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Firma de los miembros del tribunal de la tesis doctoral, léıda en A Coruña a 22 de
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Preface

The modelling of acoustic wave propagation can be applied to several problems such
as noise reduction, medical ultrasonics, seismic exploration, underwater acoustics or non
destructive testing. In this context, it emerges the need of solving diverse and challenging
acoustic propagation problems that can not be solved with classic mathematical methods.
Tests with prototypes are often used to assure the accuracy of the proposed technologies.
But the high cost of its fabrication makes necessary that the tests are carried out in an
advanced stage of design, with a proposal that is close to the final solution. Numerical
simulation is a determinant technique to analyse and design acoustic systems in a short
time and with competitive costs.

The mathematical diversity of the acoustic propagation problems makes necessary the
employment of a wide variety of numerical models and the application of advanced numer-
ical computation techniques. Between all these models, the Helmholtz equation is widely
used as the reference model in time-harmonic acoustic propagation problems. At middle
and high frequency regime, its numerical approximation, computed by a nodal Finite El-
ement Method (FEM), differs significantly from the exact solution, due to the so-called
“pollution” effect (see [14]). So, the accuracy and reliability of the Helmholtz numerical
approximations are based on pollution-free discrete methods, which should have a robust
behaviour with respect to the wave number.

The Partition of Unity Finite Element Method (PUFEM), introduced by Babuška and
Ihlenburg in 1996 (see [36]), has been considered in this thesis among the pollution-free
methods. Computational advantages and implementation drawbacks of the PUFEM dis-
cretization have been shown numerically in several works (see for example [35]), but as far
as the author knowledge goes, there is not any PUFEM error estimate in terms of the wave
number available in the literature.

The goal of the first chapter of this thesis will be to deduce an error estimate in terms
of the wave number for a PUFEM discretization based on a plane wave enrichment, applied
to a one-dimensional Helmholtz problem. The second chapter is devoted to the numerical
approximation of time-harmonic acoustic one and two-dimensional problems in bi-layered
media, developing PUFEM techniques that take into account the reflection and the trans-
mission occurred at the interface between subdomains. Finally, the last chapter of this
thesis proposes a novel PUFEM discretization that involves Love waves as a tool in non-
destructive testing.

A more detailed description of the content of each chapter is discussed below:

xix
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Chapter 1. Error estimates for partition of unity finite element solutions of
the Helmholtz equation

In the first chapter, a priori error estimates for a PUFEM discretization of a one-
dimensional Helmholtz problem are deduced. First, the one-dimensional Helmholtz prob-
lem is posed, considering Dirichlet and Robin boundary conditions. Then, the variational
formulation is derived and the Ladyzhenskaya-Babuška-Brezzi (LBB) inf-sup continuous
condition and the stability of the weak solution respect to the data of the problem are
stated. A PUFEM discretization of the Helmholtz one-dimensional problem, based on a
plane wave enrichment, is described in terms of exponential and trigonometric functions.
An additional perturbation parameter δ is introduced in the wave number of the basis
functions, in order to reproduce situations where the exact solution is not known in closed
form, and to try to reflect the problems to approximate the exact solution that will be
found in two-dimensional Helmholtz problems or in problems with variable wave number.
After that, two interpolation estimates are stated and the combination of both leads to an
interpolant-like procedure which approximates accurately the H1 projection in the PUFEM
discrete space. An LBB discrete condition and a stability condition for the PUFEM ap-
proximate solution respect to the source function are demonstrated, and the error estimate
in terms of the wave number k, the mesh size h and an additional perturbation parameter
δ is deduced. Finally, some numerical results illustrate the second-order accuracy of the
PUFEM approximation with respect to the mesh size and respect to the additional pertur-
bation parameter. It can be checked that the PUFEM relative error does not depend on
the wave number values.

Chapter 2. A partition of unity finite element method for layered media

The second chapter deals with several Helmholtz problems. Firstly, a one-dimensional
Helmholtz problem in a layered media is considered. After posing the model problem, with
Dirichlet and Robin boundary conditions and being the wave number a strictly positive
piecewise constant function, the variational formulation is deduced. Four different kinds of
PUFEM are explained in parallel: a global average method, a local element-wise method,
a local average method (based on the approach introduced by Pablo Ortiz [41]) and the
discretization proposed in this thesis: the transmission-reflection method, that takes into
account the transmissions and reflections that occur in each element. After describing
the matrix discrete problem, some numerical results show that an exact solution defined
differently in each subdomain as a linear combination of plane waves, is fully recovered by
the transmission-reflection method.

The second problem considered in this chapter is a two-dimensional Helmholtz prob-
lem with constant wave number. After introducing the model problem, with Neumann
boundary conditions, and deducing the weak problem, the constant PUFEM discretization
is described in detail and the discrete problem and the matrix discrete system are posed.
The integration techniques used, in order to deal with integrands that oscillate in terms of
two variables, are detailed. The numerical results in this section illustrate the accuracy of
the method, the exponential decay of the relative error when the number of plane waves
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used in the PUFEM discretization is increased and the behaviour of the relative error with
respect to the wave number.

Finally, the last problem that this chapter deals with is a Helmholtz problem in a bi-
layered medium. The model problem is posed, with Neumann boundary conditions and
piecewise constant wave number. Coupling conditions are imposed over the interface be-
tween media. After posing the weak problem, the novel transmission-reflection PUFEM
discretization is described in detail and some integration techniques used, that involve an
affine change of reference to the reference triangle, are explained. The numerical results
show the accuracy and efficiency of the transmission-reflection PUFEM method to ap-
proximate a two-dimensional Helmholtz problem with Neumann conditions and piecewise
constant wave number.

Chapter 3. A modal-based partition of unity finite element method for layered
wave propagation problems

The last chapter gives a numerical tool for the non destructive testing. The problem
posed can be applied to the modelling of the transversal section of a pipe with a coating,
where the internal media is a thin layer (austenitic material) and the external media a
thicker one (ferritic material). The non destructive testing goal is to detect a crack on the
interface between this two layers, and in order to do that, the knowledge of the solution of
the problem in a domain without a crack has a vital importance. This chapter proposes
a novel PUFEM discretization involving Love waves to approximate the solution of these
problems without crack. After posing the model problem, an exhaustive spectral analysis
is carried out, before of describing the modal-based PUFEM method in detail. A wide
battery of numerical results illustrate the accuracy of the proposed modal-based PUFEM
method with just Love waves and with both, internal and Love waves, the deterioration
of the numerical results due to the high condition numbers of the discrete matrix and its
potential mitigation using regularization techniques, and the accuracy of the modal-based
method for solutions which are close to the constant-valued eigenmodes (which are not
included in the modal enrichment)

The last part of the thesis is devoted to the discussion on some future research lines and
open problems. A summary of this dissertation thesis in Spanish language is enclosed too.





Notation

The notation that will be used all over the thesis is introduced here (see [39], [20], [12]
and [26] for more details). Consider the interval (0, 1) ⊂ R. The space L2(0, 1) is defined
as

L2(0, 1) :=

{
f : (0, 1)→ C;

∫ 1

0

|f(x)|2dx < +∞
}
,

with the scalar product associated

〈f, g〉0 :=

∫ 1

0

f(x)ḡ(x)dx ∀ f, g ∈ L2(0, 1),

and the corresponding norm

‖f‖0 :=

(∫ 1

0

|f(x)|2dx

)1/2

∀ f ∈ L2(0, 1).

Let m > 0 an integer. The Sobolev space Hm(0, 1) can be defined as

Hm(0, 1) :=
{
v ∈ L2(0, 1); ∂αv ∈ L2(0, 1) ∀α = 0, 1, . . . ,m

}
.

In particular, the Sobolev space of order one in (0, 1) is

H1(0, 1) :=
{
v ∈ L2(0, 1); v′ ∈ L2(0, 1)

}
,

whose scalar product associated is

〈u, v〉1 := 〈u, v〉0 + 〈u′, v′〉0 ∀u, v ∈ H1(0, 1),

and the seminorm and norm associated are, respectively

|v|1 :=

(∫ 1

0

|v′(x)|2dx

)1/2

∀ v ∈ H1(0, 1),

and

‖v‖1 :=
(
‖v‖2

0 + |v|21
)1/2 ∀ v ∈ H1(0, 1).
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Let Ω an open bounded domain in R2 and let ∂Ω its boundary. Let x = (x1, x2) ∈
R2. The space of Lebesgue measurable and square-integrable complex-valued functions is
denoted

L2(Ω) :=

{
f : Ω→ C;

∫
Ω

|f(x)|2 dx < +∞
}
,

with the scalar product associated

〈f, g〉0,Ω :=

∫
Ω

f(x)ḡ(x) dx ∀ f, g ∈ L2(Ω),

and the corresponding norm

‖f‖0,Ω :=

(∫
Ω

|f(x)|2 dx

)1/2

∀ f ∈ L2(Ω).

The Sobolev space Hm for m ∈ N is defined by

Hm(Ω) :=
{
v ∈ L2(Ω); ∂αv ∈ L2(Ω) ∀α = (α1, α2) ∈ N2 with α1 + α2 ≤ m

}
,

where the derivative

∂αv(x) :=
∂α1+α2v(x)

∂α1x1∂α2x2

,

is interpreted in the sense of distributions.
In particular, if s = 1, the Sobolev space of order one is denoted

H1(Ω) :=

{
v ∈ L2(Ω);

∂v

∂xj
∈ L2(Ω), ∀ j = 1, 2

}
,

whose scalar product associated is

〈u, v〉1,Ω := 〈u, v〉0,Ω + 〈 ∂u
∂x1

,
∂v

∂x1

〉0,Ω + 〈 ∂u
∂x2

,
∂v

∂x2

〉0,Ω ∀u, v ∈ H1(Ω),

and the seminorm and norm associated are, respectively

|v|1,Ω :=

(∫
Ω

|∇v(x)|2 dx

)1/2

∀ v ∈ H1(Ω),

and

‖v‖1,Ω :=
(
‖v‖2

0,Ω + |v|21,Ω
)1/2 ∀ v ∈ H1(Ω).

The Sobolev space of order one that has homogeneous Dirichlet conditions over a par-
ticular part of the boundary Γ ⊂ ∂Ω is defined

H1
Γ(Ω) :=

{
v ∈ H1(Ω); v = 0 over Γ

}
.



Notation xxv

The Sobolev space Hs(Ω), being s = m+ σ, m ∈ N and σ ∈ (0, 1), is defined as

Hs(Ω) :=

{
v ∈ Hm(Ω);

∫
Ω

∫
Ω

|∂αv(x)− ∂αv(y)|2
|x− y|2+2σ

dxdy

}
.

A function is said to be of class C∞ if it has continuous derivatives of all orders. The
space H(div,Ω) is defined as follows

H(div,Ω) :=
{
ϕ ∈

(
L2(Ω)

)2
; divϕ ∈ L2(Ω)

}
.

Let γ the trace operator, γ : H1(Ω)→ L2(∂Ω). Then, the space H1/2(∂Ω) can be defined

H1/2(∂Ω) :=
{
u ∈ L2(∂Ω); ∃ v ∈ H1(Ω) with u = γ(v)

}
,

and its dual space is H−1/2(∂Ω).

The space H
1/2
00 (Γ) with Γ ⊂ ∂Ω is defined as

H
1/2
00 (Γ) :=

{
v ∈ L2(Γ); ṽ ∈ H1/2(∂Ω)

}
,

being ṽ the extension by zero of v,

ṽ =

{
v(x) if x ∈ Γ,

0 if x ∈ ∂Ω\Γ.
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1.1. Introduction 3

1.1 Introduction

Boundary-value problems for the Helmholtz equation arise in a number of physical
applications, in particular in problems of wave scattering in Acoustics, Optics and Electro-
magnetism. It is well known (see, for instance, [24]) that to obtain accurate results, the
mesh size h for finite element and finite difference computations should depend on the wave
number k, usually following a “rule of the thumb”, which ensures a minimum number of
nodes per wavelength. In problems where the typical size of the computational domain has
the same order of magnitude as the wavelength of the harmonic motion, this criterion leads
to accurate results. However, the quality of the numerical approximation deteriorates if the
computational domain or the wave number are large enough. Under certain assumptions on
the magnitude hk, it has been shown in [27] that the H1-relative error of the FEM solution
efe can be bounded by efe ≤ C1kh+ C2k

3h2, where the second term on the right-hand side
is the so-called numerical pollution error.

In [36], the Partition of the Unity Finite Element Method was proposed with the aim
of mitigating the pollution effect of standard FEM approximations. The computational
advantages of this method have been illustrated by a variety of numerical results (see e.g.
[35]). In this chapter, a PUFEM discretization based on a plane wave enrichment is applied
to the one-dimensional Helmholtz equation.

The one-dimensional Helmholtz boundary-value problem with Dirichlet and Robin bound-
ary conditions is described in Section 1.2, as well as its variational formulation and the asso-
ciated Ladyzhenskaya-Babuška-Brezzi (LBB) inf-sup condition. The PUFEM discretization
chosen is discussed in detail in Section 1.3. The remainder of the chapter is organized as
follows: two interpolation estimates and an approximation result of the H1 projection of
the weak solution is shown for the PUFEM discrete space in Section 1.4. Then, a discrete
inf-sup condition is proved and the existence and uniqueness of the discrete solution and its
stability with respect to the boundary data are obtained in Section 1.5. An error estimate
for the PUFEM is deduced in Section 1.6. Finally, some numerical results are presented in
Section 1.7.

1.2 Model problem

The time-harmonic wave propagation in isotropic homogeneous compressible media is
modelled linearly by means of the Helmholtz equation. Throughout this chapter, a one-
dimensional model will be considered. Without loss of generality it will be assumed the
interval (0, 1) as computational domain (otherwise, a change of scale could be performed to
transform the domain to the unit interval). Analogously to the model problem used in [27]
for the FEM analysis, the following boundary-value problem will be considered

−u′′ − k2u = f in (0, 1),

u(0) = u0,

u′(1)− iku(1) = u1,

(1.1)



4 Error estimates for PUFEM in 1D

where u and f are complex-valued functions. The source term f is assumed independent of
k. The boundary data u0, u1 ∈ C and the wave number k > 0 (k strictly positive and lower
bounded far from zero) are constant. From an acoustic point of view, u could be understood
as the complex-valued time-harmonic amplitude of the pressure field in a compressible fluid
at a fixed wave number k. Since at x = 0, a Dirichlet boundary condition is assumed and a
complex-valued Robin condition is imposed at x = 1, it is straightforward to check that the
model problem has a unique solution. The proof is based on the classical inf-sup condition.
In what follows, the variational formulation and the result of existence and uniqueness of
solution will be recalled.

In the model problem (1.1), the Dirichlet and the Robin data u0 and u1 can be lifted
by a smooth function and then it can be used to translate the solution u. In this manner,
the boundary data u0 and u1 can be considered null without loss of generality. Hence, to
write the variational formulation, the solution will be sought in the space

V =
{
v ∈ H1(0, 1); v(0) = 0

}
= H1

(0(0, 1),

and the variational formulation of problem (1.1) is written as follows:
Given f ∈ L2(0, 1), find u ∈ V such that

Bk(u, v)− iku(1)v̄(1) =

∫ 1

0

f(x)v̄(x) dx ∀v ∈ V,
(1.2)

where the sesquilienar form Bk : V × V→ C is defined by

Bk(u, v) =

∫ 1

0

(
u′(x)v̄′(x)− k2u(x)v̄(x)

)
dx, u, v ∈ V. (1.3)

The inf-sup condition of the sesquilinear form (u, v) 7→ Bk(u, v) − ik(1)u(1)v̄(1) can be
obtained explicitly in terms of the wave number k (see [27] for the proof details).

Theorem 1.2.1. Let Bk be the sesquilinear form defined in (1.3). The following inf-sup
condition holds

γ = inf
u∈V

sup
v∈V

|Bk(u, v)− iku(1)v̄(1)|
|u|1|v|1

> 0.

Moreover, there exist two positive constants C1, C2, not depending on k, such that

C1

k
≤ γ ≤ C2

k
. (1.4)

The inf-sup condition stated above ensures the existence and uniqueness of solution for
the problem (1.2) in V. In addition, it guarantees the continuous dependence of the solution
with respect to the source term and the boundary data.

Corollary 1.2.2. If u ∈ V is the solution of the variational problem (1.2) then u depends
continuously on the source term f and the boundary data u1 satisfying the stability estimate

|u|1 ≤ Ck (||f ||0 + |u1|) , (1.5)

being C > 0 a constant independent on k.
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Proof. Applying the inf-sup estimate (1.4) to the solution u of the variational problem (1.2),
there exists v ∈ V such that

C1

k
≤ |Bk(u, v)− iku(1)v̄(1)|

|u|1|v|1
=

∣∣∣∫ 1

0
f(x)v̄(x) dx+ u1v̄(1)

∣∣∣
|u|1|v|1

.

Using a Poincare inequality, this is, for v ∈ V it is immediate to check that ||v||0 ≤ |v|1 and
the trace inequality |v(1)| ≤ |v|1, it is possible to bound the numerator of the last quotient
in the estimate above and so it leads to

C1

k
≤ ||f ||0|v|1 + |u1||v|1

|u|1|v|1
=
||f ||0 + |u1|
|u|1

,

from which the estimate (1.5) is obtained with C = 1/C1.

1.3 PUFEM discrete problem

The Partition of Unity Finite Element Method (PUFEM) is introduced in this section
in the same manner as Babuška and Melenk [36] described it: PUFEM can be understood
as a Galerkin method where a kind of specialized functions (related to the model problem
to be solved) are multiplied by a partition of unity of the computational domain. So, two
main ingredients have to be considered in the PUFEM discretization: the partition of unity
and the set of the problem-related functions.

To define the partition of unity, an equispaced mesh Th = {xj = hj : j = 0, . . . , n} ⊂
[0, 1] of n+1 nodes with mesh size h = 1/n is considered. On this mesh, a standard Lagrange
P1 (piecewise linear) finite element basis {ϕ}nj=0 will be used as the set of elements of the
partition of unity. In fact, since ϕj(xl) = δjl for j, l = 0, . . . , n, being δjl the Kronecker
delta, it is easy to check the partition of unity property

n∑
j=0

ϕj(x) = 1,

taking into account the nodal interpolation properties of the finite element basis and due to
the continuous piecewise P1-polynomial expressions, in particular, using the fact that the
constant functions are in the discrete space generated by {ϕ}nj=0.

The second key component in the PUFEM discretization is the set of problem-related
functions. As it has been devised by other authors [35, 41] for the Helmholtz equation,
plane wave solutions of the homogeneous Helmholtz equation can be used for this purpose.
However, in the present chapter, instead of working with exact solutions of the Helmholtz
equation, and additional perturbation parameter δ will be introduced in the problem-related
functions to reproduce a lack of knowledge on the exact solution or to mimic a situation
where the exact solution is not completely known in closed form. Hence, the perturbed plane
waves used to describe the PUFEM discrete space are ei(k+δ)x and e−i(k+δ)x. Consequently,
the PUFEM estimates derived throughout this work will depend on three parameters: the
mesh size h, the wave number k and the perturbation parameter δ.
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1.3.1 Exponential discrete basis

Once these two components have been chosen, the functions involved in the PUFEM
discretization, {ψ−j }nj=0 ∪ {ψ+

j }nj=0, are the products of the perturbed planewave functions
multiplied by each element of the partition of unity, this is,

ψ−j (x) = ϕj(x)e−i(k+δ)(x−xj), ψ+
j (x) = ϕj(x)e+i(k+δ)(x−xj) for j = 0, . . . , n.

In this manner, if Xh = 〈{ψ−j }nj=0 ∪ {ψ+
j }nj=0〉 then the PUFEM discrete space where the

discrete solution will be sought is given by Vh = {vh ∈ Xh; vh(0) = 0} = Xh ∩ H1
(0(0, 1).

Hence, the discrete PUFEM approximation uh is defined as the solution of the following
linear problem:

Given f ∈ L2(0, 1), find uh ∈ Vh such that

Bk(uh, vh)− ikuh(1)v̄h(1) =

∫ 1

0

f(x)v̄h(x) dx ∀vh ∈ Vh.
(1.6)

In the following sections, the numerical properties of this discrete problem will be analysed
in terms of approximability, stability and dispersion.

Since a basis has been fixed for the PUFEM discrete space Vh, it is possible to write
the linear problem (1.6) in matrix form. Since the homogeneous Dirichlet condition must
be satisfied for any element of the basis, it is straightforward to check that the set {ψ+

0 −
ψ−0 , ψ

−
1 , ψ

+
1 , . . . , ψ

−
n , ψ

+
n } is a basis for Vh. Hence, any function vh can be written as

vh = v+
0 (ψ+

0 − ψ−0 ) +
n∑
j=1

v−j ψ
−
j +

n∑
j=1

v+
j ψ

+
j ,

where (v+
0 , v

−
1 , v

+
1 , . . . , v

−
n , v

+
n )t is the coordinates vector of vh with respect to this basis.

This coordinates can be considered as the degrees of freedom of the PUFEM discretization.
Hence, problem (1.6) can be written in terms of the amplitudes u±j of the approximate
solution uh = u+

0 (ψ+
0 − ψ−0 ) +

∑n
j=1 u

−
j ψ
−
j +

∑n
j=1 u

+
j ψ

+
j ∈ Vh as follows: Given the Robin

boundary data u1 ∈ C and f ∈ L2(0, 1), find (u+
0 , u

−
1 , u

+
1 , . . . , u

−
n , u

+
n )t ∈ C2n+1 such that

(b4 − b3)u+
0 + (b2 − b1)u+

1 + (b1 − b̄2)u−1 = f+
0 − f−0 ,

(b2 − b1)u+
0 + b3u

+
1 + b1u

+
2 + b4u

−
1 + b̄2u

−
2 = f−1 ,

(b1 − b̄2)u+
0 + b4u

+
1 + b2u

+
2 + b3u

−
1 + b1u

−
2 = f+

1 ,
b1u

+
j−1 + b3u

+
j + b1u

+
j+1 + b2u

−
j−1 + b4u

−
j + b̄2u

−
j+1 = f−j , j = 1, . . . , n− 1,

b̄2u
+
j−1 + b4u

+
j + b2u

+
j+1 + b1u

−
j−1 + b3u

−
j + b1u

−
j+1 = f+

j , j = 1, . . . , n− 1,
b1u

+
n−1 + (b3/2− ik)u+

n + b2u
−
n−1 + (b4/2− ik)u−n = f−n + u1,

b̄2u
+
n−1 + (b4/2− ik)u+

n + b1u
−
n−1 + (b3/2− ik)u−n = f+

n + u1,
(1.7)

where f±j =
∫ 1

0
f(x)ψ±j (x) dx, j = 0, . . . , n. Taking into account that ψ+

j (x) = ψ−j (x) for
j = 0, . . . , n, and, since the mesh is uniform (with mesh size h), ψ−j (x) = ψ−0 (x − jh) and
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ψ+
j (x) = ψ+

0 (x− jh) for j = 0, . . . , n, it holds

Bk(ψ
+
j , ψ

−
l ) = Bk(ψ

−
j , ψ

+
l ), Bk(ψ

+
j , ψ

+
l ) = Bk(ψ

−
j , ψ

−
l ) for all 0 ≤ j, l ≤ n, (1.8)

Bk(ψ
+
j+m, ψ

+
l+m) = Bk(ψ

+
j , ψ

+
l ), Bk(ψ

−
j+m, ψ

−
l+m) = Bk(ψ

−
j , ψ

−
l ) for all 0 ≤ j, l ≤ n,

(1.9)

such that 0 ≤ j +m, l+m ≤ n. In addition, since the sesquilinear form Bk is hermitian, a
direct computation of the matrix coefficients in (1.7) reveals that they are given by

b1 = Bk(ψ
−
j−1, ψ

+
j ) = Bk(ψ

−
1 , ψ

+
2 ) =

−1

2h2(k + δ)
((k + δ)h cos((k + δ)h) + sin((k + δ)h))

+
k2

2h2(k + δ)3
((k + δ)h cos((k + δ)h)− sin((k + δ)h))

(1.10)

b2 = Bk(ψ
+
j−1, ψ

+
j ) = Bk(ψ

+
1 , ψ

+
2 ) =ei(k+δ)h

(−1

h
+ i(k + δ) +

hδ

6
(2k + δ)

)
, (1.11)

b3 = Bk(ψ
−
j , ψ

+
j ) = Bk(ψ

−
1 , ψ

+
1 ) =

−1

4h2(k + δ)
(−4h(k + δ)− 2 sin(2(k + δ)h))

+
k2

4h2 (k + δ)3 (−4h(k + δ) + 2 sin(2(k + δ)h)) ,

(1.12)

b4 = Bk(ψ
+
j , ψ

+
j ) = Bk(ψ

+
1 , ψ

+
1 ) =

2

h
+

2hδ

3
(2k + δ), (1.13)

for j = 1, . . . , n− 1. These expressions and the symmetry of the basis functions ψ±0 and ψ±n
with respect to x = x0 = 0 and x = xn = 1 can also be used to the corresponding coefficients
obtained for the two first and two last rows of the linear system (1.7). Notice that, despite
the PUFEM basis consists in a set a complex-valued functions, matrix coefficients b1, b3

and b4 in (1.7) are real.
Obviously, as in any Galerkin method applied to the Helmholtz equation, the linear

system (1.7) admits a matrix representation in terms of the stiffness and mass matrices:

given ~fh = (f−0 , f
+
0 , . . . , f

−
n−1, f

+
n−1, f

−
n + u1, f

+
n + u1)t, find ~uh = (u−0 , u

+
0 , . . . , u

−
n , u

+
n )t such

that
(−k2Mh − ikRh +Kh)~uh = ~fh, (1.14)

under the restriction u−0 +u+
0 = 0, where the components of the stiffness and mass matrices

are given by

[Mh]j̃± l̃± =

∫ 1

0

ψ±j (x)ψ̄±l (x) dx, [Kh]j̃± l̃± =

∫ 1

0

(ψ±j )′(x)(ψ̄±l )′(x) dx, (1.15)

for all 0 ≤ j, l ≤ n (with j̃± = 4(j + 3± 1)/2), and the matrix Rh associated to the Robin
condition has all its coefficients null except [Rh]jl = 1 for all j, l = 2n+ 1, 2(n+ 1).
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Despite this discrete basis and the associated linear system (1.14) have been used in the
computer implementation of this PUFEM method, the basis description presented above
is far from being adequate to analyse numerically the a priori error due to the PUFEM
discretization. In what follows, a more convenient description of the PUFEM discrete spaces
Xh and Vh will be introduced.

1.3.2 Trigonometric discrete basis

Since the elements of the partition of unity (piecewise linear functions) are multiplied
by exp(±i(k + δ)x), it is clear that any function vh ∈ Xh can be rewritten as

vh(x) =
n∑
j=0

(
vvhjϕj(x) cos((k + δ)(x− xj)) + vbhjϕj(x) sin((k + δ)(x− xj))

)
,

where {φj}nj=0 are the canonical basis functions of the P1-Lagrange discrete space. As it is
usual in a finite element framework, the description of the finite element discrete space is
made by means of the writing the discrete functions in terms of the local expressions in the
element of reference.

Due to the uniform partition mesh, the j-th finite element is defined by Tj = [xj−1, xj]

for j = 1, . . . , n and the affine transformation from the reference element T̂ = [0, 1] onto
the finite element Tj, Fj : T̂ = [0, 1]→ Tj, given by Fj(x̂) = hx̂+xj−1 with x̂ ∈ [0, 1]. With
these concepts in mind, it is only necessary to introduce the shape of the functional basis in
the element of reference to define the global discrete space. In this manner, the definition
of the standard polynomial P1-Lagrange finite element space is given by

Vfe
h = {v ∈ H1

(0(0, 1) : v|Tj ◦ F−1
j ∈ P1(C) for j = 1, . . . , n}

or equivalently, if the local shape functions θ̂fe
1 (x̂) = x̂ and θ̂fe

2 (x̂) = 1 − x̂ are considered,
then

Vfe
h = {v ∈ H1

(0(0, 1) : v|Tj ◦ F−1
j ∈ 〈θ̂fe

1 , θ̂
fe
2 〉 for j = 1, . . . , n}.

From these finite local shape functions, the canonical basis {ϕj}nj=0 (consisting of the so-
called hat functions) can be defined by

ϕj =


θ̂fe

1 ◦ F−1
j in Tj,

θ̂fe
2 ◦ F−1

j+1 in Tj+1,

0 otherwise,

for j = 0, . . . , n. The FEM discrete basis for j = 0 and j = n are defined from the
definitions written above but only taking into account their expressions in T1 and Tn,
respectively. Obviously, as it has been stated previously ϕj is a continuous piecewise linear
function satisfying ϕj(xl) = δjl for j, l = 0, . . . , n.

