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Chapter 1

White Noise Analysis: An Introduction

Maria João Oliveira

Universidade Aberta, P 1269-001 Lisbon, Portugal
CMAF-CIO, University of Lisbon, P 1749-016 Lisbon, Portugal

mjoliveira@ciencias.ulisboa.pt

The starting point of White Noise Analysis11 and2,14–16,20,21,34,39 is a

real separable Hilbert space H with inner product (·, ·) and the correspond-

ing norm | · |, and a nuclear triple

N ⊂ H ⊂ N ′,
where N is a nuclear space densely and continuously embedded in H. Of

course, in a general framework, a priori there are several different possi-

ble nuclear spaces. However, in concrete applications, the application will

suggest the use of particular nuclear triples. For example, in the study of

intersection local times of d-dimensional Brownian motions it is natural to

consider the space H = L2(R,Rd) =: L2
d(R) of all vector valued square

integrable functions with respect to the Lebesgue measure on R and the

Schwartz space N = S(R,Rd) =: Sd(R) of vector valued test functions,

while in the treatment of Feynman integrals the spaces L2(R) := L2(R,R),

S(R) := S(R,R) are the natural ones.

Since nuclear triples are the basis of the whole White Noise Analysis,

we start by briefly recalling the main background of the theory of nuclear

spaces, due to A. Grothendieck.7 For simplicity, instead of general nuclear

spaces, cf. e.g.,40,42,45,50 we just consider nuclear Fréchet spaces, which are

the only ones needed in this book. For more details and the proofs see

e.g.2,3,9,14 .

1. Nuclear Triples

As before, let H be a real separable Hilbert space. We consider a family

of real separable Hilbert spaces Hp, p ∈ N, with Hilbertian norm | · |p such
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that

H ⊃ H1 ⊃ . . . ⊃ Hp ⊃ . . .

so that the corresponding system of norms is ordered:

| · | ≤ | · |1 ≤ . . . ≤ | · |p ≤ . . . .

In addition, we assume that the intersection of the Hilbert spaces Hp, de-

noted by

N :=
⋂
p∈N

Hp, (1)

is dense in each space Hp, p ∈ N.

Definition 1. The linear space N is called nuclear whenever for every

p ∈ N there is a q > p such that the canonical embedding Hq ↪→ Hp is a

Hilbert-Schmidt operator.

From now on we shall assume that all spaces (1) are nuclear and fix on

N the projective limit topology, that is, the coarsest topology on N with

respect to which all canonical embeddings N ↪→ Hp, p ∈ N, are continuous.

Or, in an equivalent way, a sequence (ξn)n∈N of elements in N converges

to ξ ∈ N if and only if (ξn)n∈N converges to ξ in every Hilbert space Hp,

p ∈ N. It turns out that a nuclear space N endowed with the projective

limit topology is a complete metrizable locally convex space, meaning that

it is a Fréchet space. In order to mention explicitly this topology fixed on

N , we shall use the notation

N = prlim
p∈N

Hp

and call such a topological space a projective limit or a countable limit of

the family (Hp)p∈N.

For each p ∈ N, let now H−p be the Hilbertian dual space of Hp with

respect to H with the corresponding Hilbertian norm | · |−p. By the general

duality theory cf. e.g.,9 we have

N ′ =
⋃
p∈N

H−p,

where N ′ is the dual space of N with respect to H. Unless stated otherwise,

we shall consider N ′ endowed with the inductive limit topology, that is, the

finest topology on N ′ with respect to which all embeddings H−p ↪→ N ′ are
continuous. As a topological space, we shall denote it by

N ′ = indlim
p∈N

H−p
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and call it an inductive limit of the family (H−p)p∈N.

In this way, using the Riesz representation theorem to identify H with

its dual space H′, we have defined a so-called nuclear or Gelfand triple:

N ⊂ H ⊂ N ′.

By construction, it turns out that the bilinear dual pairing 〈·, ·〉 between
N ′ and N is defined as an extension of the inner product on H:

〈h, ξ〉 = (h, ξ), h ∈ H, ξ ∈ N .

Example 1. (i) The Schwartz space S(R) of rapidly decreasing C∞-

functions on R endowed with its usual topology given by the system of

seminorms

sup
u∈R

∣∣∣∣un dmξdum
(u)

∣∣∣∣ , ξ ∈ S(R),m, n ∈ N0 := N ∪ {0}

is a first example of a nuclear space. Indeed, given the Hamiltonian of the

quantum harmonic oscillator, that is, the self-adjoint operator on L2(R)

defined on S(R) by

(Hξ)(u) := − d
2ξ

du2
(u) + (u2 + 1)ξ(u), u ∈ R,

we can define a system of norms | · |p by setting

|ξ|p := |Hpξ|, ξ ∈ S(R), p ∈ N,

where the last norm is the one on L2(R). It turns out (cf. e.g.,12,43,47) that

this system of norms is equivalent to the initial system of seminorms, and

thus both systems lead to equivalent topologies on S(R). In addition, the

completion of S(R) with respect to each norm | · |p yields a family of Hilbert

spaces Hp and

S(R) = prlim
p∈N

Hp,

see e.g.,14 . Therefore, for the dual space S′(R) of S(R) (with respect to

L2(R)) of Schwartz tempered distributions we have

S′(R) = indlim
p∈N

H−p.

(ii) The previous example extends to the space Sd(R) of vector valued

Schwartz test functions for the operator H defined on Sd(R) by

(Hξ)(u) := ((Hξ)1(u), . . . , (Hξ)d(u)) , ξ = (ξ1, . . . , ξd), ξi ∈ S(R) (2)

 L
et

 U
s 

U
se

 W
hi

te
 N

oi
se

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 8
5.

24
4.

79
.1

69
 o

n 
03

/1
2/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



February 7, 2017 10:43 Applications of White Noise Analysis – 10472 9789813220935 page 4

4 M. J. Oliveira

with

(Hξ)i(u) := −
d2ξi
du2

(u) + (u2 + 1)ξi(u) = (Hξi)(u), i = 1, . . . , d, u ∈ R.

This leads to the following system of increasing Hilbertian norms | · |p,
p ∈ N,

|ξ|2p :=

d∑
i=1

|ξi|2p =

d∑
i=1

|Hpξi|2, ξ = (ξ1, . . . , ξd), ξi ∈ S(R), i = 1, . . . , d, (3)

where the last sum in (3) is the square of the L2
d(R)-norm of (2), and to

the corresponding Hilbert spaces Hp defined by completion of Sd(R) with

respect to the norms (3). As in (i), we have

Sd(R) = prlim
p∈N

Hp, S′
d(R) = indlim

p∈N

H−p,

being S′
d(R) the space of vector valued Schwartz tempered distributions.

(iii) Example (i) also extends to the Schwartz space S(Rd,R) of smooth

functions on Rd, d ≥ 2, of rapid decrease (shortly S(Rd)) and to its dual

space S′(Rd) of Schwartz tempered distributions. In this case, the usual

topology on S(Rd) is given by the family of seminorms indexed by multi-

indices (α1, . . . , αd), (β1, . . . , βd) in Nd
0,

sup
u=(u1,...,ud)∈Rd

∣∣∣uα1

1 . . . uαd

d

(
∂β1

1 . . . ∂βd

d ξ
)
(u)
∣∣∣ , ξ ∈ S(Rd),

where ∂i, i = 1, . . . , d, is the partial derivative on Rd with respect to the i-

th coordinate. Given the Hamiltonian of the quantum harmonic oscillator,

that is, the self-adjoint operator on L2(Rd,R) =: L2(Rd) defined on S(Rd)

by

(Hξ)(u) := −(Δξ)(u) + (|u|2 + 1)ξ(u), u ∈ R
d,

being Δ the Laplacian on Rd, we define a system of norms | · |p on S(Rd)

by

|ξ|p := |Hpξ|, ξ ∈ S(Rd), p ∈ N,

where the last norm is the one on L2(Rd). As in Example (i), it turns

out cf. e.g.,12,43,47 that such a system is equivalent to the above system of

seminorms, leading then to equivalent topologies on S(Rd). In addition,

cf. e.g.,14 we have

S(Rd) = prlim
p∈N

Hp,

where eachHp, p ∈ N, is the Hilbert space obtained by completion of S(Rd)

with respect to the norm | · |p. Thus
S′(Rd) = indlim

p∈N

H−p.
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2. Gaussian Space

Given a nuclear triple N ⊂ H ⊂ N ′, let Cσ(N ′) be the σ-algebra on N ′

generated by the cylinder sets

{x ∈ N ′ : (〈x, ϕ1〉, . . . , 〈x, ϕn〉) ∈ B,ϕ1, . . . , ϕn ∈ N , B ∈ B(Rn), n ∈ N} ,
where B(Rn), n ∈ N, is the Borel σ-algebra on Rn.

Theorem 1. (The Minlos Theorem37) Let C be a complex-valued func-

tion on N fulfilling the following three properties:

(i) C(0) = 1,

(ii) C is continuous on N ,

(iii) C is positive definite, i.e.,
n∑

i,j=1

C(ξi − ξj)zizj ≥ 0, ξ1, . . . , ξn ∈ N , z1, . . . , zn ∈ C, n ∈ N.

Then, there is a unique probability measure μC on (N ′, Cσ(N ′)) which char-

acteristic function is equal to C, that is, for all ξ ∈ N∫
N ′

exp (i〈x, ξ〉) dμC(x) = C(ξ). (4)

For a presentation of the Minlos theorem, including support properties

of the probability measure given by this theorem see.10

Remark 1. The analogous statement of the Minlos theorem for the nuclear

space N replaced by the finite dimensional space Rd is the well-known

Bochner theorem. Because of this, in the literature Theorem 1 is quite

often called the Bochner-Minlos theorem as well.

