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Abstract 

The transport of the molecules inside cells is a very important topic, especially in Drug Metabolism. The 

experimental testing of the new proteins for the transporter molecular function is expensive and inefficient due to 

the large amount of new peptides. Therefore, there is a need for cheap and fast theoretical models to predict the 

transporter proteins. In the current work, the primary structure of a protein is represented as a molecular Star 

graph, characterized by a series of topological indices. The dataset was made up of 2,503 protein chains, out of 

which 413 have transporter molecular function and 2,090 have no transporter function. These indices were used 

as input to several classification techniques to find the best Quantitative Structure Activity Relationship (QSAR) 

model that can evaluate the transporter function of a new protein chain. Among several feature selection 

techniques, the Support Vector Machine Recursive Feature Elimination allows us to obtain a classification model 

based on 20 attributes with a true positive rate of 83% and a false positive rate of 16.7%. 
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l. INTRODUCTION 

The transport proteins are vital to the growth and life of all living things due to their function of 

moving the molecules within an organism, including the administrated drugs. There are several 

different kinds of transport proteins such as carrier proteins that are involved in the movement across 

a biological membrane of ions, small molecules, or macromolecules, such as another protein [1]. 

Each carrier protein is designed to recognize only one substance or one group of very similar 

substances. Therefore, specific diseases are correlated with the errors in transport proteins. Another 

example of transport protein is the vesicular transporter, a transmembrane or membrane associated 

protein that regulates or facilitates the movement by vesicles of the contents of the cell.  

 

During the 1950s, the researchers reported in literature that the movement of a number of 

substances, both uncharged and ionic, across cell membranes was catalyzed by specific proteins. 

Transporters are divided into passive and active transporters: passive transporters (facilitated 

transporters) allow passage of solutes (e.g., glucose, amino acids, urea) across membranes down their 

electrochemical gradients; active transporters create ion/solute gradients across membranes, utilizing 

diverse energy-coupling mechanisms. 

 

Several mechanisms of transport have been presented. First, the electrochemical potential 

gradients of cations were observed, which allow the transport of nonelectrolytes against their 

concentration gradients [2, 3]. Another mechanism is used by the proteins called ion pumps that are 

driven by the energy of hydrolysis of ATP through the action of specific adenosinetriphosphatases 

[4], in particular for Na+ and K+, for Ca2+ and for H+ and K+ [5, 6]. Other sources of energy for 

transport, other than hydrolysis of A TP, were discovered: light in halobacteria [7], oxidative 

decarboxylation in various bacteria [8], terminal oxidation of substances in inner mitochondrial and 

chloroplast membranes, etc. The discoveries of selective channels in cell membranes, such as would 

allow the passage of Na+, K+ and Ca2+ ions across nerve plasma membranes and a number of 

intracellular membranes in other types of cells, without any energy supply being required and hence 

no accumulation of such ions against their electrochemical potential gradient being achieved. Another 

transport pathway was discovered that not only did not require energy coupling but it was either fully 

or in great measure nonselective, sometimes in the absence of proteins. Therefore, a Transporter 

Classification (TC) system was defined during the 1990's, in analogy with the Enzyme Commission 

(EC) system for classification of enzymes. The difference consists in the fact that the TC system 

incorporates. both functional and phylogenetic information [9]. The TC system provides descriptions, 

TC numbers, and examples of over 600 families of transport proteins [10]. Transport systems are 

classified on the basis of five criteria, and each of these criteria corresponds to one of the five 

numbers or letters within the TC# for a particular type of transporter. Thus, a TC# normally has the 

following five components: V.W.X.Y.Z. V (a number) corresponds to the transporter class such as 

channel, carrier/porter, primary active transporter, group translocator or transmembrane electron flow 

carrier; W (a lettter) corresponds to the transporter subclass which in the case of primary active 

transporters refers to the energy source used to drive transport; X (a number) corresponds to the 

transporter family (superfamily); Y (a number) corresponds to the subfamily in which a transporter is 

found, and Z corresponds to a specific transporter with a particular substrate or range of substrates 

transported. The TC database (TCDB) can be accessed at http://www.tcdb.org/ [11, 12]. TCDB is a 

curated database of factual information from over 10,000 published references and it contains about 

5,600 unique protein sequences. Another transporter collection consists of TransportDB, a relational 

database describing the predicted cytoplasmic membrane transport protein complement for organisms 

whose complete genome sequence is available at http://www.membranetransport.org/ [13-16]. The 

RCSB Protein Data Bank (http: //www.rcsb.org) is classifying the transporter proteins using the same 

TC system in: (1) Channels/Pores, (2) Electrochemical Potential-driven Transporters, (3) Primary 

Active Transporters, (4) Group Translocators, (5) Transmembrane Electron Carriers, (8) Accessory 

Factors Involved in Transport and (9) Incompletely Characterized Transport Systems. The gene 

ontology for the transport proteins (G0:0015031) is presented in (Fig. l) and it is available online at 

http ://www.yeastrc.org.  

