESP

factor Derived from 'pays' from TUBOBAT

Age of the vessel at the time of operation years numeric year of activity – initial year of service (an_serv
from TURBOBAT)

Length overall of the vessel M numeric v_l_ht from TURBOBAT
Storage capacity of the vessel m3 numeric v_ct_m3 from TURBOBAT
Capacity class of the vessel in metric tons 8 classes factor c_cat_b from TURBOBAT
Vessel class of capacity in metric tons 8 classes string l_capac from table CAT_BATEAU of BALBAYA

Cumulated time at sea spent by the vessel
in the stratum

hour numeric v_tmer from table ACTIVITE of BALBAYA

Cumulated fishing time spent by the vessel
in the stratum

hour numeric v_tpec from table ACTIVITE of BALBAYA

Cumulated searching time spent by the
vessel in the stratum

hour numeric (v_tpec – v_dur_cal) from table ACTIVITE of
BALBAYA

Cumulated number of fishing sets by the vessel in the
stratum

numeric v_nb_calees from table ACTIVITE of BALBAYA

Cumulated number of successful fishing sets by the vessel
in the stratum

numeric v_nb_calee_pos from table ACTIVITE of
BALBAYA

Longhurst province of origin of the catch ProvCode factor Shape file Longhurst_world_v4_2010
Exclusive Economic Zone of origin of the
catch

ISO_3digit factor Shape file VLIZ_EEZ; ABNJ = Areas Beyond
National Jurisdiction

Cumulated number of fishing sets divided by the
cumulated number of fishing days spent in the stratum

numeric

Cumulated number of fishing sets divided by the
cumulated number of searching days spent in the
stratum

numeric

Annual Proportion of type of buoys by flag and ocean numeric

Annual Total number of FADs (Atlantic only, but trend
supposed to be similar in Indian Ocean)

numeric

Annual Total number of support vessels (Indian Ocean
only)

numeric

Monthly Prices by commercial category numeric Bangkok’s market
Mixed Layer Depth [5° square*month] numeric NCEP GODAS



Figures

Figure 1 lsmeans predictions for the probability of a positive (catch > 0) free-school set, with 95% CIs.

Figure 2 How does adding random effects change the Confidence Intervals of the predicted values. The graphs show the

predictions for YFT catch per positive set. The fixed effects part of the model consists only of 1 predictor, year. We start by adding

vessel ID as a random effect. The CIs change as more random effects are added. The results of such exploratory models (graphical

inspection and BIC) serve as a guide for the inclusion/exclusion of random effects. Here the interation of EEZ with year results in a

big increase of BIC and large confidence intervals, possibly due to overfitting. Also EEZs that were not sampled on specific years lie

in the boundary of the fishing area and have already been screened out during the data cleaning; therefore, the inclusion of this

interaction is not necessary. The inclusion of the grid cell as a random effect is borderline (decrease in BIC < 10, visible effect on

CIs) and needs to be revisited in the context of a full model.



Figure 3 Using grid cell as a random or fixed effect does not have a great impact on the trend or the 95% CIs. The BIC for the

model that treats grid cell as random effects is lower.

Figure 4 shows the standardised YFT CPUE (the product of the two sub-models) for free-school sets. The confidence intervals

are very wide, highlighting the high degree of dependence between observations at different levels of the data structure.



Figure 5 shows the predictions for the 2 sub-models (bottom) and their product (top). The 95% CI are also shown.



Annex I

Free schools YFT are most often caught at large sizes in a range between 1 m and  1.6 m (most of these
tunas being potential spawners), while YFT caught in association to FADs are most often showing a bimodal
structure: a 1st mode of small individuals (most often dominant in weight) between 40 and 80 cm and a 2nd

mode of  large individuals in a range between 80 and 140 cm. The following graph is based on IOTC catch at
size data
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Annex II: Residuals

Free School related Sets

Figure 1 Plot of the residuals of the binomial model for the probability of a positive set.

Figure 2 Plot of the residuals of the log-normal model for the catch per positive set.

Floating Object Related Sets



Figure 3 Plot of the residuals of the binomial model for the probability of a positive set.

Figure 4 Plot of the residuals of the log-normal model for the catch per positive set.