To mimic this description in the case of the PUFEM discretization, first notice that
the restrictions on Tj and Tj+1 of the piecewise linear functions multiplied by sine and
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cosine functions and composed respectively with F−1
j and F−1

j+1 lead to the PUFEM shape

functions θ̂1, θ̂2, θ̂b1, and θ̂b2 given by

ϕj(Fj(x̂)) cos((k + δ)(Fj(x̂)− xj)) = x̂ cos((k + δ)h(1− x̂)) = θ̂1(x̂), (1.16)

ϕj(Fj+1(x̂)) cos((k + δ)(Fj+1(x̂)− xj)) = (1− x̂) cos((k + δ)hx̂) = θ̂2(x̂), (1.17)

1

(k + δ)h
ϕj(Fj(x̂)) sin((k + δ)(Fj(x̂)− xj)) = x̂

sin((k + δ)h(x̂− 1))

(k + δ)h
= θ̂b1(x̂), (1.18)

1

(k + δ)h
ϕj(Fj+1(x̂)) sin((k + δ)(Fj+1(x̂)− xj)) = (1− x̂)

sin((k + δ)hx̂)

(k + δ)h
= θ̂b2(x̂), (1.19)

for x̂ ∈ T̂ = [0, 1] and for any fixed j = 1, . . . , n − 1. Taking into account these four local
shape functions, it can be defined a discrete basis {ψv

j}nj=0 ∪{ψb
j}nj=0 for the PUFEM space

Xh where (applying (1.16)-(1.17))

ψv
j (x) =


θ̂1 ◦ F−1

j (x) for x ∈ Tj,
θ̂2 ◦ F−1

j+1(x) for x ∈ Tj+1,

0 otherwise.

=


F−1
j (x) cos((k + δ)h(1− F−1

j (x))) for x ∈ Tj,
(1− F−1

j+1(x)) cos((k + δ)hF−1
j+1(x)) for x ∈ Tj+1,

0 otherwise.

 = ϕj(x) cos((k + δ)h(x− xj)),

for j = 1, . . . , n. Analogous computations also show that applying (1.18)-(1.19), it holds

ψb
j (x) =


θ̂1 ◦ F−1

j (x) for x ∈ Tj,
θ̂2 ◦ F−1

j+1(x) for x ∈ Tj+1,

0 otherwise.

 =
1

(k + δ)h
ϕj(x) sin((k + δ)h(x− xj)).

The PUFEM discrete basis for j = 0 and j = n are defined from the definitions written
above but only taking into account their expressions in T1 and Tn, respectively.

Consequently, the PUFEM discrete space Vh = Xh ∩ H1
(0(0, 1) can be written as the

direct sum Vh = Vv
h ⊕ Vb

h where

Vv
h = {v ∈ H1

(0(0, 1) : v|Tj ◦ F−1
j ∈ 〈θ̂1, θ̂2〉 for j = 1, . . . , n}

= {v ∈ H1
(0(0, 1) : v|Tj ∈ 〈ψv

j−1, ψ
v
j 〉 for j = 1, . . . , n}

= {v ∈ H1
(0(0, 1) : v ∈ 〈{ψv

j}nj=0〉} = 〈{ψv
j}nj=1〉 (1.20)

and
Vb
h = {v ∈ H1

(0(0, 1) : v ∈ 〈{ψb
j}nj=0〉} = 〈{ψb

j}nj=0〉. (1.21)

The first equality in the definition of Vv
h in (1.20) is straightforward since ψv

j−1|Tj ◦F−1
j =

θ̂2 and ψv
j |Tj◦F−1

j = θ̂1. The second equality is also deduced immediately from the continuity
of the functions belonging to Vv

h and the fact that ψv
j (xl) = δkl for k, l = 1, . . . , n.
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Remark 1.3.1 (Vertex-value space). In addition, due to the definition of {ψv
j}nj=1, the

degrees of freedom associated to those functions vh in Vv
h are the values on the vertices of

the mesh. In fact, it holds

vh =
n∑
j=1

vh(xj)ψ
v
j .

for all vh ∈ Vv
h. This is the reason because of the discrete space Vv

h will be called vertex-
valued discrete space.

Remark 1.3.2 (Twin-bubble space). On the contrary to the case of the vertex-value space
Vv
h, the discrete space Vv

h defined in (1.21) cannot be described in terms of the local shape

functions θ̂b1, θ̂
b
2. More precisely, it is easy to check that

Vb
h ⊂ {v ∈ H1

(0(0, 1) : v|Tj ◦ F−1
j ∈ 〈θ̂b1, θ̂b2〉 for j = 1, . . . , n}.

Additionally, to check that the equality of the two discrete spaces written above does not
hold, consider the discrete function zJ which is null in all the elements except at element
TJ where zJ |TJ ◦ F−1

J = θ̂b1. Obviously, zJ is continuous since zJ(xJ) = zJ(xJ+1) = 0 but
zJ /∈ Vb

h since it is not a linear combination of functions in the span of {ψb
j}nj=0.

In fact, despite the functions vbh ∈ Vb
h hold that their values are null at the vertices of

the mesh, they do not behave as typical bubble functions in standard piecewise continuous
Pp-finite elements with p ≥ 2. In that case, the polynomial bubbles have support on an
unique element mesh Tj. However, in this PUFEM discretization the bubbles functions
{ψb

j}nj=0 extend their support to two adjacent elements Tj ∪Tj+1, and at the interior of each
element, its local shape resembles the classical polynomial bubbles (with opposite sign in
each element). That is the reason because through the rest of this work, the discrete space
Vb
h will be called as twin-bubble discrete space.

Remark 1.3.3 (P2-finite element limit). If it is taken into account the expressions of the lo-
cal shape functions (1.16)-(1.19), if the parameter h(k+δ) tends to zero, θ̂1(x)|h(k+δ)=0 = x̂,

θ̂2(x)|h(k+δ)=0 = 1− x̂, and limh(k+δ)→0 θ̂
b
1(x) = limh(k+δ)→0 θ̂

b
1(x) = x̂(1− x̂). Hence, in the

limit case, Vv
h = Vfe

h and Vb
h is the the classical bubble space associated to piecewise contin-

uous P2-finite elements. In conclusion, in the limit when h(k + δ) → 0, the local discrete
matrices associated to the PUFEM discretization coincides with those ones computed with
the standard P2-finite element method.

1.4 Interpolation estimates

A typical error estimation analysis for a Galerkin method, and in particular, for a finite
element approximation, requires the use of an interpolation error, which mimics the error
behaviour of the projection operator in the discrete space. Usually, the standard piecewise
Pn-finite element methods uses piecewise local polynomial interpolants in each element and
an error estimation for the interpolant function is obtained by using a Taylor expansion.
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However, in the case of enriched methods where the discrete basis is not polynomial locally,
analogous arguments could lead to unsharp estimates and consequently to inaccurate error
estimates for the global method. In addition, for enriched methods, there exists an extra
difficulty coming from the fact that the degrees of freedom cannot be identified as nodal
values of the discrete function but simply as amplitude coefficients of each discrete basis
function.

In the case of the PUFEM method, the derivation of an approximability result in the
PUFEM discrete space Xh should to overcome these challenges. With this aim, the design an
accurate interpolant-like operator involves two strategies, which are going to be combined to
obtain an accurate and computational efficient discrete approximation of a given function.
First, an interpolant-like operator will be defined valid for any mesh size h, which will be
qualified as pre-asymptotic. Second, for h small enough, a P2-based interpolant will be
recast for the PUFEM discrete space, which will be identified as an asymptotic interpolant.
Finally, the combination of both approximations leads to an interpolant-like procedure
which approximates accurately the H1-projection in the PUFEM discrete space.

Remark 1.4.1 (Oscillatory solutions). Usually, for any polynomial-based finite element
method the most challenging functions to be accurately approximated are those ones which
are highly oscillatory. In the context of the Helmholtz equation, and in particular, in the
present work, it will be qualified as oscillatory solutions those functions which are solution
of the homogeneous Helmholtz equation. In what follows, all the interpolation estimates will
be focused on this kind of oscillatory solutions.

1.4.1 Pre-asymptotic interpolant-like operator

The first step to analyse the error in the PUFEM discretization consists in the derivation
of an approximability result in Xh. To define the first interpolant-like operator, any smooth
function v will be split in two parts attending to the intensity orientation, trying to identify
which part of the function will be accurate approximated by planewaves which travel to
the right (and whose intensity vector points towards the positive axis) and by those ones
which travel to the left (and whose intensity vector points towards the negative axis).
Such spitting is given by the differential operators involved in the Sommerfeld radiation
condition, this is, for v ∈ C1(0, 1)

v =
1

2ik
(v′ + ikv)− 1

2ik
(v′ − ikv) , (1.22)

and hence, the first term will be approximated by the discrete functions {ψ+
j }nj=0 and the

second one will be approximated by {ψ−j }nj=0. In consequence, given v ∈ H2(0, 1), the
interpolant-like Ipv ∈ Xh is defined by

Ipv =
1

2ik

n∑
j=0

(
(v′(xj) + ikv(xj))ψ

+
j − (v′(xj)− ikv(xj))ψ

−
j

)
. (1.23)
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From (1.23), it is immediate to check that

(Ipv)(x) =
n∑
j=0

(
v′(xj)

k
ϕj(x) sin((k + δ)(x− xj)) + v(xj)ϕj(x) cos((k + δ)(x− xj))

)

=
n∑
j=0

(
v′(xj)

k
ψb
j (x) + v(xj)ψ

v
j (x)

)
(1.24)

and hence and it trivially holds Ipv(xj) = xj. However, despite of use the point-wise
values of the derivatives at the mesh nodes v′(xj), (Ipv)′(xj) 6= v′(xj), and, moreover, Ipv
does not belong to C1(0, 1) and so the point wise evaluation of the derivative of Ipv is not
well-defined.

An unusual feature of interpolant-like operator Ip : H2(0, 1) → Xh is that Ipvh 6= vh
for all v ∈ Xh. To check this fact, it is enough to consider vh(x) = e+i(k+δ)x, which can be
written in the PUFEM discrete basis as

vh =
n∑
j=0

ei(k+δ)xjψ+
j .

If the above expression is compared with Ipvh, which is given by (from (1.23))

Ipvh =
n∑
j=0

((
1 +

δ

2k

)
ei(k+δ)xjψ+

j −
δ

2k
ei(k+δ)xjψ−j

)
,

it is deduced immediately that the coefficients of the basis representation is different from
δ 6= 0 and only if δ = 0 then Ipvh = vh. Anyway, it is fulfilled that Ip(Xh) ⊆ Xh and
Ip(Vh) ⊆ Vh.

Despite this atypical behaviour for a interpolant-like operator, the approximation com-
puted when this interpolant procedure is applied to a the linear combination of planewaves
(solution of the homogeneous Helmholtz equation −u′′ − k2u = 0) is highly accurate. In
what follows, it will be assumed that δ/k ≤ 1 to ensure that the wave number perturbation
δ introduces a relative error with respect to the exact wave number k smaller than 100%
in the PUFEM discretization.

Lemma 1.4.2. Given ε > 1, if u ∈ V is a solution of the homogeneous Helmholtz equation
with wave number k > ε and assuming δ/k ≤ 1, then there exists the interpolant-like discrete
function uI = Ipu ∈ Xh defined by (1.23) satisfies

inf
vh∈Xh

‖u− vh‖0 ≤ ‖u− Ipu‖0 ≤ Ch2δ2‖u‖0, (1.25)

inf
vh∈Xh

|u− vh|1 ≤ |u− Ipu|1 ≤
(
Ch

k
+ Ĉh2

)
δ2|u|1, (1.26)

where the positive constants C and Ĉ only depend on ε.
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Proof. Firstly, notice that u ∈ H2(0, 1) since u is the solution of the Helmholtz equation
with null right-hand side and so Ipu is well-defined. Now, since uI = Ipu ∈ Xh, any
restriction of uI to the mesh element [xj, xj+1] should be written as a linear combination of
basis functions in Xh, which are not null on that element, this is, those functions multiplied
by ϕj and ϕj+1. Hence, it is satisfied

uI(x) =α1jψ
+
j (x) + α2jψ

+
j+1(x) + α3jψ

−
j (x) + α4jψ

−
j+1(x)

=α1jϕj(x)ei(k+δ)(x−xj) + α2jϕj+1(x)ei(k+δ)(x−xj+1)

+ α3jϕj(x)e−i(k+δ)(x−xj) + α4jϕj+1(x)e−i(k+δ)(x−xj+1), for x ∈ [xj, xj+1].

Since the exact solution for the homogeneous Helmholtz equation is given by u(x) = Aeikx+
Be−ikx, from (1.23) it is easy to check that α1j = Aeikxj , α2j = Aeikxj+1 , α3j = Be−ikxj and
α4j = Be−ikxj+1 for j = 1, . . . , n, and so it holds

‖u− uI‖2
0 ≤|A|2

n∑
j=1

∫ xj+1

xj

∣∣eikx − e−iδxjϕj(x)ei(k+δ)x − e−iδxj+1ϕj+1(x)ei(k+δ)x
∣∣2 dx

+ |B|2
n∑
j=1

∫ xj+1

xj

∣∣e−ikx − eiδxjϕj(x)e−i(k+δ)x − eiδxj+1ϕj+1(x)e−i(k+δ)x
∣∣2 dx.

Both integrals can be computed explicitly and it is immediate to check that they are
identical (the integrands are the square modulus of conjugate expressions) and independent
of the mesh element j and the wave number k. For instance, in the case of the first integral,
if δ = 0 then the integral value is null. Otherwise, for δ 6= 0, it holds∫ xj+1

xj

∣∣eikx − e−iδxjϕj(x)ei(k+δ)x − e−iδxj+1ϕj+1(x)ei(k+δ)x
∣∣2 dx

=

∫ xj+1

xj

∣∣eikx (1− ϕj(x)eiδ(x−xj) − ϕj+1(x)eiδ(x−xj+1)
)∣∣2 dx

=

∫ h

0

∣∣∣∣1− h− x
h

eiδx − x

h
eiδ(x−h)

∣∣∣∣2 dx =
5

3
h− 4

δ2h
+

(
h

3
+

4

δ2h

)
cos(δh).

Taking into account the identical contribution of the integrals in each element of the mesh,
it is obtained

‖u− uI‖2
0 ≤

(
|A|2 + |B|2

) 1

h

(
5

3
h− 4

δ2h
+

(
h

3
+

4

δ2h

)
cos(δh)

)
.

Now, using the bound derived in (1.96) for the expression written above between parenthesis
(see Appendix 1.A for further details), it holds

‖u− uI‖2
0 ≤=

(
|A|2 + |B|2

) 17

360
δ4h4 ≤ 17Cε

360
δ4h4‖u‖2

0. (1.27)
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To obtain (1.27), it has been used

|A|2 + |B|2 ≤ Cε‖u‖2
0, (1.28)

with Cε > 0 depending only on ε. This bound can be derived immediately since the exact
solution is given by u(x) = Aeikx +Be−ikx and so

‖u‖2
0 =

∫ 1

0

|Aeikx +Be−ikx|2 dx =

∫ 1

0

(
|A|2 + |B|2 + 2Re(AB̄e2kix)

)
dx

= |A|2 + |B|2 − Re(AB̄)
sin(2k)

k
− Im(AB̄)

cos(2k)− 1

k

≥ |A|2 + |B|2 − 2

k
|A||B| ≥

(
1− 1

k

)
(|A|2 + |B|2) ≥

(
1− 1

ε

)
(|A|2 + |B|2),

where it has been used that 1 − 1/k is a monotonically decreasing function, bounded in
[ε,+∞), and so satisfying the estimate (1.28) with Cε = 1− 1/ε.

To obtain estimate (1.26), analogous arguments can be used to bound the H1-seminorm
of u − uI. In fact, for δ 6= 0, straightforward computations on the integral contribution at
each mesh element and taking into account the bound derived in (1.97) (see Appendix 1.A
for details) leads to

|u− uI|21 ≤(|A|2 + |B|2)
n∑
j=1

(
2

h
+ hk2 +

2

3
h(k + δ)2 − 4k2

δ2h
− 2(k + δ) sin(δh)

+ 2 cos(δh)

(
−1

h
+
h

6
(k + δ)2 +

2k2

δ2h

))
≤(|A|2 + |B|2)

1

h

(
1

12
δ4h3 +

1

30
δ6h5 +

2

45
δ5kh5 +

7

360
δ4k2h5

)
≤Cε

12
δ4h

2

k2
|u|21 +

7Cε
72

δ4h4|u|21. (1.29)

In the last inequality written above, it has been used that δ/k ≤ 1 and an analogous
estimate to (1.28) for the H1-seminorm, this is, k2(|A|2 + |B|2) ≤ Cε|u|21. Hence, estimate
(1.26) is obtained, with positive constants C = Cε/12 and Ĉ = 7Cε/72 independent of h, δ
and k.

To illustrate that the approximation estimates (1.25) and (1.26) are sharp, the L2 and
H1-errors have been computed for the particular case of the Helmholtz exact solution u(x) =
sin(kx). Figures 1.1 and 1.2 show respectively the L2 and H1-error curves varying the mesh
size for different values of the wave number k and the perturbation parameter δ.

1.4.2 Asymptotic P2-based interpolant

The second ingredient in the definition of a global accurate interpolant procedure con-
sists in a truly interpolant procedure, which will be defined for h(k + δ) ≤ α < π and
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Figure 1.1: L2-approximation errors of the interpolant-like Ip applied to the exact solution
u(x) = sin(kx), plotted with respect to the mesh size but fixing the value of the perturbation
parameter δ = 10−2 (left) or the wave number k = 100 (right).

Figure 1.2: H1-approximation errors of the interpolant-like Ip applied to the exact solution
u(x) = sin(kx), plotted with respect to the mesh size but fixing the value of the perturbation
parameter δ = 10−2 (left) or the wave number k = 100 (right).

this fact will be the reason because of it is qualified as asymptotic. This new interpolant
I2 : H1(0, 1) → Xh reassembles the definition of the standard P2-interpolant since it is
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defined as follows: given v ∈ H1(0, 1),

I2v(x) =
n∑
j=0

(
γbjψ

b
j (x) + γvjψ

v
j (x)

)
=

n∑
j=0

(
γbjϕj(x) sin((k + δ)(x− xj)) + γvjϕj(x) cos((k + δ)(x− xj))

)
, (1.30)

will be defined by imposing the conditions

I2v(xj) = v(xj) for j = 0, . . . , n, (1.31)

I2v

(
xj + xj+1

2

)
= v

(
xj + xj+1

2

)
for j = 0, . . . , n− 1. (1.32)

Since these conditions forms a set of 2n + 1 linear equations (in terms of the coefficients
γvj , γ

b
j of I2v in the discrete PUFEM basis {ψv

j , ψ
b
j}nj=0), an additional equation is required

to have a well-posed linear problem with an unique solution (see Remark 1.6.2 for a detailed
discussion). Arbitrarily, it will be fixed that γb0 = 0. From (1.30)-(1.31), it is clear that
γvj = v(xj). So, since γb0 = 0, it is only necessary to compute the coefficients γbj for
j = 1, . . . , n− 1. Taking into account (1.32) for j = 1, . . . , n, it is obtained

v

(
xj + xj+1

2

)
= γbjϕj

(
xj + xj+1

2

)
sin

(
(k + δ)

h

2

)
−γbj+1ϕj+1

(
xj + xj+1

2

)
sin

(
(k + δ)

h

2

)
and it leads to

γbj+1 =
−2

sin

(
(k + δ)

h

2

) (v(xj + xj+1

2

)
− γbj

2
sin

(
(k + δ)

h

2

))
for j = 1, . . . , n− 1.

Notice that since h(k + δ) < π then the expression sin((k + δ)h/2) will be always strictly
positive and the coefficients γbj for j = 0, . . . , n are always well-defined.

Lemma 1.4.3. If v ∈ H3(0, 1) is solution of the Hemlholtz equation then the interpolant dis-
crete function I2v ∈ Xh defined by (1.30)-(1.32), then there exists a constant C independent
of h, k and δ such that it holds

‖v − I2v‖0 ≤ Ch3k3‖v‖0, (1.33)

|v − I2v|1 ≤ Ch2k2|v|1. (1.34)

Proof. Let IP2 be the continuous piecewise P2 interpolant. If v ∈ H3(0, 1), the order of
approximation of this polynomial interpolant is optimal in the sense that (see [28, Section
1.5])

‖v − IP2v‖0 + h|v − IP2v|1 ≤ Ch3|v|3, (1.35)
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where C is a constant independent of h. Direct but cumbersome computations analogous
to those ones used in Lemma 1.4.2 (taking into account that v is a linear combination
of sine and cosine functions and using the Taylor approximations of the PUFEM local
basis functions defined in (1.16)-(1.19)) show the same kind of inequality to (1.35) but now
involving the PUFEM interpolant I2:

‖v − I2v‖0 + h|v − I2|1 ≤ Ch3|v|3,

from which (1.33) and (1.34) follows by using that v is an oscillatory solution (and hence
|v|3 ≤ Ck3‖v‖0 and |v|3 ≤ Ck2|v|1, being C a positive constant independent of k).

To illustrate that the approximation estimates (1.33) and (1.34) are sharp, the L2 and
H1-errors have been computed for the particular case of the Helmholtz exact solution u(x) =
sin(kx). Figures 1.3 and 1.4 show respectively the L2 and H1-error curves varying the mesh
size for different values of the wave number k and the perturbation parameter δ.

Figure 1.3: L2-approximation errors of the interpolant-like I2 applied to the exact solution
u(x) = sin(kx), plotted with respect to the mesh size but fixing the value of the perturbation
parameter δ = 10−2 (left) or the wave number k = 100 (right).

1.4.3 An accurate global interpolation procedure

Finally, the combination of the pre-asymptotic interpolant-like operator Ip and the
asymptotic interpolant I2 leads to an accurate global interpolant Ih, which will have similar
approximation properties to those ones exhibit by the discrete projection operators. These
new global operator Ih : H1(0, 1)→ Xh is given by

Ihv =

{
Ipv if h(k + δ) ≥ π,

Ipv + I2v − I2Ipv if h(k + δ) < π.
(1.36)
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Figure 1.4: H1-approximation errors of the interpolant-like I2 applied to the exact solution
u(x) = sin(kx), plotted with respect to the mesh size but fixing the value of the perturbation
parameter δ = 10−2 (left) or the wave number k = 100 (right).

Due to the approximation properties of both interpolant operators, it is easy to obtain
estimates for this new operator Ih.
Lemma 1.4.4. Given ε > 1, if u ∈ V is a solution of the homogeneous Helmholtz equation
with wave number k > ε and assuming δ/k ≤ 1, then it holds for h(k + δ) > π

‖u− Ihu‖0 ≤ Ch2δ2‖u‖0, (1.37)

|u− Ihu|1 ≤ Ĉh2δ2|u|1, (1.38)

and for h(k + δ) < 2π, it holds

‖u− Ihu‖0 ≤ Ch3kδ2‖u‖0, (1.39)

|u− Ihu|1 ≤ Ĉh2δ2|u|1, (1.40)

where the positive constants C and Ĉ do not depend on h, k, and δ.

Proof. Firstly, the case hk ≥ π will be considered. Since Ih coincides with Ip, esti-
mate (1.37) follows immediately from (1.25). The H1-error estimate also is implied by (1.26)
since for hk ≥ π (which is equivalent to π/k < h), it holds

|u− Ihu|1 ≤
(
Ch

k
+ Ĉh2

)
≤ (C + Ĉ)h2δ2|u|1.

Second, the estimates (1.39)-(1.40) will be shown for h(k+ δ) < 2π. Using the fact that
2π/k is an upper bound of the mesh size h, it is clear from (1.25) that

‖u− Ip‖0 ≤ Ch2δ2‖u‖0 ≤
Cδ2

k2
‖u‖0. (1.41)
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Then, taking into account the definition of the operator Ih and estimates (1.33) and (1.41),
it holds

‖u− Ihu‖0 = ‖u− (Ipu+ I2u− I2Ipu)‖0 = ‖(u− Ipu)− I2(u− Ipu)‖0

≤ Ch3k3‖u− Ipu‖0 ≤ Ch3k3Cδ
2

k2
‖u‖0 = Ch3kδ2‖u‖0,

and hence (1.39) is obtained. Analogously, from (1.26) and since h ≤ 2π/k, it is deduced
that

|u− Ip|1 ≤ Ch2δ2|u|1 ≤
Cδ2

k2
|u|1. (1.42)

Then, taking into account the definition of the operator Ih and estimates (1.33) and (1.42),
it holds

|u− Ihu|1 = |u− (Ipu+ I2u− I2Ipu)|1 = |(u− Ipu)− I2(u− Ipu)|1

≤ Ch2k2|u− Ipu|1 ≤ Ch2k2Cδ
2

k2
|u|1 = Ch2δ2|u|1,

and consequently (1.40) follows.

Remark 1.4.5. In view of the arguments used in the proof described above, the operator
Ih can be read as a correction of the interpolant-like operator Ip using the I2-interpolant
of its approximation error, this is, if eh denotes the interpolation error made by Ipu (i.e.,
eh = u − Ipu) then the value of the global interpolation for h(k + δ) < 2π is given by
Ihu = Ipu + I2eh. Hence, it is shown that Ih is a interpolant operator in Vh at the mesh
vertices {xj}nj=0 since

(Ihu)(xj) = (Ipu)(xj) + (I2eh)(xj) = (Ipu)(xj) + eh(xj) = u(xj).

To illustrate that the approximation estimates (1.37)-(1.40) are sharp, the L2 and H1-
errors have been computed for the particular case of the Helmholtz exact solution u(x) =
sin(kx). Figures 1.5 and 1.6 show respectively the L2 and H1-error curves varying the mesh
size for different values of the wave number k and the perturbation parameter δ. The plots
in both figures confirm the orders in the parameters h, k, and δ shown in estimates (1.37)-
(1.40).

1.4.4 Comparison between projections and interpolants

Finally, to illustrate that the approximability estimates based on the global interpolant
procedure defined in (1.36), it will be checked numerically that the error estimates (1.37)-
(1.40) coincide with those ones computed for the projection operators onto the PUFEM
discrete space. With this purpose, the L2 and H1-distances between the exact solution u
of a Hemlholtz problem and their projections in the PUFEM discrete space Vh have been
computed.
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Figure 1.5: L2-approximation errors of the global interpolant procedure Ih applied to the
exact solution u(x) = sin(kx), plotted with respect to the mesh size but fixing the value of
the perturbation parameter δ = 10−2 (left) or the wave number k = 100 (right).

Figure 1.6: H1-approximation errors of the global interpolant procedure Ih applied to the
exact solution u(x) = sin(kx), plotted with respect to the mesh size but fixing the value of
the perturbation parameter δ = 10−2 (left) or the wave number k = 100 (right).

Firstly, the L2 and H1-projections have been computed numerically. In what follows,
the definition of the projection operators are described in detail, highlighting the discrete
matrices involved in those computations. Given a function g ∈ L2(0, 1), its L2-projection
onto the PUFEM discrete space Vh is defined as the solution of the following discrete
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problem: 
Given g ∈ L2(0, 1), find Πh

L2g = rh ∈ Vh such that∫ 1

0

rh(x)v̄h(x) dx =

∫ 1

0

g(x)v̄h(x) dx ∀vh ∈ Vh,
(1.43)

Since rh ∈ Vh then it admits the discrete basis representation rh =
∑n

j=0(r+
j ψ

+
j + r−j ψ

−
j )

and it is straightforward to check that the associated vector ~rh = (r−0 , r
+
0 , . . . , r

−
n , r

+
n )t is

the solution of the linear system Mh~rh = ~gh being ~gh = (g−0 , g
+
0 , . . . , g

−
n , g

+
n )t with g±j =∫ 1

0
g(x)ψ̄±j (x) dx for j = 0, . . . , n, under the restriction r−0 + r+

0 = 0 (to impose that rh(0) =
0).