  



 
 

 
Fig. (1). Transport protein gene ontology (GO:OOI5031 ). 

Drug transporters (DTs) are among the many ATPasetype active transporters germane to the 

pharmaceutical industry. DTs pump drug molecules out of the (primarily) liver cells, in order to 

maintain low/nontoxic concentrations of a drug molecule inside cells and in the body. Consequently, 

if the DT activity is over increased, the efficacy of the drugs can be reduced. The drug toxicity and 

drug clearance are two common reasons for a drug to be withdrawn from the market, costing 

developers anywhere from hundreds of millions to billions of dollars. Therefore, eliminating these 

concerns can greatly reduce the cost of and time to market approval. The authors created liver cells 

with high levels of the enzyme responsible for the liver's metabolic properties. By increasing the 

levels of oxygen to these cultures, they were able to predict clearance rates from drugs as diverse as 

anxiolytics and anticonvulsant weeks in advance [17].  

 

The importance of drug transport and drug transporters goes beyond the individual transporter 

proteins and beyond the assays to measure their activity. Increased research efforts to characterize 

current transporters and identify new ones are vital to an understanding of drug resistance as well as 

to determining drug efficacy and safety, in general. Concomitant development of drug transporter 

assays is equally important in meeting these challenges. Drugs that are substrates or inhibitors of drug 

transporters have been implicated in drug-drug interactions. Thus, the 2012 FDA DDI draft guidance 

[18] and the 2012 EMA guideline on investigation of drug interactions [19] mention several specific 

transporters to investigate and assay conditions to follow. In addition, the European Drug Initiative 

on Channels and Transporters (EDICT, http://www.edict-project.eu) [20] is helping to determine the 

structures of clinically significant membrane protein channels and transporters for the initial 

development of drugs.  

 

Drug transporters play an important role in the absorption, distribution, and excretion (ADE) of 

many drugs [21]. It was pointed out the significant differences between rodents, dog, monkey, and 

human in the substrate specificity, tissue distribution, and relative abundance of transporters. These 

differences complicate cross-species extrapolations, which is important when attempting to predict 

human pharmacokinetics (PK) of drug candidates and assess risk for drug-drug interactions (DDIs). 

The quantitative knowledge of species differences of transporters, especially at the protein and 

functional level is still limited. Therefore, there is a challenge to extrapolate and integrate data from 

both preclinical species and humans to quantitatively predict the impact of transporters on drug 

absorption, disposition, and drug-drug interactions. The penetration of drugs into the human brain 

through the blood-brain barrier (888) represents a major obstacle to the development of successful 

neuropharmaceuticals. This restricted permeability is due to the delicate intercellular junctions, efflux 

transporters and metabolizing enzymes present at the BBB [22]. The pharmaceutical industry and 

academic research rely heavily on permeability studies conducted on animals and in vitro models of 

the BBB. Different drug transporters are involved in specific biological processes in several organs 



such as brain (ex.: in epilepsy, the P-glycoprotein and multidrug resistance associated proteins) [23], 

intestine [24], kidney [25, 26], placenta [27], sexual gonads [28] or central nervous system [29].  

 

The human transport proteins for drugs and endogenous substances in plasma membrane domains 

of intestinal epithelia, hepatocytes, kidney proximal tubules and brain capillary endothelial cells [30] 

are depicted in (Fig. 2):  

 

a) The intestinal epithelia contain in their apical (luminal) membrane several uptake transporters, 

including one or more members of the organic anion-transporting polypeptide (OATP) family, 

peptide transporter 1 (PEPT 1; SLCI5Al), ileal apical sodium/bile acid co-transporter (ASBT; 

SLC10A2), and monocarboxylic acid transporter 1 (MCTl; SLC16AI). The apical ATP-dependent 

efflux pumps include multidrug resistance protein 2 (MRP2; ABCC2), breast cancer resistance 

protein (BCRP; ABCG2) and P-glycoprotein (P-gp; MDRl, ABCBl). The baso lateral membrane 

of intestinal epithelia contains organic cation transporter 1 (OCTl; SLC22Al), heteromeric organic 

solute transporter (OSTα-OSTβ) and MRP3 (ABCC3).  

