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Resumo

Hoxe en dı́a atopámonos soterrados nunha morea de datos. Isto cambiou fundamentalmente

a forma na que a información é compartida e puxo de manifesto a necesidade de desenvolver

novos métodos eficientes para o procesamento e o almacenamento de grandes cantidades de

datos. A aprendizaxe computacional é a área da intelixencia artificial dedicada a estudar algo-

ritmos que poden aprender a partir dos datos, facer previsións ou crear representacións precisas

con base nas observacións. Neste contexto, no cal o número de datos crece máis rápido que

a velocidade dos procesadores, a capacidade dos algoritmos de aprendizaxe máquina tradi-

cionais vese limitada polo tempo de computación e non polo tamaño da mostra. Ademais,

cando se trata de grandes cantidades de datos, os algoritmos de aprendizaxe poden dexenerar

o seu rendemento debido ó sobreaxuste e a súa eficiencia decae segundo o tamaño. Polo tanto,

a escalabilidade dos algoritmos de aprendizaxe xa non é unha caracterı́stica desexable senón

que se trata de unha propiedade fundamental cando se traballa con conxuntos de datos moi

grandes. Existen basicamente tres enfoques diferentes para garantir a escalabilidade dos algo-

ritmos namentres os conxuntos de datos seguen a medrar en tamaño e complexidade: apren-

dizaxe en tempo real, aprendizaxe non iterativa e aprendizaxe distribuı́da. Esta tese presenta

novos métodos de aprendizaxe computacional escalables e eficientes seguindo os tres enfo-

ques anteriores. En concreto, desenvólvense catro novos algoritmos: (1) O primeiro método

mistura selección de caracterı́sticas e clasificación en tempo real, a través da adaptación dun

filtro convencional e da modificación de un algoritmo incrementábel baseado nunha rede de

neuronas de unha capa: (2) O seguinte é un novo clasificador uniclase con base nunha función

de custo non iterativa para redes de neuronas autoasociativas que leva a cabo a redución da

dimensionalidade na capa oculta pola técnica de Descomposición en Valores Singulares. (3)

O terceiro método é un novo clasificador uniclase baseado no convex hull para conxuntos de

datos distribuı́dos que reduce a dimensión dos datos do problema e, polo tanto, a complexi-

dade, utilizando proxeccións aleatorias. (4) Por último, preséntase unha versión incremental

do algoritmo de clasifición uniclase anterior.
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Resumen

Actualmente nos encontramos sumidos en una avalancha de datos. Este hecho ha modificado

fundamentalmente la manera en que se comparte la información y ha puesto de manifiesto la

necesidad de desarrollar nuevos métodos eficientes para procesar y almacenar grandes canti-

dades de datos. El aprendizaje computacional es el área de la inteligencia artificial dedicada

a estudiar algoritmos que puedan aprender a partir de los datos, hacer predicciones o crear re-

presentaciones exactas basadas en las observaciones. En este contexto, en el que el número de

datos crece más rápido que la velocidad de los procesadores, la capacidad de los algoritmos

tradicionales de aprendizaje máquina se encuentra limitada por el tiempo de computación y

no por el tamaño de la muestra. Además, al tratar con gran cantidad de datos, los algoritmos

de aprendizaje pueden degenerar su rendimiento debido al sobreajuste y su eficiencia decae de

acuerdo con el tamaño. Por lo tanto, la escalabilidad de los algoritmos de aprendizaje ha de-

jado de ser una caracterı́stica deseable de los algoritmos de aprendizaje para convertirse en una

propiedad crucial cuando se trabaja con conjuntos de datos muy grandes. Existen, básicamente,

tres enfoques diferentes para asegurar la escalabilidad de los algoritmos a medida que los con-

juntos de datos continúan creciendo en tamaño y complejidad: aprendizaje en tiempo real,

aprendizaje no iterativo y aprendizaje distribuido. Esta tesis desarrolla nuevos métodos de

aprendizaje computacional escalables y eficientes siguiendo los tres enfoques anteriores. Es-

pecı́ficamente, se desarrollan cuatro nuevos algoritmos: (1) El primero combina selección de

caracterı́sticas y clasificación en tiempo real, mediante la adaptación de un filtro clásico y la

modificación de un algoritmo de aprendizaje incremental basado en una red neuronal de una

capa. (2) El siguiente consiste en nuevo clasificador uniclase basado en una función de coste

no iterativa para redes neuronales autoasociativas que lleva a cabo la reducción de dimension-

alidad en la capa oculta mediante la técnica de Decomposición en Valores Singulares. (3) El

tercer método es un nuevo clasificador uniclase basado en el cierre convexo para entornos de

datos distribuidos que reduce la dimensionalidad del problema y, por lo tanto, la complejidad,

mediante la utilización de proyecciones aleatorias. (4) Por último, se presenta una versión

incremental del anterior algoritmo de clasificación uniclase.
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Abstract

Nowadays we are engulfed in a flood of data. This fact has fundamentally changed the ways

that information is shared, and has made it clear that efficient methods for processing and

storing vast amounts of data should be put forward. Computational learning theory is the area

of artificial intelligence devoted to study algorithms aim at learning from data, making accurate

models based on observations. In this context, where data has grown faster than the speed

of processors, the capabilities of traditional machine learning algorithms are limited by the

computational time rather than by the sample size. Besides, when dealing with large quantities

of data, learning algorithms can degenerate their performance due to over-fitting and their

efficiency declines in accordance with size. Therefore, the scalability of the learning algorithms

has turned from a desirable property into a crucial one when very large datasets are envisioned.

There exists, basically, three intersecting approaches to ensure algorithms scalability as datasets

continue to grow in size and complexity: online learning, non-iterative learning and distributed

learning. This thesis develops new efficient and scalable machine learning methods following

the three previous approaches. Specifically, four new algorithms are developed. (1) The first

one performs online feature selection and classification at the same time, by the adaptation of a

classical filter method and the modification of an online learning algorithm for one-layer neural

network. (2) The next one is a new fast and efficient one-class classifier based on a non-iterative

cost function for autoassociative neural networks that performs dimensionality reduction in the

hidden layer by means of Singular Value Decomposition. (3) The third method is a new one-

class convex hull-based classifier for distributed environments that reduces the dimensionality

of the problem and hence the complexity by means of Random Projections. (4) Finally, an

online version of the previous one-class classification algorithm is presented.
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CHAPTER1
Introduction

In 2011, according to the International Data Corporation (IDC), the overall data volume in the

world was 1.800 exabytes. From then until 2020, this amount will double every other two years

[29, 42]. Nowadays we are engulfed in a flood of data. In general, this explosive increase of

data volume has fundamentally changed the ways that information is shared, and has made

it clear that efficient methods for processing and storing vast amounts of data should be put

forward. Besides, its automatic analysis (data analytics) has become an emerging economic

and scientific opportunity. For example, big data is fundamentally changing the way busi-

nesses operate. Companies that invest in and successfully acquire value from their data have

an obvious advantage over their competitors. Scientific research has also been revolutionized

in many fields such as astronomy, bioinformatics, intrusion detection in computer networks,

text classification or engineering problems in which the size and number of available datasets

is increasing exponentially.

Computational learning theory is an area of artificial intelligence devoted to study the de-

sign, development and analysis of machine learning algorithms. In particular, such algorithms

aim at learning from data, making accurate predictions or representations based on observa-

tions. In this context, where data has grown faster than the speed of processors, the capabilities

of machine learning algorithms are limited by the computational time rather than the sample

size [16]. A database is considered of large size when: the number of samples is very high; the

number of features is very high; or the number of samples and features are very high. Learning

methods struggle when dealing with databases with around 10.000.000 data (being data sam-

ples × features). In this thesis we will adopt the term large-scale datasets to refer to those high

dimensional databases where the number of samples is considerably higher than the number of

features.

In theory, it seems logical that having more information leads to better results. However,

this is not always the case due to the so-called curse of dimensionality [5]. This phenomenon

happens when the dimensionality increases and the time required by the computational lear-

ning algorithm to train increases drastically. Besides, when dealing with high amounts of data,

1



Chapter 1. Introduction

learning algorithms can degenerate their performance due to over-fitting and its efficiency de-

clines in accordance with size. Therefore, the scalability of the learning algorithms has turned

from a desirable property into a crucial one when one envisions very large datasets.

Two of the most common tasks in machine learning, the ones in which this thesis is fo-

cused, are [10]: 1) classification, where the algorithm assigns unseen samples to a series of

categories; and 2) dimensionality reduction, where samples are downsized by mapping them

to lower dimensional spaces. According to the nature of the available learning datasets, the

previous tasks can also be classified in: (a) supervised learning, where all data is labeled and

the algorithms learn to predict the output from the input data; (b) unsupervised learning, where

all data is unlabeled and the algorithms learn the inherent structure from the input data; and (c)

semi-supervised learning, where some data is labeled but most of it is unlabeled and a variety

of supervised and unsupervised techniques can be employed.

When dealing with large databases, an essential aspect is to prepare the data adequately to

be processed by the learning algorithms. This has triggered the use of dimensionality reduction

procedures as a preprocessing step in order to reduce the dimensionality of data and improve the

performance of learning algorithms. It may sound strange to apply dimensionality reduction

techniques when datasets have a high number of samples but not of features. However, this

methods have proven to be effective in this situation, since they aim at reducing the processing

time as well as improving the performance of machine learning algorithms. There are basically

two types of dimensionality reduction techniques:

• Feature extraction [46, 78] is a process that creates a new set of features from the original

ones through some functional mapping into lower dimensions. It is usually considered as

a preprocessing transformation that alters the dimensionality of the problem by reducing

it. The main advantages of using feature extraction are the reduction of the algorithm

complexity and the savings in computational time. Besides, the new compact set of fea-

tures helps in the visualization of the data and can provide stronger discriminating power.

However, the transformation applied to the original set of features limits the applicabi-

lity of this techniques to problems where model accuracy is more important than model

interpretability. One of the most widely used method is Principal Components Analy-

sis (PCA). It is a statistical tool, which is useful to extract dominant features (principal

components) from a set of multivariate data [121]. Feature extraction is common in

applications such as signal processing, information retrieval and image processing. In

the third and fourth chapters of this thesis two general purpose dimensionality reduction

techniques such as Singular Value Decomposition (SVD) [34] and Random Projections
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[7] have been used, respectively.

• Feature selection [149] is intended for detecting the relevant features and removing the

irrelevant and redundant ones, which implies savings in storage requirements and com-

putational complexity, improving the efficiency of learning algorithms. Feature selection

methods can be classified in many ways. One of the most common is the classification

into filters, wrappers, embedded, and hybrid methods. There exists a large amount of

feature selection methods for supervised and unsupervised types of problems. Examples

of very popular algorithms (mainly filters) are: Information Gain [104], Correlation-

based Feature Selection (CFS) [49], ReliefF [70] and SVM-RFE (embedded method)

[47]. These techniques have been widely used in many application fields such as text

mining, image processing, fault diagnosis and bioinformatics [59]. Unlike feature ex-

traction, feature selection preserves the original features, which is interesting when these

are needed for interpreting the learned model. In the first part of this thesis we will

focus on the well-known χ2 filter [77], as it is inherently incremental and algorithm-

independent. These properties make it computationally simple and fast, being able to

handle extremely large-scale datasets.

Classification, the other problem treated in this thesis, is an area of machine learning con-

cerned with identifying the category of a new observation. Traditional methods have employed

all data classes to build discriminatory models. Some well-know examples of these techniques

are: Artificial Neural Networks (ANNs), Decision Trees and Support Vector Machines (SVMs)

[71]. Such supervised methods assume previous knowledge of the class for every dataset sam-

ple used to learn the model. However, in real world scenarios that is not always the case.

Nowadays, in many fields, the large amounts of data make it impossible for humans to ma-

nually label the class for each sample. Hence, unsupervised or semi-supervised classification

is needed. A particular case that has seen a rise in the last years is one-class classification,

where it is only possible to have data from one class (normal or target class) to train; data from

other classes, outlier classes, is very difficult to obtain. The scarcity of outlier examples can

be due to several reasons, such as high costs to gather them or the low frequency at which this

kind of events occur. This situation is common in a wide variety of real problems such as fault

detection in industrial machinery, medical diagnostic, intrusion detection in security systems,

video surveillance and document classification, for example. As a result, one-class learning

algorithms only use data from a single class to build a model and their goal is to identify data

from that class and reject data from all other classes. Examples of classical one-class classifi-

cation methods are: Parzen Density Estimation (PDE) [84], Minimum Spanning Trees (MST)

[60] and Support Vector Data Description (SVDD) [128].
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Chapter 1. Introduction

A common scenario in machine learning is the application, as a preprocessing step, of

feature selection or feature extraction techniques to classification problems. That is one of the

premises for the methods developed in this thesis. The other premise is that this new methods

should be scalable and should improve the performance of classical approaches in this new big

data scenario. There exists a field in machine learning devoted to this task: large-scale learning.

1.1 Large-scale learning

Traditional machine learning algorithms were designed to extract the most information from

the limited amount of data available. However, nowadays, data is being collected at an un-

precedented fast pace that the new limiting factor is the inability of learning algorithms to deal

with such amounts of data, sometimes distributed in several databases, in a reasonable com-

putational time. For the sake of handling this new situation a new field in machine learning

has emerged: large-scale learning [16, 119], concerned with the development of scalable lear-

ning algorithms with regard to requirements of computational complexity, memory and time.

In recent years, large-scale learning has attracted a great deal of attention. Many publications

[111, 143] and even workshops, such as the PASCAL Large Scale Learning Challenge [118],

were concerned with the efficiency and scalability of classical learning algorithms with respect

to computational and storage resources.

There exists, basically, three intersecting approaches to ensure algorithms scalability as

datasets continue to grow in size and complexity [146]: 1) online learning, 2) non-iterative

learning and 3) distributed learning. These three topics will be covered independently in each

of the three main parts in which this thesis is divided and so they have been made as self-

contained as possible. Before diving into the specific details of each one, in this introduction a

brief insight of the main intentions of the present work in each field is given.

1.1.1 Online learning

Network event logs, telephone call records and surveillance video streams are examples of data

streams that flow constantly. Traditional batch learning approaches cannot manage this kind

of data, as they create their models by learning on the entire dataset at once. Thus, in order

to deal with this situation, algorithms capable of learning one instance at a time are needed.

The artificial intelligence field devoted to learn on streaming data is called online learning.
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1.1 Large-scale learning

This field has become a trending area in the last few years since it allows to learn a model

in an incremental manner. It has been mostly used in those situations in which data becomes

available sequentially or it is computationally unfeasible to train over the entire dataset [136].

It is also a useful technique in situations where it is necessary for the algorithm to dynamically

adapt to changes in the underlying distribution of data (concept drift) or when data itself is

generated as a function of time, e.g. stock price prediction. For these reasons, advances in this

field have recently appeared.

Novel online dimensionality reduction techniques are been proposed and research fields

such as online feature selection (OFS) are hot topics at the present time [95, 137, 141]. OFS

is very useful when a concept drift appears, as this phenomenon may provoke that the relevant

set of features changes over time. In spite of the recent progress, online feature selection has

not evolved in line with online classification methods. Therefore, in the second chapter of the

thesis, we review the problematic of online learning, especially regarding the combination of

online feature selection and classification, and propose a novel pipeline that efficiently address

both tasks. The new method performs online feature selection and classification at the same

time, by the adaptation of a classical filter method and the modification of an online algorithm

for one-layer neural network.

1.1.2 Non-iterative learning

Traditionally, learning algorithms operate with all data stored in main memory. When the

complexity of the algorithm surpasses the computational resources then the algorithm does not

scale well. Furthermore, many classical machine learning algorithms, specially those based on

Artificial Neural Networks (ANNs), adjust their free parameters through an iterative training

procedure that is repeated over time in order to reduce the model error to a minimum. Most of

these iterative methods are based on backpropagation [108] and second-order approaches [93,

116]. Nowadays, large-scale datasets render some iterative training algorithms inapplicable

due to their high computational requirements and low convergence speed.

In such cases, the most straightforward solution is to create more efficient methods or

increase the efficiency of the existing ones by, for example, simplifying the functions that are

trying to be optimized by the learning process. Another way to reduce the complexity of classi-

cal iterative-based methods relies on the development of new non-iterative training algorithms

to adjust the parameters. However, non-iterative approaches are scarce in the literature, with

just a few salient contributions for ANNs [105, 112, 135]. One of those traditional learning
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Chapter 1. Introduction

methods that suffer the consequences of very large datasets is the autoencoder [138]. This

is a neural network approach for one-class classification that has been successfully applied

in many applications fields in the past. However, this classifier relies on traditional iterative

learning algorithms to train the network, which is quite time-consuming.

In the third chapter of the thesis, to tackle the slow learning speed in traditional autoencoder,

a new fast and efficient one-class classifier based on a non-iterative cost function is presented.

Another interesting characteristic of the proposed method is that it allows dimensionality re-

duction in a very efficient way, extracting meaningful low-dimensional representation by means

of the Singular Value Decomposition technique. Furthermore, this method can be parallelized,

which makes it more scalable and efficient when dealing with large-scale datasets.

1.1.3 Distributed learning

In general, the advent of big data has contributed to the proliferation of big databases, usu-

ally distributed, which automatic analysis is of high interest. However, most existing learning

algorithms cannot handle this circumstance. The great majority of them require gathering the

several partitions of data in a single node for central processing. However, there exist situations

in which this approximation is unfeasible or ineffective [131] since:

• Storage cost. The necessary capacity of storage could not be available. For example, the

central storage of the data of all the hospitals from one country (medical images, patient

records, etc) would require a enormous data warehouse of huge cost.

• Communication cost. The cost of efficiently transfer through a network this enormous

volume of data.

• Computational cost. Learning algorithms can be unable to deal with such volumes of

data due to their memory or computational requirements.

• Private and sensitive data. The need of preserving the privacy of data makes impossible

to share them between distinct locations. Again, patient’s records are an example of data

that if shared through a network would put privacy into risk.

In order to give solutions to these new problems, a new field of research, distributed lear-

ning, has arisen. Distributed learning is drawing a lot of attention lately and is becoming one
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of the most promising research lines in machine learning. The problem with most of the exis-

tent distributed algorithms is that practically no one of them considers all already mentioned

restrictions and conditions that arise when working in these type of environments. That is even

more true in the case of one-class learning algorithms.

Therefore, in the fourth chapter of the thesis a new one-class convex hull-based classifi-

cation algorithm that can scale out over distributed architectures is proposed. This method

approximates the high dimensional convex hull decision by means of a dimensionality reduc-

tion technique (i.e. random projections) and an ensemble of convex hull decisions in very low

dimensions. Furthermore, a method to eliminate the less relevant and redundant random pro-

jections in order to obtain a lightweight ensemble model, more scalable and efficient. is also

proposed.

1.2 Objectives

The aim of this thesis is to develop new scalable and efficient algorithms that tackle two of the

most important stages of machine learning, i.e. data preprocessing by means of dimensionality

reduction and classification (especially one-class classification), so that they resolve all the

mentioned challenges that big data has introduced. The thesis is divided in three main parts

that are covered in the following three self-contained chapters. The objectives for each one of

them are described as follows:

1. Online learning.

• To analyze the fields of online feature selection and online classification.

• To fill the gap found in the literature and propose a method that efficiently combines

online feature selection and classification.

• To assess the performance and the characteristics of the proposed method.

• To analyze the characteristics of the proposed algorithm, as for example, the influ-

ence in the order of appearance of the data.

2. Non-iterative learning.

• To study the field of one-class classification.

• To adapt a classical iterative one-class algorithm for dealing with large-scale datasets.

7



Chapter 1. Introduction

• To achieve an improvement in the overall computational performance of the method,

while maintaining or improving the classification accuracy.

• To analyze the behavior of the algorithm, comparing its performance and scaling

properties.

3. Distributed learning.

• To study the new situation where large amounts of data are originally distributed.

• To analyze the state-of-the-art of one-class classification methods for distributed

environments.

• To propose a new distributed one-class algorithm that avoids all the problems that

gathering all the data into a unique node for processing will cause.

• To maintain or improve the classification performance obtained with the classical

monolithic approach.

• To assess the performance and the characteristics of the proposed method, compa-

ring its performance and scaling properties.

1.3 Outlook of this thesis

In this brief introduction we have presented the main topics to be discussed in this disserta-

tion. Chapter 2 gives an introduction to the online learning field and presents a novel unified

pipeline for online learning. Chapter 3 addresses the problem of one-class classification with

large-scale datasets and proposes a new scalable algorithm based on the classical autoencoder

neural network that efficiently performs dimensionality reduction and classification. Chapter 4

introduces the problem of distributed learning and presents a new one-class convex hull-based

classification algorithm for distributed environments. Finally, in chapter 5 the main conclusions

and contributions of this work are summarized.
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CHAPTER2
A Unified Pipeline for Online Learning:

Feature Selection and Classification

During the last years and with increasing frequency, real-time production systems generated

tremendous amount of data at unprecedented rates, such as network event logs, telephone call

records or sensoring and surveillance video streams. To deal with data streams that flow con-

tinuously, classical batch learning algorithms cannot be applied and it is necessary to employ

online approaches. Online data mining consists of continuously revise and refine a model by

incorporating new data as they arrive [136]. Note that any online method is inherently incre-

mental. This type of learning has been applied in fields such as classification of textual data

streams, financial data analysis, credit card fraud protection, traffic monitoring and predicting

customer behavior [36, 62, 136].

Most of these applications present a great challenge for machine learning researches due

to the high amount of data available. Theoretically, it could seem logical that having more

features could lead to better results, but this is not always the case due to the so-called curse of

dimensionality [5]. This phenomenon happens when the dimensionality increases and the time

required by the machine learning algorithm to train the data increases exponentially. To over-

come these problems, feature selection is a well-known dimensionality reduction technique.

Feature selection consists of selecting the relevant features and discarding the irrelevant ones

to obtain a subset of features that describes properly the problem with a minimum degradation

of performance [46].

A special case of feature selection is known as online feature selection [45, 95, 100, 137,

141], which can be very useful, being one of the most interesting when a concept drift appears.

This phenomenon is present in situations where the underlying data distribution changes. These

changes make the model built on old data inconsistent with the new data, and regular updating

of the model is necessary [132]. Applied to feature selection, a concept drift may cause that

the subset of relevant features changes over the time. In other words, as time goes by, different

sets of features become important for classification and some totally new features with high
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predictive power may appear. Online feature selection has been faced mostly individually,

i.e. by selecting features previously in a single step independent of the online machine learning

step, or performing online feature selection without performing online classification afterwards.

Notice that after an online feature selection process, where the set of relevant features changes

across the time, the subsequent classification algorithm has to be capable of updating its model

according not only to new samples but also to new features, making it harder to find available

methods that can cope with both requirements.

Therefore, in this chapter a new method that covers both online feature selection and online

learning is proposed. This proposal includes an algorithm that performs online feature selection

and classification at the same time, by modifying a classical well-known feature selection algo-

rithm and introducing a novel implementation for a classification learning algorithm. Among

the different feature selection methods available, a representative of so-called filter methods

was chosen [46] since they are known for being fast, simple, classifier-independent and having

a low computational cost [15]. Specifically, we reimplemented the χ2 metric [77], chosen be-

cause of its simplicity and effectiveness, as well as having some characteristics that make it

inherently incremental. However, this filter requires data to be discrete, and thus, well-known

k-means discretizer [81, 130, 134] was also adapted to make it incremental.

The last step of the proposed online pipeline requires an incremental classifier, however,

those available in the literature are incremental in the instance space, but not in the feature

space. Up to the authors’ knowledge, a complete pipeline as the one introduced here has

not been presented elsewhere. In fact, the popular machine learning tool Weka [48] provides

methods able to receive new instances, but they do not support different sets of features, perhaps

with different sizes, in each iteration. Thus, an online training algorithm for one-layer artificial

neural networks ANNs is also introduced in this chapter, which continuously adapts the input

layer to those features, that remind might vary in number, selected at each time. In order to

achieve this, a new implementation of a previously proposed algorithm [39], which reaches a

minimum error in a few epochs of training and exhibits a higher speed when compared to other

classical methods is presented. Moreover, the structure of this algorithm makes it suitable

for a dynamic input space, as happens when selecting features on-line. In this chapter, a novel

implementation, which continuously adapts the size of the input layer to those features selected

at each time is proposed. The contents of this chapter have been published in [13].