Consider now the following particular positive definite continuous func-

tion defined on N by

C(ξ) = exp

(
−1

2
|ξ|2
)
, ξ ∈ N . (5)

Then, by the Minlos theorem, we are given a (Gaussian) measure μ on

(N ′, Cσ(N ′)) defined by (4) and (5).

Definition 2. We call the probability space (N ′, Cσ(N ′), μ) the Gaussian

space associated with N and H.

In particular, if N = S(Rd) with the topology described in Example 1,

the space (S′(Rd), Cσ(S′(Rd)), μ) is called white noise with d-dimensional

time parameter. If d = 1, we simply call it white noise.
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Definition 3. For short we set

(L2) := L2(N ′, Cσ(N ′), μ)

for the complex L2 space.

In applications of White Noise Analysis, the space (L2) plays an essen-

tial role. In order to distinguish clearly the inner product (·, ·) and the

Hilbertian norm | · | on the real space H from those defined on the complex

space (L2), we shall denote the inner product on (L2) by ((·, ·)) and the

corresponding norm by ‖ · ‖. Furthermore, we shall assume that ((·, ·)) is

linear in the first factor and antilinear in the second one, that is,

((F1, F2)) :=

∫
N ′
F1(x)F̄2(x) dμ(x), F1, F2 ∈ (L2),

where F̄2 is the complex conjugate function of F2.

From the definition of the Gaussian measure μ given by (4) and (5),

it follows straightforwardly that for every ξ ∈ N , 〈·, ξ〉 is a normally dis-

tributed random variable with variance |ξ|2. Thus, for all ξ ∈ N , ξ �= 0,

‖〈·, ξ〉‖2 =

∫
N ′
〈x, ξ〉2 dμ(x) = 1√

2π|ξ|2

∫ +∞

−∞
u2 exp

(
− u2

2|ξ|2

)
du = |ξ|2.

Moreover, again by (4) and (5), the real process X defined on N ′ ×N
by Xξ(x) = 〈x, ξ〉 is centered Gaussian with covariance∫
N ′
〈x, ξ1〉〈x, ξ2〉 dμ(x)=

1

2

(
‖〈·, ξ1 + ξ2〉‖2 − ‖〈·, ξ1〉‖2 − ‖〈·, ξ2〉‖2

)
=(ξ1, ξ2).

As we have mentioned above, in this book we shall mostly choose N to

be the Schwartz space S(Rd), Sd(R), or S(R) of test functions and H to be

L2(Rd), L2
d(R), or L

2(R), respectively. In all these cases, N is dense in H.

This is an assumption fixed on general N and H from the very beginning.

Therefore, the above considerations allow an extension of the mapping

N  ξ �→ 〈·, ξ〉 ∈ (L2)

to a bounded linear operator

H  f �→ 〈·, f〉 ∈ (L2)

defined at each f ∈ H by

〈·, f〉 := (L2)− lim
n
〈·, ξn〉,

where (ξn)n∈N is any sequence in N converging to f in H. Moreover,

‖〈·, f〉‖ = |f | for all f ∈ H.
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Proposition 1 (14). The process X defined on N ′×H by Xf (x) = 〈x, f〉
is centered Gaussian with covariance

((〈·, f〉, 〈·, g〉)) =
∫
N ′
〈x, f〉〈x, g〉 dμ(x) = (f, g), f, g ∈ H.

In particular, for every f ∈ H, 〈·, f〉 is normally distributed with vari-

ance |f |2. Thus, from its characteristic function we have∫
N ′

exp (i〈x, f〉) dμ(x) = exp

(
−1

2
|f |2

)
, (6)

which extends (4) and (5) to f ∈ H.

More generally, for every n ∈ N0 and every f ∈ H, f �= 0, we can derive

from the characteristic function (6),∫
N ′
〈x, f〉2n dμ(x) = 1√

2π|f |2

∫ +∞

−∞
u2n exp

(
− u2

2|f |2

)
du =

(2n)!

n!2n
|f |2n∫

N ′
〈x, f〉2n+1 dμ(x) = 0

and, by the polarization identity,∫
N ′
〈x, f1〉 . . . 〈x, fn〉 dμ(x)

=
1

n!

n∑
k=1

(−1)n−k
∑

i1<...<ik

∫
N ′
〈x, fi1 + . . .+ fik〉n dμ(x),

for every f1, . . . , fn ∈ H, n ∈ N.

Example 2. Coming back to the white noise space (S′(R), Cσ(S′(R)), μ),
the previous proposition allows us to consider the Gaussian centered process

X with independent increments,

X11[0,t)(x) = 〈x, 11[0,t)〉, t ≥ 0,

being 11B the indicator function of a Borel set B ⊆ R. This process has

covariance

((〈·, 11[0,t)〉, 〈·, 11[0,s)〉)) = (11[0,t), 11[0,s)) = s ∧ t,

and thus X is a one-dimensional Brownian motion starting at the origin at

time zero. We shall denote this Brownian motion by B and X11[0,t) by Bt

or B(t, ·). Informally, note that

Bt(x) = 〈x, 11[0,t)〉 =
∫ t

0

x(s) ds,
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which suggests considering x(t) as the time derivative of the Brownian

motion. Of course, this time derivative does not exist in a pointwise sense.

However, it exists as a distribution. From now on, we shall denote x(t)

by ωt or ω(t) and call it white noise. As an aside, let us mention that

this example is the connecting point for another direction inside infinite

dimensional analysis, the well-known Malliavin Calculus.36 For a clear

explanation about the relation between both infinite dimensional analyses

see e.g.16,38 .

Within the more general setting of the Gaussian space

(S′
d(R), Cσ(S′

d(R)), μ), d > 1,

we can then introduce a d-dimensional Brownian motion B starting at the

origin at time zero by

Bt(ω1, . . . , ωd) :=
(
〈ω1, 11[0,t)〉, . . . , 〈ωd, 11[0,t)〉

)
, (ω1, . . . , ωd) ∈ S′

d(R), t ≥ 0.

3. Itô-Segal-Wiener Isomorphism

We verify from equalities above Example 2 that the important monomials

of the type

〈·, f〉n = 〈·⊗n, f⊗n〉,
〈·, f1〉 . . . 〈·, fn〉 = 〈·⊗n, f1 ⊗ . . .⊗ fn〉 = 〈·⊗n, f1⊗̂ . . . ⊗̂fn〉,

do not verify an orthogonal relation. This fact is a reason for introducing

the orthogonalized so-called Wick-ordered polynomials, a class of functions

closely related to the orthogonal Hermite polynomials.

For each x ∈ N ′, let : x⊗n :∈ N ′⊗̂n, n ∈ N0 (Appendix A.1.3) be the

so-called Wick power of order n, inductively defined by

: x0 := 1,

: x1 := x,

: x⊗n :=: x⊗(n−1) : ⊗̂x− (n− 1) : x⊗(n−2) : ⊗̂Tr, n ≥ 2,

where Tr ∈ N ′⊗̂2 is given by

〈Tr, ξ1 ⊗ ξ2〉 = 〈ξ1, ξ2〉, ξ1, ξ2 ∈ N .

Thus, by induction, for all x ∈ N ′ and all ξ ∈ N we have

〈: x⊗n :, ξ⊗n〉 =
[n2 ]∑
k=0

(
n

2k

)
(2k)!

k!2k
(−〈ξ, ξ〉)k〈x, ξ〉n−2k, (7)
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where the right-hand side is the so-called Hermite polynomial in 〈x, ξ〉 of
order n and parameter

√
〈ξ, ξ〉 = |ξ|. We recall that given a constant σ > 0,

the n-th Hermite polynomial in u ∈ R with parameter σ is defined by

: un :σ2 := (−σ)n exp
(
u2

2σ2

)
dn

dun
exp

(
− u2

2σ2

)
=

(
σ√
2

)n

Hn

(
u√
2σ

)
,

being Hn the Hermite polynomial of order n,

Hn(u) := (−1)n exp
(
u2
) dn

dun
exp

(
−u2

)
= 2n : un : 1

2
, u ∈ R, n ∈ N0.

That is,

Hn(u) = 2n
[n2 ]∑
k=0

(
n

2k

)
(2k)!

k!2k

(
−1

2

)k

un−2k, u ∈ R, n ∈ N0.

Hence, for each n ∈ N0 and every ξ ∈ N , ξ �= 0, we have

〈: x⊗n :, ξ⊗n〉 =: 〈x, ξ〉n :〈ξ,ξ〉=
(
|ξ|√
2

)n

Hn

(
〈x, ξ〉√
2|ξ|

)
,

in accordance with (7). Of course, by the polarization identity, (7) also

holds for ξ ∈ NC := {ξ1 + iξ2 : ξ1, ξ2 ∈ N} with

〈x, ξ1 + iξ2〉 := 〈x, ξ1〉+ i〈x, ξ2〉, x ∈ N ′, ξ1, ξ2 ∈ N ,

meaning that for f ∈ H or, more generally, for f ∈ HC,

〈f, ξ1 + iξ2〉 = (f, ξ1) + i(f, ξ2), ξ1, ξ2 ∈ N .