 

b) Human hepatocyte uptake transporters in the basolateral (sinusoidal) membrane include the 

sodium/taurocholate co-transporting peptide (NTCP; SLCIOAl), three members of the OATP 

family - OATPlBl (SLCOJBI), OATPIB3 (SLCOJB3) and OATP2Bl (SLC02BI), organic anion 

transporter 2 (OAT2; SLC22A7) and OAT7 (SLC22A9), and OCTl. Efflux pumps in the 

hepatocyte basolateral membrane include MRP3, MRP4 (ABCC4) and MRP6 (ABCC6). Apical 

(canalicular) efflux pumps of the hepatocyte comprise P-gp, bile-salt export pump (BSEP or 

SPGP; ABCBil), BCRP (ABCG2) and MRP2. In addition, multidrug and toxin extrusion protein 

1 (MATE1; SLC47 Al) is located in the apical hepatocyte membrane.  

 

c) Kidney proximal tubules contain OAT4 (SLC22AII), urate transporter 1 (URATJ ; SCL22Al2), 

PEPTl and PEPT2 (SLCI5A2), MRP2 and MRP4, MATE! and MATE2-K (SLC47A2), P-gp, 

organic cation/ergothioneine transporter (OCTN 1; SLC22A4), and organic cation/carnitine 

transporter (OCTN2; SLC22A5) in the apical (luminal) membrane. Basolateral uptake 

transporters in proximal tubule epithelia include OATP4CI (SLC04Cl), OCT2, OATl, OAT2 and 

OAT3 (SLC22A8).  

 

d) Blood- brain barrier: Apical (luminal) transport proteins of brain capillary endothelial cells 

contributing to the function of the blood- brain barrier include the uptake transporters OATP1A2 and 

OATP2B1, the efflux pumps P-gp, BCRP, MRP4 and MRP5 (ABCC5).  

  



 
 

 
Fig. (2). The human transport proteins for drugs and endogenous substances. 

The localization of transporters to particular membranes and tissues is sometimes controversial 

and, consequently, the International Transporter Consortium is showing only the localization of 

transporters for which good evidence exists.  

 

The importance of transporters in drug metabolism creates the necessity of cheap and fast 

theoretical models to predict the transporter function for a new amino acid sequence. This model can 

reduce the number of molecules for tests in different experiments and increase the success rates when 

molecules are tested looking for transporters. The current work is putting forward the first theoretical 

model for transporter prediction using the primary sequences of protein chains. The obtained model is 

a Quantitative Structure - Activity Relationship (QSAR) [31) between primary amino acid structure 

of the protein chain and the transporter molecular function. The base of the model consists of the 

topological indexes (TIs) of macromolecular Star graphs with amino acids as nodes. The graph theory 

is a branch of mathematical chemistry and it is currently an intense area of research, generating new 

information regarding DNN/proteins (represented as graphs) [32-35]. The QSAR models are found 

using several Machine Leaning techniques of classification [36].  

 

The QSAR models have been intensively used with applications in different problems [37, 38] 

such as the prediction of analgetic agents [39], anti-cancer agents [40-42], anti-inflamatory agents 

[43], taxane analogues in colon cancer [44], anti-parasitic drugs [45, 46], anti-Alzheimer agents [47] 

or human breast biomarkers [48]. The graphs/complex networks have been used to graphically 

process information from molecules (ex: drugs, proteins, nucleic acids) [49-55] to biological systems 

(ex: parasite-host networks, protein-protein interaction network, gene-gene interaction networks) [56-

58].  

  



Protein models obtained with Star Graph TIs have been published and permitted to prediction of 

cancer [59], DNA promoters [60], human breast and colon cancer-related proteins [61), 

natural/random proteins [62] or anti-oxidant proteins [63]. The kernel-based machine learning 

protocols have been previously used to predict DNA-binding proteins [64], the protein function [65, 

66], the protein fold [67], the protein functional sites [68], and the drug - protein interaction [69].  

 

In the current work, the authors present the first transport/ non-transport protein classification 

model based on embedded/non-embedded Star Graph TIs including the trace of connectivity 

matrices, Harary number, Wiener index, Gutman index, Schultz index, Moreau-Broto indices, 

Balaban. distance connectivity index, Kier-Hall connectivity indices and Randic connectivity index. 

Several feature selection methods were tested and the best model was obtained with the Support 

Vector Machine Recursive Feature Elimination technique.  

2. MATERlALS AND METHODS  

The description of the methodology followed in this work is presented in (Fig. 3). The database 

consists of amino acid sequences (primary structure) of transporter and nontransporter proteins in F 

ASTA format. In the first step, the sequences of amino acids are transformed with S2SNet [70] into 

topological indices of the protein Star graphs. The resulting numbers that characterized each graph 

(protein graphical representation) are then used in Weka [71] to find the best QSAR classification 

model with Machine Learning methods. A final model is suggested to predict the transporter 

molecular function for new amino acid sequences .  