The remainder of this chapter is organized as follows: Section 2.1 summarizes the state

of the art in the field of online machine learning. Section 2.2 describes the method proposed

in detail. Section 2.3 and Section 2.4 describe the experimental settings and the obtained

results, respectively. Section 2.5 is focused on a case study about the influence of the order of
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occurrence of the samples (data order) on the performance of the pipeline. Finally, Section 2.6

sums up the contents of the chapter.
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Chapter 2. A Unified Pipeline for Online Learning:

Feature Selection and Classification

2.1 Background

Online learning has become a trending area in the last few years since it allows to solve di-

fficult problems such as concept drift or managing extremely high-dimensional datasets. For

this reason, advances in this field have recently appeared. However, online feature selection

has not evolve in line with online learning. Zhang et al. [148] proposed an incremental com-

putation feature subset selection algorithm which, originated from Boolean matrix technique,

selects useful features for the given data objective efficiently. Nevertheless, the efficiency of the

feature selection method has not been tested with an incremental machine learning algorithm.

Keerthika and Priya [63] examined various feature reduction techniques for intrusion detection,

where training data arrive in a sequential manner from a real time application. Katakis et al.

[62] mentioned the idea of a dynamic feature space. The features that are selected based on

an initial collection of training documents are the ones that are subsequently considered by the

learner during the operation of the system. However, these features may vary over time and

in some applications an initial training set is not available. In the approach presented inhere,

we are interested in flexible feature selection methods able to modify the selected subset of

features as new training samples arrive, in both subset size and specific features selected. It

is also desirable that these methods can be executed in a dynamic feature space that would

be empty at the beginning and add features when new information arrives (e.g. documents in

their text categorization application). Katakis et al. [62] applied incremental feature selection

combined with what they called a feature based learning algorithm to deal with online learning

in high-dimensional data streams. This framework is applied to a special case of concept drift

inherent to textual data streams, which is the appearance of new predictive words over time.

The problem with this approach is that they assume that features have discrete values. Perkins

et al. [99] presented a novel and flexible approach, called grafting, which treats the selection of

suitable features as an integral part of learning a predictor in a regularized learning framework.

To make it suitable for large problems, grafting operates in an incremental iterative fashion,

gradually building up a feature set while training a predictor model using gradient descent.

Perkins and Theiler [100] tackle the problem in which, instead of all features being available

from the start, features arrive one at a time. Online Feature Selection (OFS) assumes that,

for any reason, is not affordable to wait until all features have arrived before learning begins,

therefore one needs to derive a mapping function f from the inputs to the outputs that is as

“good as possible” using a subset of just the features seen so far. In [141], a promising alter-

native method, Online Streaming Feature Selection (OSFS), to online select strongly relevant

and non-redundant features is presented. Glocer et al. [45] demonstrated the power of OFS

in the image processing domain by applying it to the problem of edge detection. Mao et al.

[83] proposed a real-time compressive tracking algorithm based on online feature selection to
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address the problems of drifting and tracking lost caused by changes in the appearance of the

tracked object. The discriminating features selected are then integrated to construct a classifier

to carry out the tracking process. Nguyen et al. [95] presented an online unsupervised feature

selection method for background suppression in video sequences, that allows them to prune the

feature set avoiding any combinatorial search.

Finally, some other researches have been found in the literature comprising online feature

selection and classification. Kalkan and Çetisli [61] presented an online learning algorithm for

feature extraction and classification, implemented for impact acoustics signals to sort hazelnut

kernels. Levi and Ullman [74] proposed to classify images by ongoing feature selection. Ho-

wever, their approach only uses at each stage a small subset of the training data. Carvalho and

Cohen [24] performed online feature selection based on the weights assigned to each input of

the classifiers. Note, however, that this method is highly dependent on the classifier. Another

method that is strongly dependent on the classifier was presented by Wang et al. [137]. They

addressed two different tasks of OFS: 1) learning with full input, where the learner is allowed

to access all the features to decide the active ones, and 2) learning with partial input, where

only a limited number of features is allowed to be accessed for each instance by the learner.

In a recent work, Roy [106] proposed an interesting algorithm for streaming big data and for

highly parallel implementation on Apache Spark based on Kohonen networks. It examines

some streaming data to select the features with a high discriminative power and then uses those

features to learn pattern classifiers. Kohonen networks trained in the first phase are discarded

once features are selected.

Therefore online feature selection has been dealt with mostly on an individual basis, or

by performing online feature selection without subsequent online classification. In the few

researches that comprise online feature selection and classification, the methods proposed are

highly dependent on the classifier. Therefore, achieving real-time analysis and prediction for

high-dimensional datasets remains a challenge for computational intelligence on portable plat-

forms. The question now is to find flexible feature selection methods capable of modifying the

selected subset of features as new training samples arrive [12]. It is also desirable for these

methods to be executed in a dynamic feature space that would initially be empty but would

add or remove features as new information arrived (e.g., documents in their text categorization

application).

In light of the above, a unified pipeline that tries to fill the gap detected in the literature is

presented. On the one hand, this proposal is able to modify the selected subset of features as

new samples arrive (in both the number and the specific features selected) and, on the other

hand, the classifier included can be updated according not only to new samples but also to new
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features.

2.2 Description of the method

The proposed method consists of three independent stages that can be used alone or in a

pipeline, bearing in mind that the filter requires discrete data. Besides, we propose a general

method that could be applied to a wide range of problems. As explained before, the method in-

troduced in this research consists of three online stages: discretizer, filter and classifier. Figure

2.1 shows the flowchart of this method (parameters k and λ will be explained in the correspon-

ding subsections). Each step of the methodology and the reimplementation of the algorithms

will be following described in depth. Notice that not all the existing algorithms can be reimple-

mented to tackle online data, as they need to have some properties that make them inherently

incremental (remember that the classifier must be incremental not only in the samples space

but also in the feature space). For this reason, the methods chosen to be reimplemented are the

k-means discretizer, the χ2 filter, and a one-layer artificial neural network.

Discretizer

Filter

Select k

Select λ Classifier

Output

Data

Figure 2.1: Flowchart of the proposed method.

2.2.1 Discretizer

Many feature selection algorithms are shown to work on discrete data, as it is the case of the

filter selected in this work (χ2), therefore the first stage of the proposed method is devoted to

online discretization. However, due to the incremental nature of online learning, we cannot

assume a range of input values for each feature a priori. This fact prevents the use of well-
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known discretization algorithms such as entropy minimization discretization (EMD), equal

width discretization (EWD) or equal frequency discretization (EFD). For this reason, the k-

means discretization algorithm [130, 134] was chosen. K-means has been selected in Wu et

al. [142] as one of the most influential algorithms in data mining. This algorithm moves the

representative weights of each cluster along an unrestrained input space, making it suitable

for our purposes. It is important to note that each feature is discretized independently. This

clustering algorithm operates on a set of data points and assumes that the number of clusters

to be determined (k) is given. The partition is done based on certain objective function. The

most frequently used criterion function in k-means is minimizing the squared error ε criterion

between the centroids µi of clusters ci, i = 1, . . . ,k and the samples x in those clusters

ε = ∑
x∈ci

|x−µi|
2

Let C be the set of clusters and |C| its cardinality. For each new sample x, the discretizer

works as follows,

• If |C| < k and x /∈ C then C = {x}∪C, i.e. if the maximum number of cluster was not

already reached and the new sample is not in C, then create a new cluster with its centroid

in x.

• (else)

1. Find the closest cluster to x.

2. Update its centroid µ as the average of all values in that cluster (including x).

The method assigns at most k clusters. Notice that the number of clusters is the minimum

between the parameter k and the number of different values in the feature. It is important to

remark that in online methods there is no convergence criterion. The system is continuously

adapted while data arrives. In section 2.4 a discussion on the impact of k on the algorithm is

presented.

2.2.2 Filter

The χ2 metric [77] was chosen because it evaluates each feature based on cumulative statistics

concerning the number of times that it appears for a different class, which render it inherently
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incremental. So, in our reimplementation, when a new instance appears, the statistics are

updated and the evaluation can be calculated without the need of re-processing past data.

The χ2 method evaluates features individually by measuring their chi-squared statistic with

respect to the classes. The χ2 value of an attribute is defined as:

χ2 =
k

∑
i=1

c

∑
j=1

(Ai j −Ei j)
2

Ei j

(2.1)

where

Ei j = Ri ∗C j/S (2.2)

k being the number of intervals (number of different values in a feature), c the number of

classes, Ai j the number of samples in the i-th interval for the j-th class, Ri the number of

samples in the i-th interval, C j the number of samples in the j-th class, S the total number of

samples, and Ei j the expected frequency of Ai j. Note that the size of the matrices is related to

the number of intervals. In this manner, a very large k in the discretizer will lead to a very large

size of the matrices A and E. A very large matrix is computationally expensive to update and

should be taken into account for real-time applications.

After calculating the χ2 value of all considered features, these values can be sorted with

the largest one at the first position, as the larger the χ2 value, the more important the feature is.

This will provide an ordered ranking of features. To automatically select the important features

in an online manner a threshold needs to be added to the original algorithm. The problem of

selecting a threshold for rankers is still one of the open issues in Feature Selection research. At

present, there is not yet a general and automatic method that allows researchers to establish a

threshold for any given data set [15]. Some authors have tried some kind of automatic threshold

that is related with the means and variance of the weights obtained for the features in the rankers

[92], others with the largest gap between two consecutive attributes [89]. However, the most

frequent approach is to test the results of a classifier after retaining different percentages of the

ranked features [67], and thus the threshold should be tailored for the specific problem being

studied. In this research, we propose a threshold λ which works in the following way. On

each iteration, given the χ2 value for each feature, the mean and the standard deviation of these

values are computed. For each feature i and iteration t:
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• if χ2
i < mean−λ · std then the feature i is not selected

• if χ2
i > mean+λ · std then the feature i is selected

• otherwise, the feature i maintains the same state as in the previous iteration (note that the

initial set of features is the full set of features)

When λ is 0, the features selected in each iteration fluctuate significantly. On the other

hand, when λ tends to infinity, there is no feature selection process. A further discussion about

the impact of different values of λ can be found in section 2.4.2. Figure 2.2 shows an example

of the use of λ in the filter. In the current iteration, features with a χ2 value over mean+λ std

are selected (features 1, 2 and 9) while features with a χ2 value under mean− λ std are not

selected (features 3, 4, 5, 7, 8 and 10). Those features with a χ2 value between mean±λ std

maintains the same state as in the previous iteration. In this case, assuming that feature 6 was

selected in the previous iteration then it will be also selected now.
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Figure 2.2: Example of the use of λ in the feature selection process.

2.2.3 Classifier

For the classification step of our online pipeline, a one-layer artificial neural network was cho-

sen. Notice that in online applications, real-time response is often demanded. Thus, a light-

weight machine learning algorithm is an appropriate election. Moreover, the algorithm must

be incremental in both input and sample space, which is not a characteristic supported by most

of the available classification algorithms.
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In a previous work, an incremental training algorithm for one-layer ANNs [39], which

reaches a minimum error in a few epochs of training and exhibits a higher speed when com-

pared to other popular methods was presented. Besides these characteristics, the structure of

this algorithm makes it suitable for a dynamic input space, as it is the case in this research. A

new implementation is proposed herein, so as to be able to continuously adapt the input layer

to the features selected in each iteration. Our proposal is a one-layer neural network which is

fast and has the capability of adapting its number of inputs to the number of features that are

selected at a given step, adding or removing neurons as needed.

In a one-layer ANN (see Figure 2.3), the set of equations relating inputs and outputs is

given by

Figure 2.3: Architecture of a one-layer ANN.

y js = f j

(

I

∑
i=0

w jixis

)

; j = 1,2, . . . ,J;s = 1,2, . . . ,S (2.3)

where I,J,S are the number of inputs, outputs and training samples, respectively, x0s = 1, w ji

is the weight of the connection between the i-th input and the j-th output neuron, and f j is the

nonlinear activation function of j-th output neuron. The system described by Eq. 2.3 has J×S

equations in J×(I+1) unknowns. However, since the number of samples of data is often large

(S >> I +1) , in practice, this set of equations and w ji is overdetermined and has no solution.

Thus, as the errors ε js between the real (y js) and the desired output (d js) of the network are

defined by
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2.2 Description of the method

ε js = d js − y js = d js − f j

(

I

∑
i=0

w jixis

)

(2.4)

d js being the desired output for neuron j, and usually the sum of squared errors is minimized

to learn the weights w ji.

P =
S

∑
s=1

J

∑
j=1

ε2
js =

S

∑
s=1

J

∑
j=1

(

d js − f j

(

I

∑
i=0

w jixis

))2

(2.5)

However, if it is assumed that the nonlinear activation functions f j are invertible (as it is

the case for the most commonly used functions), alternatively, the system of equations in Eq.

2.4 can be rewritten in the following way [39]:

ε̄ js = d̄ js − z js = f−1
j (d js)−

I

∑
i=0

w jixis (2.6)

where d̄ js = f−1
j (d js) and z js = ∑i w jixis. Eq. 2.6 measures the errors in terms of the inputs

(xis). It is important to note that in Eq. 2.6 the unknowns (weights of the network) are not

affected by the nonlinear activation function f j, i.e. the error is linear with respect to weights.

Then, an alternative objective function is obtained to be minimized [39]:

Q =
S

∑
s=1

ε̄2
js =

S

∑
s=1

(

f−1
j (d js)−

I

∑
i=0

w jixis

)2

(2.7)

whose global minimum can be computed by solving the system of equations obtained by equa-

lizing its derivative to zero:

I

∑
i=0

Apiw ji = bp j (2.8)

where
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Api =
S

∑
s=1

xisxps f ′2j (d̄ js)

bp j =
S

∑
s=1

d̄ jsxps f ′2j (d̄ js)

(2.9)

For every output j, Eq. 2.9 has I + 1 linear equations and unknowns and, thereby, there

exists only one real solution which corresponds to the global optimum of the objective function.

Several computationally efficient methods can be used to solve this kind of systems with a

complexity of O(J × (I + 1)2), where I and J are the number of inputs and outputs of the

ANN, respectively [22, 11]. Furthermore, this training algorithm is able to learn incrementally

since the coefficients Api and bp j are calculated as a sum of terms (see Eq. 2.9). Due to the

commutative and associative properties of the sum, the same solution is obtained independently

of the order of occurrence of the samples.

The structure of the matrices A and b is also suitable for a dynamic space of input features.

On the one hand, removing a feature only comprises removing the row and column corres-

ponding with that feature. On the other hand, adding a new feature only comprises adding a

row and a column of zeros. Note that a row and a column of zeros in the matrices A and b

corresponds with learning from the scratch that feature. Thus, this method is able to adapt the

architecture of the one-layer ANN and deal with changing environments in which the relevant

features may be different at one time or another.

2.3 Experimental evaluation: material and methods

The experiments presented in this section are focused on the evaluation of the online method

proposed in this work. The three methods (discretizer, filter and classifier) will be evaluated

both independently and also integrated in the unified pipeline.

2.3.1 Materials

Five different classification datasets were used during this research. Corral, LED, and Fried-

man are synthetic while Connect and Forest were selected from the UCI Machine Learning
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Repository [2]. Table 4.8 depicts the characteristics of these datasets: number of features,

number of instances, number of classes, and percentage of the majority class.

Dataset No. features No. instances No. classes % maj. class

Corral-100 100 10 000 2 56.02%

LED-100 100 10 000 10 10.00%

Friedman-100 100 10 000 2 54.57%

Connect4 42 67 557 3 65.83%

Forest 54 101 241 7 48.69%

Table 2.1: Characteristics of the datasets.

Corral-100

In this research, a modified version of the CorrAL dataset [57] will be used. The original

dataset has four binary relevant features f1, . . . , f4, one irrelevant feature f5 and one feature f6

correlated with the output. Its class value is ( f 1∧ f 2)∨ ( f 3∧ f 4). This research is not focused

on detecting correlation, but on discarding irrelevant features. The correct behavior for a given

feature selection method is to select the four relevant features and to discard the irrelevant ones.

A new dataset called Corral-100 will be employed, consisting of the 4 relevant features plus 96

irrelevant binary features randomly generated.

The LED-100 problem

The LED problem [18] is a simple classification task that consists of identifying the digit that

the display is representing. Given the active leds described by seven binary attributes f1, . . . , f7

(seven segments display), the task to be solved is its classification in ten possible classes avail-

able C = {0,1,2,3,4,5,6,7,8,9}. A 1 in an attribute indicates that the led is active, and a 0

indicates that it is not active. The LED-100 problem was constructed by adding 93 irrelevant

features.

Friedman-100

This synthetic dataset uses a function suggested by Friedman [41]. It is defined by the equation

f (x1, . . . ,x5) = 10sin(πx1x2)+20(x3 −0.5)2 +10x4 +5x5 +σ(0,1) (2.10)
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where σ(0,1) is zero mean unit variance Gaussian noise and the inputs x1, . . . ,x5 are sampled

independently from a uniform distribution in the interval [0,1]. This dataset is a regression

task. We transformed it into a classification task where the goal was to predict class 1 for

the examples of output under 15 (prevalence around 55%) and class 2 for the other examples

(prevalence around 45%). The Friedman-100 dataset was constructed by adding 95 irrelevant

features to the previous Friedman dataset. The data for the added features were generated

randomly from a uniform distribution [0,1].

Connect4

This database contains all legal 8-ply positions in the game of connect-4 in which neither

player has won yet, and in which the next move is not forced. The outcome class is the game

theoretical value for the first player (win,loss,draw). The number of features is 42. All features

are categorical with 3 possible values.

Forest

This dataset is a classification task with 7 classes (representing forest cover types). Predicting

forest cover type from cartographic variables only (no remotely sensed data). The actual forest

cover type for a given observation (30 x 30 meter cell) was determined from US Forest Service

(USFS) Region 2 Resource Information System (RIS) data. Independent variables were derived

from data originally obtained from US Geological Survey (USGS) and USFS data. Data is in

raw form (not scaled) and contains binary (0 or 1) columns of data for qualitative independent

variables (wilderness areas and soil types). The number of features is 54.

2.3.2 Performance measures

Discretization is concerned with the process of translating continuous values of features into

discrete values. As a result, some error is committed during the process. The discrepancy bet-

ween the exact value and some approximation to it is called approximation error. The absolute

approximation error is defined as the magnitude of the difference between the exact value and

the approximation. Given some value v and its approximation v̂, the absolute error is computed

as follows
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ε = |v− v̂| (2.11)

The relative approximation error is the absolute error divided by the magnitude of the exact

value, and it is computed as follows

ε =
|v− v̂|

|v|
=

∣

∣

∣

∣

1−
v̂

v

∣

∣

∣

∣

(2.12)

Respect to the filter method, its efficiency was evaluated in terms of precision, recall, per-

centage of selected features, and stability. Precision is the fraction of the selected features that

are relevant and it is computed as follows

precision =
|{relevant features}∩{selected features}|

|{selected features}|
(2.13)

Recall is the fraction of the relevant features that are selected and it is computed as follows

recall =
|{relevant features}∩{selected features}|

|{relevant features}|
(2.14)

Note that the relevant features of the dataset have to be known to compute these measures. The

percentage of selected features is simply computed as the fraction of the features selected and

the total number of features. To evaluate the stability of the filter the Jaccard index will be

used. The Jaccard similarity coefficient [98] is a measure used for comparing the similarity of

two sets of features A and B. It is defined as the fraction of the cardinality of the intersection

and the cardinality of the union of the features

J(A,B) =
|A∩B|

|A∪B|
(2.15)

In an online environment, the stability of the filter will be related with the set of features

selected in the current step in comparison with the set of features selected in the previous step.

Finally, the performance of the classifier is computed in terms of standard classification

error [139] which is defined as the fraction of samples incorrectly classified over the data.
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2.4 Experimental evaluation: results

The experimental results obtained for each of the three methods and the proposed pipeline are

presented in this section.

2.4.1 Discretizer

For this experiment, we chose the first feature from the Friedman dataset. Note that every

feature in this set is sampled independently from a uniform distribution in the interval [0,1].
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Figure 2.4: Absolute approximation error of the online discretizer in a feature sampled inde-

pendently from a uniform distribution in the interval [0,1].

Figure 2.4 shows the absolute approximation error of the discretizer. The variable k indi-

cates the number of clusters used in the discretizer. Notice that the values of the feature appear

in random order along the interval [0,1]. If the values of the features lay approximately along

all their possible values the discretizer shows a very fast adjustment to the data, as seen in the

curve. As expected, the larger the number of clusters, the better the adjustment. Note however

that a very large number of clusters increases computations at the expense of a decrement in

terms of approximation error that should be evaluated. For example, using k = 8 instead of

k = 5 increases computation by 60% but only decreases the approximation error by 20% (from

0.06 to 0.04, see Figure 2.4). Note also that a larger number of k implies larger matrices in the

feature selection filter.

24



2.4 Experimental evaluation: results

2.4.2 Filter

To check the efficiency of the feature selection method proposed, two synthetic datasets (Corral-

100 and LED-100) were employed. We have chosen to use artificially generated data because

the desired output is known, therefore a feature selection algorithm can be evaluated with inde-

pendence of the classifier. The main advantage of artificial datasets is the knowledge of the set

of optimal features that must be selected; thus, the degree of closeness to any of these solutions

can be assessed in a confident way.
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(b) Recall.
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(d) Stability.

Figure 2.5: Performance measures of the online feature selection filter in the Corral-100

dataset.

Figures 2.5 and 2.6 show the performance of the feature selection filter for the Corral-

100 and LED-100 datasets, respectively, in terms of precision, recall, percentage of selected

features, and stability for different values of the parameter λ (threshold for the filter, see Section
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(b) Recall.
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(c) Percentage of features.
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(d) Stability.

Figure 2.6: Performance measures of the online feature selection filter in the LED-100 dataset.
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2.2.2 for further details).

As can be seen in both Figures 2.5 and 2.6, the lower the value of the parameter λ the faster

the curve of precision converges. Moreover, the percentage of selected features is lower but at

the expense of a more unstable behavior. On the other hand, the higher the value of λ the slower

the curve of precision converges. However, the filter shows a more stable behavior, because the

number of selected features is larger in this case. Note that the classifier needs to learn from

scratch each new feature. If the subset of features selected by the filter changes frequently

then the classifier will lose partial knowledge many times during the learning process. Thus

an appropriate selection of this parameter plays a crucial role in the different measures, for

example in this case λ = 0.2 appears to be the most sensible solution. Notice that a large value

of the parameter λ will not find the optimum subset of features (the curve of precision does not

converge for λ = 0.5).

2.4.3 Classifier

The efficiency of the classifier is also shown on the two synthetic datasets Corral-100 and LED-

100. The objective is to train the classifier when the input space is changeable by adding or

removing features as happens in online feature selection. Synthetic datasets are useful here to

check the impact in terms of classification error when adding or removing relevant features.

Data were divided using holdout validation, i.e. a subset of samples is chosen at random to

form the test set and the remaining observations are retained as the training set. In this research,

the 10% of data were used for testing while the 90% were used for training. In other words,

after a new training sample arrives and the model is updated, its performance is tested on the

10% data left as test set.

Regarding the set of features selected in each step, three different situations were conside-

red:

• The set of selected features contains all relevant features and none irrelevant.

• The set of selected features contains all relevant features and some irrelevant.

• The set of selected features contains some relevant features and some irrelevant.

Figure 2.7 shows the classification error in the Corral-100 and LED-100 datasets when the
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(a) Corral-100 dataset.
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(b) LED-100 dataset.