Proposition 2. For all ϕ(n) ∈ N ⊗̂n
C

and all φ(m) ∈ N ⊗̂m
C

the following

orthogonal relation holds:

((〈: x⊗n :, ϕ(n)〉, 〈: x⊗m :, φ(m)〉)) = δn,mn!(ϕ
(n), φ(n)). (8)

Proof. (Sketch) Since elements in N ⊗̂n, n ∈ N0, are linear combinations

of elements of the form ξ⊗n with ξ ∈ N , it is sufficient to prove (8) for ϕ(n),

φ(m) of the form ϕ(n) = ξ⊗n
1 , φ(m) = ξ⊗m

2 , ξ1, ξ2 ∈ N . In this case, the

proof follows from the orthogonality relation between Hermite polynomials,∫ +∞

−∞
Hn(u)Hm(u) exp

(
−u2

)
du = δn,m

√
π2nn!,

cf. e.g.,2,14,39. As before, the general case can then be derived from the real

case by means of polarization identity.
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Conversely, since each monomial u �→ un, n ∈ N0 can be written as lin-

ear combination of Hermite polynomials in u ∈ R with any given parameter

σ > 0,

un =

[n2 ]∑
k=0

(
n

2k

)
(2k)!

k!2k
σ2k : un−2k :σ2 , u ∈ R,

then, by the polarization identity, each monomial 〈·⊗n, ξ⊗n〉, ξ ∈ NC, can

be written as

〈x⊗n, ξ⊗n〉=〈x, ξ〉n=
[n2 ]∑
k=0

(
n

2k

)
(2k)!

k!2k
〈ξ, ξ〉k : 〈x, ξ〉n−2k :〈ξ,ξ〉

=

[n2 ]∑
k=0

(
n

2k

)
(2k)!

k!2k
〈ξ, ξ〉k〈: x⊗(n−2k) :, ξ⊗(n−2k)〉, x ∈ N ′.

Therefore, the linear space of the so-called smooth Wick-ordered poly-

nomials ,

P(N ′) :=

{
Φ : Φ(x) =

N∑
n=0

〈: x⊗n :, ϕ(n)〉, ϕ(n) ∈ N ⊗̂n
C

, x ∈ N ′, N ∈ N0

}
coincides with the linear space{

Φ : Φ(x) =

N∑
n=0

〈x⊗n, ϕ(n)〉, ϕ(n) ∈ N ⊗̂n
C

, x ∈ N ′, N ∈ N0

}
.

In terms of (L2) properties, it turns out that P(N ′) is dense in (L2).48

As a consequence, for any F ∈ (L2) there is a sequence
(
f (n)

)
n∈N0

in the

Fock space Exp(HC) (Appendix A.1.2) such that

F =

∞∑
n=0

〈: ·⊗n :, f (n)〉 (9)

and, moreover, by the orthogonality property (Proposition 2),

‖F‖2 =

∞∑
n=0

n!
∣∣∣f (n)

∣∣∣2 =

∥∥∥∥(f (n)
)
n∈N0

∥∥∥∥2
Exp(HC)

.

And vice versa, any series of the form (9) with
(
f (n)

)
n∈N0

∈ Exp(HC)

defines a function in (L2). In other words, the expansion (9) yields a uni-

tary isomorphism between the space (L2) and the symmetric Fock space

Exp(HC).

Definition 4. We call this unitary isomorphism the Itô-Segal-Wiener iso-

morphism. The expansion (9) with
(
f (n)

)
n∈N0

∈ Exp(HC) is called the

Itô-Segal-Wiener chaos decomposition or simply the chaos decomposition

of F ∈ (L2) and f (n), n ∈ N0, the kernels of F .
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Remark 2. According to Section 2 and the considerations done just before

Proposition 2, equality (7) can be extended to f ∈ HC:

〈: x⊗n :, f⊗n〉=:〈x, f〉n :〈f,f〉=
[n2 ]∑
k=0

(
n

2k

)
(2k)!

k!2k
(−〈f, f〉)k〈x, f〉n−2k, x ∈ N ′.

This yields an alternative approach to introduce the Itô-Segal-Wiener iso-

morphism. Let I be the set of all sequences α := (αn)n∈N such that all

terms vanish except finitely many ones. For each α ∈ I set

α! =

∞∏
n=1

αn!.

Given an orthonormal basis {en}n∈N of HC, it turns out that the family of

functions Hα in (L2) defined by

Hα(x) :=

∞∏
n=1

: 〈x, en〉αn :〈en,en〉, x ∈ N ′, α ∈ I

is an orthogonal basis of (L2) such that ((Hα, Hβ)) = δα,βα! for all α, β ∈ I.
Moreover, the space spanned by this family is dense in (L2), leading then

to the Itô-Segal-Wiener isomorphism cf. e.g.2,14.

4. S- and T -transform

Among the (L2) functions, we now consider in particular the class of func-

tions with chaos decomposition of the form

∞∑
n=0

1

n!
〈: ·⊗n :, f⊗n〉, f ∈ HC. (10)

Observe that their image under the Itô-Segal-Wiener isomorphism is equal

to the exponential vectors e(f) ∈ Exp(HC) (Appendix A.1.2). Therefore,∥∥∥∥∥
∞∑
n=0

1

n!
〈: ·⊗n :, f⊗n〉

∥∥∥∥∥ = exp

(
|f |2
2

)
and, more generally,(( ∞∑

n=0

1

n!
〈: ·⊗n :, f⊗n〉,

∞∑
n=0

1

n!
〈: ·⊗n :, g⊗n〉

))
= e(f,g), f, g ∈ HC.

We shall call (10) the Wick or normalized exponential corresponding to f

and denote it by : e〈·,f〉 :.
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As a first step towards an explicit form for the Wick exponentials (10),

we observe that from the definition of the Hermite polynomials : un :σ2 ,

u ∈ R, we have

: un :σ2=
dn

dλn
exp

(
λu− 1

2
σ2λ2

) ∣∣∣∣∣
λ=0

.

Thus, for all ξ ∈ NC,

: e〈x,ξ〉 :=
∞∑
n=0

1

n!
: 〈x, ξ〉n :〈ξ,ξ〉= exp

(
〈x, ξ〉 − 1

2
〈ξ, ξ〉

)
, x ∈ N ′. (11)

Definition 5. The S-transform of F ∈ (L2) is the mapping defined on NC

by

(SF )(ξ) =

∫
N ′

: e〈x,ξ〉 : F (x) dμ(x), ξ ∈ NC.

Since the S-transform of a function F in (L2) is defined by

(SF )(ξ) =

∫
N ′

: e〈x,ξ〉 : F (x) dμ(x) =
((

: e〈·,ξ〉 :, F̄
))
, ξ ∈ NC,

being F̄ the complex conjugate function of F , then in terms of chaos de-

composition

F =

∞∑
n=0

〈: ·⊗n :, f (n)〉, (12)

it follows from Proposition 2 that

(SF )(ξ) =
∞∑

n=0

n!

(
ξ⊗n

n!
, f (n)

)
=

∞∑
n=0

(
ξ⊗n, f (n)

)
, ξ ∈ NC. (13)

In particular, for F =: e〈·,f〉 :, f ∈ HC,(
S : e〈·,f〉 :

)
(ξ) = e(ξ,f̄), ξ ∈ NC.

Remark 3. Equality (13) is of considerable practical importance. When-

ever we can compute the S-transform of a F ∈ (L2), its expansion as in

(13) immediately gives us the kernel functions of its Itô-Segal-Wiener de-

composition (12).

The next result states another characterization of the S-transform,

which is closely related to the Radon-Nikodym derivative of the transla-

tion of the Gaussian measure μ,

dμ(· − ξ)(x)
dμ(x)

=: e〈x,ξ〉 :, x ∈ N ′, ξ ∈ N .

 L
et

 U
s 

U
se

 W
hi

te
 N

oi
se

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 8
5.

24
4.

79
.1

69
 o

n 
03

/1
2/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



February 7, 2017 10:43 Applications of White Noise Analysis – 10472 9789813220935 page 13

White Noise Analysis: An Introduction 13

See e.g.2,12,39.

Proposition 3. Let F ∈ (L2). Then, for all ξ ∈ N ,

(SF )(ξ) =

∫
N ′
F (x+ ξ) dμ(x).

As a mapping, it is clear that the S-transform is linear on (L2). More-

over, it is injective. In fact, since N is dense in H, it follows from Propo-

sition 5 in Appendix A.1.2 and the Itô-Segal-Wiener isomorphism that the

space spanned by the set of Wick exponentials : e〈·,ξ〉 :, ξ ∈ NC, is dense in

(L2). Therefore, if SF = 0, we have

0 = (SF )(ξ) =
((

: e〈·,ξ〉 :, F̄
))
, ∀ ξ ∈ NC,

which implies F = 0. As a particular application of the injective property

of the S-transform we can now extend the explicit form (11) to HC. For

this purpose, we first observe that∫
N ′

exp(〈x, f〉) dμ(x) = exp

(
〈f, f〉
2

)
, f ∈ HC. (14)

See e.g.39 Thus exp(〈·, f〉− 1
2 〈f, f〉) ∈ (L2) and, yet by (14), for all ξ ∈ NC

we have

S

(
exp

(
〈·, f〉 − 1

2
〈f, f〉

))
(ξ)

= exp

(
−1

2
(〈ξ, ξ〉 + 〈f, f〉)

)∫
N ′

exp (〈x, ξ + f〉) dμ(x)

= e(ξ,f̄) =
(
S : e〈·,f〉 :

)
(ξ).