Analogously, the H1-projection of g ∈ V onto Vh is defined as the solution sh of the
PUFEM problem ∫ 1

0

s′h(x)v̄′h(x) dx =

∫ 1

0

g′(x)v̄′h(x) dx ∀vh ∈ Vh. (1.44)

In particular, if g ∈ V is assumed to be the solution of the Helmholtz equation, it holds
−g′′ = f + k2g with f ∈ L2(0, 1) and g(0) = 0. Hence, by standard elliptic regularity
results for second-order differential operators with constant coefficients, g ∈ H2(0, 1). In
consequence, by integrating by parts the right-hand side of the weak form (1.44), the
definition of the H1-projection sh can be rewritten in terms of a variation problem stated
in Vh (involving only the derivative of g evaluated at x = 1, which is well-defined since g′

is continuous) as follows: Given g ∈ V solution of the Helmholtz equation with right-hand
side f ,

Find Πh
H1g = sh ∈ Vh such that∫ 1

0

s′h(x)v̄′h(x) dx =

∫ 1

0

(f(x) + k2g(x))v̄h(x) dx+ g′(1)v̄h(1) ∀vh ∈ Vh.

Again, since sh ∈ Vh then it admits the discrete basis representation sh =
∑n

j=0(s+
j ψ

+
j +

s−j ψ
−
j ) and it is straightforward to check that the associated vector of coefficients ~sh =

(s−0 , s
+
0 , . . . , s

−
n , s

+
n )t is the solution of the linear system Kh~sh = ~gh where the right-hand

side is given by ~gh = (g−0 , g
+
0 , . . . , g

−
n , g

+
n )t with

g±j =

∫ 1

0

(f(x) + k2g(x))ψ̄±j (x) dx for j = 0, . . . , n− 1,

g±n =

∫ 1

0

(f(x) + k2g(x))ψ̄±n (x) dx+ g′(1),

under the restriction s1 +s2 = 0. Notice that the vector ~gh =Mh~sh+(0, . . . , 0, g′(1), g′(1))t

where ~sh is the coefficient vector associated to the L2-projection of f + k2g.
To compute the errors between the projections (or the interpolants) in Vh and the

exact solution of the model problem in V, special care should be paid to not introduce
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further quadrature errors which could distort the numerical behaviour with respect to the
parameters h, k, and δ. With this aim in mind, the computation of the L2-distance, ‖v−vh‖0

between a function v ∈ V and another one in vh ∈ Vh is computed as follows:

‖v − vh‖2
0 =

∫ 1

0

(v(x)− vh)(v̄(x)− v̄h(x)) dx =

∫ 1

0

(
|v(x)|2 + |vh(x)|2 − 2Re(v̄(x)vh(x))

)
dx

= ‖v‖2
0 + ~v∗hMh~vh − 2Re(~r∗hMh~vh) = ‖v‖2

0 + ~v∗hMh~vh − 2Re(~g∗h~vh),

where ~rh and ~gh are the coefficient vectors involved in the computation of the L2-projection
Πh

L2v, which satisfy Mh~rh = ~gh, and ‖u‖0 is computed exactly in closed form.
Similarly, to compute the H1-distance, |v − vh|1 between a function v ∈ V and another

one in vh ∈ Vh, it is used the following expression:

|v − vh|21 =

∫ 1

0

(v′(x)− v′h)(v̄′(x)− v̄′h(x)) dx =

∫ 1

0

(
|v′(x)|2 + |v′h(x)|2 − 2Re(v̄′(x)v′h(x))

)
dx

= |v|21 + |vh|21 − 2Re

(∫ 1

0

v′(x)v̄′h(x) dx

)
.

Additionally, if it is assumed that v ∈ V is a solution of the Hemlholtz equation −v′′ =
f + k2v satisfying v(0) = 0 then, integrating by parts, it is obtained∫ 1

0

v′(x)v̄′h(x) dx = −
∫ 1

0

v′′v̄h(x) dx+ v′(1)v̄h(1) =

∫ 1

0

(f + k2v)v̄h(x) dx+ v′(1)v̄h(1),

and hence the H1-distance can be computed by means of

|v − vh|21 = |v|21 + ~v∗hKh~vh − 2Re(~s∗hKh~vh) = |v|21 + ~v∗hMh~vh − 2Re(~g∗h~vh),

where ~sh and ~gh are the coefficient vectors involved in the computation of the H1-projection
Πh

H1v, which satisfy Kh~sh = ~gh, and |u|1 is computed exactly in closed form.

Numerical results

Taking into account these projection operators, the relative L2-distance of the the exact
solution u(x) = sin(kx) to Vh has been computed by means of the projection, i.e., ‖Πh

L2u−
u‖0/‖u‖0. Similarly, the relative H1-distance of u to the PUFEM discrete space is computed
by |Πh

H1u − u|1/|u|1. Plots on Figures 1.7 and 1.8 show the dependence of both distances
with respect to parameters h, δ, and k. In the case of the L2 projection it is observed
roughly that

‖Πh
L2u− u‖0

‖u‖0

≤
{
Ch2δ2 if hk > π,

Ch3kδ2 if hk < π.

In the same manner, from Figure 1.8 it can be deduced approximately that the overall
numerical behaviour of the H1 projection is given by

|Πh
H1u− u|1
|u|1

≤


Ch2δ2 if hk > 2π,

Ch
√
kδ2 if π < hk < 2π,

Ch2δ2 if hk < π.
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Notice that the transition region in π < hk < 2π could be identified as those mesh size
where the role that the enrichment and the mesh size interchange their role: for h large
enough, the accuracy of the method is ruled by the exponentials expressions in he discrete
basis, however, for a mesh size h small enough, it is the mesh size which determines the
accuracy of the projection.

Figure 1.7: L2-approximation errors of the projection Πh
L2 applied to the exact solution

u(x) = sin(kx), plotted with respect to the mesh size but fixing the value of the perturbation
parameter δ = 10−2 (left) or the wave number k = 100 (right).

Figure 1.8: H1-approximation errors of the projection Πh
H1 applied to the exact solution

u(x) = sin(kx), plotted with respect to the mesh size but fixing the value of the perturbation
parameter δ = 10−2 (left) or the wave number k = 100 (right).

In conclusion, if the numerical errors corresponding to both projections are compared
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with respect to the approximation errors obtained by using the interpolant Ih (see Fig-
ures 1.5 and 1.6), it can be checked that the projection distances exhibit exactly the same
numerical behaviour. Indeed, the interpolant errors in H1-norm presents a similar transition
region for intermediate values of the mesh size.

1.5 Existence and uniqueness of the discrete solution

Before the derivation of a priori error estimates of the PUFEM method, it should be
ensured the existence and uniqueness of solution of the discrete problem (1.6) (or equiva-
lently, its matrix formulation (1.14)). It has been mentioned previously in Section 1.3.1,
that the exponential-type PUFEM discrete basis is not suitable for a typical numerical
error analysis. An intuitive idea of the possible drawbacks that the use of this basis could
imply are illustrated when hk tends to zero. In fact, in the limit case, if it is assumed
formally that hk = 0 (either because k = 0 or since h is taken formally equal to zero),
then the PUFEM basis of 2(n + 1) functions collapse and becomes linear dependent since
ψ+
j coincides with ψ−j and formally again both functions could be identify with the finite

element basis function ϕj.
To avoid partially these drawbacks, the trigonometric PUFEM basis was introduced in

Section 1.3.2. Despite this basis does not suffer from the severe linear-dependence issue
described above, it cannot be easily used for the study of the existence and uniqueness of
the discrete problem (1.6). In the following sections, the space of the twin-bubble functions
and the vertex-valued functions will be used separately to decouple the discrete problem in
two independent discrete problems.

1.5.1 Global condensation procedure

To mimic the local condensation procedure used in Pp-finite elements (see [28]), a similar
orthogonal procedure will be applied to the discrete space Vh. However, due to the non-
empty intersection between the supports of the basis functions in the twin-bubble space Vb

h

it is not possible to compute this orthogonalization locally (in the interior of each element
Tj). On the contrary, the condensation procedure will be related to a global problem stated
in the whole domain (0, 1). To discuss properly this global condensation procedure an
unusual functional framework must be introduced.

H1-bubble space

Let H1
Th(0, 1) be the subset of H1 functions which are null on the mesh vertices Th =

{xj = hj}nj=0, this is, it is defined as follows:

H1
Th(0, 1) = {v ∈ H1(0, 1) : v(x) = 0 for all x ∈ Th}.

Analogously to the H1
(0(0, 1) or H1

0(0, 1), the space H1
Th(0, 1), which will be called H1-bubble

space, is a Hilbert space endowed with inner product associated to the H1-seminorm | · |1.



1.5. Existence and uniqueness of the discrete solution 25

Taking into account the definition written above, it is immediately to obtain an coercive
result on the form Bk defined in (1.3).

Lemma 1.5.1. If hk ≤ α < π and Bk is defined by (1.3) then the sesquilinear form given
by (u, v) 7→ Bk(u, v) − iku(1)v̄(1) for all u, v ∈ H1

Th(0, 1) is continuous, hermitian and
coercive.

Proof. Firstly, since u(1) = v(1) = 0 for any u, v ∈ H1
Th(0, 1) then it is clear that the

sesquilinear form defined in the statement of the lemma coincides with Bk and hence it is
hermitian (B(u, v) = B(v, u) for all u, v ∈ H1

Th(0, 1)).
The continuity of Bk in H1

Th(0, 1) follows directly from the continuity of Bk in H1
(0(0, 1).

However, a sharper continuity constant (smaller than 1 + k2) can be obtained as follows. If
it is introduced v̂j = v|Tj ◦ F−1

j defined in (0, 1) then for any fixed u, v ∈ H1
Th(0, 1), it holds

|Bk(u, v)| =
∣∣∣∣∣
n∑
j=1

∫
Tj

(
u′(x)v̄′(x)− k2u(x)v̄(x)

)
dx

∣∣∣∣∣
≤

n∑
j=1

∣∣∣∣∫ 1

0

(
1

h
û′j(x̂)¯̂v′j(x̂)− k2hûj(x̂)¯̂v(x̂)

)
dx̂

∣∣∣∣
≤

n∑
j=1

1

h

∫ 1

0

∣∣û′j(x̂)¯̂v′j(x̂)− (kh)2ûj(x̂)¯̂v(x̂)
∣∣ dx̂ ≤ 1 + (kh)2

h

n∑
j=1

‖ûj‖H1
0(0,1)‖v̂j‖H1

0(0,1)

≤
√

2
1 + (kh)2

h

n∑
j=1

|ûj|H1
0(0,1)|v̂j|H1

0(0,1) =
√

2(1 + (kh)2)
n∑
j=1

|u|H1
0(Tj)|v|H1

0(Tj)

≤
√

2(1 + (kh)2)
n∑
j=1

|u|H1
0(Tj)|v|H1

0(Tj)

≤
√

2(1 + (kh)2)

(
n∑
j=1

|u|2H1
0(Tj)

) 1
2
(

n∑
j=1

|v|2H1
0(Tj)

) 1
2

=
√

2(1 + (kh)2)|u|H1
0(0,1)|v|H1

0(0,1) ≤
√

2(1 + α2)|u|H1
0(0,1)|v|H1

0(0,1),

where it has been used the H1-Cauchy-Schwarz estimate in the third inequality, the Poincare
estimate ‖u‖1 ≤

√
1 + 1/π2|u|1 <

√
2|u|1 in the fourth inequality (see [28, Lemma 2.2]), and

the n-dimensional Cauchy-Schwarz estimate in the last inequality. Notice also that u′(x)
denotes du/dx for x ∈ Tj whereas û′j denotes dûj/dx̂ for x̂ ∈ (0, 1) and any j = 1, . . . , n.

The coercivity of form Bk also is deduced using similar arguments. More precisely, it
holds

Bk(u, u) =
n∑
j=1

∫
Tj

(
|u′(x)|2 − k2|u(x)|2

)
dx =

n∑
j=1

∫ 1

0

1

h

(
|û′j(x̂)|2 − (kh)2|û′j(x̂)|2

)
dx̂

≥ π2 − α2

π2

1

h

n∑
j=1

∫ 1

0

|û′j(x̂)|2dx̂ =
π2 − α2

π2

n∑
j=1

|u|2H1
0(Tj)

=
π2 − α2

π2
|u|2H1

0(0,1),
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where it has been used that (kh)2 < α2 is smaller than π2, which is the smallest eigenvalue
of the second-order derivative −d2/dx̂2 in (0, 1) (see [28, Lemma 2.2]).

In addition to the result stated above, the Lax-Milgram lemma also ensures the existence
and uniqueness of solution of the variational problem: fixed hk ≤ α < π and given f ∈
L2(0, 1), find v ∈ H1

Th(0, 1) such that

Bk(v, φ) = 〈f, φ〉L2(0,1) for all φ ∈ H1
Th(0, 1). (1.45)

From the coercivity of Bk and the Poincare inequality ‖v‖0 ≤ |v|1, it is straightforward the
estimate

|v|1 ≤
π2

π2 − α2
‖f‖0. (1.46)

It is also clear from the definition (1.21) of the twin-bubble space that Vb
h ⊂ H1

Th(0, 1).
Since Bk is coercive in H1

Th(0, 1), it will be also coercive in Vb
h and, in fact, Bk defines an

inner product in both spaces, equivalent to the product associated to the seminorm | · |1.
Hence, the analogous discrete version of the problem (1.45), this is, fixed hk ≤ α < π and
given f ∈ L2(0, 1), find vb ∈ Vb

h such that

Bk(vb, φb) = 〈f, φb〉L2(0,1) for all φb ∈ Vb
h, (1.47)

has an unique solution and it also holds

|vb|1 ≤
π2

π2 − α2
‖f‖0. (1.48)

Despite the previous estimates (in the continuous and discrete variational problems
guarantees the well-posedness of both problems), the estimate (1.46) is not sharp and it can
be improved as follows taking into account that H1

Th(0, 1) =
⊕n

j=1 H1
0(Tj) (understanding

that the inclusion of H1
0(Tj) in H1

0(0, 1) is made by the extension by zero of those functions
defined in Tj ⊂ (0, 1).

Lemma 1.5.2. Fixed hk ≤ α < π and given f ∈ L2(0, 1), v ∈ H1
Th(0, 1) is solution of

problem (1.45) if and only if v|Tj = vj is solution of the problem

Bk(vj, φ) = 〈f |Tj , φ〉L2(Tj) for all φ ∈ H1
0(Tj). (1.49)

with j = 1, . . . , n. In addition, it holds

|v|1 ≤
π2

π2 − α2
h‖f‖0. (1.50)

Proof. The equivalence between problem (1.45) and (1.49) is immediate. If vj = v|Tj and
taking test functions φ with compact support in Tj and then substituted in problem (1.45)
then (1.49) is obtained. Reciprocally, if each vj is extended by zero to the exterior of Tj,
and then these extensions χ

Tj
vj are summed up, then v =

∑n
j=1 χTj vj is the solution of
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problem (1.45). To check this claim, it is enough to use that any φ ∈ H1
Th(0, 1) can be

rewritten as φ =
∑n

j=1 χTjφj with φj ∈ H1
0(Tj) and add the variational formulations (1.49)

from j = 1 to n.
To obtain the sharper estimate, the variational problem (1.49) is rewritten in the refer-

ence element (0, 1). Hence, it is obtained that v̂j = v|Tj ◦ F−1
j is solution of the variational

problem ∫ 1

0

(
v̂′j(x̂)

¯̂
φ′(x̂) dx̂− (kh)2v̂j(x̂)

¯̂
φ(x̂)

)
dx̂ = h2

∫ 1

0

(f |Tj ◦ F−1
j )(x̂)φ̄(x̂) dx̂

for all φ ∈ H1
0(Tj) with j = 1, . . . , n. The analogous estimate to (1.46), but now applied to

a problem stated in Tj, leads to

|v̂j|H1
0(0,1) ≤

π2

π2 − α2
h2‖f |Tj ◦ F−1

j ‖L2(0,1)

and coming back to Tj it is obtained

|v̂j|H1
0(Tj) ≤

π2

π2 − α2
h‖f |Tj‖L2(Tj).

Estimate (1.50) follows adding the squares of the left and right-hand side in the inequality
written above from j = 1 to n.

As it has been discussed previously in Remark 1.3.2, since Vb
h cannot be rewritten

as a direct sum of the space of bubbles functions with support in each finite element Tj.
Consequently, the proof of Lemma 1.5.2 cannot be replicated for the discrete problem (1.47).
However, despite this drawback, the estimate (1.48) for the discrete solution can also be
improved by using that the error v−vb is orthogonal to Vb

h with respect to the inner product
Bk.

Lemma 1.5.3. Fixed hk ≤ α < π and given f ∈ L2(0, 1), if vb ∈ Vb
h is the solution of

problem (1.47) then it holds

|vb|1 ≤
√

2(1 + α2)

(
π2

π2 − α2

)2

h‖f‖0. (1.51)

Proof. From variational problems (1.45) and (1.47), it is clear that Bk(v − vb, φb) = 0 for
all φb ∈ Vb

h, or equivalently, Bk(vb, φb) = Bk(v, φb). If φb = vb, taking into account the
coercivity and the continuity of Bk (see Lemma 1.5.1), and also estimate (1.50), it holds

π2 − α2

π2
|vb|21 ≤ |Bk(vb, vb)| = |Bk(v, vb)|

≤
√

2(1 + α2)|vb|1|v|1 ≤
√

2(1 + α2)
π2

π2 − α2
h|vb|1‖f‖0.

Since it can be supposed that |vb|1 > 0 (otherwise f = 0 and the lemma follows immedi-
ately), the expression above leads to (1.51), simplifying the factor |vb|1 at the most right
and most left term of the inequalities written above.
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PUFEM partially orthogonal basis

For the subsequent parts of the proof the existence and uniqueness results and the a
priori error analysis, it will be useful to split the PUFEM discrete space as the direct sum
Vh = Ṽv

h⊕Vb
h where the orthogonality is computed by means of the inner product induced

by form Bk. With this purpose, for each ψb
j , it will be defined ψ̃v

j = ψb
j + ξbj such that it is

satisfied the orthogonal relation

Bk(ψ̃
v
j , φ

b) = 0 for all φb ∈ Vb
h,

or equivalently, find ξbj ∈ Vb
h such that

Bk(ξ
b
j , φ

b) = −Bk(ψ
v
j , φ

b) for all φb ∈ Vb
h. (1.52)

Since Bk is a coercive form in H1
Th(0, 1) and also in Vb

h. Hence, the application of the Lax-
Milgram lemma guarantees the existence and uniqueness of solution of problem (1.52) and
the estimate (1.51) with f = ψv

j ∈ L2(0, 1) reads

|ξvj |1 ≤
√

2(1 + α2)

(
π2

π2 − α2

)2

h‖ψv
j‖0. (1.53)

In conclusion, instead of using the original trigonometric discrete basis {ψv
j}nj=1∪{ψb

j}nj=0

(described in Section 1.3.2), which generates the writing of Vh as the direct sum Vv
h ⊕ Vb

h,
the discrete PUFEM problem will be represented in terms of the partially orthogonal basis
{ψ̃v

j}nj=1 ∪ {ψb
j}nj=0, which induces the representation Vh = Ṽv

h ⊕ Vb
h.

Remark 1.5.4 (Invariant translation). Notice that since the mesh is uniform (all the
elements have the same length h), any discrete basis function in the trigonometric basis
{ψv

j}nj=1 ∪ {ψb
j}nj=0 is invariant under translation, i.e., ψv

j (x) = ψv
m(x − h(j − m)) and

ψb
j (x) = ψb

m(x−h(j−m)). Consequently, also the partial orthogonal basis {ψ̃v
j}nj=1∪{ψb

j}nj=0

shares the same property since its functions are linear combination of the trigonometric basis
functions. In addition, it is important to realize that ψ̃v

j is symmetric with respect to x = xj,

i.e., ψ̃v
j (xj + s) = ψ̃v

j (xj − s) for 0 ≤ s ≤ h. Such symmetry property does not hold for the
twin-bubble functions ψb

j .

Now, taking into account this orthogonal relation between the different functions of the
basis and its invariant translation property, problem (1.6) admits the matrix representation

Lh~uh = ~fh, (1.54)

where ~uh = (~uvh, ~u
b
h) = (uv1, . . . , u

v
n, u

b
0, . . . , u

b
n)t are the coefficients of the discrete solution

uh ∈ Vh, given by

uh =
n∑
j=1

uvj ψ̃
v
j +

n∑
j=0

ubjψ
b
j ,
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the matrix Lh (of size (2n+ 1)× (2n+ 1)) is defined by blocks as follows:

Lh =

(
Lv
h 0n×(n+1)

0(n+1)×n Lb
h

)
where the n× n matrix Lv

h and the (n+ 1)× (n+ 1) matrix Lb
h are given by

Lv
h =


2Sh Rh

Rh 2Sh Rh

. . . . . . . . .

Rh 2Sh Rh

Rh Sh − ik

 , Lb
h =


Sb

1h Rb
h

Rb
h Sb

1h + Sb
2h Rb

h
. . . . . . . . .

Rb
h Sb

1h + Sb
2h Rb

h

Rb
h Sb

2h

 ,

(1.55)
being Sh = Bk(ψ̃

v
j , ψ̃

v
j )/2 and Rh = Bk(ψ̃

v
j , ψ̃

v
j−1) for any j = 1, . . . , n− 1, and analogously

Sb
1h + Sb

2h = Bk(ψ
b
j , ψ

b
j )/2 and Rh = Bk(ψ

b
j , ψ

b
j−1) for any j = 1, . . . , n− 1 (where S1h is the

contribution from the element Tj and Sh2 is that one coming from Tj+1). The right-hand

side ~f = (~f v
h,
~f v
h) = (f v

1 , . . . , f
v
n, f

b
0 , . . . , f

b
n)t in (1.54) is given by the projection of f on each

element of the discrete basis, i.e.,

f v
j =

∫ 1

0

fψ̃v
j dx, f b

j =

∫ 1

0

fψb
j dx for j = 0, . . . , n.

Hence, the solution of the linear system (1.54) can be decoupled in the two linear sys-

tems Lv
h~u

v
h = ~f v

h and Lb
h~u

b
h = ~f b

h . The latter one is the matrix description of the discrete
variational problem (1.45) and hence applying Lemma 1.5.3 and more precisely, the esti-
mate (1.51), there exists an unique solution ubh ∈ Vb

h and it holds

|ubh|1 ≤ Ch‖f‖0, (1.56)

where C is a positive constant independent of k, δ, and h, once it is satisfied hk ≤ α < π.
The first linear system Lv

h~u
v
h = ~f v

h is equivalent to the following variational problem:
given f ∈ L2(0, 1), find vb ∈ Ṽ v

h such that

Bk(u
v
h, φ̃v)− ikuvh(1) ¯̃φv(1) = 〈f, φ̃v〉L2(0,1) for all φ̃b ∈ Ṽ v

h . (1.57)

The following subsections will be devoted to ensure the existence and uniqueness of the
discrete problem (1.57). With this purpose, it will be analysed the discrete dispersion rela-
tion associated to this discrete problem, the discrete Green’s function, and finally, it will be
shown the discrete inf-sup condition, which guarantees the well-posedness of problem (1.57).

Finally, it will be useful for the derivation of estimates by means of the Green’s function
to establish a relation of equivalence between the standard finite element norms for con-
tinuous piecewise P1-finite elements (defined with respect to its point-wise values) and the
corresponding L2 and H1-norms using the vector of point-wise values of the PUFEM space
Ṽ v
h . More precisely, the L2-finite element norm ‖·‖0,fe and H1-finite element seminorm | · |1,fe
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for a vector of point-wise values ~v = (v1, . . . , vn)t associated to a finite element function
vfe =

∑n
j=1 vjϕh is defined as follows:

‖vfe‖L2(0,1) = ‖~v‖0,Vfe
h

=

(
h

n∑
j=1

|vj|2
) 1

2

, |vfe|H1(0,1) = |~v|1,Vfe
h

=

(
h

n∑
j=1

∣∣∣∣vj − vj−1

h

∣∣∣∣2
) 1

2

,

(1.58)
where it is assumed that v0 = 0 (due to the homogeneous Dirichlet condition at x = 0).
Analogously, the PUFEM norms associated to a function vh =

∑n
j=1 vjψ̃

v
j ∈ Ṽ v

h associated
to its point-wise value vector ~v = (v1, . . . , vn) is defined by

‖vh‖L2(0,1) = ‖~v‖0,Ṽ v
h

=
(
~v∗M̃h~v

) 1
2
, |vh|H1(0,1) = |~v|1,Ṽ v

h
=
(
~v∗K̃h~v

) 1
2
, (1.59)

where [M̃h]jl =
∫ 1

0
ψ̃v
j ψ̃

v
l dx and [K̃h]jl =

∫ 1

0
(ψ̃v

j )
′(ψ̃v

l )
′ dx, and again it has been assumed

that v0 = 0. Despite any pair of norms are equivalent in an finite-dimensional space, the
following lemma states the equivalence constants independently of h, k, and δ.

Lemma 1.5.5. Assume h(k + δ) ≤ α < π, if vh =
∑n

j=1 vjψ̃
v
j ∈ Ṽ v

h and ~v = (v1, . . . , vn) is
its point-wise value vector then it holds

C1‖~v‖0,Vfe
h
≤ ‖vh‖L2(0,1) ≤ C2‖~v‖0,Vfe

h
, C1|~v|1,Vfe

h
≤ |vh|H1(0,1) ≤ C2|~v|1,Vfe

h
, (1.60)

where C1 and C2 are positive constant functions independent of h, k, and δ (depending only
on α).

Proof. It will be followed a slight modification of the steps used in [21, Lemma 9.7] to proof
the equivalence of norms in polynomial finite element spaces between the discrete functions
and its point-wise value vectors.

Clearly, if vh ∈ Ṽ v
h then v̂j = vh|Tj ◦ F−1

j for any fixed j = 1, . . . , n belongs to the span

of local functions 〈ψ̃v
j−1|Tj ◦F−1

j , ψ̃v
j |Tj ◦F−1

j 〉 defined by the partially orthogonal procedure

described in Section 1.5.1. Hence, v̂j defined in T̂ is represented by the C2-coordinate basis
vector ~vj = (vj−1, vj)

t A direct inspection reveals that the two local functions {ψ̃v
j−1|Tj ◦

F−1
j , ψ̃v

j |Tj ◦ F−1
j } depend continuously on the parameter h(k + δ) ∈ (0, α]. Moreover, for

h(k + δ) = 0 these two local functions coincides with the local condensation basis of the
piecewise P2-finite element (see Remark 1.3.3 for further details). Consequently, if K̂loc

and M̂loc denote the local stiffness and mass matrices defined in T̂ with respect to this
local PUFEM basis, then the coefficients of these matrices also depend continuously on the
parameter h(k + δ). In addition, if K̂fe

loc and M̂fe
loc denote the analogous local stiffness and

diagonal lumped mass matrices (M̂fe
loc is equal to the 2× 2 identity matrix) with respect to

this local standard P1-FEM basis, then it holds

λmin(h(k+δ)) ≤ ~v∗jM̂loc~vj

~v∗jM̂fe
loc~vj

≤ λmax(h(k+δ)), µmin(h(k+δ)) ≤ ~v∗j K̂loc~vj

~v∗jM̂fe
loc~vj

≤ µmax(h(k+δ)),
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where λmin(h(k+δ)) and λmax(h(k+δ)) are respectively the minimum and maximum eigen-
values of the symmetric generalized eigenvalue problem K̂loc~v = λK̂fe

loc~v, and µmin(h(k+ δ))
and µmax(h(k+δ)) are respectively the minimum and maximum eigenvalues of the symmet-
ric generalized eigenvalue problem M̂loc~v = λM̂fe

loc~v. In both cases, their eigensolutions also
depend continuously on the parameter h(k+δ). Hence, the maps h(k+δ) 7→ λmin(h(k+δ))
and hk 7→ λmax(h(k+ δ)) are continuous functions defined in a non-empty compact domain
[0, α]. So, using the Weierstrass theorem, both continuous functions reaches respectively a
minimum λmin and a maximum value λmax (possibly depending on α). The same argument
should be applied to bound the eigenvalues µmin(h(k + δ)) and µmax(h(k + δ)).

Now, taking into account that ~v∗jM̂fe
loc~vj = |vj−1|2 + |vj|2 and ~v∗j K̂fe

loc~vj = |vj− vj−1|2 and

the fact that ‖v̂j‖2
L2(T̂ )

= ~v∗jM̂loc~vj, and |v̂j|2H1(T̂ )
= ~v∗j K̂loc~vj, it holds

λmin(|vj−1|2 + |vj|2) ≤ ‖v̂j‖2
L2(T̂ )

≤ λmax(|vj−1|2 + |vj|2),

µmin|vj − vj−1|2 ≤ |v̂j|2H1(T̂ )
≤ µmax|vj − vj−1|2.

and coming back to element Tj by applying the affine transform Fj, using that |vh|Tj |2H1(Tj)
=

|v̂j|2H1(T̂ )
/h and ‖vh|Tj‖2

L2(Tj)
= h‖v̂j‖2

L2(T̂ )
, the estimate written above leads to

λminh(|vj−1|2 + |vj|2) ≤ ‖vh|Tj‖2
L2(Tj)

≤ λmaxh(|vj−1|2 + |vj|2),

µmin
|vj − vj−1|2

h
≤ |vh|Tj |2H1(Tj)

≤ µmax
|vj − vj−1|2

h
.