Figure 2.7: Test error of the classifier.

input space changes. Figure 2.7(a) shows the performance of the classifier on the Corral-100

dataset in the following situations,

• From 1 to 3000 samples, the set of selected features contains all (4) relevant features and

96 irrelevant

• From 3001 to 5000 samples, the set of selected features contains all relevant features and

none irrelevant

• From 5001 to 8000 samples, the set of selected features contains 2 relevant features and

some irrelevant

• From 8001 to 10000 samples, the set of selected features contains 1 relevant feature and

some irrelevant

As can be seen in Figure 2.7(a), the classifier reaches its minimum classification error in

few epochs. At this point, if the set of selected features is reduced to contain only relevant

features (from 3001 to 5000 samples), the classifier maintains its performance. However, if

the set of selected features only contains some of the relevant features (from 5001 to 10000

samples), the classification error of the classifier increases because it is only able to converge a

global suboptimum, due to the lack of relevant information. As expected, the lesser the relevant

features selected the worse the performance of the classifier.

It is also interesting to check the performance of the classifier when adding relevant fea-

tures. In a similar manner to above, Figure 2.7(b) shows the performance of the classifier on
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the LED-100 dataset in the following situations,

• From 1 to 1000 samples, the set of selected features contains all (7) relevant features and

94 irrelevant

• From 1001 to 3000, the set of selected features contains 3 relevant features and 44 irre-

levant

• From 3001 to 5000 samples, the set of selected features contains 5 relevant features and

94 irrelevant

• From 5001 to 10000 samples, the set of selected features contains all relevant features

and 44 irrelevant

As can be seen in Figure 2.7(b), the classifier improves its performance according as the

set of selected features contains more relevant features. Notice that if only some (or none)

relevant features are selected as the set of current features, the classifier is only able to reach a

global suboptimum. Finally, as can be inferred from both Figures 2.7(a) and 2.7(b), the online

classifier proposed in this research is able to efficiently adapt its structure to changes in the

input feature space.

2.4.4 Pipeline

For testing the unified pipeline (discretizer plus filter plus classifier), the classification error

will be used along with the number of features selected. Note that a slight degradation in

the performance of the classifier may be acceptable if the number of features is significantly

reduced. The following procedure was followed for each new sample:

1. Discretize the sample using the k-means discretizer.

2. Select the most relevant features using the χ2 filter.

3. Update the one-layer ANN using those features.

4. Compute the test classification error and the percentage of selected features.
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The goal here is to compare the performance of the system with and without feature selec-

tion. The experimental setup was the same as in the previous section. Data were divided using

holdout validation, 10% of data were used for testing while the 90% were used for training.

After a new training sample arrives, the model is updated and its accuracy is measured on the

10% data left as test set. This type of validation is appropriate because the size of the datasets

is large. Moreover, every experiment was repeated 10 times in order to ensure unbiased results.

The number of clusters k in the discretization stage was set to 10.

Finally, a Kruskal-Wallis test [140] was applied to check if there are significant differences

among the medians of the methods for a level of significance α = 0.05. If there are diffe-

rences among the medians, we then applied a multiple comparison procedure [53] to find the

method whose performance is not significantly different from the method with the best mean

performance. In this work, a Tukey’s honestly significant criterion [53] was used as multiple

comparison test.
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(a) Classification error.
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(b) Percentage of features.

Figure 2.8: Performance measures of the proposed method in Friedman dataset in which λ =

off means that no feature selection was applied.

Figures 2.8, 2.9 and 2.10 show the classification error of the online classifier and the per-

centage of features selected by the online filter in Friedman, Connect4 and Forest datasets,

respectively. Note that the percentage of selected features when no features selection is applied

(λ = off ) is always 1. For purposes of simplicity, only the first 10000 samples are shown. The

classifier and the filter maintain their behavior for the remainder samples.

In any case, the statistical tests indicate that the classification error obtained when no feature

selection is applied is similar to that obtained when the less aggressive λ is used (λ = 0.8), with

the additional advantage, in this last case, that only 37%, 44% and 56% of the relevant features
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(a) Classification error.
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Figure 2.9: Performance measures of the proposed method in Connect dataset in which λ = off

means that no feature selection was applied.
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Figure 2.10: Performance measures of the proposed method in Forest dataset in which λ = off

means that no feature selection was applied.
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are used for Friedman, Connect4 and Forest, respectively. If a more aggressive feature selection

is performed, the percentage of features used for learning is significantly reduced but at the cost

of a significant higher classification error.

Finally, the issue of selecting the parameter λ in real datasets is an open question. It will

depend, on the first term, on the tradeoff between accuracy and speed (lower or higher number

of features) and, on the last term, it will need to be determined by trial and error. As a rule of

thumb, we suggest not using very low lambda values (next to 0.0) because it will tend to select

smaller sets of features, consequently the filter will have a more unstable behavior.

2.5 Experimental evaluation: a case study on data order

In this section we introduce an exhaustive analysis of how the order of appearance of the

samples affects the performance of the machine learning algorithms chosen in this work, an

important aspect for on-line algorithms. In the previous experiments, samples appeared in a

random order. However, notice that in an online environment data may arrive in a certain

order, i.e. following biased distributions of data. It is possible that either all the data keep the

same distribution, or that a so-called concept drift appears, leading to data following different

distributions at different times of the process.

2.5.1 Discretization

In Section 2.4.1 we have shown discretization experiments when the values of the feature (the

first feature of Friedman dataset) appeared in a random order along the interval [0,1]. However,

as the discretizer is not order independent, it is also important to check its efficiency when data

arrives in a certain order. The curve of error depicted in Figure 2.11 assumes a certain order of

appearance of samples. In particular, the values of the feature are as follows

• From 1 to 250 samples its values lay in [0,0.33]

• From 250 to 500 samples its values lay in [0.34,0.66]

• From 500 to 750 samples its values lay in [0.67,1]

• From 750 to 1000 samples its values lay in [0,1]
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As can be seen, the discretizer is also able to tackle with biased distributions of the values

of a feature by storing past knowledge. At the end, the centroids of the clusters are located in

averaged positions along the samples. Thus, the discretizer is considered to be quite robust to

biased distributions.
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Figure 2.11: Absolute approximation error of the online discretizer in a feature, the first one of

Friedman dataset with biased order of appearance of samples.

In addition, Figure 2.12 displays the curve of error of each execution when the feature

values appear in random order. In this experiment, 1000 samples extracted from a uniform

distribution in the interval [0,1] were employed. For each value of k (number of clusters),

50 executions were carried out. As expected, the larger the number of clusters, the larger

the number of samples needed to reach the minimum error. It is interesting to note that this

experiment proves that the order of appearance is not critical given a certain number of samples,

since the error of each execution converges to similar values.

2.5.2 Feature selection

In an online scenario, data order can also affect the feature selection process, so a experiment

was carried out on Friedman dataset. For this sake, 10 features are considered, where the first

five are relevant and the remaining ones are irrelevant (see Section 2.3.1). The dataset used

consists of 2000 samples where the order of appearance was randomly generated in each one

of the 100 executions. For the discretization stage, different values of k (number of clusters)

were employed, from 1 to 100. After seeing the whole dataset, the χ2 value of each feature is

computed. Figure 2.13 shows the distance between the minimum and maximum χ2 values of
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Figure 2.12: Absolute approximation error of the online discretizer of each execution when the

feature values appear in random order (1st feature of Friedman dataset)

the relevant and irrelevant features, respectively –i.e. the minimum margin between relevant

and irrelevant features. The pale lines represent each one of the 100 executions, whilst the

mean ± standard deviation are also displayed in bold lines. The margin increases until around

k = 20 and from this point on, it stabilizes. In this case, data order seems to have a low impact

on the performance of the filter because the maximum standard deviation is around 10%.

2.5.3 Classification

Finally, we test the influence of data order when the last step of classification is included in

the learning process on Forest dataset. So far, it has been shown that the data order has little

influence on the discretizer (see section 2.4.1) and consequently, on the filter (see section 2.4.2).

Figure 2.14 displays the effect of the data order on the proposed pipeline. The parameter λ was

established to 0.8, since it has been proved to obtain a good performance with this dataset.

The training dataset used consists of 5000 balanced samples where the order of appearance

was randomly generated in each execution. For assessing the classification error, a set of 1000

independent samples was used, and a total of 100 executions were accomplished.

On the one hand, Figures 2.14(a), 2.14(c) and 2.14(e) (first column) depict the classification

error trace of each execution for different values of k (number of clusters for the discretization

stage). On the other hand, Figures 2.14(b), 2.14(d) and 2.14(f) (second column) display the

percentage of times that a feature is selected in average at the end of all the executions, again
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Figure 2.13: Minimum distance between relevant and irrelevant features according to χ2 values

on Friedman dataset

for different values of k. Remind that the smaller the k, the more information is missed in

the discretization step. For this reason, when k = 5 it can be seen that there are more diffe-

rences among the different executions. This fact may be caused by the information lost in

the discretization stage, which also affects to the features selected by the filter, resulting in

an irregular classification, where the data order plays an important role. However, when k in-

creases, the behavior of the pipeline is more stable and independent of the order, as can be

seen in Figures 2.14(c) and 2.14(e). The classification error decreases and the stability of the

selected features raises. Finally, Figure 2.15 visualizes the average classification error for the

three values of k tested. As can be seen, the classification error improves notably from k = 5

to higher values, whilst no significant differences are found between k = 15 and k = 50. In

light of the above, it seems reasonable to select the lowest value for k without compromising

the classification error. In this case, k = 15 might be the optimal, since it converges to the same

error than k = 50 and decreases computations, as mentioned in Section 2.4.1.

2.6 Discussion

In this chapter, a complete pipeline (covering discretization, feature selection and classification)

which is capable of continuously updating its model to learn from online data is presented. One

of the strengths of the proposed method is that it consists of three independent stages that can be

used alone or in a pipeline. Up to the authors’ knowledge, there is no other work in the literature
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(a) Classification error, k = 5 (b) Features selected, k = 5

(c) Classification error, k = 15 (d) Features selected, k = 15

(e) Classification error, k = 50 (f) Features selected, k = 50

Figure 2.14: Data order effect on the overall pipeline in Forest dataset.
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Figure 2.15: Average classification error of the data order experiment in Forest.

that covers efficiently these three stages, since some of the existing approaches apply feature

selection in an off line fashion (because the online classifiers cannot deal with changing subsets

of features) or they apply online feature selection but then this is not connected with an online

classification stage. Therefore, the main advantage of our proposed method is that it allows

researchers to perform both online feature selection and classification. The key contributions

of this research are the following ones:

• Adaptation of the χ2 filter using a new threshold λ to perform online feature selection.

• Since the χ2 filter requires data to be discrete, adapting the k-means discretizer to be

used in an online fashion.

• The adaptation of a learning algorithm (one layer neural network) to be incremental not

only in the instance space, but also in the feature space, allowing for feature subsets that

change, increasing or reducing in number during the learning process.

• Since an important aspect of on-line algorithms is the impact of data order on the per-

formance of the methods, this issue is specially assessed, showing the robustness of the

method. This is crucial in some real life environments in which concept-drift situations

might appear.

However, although to the best of our knowledge a complete pipeline as this one has not

been presented elsewhere, this proposal has some limitations. Most of all, it is important to
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notice that not all the machine learning methods available in the literature can be adapted to

deal with online data. Therefore, although more sophisticated learning methods exist, they

cannot be adapted to learn in an online manner, and we had to choose simpler models such as

the χ2 filter and an ANN. Although simple, the chosen methods demonstrated to be adequate

for this type of learning, exhibiting promising results, both separately and when combined

in a pipeline. Experimental results showed that the classification error is decreasing over the

time, adapting to the appearance of new data. Plus, the number of features is reduced while

maintaining the classification performance. Another restriction, which is not specific of the

pipeline, but general for machine learning methods (including preprocessing methods, such

as discretization and feature selection), is the need for parameter estimation, that should be

adapted to each problem under consideration. At this respect, some general recommendations

are given through the specific subsections of the chapter, although this issue is still an open

problem, in which researchers are still working.
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CHAPTER3
A SVD-based Autoencoder for Large-Scale

One-Class Classification

In the previous chapter, the problem of online feature selection and classification was con-

fronted. As mentioned, online feature selection is a research area that has not been treated

frequently in the literature. Another area, in which scientific contributions are also relatively

scarce is one-class classification, specifically regarding scalable methods. In the present chap-

ter, we will focus in one-class classification algorithms when dealing with large amounts of

data.

In a classical classification problem each unknown example is classified as belonging to

one of all available categories. However, there are different scenarios where the classification

task consists in deciding if a particular example fits a class or not. In order to handle appro-

priately this type of situations a one-class classification paradigm, in which one class (normal

data or positive class) has to be distinguished from other classes (abnormal data), would be

more appropriate. In this approach the positive class is well sampled in the training set, while

the other classes are severely under-sampled or even nonexistent. The scarcity of abnormal

examples can be due to several reasons, such as high costs to gather them or the low frequency

at which this kind of events occur. This problem has received different denominations over the

years as single classification [90], one-class classification [94] and others arisen from different

problems to which this paradigm has been applied such as Outlier Detection [28] or Novelty

Detection [8]. According to Chandola [28] outlier detection refers to the task of finding pa-

tterns that do not show the expected behavior (outlier/ anomaly observations) whereas novelty

detection identifies unknown patterns that usually are incorporated as normal after their finding.

This is a typical scenario in a wide variety of real environments and consequently this discipline

has gained a lot of attention through the years involving large datasets obtained from critical

systems. These include, but not limited to, the detection of medical diagnostic problems, fault

detection in industrial machinery and robotics, intrusions in electronic security systems, video

surveillance and document classification.
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Among others, different neural networks approaches for one-class classification have arisen

in previous years [85, 94]. One of these approaches is autoencoder which has been efficiently

applied in a wide variety of application fields. However, the classical approach [56, 72] can not

be directly applied to handle large-scale problems due to the excessive computational resources

required to construct the model in those scenarios. In this chapter we present a new fast learning

method for autoencoders that allows handling large-scale datasets. This research is based on

previous results that propose the use of a cost function based on a square loss function that

measures the error before the output neural function and scales it by the slope of the nonlinear

activation functions at each point. The formula employed to obtain the optimal weights is

derived from a system of linear equations that its further transformed by means of the Singular

Value Decomposition (SVD).

This chapter is organized as follows. Section 3.1 contains a brief review of the main me-

thods for one-class classification providing a general overview of this research field. Section

3.2 describes two previous techniques that will be used in this work. Section 3.3 describes

our proposed learning method for autoencoders that is evaluated in Section 3.4 thanks to a

comparative study. Finally, Section 3.5 sums up the contents of the chapter.
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3.1 Background

Over the years a considerable amount of methods have been proposed to solve the one-class

classification problem. In the literature can be found several reviews of one-class classification

methods that analyze their suitability in different application fields such as mobile-masquerader

detection [88], speaker verification problem [19], biometrics [6] or developing credit-scoring

system [64].

Khan and Madden [65, 66] proposed a taxonomy for the study of one-class classification

methods based on three broad categories: availability of training data, methodology used and

application domain. The first category refers to learning with positive data only, learning with

positive examples and with a limited amount of negative samples (or artificially generated

outliers) or learning with positive and unlabeled data. Regarding the second category Khan and

Madden indicate that the most important one-class classification algorithms can be categorized

as either based on one-class support vector machines (OSVM) [127, 113] or based on other

methods such as neural networks [8, 10], decision trees [52] or nearest neighbors [84]. Finally,

for the third category authors distinguish between one-class classification applied in the field

of document classification or in other domains. Other works should be mentioned such as

the Mazhelis’s research [88] who proposed a taxonomy of one-class classification techniques

taking into account three main considerations: the internal model used by classifier, the type of

data and the ability of classifiers to handle temporal relations among features.

Moreover, Tax [126] established a categorization for one-class classification methods dis-

tinguishing three main approaches: the density estimation methods, the boundary methods

and the reconstruction methods. Density methods use a probabilistic approach to estimate the

density of the positive class and assume that low density areas in the training set have a low

probability of containing positive data [125]. As examples of density methods we can mention

Gaussian model [9], mixture of Gaussians [33] and Parzen density estimators [97]. Boundary

methods optimize a closed boundary around the target set. Some of well-known boundary

methods are k-centers [145], one-class support vector machine [115] and support vector data

description [128]. Finally, reconstruction methods involve training a regression model bet-

ween inputs and outputs using only the positive data, and when a negative sample is mapped

using this model the reconstruction error will be higher than the one obtained with a positive

one. Some of the most important methods of this type are the k-means clustering [9], learning

vector quantization [23], self-organizing maps [69], principal component analysis [9], diabolo

networks [3, 51] and autoencoder networks [56]. The main differences among them are in the

definition of subspaces, the reconstruction error and the optimization routine.
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In this research we focus our attention on reconstruction methods, specifically in autoen-

coders. An autoassociative encoder [56, 72], or simply autoencoder or diabolo network [117],

is a neural network approach to learn a representation of the data. It is a feedforward network

which learn to map a model from its inputs to output nodes, through a narrow hidden layer,

which attempts to reconstruct the input. As the network has a narrow hidden layer, it is forced

to compress redundancies in the input while retaining and differentiating non-redundant in-

formation. In this way, the network is able to reduce noise in data by mapping inputs into the

space of the correlation model and then the residuals of this mapping can be employed to detect

novelties in future data points. It has been shown that autoencoders generate an input/middle

layer mapping equivalent to principal component analysis (PCA) when linear activation func-

tions are employed [3]. However, if the activation functions are nonlinear, the mapping is not

equivalent to PCA and has different characteristics [55].

In the research presented by Sakurada and Yairi [109] a comparative study of autoencoders

with linear PCA and kernel PCA on artificial data and real data was accomplished. Autoen-

coders have been widely applied in the novelty and anomaly detection problem. Hwang and

Cho [54] analyzed the output characteristics of trained autoassociative multilayer perceptron

and showed that it is a reliable solution for novelty detection. They also prove why nonlinearity

in the hidden layer is necessary for novelty detection. The research by Thompson et al. [129]

proposed a method for novelty detection through the application of an autoencoder. Sanz et al.

[110] propose a new unsupervised method for monitoring the condition of rotating machinery

from vibration analyses using wavelet transform and autoassociative neural networks. Miranda

et al. [91] present a diagnosis system to incipient fault diagnosis in power transformers based

on a set of autoassociative neural networks and the results of dissolved gas analysis.

The vast majority of previous research in this domain was oriented to develop learning

algorithms for solving problems with small to medium-size datasets, for which the computa-

tional requirements were not an aspect to be taken into account. However, nowadays with the

advent of new scenarios, such as the Internet of Things, the datasets in the field of anomaly

detection have grown enormously in size. In this scenario, the classical methods, based on the

available learning algorithms for autoencoders, present important limitations in its applicability

and they can not be directly used, due to the computational load required to analyze the data.

This aspect is accentuated in those applications that require a real-time analysis of the data.

Therefore, this chapter presents a new fast learning method for autoencoders which allows its

practical application in one-class classification domains where large-scale datasets exist.
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3.2 Preliminaries

In this section, for the sake of comprehension, techniques that will serve as a starting point

for this work are discussed. Firstly we will describe the Singular Value Decomposition (SVD)

method, as it will be an important component of the proposed model and, afterwards, the

LANN-SVD algorithm [40] that will be used for the learning process of the autoencoder.

3.2.1 Singular value decomposition

Low-rank matrix approximation is a minimization problem that tries to approximate a given

matrix of data by another one (the optimization variable) subject to the constraint that the

approximating matrix has reduced rank. According to the Eckart-Young-Mirsky theorem [34]

the low-rank approximation with the h largest singular values is the solution with the least

reconstruction error induced by the Frobenius norm. Therefore, based on this result, the partial

singular value decomposition (SVD) provides the best approximation to the original matrix

among all low-rank matrices. Given a real-valued matrix P ∈ R
m×n, the full SVD of P is

defined as the following:

P = USVT (3.1)

where U∈R
m×m, V∈R

n×n and S∈R
m×n. Matrices U and V are orthogonal and S is a diagonal

matrix with r non-negative values on the diagonal, in descending order, known as the singular

values. Every matrix is guaranteed to have a SVD.

The SVD is frequently computed in an economy-size manner, where U ∈ R
m×r, V ∈ R

n×r

and S ∈ R
r×r and r ≤ min(m,n) is the maximum possible rank of matrix X. This lightweight

SVD is equivalent to the standard SVD but can be calculated much more efficiently, especially

if m ≫ n or n ≫ m.

3.2.2 LANN-SVD algorithm

LANN-SVD is a supervised learning method for training one-layer neural networks presented

by Fontenla-Romero et al. [40]. It employs a new convex objective function based on the

mean-squared error (MSE) but measured before the activation function. Consider a matrix of

training samples X ∈ R
m×n and a vector d ∈ R

n×1 including the desired outputs. The output

vector y ∈R
n×1 of a one-layer feedforward neural network can be obtained using the following
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equation:

y = f (z) = f (XT w)

where w∈R
m×1 is its weight vector and f :R→R the nonlinear function of the output neuron.

To obtain the optimal weights it is common to derive the objective function in terms of the MSE

on the training set. However, if f is nonlinear then local minima may appear in the objective

function [120, 20], which may avoid achieving the global minima. To overcome this issue, the

error is estimated before the nonlinear function [39]. In order to do this, the desired output

needs to be backpropagated, i.e. d̄ = f−1(d). Afterwards, the weights can be obtained by

minimizing the MSE between z = XT w and d̄ which leads to the following system of linear

equations:

Aw = b (3.2)

where A and b are defined as:

A = XFFXT ; b = XFFd̄ (3.3)

and F = diag( f ′(d̄1), f ′(d̄2), . . . , f ′(d̄n)) being the diagonal matrix formed by the derivative of

the f function at the components of the d̄ vector.

It has been proved that the global optimum obtained with this new objective function is

approximately equivalent to the one of the regular MSE [39]. This approach resulted to be

very efficient only when n ≫ m, as the size of the system of linear equations in (3.2) and (3.3)

relies on m. To make it efficient in the other case, that is when m ≫ n, a transformation of the

previous system of linear equations by means of SVD was proposed in [40].

Considering equations (3.2) and (3.3), the system of equations used as a starting point can

be written as:

XFFXT w = XFFd̄ (3.4)

By replacing P = XF, this system can be rewritten as:

PPT w = PFd̄ (3.5)

Using SVD, factorization of matrix P can be done (P = USVT ). By replacing P in equation

(3.5) we obtain:

USVT VST UT w = USVT Fd̄ (3.6)

Multiplying on the left by U−1 both sides of the equation, the following system is obtained:

SVT VST UT w = SVT Fd̄ (3.7)

44



3.3 Proposed method

As matrix V is orthogonal then it holds that VT V = I, and hence the system in (3.7) can be

simplified to get:

SST UT w = SVT Fd̄ (3.8)

Although SST is a square matrix (m×m), its inverse can not be calculated in general, as

when m > n it is rank deficient (rank at most n as S ∈ R
m×n). Therefore, the use of the Moore-

Penrose pseudoinverse is proposed. This is a general way to find the solution to a system of

linear equations Ax = b, where A ∈ R
m×n. Moore and Penrose showed that there is a general

solution to these equations of the form x = A†b. This solution has the following properties:

• If m = n, then A† = A−1 when A is full rank. The case when A is not full rank will be

considered below.

• If m > n, the solution is the one that minimizes ||Ax− b||. Then, the pseudoinverse

provides the most closest solution in a least-squared sense.

• If m < n, the solution minimizes the 2-norm of x, but this case will never happen since

SST is a m×m matrix.

Therefore, applying the Moore-Penrose pseudoinverse to equation (3.8) the following expre-

ssion is obtained:

UT w ≈ (SST )†SVT Fd̄ (3.9)

If both sides are multiplied by U, as it is also an orthogonal square matrix and therefore UUT =

UT U = I, we obtain:

w ≈ U(SST )†SVT Fd̄ (3.10)

Considering that H = USVT , and consequently UT H = UT USVT , then UT H = SVT . Using

this result in equation (3.10), and the fact that H = XF, the final solution is obtained:

w ≈ U(SST )†UT XFFd̄ (3.11)

that allows to approximate the global optimum of the objective function proposed in [39].