  



 
 

 
Fig. (3). General flow chart for obtaining a transporter protein classification model using the topological indices of the protein 

sequence Stargrapbs. 

In statistics, two events are independent when the fact that one occurs does not modify the 

probability of the other one. An observation is normal when its behavior follows a normal or 

Gaussian distribution with a certain value of mean and variance. In order to respect this independence 

condition, the authors have tested the different classification techniques using 10-fold cross-

validation to split data [72]. Dataset is randomly partitioned into 10 equal-sized bins. 9 bins were 

picked 10 times to train the models and the remaining bin was used to test them, each time leaving 

out a different bin.  

 

The performance of prediction models for a two-class problem (i.e. transport or not transport) is 

typically evaluated using a confusion matrix. There are several numbers of well-known accuracy 

measures for a two-class classifier in the literature, such as: classification rate, precision, sensitivity, 

specificity, F-measure, Area Under the Receiver Operating Characteristic (ROC) Curve, etc. An 

experimental comparison of performance measures for classification could be found in [73]. The 

higher the precision, the less effort wasted in testing and inspection; and the higher the recall, the 

fewer defective modules go undetected. However, there is a tradeoff between precision and recall and 

therefore a combination of both is needed in a single efficiency measure, known as F-measure, which 



considers both precision and recall equally important [74]. Jin et al. [75] suggested that AUC is a 

better measure than accuracy when comparing classifiers and in general.  

 

The ROC is also known as a relative operating characteristic curve, because it is a comparison of 

two operating characteristics (a true positive rate and a false positive rate) as the criterion changes 

[76]. ROC curve is a graphical plot which illustrates the performance of a binary classifier system as 

its discrimination threshold is varied. It is created by plotting the fraction of true positives out of the 

positives (TP Rate = true positive rate) vs. the fraction of false positives out of the negatives (FP Rate 

= false positive rate), at various threshold settings. TP Rate is also known a~ sensitivity, and FP Rate 

is one minus the specificity or true negative rate. ROC analysis provides tools to select possibly 

optimal models and to discard suboptimal ones independently of (and prior to specifying) the cost 

context or the class distribution. ROC analysis is related in a direct and natural way to cost/benefit 

analysis of diagnostic decision making.  

 

The test set is divided randomly into two parts (training and validation) extracting a total of 20% 

of the training data. The objective of this paper is to evaluate the ability of SVM in predicting 

transport/non-transport proteins classification.  

 

Several experiments have been performed in order to select the best models. The final compared 

models are a linear classifier techniques: LIBLINEAR (LL) [77], a neural network technique - 

Multilayer Perceptrons (MLP), a Bayesian technique - Naïve Bayes, and two tree-structured classifier 

techniques - Random Forests (RF) and J48. The parameters for each of the models were initialized 

mostly with the default setting of the Weka toolkit and using the experimenter, they were optimized 

in order to obtain the best parameter combination for each model.  

2.1. Protein Set  

The current work is based on datasets extracted from two protein databases. The sets of protein 

primary sequences are made up of 413 proteins with the transporter molecular function and 2,090 

non-transporters. The transporter protein FASTA sequences (positive group) have been downloaded 

from the Protein Databank [78], the "Transporter (GO ID5215)" list obtained with the "Molecular 

Function Browser" in the "Advanced Search Interface" (protein identity cut-off= 30%). The negative 

group was created using the PISCES CulledPDB [79] list of proteins (downloaded on November 16
th

, 

2012) with identity (degree of correspondence between two sequences) less than 20%, resolution of 

1.6 A and R-factor 0.25 (non-transporter proteins with any other possible biological function). The 

sequence identities for PDB sequences in the PISCES server (http://dunbrack.fccc.edu/PISCES.php) 

have been determined using Combinatorial Extension (CE) structural alignment [80]. This server 

used a Z-score of 3.5 as the threshold to accept possible evolutionary relationships. PISCES' 

alignments are local, so that two proteins which share a common domain with sequence identity 

above the threshold are not both included in the output lists. No list has been post-filtered for any 

source organism.  

2.2. Star Graph Topological lndices  

The protein primary scquences were graphically transformed into Star Graphs, where the amino 

acids are the vertices (nodes), connected in a specific sequence by the peptide bonds. The Star Graph 

is a special type of tree with N vertices where one has got N-1 degrees of freedom and the remaining 

N-1 vertices have got one single degree of freedom [81] . Each of the 23 possible branches ("rays") of 

the star contains the same amino acid type and the star centre is a non-amino acid vertex [82]. We 

used 20 groups for the standard amino acids (A, R, N, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, 

V), 2 groups with two nonstandard ones (U, O) and 1 group with four ambiguous amino acids (B, Z, 

J, X). Thus, the following information of the protein primary structure is encoded into the Star Graph 

connectivity: amino acid type, sequence and frequency.  