If the terms in the previous inequality are added from j = 1 to n and the root square is
computed, estimates (1.60) are obtained.

1.5.2 Discrete dispersion relation

The derivation of discrete dispersion relations for the whole linear system (1.14) can be
made identifying those Bloch discrete waves in Vh, which are homogeneous solutions of the
discrete Helmholtz problem on the uniform mesh. This Bloch analysis is described in detail
in Section 1.B. However, that analysis is not helpful to obtain the discrete wave numbers
which should be involved in the definition of the discrete Green’s function in Ṽ v

h . In what
follows, estimates of the difference between the continuous and the discrete wave number
will be derived using analogous arguments to those one described in [28].

To write the discrete Green’s function associated to the discrete PUFEM problem (1.57),
the first step consists in the estimation of the discrete wave number, this is, to compare the
wave number associated with the exact solution of the homogeneous Helmholtz equation
with those solutions who satisfy the row equations of the tridiagonal matrix Lv

h, stated in
an uniform mesh extended throughout the whole real line.

With this comparative aim, first a exact tridiagonal stencil Lex
h will be computed is such

a manner that the Bloch planewaves with exact wave number k satisfy this exact stencil. So,
instead of using the discrete basis {ψ̃v

j}nj=1 in Ṽ v
h ⊂ H1

(0(0, 1), the set of linearly independent
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functions {uj}nj=1 in H1
(0(0, 1) is considered, which are defined as the unique solution of the

continuous Helmholtz problem:{
−u′′j − k2uj = 0 in Tj−1 ∪ Tj = [xj−1, xj+1],

u(xj−1) = 0, u(xj) = 1, u(xj+1) = 0.
(1.61)

Inserting this set of functions in the variational problem (1.2) (without taking into account
the boundary conditions), the tridiagonal stencil, which is obtained for the interior nodes
(for j = 1, . . . , n− 1), satisfies

Rexuex(xj+1) + 2Sexuex(xj) +Rexuex(xj−1), (1.62)

where uex is an exact solution of the homogeneous Helmholtz equation and Sex and Rex are
given by

2Sex = Bk(uj, uj), Rex = Bk(uj, uj+1) = Bk(uj, uj−1). (1.63)

Since uex(x) = Aeikx +Be−ikx, the fundamental Bloch solutions of (1.62) are

u+
h (x) =

∑
j∈Z

uj(x)eikxj , u−h (x) =
∑
j∈Z

uj(x)e−ikxj

and consequently

cos(kh) = −Sex

Rex

. (1.64)

The next step in the derivation of the discrete wave number for the PUFEM discretiza-
tion in Ṽ v

h consists in the statement of an equivalent variational formulation associated to
problem (1.61). Since uj is defined piecewise in each element Tj and Tj+1 it can be rewritten
as the addition of a basis function in Vv

h plus a function of the H1-bubble space. Hence,
given ψv

j ∈ Vv
h, the exact solution uj = ψv

j + ξj ∈ Vv
h ⊕H1

Th(0, 1) is determined by means of
the solution of the variational problem

Bk(ξj, φ) = −Bk(ψ
v
j , φ) for all φ ∈ H1

Th(0, 1). (1.65)

Using Lemma 1.5.1, if hk ≤ α < π then the problem stated above has an unique solution
since Bk is continuous and coercive in H1

Th(0, 1). It should be remarked that the varia-
tional problem (1.65) is the continuous version of the discrete variational problem (1.52),
where the partially orthogonal basis {ψ̃v

j}nj=0 was defined by means of the computation
of {ξbj}nj=0 ⊂ Vv

h ⊂ H1
Th(0, 1). It should be also notice that the form Bk has real-valued

coefficients and hence, since the right-hand side of problems (1.65) and (1.52) is defined
by real-valued functions (as in the case of functions {ψv

j}nj=0), then the solution of these
variational problems are also real-valued.

Lemma 1.5.6. If hk ≤ α < π and ũj and ψ̃v
j are defined by the variational problems (1.65)

and (1.52), then
Bk(uj − ψ̃v

j , ũl − ψ̃v
l ) = Bk(ψ̃

v
j , ψ̃

v
l )−Bk(uj, ũl), (1.66)

for all j = 0, . . . , n.
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Proof. The arguments used here are completely analogous to those ones used in [28, Lemma
3.1]. Firstly, it is clear from (1.65) thatBk(ψ

v
j , ξl) = −Bk(ξj, ξl) and analogouslyBk(ψ

v
j , ξ

b
l ) =

−Bk(ξ
b
j , ξ

b
l ), and since Vb

h ⊂ H1
Th(0, 1), it holds Bk(ψ

v
j , ξ

b
l ) = −Bk(ξj, ξ

b
l ) for any arbitrary

value of j and l. In addition, the error between the variational solutions is orthogonal to
Vb
h with respect to Bk and so Bk(ξj, ξ

b
l ) = Bk(ξ

b
j , ξ

b
l ). Finally, since {ξj}nj=0 and {ξbl }nj=0 are

real-valued functions then the form Bk applied to any pair of these two sets behaves like a
real-valued symmetric bilinear form. Straightforward computations show that the left hand
side in (1.66) can be rewritten as follows:

Bk(uj − ψ̃v
j , ũl − ψ̃v

l ) = Bk(ψ
v
j + ξj − ψv

j − ξbj , ψv
l + ξl − ψv

l − ξbl )
= Bk(ξj, ξl)−Bk(ξj, ξ

b
l )−Bk(ξ

b
j , ξl) +Bk(ξ

b
j , ξ

b
l )

= Bk(ξj, ξl)− 2Bk(ξ
b
j , ξl) +Bk(ξ

b
j , ξ

b
l ) = Bk(ξj, ξl)−Bk(ξ

b
j , ξ

b
l ),

where it has been used that Bk(ξj, ξ
b
l ) = Bk(ξ

b
j , ξ

b
l ) = Bk(ξ

b
j , ξl). A direct computation of

the right-hand side in 1.66 shows that

Bk(ψ̃
v
j , ψ̃

v
l )−Bk(uj, ũl) =Bk(ψ

v
j + ξbj , ψ

v
l + ξbl )−Bk(ψ

v
j + ξj, ψ

v
l + ξl)

=Bk(ψ
v
j , ψ

v
l ) + 2Bk(ψ

v
j , ξ

b
l ) +Bk(ξ

b
j , ξ

b
l )

−Bk(ψ
v
j , ψ

v
l )− 2Bk(ψ

v
j , ξl)−Bk(ξj, ξl)

=Bk(ξj, ξl)−Bk(ξ
b
j , ξ

b
l ),

where it has been used that all functions are real-valued and hence Bk behaves like a
symmetric form and the relations derived from variational forms stated above.

Now, the attention must be focused on the discrete problem associated to the variational
problem (1.57) stated in Ṽ v

h . In that case, since the discrete functions Ṽ v
h are determined

by its point-wise values at the vertices of the mesh, the tridiagonal stencil which is formally
satisfied for a Bloch wave uh(x) =

∑
j∈Z ψ̃

v
j (x)eik

′xj leads to

Rhuh(xj+1) + 2Shuh(xj) +Rhuh(xj−1) = 0, (1.67)

where recall that Sh and Rh are given by

2Sh = Bk(ψ̃
v
j , ψ̃

v
j ), Rh = Bk(ψ̃

v
j , ψ̃

v
j−1).

Hence, from (1.67) it is obtained the discrete dispersion relation

cos(k′h) = −Sh
Rh

, (1.68)

being k′ the so-called discrete wave number associated to the PUFEM discretization in Ṽ v
h .
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Theorem 1.5.7. Assume that there exist strictly positive constants α and β such that
hk ≤ α < 1 and δ4h4 < (1 − β)/(

√
2Ĉ) being Ĉ the approximation constant involved

in (1.40). If k′ is the discrete wave number defined in (1.68) then it holds

| cos(k′h)− cos(kh)| ≤ Cδ4h4, (1.69)

|k′ − k| ≤ C
δ4h2

k
, (1.70)

where C is a positive constant independent of h, k and δ (and only dependent on α and β).

Proof. The arguments used in this proof are almost identical to those ones used in [28,
Theorem 3.2]. Firstly, straightforward computations show that uj are defined by

uj(x) =


− cot(kh) sin(k(x− xj)) + cos(k(x− xj)) for x ∈ Tj+1

cot(kh) sin(k(x− xj)) + cos(k(x− xj)) for x ∈ Tj,
0 otherwise.

Direct computations show that

‖uj‖2
0 = h

(
2

3
+O(k2h2)

)
, |uj|21 =

1

h

(
2 +O(k2h2)

)
, (1.71)

and also

2Sex = Bk(uj, uj) =
1

h

(
2 +O(k2h2)

)
, Rex = Bk(uj, uj+1) =

1

h

(
−1 +O(k2h2)

)
,

(1.72)
where O(k2h2) must be read as a tailored expression bounded by C1k

2h2 + C2k
4h4 + . . .,

where C1, C2, . . . are positive constants independent of k and h.

Using the discrete dispersion relations (1.64) and (1.67)

| cos(kh)− cos(k′h)| =
∣∣∣∣ShRh

− Sex

Rex

∣∣∣∣ =

∣∣∣∣ShRex − SexRh

RhRex

∣∣∣∣ . (1.73)

In consequence, to estimate the difference between both cosines in the expression above it
is enough to obtain an upper bound on the numerator and a positive lower bound for the
denominator.

First, it should be taken into account that uj|Tj is the exact solution of an analogous
variational to problem (1.65) but test functions in H1

0(Tj). In the same manner, the PUFEM
approximation ψ̃v

j |Tj is the exact solution of an analogous variational to problem (1.52) but
test functions used are in the discrete space Wb

j = {φb|Tj : φb ∈ Vb
h}. Hence, estimates in

Lemma 1.4.4 can be applied for h(k+ δ) < 2π, taking into account the discretization space
{ψv

j |Tj} ∪Wb
j . Due to the interpolatory properties of Ih (see Remark 1.4.5), it holds that
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Ih(uj|Tj) = ψv
j |Tj + φb

I |Tj with some φb
I ∈ Vb

h. In this manner, utilizing again Cea’s lemma

(see [11]) applied to the variational problems (1.65) and (1.52) rewritten in H1(T̂ ), it holds∣∣∣uj|Tj − ψ̃v
j |Tj
∣∣∣
H1(Tj)

≤
√

2π2(1 + α2)

π2 − α2
inf
φ∈Vb

h

∣∣uj|Tj − (ψv
j |Tj + φb|Tj

)∣∣
H1(Tj)

≤
√

2π2(1 + α2)

π2 − α2

∣∣uj|Tj − (ψv
j |Tj + φb

I |Tj
)∣∣

H1(Tj)

=

√
2π2(1 + α2)

π2 − α2

∣∣uj|Tj − Ih (uj|Tj)∣∣H1(Tj)

≤ Cδ2h2
∣∣uj|Tj ∣∣H1(Tj)

.

Adding the analogous estimation in Tj+1, it is obtained

|uj − ψ̃v
j |1 ≤ Cδ2h2|uj|1 for all j = 0, . . . , n, (1.74)

being C a positive constant independent of h, k and δ.
Second, the numerator in (1.73) can be estimated using Lemma 1.5.6, the continuity of

Bk in H1
Th , the computations (1.72), and the estimate (1.74) as follows:

|ShRex−SexRh| = |Bk(uj, uj)Bk(ψ̃
v
j , ψ̃

v
j+1)−Bk(uj, uj+1)Bk(ψ̃

v
j , ψ̃

v
j )|

=|Bk(uj, uj)(Bk(uj − ψ̃v
j , uj+1 − ψ̃v

j+1)−Bk(uj, uj+1))

−Bk(uj, uj+1)(Bk(uj − ψ̃v
j , uj − ψ̃v

j )−Bk(uj, uj))|

=|Bk(uj, uj)Bk(uj − ψ̃v
j , uj+1 − ψ̃v

j+1)−Bk(uj, uj+1)Bk(uj − ψ̃v
j , uj − ψ̃v

j )|

≤|Bk(uj, uj)||Bk(uj − ψ̃v
j , uj+1 − ψ̃v

j+1)|+ |Bk(uj, uj+1)Bk(uj − ψ̃v
j , uj − ψ̃v

j )|

≤1

h
(2 +O(h2k2))

√
2(1 + (h2k2))Ĉ2δ4h4|uj|1|uj+1|1

+
1

h
(1 +O(h2k2))

√
2(1 + (h2k2))Ĉ2δ4h4|uj|21,

where Ĉ is the positive constant involved in (1.40) Now, using (1.71) and taking into account
that hk < h(k + δ) ≤ α < 1, it holds

|ShRex − SexRh| ≤ Cδ4h2, (1.75)

where C is a positive constant independent of h, k and δ (only dependent on α).
The denominator in (1.73) can be rewritten as

|RhRex| =|Bk(uj, uj+1)||Bk(uj − ψ̃v
j , uj+1 − ψ̃v

j+1) +Bk(uj, uj+1)|

≥
∣∣∣∣1h(−1 +O(h2k2))

∣∣∣∣ ∣∣∣∣|Bk(uj − ψ̃v
j , uj+1 − ψ̃v

j+1)| −
∣∣∣∣1h (−1 +O(k2h2)

)∣∣∣∣∣∣∣∣
≥1

h
(1 +O(h2k2))

(
1

h

(
1 +O(k2h2)

)
−
√

2(1 + (h2k2))Ĉ2δ4h4 1

h

(
2 +O(h2k2)

))
.
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Once it is assumed that 1 −
√

2Ĉ2δ4h4 ≥ β > 0 the expression between large parenthesis
in the last term of the inequality written above is strictly positive and lower bounded by β
and hence

|RhRex| ≥
C

h2
, (1.76)

being C a positive constant independent of h, k, and δ (only dependent on α and β). Finally,
inserting estimates (1.75) and (1.76) in (1.73), it holds (1.69). Analogous arguments to those
ones used in [28, Theorem 3.2], estimate (1.69) leads to (1.70) straightforwardly.

1.5.3 Discrete Green’s function and inf-sup condition

Once the discrete dispersion relation have been studied, now it is possible to deduce the
discrete Green’s function associated to the discrete sub-problem with matrix Lv

h defined
in (1.55). To write this discrete Green’s function, it be followed analogous arguments to
those ones used in [46] in continuous case (see also Appendix 1.C) and [27, Section 3.2].
Analogously to the continuous case the expression of the discrete Green’s function Gh(xj, xl)
will be written in terms of two discrete functions αh and βh as follows:

Gh(xj, xl) =


αh(xj)βh(xl)

∆h

if xj ≤ xm,

αh(xl)βh(xj)

∆h

if xj ≥ xm,
(1.77)

where ∆h is a quantity, which is fixed to satisfy

RhGh(xm−1, xm) + 2ShG(xm, xm) +RhG(xm+1, xm) =
1

h
. (1.78)

In the case of αh, any homogeneous solution of the discrete variational problem with matrix
Lv
h is given has linear combination of the Bloch-type waves

αh(x) = A
n∑
j=0

ψ̃v
j (x) cos(jk′h) +B

n∑
j=0

ψ̃v
j (x) sin(jk′h). (1.79)

Since the vector given by the values of αh at the mesh vertices should satisfies the first row
of the matrix Lv

h, this is, 2Sαh(x1) + Rαh(x2) = 0. It is straightforward to check that it is
equivalent to satisfy αh(x0) = 0 and hence A = 0 being B any non-null constant.

The computation of βh is analogous. Since it can be defined by

βh(x) = C

(
n∑
j=0

ψ̃v
j (x) cos(jk′h) +D

n∑
j=0

ψ̃v
j (x) sin(jk′h)

)
, (1.80)

with C a non-null constant, it only should be checked that the last row of the linear system
involving Lv

h is satisfied. In this case, it must be verified that Rhβh(xn−1)+(Sh−ik)βh(xn) =
0, or equivalently,

Rh(cos(k′h(n− 1)) +D sin(k′h(n− 1))) + (Sh − ik)(cos(k′hn) +D sin(k′nh)) = 0.
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A direct computation from the equation written above shows that

D =
sin(k′) cos(k′)(R2

h sin2(k′h)− k2)− ikRh sin(k′h)

R2
h sin(k′h) cos2(k′h) + k2 sin2(k′)

.

Additionally, straightforward computations also show that if it is taken B = 1 in (1.79)
and C = 1 in (1.80) then

Rhαh(xm−1)βh(xm) + 2Shαh(xm)βh(xm) +Rhβh(xm+1)αh(xm) = −Rh sin(k′h).

Hence, to satisfy (1.78) then ∆h = −Rhh sin(k′h). It should be remarked that since kh ≤
α < π, estimate (1.70) leads to k′h < α + Cδ4h3 which is smaller than π for δ and h small
enough. In addition, from (1.72) and the estimate (1.76) it is guaranteed that Rh is lower
bounded by a positive constant far from being null. Consequently, the Green’s function
given by (1.77) is well-defined.

The most attractive feature of the Green’s function is that it allows to write explicitly
the inverse of the matrix Lv

h, or equivalently, to write in closed form the solution of the

linear system Lv
h~u

v
h = ~f v

h. Using (1.77) and taking into account that the PUFEM discrete
functions uvh in Ṽ v

h is determined by the vector ~uvh of its point-wise values, it holds

~uvh(xl) = [~uvh]l = h
n∑
j=1

Gh(xl, xj)[~f
v
h]j. (1.81)

From the equation written above it is immediately to deduce that the coefficients of the
inverse matrix of Lv

h (in the case of being uniquely defined) are given by [(Lv
h)
−1]lj =

hGh(xl, xj).

Lemma 1.5.8. Given the source data f ∈ L2(0, 1) and assuming that hk ≤ α < 1 and
δ4h4 < (1 − β)/(

√
2Ĉ) being Ĉ the approximation constant involved in (1.40), if uvh ∈ Ṽ v

h

is a solution of the discrete variational problem (1.57) then

|uvh|1 ≤ C‖f‖0, (1.82)

where C is a positive constant independent of h, k and δ (depending only on α and β).

Proof. The proof is entirely analogous to those one shown in [27, Lemma 3]. The esti-
mate (1.82) is obtained by using the equivalence of norms between stated in Lemma 1.5.5.

Since the explicit computation of the Green’s function and its well-posedness for h(k +
δ) ≤ α < 1 can be read as the proof of existence of solution for the discrete problem (1.57),
the following theorem guarantees the uniqueness of solution by means of the discrete inf-sup
condition (see [8] for a detailed discussion).
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Lemma 1.5.9. If it is assumed h(k + δ) ≤ α < 1 and δ4h4 < (1− β)/(
√

2Ĉ), being Ĉ the
approximation constant involved in (1.40), then it holds the inf-sup condition

inf
uh∈Ṽ v

h

sup
vh∈Ṽ v

h

|Bk(uh, vh)− ikuh(1)v̄h(1)|
|uh|1 |vh|1

≥ C

k
, (1.83)

where C is a positive constants independent of h, k, and δ (depending only on α).

Proof. The same kind of arguments used in [27, Appendix B] will be followed. Inequal-
ity (1.83) is equivalent to show that

sup
vh∈Ṽ v

h

|Bk(uh, vh)− ikuh(1)v̄h(1)|
|uh|1 |vh|1

≥ C

k
|uh|1 for all uh ∈ Ṽ v

h .

With the aim of proof the inequality written above, fix an arbitrary uh ∈ Ṽ v
h and define

vh = uh + zh, being zh the solution of the auxiliary problem

Bk(wh, zh)− ikwh(1)z̄h(1) = k2〈wh, zh〉L2(0,1) for all wh ∈ Ṽ v
h .

Since k2uh ∈ L2(0, 1), this problem has at least a solution given by the application of the
discrete Green’s function. The arguments used in [27, Appendix B] in combination with
the equivalence of norms stated in Lemma 1.5.5 shows that

|zh|1 ≤ Ck

∣∣∣∣ kk′
∣∣∣∣ ‖u′h‖0,

with a positive constant C independent of h, k, and δ. From the estimation (1.70) and
the assumptions of the present lemma, it is immediate to check that k/k′ is bounded
independently of h, k, and δ and hence it holds

|zh|1 ≤ Ck|uh|1. (1.84)

Coming back to the numerator in the inf-sup condition ans using the expression of vh =
uh + zh, it is satisfied

Bk(uh, vh)− ikuh(1)v̄h(1) = Bk(uh, uh + zh)− ikuh(1)(ūh(1) + z̄h(1)

= Bk(uh, uh)− ik|uh(1)|2 +Bk(uh, zh)− ikuh(1)z̄h(1)

= Bk(uh, uh)− ik|uh(1)|2 + k2〈uh, uh〉L2(0,1)

= |uh|21 − ik|uh(1)|2,

and so, using (1.84), |vh|1 ≤ (1 + Ck)|uh|1. In consequence, it holds

sup
vh∈Ṽ v

h

|Bk(uh, vh)− ikuh(1)v̄h(1)|
|uh|1 |vh|1

≥ |uh|
2
1

|vh|1
≥ 1

1 + Ck
|uh|1,

which leads to (1.83) since k is strictly positive lower bounded far from zero.
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Remark 1.5.10 (Dual norm estimate). Using an standard argument, the inf-sup condition
also provides automatically a stability estimate in terms of the dual norm in (H1

(0(0, 1))′ (see

[28, Section 2.1]). More precisely, using (1.83),

C

k
|uh|1 ≤ sup

vh∈Ṽ v
h

|Bk(uh, vh)− ikuh(1)v̄h(1)|
|vh|1

= sup
vh∈Ṽ v

h

|〈f, vh〉L2|
|vh|1

≤ sup
v∈H1

(0
(0,1)

|〈f, v〉L2|
|v|1

= ‖f‖H1
(0

(0,1)′

and hence |uh|1 ≤ Ck‖f‖H1
(0

(0,1)′ (notice that implicitly it has been used the continuous

embedding of L2(0, 1) in (H1
(0(0, 1))′).

Finally, combining the stability estimates for the sub-problems stated in Ṽ v
h and Vb

h,
it can be stated an stability result for the whole discrete problem stated in the PUFEM
discrete space Vh.

Theorem 1.5.11. If it is assumed h(k + δ) ≤ α < 1 and δ4h4 < (1− β)/(
√

2Ĉ), being Ĉ
the approximation constant involved in (1.40), then there exists an unique solution uh ∈ Vh

of the discrete PUFEM problem (1.6). In addition, it holds the stability estimate

|uh|1 ≤ C‖f‖0, (1.85)

where C is a positive constant independent of h, k, and δ.

Proof. The existence and uniqueness result comes from straightforwardly from the existence
and uniqueness solution of both sub-problems (1.57) and (1.47) defined in Ṽ v

h and Vb
h,

respectively. In addition, since uh = uvh + uvh, estimate (1.85) is obtained combining (1.56)
and (1.82).

1.6 A priori error estimate

Finally, this section is devoted to write sharp error estimates for the PUFEM discretiza-
tion. More precisely, it will be estimate the H1-distance between oscillatory functions, which
are exact solutions of the Helmholtz problem and the PUFEM approximations. The main
two ingredients to obtain such estimates are the stability of the discrete PUFEM variational
problem (stated in the previous section), the interpolant estimates for oscillatory solutions
described in Section 1.4, and its relation with the projections of the exact solution in the
PUFEM discrete space.

Firstly, to highlight the difficulties of passing to the limit when h(k+δ) tends to zero, it
will be shown that the functions belonging to the PUFEM space on uniform meshes satisfy
an inverse inequality, once the limit case h(k + δ) = 0 is avoided.
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Lemma 1.6.1 (Inverse inequality). For any fixed ε > 0, if ε ≤ h(k + δ) ≤ α < π, then
there exist constants C0 and C1 independent of h, k and δ (only dependent of ε and α) such
that

C0

h
‖vh‖0 ≤ |vh|1 ≤

C1

h
‖vh‖0, (1.86)

for all vh ∈ Vh.

Proof. It will be followed a slight modification of the steps used in [11, Chapter 3] to
proof the classical inverse inequality in standard polynomial spaces, for instance, for any
continuous piecewise P1-discrete function vfe

h ∈ 〈{ϕj}nj=0〉 defined on an one-dimensional
equispaced mesh where it is satisfies |vfe

h |1 ≤ C/h‖vfe
h ‖0.

Clearly, if vh ∈ Vh then v̂j = vh|Tj ◦F−1
j belongs to the span of the local shape functions

〈θ̂1, θ̂2, θ̂
b
1, θ̂

b
2〉 defined in (1.16)-(1.19), this is, vj is represented by its coordinate basis vector

~v = (v1, v2, v
b
1, v

b
2)t A direct inspection reveals that all of these shape functions depend

continuously on the parameter h(k + δ) ∈ [ε, α]. In addition, if Kloc and Mloc denotes the
local stiffness and mass matrices with respect to this local shape basis, the coefficients of
these matrices also depend continuously on the parameter h(k + δ) and it holds

λmin(h(k + δ)) ≤ ~v∗Kloc~v

~v∗Mloc~v
≤ λmax(h(k + δ))

where λmin(h(k + δ)) and λmax(h(k + δ)) are respectively the minimum and maximum
eigenvalues of the symmetric generalized eigenvalue problem Kloc~v = λMloc~v, whose eigen-
solutions also depend continuously on the parameter h(k+ δ). Hence, the maps h(k+ δ) 7→
λmin(h(k + δ)) and h(k + δ) 7→ λmax(h(k + δ)) are continuous functions defined in a non-
empty compact domain [ε, α]. So, using the Weierstrass theorem, both continuous functions
reaches respectively a minimum λmin and a maximum value λmax (possibly depending on
ε and α). Hence, taking into account that |v̂j|2H1(T̂ )

= ~v∗Kloc~v and ‖v̂j‖2
L2(T̂ )

= ~v∗Mloc~v, it

holds
λmin‖v̂j‖2

L2(T̂ )
≤ |v̂j|2H1(T̂ )

≤ λmax‖v̂j‖2
L2(T̂ )

or equivalently, coming back to the element Tj,

1

h2
λmin‖vh|Tj‖2

L2(Tj)
≤ |vh|Tj |2H1(Tj)

≤ 1

h2
λmax‖vh|Tj‖2

L2(Tj)
.

If the terms in the previous inequality are added and the root square is computed, estimates
(1.86) are obtained.

Remark 1.6.2. The assumption of ε < h(k+δ) is essential to avoid the limit case h(k+δ) =
0. However, it does not suppose any restriction on the error analysis since ε can be chosen
as small as it would be desired independently of k and δ. As it has been discussed previously
at the beginning of Section 1.5, if formally it is considered the limit case h(k + δ) = 0,
the PUFEM subspace Vv

h will be identical to the standard continuous piecewise P1-finite
elements and the restrictions of functions of Vb

h at each element coincides with the P2-
bubble functions. In the classical polynomial bubble space, the number of bubbles coincides
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with the number of element, i.e., n. However, the number of basis elements in Vb
h coincides

with the number of vertices n+1. So, in the limit case of h(k+δ) = 0, the twin-bubble basis
of Vb

h collapses and a function of this discrete basis should be removed to avoid a linear
dependency.

Despite of it will not be used throughout the present work, for the sake of completeness,
the difference between the L2 and H1-projections will be estimated in terms of the H1-norm.

Lemma 1.6.3 (Projection differences). Let u ∈ H1(0, 1) be the exact solution of the vari-
ational problem (1.2). Fixed 0 < ε ≤ h(k + δ) ≤ α < π, if Πh

L2u and Πh
H1u are respectively

the L2 and H1-projections in the PUFEM discrete space given by (1.43) and (1.4.4), it holds∣∣Πh
L2u− Πh

H1u
∣∣
1
≤ Ch2δ2(|u|1 + k‖u‖0) (1.87)

where C is a positive constant independent of h, k and δ (only dependent on ε and α).

Proof. Firstly, using successive triangular inequalities and the inverse inequality (1.86), it
holds

|Πh
L2u− Πh

H1u|1 ≤ |Πh
L2u− Ihu|1 + |Ihu− Πh

H1u|1
≤ C1

h
‖Πh

L2u− Ihu‖0 + |Ihu− u|1 + |u− Πh
H1u|1

≤ C1

h
‖Πh

L2u− Ihu‖0 +
C1

h
‖Πh

L2u− u‖0 + ‖u− Ihu‖+ 2|Ihu− u|1

≤ 2C1

h
‖Ihu− u‖0 + 2|Ihu− u|1

Estimates (1.39) and (1.38) for the interpolant Ihu in Lemma 1.4.4, once they are inserted
in the inequality written above, lead straightforwardly to (1.87).