If a economy-sized SVD is employed, then S ∈ R
r×r is a square diagonal matrix and it

holds that S = ST . With this approach, in equation (3.11) it is only necessary to compute the

inverse, or pseudoinverse if the matrix is ill-conditioned, of (SS), a r×r diagonal matrix where

r =min(m,n). Thus, the size of the matrix depends on the smaller value between the number of

samples and the number of features. All the steps to implement the learning method are showed

in Algorithm 1, where .∗ notation represents the Hadamard product and pinv(·) computes the

pseudoinverse of a matrix.
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Algorithm 1 : LANN-SVD

Inputs: X ∈ R
m×n ⊲ Dataset

d ∈ R
n×1 ⊲ Desired outputs

f ⊲ Nonlinear activation function

Output: w ∈ R
m×1 ⊲ Optimal weights

1: function LANN-SVD(X,d, f )

2: X = [ones(1,n);X]; ⊲ The bias is added (first row)

3: d̄ = f−1(d); ⊲ Inverse of the neural function

4: fd = f ′(d̄); ⊲ Derivate of the neural function

5: P = X∗diag(fd);

6: [U,S,∼] = svd(P); ⊲ Economy size SVD

7: b = X∗ (fd .∗ fd .∗ d̄);

8: w = U∗ pinv(S∗S)∗ (UT ∗b);

9: end function

3.3 Proposed method

Consider the autoencoder neural network with one hidden layer depicted in Figure 3.1, being

f1 and f2 nonlinear activation functions for the hidden and output neurons and W1 ∈ R
m×h

and W2 ∈ R
h×m the weight matrices for the first and the second layer, respectively. In this

network the output layer has the same number of nodes (m) as the input layer, since the goal is

to reconstruct the input data, and the number of hidden neurons (h) is always strictly lower than

the number of inputs. Given a training set represented by an input matrix X ∈ R
m×n, where m

is the number of input variables (including possibly a bias) and n the number of data points,

the outputs of the first layer H ∈ R
h×n can be calculated by the following equation

H = f1(W
T
1 X) (3.12)

and the output of the network (X̂ ∈ R
m×n) is given by:

X̂ = f2(W
T
2 H) (3.13)

Autoencoders are trained to minimize the reconstruction error between the input and the

output defined by the following equation:

E(X, X̂) = ‖X− X̂‖2
F (3.14)

where ‖ · ‖F is the Frobenius norm.
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W1 W2

X X

m inputs m outputs

h hidden neurons

(h<m)

f1

f2

Figure 3.1: Autoencoder neural network.

The usual way to train the autoencoder is by classical first-order iterative learning algo-

rithms such as backpropagation or by fast second-order iterative methods such as scaled con-

jugate gradient descent. However, these methods can present computational difficulties, due to

time or space complexity, in applications with large datasets where a large number of iterations

is required to achieve the convergence of the method. In this research, a new non-iterative lear-

ning method to train an autoencoder which allows a substantial improvement in the training

time required to obtain the optimal weights is presented.

In the proposed approach the learning process is carried out using a two-step procedure,

one step for each of the layers of the network. In the first layer, the method learns a vector

space embedding for the input data extracting meaningful low-dimensional representation by

means of Singular Value Decomposition. The SVD of the input matrix X is a factorization of

the form

X = USVT (3.15)

where U ∈ R
m×m, V ∈ R

n×n and S ∈ R
m×n is a diagonal matrix with the singular values on the

diagonal. Hence, the optimal weights for the first layer are obtained using the first h columns

of the U matrix of the optimal rank-h SVD for the input data (X). Then, applying equation

3.12, we get the outputs of the first layer H ∈ R
h×n.

For the second layer, the goal is to reconstruct the input from the low-dimensional repre-

sentation provided by the output of the hidden layer. This is a minimization problem based

on a sum-of-squares error function. If the activation function of the output neurons is linear

the solution for this least-squares problem can be found exactly in a simple closed form using

47



Chapter 3. A SVD-based Autoencoder for Large-Scale One-Class Classification

the pseudo-inverse of a matrix [10]. However, in the most general case (nonlinear activation

functions) this solution is no longer possible and the use of iterative algorithms, based mainly

on gradient descent, is required. Although this kind of methods are effective they can need a

large number of steps to converge to the optimal value, which is not a very desirable behavior

in problems with large datasets since they may cause enormous training times. Therefore, to

obtain the optimal weights for the second layer the LANN-SVD algorithm, described in Sec-

tion 3.2.2, is employed in this work. In the proposed method the inputs of the LANN-SVD

algorithm are the outputs of the hidden layer H ∈ R
h×n (see Figure 3.1). As LANN-SVD is

a supervised learning method, the desired outputs have to be provided. Then, since the goal

of the autoencoder is to reconstruct the input data, the desired outputs are actually the same

inputs (X). The main advantages of this non-iterative learning algorithm are that it can be used

with nonlinear activation functions and its complexity depends on the minimum value of n

and h thus implying savings in computational requirements for large datasets, especially in the

usual case in which the number of hidden neurons (h) is much smaller than the number of data

points. For the output neurons of the network the weights of the second layer are independent

of each other, hence the minimization problem can be split in several sub-problems (one for

each output neuron) that can be solved separately.
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Figure 3.2: Decision threshold.
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This fast learning SVD-Autoencoder allows its practical application in one-class classifica-

tion domains where large-scale datasets exist. In order to do so, a regression model is trained

using only positive data, and when a negative sample is mapped using this model the recons-

truction error will be higher than the one obtained with a positive training sample. This is

true when positive and negative samples are separable. However, that is not the usual case in

a real world scenario. Besides, an outlier in the training set can have a high reconstruction

error that could lead to bad classification of new negative samples. In order to prevent this and

adjust our classifier, a threshold th based on the value of the jth percentile of the reconstruction

error achieved with the training data is employed (see equation 3.14). Pj, the jth percentile,

leaves below the j% observations of the training set reconstruction error. Figure 3.2 depicts an

example of this proposed threshold.

As can be seen, if a high error, like the one of the P99, in the training data (black dots)

is used as threshold, several negative samples (red dots) fall below it and are misclassified as

positive samples. However, if a smaller percentile like the P90 is used, the overall classification

improves significantly, from 86.7% (P99) to 90.2% of AUC (Area Under the Roc Curve). Thus,

using this threshold the classifier can be adjusted and overfitting avoided. A new parameter

p ∈ N that takes values from 1 to 99 is added to the proposed method to select the percentile

used as threshold.

Algorithm 2 details all the steps of the proposed method. As can be seen, for obtaining the

outputs of the first layer only matrix U of the SVD is required, and therefore the computation of

matrices V and S can be avoided. Furthermore, each LANN-SVD sub-problem is independent

of the others. This fact leads us to another interesting characteristic of the proposed method, its

parallelizable nature. Each one of the m LANN-SVD sub-problems can be solved in a different

processor at the very same time, making the proposed algorithm highly scalable and efficient

when the number of variables m is high.
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Algorithm 2 : SVD-autoencoder

Training Stage

Inputs: X ∈ R
m×n ⊲ Input data (n samples)

f1, f2 ⊲ Activation functions for the 1st and 2nd layers, respectively

h ⊲ Number of hidden neurons (h < m)

p ⊲ Decision threshold parameter (0 < p < 100)

Outputs: W1 ∈ R
m×h,W2 ∈ R

h×m ⊲ Optimal weights for the 1st and 2nd layers

thp ∈ R ⊲ Decision threshold for classification

1: function TRAIN-SVD-AUTOENCODER(X, f1, f2,h)

2: [U,∼,∼] = svd(X) ⊲ Economy size SVD

3: W1 = U(:,1 : h) ⊲ Rank-h matrix

4: H = f1(W
T
1 X) ⊲ Outputs of the hidden layer

5: for i = 1 to m ⊲ One sub-problem for each output neuron

6: W2(:, i) = LANN SV D(H,X(i, :), f2)

7: end

8: X̂ = f2(W
T
2 H) ⊲ Outputs of the network

9: for i = 1 to n

10: eTr(i) = ‖X(:, i)− X̂(:, i)‖2 ⊲ Reconstruction error for training data

11: end

12: thp = percentile(eTr, p) ⊲ The pth percentile of eTr is the decision threshold

13: end function

Classification Stage

Inputs: x ∈ R
m ⊲ New test sample

W1,W2 ⊲ Optimal weights for the 1st and 2nd layers, respectively

th ⊲ Decision threshold

Outputs: Result ∈ {Positive,Negative} ⊲ Classification decision

1: function TEST-SVD-AUTOENCODER(X, f1, f2,h)

2: Result = Positive

3: H = f1(W
T
1 x) ⊲ Outputs of the hidden layer

4: x̂ = f2(W
T
2 H) ⊲ Outputs of the network

5: eT st = ‖x− x̂‖2 ⊲ Reconstruction error for the new data

6: if (eT st > th) then

7: Result = Negative

8: end

9: end function
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3.4 Experimental study

In this section several experiments are presented and the results discussed in order to assess the

performance and the characteristics of the SVD-autoencoder.

3.4.1 Comparative study of performance

This first study tries to demonstrate how the proposed method behaves in comparison with

some other well known one-class methods available in the literature. Our aim is to prove

that the SVD-autoencoder exhibits a good classification accuracy when dealing with classical

benchmark datasets. With this goal, three one-class classification methods were selected for

the study:

• The regular autoencoder neural network [72] using the scaled conjugate gradient descent

algorithm [93] to obtain the optimal weights. This is the original method in which SVD-

autoencoder is based on.

• The Approximate Polytope Ensemble algorithm (APE) proposed by Casale et al. [26].

This boundary method has been selected because it showed a very good performance

when compared against several standard classification algorithms. In this work we pro-

jected data to 2 dimensional spaces (APE-2), because it provides better results than using

1D projections. A brief description of this method can be seen in the next chapter of this

thesis, where a distributed learning method based on this APE algorithm is presented.

• The state-of-the-art One-class ν-Support Vector Machine [115] with nonlinear kernel

(radial basis function, RBF).

Eleven UCI machine learning repository datasets [76], described in Table 4.8, where used to

test these methods. For each dataset, one-class problems were obtained considering the data of

one of the classes as the positive examples and the rest of the data as the negative examples.

All the experiments were carried out on an Intel Core i7-4790 processor with 3.60GHz

clock speed and 16GB RAM. Besides, in order to obtain significant results a 10-fold cross-

validation was employed and every experiment was repeated 30 times. All datasets have been

previously normalized in the interval [0, 1]. In the case of ν-SVM and APE-2 the parameters

where tuned to achieve comparable results to those reported in the literature.
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Dataset # classes # instances # features

Balance 3 625 4

Breast 2 683 10

Car 4 1728 6

Glass 3 214 10

Haberman 2 306 3

Ionosphere 2 351 34

Iris 3 150 4

Pima 2 768 8

Sonar 2 208 60

TicTacToe 2 958 9

Wine 3 178 13

Table 3.1: Characteristics of the datasets employed in the comparative study.

Table 3.2 shows the mean test results of the proposed method against the classical Autoen-

coder. In the second column, the class considered as target and the number of samples of the

target and negative classes are displayed, respectively. Remaining columns of Table 3.2 show

the optimal parameters for each method, the mean Area Under the Roc Curve (AUC) and the

standard deviation (SD) in percentage for the 30 simulations. The proportional training time

comparison against SVD-autoencoder is also showed in parentheses. Both methods have the

same parameters, except for the maximum number of training epochs in the Autoencoder, that

was set by default to 1000. The rest of the values were obtained empirically. The activation

function of the second layer f2 can be logistic or linear (LOG and LIN in Table 3.2). The value

of f1 is not displayed because it is a nonlinear function in every problem (LOG). As it was said

in Section 3.3, the number of hidden neurons h should be strictly lesser than the number of fea-

tures (1 ≤ h ≤ m). Finally, Pj, represents the jth percentile used to establish the classification

threshold, leaving below the j% observations of the training set reconstruction error (parameter

p in the Algorithm 2). A pairwise t-test [31] was applied to evaluate the statistical difference

at a 95% significance level. As can be seen, fourteen times against six, SVD-autoencoder

achieves better significant results than the classical one. Besides, it can be observed that, on

average, the new proposed method is hundreds of times faster than the original Autoencoder.

The results of the comparative of the method proposed against APE-2 and ν-SVM algo-

rithms are presented in Table 3.3. In the case of ν-SVM, the RBF kernel was used and the

ν parameter, that represents the estimation of spurious data, was set to 0.01. In APE-2, the

number of projections was set by default to 100. The rest of the parameters have been ob-

tained empirically and their optimal values are showed in Table 3.3. As in the previous table,

52



3.4 Experimental study

SVD-autoencoder Autoencoder

Dataset Class Parameters AUC±SD Parameters AUC±SD

1 (288,337) LOG,h : 3,P85 83.69±3.3∗ LIN,h : 3,P80 81.53±3.7 (281)

Balance 2 (49,576) LOG,h : 3,P55 66.29±10.8∗ LIN,h : 3,P75 59.33±10.6 (439)

3 (288,337) LOG,h : 3,P85 83.81±3.0∗ LIN,h : 3,P80 81.26±3.8 (277)

1 (444,239) LOG,h : 1,P95 96.69±1.5 LOG,h : 1,P95 96.62±1.4 (76)

Breast 2 (239,444) LOG,h : 5,P95 94.93±2.9∗ LIN,h : 1,P50 68.85±6.0 (100)

1 (1210,518) LOG,h : 5,P75 71.87±2.1∗ LIN,h : 4,P75 71.07±2.7 (230)

Car 2 (384,1344) LIN,h : 5,P95 89.91±1.9 LIN,h : 5,P95 92.75±2.1∗ (253)

3 (69,1659) LIN,h : 3,P99 97.57±2.9∗ LIN,h : 3,P95 95.77±4.0 (164)

4 (65,1663) LIN,h : 3,P99 97.30±3.3 LIN,h : 2,P99 97.11±3.7 (195)

1 (70,144) LIN,h : 3,P99 97.64±3.0∗ LIN,h : 5,P95 94.23±6.6 (259)

Glass 2 (76,138) LIN,h : 8,P99 98.22±3.6∗ LIN,h : 9,P85 87.57±7.7 (325)

3 (68,146) LOG,h : 9,P95 91.47±6.3∗ LOG,h : 9,P95 83.43±7.0 (191)

1 (225,81) LIN,h : 2,P70 55.23±5.2 LIN,h : 2,P65 56.53±4.1∗ (234)

Haberman 2 (81,225) LIN,h : 2,P55 55.37±8.6∗ LIN,h : 2,P75 52.93±9.0 (261)

1 (225,126) LIN,h : 5,P95 94.82±2.6∗ LIN,h : 5,P95 92.01±3.3 (126)

Ionosphere 2 (126,225) LIN,h : 32,P55 50.00±7.1 LIN,h : 1,P99 50.00±2.0 (16)

1 (50,100) LIN,h : 2,P99 100±0.0 LIN,h : 2,P99 100±0.0 (153)

Iris 2 (50,100) LIN,h : 3,P99 93.41±9.2 LIN,h : 3,P95 93.20±5.4 (154)

3 (50,100) LOG,h : 3,P95 89.33±6.8∗ LIN,h : 3,P95 84.98±7.2 (185)

1 (500,268) LIN,h : 2,P70 68.54±3.1 LIN,h : 1,P70 69.13±3.2∗ (98)

Pima 2 (268,500) LOG,h : 7,P60 57.20±7.3 LIN,h : 5,P70 57.87±4.6 (226)

1 (97,111) LIN,h : 5,P95 59.57±5.7 LIN,h : 25,P95 66.86±7.9∗ (274)

Sonar 2 (111,97) LOG,h : 24,P95 65.92±7.7 LIN,h : 12,P85 72.44±7.6∗ (81)

1 (626,332) LOG,h : 6,P70 66.05±2.9 LOG,h : 7,P90 72.47±2.6∗ (144)

TicTacToe 2 (332,626) LOG,h : 1,P95 72.78±3.9∗ LOG,h : 1,P95 71.76±4.2 (168)

1 (59,119) LIN,h : 1,P95 96.14±5.5∗ LIN,h : 4,P99 95.23±6.3 (163)

Wine 2 (71,107) LIN,h : 5,P90 83.82±8.8 LIN,h : 2,P95 83.47±7.6 (164)

3 (48,130) LIN,h : 9,P99 95.89±5.3 LIN,h : 3,P99 95.40±6.3 (149)

Table 3.2: AUC ± SD in percentage. In parentheses is the proportional training time compar-

ison against SVD-autoencoder. Absolute best results are boldfaced. Methods that are statisti-

cally different are marked with an asterisk.
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SVD-autoenc APE-2 ν-SVM

Dataset Class AUC±SD α AUC±SD σ AUC±SD

1 83.69±3.3 0.02 90.84±3.4† (37) 0.35 87.12±3.9 (79)

Balance 2 66.29±10.8 0.05 84.62±10.2† (36) 0.4 71.95±12.6 (79)

3 83.81±3.0 0.03 90.90±3.0† (38) 0.45 87.17±3.8 (74)

1 96.69±1.5† 0.2 95.14±1.9 (16) 0.3 94.11±2.7 (49)

Breast 2 94.93±2.9† 0.15 84.53±4.9 (24) 9 92.88±3.8 (49)

1 71.87±2.1 5e−4 71.83±1.7 (31) 0.4 79.03±2.1† (72)

Car 2 89.91±1.9 0.15 95.07±1.5† (74) 0.6 87.63±2.8 (88)

3 97.57±2.9 0.7 98.48±1.5† (66) 9 86.61±6.5 (94)

4 97.30±3.3 0.6 99.20±1.5† (62) 16 91.48±7.6 (92)

1 97.64±3.0† 1.7 95.35±4.8 (12) 8.5 92.22±6.9 (46)

Glass 2 98.22±3.6† 0.55 93.06±6.1 (8) 0.4 87.68±7.4 (27)

3 91.47±6.3† 0.4 87.58±8.0 (8) 0.8 88.87±6.6 (29)

1 55.23±5.2 1e−4 50.51±3.1 (26) 0.15 56.37±4.5† (98)

Haberman 2 55.37±8.6 1e−4 53.04±7.3 (31) 0.15 54.99±7.9 (88)

1 94.82±2.6† 0.4 90.09±3.0 (5) 0.9 91.15±4.3 (14)

Ionosphere 2 50.00±7.1 -0.99 50.00±4.0 (3) 0.3 51.99±2.8† (6)

1 100±0.0 1.5 100±0.0 (20) 0.8 100±0.0 (81)

Iris 2 93.41±9.2† 1.1 91.31±5.6 (21) 0.5 89.50±8.8 (82)

3 89.33±6.8 1.1 91.64±6.8† (20) 0.3 89.06±8.7 (81)

1 68.54±3.1† 0 62.03±3.2 (17) 0.2 65.24±3.3 (60)

Pima 2 57.20±7.3 1e−3 56.87±5.0 (24) 0.25 57.11±5.0 (58)

1 59.57±5.7 0.3 60.43±7.4 (2) 1 59.14±8.3 (7)

Sonar 2 65.92±7.7 0.2 66.53±7.0 (1) 0.9 66.29±7.1 (4)

1 66.05±2.9† 0.07 62.63±2.3 (17) 0.85 54.94±2.6 (49)

TicTacToe 2 72.78±3.9 0.05 63.07±4.3 (41) 4 83.57±3.6† (74)

1 96.14±5.5† 0.9 95.36±4.8 (12) 4 92.94±7.4 (44)

Wine 2 83.82±8.8† 0.55 79.61±8.1 (8) 0.8 78.66±7.6 (30)

3 95.89±5.3† 0.9 93.89±6.7 (7) 15 92.87±9.0 (30)

Table 3.3: AUC ± SD in percentage. In parentheses is the proportional training time compari-

son against SVD-autoencoder. Absolute best results are boldfaced. Methods which differences

are not statistically significant are marked with a † symbol.
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Figure 3.3: Average speedup factor relative to SVD-autoencoder times.

the second column of Table 3.3 shows the class considered as target. In this case, the results

show that on a bigger number of problems, SVD-autoencoder is significantly better at 95%

significance level than the other two methods.

Figure 3.3 shows the average speedup of the proposed SVD-autoencoder against the other

three methods in the 28 one-class problems studied. As can be seen, the SVD-autoencoder is

several times faster than the other approaches, specially in the cases of the classical Autoen-

coder and the state-of-the-art ν-SVM. Thus, it can be concluded that, with respect to classifi-

cation performance SVD-autoencoder is a competitive option and, in terms of computational

time, this approach considerably improves the results obtained by the other methods.

3.4.2 Performance of the SVD-autoencoder with large-scale datasets

This second study intends to demonstrate that SVD-autoencoder shows a good balance between

classification accuracy and training time when dealing with large-scale datasets, where the high

size comes from the number of samples. Besides, the proposed SVD-autoencoder is compared

in terms of performance and training times against the classical Autoencoder [72].

Three large datasets were employed. Table 4.3 shows their main characteristics. The first

one is a subset of the KDD Cup 99 dataset [1]. This dataset was used for the KDD (Knowledge

Discovery and Data Mining Tools Conference) Cup 99 Competition. The complete version has
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Dataset # classes # instances # features

KDD Cup 2 (97278, 396743) 494021 6

MiniBooNE 2 (93565, 36499) 130064 50

Covertype 2 (568772, 12240) 581012 54

Table 3.4: Characteristics of the datasets.

almost 5 million input patterns and each record represents a TCP/IP connection that is com-

posed of 41 features. KDD version employed in this work contains 494021 samples and only 6

features, as in [14] those were found to be the most representative and lead to better results than

the competition winner and other algorithms. The second dataset is the MiniBooNE dataset

[76], used to distinguish electron neutrinos (signal) from muon neutrinos (background). It con-

sist of 50 features and 130064 samples divided in two classes (signal and background).Finally,

the last one is the Forest Covertype dataset [76], used to classify forest cover type from car-

tographic variables. It has 581012 input patterns, each one of them composed of 54 features.

In the previous chapter a smaller version of this dataset was used in the context of supervised

classification. The original dataset distinguish between seven types of forest cover, but as five

of them are different species of pine trees, we reduced the dataset to two classes by conside-

ring all the five pine species as one class (568772 samples) and the other two species as the

other (12240 samples). Each problem was evaluated using 10-fold stratified cross-validation

on 10 different permutations of the data and all datasets have been previously normalized in

the interval [0, 1]. As previously, all the experiments were carried out on an Intel Core i7-4790

processor with 3.60GHz clock speed and 15.9Gb RAM.

Target Class 0 Target Class 1

Autoencoder SVD-autoencoder Autoencoder SVD-autoencoder

Hidden Neurons 3 2 4 3

A.F. 1st layer LOG LOG LOG LOG

A.F. 2nd layer LOG LIN LOG LOG

Threshold P80 P90 P95 P95

AUC ± SD 89.87±0.31 91.78±0.17 94.01±1.21 97.77±0.17

Training Time 10.520 0.029 256.452 0.230

Table 3.5: Parameters used for the proposed method and the Autoencoder in KDD Cup dataset,

and results obtained. Absolute best results are boldfaced.

Table 3.5 presents the optimum parameters employed and the results obtained in the experi-

ments with the KDD Cup 99 dataset. In the second column of the table, class 0 was used to train

the model. This means that 87551 samples were used to train and 406470 samples were used

to test in each execution of the experiments. In the third column class 1 was the target class,
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then 357069 training samples and 136952 testing samples were employed in the experiments.

As can be seen, in the two problems derived from the KDD Cup dataset, SVD-autoencoder

achieves better significant results than the classical approach. In the case of the Autoencoder,

as in the previous experiments, the maximum number of training iterations was set to 1000.

As can be seen, the differences in training time among this classical iterative method and the

non-iterative one proposed are enormous.