  



A protein can be represented by diverse forms of graphs, which can be associated with distinct 

distance matrices. The best method to create a standard Star Graph is described subsequently: each 

amino acid/vertex holds the position in the original sequence and the branches are labeled 

alphabetically by the 3-letter amino acid code. The graph is embedded if the initial sequence 

connectivity in the protein chain is included.  

 

Graphs are compared using the corresponding connectivity matrix, distance matrix and degree 

matrix. These matrices and the normalized ones are the basis of the TIs calculation. The calculation 

of the Star Graph TIs for the amino acid sequences was performed using the Sequence to the Star 

Networks (S2SNet) application [70]. This tool was programmed in Python/wxPython [83] and has a 

Graphviz [84] plotting back-end. The TIs are calculated using the embedded and non-embedded Star 

graphs, without weights, using Markov normalization and a power of matrices/indices (n) up to 5. 

The following list depicts the S2SNet TIs [85]: 

 

 Trace of the n connectivity matrices (Trn): 

 

𝑇𝑟𝑛 = ∑ (𝑀𝑛)𝑖𝑖 ,
𝑖

 (1) 

 

where n = 0 – power limit, M = graph connectivity matrix (i
*
i dimension); ii = i

th
 diagonal 

element; 

 

 Harari number (H): 

 

𝐻 = ∑ 𝑚𝑖𝑗/𝑑𝑖𝑗 ,
𝑖<𝑗

 (2) 

 

where dij are elements of the distance matrix and mij are elements of the M connectivity matrix; 

 

 Wiener index (W): 

 

𝑊 = ∑ 𝑑𝑖𝑗 ,
𝑖<𝑗

 (3) 

 

 Gutman topological index (S6): 

 

𝑆6 = ∑ 𝑑𝑒𝑔𝑖 ∗  𝑑𝑒𝑔𝑗/ 
𝑖𝑗

𝑑𝑖𝑗 , (4) 

 

where degi are the elements of the degree matrix; 

 

 Schultz topological index (nontrivial part) (S): 

 

𝑆 = ∑ (𝑑𝑒𝑔𝑖 + 𝑑𝑒𝑔𝑗) ∗ 𝑑𝑖𝑗 ,
𝑖<𝑗

 (5) 

 

 Balaban distance connectivity index (J): 

 

𝐽 = (𝑒𝑑𝑔𝑒𝑠 − 𝑛𝑜𝑑𝑒𝑠 + 2) ∗ ∑ 𝑚𝑖𝑗  ∗sqrt
𝑖<𝑗

(∑ 𝑑𝑖𝑘  ∗ ∑ 𝑑𝑘𝑗
𝑘𝑘

), (6) 

 

where nodes + 1 = AA numbers/node number in the Star Graph + origin, ∑ 𝑑𝑖𝑘 ,𝑘  k--,d-ik...is the 

node distance degree; 

  



 Kier-Hall connectivity indices (
n
X): 

 

 0𝑋 = ∑ 1
𝑖

 / sqrt(𝑑𝑒𝑔𝑖), (7) 

  

 2X = ∑ mij  
∗mjk  /  sqrt(degi  

∗degj  
∗degk)

i<j<k
, (8) 

  

 3X = ∑ mij 
∗mjk

i<j<k<m
 ∗mkm / sqrt(degi 

∗degj 
∗degk ∗degm), (9) 

  

 4X = ∑ mij 
∗mjk ∗mkm ∗mmo / sqrt(degi 

∗degj 
∗degk ∗degm ∗dego),

i<j<k<m<o
 (10) 

  

 5X = ∑ mij 
∗mjk ∗mkm ∗mmo  

∗moq
i<j<k<m<o<q

/ sqrt(degi 
∗degj 

∗degk ∗degm ∗dego ∗degq), 
(11) 

 

 Randic connectivity index (
1
X): 

 

 1𝑋 = ∑ 𝑚𝑖𝑗/
𝑖𝑗

sqrt(𝑑𝑒𝑔𝑖  ∗𝑑𝑒𝑔𝑗), (12) 

 

These Tls and other derivate ones will be used in the next step to create an antioxidant 1 non-

antioxidant classification model using Machine Leaming methods.  