Hence, by the injective property of the S-transform, for all f ∈ HC we find

: e〈·,f〉 := exp

(
〈·, f〉 − 1

2
〈f, f〉

)
.

Besides the aforementioned properties, it turns out that the S-transform

is indeed a unitary isomorphism onto the so-called Bargmann-Segal space,26

of holomorphic functions on HC.

Another transformation, important as well in applications is the so-

called T -transform.

Definition 6. The T -transform of F ∈ (L2) is the mapping defined on NC

by

(TF )(ξ) =

∫
N ′

exp (i〈x, ξ〉)F (x) dμ(x), ξ ∈ NC.
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In other words,

(TF )(ξ) = (SF )(iξ) exp

(
−1

2
〈ξ, ξ〉

)
, F ∈ (L2), ξ ∈ NC.

Therefore, the T -transform has properties similar to the S-transform and all

above expressions derived for the S-transform lead easily to corresponding

expressions in terms of the T -transform.

5. Test and Generalized Functions

In order to define test and generalized functions of white noise, we shall

again consider the space of smooth Wick-ordered polynomials (Section 3),

P(N ′) =

{
Φ : Φ(x) =

N∑
n=0

〈: x⊗n :, ϕ(n)〉, ϕ(n) ∈ N ⊗̂n
C

, x ∈ N ′, N ∈ N0

}
.

This space can be endowed with several different topologies, but there is

a natural one such that P(N ′) becomes a nuclear space.2 With respect

to this topology, a sequence (Φm)m∈N of Wick-ordered polynomials Φm =∑N(Φm)
n=0 〈: ·⊗n :, ϕ

(n)
m 〉 converges to Φ =

∑N(Φ)
n=0 〈: ·⊗n :, ϕ(n)〉 ∈ P(N ′) if and

only if the sequence (N(Φm))m∈N is bounded and the sequence (ϕ
(n)
m )m∈N

converges to ϕ(n) in N ⊗̂n
C

for all n ∈ N0. Here we have set ϕ
(n)
m = 0 for all

n > N(Φm), m ∈ N, and ϕ(n) = 0 for all n > N(Φ). It turns out that the

space P(N ′) endowed with this topology is densely embedded in (L2).2,48

Then we can consider the dual space P ′(N ′) of P(N ′) with respect to

(L2) and in this way we have defined the triple

P(N ′) ⊂ (L2) ⊂ P ′(N ′).

The dual pairing 〈〈·, ·〉〉 between P ′(N ′) and P(N ′) is defined as the bilinear

extension of the (sesquilinear) inner product in (L2), that is,

〈〈F,Φ〉〉 = ((F, Φ̄))

=

∫
N ′
F (x)Φ(x) dμ(x), F ∈ (L2),Φ ∈ P(N ′).

Remark 4. Since the function identically equal to 1 is a particular element

of P(N ′), we can use this equality to extend the concept of expectation to

generalized functions:

E(Ψ) := 〈〈Ψ, 1〉〉, Ψ ∈ P ′(N ′).
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In order to define a space of test functions, observe that each kernel

function ϕ(n), n ∈ N appearing in the chaos decomposition of a smooth

Wick-ordered polynomial

N∑
n=0

〈: x⊗n :, ϕ(n)〉

is in the space

N ⊗̂n
C

= prlim
p∈N

H⊗̂n
p,C,

where H⊗̂n
p,C, p ∈ N, is the n-th symmetric tensor power of the complexified

space Hp,C of the Hilbert space Hp introduced in Section 1 (see Appendix

A.1.3). Thus, ϕ(n) ∈ H⊗̂n
p,C for all p ∈ N, which allows to define the family

of Hilbertian norms ‖ · ‖p,q,β, p, q ∈ N, β ∈ [0, 1], on P(N ′) by

‖Φ‖2p,q,β :=

∞∑
n=0

(n!)1+β2nq|ϕ(n)|2p.

For each p, q ∈ N and each β ∈ [0, 1], let (Hp)
β
q be the Hilbert space obtained

by completion of the space P(N ′) with respect to the norm ‖ · ‖p,q,β. That
is,

(Hp)
β
q =

{
Φ =

∞∑
n=0

〈: ·⊗n :, ϕ(n)〉 ∈ (L2) : ‖Φ‖p,q,β <∞
}
.

Then we can define a family of nuclear spaces continuously and densely

embedded in (L2) (cf. e.g.17,30) by

(N )β := pr lim
p,q∈N

(Hp)
β
q .

Therefore, by the general duality theory (Appendix A.1.3), the dual

space (N )−β of (N )β with respect to (L2) is given by

(N )−β = ind lim
p,q∈N

(H−p)
−β
−q ,

where (H−p)
−β
−q , p, q ∈ N, β ∈ [0, 1], is the dual space of (Hp)

β
q with respect

to (L2). Moreover, since for all β ∈ [0, 1], P(N ′) ⊂ (N )β , the spaces (N )−β

may be regarded as subspaces of P ′(N ′) and hence we obtain the following

extended chain of spaces:

P(N ′) ⊂ (N )1 ⊂ (N )β ⊂ (L2) ⊂ (N )−β ⊂ (N )−1 ⊂ P ′(N ′), β ∈ [0, 1).

The space (N )−1 is the so-called Kondratiev space.19–21,30 For N being

the Schwartz space S(Rd), Sd(R), d > 1, or S(R) with the Hilbertian
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norms | · |p described in Example 1, the corresponding spaces (N )0 and

(N )−0 are the so-called spaces of Hida test functions andHida distributions ,

respectively.2,11,14,18,22,23,25,31,32,41 Independently of the particular choice

of the Schwartz space, we shall denote the spaces (N )0 and (N )−0 by (S)
and (S)′, respectively, and the Kondratiev space by (S)−1.

The chaos decomposition provides a natural decomposition of the ele-

ments in P ′(N ′). In fact, it turns out28,30 that for each ψ(n) ∈ N ′⊗̂n
C

there

is a unique element in P ′(N ′), denoted informally by 〈: x⊗n :, ψ(n)〉, acting
on Wick polynomials Φ =

∑N
n=0〈: ·⊗n :, ϕ(n)〉 by

〈〈〈: x⊗n :, ψ(n)〉,Φ〉〉 = n!〈ψ(n), ϕ(n)〉.

Therefore, any element Ψ ∈ P ′(N ′) has a unique decomposition of the form

Ψ =

∞∑
n=0

〈: x⊗n :, ψ(n)〉,

where the sum converges weakly in P ′(N ′), and we have

〈〈Ψ,Φ〉〉 =
∞∑
n=0

n!〈ψ(n), ϕ(n)〉 (15)

for all Φ =
∑N

n=0〈: ·⊗n :, ϕ(n)〉 ∈ P(N ′). For more details and the proofs

see,28,30.

This internal description of the space P ′(N ′) allows, in particular, to

describe the distributions in each space (N )−β =
⋃

p,q∈N
(H−p)

−β
−q , β ∈

[0, 1]. In fact, it turns out from this construction that each Hilbert space

(H−p)
−β
−q , p, q ∈ N, β ∈ [0, 1] consists in all Ψ =

∑∞
n=0〈: x⊗n :, ψ(n)〉 ∈

P ′(N ′) such that

‖Ψ‖2−p,−q,−β :=

∞∑
n=0

(n!)1−β2−nq
∣∣∣ψ(n)

∣∣∣2
−p

<∞.

In11 Hilbert spaces of smooth and generalized white noise functionals

were introduced. For more details on this see Section 3.A of14 .

6. Characterization Results

Both transformations introduced in Section 4, S- and T -transform, can be

extended to (N )−β , β ∈ [0, 1]. This yields, in particular, characterization

results for the Hida and Kondratiev distributions (Subsections 6.1 and 6.2

below) as well as for any distribution in (N )−β , β ∈ (0, 1) cf. e.g.34 For

N = S(R) and β ∈ (0, 1) such results have been obtained in26,27.
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In order to extend Definitions 5 and 6 to distributions, we first observe

that for a ξ ∈ NC we have

‖ : e〈·,ξ〉 : ‖2p,q,β =

∞∑
n=0

(n!)1+β2nq
∣∣∣∣ξ⊗n

n!

∣∣∣∣2
p

=

∞∑
n=0

(n!)β−12nq|ξ|2np , (16)

which is finite if and only if β < 1 or 2q|ξ|2p < 1 if β = 1. That is, for all

ξ ∈ NC we have

: e〈·,ξ〉 :∈ (N )β , ∀β ∈ [0, 1).

Thus, Definitions 5 and 6 can be directly extended to any Ψ ∈ (N )−β ,

β ∈ [0, 1), by

(SΨ)(ξ) := 〈〈Ψ, : e〈·,ξ〉 :〉〉, ξ ∈ NC

and

(TΨ)(ξ) := (SΨ)(iξ) exp

(
−1

2
〈ξ, ξ〉

)
, ξ ∈ NC, (17)

respectively. Moreover, if Ψ =
∑∞

n=0〈: x⊗n :, ψ(n)〉, then

(SΨ)(ξ) =

∞∑
n=0

〈ψ(n), ξ⊗n〉, (18)

which extends equality (13) to distributions.

Although : e〈·,ξ〉 :/∈ (N )1 for ξ ∈ NC \ {0}, computation (16) shows that

: e〈·,ξ〉 :∈ (Hp)
1
q whenever 2q|ξ|2p < 1. This allows to define the S-transform

of Kondratiev distributions as well. Let Ψ ∈ (N )−1 =
⋃

p,q∈N
(H−p)

−1
−q.