Target Class 0 Target Class 1

Autoencoder SVD-autoencoder Autoencoder SVD-autoencoder

Hidden Neurons 31 19 6 6

A.F. 1st layer LOG LOG LOG LOG

A.F. 2nd layer LIN LIN LIN LIN

Threshold P65 P70 P70 P85

AUC ± SD 65.12±0.86 71.35±0.39 70.88±1.93 71.67±0.20

Training Time 176.465 0.504 245.088 0.532

Table 3.6: Parameters used for the proposed method and the Autoencoder in MiniBooNE

dataset, and results obtained. Absolute best results are boldfaced.

Results and parameters of each MiniBooNE experiment are displayed on Table 3.6. When

class 0 was selected to train the model, 32849 training samples and 97215 testing samples were

used. In the case that class 1 was the target class, 84209 training samples and 45855 testing

samples were employed in the experiments. As can be seen in Table 3.6, SVD-autoencoder

achieves better significant results than the classical approach in both MiniBooNE problems.

Once again, the savings in training time using the proposed SVD-autoencoder are very big. In

spite of using less training samples than in the previous experiments (see Table 3.5), training

times are longer in both methods. This is due to the number of inputs/outputs and hidden

neurons, that is higher in this case.

Target Class 0 Target Class 1

Autoencoder SVD-autoencoder Autoencoder SVD-autoencoder

Hidden Neurons 20 9 38 39

A.F. 1st layer LOG LOG LOG LOG

A.F. 2nd layer LIN LOG LIN LOG

Threshold P65 P70 P80 P80

AUC ± SD 64.55±0.38 69.77±0.37 76.72±1.13 77.18±0.92

Training Time 1956.312 5.131 60.07 0.247

Table 3.7: Parameters used for the proposed method and the Autoencoder in Covertype dataset,

and results obtained. Absolute best results are boldfaced.
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Figure 3.4: Speedup factor for SVD-autoencoder vs Autoencoder.

Analogously, Table 3.7 shows the optimum parameters used and the results achieved in

the experiments made using the Covertype dataset. When class 0 was selected to train the

model, 511895 training samples and 69117 testing samples were used. In the case that class

1 was the target class, 11016 training samples and 569996 testing samples were employed in

the experiments. In this case, SVD-autoencoder achieves better significant results than the

classical method only when the target class is 0. However, the big savings in training time

obtained using the proposed SVD-autoencoder, thanks to its non-iterative nature, make it an

adequate choice for both Covertype problems.

A final experiment was made to measure the training time improvements using the pro-

posed SVD-Autoencoder instead of the classical Autoencoder for every large dataset studied.

In order to do a fair comparison, 90000 patterns of the class with the higher number of sam-

ples were used for each dataset. A non-linear activation function for the output neurons and

the maximum number of neurons in the hidden layer were also employed. As it was said in

Section 2, the number of neurons in the hidden layer h has to be strictly lesser than the number

of inputs. Thus, 5, 49 and 53 neurons were selected for the KDD, MiniBooNE and Covertype

experiments, respectively. Figure 3.4 shows the average speedup factor, measuring the times

SVD-autoencoder is faster than the classical Autoencoder (with 500 and 1000 maximum num-

ber of epochs). The differences between both methods are remarkable, specially in the case

of KDD Cup dataset, where the small number of hidden and output neurons emphasize these
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differences.

3.4.3 Parallel performance of the SVD-autoencoder

In this last experimental section we introduce an analysis of how the parallelization of the

SVD-autoencoder algorithm reduces the time needed to train a classifier. As it was said in

Section 3.3, the weights of the second layer for each output neuron are independent of the

others, hence their computation can be split in m (number of outputs) sub-problems that can be

solved in different processors at the same time.
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Figure 3.5: Speedup factor for serial SVD-autoencoder vs parallel SVD-Autoencoder.

The Covertype dataset was used in this section (see Table 3.4). In order to get more re-

presentative computational times 500000 samples of class 0 with 54 and 108 features (same

54 features repeated two times) were used to train the model. Besides, a non-linear activation

function for the second layer and the maximum number of neurons in the hidden layer (53 and

107) were also selected. The experiments were carried out on the same Intel Core i7-4790 with

4 cores used previously. Thus, training times with 1, 2, 3 and 4 processors working in parallel

were measured. Figure 3.5 shows the speedup factor. As can be seen, when the number of

features increases the parallelizable nature of the algorithm is better exploited. Due to parallel

overhead and the time required to transfer data from the master processor to the workers and
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back, the speedup factor is smaller than the ideal.

3.5 Summary

New machine learning techniques and tools are continuously appearing in order to be able

to deal with the increasing amount of available data. In this chapter, we have presented SVD-

autoencoder, a new fast learning neural network for one-class classification that allows handling

large-scale datasets. This method proposes the use of a previously presented cost function

based on the mean-squared error that measures the error before the output neural function. The

formula used to achieve the optimal weights is derived from a system of linear equations that

is further transformed by means of the Singular Value Decomposition (SVD). Furthermore, the

proposed method allows dimensionality reduction in a very efficient way. In the first layer,

the method learns a vector space embedding for the input data extracting meaningful low-

dimensional representation by means, again, of Singular Value Decomposition. This reduction

is controlled by the number of hidden neurons selected h that has to be strictly lesser than the

number of inputs. The main advantages of this proposed algorithm are that it can be used with

nonlinear activation functions and that it provides savings in computational requirements for

large datasets, especially in the usual case in which the number of hidden neurons is much

smaller than the number of data samples. Besides, the proposed algorithm did not run into any

convergence issues thanks to its non-iterative optimization.

Another interesting characteristic of the SVD-autoencoder is its parallelizable nature. The

minimization problem to obtain the optimal weights of the second layer can be split in several

sub-problems (one for each output neuron) that can be solved independently in a parallel ma-

nner. Thus, this characteristic makes the SVD-autoencoder highly scalable and efficient also if

the number of features is high.

Several experiments have been performed over the domain of one-class classification and it

has been demonstrated that this is a fast non-iterative method and, in comparison to some other

state of the art methods, this gain in efficacy does not have as a consequence an accuracy loss.
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CHAPTER4
One-class Convex Hull-Based Algorithm for

Classification in Distributed Environments

This chapter, in line with the previous one, is dedicated to the development of a new scalable

one-class classification algorithm, but in this proposal distributed scenarios will be the use case

to confront. Distributed Learning is interesting not only as a way of coping with big data by

distributing them among several nodes, but also on itself when data is already distributed in

origin.

As a reminder of what has been already stated in the previous chapter, a particular problem

in pattern recognition is the task of classifying new data that may differ in some respect from

the data that is available during training. This is an unsupervised classification task, known

as one-class classification, for which only information of one class (target class) is available

for learning. This means that the classifier does not use any assumption on the outlier data

to estimate the decision boundary. One-class classification is also called novelty (or outlier)

detection and concept learning [66]. These methods are typically applied to datasets in which

a very large number of examples of the target class (also known as normal class and positive

examples) is available and where there are insufficient data to describe the outlier class (also

known as negative examples). The scarcity of negative samples can be due to high measurement

costs, or the low frequency at which outliers occur. For example, in a machine monitoring

system [101], measurements of the machine during its normal operational state are easy to

obtain. However, measurements of failure are very expensive to collect as they would require a

crash in the machine [87]. Besides, one-class classification was proven to be an important tool

for fraud and intrusion detection [44, 75], text/document classification [82], disease detection

[43], etc.

One-class classification techniques are grouped according to three general categories: den-

sity estimation, reconstruction based, and boundary based techniques [66, 126]. The first appro-

ach uses probabilistic methods that involve a density estimation of the target class, like mixture

models and kernel density estimators [37]. Reconstruction based methods involve training a re-
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gression model using the target class. They can autonomously model the underlying data, and

when test data are presented to the system, the reconstruction error, defined to be the distance

between the test vector and the output of the system, can be related to the novelty score. The

SVD-autoencoder presented in the previous chapter is an example of this kind. Finally, boun-

dary methods try to model the boundary of the target class without focusing on the description

of the underlying distribution. Some well known methods that follow this latter approach are

nearest neighbour-based methods, cluster approaches, one-class support vector machines and

convex hull approaches [101]. A recent experimental evaluation of one-class classification

methods can be found in the work of Ding et al. [32]. Besides, recent reviews about one-

class classification (novelty detection) and its applications can be found in Khan and Madden

[65, 66], Chandola et al. [28] and Pimentel et al. [101].

Nowadays, the advances in the ICT (Information and Communications Technology) field

have contributed to the proliferation of big databases, usually distributed in several machines

and in different locations. Performing predictive modeling, such as one-class classification,

in this big data scenario is a difficult task. The majority of current one-class classification

algorithms are unable to handle this new situation. The classical approximation is based on

gathering the several partitions of data into one location to build up a monolithic set of data

on which to apply the algorithm. But, in many occasions, data from multiple locations cannot

be aggregated or exchanged due to the significant communication, the high cost of storing

all data in a unique place and privacy reasons, so the classification task can only be done in

local data sets. Therefore, it is important to ensure that the algorithms which worked well

on classical scenarios can scale out over distributed architectures [50]. It is common in fields

like multiagent algorithms, control systems and automatic monitoring systems to deal with

distributed architectures [80, 96, 122], however only a few recent works propose solutions to

specific one-class classification problems in distributed environments.

In order to face this issue, a new field of research has arisen that takes care of learning in

distributed environments. Zhou et al. [150] presented a framework for detecting anomalous

behavior from terabytes of flight record data from distributed data sources that cannot be di-

rectly merged. In Branch et al. [17] the problem of unsupervised outlier detection in wireless

sensor networks is addressed. They developed a flexible outlier detection method that com-

putes the result in-network to reduce both bandwidth and energy consumption and uses only

single-hop communication, thus permitting very simple node failure detection and message

reliability assurance mechanisms. Finally, in a most recent work by Castillo et al. [27] a dis-

tributed version of the state of the art ν-SVM algorithm was proposed, where several models

are considered, each one determined using a given local data partition on a processor, and the

goal is to find a global model.
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In this chapter:

1. A new distributed version of a one-class classification algorithm previously presented by

Casale et. al [26] is proposed. In it, the geometrical structure of the convex hull (CH)

is used to define the class boundary in one-class classification problems. This technique

has been widely used in multiclass classification problems [68, 79, 147] and it was first

proposed to tackle one-class problems by Casale et al. [25]. The use of conventional

implementations of the CH in high dimensions, due to its high computational comple-

xity, is not feasible. New implementations have been proposed to deal with this problem

[107, 124], but the computation of high dimensional CHs continues to be an issue. There-

fore, the proposed method, called SCH algorithm, approximates the D-dimensional CH

decision by means of random projections and an ensemble of CH models in very low

dimensions (d ≪ D) which makes it suitable for larger dimensions in an acceptable exe-

cution time. Besides, the SCH algorithm not only expands the capabilities of the original

one to manage distributed scenarios, but also proposes other changes that might be used

both in monolithic and distributed approaches, allowing for the use of different centers,

that avoid the appearance of non-convex situations (a drawback of the original method).

2. An extension of the SCH algorithm to improve its efficiency when dealing with big data

problems is presented. The appropriate number of random projections, needed to approx-

imate the decision of the original CH into an ensemble of projected decisions on very

low dimensions, is difficult to establish and it must be high to ensure an optimal approxi-

mation. Due to that, the ensemble model can contain several redundant or non-relevant

projections. With this new approach we try to get rid of the less relevant projections that

could lead to bad classification models in the low dimensional space and increase the

computational complexity of the algorithm.

3. A proposal for an online learning version of the SCH algorithm is also described in this

chapter. Online learning, along with distributed learning, have become trending areas in

the last years since they allow to deal with extremely large datasets. Some promising

experiments that encourage us to keep working on this approach are also showed.

This chapter is structured as follows: Section 4.1 outlines the main characteristics of the

original one-class algorithm in which is based this research, Section 4.2 includes a detailed

description of the proposed SCH algorithm and its distributed version, along with the experi-

mental support. Section 4.3 describes the extension for improving the efficiency of the SCH

algorithm removing non-relevant projections and shows its performance on several datasets.
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The main characteristics of the new online learning approach are outlined in Section 4.4. Fi-

nally, Section 4.5 sums up the contents of the chapter.
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4.1 Preliminaries: APE algorithm

4.1 Preliminaries: APE algorithm

In this section, for the sake of comprehension, the main characteristics of the original one-class

algorithm proposed by Casale et al. [25] are discussed. The major contributions of their work

in the field of one-class classification are:

1. The use of the geometric structure of the convex hull (CH) to model the boundary of the

target class defining the one-class problem.

2. The use of reduced and enlarged versions of the original convex hull, called extended

convex polytope (ECP) in order to avoid over-fitting and to find the optimal operating

point of the classifier.

3. As the computation of the ECP to decide whether a point belongs to the target class

is unfeasible in high dimensional spaces, an approximation of the D-dimensional ECP

model was made by using an ensemble of decisions in very low-dimensional spaces

d ≪ D (usually d = 1 or d = 2). This was called approximate convex polytope decision

ensemble (APE).

The convex hull of a finite set of points S ⊆ R
D is the (unique) minimal convex set contai-

ning S, and is defined as the convex combination of points xi in S where all the coefficients θi

are non-negative and add up to one [103]:

CH(S) =

{

|S|

∑
i=1

θixi

∣

∣

∣

∣

∣

(∀i : θi ≥ 0,xi ∈ S)∧
|S|

∑
i=1

θi = 1

}

.

The CH provides a tight approximation among several convex forms to the class region of a

set of points S ⊆ R
D. However, this approximation is prone to over-fitting. An outlier in the

training set can lead to shapes that do not represent the target class accurately. To avoid this,

reduced/enlarged versions of the original CH were used. Vertices of this ECP are defined with

respect to the center point c = 1
|S| ∑i xi,∀xi ∈ S and the expansion parameter α ∈ R as in

V α :

{

v+α
(v− c)

‖v− c‖

∣

∣

∣

∣

v ∈CH(S)

}

(4.1)

Fig. 4.1 shows a reduced (inner dashed polygon) and enlarged (outer dashed polygon) ECP.

Unfortunately, calculating the ECP in high dimensional spaces is computationally hard. To

overcome this limitation, the APE algorithm was proposed. It consists in approximating the

65



Chapter 4. One-class Convex Hull-Based Algorithm for Classification in Distributed Environments

Figure 4.1: Reduced/enlarged extended convex polytope.

decision made by the ECP in the original D-dimensional space by means of a set of τ ∈N ran-

domly projected decisions made on low-dimensional spaces. Random projections have recently

emerged as a powerful method for dimensionality reduction that preserves distances quite well.

This data structure preservation has been demonstrated by Johnson and Linderstrauss [58] and

it allows to create simple and powerful techniques. In this scenario, the decision rule is the

following: a point does not belong to the modeled class if and only if there exists at least one

projection in which the point lies outside the projected convex polytope.

Fig. 4.2 shows a graphical description of the method. In this example a 3-dimensional

convex figure (cylinder) is approximated by three random projections in 2 dimensions. As

can be seen, a point that lies outside the original cylinder might appear inside one or more

projections.

Expansion factor in the low dimensional space

The decision that a point belongs to the target class is made by considering the extended convex

polytope in a low-dimensional space. Since the projection matrix is randomly generated, the

norm of the original space is not preserved in the resulting one. Thus, a constant value of α in

the original space corresponds to a set of values γi in the projected one. So, the set of vertices

that define the low-dimensional approximation of the expanded polytope are:

V
α

:

{

vi + γi

(vi − c)

‖vi − c‖

}

, i = 1 . . .n (4.2)
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Figure 4.2: APE strategy on 2D.

where c = Pc represents the projection of the center c given a random projection matrix P, vi

is the ith convex hull vertex of the projected data and γi is defined as

γi =
(vi − c)T PT P(vi − c)

‖vi − c‖
α (4.3)

where vi is the ith vertex of the CH in the original space.

4.2 Proposed method

In this research a new version of the one-class APE algorithm, called Scaled Convex Hull

(SCH) algorithm, is proposed. Besides, an extension that expands the capabilities of the SCH

algorithm to manage distributed scenarios is also presented.

4.2.1 Scaled Convex Hull (SCH) algorithm

In this work some modifications related to the way the extended convex polytope (ECP) is

obtained in the previous APE algorithm (see Section 4.1) are proposed. The main purpose is

to avoid an awkward behavior detected when the expanded/reduced version of the polytope

is obtained and provide, at the same time, a more intuitive expansion parameter and a more

flexible method.
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As can be seen in Section 4.1, the expansion factor used in the APE algorithm takes into

account the distances between the vertices and the center of the CH in the original space to

calculate the ECP. Due to this, each vertex vi in the projected space has its own expansion

parameter γi. These expansion factors can lead to obtain non-convex polytopes, which is a

non desirable behavior of the algorithm, that aims at checking whether a point lies inside of

a convex polytope. Figures 4.3(a) and 4.3(b) depict two examples of this awkward behavior.

Data of class 1 (iris setosa) of the Iris dataset [76] and two different random projections into 2

dimensions were used to get these results.

(a) α = 0.4 (b) α = -0.1

Figure 4.3: Examples of non-convex polytopes as a result of the (a) expansion or (b) reduc-

tion of the projected CH. Dashed polygons represent the expanded/reduced polytope for each

example.

In this work, to calculate the expanded polytope in the low dimensional space, the formula

presented by Liu et al. [79] is proposed. Vertices of this scaled convex hull are defined with

respect to the center point c = 1
|S| ∑i xi,∀xi ∈ S and the expansion parameter λ ∈ [0,+∞) as in

V λ : {λv+(1−λ )c|v ∈CH(S)} (4.4)

The parameter λ specifies a constant contraction (0≤ λ < 1) or extension (λ > 1) of the convex

hull with respect to c.

As in the original algorithm, the decision whether a point belongs to the target class is made

by considering the scaled convex hull projected in a low-dimensional space. Thus, the set of

vertices that define the low-dimensional approximation of the scaled polytope are:

V
λ

: {λvi +(1−λ )c} , i = 1 . . .n (4.5)
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where c = Pc represents the projection of the center c given a random projection matrix P, vi is

the ith vertex of the convex hull obtained with the projected data and λ is the expansion factor.

The use of Equation 4.5 to calculate the expanded convex hull brings some benefits in

relation with the one proposed in Casale et al. [26]. Remember that they proposed an expansion

factor that takes into account the distances between the vertices and the center of the CH in

the original space to calculate the expanded polytope. However, as we have showed, this

expansion factor can lead to obtain non-convex polytopes, which is a non desirable behavior

of the algorithm. The formula described in Equation 4.5 is more intuitive as it only involves

information in the projected space and due to that fact all the vertices of the projected CH are

expanded by the same factor λ , avoiding the previous problem. Note that when λ = 0 all the

CH vertices are equal to c and when λ = 1 no expansion/reduction is obtained.

Furthermore, using this alternative, it is possible to employ different definitions of CH

“center”. In the original method, the average of all points in the D-dimensional space was the

unique possible choice as a center (see Section 4.1). However, in the SCH algorithm three

different definitions of center are proposed:

• Average of all the training points in the projected space:

c =
1
∣

∣S
∣

∣

∑
i

xi,∀xi ∈ S (4.6)

where S ⊆ R
d represents the projection into a low-dimensional space of the original set

of points S ⊆ R
D.

• Average of the convex hull vertices in the projected space:

c =
1

∣

∣CH(S)
∣

∣

∑
i

vi,∀vi ∈CH(S) (4.7)

• Average position of all the points in the projected polytope (Centroid) [4].

As can be seen in Figure 4.4, each type of center leads to different decision regions (λ = 0.8

has been used in this example), giving more flexibility to this method. For instance, when the

majority of the training samples fall in the same region and some other are underrepresented,

but important ones, fall in other areas of the space, the scaled convex hull obtained using the

average of all the training points as a center will be biased towards the preponderant samples.

In such cases, the selection of one of the other types of center proposed to scale the CH could

improve the final decision region.
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original CH
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Figure 4.4: Decision regions for each type of center.

Learning and testing algorithms

Learning and testing procedures of the SCH method are described in Algorithms 3 and 4,

respectively. In the learning algorithm, the number of projections τ , the expansion parameter

λ , and the type of center used to calculate the extended polytope have to be defined. An

ensemble model E containing τ projection matrices and their respective expanded CH vertices

is obtained at the end of the training procedure. In the original method [26] vertices of the ECP

are obtained in the testing algorithm. However, changing this operation from the testing to the

learning algorithm, as we propose, reduces computational time as calculations are done only

once.

Algorithm 4 takes as inputs: the model E and a test point x ∈ R
D. At each iteration t, the

test point is projected into the low dimensional space spanned by the t-th projection matrix.

Then, given the set of expanded vertices, it is possible to check whether the point lies inside the

projected polytope or not. Remember that if the point lies outside one of the projected convex

polytopes then it does not belong to the model and no more checking is needed.
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Algorithm 3 : SCH learning algorithm

Inputs: S ⊂ R
D ⊲ Training set

τ ⊲ Number of projections

λ ∈ [0,+∞) ⊲ Expansion parameter

tc ⊲ Type of center

Outputs: E ⊲ Ensemble model

1: E = φ ; ⊲ Initialize the Ensemble; empty at the beginning

2: for t = 1 to τ

3: Pt ∼ N(0,1) ⊲ Create a random projection matrix [d ×D]

4: St : {Ptx|x ∈ S} ⊲ Project original data

5: Vt = CH(St) ⊲ Return the vertices of the CH

6: c = getCenter(tc,St) ⊲ Return the selected center in the d dimensional space

7: V λ
t : {λvi +(1−λ )c|vi ∈Vt} ⊲ ECP in the d dimensional space

8: E = E ∪ (Pt ,V
λ

t ) ⊲ Store the vertices of the expanded CH and the projection matrix

9: end for

Algorithm 4 : SCH testing algorithm

Inputs: x ∈ R
D ⊲ Test point

E ⊲ Trained ensemble model

Outputs: Result ∈ {INSIDE,OUT SIDE}

1: Result = INSIDE

2: for t = 1 to τ

3: xt : {Ptx} ⊲ Project test point

4: if (xt /∈ CH(V λ
t )) then

5: Result = OUT SIDE

6: Break

7: end if

8: end for
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4.2.2 Distributed Scaled Convex Hull (DSCH) algorithm

In this section a novel distributed one-class classification approach based on an extension of

the previous SCH algorithm is presented. Nowadays, due the proliferation of large distributed

databases, it is important to ensure that the algorithms which worked well on classical small

scenarios can scale out over distributed architectures.

In order to do so, the new distributed algorithm proposed has to fulfill some requirements:

1. Avoid the cost of storing all the distributed data in a unique node;

2. Prevent the high computational cost of training in a unique node;

3. Reduce the cost of dispatching a big amount of data between different nodes;

4. Avoid the exchange of sensitive or private data through the net.

Thus the general architecture of the distributed algorithm proposed consist of:

• A fully connected network of N independent nodes. As the idea is to deal with dis-

tributed databases, these nodes are supposed to be computers (with their own databases)

located in different parts of the world. They are independent because they do not need to

know anything about the data managed in the others;

• 1 head node. It is the responsible of communicating with all the other nodes to start the

training process, sharing the information needed. It can be any of the N nodes;

• 1 decision node. It is the responsible of communicating with all the other nodes to share

the information needed to test a new data point and to take its final classification decision.

In this case, as it will be seen, any of the N nodes might be the decision node at some

point.

In order to fulfill the previous requirements, i.e. reducing the exchange of data between

nodes to a minimum and avoiding the dispatch of sensitive or private data through the net,

communications in this approach are reduced to:

• The set of random projections matrices {Pt}, t = 1 . . .τ has to be sent to each training

node in order to create homogeneous models. Figure 4.5 shows this step. Node N was
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selected as the head node in this example. Thus, the set of τ random projections matrices

P is created in this node and delivered to the other nodes.

• The projections of each new test point are sent to each testing node. After the training

phase, if a new point x appears in a Node i (i = 1 . . .N), it needs to be classified. Node

i will be the decision node during the testing process of point x. Figure 4.6 depicts this

step. Node N was the decision node in this example, but the graph will be exactly the

same changing Node N for any other. It can be seen that instead of sending the original

point x directly to the testing nodes, the decision node sends it encrypted by means of the

low dimensional projections xt = Ptx, t = 1 . . .τ , avoiding the exchange of private data

through the net.