2.3. Support Vector Machines  

Vapnik introduces Support Vector Machines (SVMs), a kernel based learning algorithms, in the 

late 1970s on the foundation of a statistical learning theory [86], using the Structural Risk 

Minimization (SRM) principle which minimizes the generalization error (i.e. true errors on unseen 

examples). The basic implementation deals with two-class problems in which data are separated by a 

hyperplane defined by a number of support vectors. This hyperplane separates the positive from the 

negative examples, to be oriented in such a way that the distance between the boundary and the 

nearest data point in each class is maximal; the nearest data points are used to define the margins, 

known as support vectors [87]. Support vectors are a subset of training data used to define the 

boundary between the two classes. These classifiers have also proven to be exceptionally efficient in 

classification problems of higher dimensionality [88]. SVM uses different nonlinear kernel functions, 

like polynomial, sigmoid and radial basis function (RBF) which yields better prediction performance 

[89], where the nonlinear SVM maps the training samples from the input spaces into a higher 

dimensional feature space via a mapping function [87, 90]. Gunn introduced SVMs as an effective 

technique for solving both classification and regression problems. The main characteristics of SVMs 

[91] are the following: 

 

 The ability of SVMs to learn can be independent of the feature space dimensionality under small 

training sample conditions.  

 

 SVMs are formulated as a quadratic programming problem; it gives a global optimum solution. 

 

 They are robust to outliers. Using the margin parameter C, SVMs control the misclassification 

error and prevent the effect of outliers.  

 

 They can model nonlinear functional relationships that are difficult to model with other 

techniques.  

  



3. RESULTS  

The dataset used in this paper is made up of 2,503 protein sequences, out of which 413 have 

proved to have the molecular function of transporters (positive group) with maximum identity of 

30%. The remaining 2,090 proteins (negative group) are sequences from the CulledPDB server with 

identity less than 20%, without the transporter function. In order to resample this dataset, a synthetic 

minority oversampling technique [92] can be applied in Weka. These protein sequences have been 

processed with the S2SNet application [70] in order to obtain the different topological indexes used 

in this study. Specifically, from each sequence 42 attributes are calculated for the corresponding 

embedded/nonembedded Star Graph as shown in Table l. 

Table l. Attributes Extracted from Embedded/Non-Embedded Star Graph. 

 Attributes (Tis) 

 Non-embedded  Embedded 

    

Sh Sh0,Shl, Sh2, Sh3,Sh4, Sh5  eSh0, eShl, eSh2,eSh3, eSh4, eSh5 
Tr Tr0, Tr2, Tr4  eTr0, eTr2, eTr3, eTr4, eTr5 

X X0, X1R, X2, X3 , X4 , X5  eX0, eX1R, eX2, eX3, eX4, eX5 

Remaining H, W, S6, S, J  eH, eW, eS6, eS, eJ 
    

 

Table 2 shows the results of the different classification models tested, considering all the 

attributes extracted from tl1e Star Graph (42 attributes). This table presents for each model the 

classification scores obtained for the different classes, true and false positive rates (TP/FP Rates), as 

well as F-measure, the ROC values for both training and validation and the number of attributes that 

were considered. The SVM implementation [93] in Weka seems to be the best model because it 

obtains an AUC-ROC value of 0.911 with 42 features. For this model, the regularization parameter is 

set to 10; the kernel function used was Gaussian (RBF) with gamma set to 10. 

Table 2. Classification Model Results. 

Training  Validation 

 
TP 

Rate 

FP 

Rate 
F-Measure 

ROC 

Area 
 

TP 

Rate 

FP 

Rate 
F-Measure ROC Area 

No. of 

Features 

           

SVM 0.833 0.167 0.833 0.909  0.832 0.167 0.832 0.911 42 

MLP 0.607 0.393 0.593 0.633  0.649 0.359 0.643 0.677 42 

NB 0.603 0.396 0.595 0.628  0.614 0.395 0.606 0.654 42 
RF 0.810 0.190 0.809 0.891  0.812 0.185 0.812 0.898 42 

LL 0.616 0.384 0.613 0.616  0.655 0.350 0.653 0.653 42 

J48 0.682 0.318 0.682 0.734  0.691 0.310 0.691 0.739 42 
           

 

In order to reduce the number of features necessary to classify proteins in transport/non-transport, 

we performed three types of techniques for feature selection.  

  



Technique 1: In Table 1, we presented the grouping of the variables corresponding to the 

embedded and non-embedded Star graphs. In addition, each one of them is divided into different 

subsets: a subset called Sh, which includes the attributes related to the entropy; a subset called Tr, 

which includes the attributes related to the traces; a subset called X, which includes the attributes 

related to the polygon indexes; and the remaining attributes regarding the general shape of the 

graphs. We have performed different experiments with these subsets separately and in combination 

with the others with the best technique (SVM) shown in Table 2. Results are shown in Table 3. Using 

22 variables, all embedded, SVM obtained an AUC-ROC value of 0.894 with a false positive rate of 

0.18. Using 20 variables, Tr and X subsets, the model obtained an AUC-ROC value of 0.89 with a 

false positive rate of 0.166. Both are very close to the best result comparing the AUC-ROC values, 

but both also have a slightly higher false positive rate.  