Finally, since all the ingredients are being introduced in the previous sections, it is
possible to conclude an a priori error estimate for the approximation computed by means
of the PUFEM discretization.

Theorem 1.6.4. Let u ∈ H1(0, 1) be a solution of the variational problem (1.2) and let
uh ∈ Vh be the solution of the PUFEM discrete problem defined in (1.6). If it is assumed
h(k + δ) ≤ α < 1 and δ4h4 < (1− β)/(

√
2Ĉ), being Ĉ the approximation constant involved

in (1.40), then it holds
|u− uh|1 ≤ Ck|u− Ihu|1, (1.88)

where C is a positive constant independent of h, δ and k.

Proof. Firstly, since u− uh is orthogonal to Vh with respect to the sesquilinear form of the
variational problem (1.6), it holds

Bk(u− uh, vh)− ik(u(1)− uh(1))v̄h(1) = 0
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for all vh ∈ Vh. Hence, if zh = uh − Ihu ∈ Vh then, since zh = (uh − u) + (u − Ihu, the
discrete function zh is the solution of the following variational problem:

Bk(zh, vh)− ikz(1)v̄h(1) = −Bk(u− Ihu, vh)

for all vh ∈ Vh. Since Vh = Ṽ v
h ⊕ Vb

h, the variational equality written above is satisfied
independently for test functions in the vertex-value space Ṽ v

h and in the twin-bubble space
Vb
h. Same kind of considerations can be applied to split zh, this is, zh = zvh + zbh. Due the

orthogonality relation between the discrete spaces Ṽ v
h and Vb

h, each of these functions, zvh
and zbh are respectively solution of the variational problems

Bk(z
v
h, v

v
h)− ikzvh(1)v̄vh(1) = −Bk(u− Ihu, vvh) for all vvh ∈ Ṽ v

h ,

Bk(z
b
h, v

b
h) = −Bk(u− Ihu, vbh) for all vbh ∈ Vb

h.

In addition, due to the linearity of these two problems, their solutions can be rewritten as
the sum of two new discrete functions, zvh = zv1h + zv2h and zbh = zb1h + zb2h where each addend
is solution respectively of the following variational problems:

Bk(z
v
1h, v

v
h)− ikzv1h(1)v̄vh(1) = −〈(u− Ihu)′, (vvh)

′〉L2(0,1) for all vvh ∈ Ṽ v
h , (1.89)

Bk(z
v
2h, v

v
h)− ikzv2h(1)v̄vh(1) = k2〈u− Ihu, vvh〉L2(0,1) for all vvh ∈ Ṽ v

h , (1.90)

Bk(z
b
1h, v

b
h) = −〈(u− Ihu)′, (vbh)

′〉L2(0,1) for all vbh ∈ Vb
h, (1.91)

Bk(z
b
2h, v

b
h) = k2〈u− Ihu, vbh〉L2(0,1) for all vbh ∈ Vb

h. (1.92)

For each one of the solutions of the discrete variational problems stated above, it can be ap-
plied some of the estimates written in the previous sections. More precisely, if the arguments
described in Remark 1.5.10, an analogous derivation to those one used to obtain (1.84), a
coercive estimate similar to (1.48), and (1.51) are applied respectively to the solutions of
problems (1.89)-(1.92), then it is satisfied

|zv1h|1 ≤ Ck|u− Ihu|1,

|zv2h|1 ≤ Ck

∣∣∣∣ kk′
∣∣∣∣ |u− Ihu|1,

|zb1h|1 ≤ C|u− Ihu|1,

|zb2h|1 ≤ Chk2|u− Ihu|1,

where C is a positive constant independent of h, k, and δ (depending only on α and β).
Finally, collecting all these estimates and using the fact that zh = zv1h + zv2h + zb1h + zb2h,

then
|zh|1 ≤ C(1 + k)|u− Ihu|1 + Ck‖u− Ihu‖0,

from which (1.88) is concluded applying a Poincare inequality and due to k is strictly
positive lower bounded far from zero.
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Corollary 1.6.5. Let u ∈ H1(0, 1) be an oscillatory solution of the variational problem
(1.2) and let uh ∈ Vh be the solution of the PUFEM discrete problem defined in (1.6). If it
is assumed 0 < ε ≤ h(k+δ) ≤ α < 1 and δ4h4 < (1−β)/(

√
2Ĉ), being Ĉ the approximation

constant involved in (1.40), then it holds

|u− uh|1 ≤ Ckh2δ2|u|1, (1.93)

where C is a positive constant independent of h, δ and k.

Proof. The combination of estimates (1.88) and (1.40) leads to (1.93).

As it will be checked in the following section, this estimate can be improved for oscil-
latory solutions. In fact, since they are solutions of the Helmholtz equation with smooth
right-hand side f ∈ Hl(0, 1) with l ≥ 1, duality stability estimates (analogous to that one
described in [28, Theorem 3.2]) should be used to obtain a more accurate estimate (possibly
independent of k).

1.7 Numerical Results

In this section, some numerical results are shown to illustrate how the PUFEM discrete
errors depend on the mesh size, the wave number and the perturbation parameter. For
this purpose, the boundary data (or equivalently the source term) is chosen in problem
(1.1) to obtain u(x) = sin(kx) as the exact solution. The relative error for the PUFEM
discretization has been computed in terms of the L2-norm and H1-seminorm. Plots on
Figures 1.9 and 1.10 illustrate the second-order accuracy of the PUFEM approximation
with respect to the mesh size. In addition, it confirms the error estimate (1.88) once
hk < π.

Moreover, Figures 1.9 and 1.10 also show the dependence of PUFEM relative errors
on the wave number k. Overall it can be checked that the PUFEM relative error does
not depend on the wave number values. The convergent second-order behaviour of the
perturbation parameter δ that holds in (1.88) for the PUFEM discretization can be checked
for both L2 and H1-error curves.

1.8 Conclusions

In this chapter, a one-dimensional Helmholtz problem and its weak formulation have
been posed. The LBB continuous ans discrete conditions have been demonstrated. A plane
wave based PUFEM discretization in terms of exponential and trigonometrical functions
have been described. Two interpolation estimates have been proved and from that, an a
priori error estimate for the approximation computed by means of the PUFEM discretiza-
tion has been deduced. The numerical results confirm the second order of accuracy of the
PUFEM approximation with respect to the mesh size h and the additional perturbation
parameter δ that is stated in the error estimate. The independence on the wave number
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Figure 1.9: L2-approximation errors of the PUFEM solution (computed when the exact
solution is given by u(x) = sin(kx)), plotted with respect to the mesh size but fixing the
value of the perturbation parameter δ = 10−2 (left) or the wave number k = 100 (right).

Figure 1.10: H1-approximation errors of the PUFEM solution (computed when the exact
solution is given by u(x) = sin(kx)), plotted with respect to the mesh size but fixing the
value of the perturbation parameter δ = 10−2 (left) or the wave number k = 100 (right).

that it is observed on the figures was not obtained on the error estimate, so the estimate
can be improved by increasing the smoothness of the right hand side.



1.A. Maclaurin expansions to obtain estimates (1.27)-(1.29) 45

Appendices

1.A Maclaurin expansions to obtain estimates (1.27)-

(1.29)

The L2 and H1-distance between the solution of the Helmholtz equation and its inter-
polant in the PUFEM discrete space (derived in Section 1.4) depends on a sophisticated
manner through rational and polynomial expressions on parameters h, δ, k and the trigono-
metric functions either cos(δh) or sin(δh). More precisely, to obtain the interpolatory esti-
mate (1.27), it must be bounded the function

f(h, δ) =
5

3
h+

h

3
cos(δh) +

4

δ2h
(cos(δh)− 1) (1.94)

and analogously, to have the estimate (1.29), it has to be considered

g(h, δ, k) =
2

h
+ hk2 +

2

3
h(k + δ)2 − 4k2

δ2h
− 2(k + δ) sin(δh)

+ 2 cos(δh)

(
−1

h
+

2k2

δ2h

)
+
h

3
cos(δh)(k + δ)2. (1.95)

In both cases, Maclaurin polynomials in h applied to cos(δh) or sin(δh) will be used with
different orders at each occurrence in the expressions of f(h, δ) and g(h, δ, k).

To bound (1.94), the expression cos(δh) is replaced by a Maclaurin polynomial of third
order in the second addend and by a fifth order polynomial in the third one. So, it holds

f(h, δ) =
5

3
h+

h

3

(
1− 1

2!
δ2h2 +

1

4!
δ4 cos(δξ1)h4

)
+

4

δ2h

(
− 1

2!
δ2h2 +

1

4!
δ4h4 − 1

6!
δ6 cos(δξ2)h6

)
= δ4h5

(
cos(δξ1)

24
− cos(δξ2)

180

)
≤ 17

360
δ4h5,

(1.96)

where ξ1 and ξ2, involved in the Cauchy remainders, belong to [0, h]. In an analogous man-
ner, if the expression sin(δh) in (1.95) is replaced by a fourth-order Maclaurin polynomial
and the occurrences of cos(δh) in the last two addends of (1.95) are replaced respectively
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by a fifth- and third-order polynomials, it yields

g(h, δ, k) =
2

h
+ hk2 +

2

3
h(k + δ)2 − 4k2

δ2h
− 2(k + δ)

(
δh− 1

3!
δ3h3 +

1

5!
δ5 cos(δξ3)h5

)
+

(
1− 1

2!
δ2h2 +

1

4!
δ4h4 − 1

6!
δ6 cos(δξ4)h6

)(
−2

h
+

4k2

δ2h

)
+

(
1− 1

2!
δ2h2 +

1

4!
δ4 cos(δξ5)h4

)
h

3
(k + δ)2

=
1

12
d4h3 + δ6h5

(
− 1

60
cos(δξ3) +

1

360
cos(δξ4) +

1

72
cos(δξ5)

)
+ d5h5k

(
− 1

60
cos(δξ3) +

1

36
cos(δξ5)

)
+ d4h5k2

(
− 1

180
cos(δξ4) +

1

72
cos(δξ5)

)
≤ 1

12
δ4h3 +

1

30
δ6h5 +

2

45
δ5kh5 +

7

360
δ4k2h5 (1.97)

where ξ3, ξ4, and ξ5, involved in the Cauchy remainders, belong to [0, h].

1.B Discrete dispersion equations

The main aim in the analysis of the numerical dispersion relation of the PUFEM dis-
cretization consists in the identification of those equations satisfied by the discrete wave
number kd in terms of the parameters h, k and δ. With that purpose, following analogous
ideas to [2], a linear combination of Bloch waves with wave number kd involving the discrete
PUFEM functions,

Uh(x) = α
∑
m∈Z

eikdmhϕm(x)ei(k+δ)(x−xm) + β
∑
m∈Z

e−ikdmhϕm(x)e−i(k+δ)(x−xm), α, β ∈ C,

(1.98)
will be imposed on the discrete variational problem in a infinite uniform mesh of size h
with vertices xj = jh, j ∈ Z. It is clear that each addend in (1.98) is a Bloch wave. More
precisely, if U+

h (x) =
∑

m∈Z e
ikdmhϕm(x)ei(k+δ)(x−xm), it holds U+

h (x + lh) = eikdlhU+
h (x) as

follows:

U+
h (x+ lh) =

∑
m∈Z

eikdmhϕm(x+ lh)ei(k+δ)(x+lh−xm) =
∑
m∈Z

eikdmhϕm−l(x)ei(k+δ)(x−xm−l)

= eikdlh
∑
m∈Z

eikd(m−l)hϕm−l(x)ei(k+δ)(x−xm−l) = eikdlhU+
h (x),

where it has been used the translation property of the finite element basis on an equispaced
mesh ϕm(x+ lh) = ϕm−l(x).

To deduce the dispersion equations satisfied by the discrete wave number kd, the Bloch
wave is imposed on the variational formulation, which can be written as a non-linear eigen-
value problem: Find kd ∈ C and a non-null vector (α, β)t ∈ C2 such that

Bk(Uh, ψ2j−1) = 0, Bk(Uh, ψ2j) = 0, for all j ∈ Z. (1.99)
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Due to the invariance of the PUFEM discrete functions under translation of integer multi-
ples of the mesh size, it is enough to use as PUFEM trial functions ψ−1(x) = ϕ0(x)e−i(k+δ)x

and ψ0(x) = ϕ0(x)ei(k+δ)x in the equations written above. Hence, inserting the expression
of Uh in the eigenvalue problem (1.99), and taking into account that the compact support of
ψ−1 and ψ0 only intersect the support of {ψ}2

j=−3, (α, β)t and kd must satisfy the dispersion
equations

α
(
e−ikdhBk(ψ−2, ψ−1) +Bk(ψ0, ψ−1) + eikdhBk(ψ2, ψ−1)

)
+ β

(
eikdhBk(ψ−3, ψ−1) +Bk(ψ−1, ψ−1) + e−ikdhBk(ψ1, ψ−1)

)
= 0,

α
(
e−ikdhBk(ψ−2, ψ0) +Bk(ψ0, ψ0) + eikdhBk(ψ2, ψ0)

)
+ β

(
eikdhBk(ψ−3, ψ0) +Bk(ψ−1, ψ0) + e−ikdhBk(ψ1, ψ0)

)
= 0.

Equivalently, taking into account the definition of the matrix coefficients (1.10)-(1.13), the
form properties (1.8)-(1.9) and b1, b3 and b4 are real valued, it is satisfied

α
(
e−ikdhb1 + b3 + eikdhb1

)
+ β

(
eikdhb̄2 + b4 + e−ikdhb2

)
= 0, (1.100)

α
(
e−ikdhb2 + b4 + eikdhb̄2

)
+ β

(
e−ikdhb1 + b3 + eikdhb1

)
= 0. (1.101)

To admit a non-null solution (α, β)t, the linear system above should have multiple solutions.
So, the determinant of the associated real-valued matrix in the linear system written above
should be null, this is,

det

(
b3 + 2b1 cos(kdh) b4 + 2Re

(
e−ikdhb2

)
b4 + 2Re

(
e−ikdhb2

)
b3 + 2b1 cos(kdh)

)
= (b3 + 2b1 cos(kdh))2 − (b4 + 2Re(e−ikdhb2))2 = 0. (1.102)

Hence, to have a non-null solution (α, β)t in the dispersion equations, the equation written
above leads to two cases. More precisely, case (a):

b4 + 2Re(e−ikdhb2) = b3 + 2b1 cos(kdh)

and case (b):

b4 + 2Re(e−ikdhb2) = −b3 − 2b1 cos(kdh).

Let us describe the procedure used to solve the dispersion equation in case (a). Firstly,
straightforward computations allow us to rewrite the dispersion equation in case (a) in
terms of cos(kdh) and sin(kdh),((

−1

h
+
hδ

6
(2k + δ)

)
cos((k + δ)h)− (k + δ) sin((k + δ)h)− b1

)
cos(kdh)

+

((
−1

h
+
hδ

6
(2k + δ)

)
sin((k + δ)h) + (k + δ) cos((k + δ)h)

)
sin(kdh) =

b3 − b4

2
.
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Introducing the auxiliary variable y = cos(kdh), it is possible to rewrite the equation stated
above as a second-order polynomial on the variable y with real-valued coefficients. Applying
similar arguments to case (b), fourth different roots yj, 0 ≤ j ≤ 3 and in consequence, four
different discrete wave numbers kdj = arccos(yj)/h are obtained. After some cumbersome
algebraic manipulations, a direct inspection on the Taylor expansions computed1 for the
expressions of yj reveals that for hk ≤ π it holds

∣∣∣∣kd0 −
h2

60
(k3 + 4k2δ)

∣∣∣∣ ≤ Ch2δ2k + Ĉh4k5,

∣∣∣∣kd1 −
(
k +

δ2

2(k + δ)

)∣∣∣∣ ≤ Ch2δ2k,∣∣∣∣kd2 −
(
k − h2

3
(k3 + 2k2δ)

)∣∣∣∣ ≤ Ch2δ2k + Ĉh4k5, |kd3 − k| ≤ Ch2δ2k,

(1.103)
where C and Ĉ are positive constants independent of k, h, and δ. To illustrate numerically
the dispersion estimates stated above, plots on Figures 1.B.1-1.B.4 show the dependency
of the different discrete wave numbers in terms of parameters k, h, and δ.

Figure 1.B.1: Difference between the discrete wave number kd0 and its asymptotic expres-
sion given by (1.103), plotted with respect to the mesh size but fixing the value of the
perturbation parameter δ (left) or the wave number (right).

Inserting each one of the four discrete wave numbers on the linear system (1.100)-(1.100),
the wave numbers kd0 and kd1 derived from case (a) leads to α = −β whereas the solution
for kd2 and kd3 obtained from case (b) is given by α = β. Consequently, from (1.98), four

1by means of the symbolic Python package Sympy
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Figure 1.B.2: Difference between the discrete wave number kd1 and its asymptotic expres-
sion given by (1.103), plotted with respect to the mesh size but fixing the value of the
perturbation parameter δ = 102 (left) or the wave number k = 104 (right).

Figure 1.B.3: Difference between the discrete wave number kd2 and its asymptotic expres-
sion given by (1.103), plotted with respect to the mesh size but fixing the value of the
perturbation parameter δ = 102 (left) or the wave number k = 104 (right).

different types of Bloch waves can be deduced for the PUFEM discretization:

Uh0(x) = 2iα
∑
m∈Z

ϕm(x) sin((k + δ)(x− xm) + kd0xm), (1.104)

Uh1(x) = 2iα
∑
m∈Z

ϕm(x) sin((k + δ)(x− xm) + kd1xm), (1.105)

Uh2(x) = 2α
∑
m∈Z

ϕm(x) cos((k + δ)(x− xm) + kd2xm), (1.106)

Uh3(x) = 2α
∑
m∈Z

ϕm(x) cos((k + δ)(x− xm) + kd3xm). (1.107)



50 Error estimates for PUFEM in 1D

Figure 1.B.4: Difference between the discrete wave number kd3 and its asymptotic expres-
sion given by (1.103), plotted with respect to the mesh size but fixing the value of the
perturbation parameter δ = 102 (left) or the wave number k = 104 (right).

Figure 1.B.5 shows the plots of the Bloch waves (1.104)-(1.107). For comparison purposes,
in the case of Uh0 and Uh1, it has been fixed α = 1/2i and both Bloch waves are compared
with the exact Helmholtz solution sin(kx). Analogously, in the case of Uh2 and Uh3, they
have been compared with cos(kx), taking into account α = 1/2.

To stress the dispersion properties of the PUFEM discretization, it has been fixed h =
10−5, k = 105, and δ = 5 × 104, what ensures hk = 1 and a perturbation error of 50%.
It can be observed that only dispersion wave numbers kd1 and kd3 lead to dispersionless
results for large values of k with a phase leakage due to the large value of δ. Otherwise,
spurious oscillations are present on the Bloch waves Uh0 and Uh2.

1.B.1 Null wave number perturbation

If the wave number perturbation parameter δ is assumed null, the dispersion equations
are simplified, recovering the so-claimed dispersionless character of the PUFEM discretiza-
tion, which can be observed straightforwardly on the expressions of the PUFEM Bloch
waves. More precisely, if δ = 0 then from (1.103) it is straightforward to check that the
discrete wave numbers, kdj, 0 ≤ j ≤ 3 satisfy

|kd0| ≤ Ch2k3+Ĉh4k5, kd1 = k, |kd2 − k| ≤ Ch2k3+Ĉh4k5, kd3 = k, (1.108)

where C and Ĉ are positive constants independent of h, k, and δ. In fact, using the
difference between the asymptotic expressions of kd0 and kd2 in (1.103), plots in Figure 1.B.6
illustrate numerically that the second terms in their estimates depend on O(h4k5), which
can be identified as a pollution term.

Hence, taking into account (1.108), two of the discrete Bloch waves, Uh1 and Uh3, are
dispersionless since kd coincides with k. Despite this is an unusual feature for classical
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Figure 1.B.5: Bloch waves Uhj associated to each discrete wave number kdj for 0 ≤ 3 (given
by expressions (1.104)-(1.107)) for h = 10−5, k = 105, δ = 5 × 104. Upper-left: Uh0,
upper-right: Uh1, lower-left: Uh2, and lower-right: Uh3. The approximated waves Uhj are
compared with respect to the exact waves cos(kx) for j = 0, 1 and sin(kx) for j = 2, 3.

polynomial-based finite element methods, the basis functions of the PUFEM discretization
already include the right oscillatory dependency when δ = 0. In consequence, using that
{ϕm}m∈Z is a partition of unity on the real line, in the case δ = 0, (1.105) and (1.107)
lead to Uh1(x) = 2iα sin(kx) and Uh3(x) = 2α cos(kx), which are exact solutions of the
homogeneous Helmholtz equation. This result could be also derived from the fact that,
since for δ = 0, the plane waves solutions e±kx are included in the PUFEM discrete space
Vh.

The other two Bloch waves, Uh0 and Uh2, since they are based on the discrete wave
numbers kd0 and kd2, which converges respectively to zero and k, they do not able to
reproduce accurate approximations. In the case of Uh0 is far from be a solution of the
Helmholtz equation. On the contrary, Uh2 converges to the exact solution sin(kx) but it
suffer from a severe phase leakage when the pollution term O(h4k5) is not controlled (as it
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Figure 1.B.6: Difference between the discrete wave numbers kd0 (left) and kd2 (right) with
respect its asymptotic expression given by (1.108), plotted with respect to the mesh size
but fixing δ = 0.

can be observed in Figure 1.B.7).

Figure 1.B.7: Bloch waves Uh0 (left plot) and Uh2 (right plot) associated to each discrete
wave number kd0 and kd2 for h = 10−5, k = 105, δ = 0. The approximated waves Uh0 is
compared with respect to sin(kx) and Uh2 is compared using cos(kx) as reference.

1.C Continuous Green’s function

Following the ideas of described for the Laplacian problem in [46], the continuous Green
function will be derived. A general procedure for the computation of Green’s function with
general boundary conditions and high-order differential equations has been studied in [9].
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The case of interest of the present work involves a boundary value problem whose
solution must satisfy the Helmholtz equation

−u′′(x)− k2u(x) = f(x) in (0, 1),
u(0) = 0,

u′(1)− iku(1) = 0,

where the source term satisfies f ∈ L2(0, 1), and the wave number k is assumed positive.
The Green’s function of this boundary value problem is given by

G(x, s) =
1

k

{
sin(kx)eiks x ≤ s,

sin(ks)eikx x ≥ s.
(1.109)

In fact, following the ideas described in [46], this Green’s function can be written in terms
of α(x) and β(x)

G(x, s) =


α(x)β(s)

β(0)
x ≤ s,

α(s)β(x)

β(0)
x ≥ s.

(1.110)

The functions α(x) and β(x) are respectively solutions of the Cauchy problems

α′′(x) + k2α(x) = 0 in (0, 1),
α(0) = 0,
α′(0) = 1,

and
β′′(x) + k2β(x) = 0 in (0, 1),
β′(1)− ikβ(1) = 0,

β(1) = 1.

Direct computations show that α(x) = sin(kx)/k and β(x) = e−ikeikx. An analogy strategy
will be also followed to compute the discrete Green’s function in Section 1.5.3.
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2.1 Introduction

The previous chapter dealt with one-dimensional Helmholtz problems in one media.
This chapter will propose and describe some partition of unity finite element methods to
approximate the solution of several Helmholtz problems: a one-dimensional problem in two
media (with constant piecewise wave number), a two-dimensional problem in one media
and finally, a two-dimensional Helmholtz problem in bi-layered media.

The modelling of acoustic wave propagation can be applied to several problems, like
medical ultrasonics, seismic exploration or underwater acoustics. In particular, most of the
physical environment of interest in underwater acoustics involve heterogeneous media. The
spacial variability of these media depend on quantities such as the temperature, the salinity,
the water depth or the presence of biological components. Several numerical methods can
be used to approximate the solutions of that kind of problems. The goal of this chapter will
be to propose and describe a partition of unity finite element method to approximate a two-
dimensional Helmholtz problem in a bi-layered domain, having into account the reflection
and the transmission occurred at the interface between media.

The first step (Section 2.2) will be to propose a PUFEM discretization to approximate a
one-dimensional Helmholtz problem in two media. In subsection 2.2.1, the model problem
is described. Several discretizations for this problem are described in subsection 2.2.2,
and some numerical results to illustrate the discretization proposed can be observed in
subsection 2.2.4.

The next step (Section 2.3) will be to study a two-dimensional Helmholtz problem
in one media. The model problem and its variational formulation is introduced in 2.3.1.
The PUFEM discretization proposed and some integration techniques are described in
subsections 2.3.2 and 2.3.3 respectively. Finally for this section, some numerical results are
presented in subsection 2.3.4.

After that two previous steps, Section 2.4 will focus on the novel PUFEM discretization
of a two-dimensional Helmholtz problem in a bi-layered domain. The model problem is
stated in subsection 2.4.2, and its variational formulation posed in subsection 2.4.1. The
PUFEM discretization of this problem is proposed and described in subsection 2.4.3. Some
integration techniques applied to the matrix system are explained in 2.4.4, and several
numerical results, for two particular problems, can be observed in subsection 2.4.5. The
conclusions for this chapter are exposed in Section 2.5.

2.2 PUFEM for layered media in one-dimensional prob-

lems

The Helmholtz equation with variable wave number is required for the resolution of some
acoustic propagation problems stated in heterogeneous layered (or stratified) media [6],
where the sound speed of each layer can be constant but different between any pair of
layers.
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To illustrate the variety of PUFEM approaches which could be followed to introduce
the variable (but piecewise constant) profile of the sound speed, it will be considered an
one-dimensional Helmholtz problem analogous to those one studied in Chapter 1, but in
this case k must be read as a piecewise constant wave number k(x). Even in this more
general setting, the existence and uniqueness of solution is guaranteed by using a inf-sup
condition.

Despite of the variety of alternative procedures to obtain a PUFEM method which could
be a potential pollution-free discretization, it will be checked that only that one based on
a transmission-reflection planewave enrichment leads to accurate results. Finally, once the
PUFEM strategy has been selected, a brief overview about the numerical results obtained
with this PUFEM method shows how its relative error depends on the mesh size and on
the wave number.

2.2.1 Model problem

Firstly, for the sake of clarity in the exposition of the present chapter (and despite most
of its features are common with those one presented in Chapter 1), the model problem for
layered media is introduced in detail. The time-harmonic wave propagation in isotropic
homogeneous compressible media is modelled linearly by means of the Helmholtz equation.
Throughout this work, a one-dimensional model will be considered. Without loss of gen-
erality it will be assumed the interval (0, 1) as computational domain (otherwise, a change
of scale could be performed to transform the domain to the unit interval). The following
boundary-value problem will be considered

−u′′ − k2u = f in (0, 1),

u(0) = u0,

u′(1)− ik(1)u(1) = u1,

(2.1)

where u and f are complex-valued functions. The source term f is assumed independent
of k. The boundary data u0, u1 ∈ C and the wave number k is a strictly positive piecewise
constant function, lower bounded far from zero. From an acoustic point of view, u could
be understood as the complex-valued time-harmonic amplitude of the pressure field in a
compressible fluid in a layered media with constant sound speed in each layer and driven
at a fixed frequency. Since at x = 0, a Dirichlet boundary condition is assumed and a
complex-valued Robin condition is imposed at x = 1, it is straightforward to check that the
model problem has a unique solution. The proof is based on the classical inf-sup condition
(see Section 1.2). In what follows, the variational formulation and the result of existence
and uniqueness of solution will be recalled.

In the model problem (1.1), the Dirichlet and the Robin data u0 and u1 can be lift by
a smooth function and then it can be used to translate the solution u. In this manner, the
boundary data u0 and u1 can be considered null without loss of generality. Hence, to write
the variational formulation, the solution will be sought in the space

V =
{
v ∈ H1(0, 1) : v(0) = 0

}
= H1

(0(0, 1),
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and the variational formulation of problem (1.1) is written as follows:
Given u1 ∈ C and f ∈ L2(0, 1), find u ∈ V such that

Bk(u, v)− ik(1)u(1)v̄(1) =

∫ 1

0

f(x)v̄(x) dx ∀v ∈ V,
(2.2)

where the sesquilinear form Bk : V × V→ C is defined by

Bk(u, v) =

∫ 1

0

(
u′(x)v̄′(x)− k(x)2u(x)v̄(x)

)
dx, u, v ∈ V. (2.3)

The inf-sup condition of the sesquilinear form (u, v) 7→ Bk(u, v) − ik(1)u(1)v̄(1) can be
obtained explicitly in terms of the wave number k (see Section 1.2 for a detailed discussion).