Then, Ψ ∈ (H−p)
−1
−q for some p, q ∈ N. So we define the S-transform of Ψ

by

(SΨ)(ξ) := 〈〈Ψ, : e〈·,ξ〉 :〉〉,
for all ξ ∈ NC such that 2q|ξ|2p < 1. Of course, for each such a function ξ

the alternative description (18) still holds. In an analogous way, we define

the T -transform of Ψ ∈ (H−p)
−1
−q by

(TΨ)(ξ) := (SΨ)(iξ) exp

(
−1

2
〈ξ, ξ〉

)
,

for all ξ ∈ NC such that 2q|ξ|2p < 1.

As we have mentioned above, the Hida and Kondratiev distributions

can be characterized through their S- and T -transform. Since the definition

of the T -transform of those distributions is based on the S-transform, we

present these characterization results, as well as their corollaries, just in

terms of the S-transform.

Remark 5. For the T -transform, analogous results hold by simply replac-

ing the S by the T -transform.
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6.1. Hida Distributions

We recall that in this case N can be any Schwartz space S(Rd), Sd(R), d ≥
1. In order to cover all these possibilities, in this subsection we shall denote

all possible Schwartz test function spaces simply by S and the corresponding

dual space by S ′.
As a first step towards the characterization of Hida distributions through

its S-transform, we need the following definition (Appendix A.1.4).

Definition 7. A function F : S → C is called a U -functional whenever

1. for every ξ1, ξ2 ∈ S the mapping R  λ �→ F (λξ1 + ξ2) has an entire

extension to λ ∈ C,

2. there are two constants K1,K2 > 0 such that

|F (zξ)| ≤ K1 exp
(
K2 |z|2 ||ξ||2

)
, ∀ z ∈ C, ξ ∈ S

for some continuous norm ||·|| on S.

We are now ready to state the aforementioned characterization result.

Theorem 2. ( 18,41) The S-transform defines a bijection between the space

(S)′ and the space of U -functionals.

As a consequence of Theorem 2 one may derive the next two statements.

The first one concerns the convergence of sequences of Hida distributions

and the second one the Bochner integration of families of Hida distributions.

For more details and the proofs see18,41 .

Corollary 1. Let (Ψn)n∈N be a sequence in (S)′ such that

1. for all ξ ∈ S, ((SΨn)(ξ))n∈N is a Cauchy sequence in C,

2. there are two constants K1,K2 > 0 such that for some continuous norm

||·|| on S we have

|(SΨn)(zξ)| ≤ K1 exp
(
K2|z|2||ξ||2

)
, ∀ z ∈ C, ξ ∈ S, n ∈ N.

Then (Ψn)n∈N converges strongly in (S)′ to a unique Hida distribution.

Corollary 2. Let (Λ,B, ν) be a measure space and λ �→ Ψλ be a mapping

from Λ to (S)′. We assume that the S-transform of Ψλ fulfills the following

two conditions:

1. the mapping λ �→ (SΨλ)(ξ) is measurable for every ξ ∈ S,
2. all SΨλ obey the bound

|(SΨλ)(zξ)| ≤ C1(λ) exp
(
C2(λ)|z|2||ξ||2

)
, z ∈ C, ξ ∈ S,
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for some continuous norm ||·|| on S and for some C1 ∈ L1(Λ,B, ν), C2 ∈
L∞(Λ,B, ν).

Then the Bochner integral ∫
Λ

Ψλ dν(λ)

exists in (S)′ and

S

(∫
Λ

Ψλ dν(λ)

)
=

∫
Λ

(SΨλ) dν(λ).

Example 3. Given the one-dimensional Brownian motion Bt = 〈·, 11[0,t)〉,
t ≥ 0 defined in Example 2 and the Dirac delta function δa ∈ S′(R) with

mass at a ∈ R, consider the informal composition

δa(Bt) = δ0(Bt − a).
Based on an approximation procedure by Hida distributions (Corollary 1)

and Corollary 2, a rigorous meaning of the Donsker’s delta function δ0(Bt−
a) as the Bochner integral in (S)′

δ0(Bt − a) :=
1

2π

∫
R

eiu(Bt−a) du

has been given in.35 Its S-transform is given (see e.g.13,14,33,35) by

(Sδ0(Bt − a)) (ξ) =
1√
2πt

exp

(
− 1

2t

(
a−

∫ t

0

ξ(u) du

)2
)
, ξ ∈ S(R),

which is obviously a U -functional.

Among Hida distributions the positive ones have particular charac-

teristics. We recall that a Ψ ∈ (S)′ is said to be positive whenever

〈〈Ψ,Φ〉〉 ≥ 0 for all Φ ∈ (S) μ-a.e. positive (being μ the Gaussian mea-

sure on (S ′, Cσ(S ′))). As shown independently in24 and in51 , we have the

following result.

Theorem 3. If Ψ ∈ (S)′ belongs to the cone (S)′+ of positive Hida distri-

butions, then there is a unique (positive) finite measure νΨ on (S ′, Cσ(S ′))
such that

〈〈Ψ,Φ〉〉 =
∫
S′

Φ(ω) dνΨ(ω)

for all Φ ∈ (S).

Example 4. Coming back to Example 3, in49 the authors have proved

that δ0(Bt − a) ∈ (S)′+. On the other hand, Y. Yokoi has shown in51 that

Ψ ∈ (S)′ is positive if and only if TΨ is positive definite. By Example 3 and

(17), it is clear that the latter condition holds for Ψ = δ0(Bt − a). Thus,

according to Theorem 3, the Donsker’s delta function δ0(Bt − a) defines a

finite measure on (S′(R), Cσ(S′(R))).
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6.2. Kondratiev Distributions

Theorem 4. ( 19) Let 0 ∈ U ⊂ NC be an open set and F : U → C be a

holomorphic function on U . Then there is a unique Ψ ∈ (N )−1 such that

SΨ = F . Conversely, given a Ψ ∈ (N )−1 the function SΨ is holomorphic

on some open set in NC containing 0.

The correspondence between F and Ψ is a bijection if one identifies

holomorphic functions which coincide on some open neighborhood of 0 in

NC.

We shall do so. As a consequence, we can derive the next two state-

ments. The first one concerns the convergence of sequences of Kondratiev

distributions and the second one the Bochner integration of families of the

same type of generalized functions.

Corollary 3 (19). Let (Ψn)n∈N be a sequence in (N )−1 such that there

are p, q ∈ N so that

1. all SΨn are holomorphic on the open neighborhood Up,q := {ξ ∈ NC :

2q|ξ|2p < 1} of 0 ∈ NC,

2. there is a C > 0 such that |SΨn(ξ)| ≤ C for all ξ ∈ Up,q and all n ∈ N,

3. (SΨn(ξ))n∈N is a Cauchy sequence in C for all ξ ∈ Up,q.

Then (Ψn)n∈N converges strongly in (N )−1.

Corollary 4 (19). Let (Λ,B, ν) be a measure space and λ �→ Ψλ be a

mapping from Λ to (N )−1. We assume that there is a Up,q = {ξ ∈ NC :

2q|ξ|2p < 1}, p, q ∈ N, such that

1. SΨλ is holomorphic on Up,q for every λ ∈ Λ,

2. the mapping λ �→ (SΨλ)(ξ) is measurable for every ξ ∈ Up,q,

3. there is a C ∈ L1(Λ,B, ν) such that

|(SΨλ)(ξ)| ≤ C(λ), ∀ ξ ∈ Up,q, ν − a.a. λ ∈ Λ.

Then there are p′, q′ ∈ N, which only depend on p, q, such that∫
Λ

Ψλ dν(λ)

exists as a Bochner integral in (H−p′)−1
−q′ . In particular, S

(∫
Λ
Φλ dν(λ)

)
is

holomorphic on Up′,q′ = {ξ ∈ NC : 2q
′ |ξ|2p′ < 1} and〈〈∫

Λ

Ψλ dν(λ),Φ

〉〉
=

∫
Λ

〈〈Ψλ,Φ〉〉 dν(λ), ∀Φ ∈ (N )1.
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Positive Kondratiev distributions are defined similarly to the Hida case.

For such a particular class of generalized functions in (N )−1 the following

characterization result holds.

Theorem 5.29 If Ψ ∈ (N )−1 belongs to the cone (N )−1
+ of positive Kon-

dratiev distributions, then there is a unique (positive) finite measure ν = νΨ
on (N ′, Cσ(N ′)) such that for all Φ ∈ (N )1

〈〈Ψ,Φ〉〉 =
∫
N ′

Φ(x) dν(x) (19)

and, moreover, there are p ∈ N, K,C > 0 so that∣∣∣∣∫N ′
〈x, ξ〉n dν(x)

∣∣∣∣ = KCnn!|ξ|np (20)

for all ξ ∈ N and all n ∈ N0. Vice versa, any (positive) measure ν that

obeys (20) defines a positive distribution Ψ ∈ (N )−1
+ by (19).

7. Wick Product and ∗-Convolution

According to the Characterization Theorem 4, the S-transform on (N )−1 is

a bijection if we consider germs of holomorphic functions at zero, that is, if

we identify holomorphic functions which coincide on some open neighbor-

hood of 0 in NC. Thus, we define Hol0(NC) as the algebra of germs of holo-

morphic functions at zero. Algebraically, it is clear that Hol0(NC) endowed

with the pointwise multiplication of functions is an algebra. Therefore, by

Theorem 4, for each pair Ψ1,Ψ2 ∈ (N )−1 we can define the so-called Wick

product Ψ1 �Ψ2 ∈ (N )−1 of Ψ1 and Ψ2 by

Ψ1 �Ψ2 := S−1 ((SΨ1)(SΨ2)) .