Table 3. Feature Selection Grouping by Membership and Using Weka 's Classifler Subset Evaluator. 

Training  Validation 

 
TP 

Rate 

FP 

Rate 
F-Measure 

ROC 

Area 
 

TP 

Rate 

FP 

Rate 
F-Measure 

ROC 

Area 

Feat. 

No. 

           

All 0.833 0.167 0.833 0.909  0.832 0.167 0.832 0.911 42 
All emb 0.831 0.199 0.801 0.873  0.818 0.180 0.818 0.894 22 

All non-emb 0.708 0.292 0.708 0.767  0.711 0.287 0.711 0.765 20 

Sh emb 0.614 0.386 0.613 0.660  0.632 0.371 0.631 0.688 6 
Sh non-emb 0.636 0.364 0.636 0.680  0.649 0.355 0.647 0.702 6 

Sh & Tr emb 0.768 0.232 0.768 0.844  0.785 0.212 0.784 0.861 11 

Sh & Tr non-
emb 

0.591 0.322 0.621 0.701  0.652 0.351 0.651 0.705 9 

Sh & Tr 0.840 0.231 0.812 0.870  0.806 0.194 0.806 0.874 20 

Sh 0.650 0.350 0.650 0.703  0.659 0.343 0.659 0.724 12 
Sh & X emb 0.655 0.345 0.655 0.712  0.650 0.352 0.650 0.713 12 

Sh & X non-

emb 

0.673 0.327 0.673 0.730  0.686 0.315 0.686 0.736 12 

Sh & X 0.718 0.282 0.718 0.781  0.723 0.276 0.723 0.787 24 

Tr emb 0.736 0.264 0.736 0.799  0.741 0.257 0.741 0.818 5 

Tr non-emb 0.606 0.394 0.606 0.641  0.617 0.386 0.617 0.658 3 

Tr 0.757 0.243 0.756 0.822  0.770 0.227 0.770 0.843 8 

Tr & X emb 0.776 0.224 0.776 0.841  0.793 0.205 0.793 0.866 11 

Tr & X non-
emb 

0.639 0.361 0.639 0.701  0.646 0.355 0.646 0.703 9 

Tr & X 0.813 0.187 0.814 0.885  0.832 0.166 0.831 0.890 20 

X emb 0.630 0.370 0.630 0.676  0.627 0.377 0.625 0.674 6 
X non-emb 0.633 0.367 0.633 0.683  0.634 0.369 0.633 0.687 6 

X 0.691 0.332 0.681 0.720  0.664 0.335 0.664 0.723 12 

           

 

Technique 2: In Weka, there is a classifier subset eva1uator. This technique evaluates attribute 

subsets on training data or a separate hold out testing set using a 1 0-fold cross validation, and it uses 

a classifier to estimate the merit of a set of attributes. In this case, this technique obtained a solution 

with 27 variables, an AUC-ROC value of 0.909 and a false positive rate of 0.161. In this case, the 

solution has an AUC-ROC value very similar to the best model in Table 2 and it uses only 27 

variables. Results are shown in Table 4.  

Table 4. Feature Selection Results Using Technique 2. 

Training  Validation 

 TP 

Rate 

FP 

Rate 

F-Measure ROC 

Area 

 TP 

Rate 

FP 

Rate 

F-Measure ROC 

Area 

No. of 

Features 

           
SVM 0.827 0.173 0.827 0.902  0.866 0.161 0.866 0.909 27 

           



The final model contains the following embedded and non-embedded Tls: Sh0, Sh1, Sh3, Sh4, 

Tr0, Tr2, H, W, S6, S, J, X1R, X3, X4, X5, eSh2, eSh5, eTr0, eTr2, eTr3, eTr4, eTr5, eH, eS6, eX1R, 

eX3 and eX5.  

 

Technique 3: SVM seems to be the fittest model according to results in Table 2. There is a 

technique for feature selection using SVMs known as Support Vector Machine Recursive Feature 

Elimination (mSVM-RFE), the output is a feature ranking. SVM-RFE is an iterative algorithm that 

works backwards an initial set of features [94]. At each round this algorithm fits a simple linear 

SVM, ranks the features based on their weights in the SVM solution and eliminates the feature with 

the lowest weight. mSVM-RFE [95] extends this idea by using resampling techniques at each 

iteration to stabilize the feature ranking; in this work we use a 10-fold cross validation to this end. We 

estimate the generalization error and use it because when feature selection is performed on a data set 

with many features, it will pick some features that will be generalized, but it will also pick some 

useless features. Feature ranking is shown in Table 5. In this case, the features will give good 

performance if the error is estimated from this training set itself; Guyon et al. originally made this 

mistake, but this issue is outlined in Ref. [96]. Finally, we estimate the generalization error we can 

expect if we were to train a final classifier using the ranking of features for each of the 10 training 

sets. Generalization error for 20 variables is shown in (Fig. 4).  