2.2.2 Discretization

As in the constant case, any PUFEM discretization, and in particular, that one which
will be applied to the layered Helmholtz equation, is based on the partition of unity and
the set of the problem-related functions, which are selected as close related to the exact
solution of the problem to be solved.

In the same manner as it has been introduced in Section 1.3, to define the partition of
unity, an equispaced mesh Th = {xj = hj : j = 0, . . . , n} ⊂ [0, 1] of n+ 1 nodes with mesh
size h = 1/n is considered. On this mesh, a standard Lagrange P1 (piecewise linear) finite
element basis {ϕ}nj=0 will be used as the elements of the partition of unity. The second key
component in the PUFEM discretization are the problem-related functions. As it has been
devised by other authors [35, 41] for the Helmholtz equation with a constant wave number,
planewave solutions of the homogeneous Helmholtz equation can be used for this purpose,
this is, functions of type e±ik(x−xj). However, if the wave number k is piecewise constant,
replacing the constant wave number by a variable profile in the exponential functions written
above do not provide solutions of the differential equation in (2.1) globally stated in (0, 1).

To overcome this difficulty, there exist different variations of the PUFEM method for
a Helmholtz problem with constant wave number (see Section 1.3 for further details). In
what follows, four different strategies are going to be described, all of them potential can-
didates for being a free-pollution numerical method. All these strategies lead to different
discrete spaces but has a common feature: the hat-functions, which are the canonical basis
of the standard piecewise linear finite element space, are multiplied by exponential-type
expressions of the form e±iλ(x)(x−xj) (or linear combinations of these exponential-type func-
tions), being the computation of the function λ which will make the difference between
each method and another. In any case, the PUFEM discrete space will be denoted by
Xh = 〈{ψ−j }nj=0 ∪ {ψ+

j }nj=0〉 where

ψ−j (x) = ϕj(x)e−iλ(x)(x−xj), ψ+
j (x) = ϕj(x)e+iλ(x)(x−xj) for j = 0, . . . , n.
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The restriction of functions of Xh to those functions which satisfy the homogeneous Dirichlet
boundary condition defines the discrete trial and test space of the PUFEM discretization:

Vh = {v ∈ Xh ; v(0) = 0} = 〈ψ−0 − ψ+
0 , {ψ−j }nj=1 ∪ {ψ+

j }nj=1〉.

In what follows, the definition of each discrete basis will be described attending to the
four different numerical strategies. In any case, it will be assumed that the mesh which
defines the partition of unity is conformal with the points where the piecewise constant k is
discontinuous, this is, it is assumed that the jump points {yp}mp=0 of k coincide with some
of the mesh vertices {xj}nj=0, or equivalently, it is assumed that {yp}mp=0 ⊂ Th.

Global average method. An approximated constant wave number kgl is chosen as the
global average of the variable wave number k,

kgl =

∫ 1

0

k(x) dx,

and hence, since λ(x) = kg the discrete PUFEM basis is given by

ψ+
j (x) = ϕj(x)e+ikgl(x−xj), ψ−j (x) = ϕj(x)e−ikgl(x−xj), (2.4)

for j = 0, . . . , n. In consequence, with this choice of the PUFEM functions, the standard
PUFEM discrete space, associated to the Helmholtz equation with constant wave number
kgl, is being used to approximate the solutions of the Helmholtz problem (2.2) with variable
(piecewise constant) wave number k.

Local element-wise method. In this approach, planewaves are written replacing for-
mally the typical constant wave number by the corresponding value given by the k|Tj
(different in each element Tj ∈ Th). Hence, λ(x) = k(x) and the discrete PUFEM basis is
given by

ψ+
j (x) = ϕj(x)e+ik(x)(x−xj), ψ−j (x) = ϕj(x)e−ik(x)(x−xj), (2.5)

Obviously, the expressions e±ik(x)x are not solutions of the Helmholtz equation involved
in (2.1) and stated in (0, 1). However, in the interior of each element Tj, the exponential-
type expressions are local planewave solutions of the Helmholtz equation of the constant
wave number Helholtz problem in the interior of each layer.

Notice also that, despite of being k discontinuous, every discrete basis function belongs
to H1(0, 1). In fact, it is clear that ψ±j are continuous at any point of the mesh since either
ϕj is null on the vertices or it is null the argument of the exponentials.

Local average method. This method is mainly based on the approach introduced by
Ortiz in [40, 41] for two-dimensional problems. For each one of the finite element hat
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functions ϕj, a local average wave number is computed in the compact support of ϕj, this
is, the local average of k is compute in Tj ∪ Tj+1,

k0 =
1

h

∫ x1

x0

k(x) dx,

kj =
1

2h

∫ xj+1

xj−1

k(x) dx, for all j = 1, . . . , n− 1,

kn =
1

h

∫ xn

xn−1

k(x) dx.

Consequently, λ is a multi-valued function, whose value depends on the finite element
function which is modifying, this is, in the element Tj, λ|Tj = kj if the exponential-type
function is multiplying to ϕj but simultaneously λ|Tj = kj+1 if the exponential-type function
is multiplying to ϕj+1. In conclusion, the PUFEM discrete basis is given by

ψ+
j (x) = ϕj(x)e+ikj(x−xj), ψ−j (x) = ϕj(x)e−ikj(x−xj), (2.6)

On the contrary, to the other strategies described above, the exponential-type expressions
used with this approach are neither global nor local solutions of the Helmholtz equation
with piecewise constant wave number.

Transmission-reflection method. The three approaches described above are essentially
based on the use of a sort of planewaves with different sign (i.e., which can be read as signals
travelling from and to +∞). The main drawback in the three cases is shared among them:
the exponential-type expressions used to define the PUFEM discrete space are not exact
solutions of the homogeneous Helmholtz equation. So, it seems natural to replace these
expressions by fully exact planewave solutions of the layered Helmholtz problem. With this
aim, two planewaves with opposite direction of propagation (one which can be read as a
signal coming from +∞ and another one understood as a signal going to +∞).

Following this strategy, two functions w−j and w+
j are defined in the support of each

finite element basis function ϕj. In the first case, w−j ∈ H2(xj−1, xj+1) is the solution of the
layered Helmholtz problem



−(w−j )′′ − k|2Tjw−j = 0 in Tj = (xj−1, xj),

−(w−j )′′ − k|2Tj+1
w−j = 0 in Tj+1 = (xj, xj+1),

w−j |Tj(xj) = w−j |Tj+1
(xj),

(w−j )′|Tj(xj) = (w−j )′|Tj+1
(xj),

(w−j )′(xj−1)− ik|Tjw−j (xj−1) = −2ikeik|Tjh,

(w−j )′(xj+1) + ik|Tj+1
w−j (xj+1) = 0,
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which is given by

w−j (x) =


2k|Tj

k|Tj + k|Tj+1

e−ik|Tj (x−xj) in (xj−1, xj],

k|Tj+1
− k|Tj

k|Tj + k|Tj+1

eik|Tj+1
(x−xj) + e−ik|Tj+1

(x−xj) in (xj, xj+1),

Notice that the last two boundary conditions are designed as radiation Sommerfeld-like
conditions, which ensure that a planewave proportional to e−ik|Tjx is impinging with unity
amplitude the left endpoint and an exact radiation condition at x = xj+1. The two coupling
conditions at x = xj ensures that w−j is globally a strong solution of the Helmholtz problem

with piecewise constant wave number. Clearly, if k|Tj = k|Tj+1
then w−j = e−ik|Tj (x−xj) in

Tj ∪ Tj+1. It should be also remarked that the quotients in the expression of w−j can be
understood as the reflection and the transmission coefficients of the planewaves solution of
the Helmholtz problem in each layer.

Analogously, w+
j ∈ H2(xj−1, xj+1) is the solution of the layered Helmholtz problem

−(w+
j )′′ − k|2Tjw+

j = 0 in Tj = (xj−1, xj),

−(w+
j )′′ − k|2Tj+1

w+
j = 0 in Tj+1 = (xj, xj+1),

w+
j |Tj(xj) = w+

j |Tj+1
(xj),

(w+
j )′|Tj(xj) = (w+

j )′|Tj+1
(xj),

(w+
j )′(xj+1) + ik|Tjw+

j (xj+1) = 2ikeik|Tjh,

(w+
j )′(xj−1)− ik|Tj−1

w+
j (xj−1) = 0,

which is given by

w+
j (x) =


eik|Tj+1

(x−xj) +
k|Tj+1

− k|Tj
k|Tj + k|Tj+1

e−ik|Tj+1
(x−xj) in (xj, xj+1),

2k|Tj
k|Tj + k|Tj+1

eik|Tj (x−xj) in (xj−1, xj],

Again the last two boundary conditions are designed as radiation Sommerfeld-like condi-
tions, which ensure that a planewave proportional to eik|Tjx is impinging with unity ampli-
tude the right endpoint and an exact radiation condition at x = xj−1. The two coupling
conditions at x = xj ensures that w+

j is globally a strong solution of the Helmholtz problem

with piecewise constant wave number. Once again, if k|Tj = k|Tj+1
then w+

j = eik|Tj (x−xj)

in Tj ∪ Tj+1. It should be also remarked that the quotients in the expression of w+
j can be

understood as the reflection and the transmission coefficients of the planewaves solution of
the Helmholtz problem in each layer (and both of them coincides with the reflection and
transmission coefficients of w−j ). In conclusion, the PUFEM discrete space will be generated
as the span of the basis function

ψ+
j (x) = ϕj(x)w+

j (x), ψ−j (x) = ϕj(x)w−j (x). (2.7)
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Remark 2.2.1. Despite of the different definition of the PUFEM discrete basis functions,
the four approaches share also a common feature: if the wave number is constant, this is,
if an unique layer is involved in the Helmholtz problem all the approaches described above
recover the PUFEM discretization for the constant case analyzed in detail in Chapter 1.

2.2.3 Matrix description

Once the PUFEM discrete space is defined, the discrete PUFEM approximation uh is
defined as the solution of the following linear problem:

Given u1 ∈ C and f ∈ L2(0, 1), find uh ∈ Vh such that

Bk(uh, vh)− ik(1)uh(1)v̄h(1) =

∫ 1

0

f(x)v̄h(x) dx ∀vh ∈ Vh.
(2.8)

In the following sections, the numerical properties of this discrete problem will be analysed
in terms of approximability, stability and dispersion.

Since a basis has been fixed for the PUFEM discrete space Vh, it is possible to write
the linear problem (2.8) in matrix form. Since the homogeneous Dirichlet condition must
be satisfied for any element of the basis, it is straightforward to check that the set {ψ+

0 −
ψ−0 , ψ

−
1 , ψ

+
1 , . . . , ψ

−
n , ψ

+
n } is a basis for Vh. Hence, any function vh can be written as

vh = v+
0 (ψ+

0 − ψ−0 ) +
n∑
j=1

v−j ψ
−
j +

n∑
j=1

v+
j ψ

+
j ,

where (v+
0 , v

−
1 , v

+
1 , . . . , v

−
n , v

+
n )t is the coordinates vector of vh with respect to this basis. This

coordinates can be considered as the degrees of freedom of the PUFEM discretization. Ob-
viously, as in any Galerkin method applied to the Helmholtz equation, the linear variational
problem (2.8) admits a matrix representation in terms of the stiffness and mass matrices:

given ~fh = (f−0 , f
+
0 , . . . , f

−
n−1, f

+
n−1, f

−
n + u1, f

+
n + u1)t, find ~uh = (u−0 , u

+
0 , . . . , u

−
n , u

+
n )t such

that

(−k(1)2Mh − ik(1)Rh +Kh)~uh = ~fh, (2.9)

under the restriction u−0 +u+
0 = 0, where the components of the stiffness and mass matrices

are given by

[Mh]j̃± l̃± =

∫ 1

0

k2(x)

k2(1)
ψ±j (x)ψ̄±l (x) dx, [Kh]j̃± l̃± =

∫ 1

0

(ψ±j )′(x)(ψ̄±l )′(x) dx, (2.10)

for all 0 ≤ j, l ≤ n (with j̃± = 4(j + 3± 1)/2), and the matrix Rh associated to the Robin
condition has all its coefficients null except [Rh]jl = 1 for all j, l = 2n+ 1, 2(n+ 1).
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2.2.4 Numerical results

To evaluate the accuracy of each approach to design the discrete PUFEM basis, a simple
bi-layered material has been taking into account. This numerical example will be used to
illustrate the different dispersion behaviour (numerical phase leakage) of each discrete basis
choice for a Helmholtz problem with variable wave number. Finally, in the case of the
transmission-reflection method, the H1-relative error will be analysed in detail to determine
its dependency with respect to the mesh size h, to the wave number magnitude, and the
perturbation parameter δ (as it has been introduced in the analysis described in Chapter 1
for the constant wave number case).

The piecewise constant profile of the wave number in the bi-layered material has been
fixed to k(x) = k(1)/4 for 0 < x ≤ 0.5 whereas k(x) = k(1) for 0.5 < x < 1, being
k(1) = 150. The boundary data are chosen in problem (2.1) such that the exact solution is
given by

u(x) =


eik(1)x/4 +

3

5
e−ik(1)x/4 for 0 < x ≤ 0.5

2

5
eik(1)x for 0.5 < x < 1.

Notice that despite it is not written explicitly in problem (2.1), the coupling conditions,
which ensure the continuity of u and u′ at the point x = 0.5 (where the wave number k(x)
has a jump discontinuity), have been used to compute the exact solution.

In Figure 2.1, the approximate PUFEM solution computed with each one of the dis-
cretization approaches are plotted and compared with respect to the exact solution. As
it is mentioned previously k = 150 and a finite element mesh with n = 30 elements has
been considered. These plots reveals clearly how inaccurate the global average procedure is
(comparing it with respect the rest of schemes). Local approaches (both local average and
local element-wise methods) reach similar numerical results. As it could be predicted by
the definition of the discrete PUFEM basis, the exact solution is fully recovered (without
error) by the transmission-reflection method since the exact solution belongs to the discrete
PUFEM space.
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Figure 2.1: Numerical comparison of the PUFEM approximation (continuous red line)
with respect to the exact solution (dashed black line) for k = 150 and n = 30 with different
approaches: global average (upper-left), local element-wise average (upper-right), local
average (lower-left) and transmission-reflection (lower-right).

To perform an analogous analysis of sensitivity with respect to errors introduced in
the wave number values used to define the discrete PUFEM basis, a parameter δ ≤ 0 has
been introduced in each element of the discrete basis. In this manner, in the definition
of wpmj , the occurrences of k will be replaced by k + δ. Obviously, if this parameter δ is
strictly positive, the exact solution is not longer in the discrete PUFEM space. If δ = 10−2,
the plots in Figure 2.2 show the dependence of the H1-relative error for the transmission-
reflection PUFEM method with respect to the mesh size and the wave number k(1). The
relative error is computed as the relative difference |uh − u|1/|u|1. In the case of the mesh
size dependency, the second order of accuracy is observed in the variable approximation,
which is the same order of accuracy obtained by the PUFEM approximation of a Helmholtz
problem with constant wave number. The independent behaviour of the PUFEM relative
error with respect to the wave number is also observed in the right plot of Figure 2.2.
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Figure 2.2: H1-relative error of the approximation computed with the transmission-
reflection PUFEM method (using the perturbation parameter δ = 10−2), plotted with
respect to the mesh size h (left) and to the wave number k(1) (right).

In conclusion, from the numerical examples considered above, it seems natural to extend
the transmission-reflection PUFEM approach to a two-dimensional Helmholtz problem.
The first step in this extension will be the description of the PUFEM method applied to
the Helmholtz problem with constant wave number. Once the PUFEM has been described
in this simpler framework, the transmission-reflection PUFEM will be described in two-
dimensions for a problem with two layers.

2.3 PUFEM for two-dimensional problems with con-

stant wave number

The previous step of introducing the PUFEM method in layered media consists in
the full description of the standard PUFEM method applied to the Helmholtz equation
with constant wave number (using planewaves to enrich the piecewise linear finite element
space). Throughout the rest of this chapter, both for the constant and piecewise constant
wave number the same model problem will be used: the Helmholtz equation stated in a
bounded regular domain with Neumann boundary conditions.

In this chapter only Cartesian coordinates with respect to the canonical basis {e1, e2}
will be used. Hence, an arbitrary two-dimensional point x will be identify with its Cartesian
coordinates x = (x1, x2). Abusing on the notation, the vector position of a point x will be
also denoted as x. In the same manner, any vector ~a = a1e1 + a2e2 will be identified with
its Cartesian coordinates column vector, this is, ~a = (a1, a2)t.

2.3.1 Model problem

Let Ω be an open regular domain and ∂Ω its boundary. If u : Ω → C is the unknown
acoustic field and k > 0 is the constant wave number, the two-dimensional Helmholtz
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problem considered can be read as follows:

−∆u− k2u = 0 in Ω, (2.11)

∂u

∂n
= g on ∂Ω, (2.12)

being n the outward unit normal vector to ∂Ω and g the Neumann data on the boundary.
To write the variational formulation of the strong problem (2.11)-(2.12), let v : Ω→ C

be a test function regular enough. Multiplying (2.11) by the complex-conjugate of a test
function v and integrating in the domain Ω, it can be written

−
∫

Ω

∆u v̄ dx− k2

∫
Ω

u v̄ dx = 0. (2.13)

Using now an standard Green’s formula applied to (2.13) and taking into account the
Neumann boundary condition, the weak formulation of the model problem consists in:
given g ∈ L2(∂Ω), find u ∈ H1(Ω) such as∫

Ω

∇u · ∇v̄ dx− k2

∫
Ω

u v̄ dx =

∫
∂Ω

g v̄ dσ, (2.14)

for all v ∈ H1(Ω). Classical arguments based on the Fredholm’s alternative theory [7] and
the fact that the resolvent operator associated to this problem is a self-adjoint compact
operator show that the variational problem (2.14) has an unique solution except for an
infinite sequence of real wave number values {kj}∞j=0, which should be understood as the
resonances of the mechanical system associated to this model problem. Throughout the
rest of this section, all the wave number values will be selected such are not coincident with
any of the resonance values where the solution is not unique.

2.3.2 Constant wave number PUFEM discretization

To avoid any error coming for the triangular mesh, it will be assumed that the domain
Ω is a two-dimensional polygon. In this manner, if Th is a regular triangulation of the
domain, where the mesh size h is defined as the maximum diameter in the triangulation, it
holds

Ω =
⋃
T∈Th

T, h = max
T∈Th

dT ,

being dT the diameter of the triangle T (the diameter of the circle circumscribed in the
triangle T [18]). Each node of the triangulation is denoted by xj, for all n = 1, . . . , Nfe,

being Nfe the total number of nodes. Let {ϕn}Nfe

n=1 denote the standard Lagrange P1 two-
dimensional finite element basis, where ϕn(xm) = δmn, being δmn the Kronecker’s delta.

The discrete PUFEM space Xh is defined by multiplying each finite element basis func-
tion by a certain number of planewave functions, whose directions of the wave number
vector are evenly distributed in the plane. Let Npw be the number of planewave functions
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considered, and let θj = 2π(j − 1)/Npw, for all j = 1, . . . , Npw, the angles which defines the
direction of propagation of the planewave functions. Then, the basis functions ψn,j of the
discrete PUFEM space can be written

ψnj(x) = ϕn(x)eik(x1 cos θj+x2 sin θj) = ϕn(x)ei
~kj ·x, 1 ≤ n ≤ Nfe, 1 ≤ j ≤ Npw, (2.15)

where ~kj = k(cos θj, sin θj)
t for j = 1, . . . , Npw. Hence, the discrete PUFEM space is given

by Xh = 〈{ψn1}Nfe
n=1 ∪ . . .∪ {ψnNpw}Nfe

n=1〉. To highlight the definition of the discrete PUFEM
space, Figures 2.1, 2.2 and 2.3 show, if the number of plane waves chosen is eight (Npw = 8),
the direction of propagation of the first, second and third of these plane waves (i.e., the

unit vectors which have the same direction and orientation as the wave number vectors ~kj).
The blue straight lines in the left plots of these figures mark the direction of propagation
of the eight planewaves used in the definition of the discrete PUFEM space. The red arrow
in the left plots and the black arrow in the right plots mark the direction and orientation
of the wave number vector for each planewave.

Figure 2.1: Real part of the first planewave ei
~k1·x used in a PUFEM discretization with

Npw = 8 (right plot), being the direction of propagation ~k1 = k(cos θ1, sin θ1) = k(1, 0) (left
plot).

Taking into account the definition of the discrete PUFEM space, given by the span of
basis functions (2.15), the discrete PUFEM problem is described as follows: fixed k > 0
and given g ∈ L2(∂Ω), find uh ∈ Xh such that∫

Ω

∇uh · ∇v̄h dx− k2

∫
Ω

uh v̄h dx =

∫
∂Ω

g v̄h dσ, (2.16)

for all vh ∈ Xh.
The discrete PUFEM solution uh can be written in terms of the basis functions in Xh,

uh(x) =

Nfe∑
n=1

Npw∑
j=1

unjψnj(x) =

Nfe∑
n=1

Npw∑
j=1

unjϕn(x)eik(x1 cos θj+x2 sin θj), (2.17)
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Figure 2.2: Real part of the second planewave ei
~k2·x used in a PUFEM discretization with

Npw = 8 (right plot), being the direction of propagation ~k2 = k(cos θ2, sin θ2) = k(1, 1)/
√

2
(left plot).

where ~uh(u11, u21, . . . , uNfe1, . . . , u1Npw , . . . , uNfeNpw)t ∈ CNfeNpw is the complex vector of co-
efficients of the discrete PUFEM function uh. The discrete problem can be written in
matrix form as

(Kh − k2Mh)~uh = ~gh, (2.18)

where the mass matrix Mh and the stiffness matrix Kh are defined by

[Kh]nj,ml =

∫
Ω

∇
(
ϕn(x)eik(x1 cos θj+x2 sin θj)

)
· ∇
(
ϕm(x)e−ik(x1 cos θl+x2 sin θl)

)
dx, (2.19)

[Mh]nj,ml =

∫
Ω

ϕn(x)eik(x1 cos θj+x2 sin θj)ϕm(x)e−ik(x1 cos θl+x2 sin θl) dx, (2.20)

for all 1 ≤ n,m ≤ Nfe and 1 ≤ j, l ≤ Npw (it should be remarked that the ordering of the
matrix coefficients is given by the ordering induced by the coefficient order of the unknown
vector ~uh). Analogously, each coefficient of the right-hand side vector ~gh has the projection
of the boundary data g onto the discrete PUFEM basis, this is,

[~gh]nj =

∫
∂Ω

g(x)ϕn(x)e−ik(x1 cos θj+x2 sin θj) dσ. (2.21)

Since the integrals stated above are highly oscillatory if the wavelength of the planewaves
2π/k is much smaller than the typical size h of the support of the finite element functions,
standard numerical quadrature rules (for instance, based on Gauss-Legendre with a reduced
number of points) lead to inaccurate results. The following section describe in detail how
these oscillatory integrals are computed in closed form.

2.3.3 Integration techniques

Firstly, the right hand side is computed locally on each edge s of the boundary ∂Ω,
and then assembled globally. To compute each coefficient of the right hand side ~gh locally,
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Figure 2.3: Real part of the third planewave ei(
~k3·x) used in a PUFEM discretization with

Npw = 8 (right plot), being the direction of propagation ~k3 = k(cos θ3, sin θ3) = k(0, 1) (left
plot).

exact integration in closed form is used in each edge s, performing a change of variable
to the interval which allows to parametrize each edge s onto [0, |s|], being |s| the length
of the edge. More precisely, if the edge has endpoints (a1, a2) and (b1, b2), the mapping
ξ ∈ [0, |s|] 7→ (x1(ξ), x2(ξ)) ∈ s, given by x1(ξ) = (b1 − a1)ξ + a1,

x2(ξ) = (b2 − a2)ξ + a2,
(2.22)

is a bijective function which parametrizes the edge. Notice that the Neumann function g
can be integrated in closed form if its expression is known also in close form. In the present
work, piecewise constant functions and exponential-type functions will be considered (see
the numerical examples in Section 2.3.4). Taking in mind these kind of expressions for g, a
simple integration by parts leads to the exact integration formulas for the contribution of
the right-hand side ~gh.

In the same manner, the mass and the stiffness matrices are computed locally over
each triangle of the mesh and then assembled globally. In each triangle, it must be inte-
grated functions highly oscillatory functions with respect to x1 and x2. In order to perform
these computations, some techniques can be found in the bibliography: numerical integra-
tion based on Gauss-Legendre two-dimensional formulas with a high number of quadrature
nodes (see [38]), semi-analytical integration formulas (see [5]) or closed-form integration
procedures, which reduces the two-dimensional integrals in triangles to the simplest com-
putation of integrals stated on the edges (see [19]). In this work, the coefficients of the mass
and stiffness matrices will be computed by using an exact integration method based in the
rotation technique described by Ortiz in [41] and [40].

In what follows, the proposed procedure to obtain exact integration formulas is explained
in detail, applied to the computation of a fixed coefficient of the mass matrix Mh. Those
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computations to obtain the coefficients of stiffness matrix the calculations are completely
analogous. First, the integration in the whole computational domain Ω is rewritten as the
sum of the integrals over every triangle of the mesh, this is,

[Mh]nj,ml =

∫
Ω

ϕn(x)eik(x1 cos θj+x2 sin θj)ϕm(x)e−ik(x1 cos θl+x2 sin θl) dx =∑
T∈Th

∫
T

ϕn(x)eik(x1 cos θj+x2 sin θj)ϕm(x)e−ik(x1 cos θl+x2 sin θl) dx. (2.23)

Clearly, this sum over T ∈ Th is reduced to the addition of those integrals stated on the
triangles with have the nodes xn and xm as vertices.

To integrate over each triangle, a translation rotation will be used, in order to rewrite
an integrand that oscillates respect to the Cartesian coordinates x1 and x2 as an integrand
that oscillates respect to just one spatial variable. With this aim, consider a triangle T ∈ Th
with vertices a = (a1, a2), b = (b1, b2), and c = (c1, c2). Let the affine mapping be given by(

x1

x2

)
=

(
cosα sinα

− sinα cosα

)(
ξ

η

)
+

(
a1

a2

)
. (2.24)

If this change of variables is applied to the triangle T , a new triangle T̃ is obtained. More
precisely, T is rotated by an angle α and translated such that the first vertex a is mapped
into the origin of coordinates. The angle α is chosen in such a way that, after the change
of variable (ξ, η) ∈ T̃ 7→ (x1, x2) ∈ T , the integrand only oscillates with respect to the new
spatial coordinate ξ.

Applying this change of variable to (2.23), the integral over T is rewritten in an integral

stated on T̃ , and so it is obtained∫
T

ϕn(x)eik(x1 cos θj+x2 sin θj)ϕm(x)e−ik(x1 cos θl+x2 sin θl) dx =

eik(Cjla1+Djla2)
∫
T̃

ϕn(ξ, η)ϕm(ξ, η)eikξ(C cosα−D sinα)eikη(Cjl sinα+Djl cosα) dξ dη, (2.25)

where Cjl = cos θj − cos θl and Djl = sin θj − sin θl. Notice that it has been used that
the Jacobian matrix of the affine mapping (2.24) is a rotation and so its determinant is
equal to one. As it has been mentioned previously, the angle α is then chosen such as
Cjl sinα +Djl cosα = 0, this is,

α = αjl =
θj + θl − π

2
, (2.26)

and so the integrand in (2.25) can be written now as a polynomial multiplied by a function
that only oscillates with respect to ξ,

[Mh]nj,ml = eik(Cjla1+Djla2)
∫
T̃

ϕn(ξ, η)ϕm(ξ, η)eikξ(Cjl cosαjl−Djl sinαjl) dξ dη. (2.27)
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At this point, in order to integrate exactly the previous expression (2.27), six cases
must be taken into account depending on the position of the vertices of the transformed
triangle T̃ . It will be denoted by ξ1, ξ2 and ξ3 the coordinates in the ξ-direction of the
three vertices of T̃ , where the vertex are sorted in counter-clock wise order. In addition,
using the same ordering, it will be assumed that the edges will be parametrized by the
equations η = η1(ξ), η = η2(ξ), and η = η3(ξ). To compute the integral (2.27), six cases
are distinguished (labelled as a)-f)):

Case a) If ξ1 = 0 < ξ2 ≤ ξ3 (see left plot in Figure 2.4),

[Mh]nj,ml = eik(Cjla1+Djla2)
∫ ξ2

ξ1

eikξ(Cjl cosαjl−Djl sinαjl)

(∫ η3(ξ)

η1(ξ)

ϕn(ξ, η)ϕm(ξ, η)dη

)
dξ

+ eik(Cjla1+Djla2)
∫ ξ3

ξ2

eikξ(Cjl cosαjl−Djl sinαjl)

(∫ η3(ξ)

η2(ξ)

ϕn(ξ, η)ϕm(ξ, η)dη

)
dξ. (2.28)

ξ

η

ξ1 ξ2 ξ3

(0, 0) η1(ξ)

η2(ξ)

η3(ξ)

ξ

η

ξ1 ξ2ξ3

(0, 0)

η1(ξ)

η2(ξ)

η3(ξ)

Figure 2.4: Splitting of the triangles for the exact integration: case a) if ξ1 = 0 < ξ2 ≤ ξ3

(left) and case b) if ξ1 = 0 ≤ ξ3 < ξ2 (right).