It turns out that the space (N )−1 endowed with the Wick product is a

commutative algebra with unit element : e〈x,0〉 :≡ 114,15,19 .

The Wick product can be described in terms of chaos decomposition as

well. If Ψi =
∑∞

n=0〈: x⊗n :, ψ
(n)
i 〉 ∈ (N )−1, i = 1, 2, then

Ψ1 �Ψ2 =

∞∑
n=0

〈
: x⊗n :,

n∑
k=0

ψ
(k)
1 ⊗̂ψ(n−k)

2

〉
.

Clearly, we can also define

Ψ�n := S−1((SΨ)n) = Ψ � ... �Ψ (n times), Ψ ∈ (N )−1

and thus finite linear combinations of the form
∑N

n=0 anΨ
�n (Ψ�0 := 1).

Moreover, given a function g : C → C analytic on some neighborhood
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of (SΨ)(0) = E(Ψ) ∈ C (Remark 4), we can define g�(Ψ) ∈ (N )−1 by

g�(Ψ) := S−1(g(SΨ))19,30 . In particular, we can define exp� Ψ ∈ (N )−1:

exp� Ψ := S−1(exp(SΨ)) =
∞∑

n=0

1

n!
Ψ�n.

In fact, if the power series representation of an analytic function g has the

form

g(z) =
∞∑
n=0

an(z − E(Ψ))n, z ∈ C,

then the Wick series
∞∑

n=0

an(Ψ− E(Ψ))�n

converges in (N )−1 and, moreover,

g�(Ψ) =

∞∑
n=0

an(Ψ− E(Ψ))�n.

For more details concerning the Wick product see e.g.14,15,19,30 .

By Theorem 4 and Remark 5, the T -transform also yields the definition

of an algebraic structure on (N )−1. For each pair Ψ1,Ψ2 ∈ (N )−1 we define

the so-called ∗-convolution Ψ1 ∗Ψ2 ∈ (N )−1 of Ψ1 and Ψ2 by

Ψ1 ∗Ψ2 := T−1 ((TΨ1)(TΨ2)) .

Due to the close relation between the T - and the S-transform on (N )−1,

all the above results quoted for the Wick product straightforwardly hold

for the ∗-convolution. Moreover, through the so-called Fourier transform

on (N )−1,

FΨ := T−1(SΨ), Ψ ∈ (N )−1,

both algebraic convolutions are related19 by

F(Ψ1 �Ψ2) = (FΨ1) ∗ (FΨ2), Ψ1,Ψ2 ∈ (N )−1.

For more details concerning this Fourier transform F see e.g.14,33 and the

references therein.

8. Annihilation, Creation and Second Quantization

Operators

The Itô-Segal-Wiener isomorphism between the space (L2) and the sym-

metric Fock space provides natural operators on (L2) by carrying over stan-

dard Fock spaces operators, namely, the annihilation, creation and second

quantizations operators cf. e.g.2,44 .
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8.1. Annihilation Operators

Let h ∈ H be given. We recall that the so-called annihilation operator a(h)

is the operator acting on f (n) ∈ Expn(HC), n ∈ N, of the form (Appendix

A.1.2)

f (n) = f1⊗̂ . . . ⊗̂fn ∈ H⊗̂n
C
, fi ∈ HC, i = 1, ..., n (21)

by

(a(h))f (n) :=
n∑

j=1

(h, fj)f1⊗̂ . . . ⊗̂fj−1⊗̂fj+1⊗̂ . . . ⊗̂fn ∈ H⊗̂(n−1)
C

.

This definition can be linearly extended to the dense space in Expn(HC)

spanned by elements of the form (21). Moreover, for such elements the

following equality of norms holds (cf. e.g.44),

|(a(h))f (n)|Expn−1(HC) ≤
√
n|h||f (n)|Expn(HC), (22)

which allows to extend a(h) to a bounded operator a(h) : Expn(HC) →
Expn−1(HC).

Therefore, in terms of the space (L2), the Itô-Segal-Wiener isomorphism

yields an operator, also denoted by a(h), such that for all x ∈ N ′ and all

f1, . . . , fn ∈ HC, n ∈ N,

(a(h))〈: x⊗n :, f1⊗̂ . . . ⊗̂fn〉

=

n∑
j=1

(h, fj)〈: x⊗(n−1) :, f1⊗̂ . . . ⊗̂fj−1⊗̂fj+1⊗̂ . . . ⊗̂fn〉.

Due to (22), observe that for x ∈ N ′, f1, . . . , fn ∈ H, n ∈ N, fixed, the

linear functional on H

H  h �→ (a(h))P (x), P (x) := 〈: x⊗n :, f1⊗̂ . . . ⊗̂fn〉

is bounded. Therefore, by the Riesz representation theorem, it is given by

an inner product

(h,∇P (x)), ∀h ∈ H

for some ∇P (x) ∈ H. In particular, for N = S(R) and H = L2(R), we

have

(a(h))P (ω) = (h,∇P (ω)) =
∫ +∞

−∞
h(t)∂tP (ω) dt, h ∈ L2(R),

where ∂t, t ∈ R is the Hida derivative introduced in11 .
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The reason for this name lies on the fact that the Hida derivative is

indeed a (Gâteaux) derivative. For ω, ω0 ∈ S′(R) fixed, let F be a real

or complex-valued function pointwisely defined on S′(R). We say that F

is Gâteaux differentiable at ω in direction ω0 if the function R  λ �→
F (ω+λω0) is differentiable at λ = 0. In this case, we shall use the notation

Dω0F (ω) :=
d

dλ
F (ω + λω0)

∣∣∣
λ=0

. (23)

In particular, for P defined as before we easily find

Dω0P (ω) =
n∑

j=1

〈ω0, fj〉〈: ω⊗(n−1) :, f1⊗̂ . . . ⊗̂fj−1⊗̂fj+1⊗̂ . . . ⊗̂fn〉.

This shows that a(h)P (ω), h ∈ L2(R) is, in particular, a Gâteaux derivative

at the point ω ∈ S′(R) in direction h ∈ L2(R). Therefore, we can regard

definition (23) as an extension of a(h), h ∈ L2(R), to tempered distributions

directions.

In particular, for the Dirac delta function δt ∈ S′(R), t ∈ R, it turns

out cf. e.g.14 that

DδtP = ∂tP,

where ∂tP is the Hida derivative of P . In fact,

∂·Φ(ω) = ∇Φ(ω)

defines a Fréchet derivative on (S), see e.g.,14 and for suitable positive

Ψ ∈ (S)′

ε(Φ) := 〈〈Ψ, |∇Φ|2〉〉

will give rise to (pre-)Dirichlet forms, see14 .

8.2. Creation Operators

In order to recall the definition of creation operators on the Fock space,

we come back to the bounded operator a(h) : Expn(HC) → Expn−1(HC),

h ∈ H, defined at the beginning of Subsection 8.1. Clearly, we can extend

componentwisely a(h) to the dense subspace of Exp(HC) consisting of all

sequences (f (n))n∈N0 such that all terms vanish except finitely many ones.

Therefore, the adjoint a∗(h) of a(h) is a well-defined operator on Exp(HC).

A straightforward computation shows that its action on f (n) ∈ Expn(HC),

n ∈ N, is given by

(a∗(h))f (n) = h⊗̂f (n) ∈ Expn+1(HC)
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and, moreover,

|(a∗(h))f (n)|Expn+1(HC) ≤
√
n+ 1|h||f (n)|Expn(HC),

see e.g.2,44 . Since a(h) and a∗(h) are densely defined, they are closable,

and thus both operators can be extended to their closures. We shall denote

both extended operators also by a(h) and a∗(h), respectively. The following
equalities hold

[a(f), a(h)] = [a∗(f), a∗(h)] = 0, [a(f), a∗(h)] ⊆ (f, h), (24)

which are well-known as the canonical commutation relations. Here [·, ·] is
the usual commutator between two operators, [A,B] := AB −BA.

Concerning a∗(h), that is, the so-called creation operator , its image

under the Itô-Segal-Wiener isomorphism leads as before to an operator on

(L2), also denoted by a∗(h),

(a∗(h))〈: x⊗n :, f (n)〉 = 〈: x⊗(n+1) :, h⊗̂f (n)〉, f (n) ∈ H⊗̂n
C
, n ∈ N.

Of course, by construction, a∗(h) is the adjoint operator of a(h) on (L2)

and relations corresponding to (24) hold.

In order to proceed towards distributions, let us considerH = L2(R) and

N = S(R). Concerning the corresponding space (S) of Hida test functions,

it turns out cf. e.g.14 that each
∑∞

n=0〈: ·⊗n :, ϕ(n)〉 ∈ (S) has a continuous

version. That is, each kernel ϕ(n), n ∈ N, has a continuous version in

(SC(R))
⊗̂n. For technical reasons, in what follows we shall always consider

the continuous version of a Hida test function. Of course, it follows from

the previous subsection that Dω0〈: ω⊗n :, ϕ(n)〉 exists for all ω0 ∈ S′(R)
and

Dω0〈: ω⊗n :, ϕ(n)〉 = n〈ω0⊗̂ : ω⊗(n−1) :, ϕ(n)〉 = n
〈
: ω⊗(n−1) :, 〈ω0, ϕ

(n)〉
〉
,

(25)

where 〈ω0, ϕ
(n)〉 means that ω0 is evaluated on ϕ(n) in the first argument.