• The local decision about point x obtained in each node needs to be delivered to the

decision node in order to obtain the final result. Figure 4.7 reflects this step.

Training and testing procedures, as well as the global decision rule are described in detail

in the following subsections.

Figure 4.5: The set of τ projections matrices P is sent from the head node to every other training

node.

4.2.2.1 Distributed learning procedure

1. The first thing to do is to select the Head node. It can be any of the N available nodes.

This node is responsible for starting the training process.
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Figure 4.6: Projections of a new test point x are sent from the decision node to each testing

node.

Figure 4.7: Local decisions (D1...DN) from each testing node are gathered into the decision

node to obtain the final result (Res).
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2. The set of τ random projections P is created in the Head node and delivered to all the

training nodes.

3. Each training node creates its own local model Ei, i = 1 . . .N, composed of τ projection

matrices and their respective expanded convex hull vertices, using its own data. This

process is almost the same as the one described in Algorithm 3, but in this case is applied

locally in each one of the N distributed nodes. The only difference is that now the set of

random projection matrices P is provided as an input and, therefore, line 3 in Algorithm

3 is removed.

After this process, each training node will become a testing node with its own model.

Therefore, N different local models are available to classify each new test point.

4.2.2.2 Distributed decision algorithm

As it was said before, if a new test point arrives to Node i (i = 1 . . .N) to be classified, then

Node i will be the decision node during the testing process of that point, and the process is the

following:

1. Decision node: the new test point is projected into the τ low dimensional spaces (using

P) and delivered to all the testing nodes. Remember that the set of random projections P

was sent to every node in the network at the beginning of the training phase. Therefore,

each node has a local copy of P.

2. Testing nodes: each projection of the test point is checked in the appropriate expanded

convex hull (SCH), following basically the same procedure already showed in the ori-

ginal SCH algorithm (see Algorithm 4). But now the τ projections of the test point are

provided as an input, instead of the original test point, therefore, line 3 in Algorithm 4 is

deleted.

3. Testing nodes: local decision Di (i-th node) is sent to the decision node.

4. Decision node: the decisions obtained in each testing node are combined to obtain the

final classification using a global decision rule, described in the next section.
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4.2.2.3 Global decision rule

This distributed decision algorithm, as the original one, has to decide whether or not a new

point belongs to the target class. But in this case, this target class is represented by means of N

different local models. So to make a final decision the results obtained in each individual cla-

ssifier need to be combined in a specific way. Such interpretation allows forming an ensemble

through algebraic combination rules [102], like majority voting or sum/product. In this work

two different decision rules are proposed:

• Sum (OR). The final decision is the sum of the local decisions Di (i-th node). This means

that if the test point is classified as normal (belonging to the target class) in at least one

of the testing nodes, then it will be classified as normal in the final decision.

Result = (D1 OR D2 ... OR Dn) (4.8)

• Majority voting (MV). The final decision is obtained by majority vote of the local de-

cisions Di (i-th node). For any given test point, the decision chosen by most classifiers is

the final decision. An extensive analysis of the majority voting approach can be found in

[73].

The performance of this method and the effects of these two different decision rules are

showed in the experimental section. Furthermore, a comparative against the distributed ν-

SVM [26] is presented. This method has some similarities with our proposal but a different

philosophy. The main difference is that the method proposed is privacy preserving and the

distributed ν-SVM is not (because some data points are shared through the net).

4.2.3 Experimental study

This section will present the results of the experiments to assess the performance of the one-

class classification algorithm (SCH) and its distributed extension (DSCH) presented in this

chapter. In the first section a study on the performance of the proposed one-class approach

when compared with other state of the art methods is presented. The second section describes

the performance of the distributed approach with very large datasets and compares it with the

results obtained by another distributed one-class method.
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4.2.3.1 Comparative study of performance

In order to assess the adequacy of the performance obtained by the proposed SCH algorithm,

a comparison against two one-class pattern recognition algorithms is made. The first one is

the APE (Approximate Polytope Ensemble) algorithm proposed by Casale et al. [25]. This

algorithm was selected because is the base of the SCH algorithm proposed and it showed a

very good performance when compared against several standard classification algorithms. The

second one is the state-of-the-art ν-SVM algorithm [114]. These methods were evaluated over

the same 28 one-class problems derived from 11 UCI machine learning repository datasets

[76] used in the previous chapter (see Table 4.1). For each dataset, one-class problems were

obtained considering one of the classes as target and the rest as outliers. Each problem was

evaluated using 10-fold stratified cross-validation on 10 different permutations of the data. This

experimental framework is employed as it is the same that has been used in a previous work [25]

to show the superiority of the original APE algorithm against several state-of-the-art one-class

pattern recognition methods. All datasets have been previously normalized between [0, 1]. As

it was shown in Casale et al. [25] that using 2D projections provides better results than using

1D projections, in this work we projected data to 2D spaces, and arbitrarily set the number of

projections used to 100. Furthermore, in the case of SCH, three different SCH approaches were

tested, varying the type of center employed (see Section 4.1). All the experiments were carried

out on an Intel Core i7-4790 processor with 3.60GHz clock speed and 15.9Gb RAM.

Dataset No. features # instances # classes

Balance 4 625 3

Breast 10 683 2

Car 6 1728 4

Glass 10 214 3

Haberman 3 306 2

Ionosphere 34 351 2

Iris 4 150 3

Pima 8 768 2

Sonar 60 208 2

TicTacToe 9 958 2

Wine 13 178 3

Table 4.1: Characteristics of the UCI datasets.

Results obtained are reported in Table 4.2. In the second column of Table 4.2, the class

considered as target and the number of samples of the target and outlier classes are displayed

in brackets, respectively. Remaining columns of the table show the % of the mean Area Under

the Roc Curve (AUC) and the standard deviation (SD) obtained. In order to compute the AUC,
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each curve was evaluated on 100 points varying the α parameter in APE-2, the λ parameter in

SCH approaches and the parameter σ that controls the width of the distribution in ν-SVM .

Dataset Class APE −2 SCHavg.xi
SCHavg.vi

SCHcentroid ν-SVM

1 (288,337) 90.84±3.4 90.75±3.4 90.96±3.1† 90.85±3.0 87.12±3.9

Balance 2 (49,576) 84.62±10.2 87.49±6.0∗† 87.29±6.0 87.10±6.0 71.95±12.6

3 (288,337) 90.90±3.0 90.91±3.3 91.00±3.1† 90.87±3.1 87.17±3.8

1 (444,239) 95.14±1.9 95.21±1.7 95.19±1.8 95.26±1.7† 94.11±2.7

Breast 2 (239,444) 84.53±4.9 85.66±4.4∗ 85.30±4.3 85.61±4.3 92.88±3.8†

1 (1210,518) 71.83±1.7∗ 71.15±1.8 71.27±1.7 71.29±1.7 79.03±2.1†

Car 2 (384,1344) 95.08±1.3 95.69±1.2∗† 95.51±1.3 95.51±1.2 87.62±2.8

3 (69,1659) 98.48±1.5 98.66±1.8 99.16±0.6∗† 98.79±1.5 86.61±6.8

4 (65,1663) 99.20±1.5 99.74±0.3∗† 99.41±1.3 99.55±1.0 91.48±7.6

1 (70,144) 95.36±4.8 96.79±3.7 97.00±3.6∗† 96.73±3.9 92.22±4.7

Glass 2 (76,138) 93.06±6.1 93.32±6.0 93.04±6.3 93.33±5.6† 87.68±7.4

3 (68,146) 87.58±8.0 88.33±8.0 88.26±8.1 88.44±7.9∗ 88.87±6.5

1 (225,81) 50.51±3.1 51.11±1.3 51.17±1.3∗ 51.13±1.3 56.37±4.5†

Haberman 2 (81,225) 57.80±7.8 60.06±8.2∗† 59.73±9.1 59.96±8.4 54.99±7.9

1 (225,126) 90.09±3.0 90.06±3.2 90.19±3.2 90.17±3.4 91.15±4.3†

Ionosphere 2 (126,225) 50.00±0.0 50.00±0.0 50.00±0.0 50.00±0.0 51.99±2.8†

1 (50,100) 100±0.0 100±0.0 100±0.0 100±0.0 100±0.0

Iris 2 (50,100) 91.31±5.6 93.02±2.9 93.07±2.6 93.10±2.5∗† 84.50±8.8

3 (50,100) 91.64±6.8 92.03±6.5 92.23±6.9 92.35±6.6∗† 89.06±8.7

1 (500,268) 62.03±3.2 62.12±2.9 62.24±3.0 62.17±2.9 65.24±3.3†

Pima 2 (268,500) 56.87±5.0 57.20±5.1 57.11±4.8 57.06±4.9 57.11±5.0

1 (97,111) 60.43±7.4 61.59±7.6∗† 61.57±8.0 60.99±7.7 59.14±8.3

Sonar 2 (111,97) 66.53±7.0 67.96±7.6∗† 67.18±7.2 67.26±7.3 66.29±7.1

1 (626,332) 62.63±2.3 62.64±2.0 62.50±2.1 62.80±2.0† 54.94±2.6

TicTacToe 2 (332,626) 63.07±4.3 63.09±4.4 63.32±4.5 63.48±4.2 83.57±3.6†

1 (59,119) 95.36±4.8 96.26±5.1 96.68±4.6∗† 96.48±4.7 92.94±7.5

Wine 2 (71,107) 79.61±8.1 81.47±7.7 81.18±7.7 81.49±8.1∗† 78.66±7.6

3 (48,130) 93.89±6.7 96.17±3.0 96.80±2.0∗† 96.45±2.6 92.87±9.0

Table 4.2: AUC and SD. In bold font, the best result for each problem. Methods that are

statistically different are marked with an * (SCH vs APE-2) or with a † (SCH vs ν-SVM).

Two pairwise t-test [31] were applied to evaluate the statistical difference at 95% signifi-

cance level. In the first one, the best result of the SCH approach varying the type of center

(i.e. avg. of every training sample xi, avg. of every CH vertex vi and centroid of the polytope)

and the result obtained by the APE were compared and those methods statistically different

were marked with an * in Table 4.2. In the second one, the best result of the SCH was again

compared against the result obtained by the ν-SVM and the results statistically different were
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marked with a †. SCH versions, varying the ”center” used to compute the extended CH, genera-

lly achieve better significant results than APE-2. Sixteen times against one, SCH is statistically

better than APE-2. As can be seen in the results table, none of the SCH approaches is con-

sistently better than the others. So, depending on the problem at hand (the nature of the data),

different “centers” may be used, obtaining dissimilar decision regions that can better fit the

data. The last column of Table 4.2 shows the results achieved by the ν-SVM in the same prob-

lems. It can be seen that SCH generally get better significant results, eighteen times against

seven for the kernel method.

4.2.3.2 Performance of the DSCH with very large datasets

In order to asses the performance of the proposed distributed algorithm the same three large

datasets seen in the previous chapter were employed. Table 3.4 presents their main characteris-

tics. The first one is a reduced version of the KDD Cup 99 dataset [1]. In this study, the dataset

has over 800000 samples divided in two subsets, one for training and the other for testing. This

partition of the data was also employed in the original KDD Cup competition. Besides, only

the 6 features that were found to be the most representative in the work of Bolon-Canedo et

al. [14] were used. The second one is the MiniBooNE dataset [76], intended to distinguish

electron neutrinos (signal) from muon neutrinos (background). It has 130064 samples, each

one of then composed of 50 features. The last one is the Forest Covertype dataset [76], used

to classify forest cover type from cartographic variables. It consist of 54 features and 581012

input patterns. The dataset was reduced from seven to two classes by considering all the five

pine species as one class and the other two species as the other. For the three datasets, one class

problems were obtained considering the class with the higher number of samples as target and

the other one as outlier, that is the typical situation in a real one-class scenario. These datasets

were selected such as to be able to obtain results for a monolithic approach, so as to compare

performance in accuracy and time.

Dataset No. features # instances # classes

KDD Training set 6 494021 2 (97278, 396743)

KDD Test set 6 311029 2 (60593, 250436)

MiniBooNE 50 130064 2 (93565, 36499)

Covertype 54 581012 2 (568772, 12240)

Table 4.3: Characteristics of the datasets.

Five different configurations of 1, 2, 5, 10, and 20 nodes were considered to test the pro-

posed distributed algorithm, where every node receives a disjoint random subset of the training
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data with an equal amount of samples (total number of training samples divided by the number

of nodes). In the case of just one computational node (monolithic approach), the DSCH lear-

ning and testing algorithms are the same as the original SCH algorithms (see Section 4.2.1).

Therefore, a comparative study in terms of performance (AUC) and training time between the

SCH algorithm and its distributed version (DSCH) was made. Each problem was evaluated 30

times, thus varying the training data and the way it is distributed between the nodes. Besides, an

experiment to calculate the optimal number of projections for each dataset was made. Finally,

the proposed DSCH algorithm has been compared in terms of performance and training times

against the distributed ν-SVM (Dν-SVM) presented by Castillo et al. [27]. This algorithm

has been selected because, to our knowledge, it was the unique one-class algorithm specifically

adapted to work with distributed data available in the literature. Besides, it is a distributed

version of the well-known ν-SVM used in the previous section. This method employs the idea

of projecting the training samples to a higher dimensional feature space and then separates

most of the samples from the origin using a maximum margin hyperplane. In the distributed

approach several bands are considered, each one obtained using a given local data partition

on a processor, and the goal is to find a global classifier. In this respect it is similar to our

proposal but the philosophy is different. In the Dν-SVM there is a master node that controls

the training phase from the beginning to the end (until convergence is attained), allowing the

exchange of data points between nodes in order to have similar data points in the same node

[27]. Therefore, in this method the exchange of sensitive data through the net is not avoided

and the initial distribution of the data is keystone to get rapid convergence. That does not occur

with the method proposed in this work, where the training phase is independent in each node.

Table 4.4 shows the parameters employed and the results obtained in the experiments with

the KDD Cup 99 dataset. To learn the model 300000 random samples of the target class

extracted from the KDD Training set (see Table 4.3) were used. In a distributed case with n

nodes, each node will use 300000/n random samples for training. To test the model, all the

samples of the KDD Test set (see Table 4.3) were utilized. As can be seen, the number of

test samples per node is the same independently of the number of nodes employed. That is

because each new test point needs to be tested in each node’s classifier, remember that the

decision node sends the projections of each new test point to every training/testing node (see

Section 4.2.2.2). Table 4.4 also shows the true positives, true negatives and AUC obtained for

each architecture and for the two decision rules proposed, sum-OR and Majority Voting-MV

(see Section 4.2.2.3). As can be seen, the performance of the method is not affected by the

distribution of the data, the best overall results being obtained with 20 nodes and majority

voting (MV) as the decision rule. Regarding the computational time, as each node receives

the same amount of training data, time spent to train is virtually reduced by a factor equal to

the number of nodes. Here we assume that all the nodes (independent machines or processors)
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work in parallel. Therefore, for this dataset the distributed version of the SCH algorithm with

20 nodes achieves the best performance and reduces the training time from almost 1 minute

(monolithic approach) to just 3.68 seconds.

SCH Distributed SCH

Training nodes 1 2 5 10 20

Training samples 300000 150000 60000 30000 15000

Testing samples 311029 311029

Center type avg. vi avg. vi

λ 1.01 1.1

# of projections 3000 3000

Decision rule - OR — MV OR — MV OR — MV OR — MV

True positives (%) 92.54 92.54 — 92.27 92.55 — 90.84 92.54 — 90.69 92.55 — 90.46

True negatives (%) 90.57 90.60 — 93.42 90.60 — 96.65 93.26 — 97.03 94.06 — 97.31

AUC (%) 91.56 91.57 — 93.72 91.57 — 93.75 92.90 — 93.86 93.31 — 93.89

Training Time 58.32 s 32.54 s 12.51 s 7.09 s 3.68 s

Table 4.4: Parameters used for the DSCH in KDD Cup dataset, and results obtained for 1, 2,

5, 10 and 20 training nodes using two different decision rules: OR (sum) and MV (Majority

Voting).

.

Analogously, Table 4.5 presents the parameters used and the results achieved in the experi-

ments made using the MiniBooNE dataset. The training set consist of 60000 random samples

of the target class (the one with the higher number of samples) and the rest were used to test.

As it is shown in Table 4.5, performance of the method is not affected by the distribution of the

data and the best overall results were obtained with 5 nodes and the sum (OR) (see equation

4.8) as the decision rule. Computational time is also reduced by a factor equal to the number of

nodes. Thus, for this dataset the distributed version of the SCH algorithm with 5 nodes achieves

the best performance and reduces the training time from 27.4 seconds to just 6.45 seconds.

Results and parameters of each Covertype experiment are displayed on Table 4.6. Training

set consist of 550000 random samples of the target class and the rest were used to test. In

the same way that the previous experiments, performance is not influenced drastically by the

distribution of the training data. In this case, the best overall results were obtained with 20

nodes and MV as the decision rule. Training time was reduced from 50.54 seconds (1 node) to

2.12 seconds (20 nodes).

In addition, Figures 4.8, 4.9 and 4.10 show how the number of projections affects the

overall performance of the DSCH algorithm. 30 repetitions of the experiment permutating

the data were made for each number of projections and the average AUC and the standard
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SCH Distributed SCH

Training nodes 1 2 5 10 20

Training samples 60000 30000 12000 6000 3000

Testing samples 70064 70074

Center type Centroid Centroid

λ 0.74 0.76

# of projections 5000 5000

Decision rule - OR — MV OR — MV OR — MV OR — MV

True positives (%) 67.31 63.53 — 56.10 58.10 — 50.89 53.54 — 42.47 48.78 — 34.91

True negatives (%) 75.76 80.21 — 86.28 85.83 — 90.87 89.35 — 94.78 92.03 — 96.92

AUC (%) 71.54 71.87 — 71.19 71.97 — 70.88 71.45 — 68.63 71.41 — 65.97

Training Time 27.40 s 17.77 s 6.45 s 4.12 s 2.67 s

Table 4.5: Parameters used for the DSCH in MiniBooNE dataset, and results obtained for 1,

2, 5, 10 and 20 training nodes using two different decision rules: OR (sum) and MV (Majority

Voting).

SCH Distributed SCH

Training nodes 1 2 5 10 20

Training samples 550000 275000 110000 55000 27500

Testing samples 31012 31012

Center type avg. vi avg. vi

λ 0.87 0.87

# of projections 1000 1000

Decision rule - OR — MV OR — MV OR — MV OR — MV

True positives (%) 88.79 88.69 — 87.25 88.32 — 85.38 87.98 — 83.31 87.80 — 82.80

True negatives (%) 33.30 33.44 — 34.91 34.62 — 37.00 34.41 — 39.16 34.67 — 39.77

AUC (%) 61.05 61.06 — 61.11 61.15 — 61.19 61.21 — 61.26 61.25 — 61.30

Training Time 50.54 s 25.75 s 9.46 s 4.61 s 2.12 s

Table 4.6: Parameters used for the DSCH in Covertype dataset, and results obtained for 1, 2,

5, 10 and 20 training nodes using two different decision rules: OR (sum) and MV (Majority

Voting).
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deviation are showed. In Figure 4.8, results for the KDD Cup dataset were obtained with the

same parameters showed in Table 4.4 and varying the number of projections. The arrow points

out the optimal number of projections for the KDD dataset (τ=3000). Figure 4.9 shows how the

number of projections modifies the performance of the DSCH algorithm for the MiniBooNE

dataset. The same procedure described for the KDD Cup dataset was used. In this case any

value of τ between 4500 and 5000 is a good choice, because it offers a good compromise

between performance and computational complexity (the higher the number of projections, the

higher the computational complexity). Finally, Figure 4.10 presents the number of projections

against the classification performance of the DSCH algorithm for the Covertype dataset. In this

case 1000 was chosen as the optimal number of projections for this dataset.
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Figure 4.8: AUC vs Projections (KDD Cup dataset).

0 1000 2000 3000 4000 5000

Projections

0.5

0.55

0.6

0.65

0.7

A
U

C

5000

Figure 4.9: AUC vs Projections (MiniBooNE dataset).

Figure 4.11 shows a summary of the results obtained by the DSCH in AUC (%) and trai-

ning time for the three datasets employed. It can be easily seen that the training time of the
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Figure 4.10: AUC vs Projections (Covertype dataset).

monolithic architecture (1 node) is almost divided by the number of nodes used in the experi-

ments. This characteristic is fulfilled for all the datasets used. The graph also shows how the

performance of the distributed algorithm maintains or slightly improves (in the case of KDD)

the performance of the original SCH algorithm. In KDD and Covertype datasets the AUC

showed was achieved with the majority voting (MV) decision rule. However, in Covertype the

sum (OR) decision rule provided better results. In any case, as the results in performance are

very similar, a reasonable approach could be the use of 20 nodes for all cases, as time reduction

is more pronounced.

Figure 4.11: Training time vs AUC for the three datasets used in the experiments for DSCH.

Table 4.7 shows the comparative results of the proposed DSCH algorithm against the dis-

tributed version of the ν-SVM. In order to be able to compare both methods, the three datasets

described in Table 3.4 and the same experimental setup previously used for the DSCH algo-

rithm have been employed to obtain the results of the Dν-SVM. Each cell of the table shows
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the % of the mean Area Under the Roc Curve (AUC) and the standard deviation (SD) obtained

for both methods (DSCH and Dν-SVM), as long as the training time. In order to compute the

AUC, each curve was evaluated on 100 points varying the λ parameter in DSCH and the σ pa-

rameter in Dν-SVM. Besides, the ν-SVM parameter that represents the estimation of spurious

data in the training set, ν , was set to 0.01. A pairwise t-test [31] between the results obtained

by the DSCH algorithm and the Dν-SVM for each dataset and each configuration of nodes

was applied to evaluate the statistical difference at 95% significance level. Methods that are

statistically different are marked with an asterisk in Table 4.7. As can be seen, the performance

of both methods is not affected by the distribution of the data. The method proposed beats the

distributed ν-SVM in terms of AUC seven times against one in the fifteen problems presented

(seven ties). Regarding the computational time, DSCH algorithm exhibits consistently a better

behavior than Dν-SVM. Figure 4.12 shows the average speedup factor, measuring how much

the training time is faster using the DSCH approach rather than the Dν-SVM for every problem

studied. The differences are specially remarkable in the case of the Covertype dataset, where

our proposal is hundred of times faster than the SVM approach. This is because the DSCH

algorithm complexity mainly relies on the number of projections (1000 in this example), being

the number of samples and features of the training set less important. However, the complexity

of the SVM approach is severely affected by the dimensionality of the dataset, both in samples

and features [114] (550000 samples and 54 features in this case).

KDD Cup MiniBooNE Covertype

Nodes DSCH Dν-SVM DSCH Dν-SVM DSCH Dν-SVM

91.56±0.21∗ 82.94±0.04 71.54±0.64∗ 69.11±0.07 61.05±0.14 61.91±0.58

1 58.32 s 957.40 s 27.40 s 889.22 s 50.54 s 22678.10 s

93.72±0.31∗ 82.45±0.04 71.87±0.51∗ 69.94±0.17 61.11±0.13 62.04±0.65

2 32.54 s 362.79 s 17.77 s 367.26 s 25.75 s 10482.90 s

93.75±0.30∗ 83.02±0.06 71.97±0.53 71.04±0.25 61.18±0.15 61.24±0.63

5 12.51 s 81.73 s 6.45 s 132.65 s 9.46 s 3102.35 s

93.86±0.27∗ 83.03±0.07 71.45±0.62 71.95±0.18 61.26±0.17 61.23±0.76

10 7.09 s 31.49 s 4.12 s 63.06 s 4.61 s 1216.10 s

93.89±0.32∗ 83.07±0.06 71.41±0.70 73.01±0.17∗ 61.30±0.19 61.02±0.47

20 3.68 s 14.91 s 2.67 s 39.66 s 2.12 s 476.92 s

Table 4.7: AUC, SD and Training Time. In bold font, the best result for each problem. Methods

that are statistically different are marked with an *.
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KDD Cup MiniBooNE Covertype
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Figure 4.12: Speedup factor for DSCH versus Dν-SVM.