Case b) If ξ1 = 0 ≤ ξ3 < ξ2 (see right plot in Figure 2.4),

[Mh]nj,ml = eik(Cjla1+Djla2)
∫ ξ3

ξ1

eikξ(Cjl cosαjl−Djl sinαjl)

(∫ η3(ξ)

η1(ξ)

ϕn(ξ, η)ϕm(ξ, η)dη

)
dξ

+ eik(Cjla1+Djla2)
∫ ξ2

ξ3

eikξ(Cjl cosαjl−Djl sinαjl)

(∫ η2(ξ)

η1(ξ)

ϕn(ξ, η)ϕm(ξ, η)dη

)
dξ. (2.29)



72 PUFEM for layered media

Case c) If ξ3 ≤ ξ2 < ξ1 = 0 (see left plot in Figure 2.5),

[Mh]nj,ml = eik(Cjla1+Djla2)
∫ ξ2

ξ3

eikξ(Cjl cosαjl−Djl sinαjl)

(∫ η2(ξ)

η3(ξ)

ϕn(ξ, η)ϕm(ξ, η)dη

)
dξ

+ eik(Cjla1+Djla2)
∫ ξ1

ξ2

eikξ(Cjl cosαjl−Djl sinαjl)

(∫ η1(ξ)

η3(ξ)

ϕn(ξ, η)ϕm(ξ, η)dη

)
dξ. (2.30)

ξ

η

ξ1ξ2ξ3

(0, 0)

η1(ξ)

η2(ξ)

η3(ξ)

ξ

η

ξ1ξ2 ξ3

(0, 0)

η1(ξ)η2(ξ)

η3(ξ)

Figure 2.5: Splitting of the triangles for the exact integration: case c) if ξ3 ≤ ξ2 < ξ1 = 0
(left) and case d) if ξ2 < ξ3 ≤ ξ1 = 0 (right).

Case d) If ξ2 < ξ3 ≤ ξ1 = 0 (see right plot in Figure 2.5),

[Mh]nj,ml = eik(Cjla1+Djla2)
∫ ξ3

ξ2

eikξ(Cjl cosαjl−Djl sinαjl)

(∫ η1(ξ)

η2(ξ)

ϕn(ξ, η)ϕm(ξ, η)dη

)
dξ

+ eik(Cjla1+Djla2)
∫ ξ1

ξ3

eikξ(Cjl cosαjl−Djl sinαjl)

(∫ η1(ξ)

η3(ξ)

ϕn(ξ, η)ϕm(ξ, η)dη

)
dξ. (2.31)

Case e) If ξ3 < ξ1 = 0 ≤ ξ2 (see left plot in Figure 2.6),

[Mh]nj,ml = eik(Cjla1+Djla2)
∫ ξ1

ξ3

eikξ(Cjl cosαjl−Djl sinαjl)

(∫ η2(ξ)

η3(ξ)

ϕn(ξ, η)ϕm(ξ, η)dη

)
dξ

+ eik(Cjla1+Djla2)
∫ ξ2

ξ1

eikξ(Cjl cosαjl−Djl sinαjl)

(∫ η2(ξ)

η1(ξ)

ϕn(ξ, η)ϕm(ξ, η)dη

)
dξ. (2.32)
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Figure 2.6: Division of the triangles for the exact integration: case e) if ξ3 < ξ1 = 0 ≤ ξ2

(left) and case f) if ξ2 ≤ ξ1 = 0 < ξ3 (right).

Case f) If ξ2 ≤ ξ1 = 0 < ξ3 (see right plot in Figure 2.6),

[Mh]nj,ml = eik(Cjla1+Djla2)
∫ ξ1

ξ2

eikξ(Cjl cosαjl−Djl sinαjl)

(∫ η1(ξ)

η2(ξ)

ϕn(ξ, η)ϕm(ξ, η)dη

)
dξ

+ eik(Cjla1+Djla2)
∫ ξ3

ξ1

eikξ(Cjl cosαjl−Djl sinαjl)

(∫ η3(ξ)

η2(ξ)

ϕn(ξ, η)ϕm(ξ, η)dη

)
dξ. (2.33)

Once the integral expressions only dependent on η have been computed, an integration
by parts procedure is used to obtain the closed-form expressions for the integrals depending
on ξ, which involves polynomial and exponential factors. However, some considerations
must be taken into account to apply this strategy in any general case to compute (2.33)-
(2.28). If the polynomial factor has degree p, the result of the integral depending on
ξ is an expression involving some terms of order O ((k(Cjl cosαjl −Djl sinαjl))

−r), with
r = 1, . . . , p + 1. Obviously, this terms could be potentially inaccurate evaluated due to
round-off errors when k(Cjl cosαjl−Djl sinαjl) is small enough or even worse, they are not
well-defined in the case of k = 0 or Cjl cosαjl −Djl sinαjl = 0 (which it holds when j = l).
In these limit cases, the exponentials (with a small value in its coefficient) are approximated
by a 5-th order Taylor expansion around the origin, and hence in these limits cases, the
computation of the integrals (2.33)-(2.28) is reduced to a simple integration of polynomials
(also computed in closed form).

2.3.4 Numerical results

To illustrate the accuracy of the PUFEM method based on planewaves applied to the
Helmholtz problem with constant wave number, an extend variety of numerical results
are presented. First, it will be considered a problem where the exact solution is given
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by a planewave in Section 2.3.4. Then, the behaviour of the relative error in L∞-norm
will be studied with respect to the mesh size h, the wave number k, and the number of
planewaves Npw used in the discretization. Finally, the analogous analysis will be performed
by considering a problem with constant Neumann boundary conditions in Section 2.3.4.

Throughout this section about the numerical results of the PUFEM method, recall that
the mesh chosen for the discretization has Nfe nodes {x1, . . . ,xNfe

} and its elements have
a maximum diameter h. The condition number of the matrix Kh − k2Mh involved in the
linear system (2.18) is denoted by κ. The relative error field in L∞-norm eh and its norm
will be computed on the mesh vertices as follows:

eh(x) =
u(x)− uh(x)

max
j=1,...,Nfe

|u(xj)|
, relative error = max

j=1,...,Nfe

|eh(xj)| (2.34)

where u is the exact solution of the Helmholtz problem (2.11)-(2.12) and uh is the discrete
PUFEM approximation computed by means of (2.16).

Helmholtz problem with a planewave solution

In this first subsection, it is studied the behaviour of the PUFEM method applied to a
Helmholtz problem (2.11)-(2.12) with a constant wave number, and whose exact solution is
given by a unique planewave. The computational domain Ω is the unit square (0, 1)×(0, 1).
The Neumann boundady data is settled by an exponential-type expression in such a manner
that the exact solution is given by

u(x) = eik(x1 cosβ+x2 sinβ), (2.35)

where β is the incident angle of the planewave measured with respect to the x1-axis.

The first test consists in taking ten exact solutions with different incident angles β, some
of them in the discrete space Xh, and study how the discrete PUFEM solution approximates
them. The incident angles for the exact solutions are taken β = 2π(j − 1)/10, for all
j = 1, . . . , 10. In Figure 2.7, the relative error eh for each one of these ten exact solutions is
shown (left plot). In this numerical test, the number of planewaves used in the discretization
is fixed to Npw = 5. Different values of the wave number k have been considered for a mesh
of size h = 1.7× 10−1. Notice that for the values β = jπ/5 with j = 0, 2, 4, 6, 8, the exact
solution belongs to the discrete space Xh, so the relative error reaches the typical round-off
errors of double precision floating-point arithmetic around O(10−15).
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Figure 2.7: Relative error and condition number κ for a variety of exact planewave solutions
varying the angle of incident β of the exact solution and the wave number k. The PUFEM
discretization involves Npw = 5 planewaves, a triangular mesh with size h = 1.7 × 10−1,
and an implementation using double precision floating-point arithmetic.

Figure 2.8: Relative error and condition number κ for a variety of exact planewave solutions
varying the angle of incident β of the exact solution and the wave number k. The PUFEM
discretization involves Npw = 10 planewaves, a triangular mesh with size h = 1.7 × 10−1,
and an implementation using double precision floating-point arithmetic.

If the number of planewaves is now taken Npw = 10 and Npw = 20, the ten exact
solutions fall into the discrete space Xh. Figures 2.8 and 2.9 show the numerical results
obtained by using double precision floating-point arithmetic. The relative error (left plots)
for these ten solutions and for different values of k is higher than the order expected
O(10−15) because of the high condition number (right plots). This fact can be explained
observing the condition number κ of the PUFEM matrix system Kh − k2Mh (right plots).
In fact, the accuracy of the approximated solutions computed with the PUFEM method
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based on planewaves is potentially pretty sensitive to the condition number. Notice that in
these simulations performed with double precision floating-point arithmetic, in some cases
the condition number has a magnitude larger than O(1014).

In order to check if the PUFEM method can overcome this potentially lack of accuracy,
the simulations are repeated in quadruple precision floating point arithetic (this is, using
32 digits of precision). Figures 2.11 and 2.12 show the analogous numerical results to
those ones of Figures 2.8 and 2.9 but now using the Matlab toolbox Advanpix [34] using
quadruple precision. In these cases, the relative error (left plots) is close or smaller than
O(10−15) even if the condition number is high (right plots). Notice that when the number
of planewaves used in the discretization is increased, the condition number of the PUFEM
matrix system increases too.

In Figure 2.10, the results for the numerical simulation with Npw = 5 have been repeated
for quadruple precision too, and it can be observed that the relative error (left plot) has a
magnitude close to O(10−30) for those exact solutions which belong to Xh.

Figure 2.9: Relative error and condition number κ for a variety of exact planewave solutions
varying the angle of incident β of the exact solution and the wave number k. The PUFEM
discretization involves Npw = 20 planewaves, a triangular mesh with size h = 1.7 × 10−1,
and an implementation using double precision floating-point arithmetic.
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Figure 2.10: Relative error and condition number κ for a variety of exact planewave solutions
varying the angle of incident β of the exact solution and the wave number k. The PUFEM
discretization involves Npw = 5 planewaves, a triangular mesh with size h = 1.7 × 10−1,
and an implementation using quadruple precision floating-point arithmetic..

Figure 2.11: Relative error and condition number κ for a variety of exact planewave solutions
varying the angle of incident β of the exact solution and the wave number k. The PUFEM
discretization involves Npw = 10 planewaves, a triangular mesh with size h = 1.7 × 10−1,
and an implementation using quadruple precision floating-point arithmetic.
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Figure 2.12: Relative error and condition number κ for a variety of exact planewave solutions
varying the angle of incident β of the exact solution and the wave number k. The PUFEM
discretization involves Npw = 20 planewaves, a triangular mesh with size h = 1.7 × 10−1,
and an implementation using quadruple precision floating-point arithmetic.

For the second test in this subsection, the exact planewave solution is fixed with an
incident angle of β = 2π/21. Once again, the PUFEM discretization uses the same mesh
with size h = 1.7 × 10−1 considered in the numerical tests described above. To analyze
the behaviour of the relative error with respect to the number of planewaves used in the
discretization, Npw has been varied between 2 and 20, considering different values of the
wave number k. Figures 2.13 (using double precision floating-point arithmetic) and 2.14
(using quadruple precision floating-point arithmetic) show that the relative error (left plots)
decays exponentially when the number of planewaves used in the PUFEM discretization is
increased. This convergence behaviour is pretty sensitive to the wave number values.
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Figure 2.13: Relative error and condition number κ for an exact planewave solution with
incident angle β = 2π/21, plotted with respect to the number of planewaves Npw used in the
discretization and the wave number k considered in the Helmholtz problem. The PUFEM
discretization involves a triangular mesh with size h = 1.7 × 10−1 and an implementation
using double precision floating-point arithmetic.

Figure 2.14: Relative error and condition number κ for an exact planewave solution with
incident angle β = 2π/21, plotted with respect to the number of planewaves Npw used in the
discretization and the wave number k considered in the Helmholtz problem. The PUFEM
discretization involves a triangular mesh with size h = 1.7 × 10−1 and an implementation
using quadruple precision floating-point arithmetic.

Problem with constant Neumann boundary data

In this subsection, once again it will be illustrated the behaviour of the relative error
with respect to the mesh size, the wave number and the number of planewaves used in the
PUFEM discretization. However, in this case, the Helmholtz problem (2.11)-(2.12) (stated
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again in Ω = (0, 1) × (0, 1)) has been settled with constant Neumann boundary data and
consequently the exact solution is not given by a unique planewave.

More precisely, the Neumann data g has been fixed throughout the rest of this subsection
as follows:

g(x1, x2) =

{
1 for x1 = 0 or x2 = 0,

0 otherwise.
(2.36)

In consequence, straightforward computations show that the exact solution is given by

u(x) =
1

ik (e2ik − 1)

(
e2ik

(
e−ikx1 + e−ikx2

)
+ eikx1 + eikx2

)
. (2.37)

This numerical example also is going to be utilized to highlight that the choice of the
angle of incidence is pretty arbitrarily. For instance, in this case the planewave incident
angles are not taken θj = 2π(j − 1)/Npw as it has been used previously. For this numerical
test, it has been considered θj = 2π(j − 1)/Npw + 2π/2500, for all j = 1, . . . , Npw. Notice

that if the angles {θj}Npw

j=1 wwre selected as in the previous numerical test, the exact solution
would always belong to Xh, once it holds Npw ≥ 4 (and hence the relative error would be
around the double precision round-off errors O(10−15) (see Figure 2.15)).

Figure 2.15: Modulus of the relative error eh for a problem with wave number k = 3, using
a discretization with Npw = 4, mesh size h = 1.7× 10−1 and choosing θj = 2π(j − 1)/Npw,
for j = 1, . . . , Npw as angle of incidence in the PUFEM planewave discretization.

The behaviour of the relative error with respect to the mesh size h is illustrated in
Figures 2.16 (using double precision floating-point arithmetic) and in 2.17 (using quadruple
precision floating-point arithmetic). The numerical results in this test with smooth solution
seems to indicate that the PUFEM method converges with an order of O(h3/2). Figures 2.18
and 2.19 show the real part of the approximated PUFEM solution and its corresponding
modulus of the relative error, computed by using a fine mesh with h = 8.5× 10−2, for two
different wave number values, k = 3 and k = 10.
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The behaviour of the relative error with respect to the wave number can be infer from
the results shown in Figure 2.20 (using double precision floating-point arithmetic) and
Figure 2.21 (using quadruple precision floating-point arithmetic). In both cases, it could
be deduced that an overall O(k2) order is reached by the PUFEM method.

Figure 2.16: Relative error (left) and condition number κ (right) plotted with respect to
the mesh size h for different values of the wave number k. the PUFEM discretization uses
Npw = 4 and it has been implemented using double precision floating-point arithmetic.

Figure 2.17: Relative error (left) and condition number κ (right) plotted with respect to
the mesh size h for different values of the wave number k. The PUFEM discretization uses
Npw = 4 and it has been implemented using quadruple precision floating-point arithmetic.
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Figure 2.18: Real part of the PUFEM approximate solution (left) and modulus of the
relative error computed for a discretization with Npw = 4, mesh size h = 8.5 × 10−2 and
wave number k = 3 (using double precision floating-point arithmetic).

Figure 2.19: Real part of the PUFEM approximate solution (left) and modulus of the
relative error computed for a discretization with Npw = 4, mesh size h = 8.5 × 10−2 and
wave number k = 10 (using double precision floating-point arithmetic).
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Figure 2.20: Relative error (left) and condition number κ (right) plotted with respect to
the wave number k. The PUFEM discretization uses Npw = 4 and it has been implemented
using double precision floating-point arithmetic.

Figure 2.21: Relative error (left) and condition number κ (right) plotted with respect to
the wave number k. The PUFEM discretization uses Npw = 4 and it has been implemented
using quadruple precision floating-point arithmetic.

2.4 Two-dimensional Helmholtz problem with piece-

wise constant wave number

In this section, the PUFEM method will be applied to the two-dimensional Helmholtz
problem with piecewise constant wave number, which is already introduced in Section
2.4.1. The proposed PUFEM method consists in the two-dimensional extension of the
transmission-reflection PUFEM discretization introduced previously in the one-dimensional
case. As it has been made in the section above, the discrete PUFEM space and the integra-
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tion techniques are described in detail (see 2.4.3 and 2.4.4, respectively). Finally, a variety
of numerical test are carried out in Section 2.4.5.

For sake of simplicity in the exposition of the main ideas of the proposed transmission-
reflection PUFEM method in two dimensions, the PUFEM discretization will be described
only for Helmholtz problem involving a computational with two layers. Clearly, analogous
arguments can be reproduced for a problem stated in a multilayered domain with piecewise
constant wave number. So, the first step in the description of the transmission-reflection
PUFEM method will consist in recasting the original Helmholtz problem with variable wave
number as a coupled problem involving two layers.

2.4.1 Bi-layered Helmholtz problem

Let Ω+ and Ω− be two open bounded regular domains in R2, with Σ a planar interface
between them, which without loss of generality, it will be assumed that it is located on
Σ = ∂Ω+ ∩ ∂Ω− ⊂ {x = (x1, x2) ∈ R2; x2 = H}, being H a fix value. Let Ω the interior of
the compact set Ω+∪Ω−, which will be considered as the global computational domain and
∂Ω its boundary. Let Γ+ and Γ− be the part of the boundaries of Ω+ and Ω−, respectively,
which lie on the boundary of Ω, this is, Γ+ = ∂Ω∩ ∂Ω+ and Γ− = ∂Ω∩ ∂Ω−. If u : Ω→ C
is the global unknown of the Helmholtz problem, it can be split in two new unknown fields:

u =

{
u+ in Ω+,

u− in Ω−.
(2.38)

In the same manner, the (strictly positive) piecewise constant wave number can be defined
independently for each layer as follows:

k =

{
k+ in Ω+,

k− in Ω−,
(2.39)

being k+ and k− two strictly positive constants. Consequently, the two-dimensional bi-
layered Helmholtz problem consists in: fixed k+, k− > 0 and given Neumann boundary
data g+, g−, find u+, u− such that it is satisfied

−∆u+ − k2
+u+ = 0 in Ω+, (2.40)

−∆u− − k2
−u− = 0 in Ω−, (2.41)

∂u+

∂n+

= g+ on Γ+, (2.42)

∂u−
∂n−

= g− on Γ−, (2.43)

u+ = u− on Σ, (2.44)

∂u+

∂ν
=
∂u−
∂ν

on Σ, (2.45)
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where n+ is the unit normal vector outward Ω+ on boundary Γ+, n− is the unit normal
vector outward Ω− on boundary Γ−, and ν = (1, 0) the unit normal vector outward Ω− on
interface boundary Σ.

2.4.2 Variational formulation

Let v : Ω→ C be a test function regular enough. Multiplying equations (2.40) and (2.41)
by the complex-conjugated of a test function and integrating over Ω+ and Ω− respectively,
the following equations are obtained:

−
∫

Ω+

∆u+ v̄ dx− k2
+

∫
Ω+

u+ v̄ dx = 0, (2.46)

−
∫

Ω−

∆u− v̄ dx− k2
−

∫
Ω−

u− v̄ dx = 0. (2.47)

Notice that since v is smooth enough then the coupling condition (2.44) on Σ is satisfied
automatically (in fact, it is enough to assume that v ∈ H1(Ω)).

Applying now a standard Green’s formula over (2.46) and (2.47), and having into ac-
count the boundary and coupling conditions (2.42)-(2.45) satisfied by u−, u+ and the test
function v, the variational formulation for the bi-layered two-dimensional Helmholtz prob-
lem chosen is stated as follows: given g+ ∈ L2(Γ+) and g− ∈ L2(Γ−), find u+ ∈ H1(Ω+),
u− ∈ H1(Ω−) such that∫

Ω+

∇u+ · ∇v̄ dx+

∫
Ω−

∇u− · ∇v̄ dx− k2
+

∫
Ω+

u+ v̄ dx

− k2
−

∫
Ω−

u− v̄ dx =

∫
Γ+

g+ v̄ dσ +

∫
Γ−

g− v̄ dσ,

for all v ∈ H1(Ω), or equivalently, taking into account (2.38) and (2.39), the variational
problem consists in finding u ∈ H1(Ω) such as∫

Ω

∇u · ∇v̄ dx−
∫

Ω

k2u v̄ dx =

∫
Γ+

g+ v̄ dσ +

∫
Γ−

g− v̄ dσ, (2.48)

for all v ∈ H1(Ω).
Classical arguments based on the Fredholm’s alternative theory [7] and the fact that

the resolvent operator associated to this problem is a self-adjoint compact operator show
that the variational problem (2.48) has an unique solution except for an infinite sequence
of real wave number values {k̃j}∞j=0, which should be understood as the resonances of the
mechanical system associated to this bi-layered model problem. Throughout the rest of
this section, all the wave number values will be selected such are not coincident with any
of the resonance values where the solution is not unique.
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2.4.3 Transmission-reflection PUFEM discretization

Similarly to the PUFEM discretization applied to the Helmholtz problem with constant
wave number, in order to define a basis of the PUFEM discrete space with a variable
wave number, the standard Lagrange P1 two-dimensional finite element functions will be
multiplied by some kind of planewave expressions. Four alternatives have been studied in
the bi-layered one-dimensional problem (see Section 2.2) and it was concluded that the
transmission-reflection PUFEM discretization was the best candidate to obtain the most
accurate results in two dimensions.

In conclusion, since the Helmholtz problem involves two layers with different wave num-
ber, this fact must be taken into account and hence the reflections and transmissions that
occur on the interface should be included in the PUFEM basis. More precisely, when a
certain planewave that propagates with an incident angle θI (see Figure 2.1) impinges on
the interface between the two layers (possibly with different wave numbers in each layer),
then a reflected wave with amplitude R is produced (this new planewave contribution can
be understood as a signal travelling in the direction given by the angle 2π−θI , i.e., an angle
that has the same cosine as θI and opposite sine), and a transmitted wave with amplitude
T , whose angle of propagation β depends on the Snell’s law:

k+ cos θI = k− cos β. (2.49)

In the case of k− < k+, the transmission planewave in Ω− is a so-called evanescence wave
(due its exponential decay) once it holds θI ∈ [π, 2π] and

(cos θI)
2 >

(
k−
k+

)2

. (2.50)

This evanescent behaviour causes that the most part of the contribution of the incident
planewave reflects into Ω+ and the an exponential decay of the wave propagation in Ω−
mentioned above. Since the transmission-reflection PUFEM discretization will use fully
planewave solutions, this kind of phenomena will be naturally included in the PUFEM
discretization. In fact, the proposed PUFEM method use propagative and evanescent
planewave functions.

As it is already assumed for the Helmholtz problem with constant wave number, to
avoid any error coming for the triangular mesh, it will be assumed that the domain Ω is a
two-dimensional polygon. Additionally, in this bi-layered problem, it will be required that
the mesh is conformal with the coupling boundary Σ. In this manner, if Th is a regular
triangulation of the domain, where the mesh size h is defined as the maximum diameter in
the triangulation, it holds

Ω =
⋃
T∈Th

T, h = max
T∈Th

dT ,

being dT the diameter of the triangle T (the diameter of the circle circumscribed in the
triangle T [18]). Each node of the triangulation is denoted by xj, for all n = 1, . . . , Nfe,
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Figure 2.1: Scheme of the reflection and transmission planewaves on the interface between
two layers (possibly with different wave number): A planewave is impiging on the inter-
face boundary with an incident angle θI . If the condition (2.50) over θI is satisfied, an
evanescence arises in Ω− and the transmitted wave decays exponentially.

being Nfe the total number of nodes. Let {ϕn}Nfe

n=1 denote the standard Lagrange P1 two-
dimensional finite element basis, where ϕn(xm) = δmn, being δmn the Kronecker’s delta.

The transmission-reflection PUFEM discrete space Xh will be defined by multiplying
each finite element basis function by a certain number of planewave solutions {wj}Npw

j=1 , being
Npw the number of these solutions computed in closed form. Let the incident angles θj of the
plane wave functions be chosen evenly distributed in the plane, this is, θj = 2π(j− 1)/Npw.
Under the considerations written above, the planewave solutions of the bi-layered Helmholtz
problem can be computed by means of the following closed-form expressions:

wj(x) =

 eik
0
jx1(T+

j e
ik+j x2 +R+

j e
−ik+j x2) if x ∈ Ω+,

eik
0
jx1(T−j e

ik−j x2 +R−j e
−ik−j x2) if x ∈ Ω−,

(2.51)

where R±j and T±j are respectively, the reflection and transmission coefficients of the
planewaves, and k0

j ensures that the Snell’s law is fulfilled, and it is defined as

k0
j =

 k+ cos θj if θj ∈ [π, 2π],

k− cos θj if θj ∈ (0, π),

and

k+
j = −

√
(k+)2 − (k0

j )
2, k−j = −

√
k2
− − (k0

j )
2.

Note that, if the angle θj ∈ [π, 2π] and (cos θj)
2 < (k−/k+)2, the coefficient k−j will be a

pure imaginary number and hence the transmitted planewave will be evanescent (it will
decay exponentially with respect to the distance to the coupling interface Σ).
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In order to compute the transmission and reflection coefficients for each j = 1, . . . , Npw,
a system with four unknowns and four equations is posed. These equations impose the
continuity condition on the coupling interface for the function (2.51),

T+
j e

ik+j H +R+
j e
−ik+j H = T−j e

ik−j H +R−j e
−ik−j H , (2.52)

and the continuity of its normal derivative on the coupling interface, leading to

k+
j

(
T+
j e

ik+j H −R+
j e
−ik+j H

)
= k−j

(
T−j e

ik−j H −R−j e−ik
−
j H
)
. (2.53)

Additionally, the linear system is completed with some radiation conditions with impose
certain values of the transmission and reflection coefficients. These two conditions are
settled depending on the angle of incidence:

R−j = 1, T+
j = 0 if θj ∈ (0, π),

R−j = 0, T+
j = 1 if θj ∈ (π, 2π),

R+
j = 0, T+

j = 1 if θj = 0, π, 2π.

Consequently, once the planewave solutions are computed, then the basis functions ψn,j
of the discrete PUFEM space can be written

ψnj(x) = ϕn(x)wj(x), 1 ≤ n ≤ Nfe, 1 ≤ j ≤ Npw. (2.54)

Hence, the discrete PUFEM space is given by Xh = 〈{ψn1}Nfe
n=1 ∪ . . .∪ {ψnNpw}Nfe

n=1〉. Taking
into account the definition of the discrete PUFEM space, given by the span of basis func-
tions (2.54), the discrete PUFEM problem is described as follows: fixed k > 0 and given
g± ∈ L2(Γ±), find uh ∈ Xh such that∫

Ω

∇uh · ∇v̄h dx−
∫

Ω

k2uh v̄h dx =

∫
Γ+

g+ v̄h dσ +

∫
Γ−

g− v̄h dσ, (2.55)

for all vh ∈ Xh. The discrete PUFEM solution uh can be written in terms of the basis
functions in Xh,

uh(x) =

Nfe∑
n=1

Npw∑
j=1

unjψnj(x) =

Nfe∑
n=1

Npw∑
j=1

unjϕn(x)wj(x), (2.56)

where ~uh(u11, u21, . . . , uNfe1, . . . , u1Npw , . . . , uNfeNpw)t ∈ CNfeNpw is the complex vector of co-
efficients of the discrete PUFEM function uh. The discrete problem can be written in
matrix form as

(Kh − k2
+Mh)~uh = ~gh, (2.57)



2.4. Two-dimensional Helmholtz problem with piecewise constant wave number 89

where the mass matrix Mh and the stiffness matrix Kh are defined by

[Kh]nj,ml =

∫
Ω+

∇ (ϕnwj) · ∇ (ϕmw̄l) dx+

∫
Ω−

∇ (ϕnwj) · ∇ (ϕmw̄l) dx, (2.58)

[Mh]nj,ml =

∫
Ω+

ϕnwjϕmw̄l dx+

∫
Ω−

k2
−

k2
+

ϕnwjϕmw̄l dx, (2.59)

for all 1 ≤ n,m ≤ Nfe and 1 ≤ j, l ≤ Npw (it should be remarked that the ordering
of the matrix coefficients is given by the ordering induced by the coefficient order of the
unknown vector ~uh). Analogously, each coefficient of the right-hand side vector ~gh has the
L2-projection of the boundary data g onto the discrete PUFEM basis, this is,

[~gh]nj =

∫
Γ+

g+ϕn(x)w̄j dσ +

∫
Γ−

g−ϕn(x)w̄j dσ. (2.60)

Since the integrals stated above are highly oscillatory if the wavelength of the planewaves
2π/k is much smaller than the typical size h of the support of the finite element functions,
standard numerical quadrature rules (for instance, based on Gauss-Legendre with a reduced
number of points) lead to inaccurate results. The following section describe in detail how
these oscillatory integrals are computed in closed form.