Table 6. mSVM-RFE Feature Selection Results. 

Average Ranking Value Attributes 

  

Lower than or equal to 15 
eTr4(5.1), eX5(5.1), J(5.2), eTr5(5.2), eTr3(5.7), Shl(8.0), X5(8.8), XIR(9.2), eJ(10.0), 

eShl(10.9), X0(12.5), S6(13.2), eSh2(13.3), Tr2(14.7), eTr2(15.0) 

Higher than 15 

eS(16.9), Sh0(18.9), Tr0(19.8), W(19.9), eH(20.7), eX3(22.7), Tr4(23.5), Sh5(24.5), Sh4(25.1), 

eX2(25.1), eSh4(26.2), Sh2(26.3), eSh3(26.9), eW(27.7), eSh0(29.6), eTr0(30.3), X3(30.9), 
X2(31.9), S(32.0), eX4(33.0), eX0(33.8), eS6(33.9), eX1R(33.9), eSh5(35.3), H(35.9), 

X4(37.1), Sh3(39.3) 

  

 

 
 

 
Fig. (4). Generalization error for the 20 first attributes in the ranking. 

  



mSVM-RFE feature selection used a Radial Basis Function (RBF) kernel SVM and a grid search 

for SVM parameters (cost and gamma) and it was carried out a 10-fold cross validation error 

estimation. The optimal parameters were used to train the SVM on the entire training set and the 

generalization error was determined by predicting the corresponding test set. Results are shown in 

Table 6. We evaluate the top 10, 15, 20 and 2 7 features from the ranking and the top 10, 15 features 

from the embedded and non-embedded feature groups. We use R [97], a free software environment 

for statistical computing and graphics and an mSVM-RFE implementation 

(http://www.colbyimaging.com/wiki/statistics/msvm-rfe). 

Table 6. mSVM-RFE Feature Selection Results. 

  Training  Validation 

No. of 

Attr. 
Type 

TP 

Rate 

FP 

Rate 
F-Measure 

ROC 

Area 
 

TP 

Rate 

FP 

Rate 
F-Measure 

ROC 

Area 

           

10 Rank 0.798 0.203 0.797 0.870  0.813 0.183 0.813 0.881 
15 Rank 0.808 0.192 0.808 0.884  0.824 0.173 0.824 0.894 

20 Rank 0.809 0.191 0.809 0.888  0.830 0.167 0.830 0.900 

27 Rank 0.824 0.176 0.824 0.899  0.836 0.162 0.836 0.906 
10 Embedded 0.779 0.221 0.778 0.845  0.806 0.191 0.806 0.867 

15 Embedded 0.785 0.215 0.785 0.858  0.807 0.191 0.807 0.883 

10 
Non-

embedded 
0.667 0.333 0.677 0.730  0.684 0.314 0.684 0.743 

15 
Non-

embedded 
0.694 0.306 0.694 0.751  0.692 0.307 0.692 0.754 

           

 

These three techniques for feature selection place the accurate number of attributes for solving 

this problem between 20 and 27. There are hardly differences in the AUC-ROC between them; in 

order to select the best technique and model we are going to observe the combination of AUCROC, 

false positive rate and feature number combination, to assert that the 20 first variables in the mSVM-

RFE ranking are the best subset of attributes to solve this problem. As you can see in Table 5, the 

final model contains the following embedded and non-embedded Tls: eShl, eSh2, eTr2, eTr3, eTr4, 

eTr5, eX5, eH, eJ, eS, Sh0, Shl, Tr0, Tr2, W, J, S6, X0, X1R, X5. 

4. DISCUSSION 

This paper presents the first theoretical model designed to identify proteins that have transport 

activity by using Star Graph Tls obtained from protein amino acid sequences (primary structure). 

SVM seems to be the most accurate model to solve this problem according to the results that reveal 

the effectiveness of this technique in predicting transport proteins. Three different feature selection 

techniques were performed in order to reduce the dimensionality of the problem. There are hardly 

differences in the AUC-ROC between these techniques, but mSVM-RFE gives the best results due to 

the lowest number of variables (20) and false positive rate combination. These results can help in the 

prediction of new drug transporters using peptide amino acid sequences with unknown biological 

functions as a first step of molecular screening in drug metabolism studies.  
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