4.3 Mutual Information for improving the efficiency of the SCH

algorithm

In this section an extension for improving the efficiency of the SCH algorithm is presented.

As it has been seen in the previous experimental section, the number of random projections

τ needed to ensure a good performance of the algorithm in the three large datasets is very

high. This fact can lead to non-relevant and redundant projected models that increase the

computational complexity of the algorithm in the testing phase (see Algorithm 4). Thus, we

propose to add a new phase to the SCH algorithm with the aim of reducing the number of

random projections used to classify new data removing the less relevant ones.

4.3.1 Projection pruning phase

Right after the SCH training phase (see Algorithm 3) and before starting with the classification

of new samples, a new procedure, called projection pruning phase, is added to the proposed

SCH algorithm. In it, the mutual information criterion is used to evaluate the set of τ projections

and sort them in order of relevance. For two random variables X and Y the mutual information

[30] is defined as:

I(X ;Y ) = H(X)−H(X |Y ) = ∑
x,y

p(x,y)log
p(x,y)

p(x)p(y)
(4.9)
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where H(X) is the entropy of X and H(X |Y ) is the conditional entropy of X knowing Y . This

measure is symmetric in X and Y , nonnegative and is equal to zero if and only if the variables

are independent. The mutual information measures arbitrary dependencies between random

variables and it is suitable for estimating their “information content” in complex classification

tasks.

Algorithm 5 shows the steps proposed for this phase. Firstly, τ random variables containing

information about each one of the projections are needed. After the training phase(see Alg.

3) an ensemble E of τ classification models in 2-dimensions is obtained. A set of n non-seen

points, called validation set Val ⊂ R
D, is evaluated against each one of the projected models

Pi and the result is the matrix M (see Figure 4.13(a)). Each cell shows the result of checking

whether the point xi ∈Val, i = 1 . . .n is inside (1) or outside (0) the projected CH created by the

projection Pi, i = 1 . . .τ . Thereafter, we considered each column i of the matrix M as a random

variable containing information about the projection Pi. Thus, the mutual information against

each pair of variables can be calculated and the upper triangular matrix MI is the result.

(a) (b)

Figure 4.13: (a) Validation results matrix [n× τ] (b) Mutual information matrix [τ × τ]

Notice that the class of each validation sample is not needed, just the result of the classifi-

cation. As can be seen in Figure 4.13 (b), the diagonal and the lower triangular part were not

calculated because the mutual information values of one projection against itself are not useful

here and the lower triangular part is not necessary because of the mutual information symmetry

property. Afterwards, the maximum value of mutual information in each row of MI is stored

in a vector lmax, where the first value contains the maximum mutual information for P1, the

second one the maximum for P2 and so on.

Finally, the vector lmax is sorted in ascending order and the index containing the new po-

sitions of the projections is stored in l. This index is a rank of the relevant projections, from

less to more relevant. Following l, the less relevant projections can be removed from the model

making the ensemble model Eτ lightweight and reducing the computational time of Algorithm
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Algorithm 5 : Projection pruning phase

Inputs: E ⊲ Trained ensemble model (output of Alg. 3)

Val ⊂ R
D ⊲ Validation set

Outputs: l ⊲ Index of relevant projections

1: lmax = φ ;

2: M = φ ; ⊲ Classification results matrix [n× τ]

3: for t = 1 to τ

4: Valt : {Ptx|x ∈Val} ⊲ Project original validation data

5: for t = 1 to n

6: M(i, t) = 0;

7: if (xi ∈ CH(V λ
t )) then

8: M(i, t) = 1;

9: end if

10: end for

11: end for

12: MI = φ ; ⊲ Mutual Information matrix [τ × τ]

13: for i = 1..τ

14: for j = i+1..τ

15: MI(i, j) = I(M(:, i);M(:, j)); ⊲ Mutual Information between projections i and j

16: end for

17: end for

18: for i = 1..τ

19: lmax(i) = max(MI(i, :)); ⊲ Vector containing the maximum value of each row of MI

20: end for

21: [lmax, l] = SORT (lmax,“ascend”); ⊲ Sorted list lmax and index l of the new positions
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4. In the next section some experimental results demonstrate the effectiveness and the effi-

ciency of this approach.

4.3.2 Experimental study

The same three large datasets seen in the previous experimental section (see 4.2.3.2) were

employed here in order to assess the savings in computational complexity and storage space

obtained with the proposed method. Once again, for the three datasets, the class with the higher

number of samples was considered as target and the other one as outlier.

Dataset Train set Validation set Test set λ τ Center type

KDD 250000 2000 309029 1.01 3000 Avg. vi

MiniBooNE 60000 2000 68064 0.74 5000 Centroid

Forest Covertype 500000 2000 79013 0.88 1000 Avg. vi

Table 4.8: Number of samples and parameters used for each dataset.

The number of samples and the optimal parameters of the algorithm for each problem

are listed in Table 4.8. These parameters were previously calculated using a 10-fold cross

validation on 10 different permutations of the data. Each experiment was repeated 30 times

varying the training, validation and testing sets. After the training and pruning phases we have

an ensemble model Eτ and a ranking l of the relevant projections. The idea is to remove the

less relevant projections from Eτ maintaining the accuracy of the original method. To assess

the adequacy of the pruning phase, we have calculated the testing time and the Area Under the

ROC Curve (AUC) for all the different ensemble models obtained removing projections in the

order exhibited by l; starting with the original model (τ projections) and finishing with a model

of just one projection (the last one on l). Besides, we compared these results with the ones

obtained removing projections randomly and following the ranking l, but in the opposite way

(linv), from more to less relevant. A pairwise t-test between the result obtained by the original

model Eτ and the result obtained by each lightweight model Eτ−i was made to evaluate the

statistical difference at 95% significance level.

Figure 4.14(a) displays the results of the KDD dataset. As can be seen, removing pro-

jections in the order indicated by l produces the best results, making it possible to obtain a

model with 390 projections with no evidence that it is statistically significantly different than

the original. This lightweight model remarkably reduces the time employed for testing, from

270 to 33 seconds. It can also be seen that eliminating projections in the opposite way (linv)

produces the worst result. In Figure 4.14(b) the mean AUC and the standard deviation (SD) for
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Figure 4.14: KDD results removing projections randomly and using the proposed index l.

the lightweight models obtained by removing projections randomly and following the ranking

l is showed. As can be seen, the results during the 30 repetitions of the experiment are much

more stable when we get rid of the projections using l.

Figures 4.15(a) and 4.15(b) display the results of the MiniBooNE dataset. Again, removing

projections in the order indicated by l produces the best results. In this case an even better

model than the original with just 50 projections can be obtained, reducing drastically the testing

time, from 645 to 7.8 seconds.
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Figure 4.15: MiniBooNE results removing projections randomly and using the proposed index

l.

Experimental results of the Covertype dataset are showed in Figures 4.15(a) and 4.15(b). In

this case, a model with around 100 projections, with no evidence that it is statistically different

than the original in terms of performance, can be obtained. Again, especially when the number
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of projections is around 200, the results are much better and more stable when we use the

proposed method l.
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Figure 4.16: Covertype results removing projections randomly and using the proposed index l.

4.4 An online SCH algorithm adaptable to changing environments

In this section, a proposal for an online version of the SCH algorithm is presented. Online lear-

ning has become a trending area in the last years since it allows to deal with extremely large

datasets. In the context of one class classification, an interesting application for online learning

methods is stream anomaly detection. The goal of this task is to detect temporal or perma-

nent deviations in a continuous stream of data [86]. This kind of task has been successfully

applied in areas such as intrusion detection, medical anomaly detection [28] and machinery

fault detection [38, 87, 133]. Its main characteristics are:

• Anomalous events are scarce and do not have a known signature, so this is an unsuper-

vised task.

• Non severe deviations in the data should not generate false alarms.

• The method should be able to adapt to changing decision boundaries in order to accu-

rately capture the normal support of complex streams of data.

Some previous works have treated the problem of stream change detection. Camci et Chin-

nam [21] presented an adaptation of One-class SVM to deal with non-stationary data. This

method obtains good representations but suffers from a computational complexity burden when
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facing large scale datasets. Yamanishi et al. [144] proposed a fully probabilistic model for

stream anomaly detection that obtains adequate results assuming a predefined probability dis-

tribution. Some recent works based on classification trees [123] and clusters [35] have been

proposed. These are adaptations of classical bath techniques and need to keep batches of data

in order to update the model and detect deviations, which can lead to storage burdens and de-

tection delays. Finally, Martinez-Rego et al. [86] presented a new algorithm for stream change

detection based on the combination of an online kernel one-class classification method with a

Bernoulli CUSUM chart.

In this work, a proposal for an online one-class classification method based on the previous

SCH algorithm is proposed. This method is capable of continuously adapting its classifica-

tion model in a one-pass manner. In the following sections the algorithm and its response in

stationary and dynamical environments are presented.

4.4.1 Online SCH algorithm

Before exposing the changes introduced to train the algorithm in an online manner, a new for-

mulation to calculate the scaled convex polytope is introduced. Instead of a unique expansion

parameter λ controlling the growth/compression of the original convex hull (see Section 4.2.1),

in this case, each one of the vertices conforming the CH will have its own dynamic expansion

parameter. The rationale of the strategy is to penalize old and unrepresentative vertices and

strengthen the new ones in order to obtain a decision boundary adaptable to changing environ-

ments. Besides, this will allow us to mitigate the effects of outlier noisy patterns in the training

set.

Once again, to calculate the expanded polytope in the low dimensional space, the formula

presented by Liu et al. [79] is used. However, in this case, each CH vertex is expanded/reduced

by its own λ parameter as follows:

V
λ

: {λivi +(1−λi)c} , i = 1 . . .n (4.10)

where n is the number of vertices, c = Pc represents the projection of the center c given a

random projection matrix P, vi is the ith vertex of the convex hull obtained with the projected

data and λi is its expansion factor. Each parameter specifies a contraction (0 ≤ λ < 1) or

extension (λ > 1) of the appropriate vertex with respect to c. As in the previous SCH algorithm,

with this formulation, the CH “center” can be obtained by three different ways (see Section

4.2.1): 1) the average of every training sample, 2) the average of the CH vertices and 3) the

centroid of the convex polytope.
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4.4 An online SCH algorithm adaptable to changing environments

The proposed algorithm only takes into account the latest sample for training while main-

taining the information of previous data through the ensemble model containing the vertices of

the previous scaled convex hull (SCH) and the set of expansion parameters Λ related to them.

Another difference with respect to the original SCH algorithm (see Section 4.2.1) is that the

new proposal includes two new parameters for controlling the influence in the scaled convex

hull of prior knowledge and new information at each step. The first parameter, λnew ∈ [0,+∞),

indicates the initial value of the expansion factor λ for each pattern that is added to the set of

CH vertices for the first time. This occurs every time that a new sample falls outside the prior

SCH. The second parameter, γ ∈ (0,1], penalizes old vertices that are located far from where

new patterns are appearing and strengthen those that are close to new data. If γ is equal to 1,

no penalization/reinforcement is made and the expansion parameter for each vertex of the CH

will be equal to the initial value λnew.

Algorithm 6 describes all the steps necessary to learn a model in an online fashion. It is a

variation of the SCH learning algorithm (see Algorithm 3) but adapted to online environments.

The number of projections τ , the type of center tc, a initial set of samples I ∈R
D and the values

of the two new parameters (γ and λnew) have to be defined. An ensemble model containing τ

projection matrices, the original values of the patterns that belong to the SCH vertices and their

respective expansion parameters are obtained at the end of each step. Lines 1 to 6 describe

the creation of the initial ensemble model. After that, steps 7 to 25 are repeated for each

new training pattern x. At each iteration t, the new point is projected to the low dimensional

space spanned by the t-th projection matrix. Then the scaled convex hull (SCH) is obtained

(using formula 4.10) and a new convex hull is calculated with the SCH vertices and the new

projected pattern xt . Function CHonline returns the new set of SCH vertices and updates the sets

of expansion parameters Λt and original patterns Vt if some of the previous vertices are not part

of the new SCH.

The remaining of the algorithm describes the updating procedure for the expansion param-

eters. On the one hand, if the new pattern xt is one of the new vertices of the SCH, then xt

is added to the set of original vertices Vt and a new expansion factor with value λnew is added

to Λ. Besides, previous expansion factors are multiplied by γ to reduce its value (remember

that γ ∈ (0,1]). On the other hand, when xt does not belong to the new set of SCH vertices

(i.e. xt falls inside the decision boundary), the expansion parameter of the closest vertex to xt

is reinforced by dividing its previous value by γ3 (i.e. the new value will be higher than the

previous one) and the rest of the vertices are penalized. After the new pattern is processed,

an updated ensemble model is available for classifying new patterns using the same testing

procedure previously seen in algorithm 4.
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Algorithm 6 : Online SCH learning algorithm

Inputs: τ ⊲ Number of projections

tc ⊲ Type of center (1-Avg. Vt ; 2-Centroid)

I ⊂ R
D ⊲ Initial set with the first 3 training samples

γ ∈ (0,1] ⊲ Penalty factor for old CH vertices

λnew ∈ [0,+∞) ⊲ Initial expansion factor value λ for each new CH vertex

Outputs: (Pt ,Vt ,Λt), t = 1..τ ⊲ Projection matrix, CH vertices and λ for each vertex

1: for t = 1 to τ ⊲ Initialization

2: Pt ∼ N(0,1) ⊲ Create a random projection matrix [d ×D]

3: It : {Ptx|x ∈ I} ⊲ Project the initial set of data

4: Vt = CH(It) ⊲ Return the vertices of the CH

5: Λt = {λnew,λnew,λnew} ⊲ Expansion factor for each of the three initial CH vertices

6: end for

7: for each new training pattern x ∈ R
D

8: for t = 1 .. τ

9: xt : {Ptx} ⊲ Project training point

10: c = getCenter(tc,Vt ,xt)

11: V λ
t : {λivi +(1−λi)c|λi ∈ Λt ,vi ∈Vt} ⊲ Calculate SCH vertices

12: [V λ
t ,Vt ,Λt ] =CHonline(V

λ
t ∪xt) ⊲ Update the new SCH vertices; return former λ s

13: and original vertices that remain in the SCH

14: if (xt ∈V λ
t ) then

15: Vt =Vt ∪xt ⊲ Add the new point to the set of original vertices

16: Λt : {γλi|λi ∈ Λt}∪λnew ⊲ Update the set Λt and add a λnew for vertex xt

17: else

18: for i = 1 .. card(Vt)

19: zi = ‖xt − vi‖
2,vi ∈Vt ⊲ Distances from the new point to each vertex

20: end for

21: k = pos min(z) ⊲ Obtain the position of the nearest vertex

22: λi = γλi,∀λi ∈ Λt ∧ i 6= k ⊲ Update expansion parameters

23: λk = λk/γ3,λk ∈ Λt ⊲ Rise expansion parameter of the nearest vertex

24: end if

25: end for

26: end for
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4.4.2 Preliminary results

The experiments proposed in this section are intended to test the response of the proposed

online one-class classification algorithm in stationary and dynamical environments in order

to show its main properties. The characteristics of the three artificial datasets employed are

listed in Table 4.9. For depiction purposes, three 3-dimensional datasets were generated and

tracked by the proposed method. While datasets #1 and #2 are a static Gaussian, dataset #3

changes the center of a Gaussian continuously along an arc. Similar datasets have been used in

previous works [21, 86] in order to asses the performance of one-class classifiers in dynamical

environments.

Dataset #1 #2 #3

Dimensionality 3 3 3

Size 300 300 600

Stationarity YES YES - Contains outliers NO - Smooth change

λnew 1.02 1.05 1.1

γ 0.999 0.996 0.995

Number of projections τ 3 3 3

Center type Avg. xi Centroid Avg. vi

Table 4.9: Characteristics of the artificial datasets and parameters of the online method.

Table 4.9 also lists the parameter values employed for building the classifier in each dataset.

This parameters were manually tuned in order to show the main characteristics of the online

SCH method. Figure 4.17(a) depicts the 3D original dataset #1. Figures 4.17(b), 4.17(c) and

4.17(d) show the final decision boundary obtained by the proposed method (black polytope)

and the global convex hull obtained with all the data (red polytope) for each 2D projection,

respectively. It can be seen that the model approximates very well the high density region of

the distribution, leaving outside only a few far away points. In this case both parameters, the

penalty factor γ and the initial expansion parameter λnew, were set to values near 1 in order to

obtain a SCH model very similar to the global CH.

In dataset #2, 300 points belonging to a static Gaussian, similar to the one of the previous

dataset, were employed. However, in this case, some outliers were randomly generated and

mixed with the first 250 samples of the dataset. Figure 4.18(a) displays the original dataset

#2 in 3 dimensions. Again, the final scaled convex hulls and the global ones obtained with

the projected data are depicted in Figures 4.18(b), 4.18(c) and 4.18(d). In this experiment,

the differences between the global convex hull and the scaled one, obtained with the online

proposal, are clearly seen. The resulting scaled convex hull approximates better the underlying

distribution than the global CH, leaving outside the undesired samples. Every outlier falls
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Figure 4.17: Results for artificial dataset #1. Global CH is depicted in red and the proposed

SCH in black.
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outside the SCH model in at least one of the projections. Then, the ensemble model combining

the 2 dimensional SCH decisions will correctly alleviate the adverse effect that outliers usually

cause during training. In this case, parameters were set to more aggressive values in order to

forget faster those vertices that are not relevant to the model. In Figure 4.18(d) it can be clearly

seen that the SCH model is bigger than the global CH in one particular area, that is due the λnew

parameter being higher than 1 and, thus, new vertices are expanded with respect to the center

point in order to give them more relevance when they appear.
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Figure 4.18: Results for artificial dataset #2. Red dots represent the four outliers. Global CH

is depicted in red and the proposed SCH in black.

Finally, Figure 4.19(a) depicts the dynamic dataset #3, where the class moves continuously

following a curve in the arrow direction. A new scaled convex hull is depicted after every 100

points in Figures 4.19(b), 4.19(c) and 4.19(d). As it can be observed, the decision boundary

evolves in the direction of the dynamic dataset approximating appropriately the shape of the

newest data when complex variations appear. It can also be seen that the global CH (red

polygon) does not approximate adequately non-convex shapes like these.

The previous experiments demonstrated that in evolving environments or datasets where
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the presence of outliers is very likely, a learning method able to adapt is decision model in

an online manner, like the one proposed in this work, is of the most interest. This promising

results encourage us to keep working on this proposal in order to obtain a complete stream

change detection method able to point out significant deviations in continuous stream of data.
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Figure 4.19: Results for artificial dataset #3.

4.5 Discussion

In this chapter, a new distributed one-class classification algorithm (DSCH) is presented. It is

based on the SCH algorithm, that in turn is a new and improved version of APE algorithm,

designed to avoid the possible appearance of non convex situations and proposes three diffe-

rent centers that can be used. The one-class algorithm proposed is a distributed version of

the SCH, aiming at managing those situations, scarcely contemplated in the specialized lite-

rature, in which the data resides in several different locations. Besides, it is possible to mine

distributed data without revealing information that compromises the privacy of the individual
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sources, unlike previous works as [27]. Many companies and public institutions are concerned

about sharing their data. Examples include personal health records and bank-client confidential

information. In this case, the information shared between nodes is encrypted because of the

dimensionality reduction.

Our proposal is based on a modified version of the approximate polytope ensemble algo-

rithm, that presents a different formula to calculate the expanded polytope in order to avoid an

undesirable behavior detected in the original algorithm, the appearance of non-convex poly-

topes. Besides, this modification allowed the use of a new parameter (the center of the poly-

tope), that provides more flexibility to our algorithm.

On the one hand, a comparative study in terms of Area Under the ROC Curve (AUC) bet-

ween the proposed SCH algorithm, the APE algorithm and the state-of-the-art ν-SVM was

made. To do so, 28 one-class problems derived from 11 UCI datasets were employed. Experi-

mental results demonstrated that the proposed algorithm improves the performance of the other

two algorithms. Furthermore, results showed that the choice of centers may affect considerably

classification results for a given problem. On the other hand, three large-scale datasets that have

a very large number of samples were used in order to assess the performance of the distributed

one-class classification algorithm. Experimental results validated the distributed proposal, not

only in terms of performance but also in terms of computational time savings. Performance

of the distributed algorithm matches and even improves the performance achieved by the SCH

algorithm. Besides, computational time employed to train the classifier is also reduced by a

factor proportional to the number of nodes. Finally, a comparison of the proposed method

against the distributed version of the state-of-the-art ν-SVM algorithm presented by Castillo et

al. [27] has been made. Experimental results showed that our algorithm improves the results

of Dν-SVM both in performance and computational time savings.

Furthermore, a new phase, called projection pruning phase, is added to the SCH one-class

classification algorithm in order to improve its efficiency when testing a big bunch of data is

required. During this stage, a rank of the relevant projections is obtained by means of mutual

information. Besides, the validation dataset used in this phase does not need to be labeled,

which is important in one-class problems where outlier data can be difficult to obtain. Ex-

perimental results demonstrated that the proposed approach maintains the performance of the

original method with a minimum number of projection models, leading to savings in compu-

tational time that make this method more suitable for big data problems. Besides, this new

phase could be straightforwardly applied to each computational node of the distributed SCH

algorithm, creating ensemble models with different sets of projections according to the local

data available in each node. However, in spite of the good performance achieved with this
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proposal in the experiments, at this time, we lack of a proper theoretical explanation that would

determine the properties of this algorithm from an information theory perspective.

Finally, the description of a new proposal for an online version of the SCH algorithm along

with some promising initial results are also presented in this chapter. This is a work in progress

that will also be part of our future research in this area.

The chapter, thus, contains different approaches for the scalability of one-class algorithms,

including distributed and online versions, that are undoubtedly trending topics in the machine

learning field as they allow for analyzing extremely large datasets.
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CHAPTER5
Conclusions

Nowadays, it is a fact that traditional computational learning algorithms cannot deal with very

large datasets and plausibly obtain a good performance with reasonable requirements of com-

putation, memory and time. This dissertation is devoted to the development of novel algo-

rithms, focused in two aspects of machine learning: dimensionality reduction and classifica-

tion, with the common aim of confronting large-scale datasets. There exists, basically, three

different ways of ensuring algorithms scalability as datasets continues to grow in size and com-

plexity, that are: 1) online learning, 2) non-iterative learning, and 3) distributed learning. Each

part of this thesis covers one of this topics, presenting the problem and providing new solutions.

In light of the above the main contributions of this thesis are the following:

• Most of state-of-the art machine learning algorithms deal with the case where all data

is available beforehand and we train a model in a batch manner. However, when data

becomes available sequentially or when it is necessary for the algorithm to continuously

adapt to new scenarios, learning one instance at a time in an online manner is needed.

For these reasons, advances in this field have recently appeared, both for online feature

selection and online classification tasks. In spite of that recent progress, the combination

of both tasks in a single method is still an open issue. In this thesis, a new method which

is capable of continuously updating its model to learn from online data is presented.

The proposed method consist of three independent stages that can be used alone or in a

pipeline, that are:

– Discretization. This stage consist of an adaptation of the k-means discretizer to be

used in an online manner.

– Feature selection. The second stage is based on the χ2 filter adapted by means of a

new threshold to perform online feature selection.