Moreover, for a fixed ω0 ∈ S′(R), Dω0 is a continuous linear operator from

(S) into itself. This is a consequence of the fact that given a ω0 ∈ H−q,

being H−q, p ∈ N the Hilbert spaces introduced in Example 1 (i) with the

corresponding norm | · |−q, for every Φ ∈ (S) and every p, r ∈ N we find

cf.,14,39

‖Dω0Φ‖p,r,0 ≤ 2q−p|ω0|−q‖Φ‖max{p,q},r,0,

where the first and the last norms are the ones on (Hp)
0
r , p, r ∈ N,

prlimp,r∈N(Hp)
0
r = (S) (Section 5). Therefore, we can consider the adjoint

operator D∗
ω0

of the Gâteaux derivative Dω0 , ω0 ∈ S′(R), which (strongly)
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continuously maps the space of Hida distributions (S)′ into itself. Due to

(15) and (25), the action of D∗
ω0

on a Ψ =
∑∞

n=0〈: ω⊗n :, ψ(n)〉 ∈ (S)′,
thus with symmetric tempered distribution kernels ψ(n), is given for all

Φ =
∑∞

n=0〈: ·⊗n :, ϕ(n)〉 ∈ (S) by

〈〈D∗
ω0
Ψ,Φ〉〉 = 〈〈Ψ, Dω0Φ〉〉 =

∞∑
n=0

n!(n+ 1)
〈
ψ(n), 〈ω0, ϕ

(n+1)〉
〉

=

∞∑
n=0

(n+ 1)!〈ω0⊗̂ψ(n), ϕ(n+1)〉.

That is,

D∗
ω0
Ψ =

∞∑
n=1

〈: ω⊗n :, ω0⊗̂ψ(n−1)〉. (26)

It extends to tempered distributions the operator a∗(h), h ∈ L2(R), above

defined on (L2). As we can expect, relations similar to (24) can be stated

for Dω0 and D∗
ω0
, ω0 ∈ S′(R), as well. From those, we give particular

attention to the case ω0 = δt, which leads to the canonical commutation

relations used in quantum field theory. Informally, for s, t ∈ R,

[∂s, ∂t] = [∂∗s , ∂
∗
t ] = 0, [∂s, ∂

∗
t ] = δ(s− t),

with ∂∗t = D∗
δt
, t ∈ R. Furthermore, given the white noise ω(t) (Example

2), for all Φ ∈ (S) we find

ω(t)Φ = (∂t + ∂∗t )Φ,

where the multiplication appearing in the left-hand side is a Hida distribu-

tion. Indeed, since (S) is closed under the pointwise multiplication and the

multiplication of Hida test functions is a continuous bilinear mapping on

(S) cf. e.g.,39 the multiplication ω(t)Φ ∈ (S)′ is well-defined by

〈〈ω(t)Φ,Φ0〉〉 := 〈〈ω(t),ΦΦ0〉〉, ∀Φ0 ∈ (S).

For more details and the proofs see e.g.14,39 .

Another application of this particular case concerns the definition of the

so-called Hitsuda-Skorohod integral, related to the Skorohod and the Itô

integrals, both well-known in stochastic analysis.

From now on, let T ⊂ R be a bounded interval with the Borel σ-

algebra B and the Lebesgue measure. Since ∂∗t : (S)′ → (S)′, given a

mapping Ψ : T → (S)′ defined a.e., we can then consider the mapping
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defined for a.a. t ∈ T by t �→ ∂∗t Ψ(t). If, in addition, for every Φ ∈ (S),
〈〈Ψ(·),Φ〉〉 ∈ L1(T,B, dt), then we have a well-defined Pettis integral of ∂∗t Ψ,∫

T

∂∗t Ψ(t) dt ∈ (S)′. (27)

That is, (27) is the unique element in (S)′ such that for all Φ ∈ (S)〈〈∫
T

∂∗t Ψ(t) dt,Φ

〉〉
=

∫
T

〈〈∂∗t Ψ(t),Φ〉〉 dt.

In particular, for Φ =: e〈·,ξ〉 :∈ (S), ξ ∈ S(R) (Section 6), it follows imme-

diately from this definition that the S-transform of (27) is given by

S

(∫
T

∂∗tΨ(t) dt

)
(ξ) =

∫
T

S (∂∗t Ψ(t)) (ξ) dt.

We call (27) the Hitsuda-Skorohod integral of Ψ.

In terms of chaos decomposition, observe that if Ψ(t) =
∑∞

n=0〈: ω⊗n :,

ψ(n)(t)〉 for a.a. t ∈ T , then, by (26),

∂∗t Ψ(t)=

∞∑
n=1

〈: ω⊗n :, δt⊗̂ψ(n−1)(t)〉=ω(t)�
∞∑

n=0

〈: ω⊗n :, ψ(n)(t)〉=ω(t)�Ψ(t),

where � is the Wick product introduced in Section 7. This yields another

approach to introduce the Skorohod and the Itô integrals15 .

Now let T = [0, 1] and let X : [0, 1] → (L2) be a square integrable

function with chaos decomposition

X(t) =

∞∑
n=0

〈: ω⊗n :, f (n)(t)〉 a.a. t ∈ [0, 1]

such that for a.a. t ∈ [0, 1]
∞∑
n=0

nn!|f (n)(t)|2 <∞.

Then, it can be shown cf. e.g.14 that the Hitsuda-Skorohod integral of X

belongs to (L2) and coincides with its Skorohod integral.

In order to recover the definition of the Itô integral, let X : [0, 1]→ (L2)

be a square integrable function which we assume to be adapted to the

filtration generated by Brownian motion. In terms of chaos decomposi-

tion this means that if X is given as before, then for all n ∈ N and for

a.a. (u1, . . . , un) ∈ Rn \ [0, t]n, f (n)(t;u1, . . . , un) = 0, t ∈ [0, 1]. Then, it

turns out cf. e.g.14 that the Hitsuda-Skorohod integral of X coincides with

its Itô integral: ∫ 1

0

∂∗tX(t) dt =

∫ 1

0

X(t) dB(t).
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In accordance with the definition of Itô integral in stochastic analysis, here

we should choose a continuous version of the Brownian motion defined in

Example 2.

For more details and the proofs see e.g.14,34 .

8.3. Second Quantization Operators

Given a contraction operatorB onHC, we can define a contraction operator

ExpB on the Fock space Exp(HC) defined on each space Expn(HC), n ∈ N,

by B⊗n, ExpB� Exp0(HC) := 1. Therefore, for any coherent state e(f),

f ∈ HC,

ExpB (e(f)) = e(Bf).

In particular, given a positive self-adjoint operator A on HC and the

contraction semigroup e−tA, t ≥ 0, we have defined a contraction semigroup

Exp
(
e−tA

)
, t ≥ 0, on Exp(HC). The generator of this semigroup is the so-

called second quantization operator corresponding to A and we shall denote

it by dExpA, i.e.,

Exp
(
e−tA

)
= exp (−tdExpA) , t ≥ 0.

For more details see e.g.2,43 . The action of dExpA on coherent states e(f)

with f in the domain of A is given by

dExpA (e(f)) =

(
(Af) ⊗̂f

⊗(n−1)

(n− 1)!

)
n∈N0

with (Af) ⊗̂f⊗(n−1)

(n−1)! = 0 if n = 0, cf. e.g.2 .

The definition of second quantization operators leads, for instance, to

the construction of countably Hilbert spaces and triples on Fock spaces and

thus to the definition of new nuclear triples cf. e.g.2,14,22,39 . In particular,

for A being the Hamiltonian H of the quantum harmonic oscillator on

L2(R) (Example 1),

(Hξ)(u) = − d
2ξ

du2
(u) + (u2 + 1)ξ(u), u ∈ R,

we rediscover the Gelfand triple

(S) ⊂ (L2) ⊂ (S)′.

For more details concerning this constructive scheme and examples see

e.g.2,14,22 .
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A.1. Appendices

A.1.1. Tensor Powers of Hilbert Spaces

Instead of reproducing the abstract construction of tensor powers of gen-

eral topological vector spaces like e.g. in45,50 , we follow closely the direct

approach of43 for Hilbert spaces.

Let H be a (real or complex) Hilbert space with inner product (·, ·). For
each n ∈ N, n ≥ 2, and every g1, . . . , gn ∈ H, we consider the following

n-linear form g1 ⊗ . . .⊗ gn := ⊗n
i=1gi defined on Hn by

(g1 ⊗ . . .⊗ gn) (h1, . . . , hn) :=
n∏

i=1

(hi, gi), h1, . . . , hn ∈ H.

We shall call the linear space spanned by such n-linear forms the algebraic

n-th tensor power of H and denote it by H⊗an. In order to introduce a

topological structure on H⊗an, we define an inner product on H⊗an, also

denoted by (·, ·), acting on elements ⊗n
i=1g1i, ⊗n

j=1g2j ∈ H⊗an by

(
⊗n

i=1g1i,⊗n
j=1g2j

)
:=

n∏
k=1

(g1k, g2k). (A.1)

Remark 6. It turns out (cf. e.g.43) that the value of (G1, G2), G1, G2 ∈
H⊗an is independent of the linear combinations used to express G1 and G2,

and thus (·, ·) is well-defined.

Definition 8. The completion of H⊗an with respect to the norm induced

by the inner product (A.1) is called the (topological) n-th tensor power of

H. We shall denoted it by H⊗n.

We observe that if the Hilbert space H is separable and {ek}k∈N is an

orthonormal basis of H, then H⊗n is also a separable Hilbert space and the

set of elements of the form ek := ⊗n
i=1eki indexed byK := (k1, . . . , kn) ∈ Nn

is a Hilbertian basis of H⊗n.

In particular, we can consider the Hilbert space L2(R) or its complexified

space L2
C
:= {f1+if2 : f1, f2 ∈ L2(R)} (see Appendix A.1.2). In these cases

the tensor powers (L2(R))⊗n, (L2
C
(R))⊗n can be identified with L2(Rn),

L2
C
(Rn), respectively.

Proposition 4. The spaces (L2(R))⊗n and (L2
C
(R))⊗n are unitarily iso-

morphic to L2(Rn) and L2
C
(Rn), respectively.
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Proof. (Sketch) Given an orthonormal basis {ek}k∈N of L2(R), consider

the orthonormal basis RK, K := (k1, . . . , kn) ∈ N
n, of L2(Rn),

RK(x1, . . . , xn) := ek1(x1) . . . ekn(xn),

and the linear mapping R which maps the orthonormal basis {ek}k∈Nn of

(L2(R))⊗n onto {Rk}k∈Nn ,

R : ek1 ⊗ . . .⊗ ekn �→ RK, K = (k1, . . . , kn).

Clearly the following equality of norms holds:

|RK|L2(Rn) = |ek1 ⊗ . . .⊗ ekn |(L2(R))⊗n , ∀K = (k1, . . . , kn) ∈ N
n,

which leads to the existence of a unique extension of R to a unitary iso-

morphism of (L2(R))⊗n onto L2(Rn), also denoted by R. The assertion for

the complex case follows by simply replacing each L2-space by the corre-

sponding L2
C
complexified space.

Remark 7. In view of this proof, we shall identify each n-linear form

g1 ⊗ . . .⊗ gn with R(g1 ⊗ . . .⊗ gn) ∈ L2(Rn), that is,

(g1 ⊗ . . .⊗ gn) (x1, . . . , xn) := g1(x1) . . . gn(xn),

and g1 ⊗ . . .⊗ gn ∈ L2(Rn) will be called the tensor product of g1, . . . , gn.

The latter equality is adopted to define g1 ⊗ . . .⊗ gn with g1, . . . , gn being

elements of a generic space of functions.

A.1.2. Fock Space

The definition and main properties of the symmetric Fock spaces are de-

scribed below. For more details see e.g.8,43,46 .

Given a real separable Hilbert spaceH, letHC be the complexified space

of H,

HC := {f + ig : f, g ∈ H}
with the inner product

(f1 + ig1, f2 + ig2) := (f1, f2) + (g1, g2) + i(g1, f2)− i(f1, g2)
(antilinear in the second factor) and the corresponding norm | · |.

For each n ∈ N fixed and any ι ∈ Sn (Sn := the permutation group over

{1, . . . , n}), we consider the unitary isomorphism Uι,n defined on the total

seta of elements of the form g1 ⊗ . . .⊗ gn ∈ H⊗n
C

, gi ∈ HC, i = 1, . . . , n, by

Uι,n(g1 ⊗ . . .⊗ gn) := gι(1) ⊗ . . .⊗ gι(n).
aA subset A of a Hilbert space is said to be total whenever the closure of the space
spanned by A coincides with the whole space.
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Then, given the family of unitary isomorphisms Uι,n with ι ∈ Sn, we define

the operator Pn on H⊗n
C

by

Pn :=
1

n!

∑
ι∈Sn

Uι,n.

It is easy to check that Pn◦Pn = Pn and the adjoint operator of Pn coincides

with Pn itself. That is, Pn is an orthogonal projection. We shall call the

image of H⊗n
C

under Pn the n-th symmetric tensor power of HC and denote

it by H⊗̂n
C

. We shall denote each Pn(g1 ⊗ . . .⊗ gn) by g1⊗̂ . . . ⊗̂gn.
Due to Proposition 4 and its proof, it is clear that in particular for

HC = L2
C
(R), the n-th symmetric tensor power (L2

C
(R))⊗̂n is unitarily iso-

morphic to the subspace L̂2
C
(Rn) ⊂ L2

C
(Rn) of all symmetric square inte-

grable functions. For this reason, in accordance with Remark 7 we shall

identify the space (L2
C
(R))⊗̂n with the space L̂2

C
(Rn).

Definition 9. The Bose or symmetric Fock space ExpHC over HC is the

Hilbert space defined by the Hilbertian direct sum

Exp(HC) :=
∞⊕
n=0

Expn(HC),

where Exp0(HC) := C is the so-called vacuum subspace, and each

Expn(HC), n ∈ N, defined by the space H⊗̂n
C

endowed with the inner prod-

uct n!(·, ·)H⊗n
C

, is the so-called n-particle subspace.

In other words, a generic element F ∈ Exp(HC) is a sequence F =

(f (n))n∈N0 with f (n) ∈ H⊗̂n
C

, n ∈ N, and

‖F‖2Exp(HC)
:=

∞∑
n=0

n!|f (n)|2H⊗n
C

<∞.

Among the elements in Exp(HC) we distinguish the so-called exponential

vectors or coherent states e(f) ∈ Exp(HC) corresponding to the one-particle

vector f ∈ HC:

e(f) :=

(
1, f,

1

2!
f⊗2, ...,

1

n!
f⊗n, ...

)
, f⊗n := f ⊗ ...⊗ f (n times).

According to the definition of Exp(HC), we have

(e(f1), e(f2))Exp(HC)
= exp ((f1, f2)) , f1, f2 ∈ HC,

and thus

‖e(f)‖2Exp(HC)
= exp

(
|f |2

)
, f ∈ HC.
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The next statement emphasizes the role of coherent states (see e.g.2).

Proposition 5. Given a linear subspace L ⊂ HC, the family of coherent

states {e(f) : f ∈ L} is total in Exp(HC) whenever L is dense in HC.

Remark 8. In view of Appendix A.1.3 below, let us mention that in an

analogous way we can define symmetric tensor powers of real Hilbert spaces

as well.

A.1.3. Tensor Powers of Nuclear Spaces

As in Section 1, let N ⊂ H ⊂ N ′ be a nuclear triple,

N = prlim
p∈N

Hp, N ′ = indlim
p∈N

H−p.

In order to define tensor powers N⊗n and symmetric tensor powers

N ⊗̂n, n ∈ N, n ≥ 2, of the nuclear space N , we consider the families of

tensor powers of the Hilbert spaces H⊗n
p and H⊗̂n

p , both indexed by p ∈ N.

Since there is no risk of confusion, we shall use the notation | · |p also for the

Hilbertian norm on H⊗n
p . The n-th tensor power N⊗n of N and the n-th

symmetric tensor power N ⊗̂n of N are the nuclear Fréchet spaces defined

by

N⊗n := prlim
p∈N

H⊗n
p , N ⊗̂n := prlim

p∈N

H⊗̂n
p ,

respectively.2

Moreover, if each H⊗n
−p (resp., H⊗̂n

−p ) is the dual space of H⊗n
p (resp.,

H⊗̂n
p ) with respect to H⊗n (resp., H⊗̂n), then the dual space N ′⊗n of N⊗n

with respect to H⊗n and the dual space N ′⊗̂n of N ⊗̂n with respect to H⊗̂n

can be written as

N ′⊗n = indlim
p∈N

H⊗n
−p and N ′⊗̂n = indlim

p∈N

H⊗̂n
−p ,

respectively. As before, in this work we shall also use the notation | · |−p

for the norm on H⊗n
−p , p ∈ N, and 〈·, ·〉 for the dual pairing between N ′⊗n

and N⊗n.

Thus we have defined the nuclear triples

N⊗n ⊂ H⊗n ⊂ N ′⊗n and N ⊗̂n ⊂ H⊗̂n ⊂ N ′⊗̂n.

Remark 9. All the above results quoted still hold for complex spaces. In

that case, we shall use the same notation as above.
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A.1.4. Holomorphy on Locally Convex Spaces

In this part we generalize the notion of holomorphic or analytic functions in

complex analysis to complex-valued functions defined on a locally convex

topological vector space E over the complex field C. For more details and

the proofs see e.g.1,4,5 .

A function F : U → C defined on an open set U ⊂ E is called G-

holomorphic or Gâteaux-holomorphic if for each ξ0 ∈ U and each ξ ∈ E the

complex-valued function

C  z �→ F (ξ0 + zξ) ∈ C

is analytic on some neighborhood of 0 ∈ C. Hence, given a G-holomorphic

function F : U → C, it turns out by the general theory of complex analysis

that for each ξ0 ∈ U we can write

F (ξ0 + ξ) =

∞∑
n=0

1

n!
dnF (ξ0; ξ) (A.2)

for all ξ in some open neighborhood of zero, where dnF (ξ0; ξ) is the differen-

tial dnF (ξ0)(ξ, . . . , ξ) of n-th order of F at the point ξ0 along the direction

(ξ, . . . , ξ).

A G-holomorphic function F : U → C is called holomorphic whenever

for all ξ0 ∈ U there is an open neighborhood V of zero such that the series

in (A.2) converges uniformly on V . It turns out (cf. e.g. [5, Lemma 2.8])

that a G-holomorphic function is holomorphic if and only if it is locally

bounded.

A function F is said to be holomorphic at a point ξ0 ∈ E if there is an

open neighborhood U ⊂ E of ξ0 such that F : U → C is holomorphic.
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