– Classification. This last stage consist of an adaptation of a one layer neural network

to be incremental not only in the instance space, but also in the feature space,

allowing for feature subsets that change during the learning process.
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The main advantage of our proposed method is that it allows researchers to perform both

online feature selection and classification. Up to the authors’ knowledge, there is no other

work in the literature that covers efficiently these two stages, since some of the existing

approaches apply feature selection in an off line fashion or alternatively apply online

feature selection but then there is not an online classification stage. Furthermore, since an

important aspect of on-line algorithms is the impact of data order on their performance,

this aspect is specifically addressed, demonstrating the robustness of the method. It is

important to take into account that, although more sophisticated learning methods exist,

they cannot be adapted to learn in an online manner, and we had to choose simpler

models such as the χ2 filter and an ANN. Experimental results demonstrate that the

proposed pipeline appropriately solves the three tasks involved on both synthetic and

real datasets.

• Traditionally, learning algorithms have been focused on training their models from mono-

lithic datasets with all data stored in main memory. When the complexity of the al-

gorithm surpasses the computational resources then the algorithm does not scale well.

Training procedures such as backpropagation make this problem even worse, as they

rely on an iterative process to adjust their parameters. One of those classical machine

learning methods that suffers the consequences of iterative training procedures is the au-

toencoder. This is an autoassociative neural network for one-class classification widely

and successfully used in the past. However, its iterative nature impedes its efficient appli-

cation to large-scale datasets. Trying to solve this problem, in this thesis a new fast non-

iterative learning neural network for one-class classification, called SVD-autoencoder,

is presented. This method proposes the use of a previously presented cost function

based on the mean-squared error that measures the error before the output neural func-

tion. The optimal weights are derived from a system of linear equations that is further

transformed by means of the Singular Value Decomposition (SVD). Besides, the SVD-

autoencoder allows dimensionality reduction in a very efficient manner. In the hidden

layer, the method extracts a meaningful low dimensional representation of the input data

by means, again, of Singular Value Decomposition. The main advantages of this pro-

posed algorithm are that it can be used with nonlinear activation functions and that it does

not run into any convergence issues thanks to its non-iterative optimization. Another par-

ticularity of this proposal is that it can be easily parallelized. The minimization problem

of the second layer can be divided in several sub-problems (one for each output neu-

ron) that can be solved in parallel. Thus, this characteristic makes the SVD-autoencoder

highly scalable and efficient also when the number of features is high. Experimental

results demonstrate that the proposed method successfully solves a wide range of one

class classification problems and is able to efficiently deal with large-scale datasets.
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• Nowadays, several sources in different locations produce data creating scenarios with

big distributed databases. However, most existing learning algorithms cannot deal with

this fact. For that cases and applications where data is distributed across different sites,

traditional learning methods require gathering all the data in a single node for central

processing, but this can not be done for several reasons -e.g. communication cost, sto-

rage cost, computational cost, privacy, etc-. There exists some previous works related

with distributed machine learning, but very few in the context of one-class classification.

Therefore, in the fourth chapter of the thesis a new one-class convex hull-based classi-

fication algorithm (DSCH) that can scale out over distributed architectures is proposed.

This proposal is based on a modified version of the approximate polytope ensemble al-

gorithm, that presents a different formula to calculate the expanded polytope in order to

avoid an undesirable behavior detected in the original algorithm, the appearance of non-

convex polytopes. This proposed method approximates the high dimensional convex hull

decision by means of a dimensionality reduction technique (i.e. random projections) and

an ensemble of convex hull decisions in very low dimensions. One of the most important

characteristics of the DSCH algorithm is that it allows to mine distributed data without

revealing information that compromises the privacy of the individual sources, unlike

some previous works. Experimental results demonstrate the adequacy of the distributed

proposal, not only in terms of performance but also in computational time savings. Fur-

thermore, a new phase, called projection pruning phase, to eliminate the less relevant and

redundant random projections in order to obtain a lightweight ensemble model, more

scalable and efficient, is also proposed. It employs mutual information in order to obtain

a rank of the most relevant projections.

The following lines of research are proposed as future work:

• Extend the pipeline presented in Chapter 2 for most sophisticated feature selection me-

thods.

• Try the SVD-autoencoder proposed in Chapter 3 with high dimensional datasets (i.e.

very large number of features).

• In spite that the projection pruning phase presented in Chapter 4 appropriately solves

the problem of selecting the most relevant projections, it lacks of a proper theoretical

explanation from an information theory perspective, that would allow to discard the less

relevant projections at the beginning of the training phase.

• In the last part of Chapter 4, a brief description of a proposal for an online version of
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the SCH algorithm is presented. This is a work in progress that will also be part of our

future research.

104



APPENDIX I
Author’s key publications

As a result of the research carried out during the thesis, the following articles have been publis-

hed.

JCR Journals

• Fernández-Francos, D., Martı́nez-Rego, D., Fontenla-Romero, O. and Alonso-Betanzos,

A. Automatic bearing fault diagnosis based on one-class ν-SVM. Computers & Industrial

Engineering (vol. 64, no. 1, pp. 357-365, 2013).

• Martı́nez-Rego, D., Fernández-Francos, D., Fontenla-Romero, O. and Alonso-Betanzos,

A. Stream change detection via passive-aggressive classification and Bernoulli CUSUM.

Information Sciences (vol. 305, pp. 130-145, 2015).

• Bolon-Canedo, V., Fernández-Francos, D., Peteiro-Barral, D., Alonso-Betanzos, A.,
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En 2011, según la International Data Corporation (IDC), el volumen general de datos en el

mundo era de 1.800 exabytes. Desde entonces hasta 2020, esa cantidad se doblará cada dos

años [29]. En general, este aumento explosivo del volumen de datos ha modificado las ma-

neras de compartir información y ha puesto en evidencia la necesidad de desarrollar nuevos

métodos eficientes para procesar y almacenar grandes cantidades de datos. Además, el análi-

sis automático de estos datos se ha convertido en una gran oportunidad económica y cientı́fica.

Las empresas que invierten y adquieren con éxito valor de sus propios datos poseen una ventaja

obvia sobre sus competidores. La investigación cientı́fica también se ha visto revolucionada en

campos como la astronomı́a, la bioinformática, la detección de intrusos en redes informáticas,

la clasificación de textos o la ingenierı́a, en los que el tamaño y la cantidad de conjuntos de

datos disponibles están creciendo de forma exponencial.

El aprendizaje computacional es un área de la inteligencia artificial dedicada al diseño,

desarrollo y análisis de algoritmos de aprendizaje automático. En particular, dichos algoritmos

pueden aprender a partir de los datos, hacer predicciones o crear representaciones exactas ba-

sadas en observaciones. En este contexto, en el cual el número de datos crece más rápido que

la velocidad de los procesadores, la capacidad de los algoritmos de aprendizaje máquina se en-

cuentra limitada por el tiempo de computación. Una base de datos se considera de gran tamaño

cuando: el número de muestras es muy grande; el número de caracterı́sticas es muy grande;

o ambos son muy grandes. Los métodos de aprendizaje tradicionales tienen grandes dificulta-

des cuando se aplican en bases de datos con alrededor de 10.000.000 de datos (siendo datos

= muestras × caracterı́sticas). En este trabajo, hablaremos de grandes conjuntos de datos para

referirnos a aquellas bases de datos de alta dimensionalidad en las que el número de muestras

es considerablemente mayor que el número de caracterı́sticas.

En teorı́a, parece lógico concluir que a mayor cantidad de información mejores serán los

resultados. Sin embargo, no siempre es ası́ debido a la llamada maldición de la dimensiona-

lidad (curse of dimensionality) [5]. Este fenómeno ocurre cuando la dimensionalidad de los

datos crece y el tiempo requerido por el algoritmo de aprendizaje computacional para entre-
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nar aumenta drásticamente. Además, al tratar con gran cantidad de datos, los algoritmos de

aprendizaje pueden degenerar su rendimiento debido al sobreajuste (overfitting) y su eficiencia

decae de acuerdo con el tamaño. Por lo tanto, la escalabilidad ha dejado de ser una caracterı́sti-

ca deseable de los algoritmos de aprendizaje para convertirse en una propiedad crucial cuando

se trabaja con conjuntos de datos muy grandes.

Dos de las tareas más comunes en el aprendizaje automático, en las cuales se centra esta

tesis, son: 1) clasificación, donde el algoritmo asigna muestras no vistas a una serie de cate-

gorı́as; y 2) reducción de la dimensionalidad, donde las muestras son simplificadas mediante el

mapeo a espacios de menor dimensión. De acuerdo con la naturaleza de los conjuntos de datos

de aprendizaje disponibles, las tareas anteriores también pueden clasificarse en: a) aprendizaje

supervisado, donde todos los datos están etiquetados y los algoritmos aprenden a predecir el

resultado a partir de los datos de entrada; b) aprendizaje no supervisado, donde los datos no

están etiquetados y los algoritmos averiguan la estructura inherente de los datos de entrada; y

c) aprendizaje semi-supervisado, en el que algunos datos están etiquetados, pero la mayorı́a de

ellos no lo están, permitiendo el uso de una variedad de técnicas supervisadas y no supervisa-

das.

A la hora de tratar con grandes bases de datos, un aspecto esencial es la preparación adecua-

da de los datos para ser procesados por los algoritmos de aprendizaje. Esto ha desencadenado

la utilización de procedimientos de reducción de dimensionalidad como un paso previo al pro-

cesado, con el fin de reducir el tamaño de los datos y mejorar el rendimiento de los algoritmos

de aprendizaje. Existen básicamente dos tipos de técnicas de reducción de dimensionalidad:

1) extracción de caracterı́sticas [78], donde un nuevo conjunto de caracterı́sticas es obtenido

mediante un mapeo funcional de los datos originales a un espacio de menor dimensión; y 2)

selección de caracterı́sticas [149], cuyo objetivo es la determinación de las caracterı́sticas más

relevantes y la eliminación de las redundantes.

Clasificación, el otro problema en que se centra este trabajo, es el área del aprendizaje

máquina centrada en la identificación de la categorı́a a la que pertenece una nueva observación.

Los métodos tradicionales utilizan datos de todas las clases para aprender el modelo (i.e. cla-

sificación supervisada) [71]. Sin embargo, existen muchos problemas reales en los que la gran

cantidad de datos disponible impide el etiquetado manual de la clase de cada muestra, siendo

necesaria la utilización de métodos de clasificación no supervisada o semi-supervisada. Un ca-

so particular que ha experimentado un auge importante en los últimos años es la clasificación

uniclase, en la que solo es posible obtener datos de una clase (clase normal o positiva) para en-

trenar; los datos de otras clases, las clases atı́picas, son muy difı́ciles o imposibles de obtener.

Los algoritmos de aprendizaje uniclase solamente utilizan datos de una clase para construir un
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modelo y su objetivo es identificar los datos pertenecientes a esa clase y rechazar los de todas

las demás. Esta técnica ha sido utilizada con éxito en una amplia variedad de problemas reales,

como por ejemplo: la detección de fallos en maquinaria industrial, el diagnóstico médico, la

detección de intrusos en sistemas de seguridad y la clasificación de documentos.

Una práctica común en el aprendizaje automático es la aplicación, como paso previo al

procesamiento, de técnicas de selección o extracción de caracterı́sticas a problemas de clasifi-

cación. Esta es una de las premisas que deben seguir los métodos desarrollados en esta tesis.

La otra premisa es que los nuevos métodos propuestos deben ser escalables y mejorar el ren-

dimiento de los algoritmos clásicos en este nuevo escenario formado por grandes conjuntos

de datos. Los algoritmos de aprendizaje de máquina tradicionales se diseñaron para extraer la

mayor cantidad de información del número limitado de datos disponible. Sin embargo, hoy en

dı́a, el nuevo factor limitante lo constituye la incapacidad de los algoritmos de aprendizaje para

hacer frente a la ingente cantidad de datos disponible en un tiempo de computación razonable.

Con el fin de manejar esta nueva situación, ha surgido un nuevo campo en el aprendizaje au-

tomático: el aprendizaje a gran escala (large-scale learning), cuyo objetivo es el desarrollo de

algoritmos de aprendizaje escalables con respecto a los requerimientos de complejidad compu-

tacional, memoria y tiempo. En los últimos años, el aprendizaje a gran escala ha atraı́do mucha

atención. Existen, básicamente, tres enfoques diferentes para asegurar la escalabilidad de los

algoritmos a medida que los conjuntos de datos continúan creciendo en tamaño y complejidad

[146]: 1) aprendizaje en tiempo real, 2) aprendizaje no iterativo y 3) aprendizaje distribuido.

Estos tres temas se han cubierto de manera independiente en cada una de las tres partes princi-

pales en las que se divide esta tesis. En este resumen se proporciona una breve descripción de

las intenciones, resultados y conclusiones del presente trabajo en cada campo.

II.1 Método de selección de caracterı́sticas y clasificación para apren-

dizaje en tiempo real

Registros de eventos en la red, registros de llamadas telefónicas y secuencias de vı́deo vigilan-

cia constituyen ejemplos de datos que fluyen de forma constante. Los enfoques tradicionales

de aprendizaje (batch learning) no pueden manejar este tipo de datos, ya que para crear sus

modelos necesitan aprender sobre todo el conjunto de datos al mismo tiempo. Por lo tanto,

para hacer frente a esta situación, son necesarios algoritmos capaces de aprender muestra a

muestra, de manera secuencial. El campo de la inteligencia artificial dedicado al aprendizaje

de este tipo de datos se denomina aprendizaje en tiempo real (online learning). Este campo
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se ha convertido en una tendencia en los últimos años, ya que permite aprender un modelo de

manera incremental. Ha sido utilizado principalmente para aquellas situaciones en las que los

datos están disponibles de forma secuencial o cuando es computacionalmente inviable entrenar

sobre todo el conjunto de datos [136]. También es una técnica útil en aquellas situaciones en

las que es necesario que el algoritmo se adapte de manera dinámica a posibles cambios en la

distribución subyacente de los datos (concept drift). Por estos motivos, en los últimos años han

aparecido numerosos trabajos en este campo, tanto para la selección de caracterı́sticas en tiem-

po real (online feature selection) como para las tareas de clasificación en tiempo real (online

classification). A pesar de estos avances, la combinación de ambas tareas en un solo método

sigue siendo una cuestión pendiente. En esta parte de la tesis, se presenta un nuevo método

que es capaz de actualizar continuamente su modelo para aprender de los datos en tiempo real.

El método propuesto consta de tres etapas independientes que se pueden utilizar solas o en

conjunto, que son:

• Discretización. Esta etapa consiste en una adaptación del método de discretización k-

means para ser utilizado de forma incremental.

• Selección de caracterı́sticas. La segunda etapa se basa en el filtro χ2 adaptado para rea-

lizar la selección de caracterı́sticas en tiempo real mediante la utilización de un nuevo

umbral automático.

• Clasificación. Esta última etapa consiste en una red neuronal de una capa modificada

para ser incremental no sólo en el número de muestras, sino también en el número de

caracterı́sticas, permitiendo que los subconjuntos de caracterı́sticas varı́en de tamaño

durante el proceso de aprendizaje.

La ventaja principal del método propuesto es que permite realizar tanto la selección de

caracterı́sticas como la clasificación en tiempo real. Hasta el momento, no existe ningún otro

trabajo en la literatura que cubra eficientemente estas dos etapas. Además, dado que un aspecto

importante de los algoritmos incrementales es el impacto que el orden de aparición de los datos

pueda tener sobre su rendimiento, este aspecto se aborda de forma especı́fica en el estudio

experimental, demostrando la robustez del método. Es importante tener en cuenta que, aunque

existen métodos de aprendizaje más sofisticados, éstos no pueden ser adaptados para aprender

de manera incremental, y por ello se han elegido modelos más simples como el filtro χ2 y la red

de neuronas de una capa. Los resultados experimentales demuestran que el método propuesto

resuelve apropiadamente las tres tareas involucradas, tanto en conjuntos de datos sintéticos

como reales.
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Una lı́nea de investigación futura relacionada con este tema consiste en la extensión del

método propuesto de forma que permita la utilización de algoritmos de selección de carac-

terı́sticas y clasificación más potentes.

II.2 Método no iterativo de clasificación uniclase para grandes con-

juntos de datos

Tradicionalmente, los algoritmos de aprendizaje operan con todos los datos almacenados en la

memoria principal. De esta forma, cuando la complejidad del algoritmo sobrepasa los recursos

computacionales éste no escala bien. Además, muchos de los algoritmos clásicos de aprendiza-

je automático, especialmente los basados en redes neuronales artificiales (RNAs), ajustan sus

parámetros libres mediante un procedimiento de entrenamiento iterativo con el fin de reducir el

error del modelo al mı́nimo. La mayorı́a de estos métodos iterativos se basan en backpropaga-

tion [108] y en alternativas de segundo orden [93, 116]. Hoy en dı́a, los grandes conjuntos de

datos disponibles provocan que muchos algoritmos de aprendizaje iterativos no sean aplicables

debido a sus altos requerimientos computacionales y a su baja velocidad de convergencia. En

esos casos, una forma de reducir la complejidad de los métodos iterativos clásicos consiste en

el desarrollo de nuevos métodos de optimización no iterativos para el ajuste de los parámetros

del modelo. Sin embargo, las propuestas no iterativas son escasas en la literatura, con sólo

algunas contribuciones destacadas para las RNAs [105, 112, 135].

Uno de los métodos tradicionales de aprendizaje que sufre las consecuencias de tratar con

conjuntos de datos muy grandes es el autoencoder [138]. Se trata de una red neuronal autoaso-

ciativa para clasificación uniclase utilizada de forma exitosa en el pasado en múltiples proble-

mas. Sin embargo, su naturaleza iterativa impide su aplicación eficiente para grandes conjuntos

de datos. Tratando de resolver este problema, en esta parte de la tesis se presenta una nueva

red neuronal de aprendizaje no iterativo para clasificación uniclase, llamada SVD-autoencoder.

Este método propone el uso de una función de coste basada en el error cuadrático medio, que

mide el error antes de la función neural de salida. Los pesos óptimos se derivan de un sistema

de ecuaciones lineales que son a su vez transformadas por medio de la Descomposición en Va-

lores Singulares (SVD). Además, el SVD-autoencoder permite reducir la dimensionalidad de

una manera muy eficiente. En la capa oculta, el método extrae una representación significativa

de menor dimensión de los datos de entrada por medio, de nuevo, de la SVD. Las principales

ventajas de este algoritmo son que se puede utilizar con funciones de activación no lineales

y que no presenta ningún problema de convergencia gracias a su optimización no iterativa.
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Otra particularidad de esta propuesta es que puede ser fácilmente paralelizable. El problema de

minimización de la segunda capa, mediante el que se calculan los pesos, se puede dividir en

varios subproblemas (uno para cada neurona de salida) que es posible resolver en paralelo. Por

lo tanto, esta caracterı́stica hace que el SVD-autoencoder sea altamente escalable y eficiente

también cuando el número de caracterı́sticas es alto. Los resultados experimentales demuestran

que el método propuesto resuelve con éxito una amplia gama de problemas de clasificación de

uniclase y es capaz de manejar de manera eficiente grandes conjuntos de datos.

Una posible lı́nea de investigación propuesta como trabajo futuro dentro de este campo

consistirı́a en el análisis del rendimiento y la escalabilidad del SVD-autoencoder con conjun-

tos de datos altamente dimensionales, es decir, conjuntos con gran número de muestras y de

caracterı́sticas.

II.3 Método de clasificación uniclase para entornos de datos dis-

tribuidos

En general, la llegada del Big Data ha contribuido a la proliferación de grandes bases de datos,

normalmente distribuidas, cuyo análisis automático es de gran interés. Sin embargo, la mayorı́a

de los algoritmos de aprendizaje existentes no pueden manejar esta circunstancia. La gran

mayorı́a de ellos requiere reunir las distintas particiones de datos en un único nodo para su

procesamiento centralizado. Sin embargo, existen situaciones en las que esta aproximación es

inviable o ineficaz [131], debido a:

• Costes de almacenamiento. No se puede disponer de la capacidad de almacenamiento

necesaria. Por ejemplo, el almacenamiento central de los datos de todos los hospitales de

un paı́s (imágenes médicas, registros de pacientes, etc.) requerirı́a un enorme almacén de

datos de gran coste económico.

• Costes de comunicación. El tiempo para transferir eficientemente a través de una red este

gran volumen de datos es enorme.

• Costes computacionales. Los algoritmos de aprendizaje pueden ser incapaces de tratar

con tales volúmenes de datos debido a los requisitos computacionales y de memoria.

• Privacidad y confidencialidad de los datos. La necesidad de preservar la privacidad de

los datos hace imposible compartirlos entre lugares distintos. Una vez más, los registros
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de un paciente son un ejemplo de datos que si se comparten a través de una red pondrı́an

en riesgo la privacidad.

Con el fin de aportar soluciones a estos nuevos problemas, ha surgido un nuevo campo

de investigación, el aprendizaje distribuido. Este campo está atrayendo mucha atención últi-

mamente y se está convirtiendo en una de las lı́neas de investigación más prometedoras en el

aprendizaje automático. El problema con la mayorı́a de los algoritmos distribuidos existentes

es que prácticamente ninguno de ellos considera todas las restricciones y condiciones mencio-

nadas anteriormente y que surgen al trabajar en este tipo de entornos. Esto es más cierto, si

cabe, en el caso de los algoritmos de aprendizaje de una clase.

Por lo tanto, en la última parte de la tesis se propone un nuevo algoritmo de clasificación

uniclase basado en el cierre convexo (Distributed Scaled Convex Hull, DSCH), especialmente

diseñado para trabajar sobre arquitecturas distribuidas. Esta propuesta se basa en una versión

modificada del algoritmo propuesto por Casale et al. [26] (APE), que introduce una fórmula

diferente para calcular el politopo expandido/reducido con el fin de evitar un comportamiento

indeseable detectado en el algoritmo original, la aparición de politopos no convexos. El método

propuesto (SCH) aproxima la decisión del cierre convexo de alta dimensión por medio de una

técnica de reducción de dimensionalidad (proyecciones aleatorias) y un conjunto (ensemble)

de decisiones de cierre convexo en dimensiones muy bajas. Una de las caracterı́sticas más

importantes del algoritmo DSCH es que permite trabajar con datos distribuidos sin revelar

información que comprometa la privacidad de las fuentes individuales, a diferencia de algunos

trabajos propuestos con anterioridad. Los resultados experimentales demuestran la adecuación

de la propuesta distribuida, no sólo en términos de rendimiento, sino también en el ahorro de

tiempo computacional.

Además, se propone una nueva fase, denominada projection pruning phase, para eliminar

las proyecciones aleatorias menos relevantes y redundantes con el fin de obtener un ensemble

más escalable y eficiente. Se utiliza la información mutua para obtener un ranking de las pro-

yecciones más relevantes. A pesar de que la projection pruning phase propuesta resuelve de

forma adecuada el problema de seleccionar las proyecciones más relevantes, carece de una ex-

plicación teórica adecuada desde el punto de vista de la teorı́a de la información. La obtención

de dicha explicación se propone como lı́nea de trabajo futuro.

Finalmente, en la última parte del capı́tulo 4, se presenta una breve descripción de una

propuesta para una versión incremental del algoritmo SCH. Se trata de un trabajo en progreso

y constituye una de las lı́neas de investigación futura.
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II.4 Estructura de la tesis

Esta tesis se organiza en cinco capı́tulos y dos anexos:

1. El capı́tulo 1 presenta la introducción, el dominio de la investigación y la estructura de

la tesis.

2. El capı́tulo 2 describe un nuevo método combinado de selección de caracterı́sticas y

clasificación en tiempo real.

3. El capı́tulo 3 propone un nuevo método no iterativo de clasificación uniclase escalable y

eficiente para tratar grandes conjuntos de datos.

4. El capı́tulo 4 presenta un nuevo método de clasificación uniclase para entornos de datos

distribuidos basado en el cierre convexo.

5. El capı́tulo 5 resume las contribuciones y conclusiones obtenidas de este trabajo.

6. El Anexo I incluye una lista de las publicaciones obtenidas como fruto de la investigación

realizada en esta tesis.

7. El Anexo II presenta un breve resumen en castellano del contenido de esta tesis.
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[114] SCHÖLKOPF B., SMOLA A., WILLIAMSON R., AND BARTLETT P. New support vector

algorithms. Neural Computation 12(5), 1207–1245 (2000).
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