2.4.4 Integration techniques

Since a certain number of PUFEM planewave basis functions are composed by evanes-
cent planewaves, the application of the integration technique described for the PUFEM
discretization with constant wave number (section 2.3.3) becomes inadequate, mainly be-
cause of the affine mapping which rotate the triangles is possibly complex-valued, the nand
so the new rotated triangle could be lying on C2. This section will be devoted to describe the
alternative exact integration procedure used for the computation of the local contributions
to the integrals (2.58) and (2.59).

Analogously to the PUFEM applied to problems with constant wave number, the matrix
Kh − k2

+Mh and the right hand side ~gh are both computed locally, respectively in each
triangle of the mesh or on each edge of the boundary and then assembled globally. To
compute the matrix coefficients of Kh− k2

+Mh locally, exact integration is used by making

an affine change of variable to the reference triangle T̂ (with vertices (0, 0), (1, 0) and (0, 1)),
this is, if a = (a1, a2), b = (b1, b2), and c = (c1, c2) are the vertices of the triangle T (in
counter-clock wise order), the affine mapping to the triangle of reference FT : x̂ = (x̂1, x̂2) ∈
T̂ 7→ (x1, x2) ∈ T is given by(

x1

x2

)
=

(
b1 − a1 c1 − a1

b2 − a2 c2 − a2

)(
x̂1

x̂2

)
+

(
a1

a2

)
. (2.61)

To compute the right-hand side ~g locally, exact integration is used too, by making the
same parametrization described for the Helmholtz problem with constant wave number
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(see (2.22)). Notice that the Neumann functions g± can be integrated in closed form if its
expression is known also in close form. In the present work, piecewise constant functions and
exponential-type functions will be considered. Taking in mind these kind of expressions for
g± and the expressions in the integrands of matrices (2.58) and (2.59), a simple integration
by parts (now performed in both variables x1 and x2) leads to the exact integration formulas
for the contribution of the right-hand side ~gh.

2.4.5 Numerical results

To illustrate the accuracy and efficiency of the transmission-reflection PUFEM method
to approximate the solution of a two-dimensional Helmholtz problem with piecewise con-
stant wave number and Neumann boundary conditions, some numerical results have been
carried out. Some problems with exact solutions that can easily be computed analyti-
cally, resulting plane waves that impinge on the interface with different angles, will be first
studied. Then, a comparison of the variable partition of unity finite element method with
a standard Lagrange P1 finite element method for a two-dimensional Helmholtz problem
with constant Neumann boundary conditions will be described in Section 2.4.5. It should
be remarked that the computer code has been implemented and run in Matlab.

Throughout this section about the numerical results of the PUFEM method, recall that
the mesh chosen for the discretization has Nfe nodes {x1, . . . ,xNfe

} and its elements have
a maximum diameter h. The condition number of the matrix Kh − k2

+Mh involved in the
linear system (2.57) is denoted by κ. The relative error field in L∞-norm eh and its norm
will be computed on the mesh vertices as follows:

eh(x) =
u(x)− uh(x)

max
j=1,...,Nfe

|u(xj)|
, relative error = max

j=1,...,Nfe

|eh(xj)| (2.62)

where u is the exact solution of the Helmholtz problem (2.40)-(2.45) and uh is the discrete
PUFEM approximation computed by means of (2.55).

Approximation of planewave-type solutions

In this first subsection, it will be analysed the behaviour of the PUFEM variable method
applied to a Helmholtz problem, where the solution is given by a linear combination of
plane waves (defined differently in each layer). Let Ω = (0, 1) × (0, 1) be the unit square,
with upper subdomain given by Ω+ = (0, 1) × (0.5, 1) and the lower subdomain Ω− =
(0, 1)× (0, 0.5). So, the coupling interface Σ is located at the line x2 = H = 1/2 (see Figure
2.2).
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Figure 2.2: Domain considered for the bi-layered Helmholtz problem used in the numerical
test described in Section 2.4.5. The interface Σ is lying on x2 = 1/2 (pink segment).

In this first test, the bi-layered Helmholtz problem (2.40)-(2.45) is settled with the
variable wave number

k(x) =

 k+ in Ω+,

k+/4 in Ω−,

and considering the Neumann boundary data g± such that the exact solution is given by
the transmission and reflection planewaves generated by an incident planewave with angle
β, i.e.,

u(x) =

 eik1x1(T+eik
+
2 x2 +R+e−ik

+
2 x2) if x ∈ Ω+,

eik1x1(T−eik
−
2 x2 +R−e−ik

−
2 x2) if x ∈ Ω−,

(2.63)

with

k1 =

 k+ cos β if β ∈ [π, 2π],

k+ cos β

4
if β ∈ (0, π),

and where the reflection and transmission coefficients and the components of the wave num-
ber vector satisfies the jump conditions (2.52)-(2.53) and the Snell’s law (2.49). Obviously,
from the definition of the exact solution if β coincides with an angle of incidence θj used in
the PUFEM discretization, the exact solution u will belong to the PUFEM discrete space
and hence the error will be theoretically null.

The first test consists in taking ten exact solutions with different incident angles β, some
of them in the discrete space Xh, and study how the discrete PUFEM solution approximates
them. The incident angles for the exact solutions are taken β = 2π(j − 1)/10, for all
j = 1, . . . , 10. In Figure 2.3, the relative error eh for each of these ten exact solutions
is shown (left plot), choosing the number of plane wave functions in the discretization
Npw = 5, for different values of the wave number k+ and in a mesh with h = 1.7 × 10−1.
Taking into account the values β = jπ/5 for j = 0, 2, 4, 6, 8, the exact solution belongs to
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the discrete space Xh, so the relative error should have order similar to O(10−15). The fact
that it does not can be explained observing the condition number κ of the PUFEM matrix
system Kh− k2

+Mh (right plot). The PUFEM variable method is potentially very sensitive
to the condition number, and for these simulations in double precision it has order between
O(108) and O(1025). So in order to see if the method works, the simulations are repeated
in quadruple precision (32 digits). Figure 2.6 shows the results for these simulations. It can
be observed that using quadruple precision the relative error (left plot) has order close to
O(10−30) for the exact solutions in Xh. Note that for the quadruple precision, the Matlab
toolbox Advanpix has been used [34].

Figure 2.3: Relative error and condition number κ for a variety of exact planewave solutions
varying the angle of incident β of the exact solution and the wave number k+. The PUFEM
discretization involves Npw = 5 planewaves, a triangular mesh with size h = 1.7 × 10−1,
and an implementation using double precision floating-point arithmetic.
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Figure 2.4: Relative error and condition number κ for a variety of exact planewave solutions
varying the angle of incident β of the exact solution and the wave number k+. The PUFEM
discretization involves Npw = 10 planewaves, a triangular mesh with size h = 1.7 × 10−1,
and an implementation using double precision floating-point arithmetic.

If the number of planewave functions is now taken Npw = 10 and Npw = 20, the ten
exact solutions fall into the discrete space Xh. Figures 2.4 and 2.5 show that in double
precision, the relative error (left plots) for these ten solutions and for several values of k+

is higher than the order expected O(10−15) because of the high condition number (right
plots). The same simulations are then repeated with quadruple precision in Figures 2.7
and 2.8. In these cases, the relative error (left plots) is close or smaller than O(10−15) even
if the condition number is high (right plots). Notice that when the number of planewave
functions used in the discretization grows, the condition number of the PUFEM matrix
system grows too.
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Figure 2.5: Relative error and condition number κ for a variety of exact planewave solutions
varying the angle of incident β of the exact solution and the wave number k+. The PUFEM
discretization involves Npw = 20 planewaves, a triangular mesh with size h = 1.7 × 10−1,
and an implementation using double precision floating-point arithmetic.

Figure 2.6: Relative error and condition number κ for a variety of exact planewave solutions
varying the angle of incident β of the exact solution and the wave number k+. The PUFEM
discretization involves Npw = 5 planewaves, a triangular mesh with size h = 1.7 × 10−1,
and an implementation using quadruple precision floating-point arithmetic.
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Figure 2.7: Relative error and condition number κ for a variety of exact planewave solutions
varying the angle of incident β of the exact solution and the wave number k+. The PUFEM
discretization involves Npw = 10 planewaves, a triangular mesh with size h = 1.7 × 10−1,
and an implementation using quadruple precision floating-point arithmetic.

Figure 2.8: Relative error and condition number κ for a variety of exact planewave solutions
varying the angle of incident β of the exact solution and the wave number k+. The PUFEM
discretization involves Npw = 20 planewaves, a triangular mesh with size h = 1.7 × 10−1,
and an implementation using quadruple precision floating-point arithmetic.

For the second test, an exact solution is fixed, with incident angle β = 2π/21. Some
PUFEM discretizations are used in a mesh with h = 1.7 × 10−1, each of them with a
different number of planewave functions Npw, between 2 and 20. For different values of
the wave number k+, Figures 2.9 (in double precision) and 2.10 (quadruple precision) show
that relative error (left plots) decays exponentially when the number of planewave functions
chosen in the variable PUFEM discretization is increased.

The last test in this subsection consists in taking two different exact solutions, one
evanescent and the other one propagative, and study the convergence of the relative error
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eh in terms of the mesh size and with respect to the wave number k+. The chosen PUFEM
discretization has eight planewave functions, Npw = 8. All the results in this test use double
precision floating-point arithmetic.

Figure 2.9: Relative error and condition number κ for an exact solution with incident angle
β = 2π/21 and for different values of the wave number k+. All the PUFEM approximations
use a mesh with h = 1.7× 10−1. Simulations have been run in double precision.

Figure 2.10: Relative error and condition number κ for an exact solution with incident angle
β = 2π/21 and for different values of the wave number k+. All the PUFEM approximations
use a mesh with h = 1.7× 10−1. Simulations have been run in quadruple precision.

The first exact solution considered has incident angle β = π+2π/9 (Figure 2.11). When
the wave impinges on the interface, an evanescent planewave is generated in Ω− and nearly
all the incident wave returns to Ω+. Figure 2.12 shows the behaviour of the relative error
(left plot) when the mesh size decreases for different values of the wave number. Figure 2.13
shows the behaviour of the relative error (left plot) respect to the wave number, considering
different mesh sizes.
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The second exact solution considered is a propagative wave that has incident angle
β = 2π/8 + 2π/9 (Figure 2.14). The wave propagates to Ω+ after it impinges on the
interface. Figure 2.15 shows the behaviour of the relative error (left plot) when the mesh
size decreases for different values of the wave number. Figure 2.16 shows the behaviour of
the relative error (left plot) respect to the wave number, considering different mesh sizes.

Figure 2.11: Real part of the exact solution computed with an incident angle β = π+2π/9.
A evanescent planewave is produced in Ω− once the wave impinges on the coupling interface.

Figure 2.12: Relative error plotted with respect to the mesh size h (left) and condition
number κ (right) for different values of the wave number k+. The PUFEM discretization
is settled with Npw = 8, and the exact solution is an evanescent wave with incident angle
β = π + 2π/9.
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Figure 2.13: Relative error plotted with respect to the wave number k+ (left) and condition
number κ (right) for different values of the mesh size h. The PUFEM discretization is
settled with Npw = 8, and the exact solution is an evanescent wave with incident angle
β = π + 2π/9.

Figure 2.14: Real part of the exact solution with an incident angle β = 2π/8 + 2π/9. The
wave propagates to Ω+ after the incident wave impinges on the interface.
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Figure 2.15: Relative error plotted with respect to the mesh size h (left) and condition
number κ (right) for different values of the wave number k+. The PUFEM discretization
is settled with Npw = 8, and the exact solution is a propagative wave with incident angle
β = 2π/8 + 2π/9.

Figure 2.16: Relative error plotted with respect to the wave number k+ (left) and condition
number κ (right) for different values of the mesh size h. The PUFEM discretization is
settled with Npw = 8, and the exact solution is a propagative wave with incident angle
β = 2π/8 + 2π/9.

Numerical comparison with a two-dimensional finite element method

Consider the computational domain depicted in Figure 2.17, which is split in two disjoint
subdomains Ω+ and Ω−. The common boundary between both subdomains will be denoted
by Σ (highlighted in pink in Figure 2.17). The upper boundary of the domain (highlighted
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in blue) is located on

Γ1 =

{
x ∈ R2; x1 ∈

(
1

4
,
13

40

)
, x2 =

23

40

}
. Only in this portion of the boundary the Neumann data will be not null, more precisely,
g+ = 1. On the rest of the boundary the Neumann data will be null.

The variable two-dimensional problem (2.40)-(2.45) is settled with the coupling interface
Σ lying on H = 0 and the variable wave number k given by

k =

{
32 in Ω+,

8 in Ω−.

Under these conditions, the exact solution is not known in closed form. So, in order to
check the accuracy of the PUFEM method, a numerical comparison will be made with
respect to a standard piecewise linear finite element method. The finite element solution
computed in a fine mesh will be used as a reference solution to be compared with those
PUFEM approximations computed in coarse meshes.
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Figure 2.17: Polygonal domain considered for a two-dimensional Helmholtz problem with
variable wave number and constant Neumann boundary conditions.

The approximate Lagrange P1 finite element solution ufe is computed using a fine mesh,
whose maximum diameter is 5.3 × 10−3 On the contrary, the two-dimensional PUFEM
approximation is computed using a coarser mesh with larger maximum diameter h and
hence with a reduced number of nodes. The relative difference in L∞-norm between the
finite element and the PUFEM approximation is computed as follows:

dh(x) =
ufe(x)− uh(x)

max
j=1,...,Nfe

|ufe(xj)|
, relative difference = ‖dh‖∞ = max

j=1,...,Nfe

|dh(xj)|, (2.64)
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where {xj}Nfe
j=1 are the nodes of the coarse mesh used in the PUFEM discretization. It

should be remarked that all the computations in this section have been carried out in
double precision.

To approximate an exact solution that it is not a planewave, the PUFEM variable
method behaves in a similar way as the finite element method, but using a much more
coarse mesh and with a low number of planewaves Npw chosen for the discretization. The
behaviour of the PUFEM variable method in terms of the mesh size and in terms of the
number of planewaves chosen for the PUFEM approximate solution will be studied on the
following tables.

h = 1.7× 10−1 h = 8.5× 10−2

Npw ‖dh‖∞ κ ‖dh‖∞ κ

4 2.40× 100 3.3× 1013 2.06× 10−1 1.1× 1015

6 1.73× 10−1 8.1× 1016 1.76× 10−1 2.2× 1018

8 3.06× 10−2 3.6× 1018 2.07× 10−2 2.1× 1021

10 4.69× 10−2 3.4× 1021 2.43× 10−2 4.5× 1023

12 2.91× 10−2 7.9× 1024 2.75× 10−2 1.1× 1026

14 4.76× 10−2 7.4× 1023 4.64× 10−2 7.3× 1025

16 2.13× 10−2 6.0× 1025 5.24× 10−2 8.1× 1027

Table 2.1: Relative difference ‖dh‖∞ and condition number κ of the PUFEM discrete matrix
for a variety of number of planewaves Npw and two different meshes.

Table 2.1 shows the behaviour of the PUFEM variable method when the approximated
PUFEM solution is computed with two meshes with maximum diameter h = 1.7 × 10−1

and h = 8.5 × 10−2, and for different choices of the number of planewaves Npw. Although
the condition number is larger than O(1013), the approximated PUFEM solution behaves
reasonably similar to the finite element approximation even for the more coarse mesh and
with Npw = 8.

In Figures 2.18 and 2.19, the approximated PUFEM solution uh and the relative dif-
ference dh for two particular cases in Table 2.1 are illustrated. More precisely, for the
discretization with Npw = 4 and mesh size 8.5× 10−2, and for that one which uses Npw = 8
and mesh size 1.7 × 10−1. Only for plotting purposes, the relative difference has been
evaluated in a fine structured mesh, with maximum diameter 5.3× 10−3.
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Figure 2.18: Real part of the approximated PUFEM solution uh (left) and modulus of
the relative difference dh computed with the transmission-reflection PUFEM discretization
using Npw = 4 and mesh size 8.5× 10−2.

Figure 2.19: Real part of the approximated PUFEM solution uh (left) and modulus of
the relative difference dh computed with the transmission-reflection PUFEM discretization
using Npw = 8 and mesh size 1.7× 10−1.

If the number of planewaves at the PUFEM variable discretization is fixed at Npw = 5,
and the mesh size varies between 1.7×10−1 and 2.1×10−2 (Table 2.2), the relative difference
between the PUFEM approximate solution and the finite element approximation reaches
a value around O(10−2). Figure 2.20 illustrates the PUFEM approximation uh and the
relative difference dh for a particular case shown in Table 2.2, more precisely, that one
corresponding to Npw = 5 and mesh size 1.7× 10−1. In this case, the relative difference has
been computed in a fine structured mesh, with maximum diameter 5.3× 10−3.
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h eh κ

1.7× 10−1 1.03× 100 3.9× 1018

8.5× 10−2 1.21× 10−1 2.4× 1020

4.3× 10−2 1.73× 10−2 2.1× 1022

2.1× 10−2 3.23× 10−2 3.0× 1024

Table 2.2: Relative difference ‖dh‖∞ and condition number κ for the transmission-reflection
PUFEM approximation computed with Npw = 5 and mesh size h.

Figure 2.20: Real part of the approximated PUFEM solution uh (left) and modulus of
the relative difference dh computed with the transmission-reflection PUFEM discretization
using Npw = 5 and mesh size 1.7× 10−1.

2.5 Conclusions

In this chapter, a novel PUFEM discretization for a one-dimensional Helmholtz problem
in two media has been proposed. It has been found more accurate that other PUFEM dis-
cretizations described. A standard plane wave PUFEM discretization of a two-dimensional
Helmholtz problem in one media has been described and some particular integration tech-
niques have been introduced. Finally, a novel PUFEM discretization to approximate the
solution of a two-dimensional problem in a layered media has been proposed. This method
has into account the transmission and reflection that occurs at the interface. The accuracy
of the method has been showed in some numerical results. Compared with a standard finite
element method, this PUFEM discretization has relative errors of the same order but with
much less degrees of freedom.
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3.1 Introduction

In previous chapters, the partition of unity finite element method has been applied to
approximate solutions of some one and two-dimensional Helmholtz problems, by multiplying
the finite element basis functions by some plane wave functions. In this chapter, a different
PUFEM discretization will be proposed, in order to solve some problems in bi-layered media
that are used in non destructive testing.

The development of techniques to find cracks at the interface between two materials it
is important to the early detection of defects in some structures like pipes with a coating.
Ultrasonic testing and Foucault currents that propagate transversally to the interface are
the more often used techniques. But they are both limited to cases where the source is close
to the crack. The possibility of using Love waves was suggested recently (see [17]) to find a
defect that is far from the source. It is basic for these detections with Love waves to know
a priori the solution of the problem without a crack. In order to give a tool to approximate
the solutions of these non destructive testing problems in bi-layered media without crack,
a PUFEM method that involve Love waves will be proposed in this chapter.

The outline of this section is as follows: The model problem is presented in Section 3.2
as well as its variational formulation. In Section 3.3, the spectral analysis of the problem is
described in detail. The PUFEM enrichment proposed, the discrete problem and its matrix
description, and an analysis of the condition number are explained in Section 3.4. The
Section 3.5 includes a wide battery of numerical tests in order to illustrate the behaviour of
the proposed modal-based PUFEM method. Finally, in the last section, some conclusions
are exposed.

3.2 Model problem

Under the assumptions of small perturbations of the displacement field and the stress
tensor, the mechanical vibrations of bi-layered structures can be modelled with a linear
elastic model. In particular, if the modelling interest is focused on the transverse displace-
ment components and the geometry is invariant in one of the parallel directions to the
interface of the layered structure, a two-dimensional time-dependent model problem can be
assumed.

Let Ω0 = R × (−a,H) × R an unbounded domain, and let Γ0
+ = R × {H} × R and

Γ0
− = R× {−a} × R, where a,H ∈ R. Let the strain tensor

E(U) =
∇U +∇U t

2
,

and the stress tensor

σ(E(U)) = λtr(E(U))I + 2µE(U),

being λ and µ the Lamé coefficients. If U : Ω0 → R is the three-dimensional displacement,
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and ρ is the mass density, the elasticity model can be written

ρ
∂2U

∂t2
− divσ(E(U )) = F in Ω0 × [0, T ], (3.1)

σ(E(U))ν = G on Γ0
+ ∪ Γ0

−, (3.2)

U |t=0 = U 0 in Ω0, (3.3)

∂U

∂t

∣∣∣∣
t=0

= V 0 in Ω0, (3.4)

where ν is the unit normal vector along the boundary Γ0
+∪Γ0

− and outwards the domain Ω0,
the source term is given by F : Ω0 × [0, T ] → R and the function G defines the boundary
load on Γ0

+ ∪ Γ0
−. The initial conditions involve the initial displacement U 0 and the initial

velocity field V 0 at the initial time t = 0.

Assuming that the displacement U , the velocity field, the source term F and the bound-
ary load G can be written in terms of its transversal components as

U(x1, x2, x3) = U(x1, x2)e3,
∂U

∂t
(x1, x2, x3) = V (x1, x2)e3,

F (x1, x2, x3) = F (x1, x2)e3, G(x1, x2, x3) = G(x1, x2)e3,

considering the speed of sound of shear waves

c =

√
µ

ρ
,

and abusing the notation in the boundary load, that is G/ρ, the problem (3.1)-(3.4) can be
rewritten as follows (see [1] for more details).

Consider a two-dimensional domain, Ω, divided into two parts which represent two
layers of different elastic nature, Ω = Ω+ ∪Ω−. It is assumed that the boundary of Ω splits
into a Neumann and a Robin boundary. In Figure 3.1 a particular case of this situation is
depicted (in fact, this kind rectangular domains will be used for computational purposes):

Ω = (0, 1)× (−a,H), Ω+ = (0, 1)× (0, H), and Ω− = (0, 1)× (−a, 0).

In this case, it is assumed that the Neumann boundary conditions are placed over Γ+∪Γ−,
and the Robin boundary conditions are placed over Γe ∪ Γs, where

Γ+ = [0, L]× {H}, Γ− = [0, L]× {−a}, Γe = {0} × [−a,H], and Γs = {L} × [−a,H].
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Ω−

Ω+

Γ−

Γ+

Γe Γs

x2 = −a

x2 = H

x1 = 0 x1 = L

Figure 3.1: Computational domain of the bi-layered elastic material.

The transverse displacement U : Ω× [0, T ]→ R satisfies the following governing equa-
tions:

∂2U

∂t2
− div

(
c2∇U

)
= F in Ω× [0, T ], (3.5)

c2∂U

∂ν
= G on {Γ+ ∪ Γ−} × [0, T ], (3.6)

β
∂U

∂t
+ c

∂U

∂ν
= R on {Γe ∪ Γs} × [0, T ], (3.7)

U |t=0 = U0 in Ω, (3.8)

∂U

∂t

∣∣∣∣
t=0

= V0 in Ω, (3.9)

where ν is the unit normal vector along the boundary ∂Ω and outwards the domain Ω,
the source term is given by F : Ω × [0, T ] → R and the functions G and R define the
boundary loads on Γ+ ∪ Γ− and Γe ∪ Γs, respectively. The initial conditions in (3.8)-(3.9)
involve the initial displacement U0 and the initial velocity field V0 at the initial time t = 0.
The parameter β in the boundary condition (3.7) could be null, to model boundary load
conditions (Neumann conditions), or any other non-null value (for instance, β = 1 to
reproduce a first-order absorbing boundary condition on the right and left boundaries of
the computational domain).

Since the linear model (3.5)-(3.9) characterizes the mechanical behaviour of a bi-layered
material, the transverse speed of sound c is defined as a piecewise-constant function given
by

c(x) =

{
c+ if x ∈ Ω+,

c− if x ∈ Ω−,

where 0 < c− < c+. Due to the discontinuity of the speed of sound, the governing equations
in (3.8)-(3.9) implicitly assume the following coupling conditions on the interface boundary



110 A modal-based PUFEM in layered media

ΓI = Ω+ ∩ Ω−:

U |Ω− = U |Ω+
on ΓI × [0, T ],

c2
−
∂U

∂ν

∣∣∣∣
Ω−

= c2
+

∂U

∂ν

∣∣∣∣
Ω+

on ΓI × [0, T ],

where ν is the unit normal vector outwards to Ω−.

3.2.1 Time-harmonic problem

To study the time-harmonic behaviour of the mechanical system, it will be assumed
that the source term and the boundary loads are time-harmonic functions, this is, formally
it is supposed that there exist spatial-dependent functions f , g and r such that

F = <
(
fe−iωt

)
, G = <

(
g e−iωt

)
, R = <

(
re−iωt

)
,

being ω the angular frequency of the time-harmonic excitations. In this case, due to the
linearity of the model problem (3.5)-(3.7), the long-time behaviour of the transverse dis-
placement admits also a time-harmonic representation given by U = < (ue−iωt), being u
the complex-valued displacement field at time-harmonic regime. Hence, the time-harmonic
problem can be stated as follows: find the complex-valued transverse displacement field
u : Ω→ C such that it holds

−ω2u− div
(
c2∇u

)
= f in Ω+ ∪ Ω−, (3.10)

c2 ∂u

∂ν
= g on Γ+ ∪ Γ−, (3.11)

−iωβu+ c
∂u

∂ν
= r on Γe ∪ Γs, (3.12)

u|Ω− = u|Ω+
on ΓI , (3.13)

c2
−
∂u

∂ν

∣∣∣∣
Ω−

= c2
+

∂u

∂ν

∣∣∣∣
Ω+

on ΓI . (3.14)

We recall that here f is the complex-valued source term, g is the complex-valued boundary
term associated to the Neumann boundary condition and r is the complex-valued term
arising in the right-hand side of the Robin boundary condition.

3.2.2 Variational formulation

In order to derive the weak problem associated to the time-harmonic problem (3.10)-
(3.14), a classical Green’s formula plays a key role. More precisely, if Ω is a regular domain
with piecewise Lipschitz boundary and it is assumed a complex-valued vector function
ϕ ∈ H(div,Ω), then the following Green’s formula holds for any complex-valued function
φ ∈ H1(Ω): ∫

Ω

divϕ φ̄ dx+

∫
Ω

ϕ · ∇φ̄ dx =

∫
∂Ω

(ϕ · ν) φ̄ dσ,
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where ν is the unit normal vector on boundary ∂Ω and outwards Ω, and dx and dσ indicates
area integration in a two-dimensional domain and integration on a boundary, respectively.
Taking into account the Green’s formula stated above, if the Helmholtz equation (3.10) is
multiplied by a test function φ ∈ H1(Ω±) and considering ϕ = c2

±∇u, it is obtained, after
integrating in Ω+ and Ω− separately,∫

Ω+

c2
+∇u · ∇φ̄ dx− ω2

∫
Ω+

uφ̄ dx−
∫
∂Ω+

c2
+

∂u

∂ν
φ̄ dσ =

∫
Ω+

fφ̄ dx,∫
Ω−

c2
−∇u · ∇φ̄ dx− ω2

∫
Ω−

uφ̄ dx−
∫
∂Ω−

c2
−
∂u

∂ν
φ̄ dσ =

∫
Ω−

fφ̄ dx.

Now, if the boundary and coupling conditions are used to rewrite the boundary terms
arising in the left hand side of the two equations written above and then both equations
are added, the variational formulation of the time-harmonic problem is given by∫

Ω

c2∇u · ∇φ̄ dx− ω2

∫
Ω

uφ̄ dx− iωβ
∫

Γe∪Γs

c uφ̄ dσ

=

∫
Ω

fφ̄ dx+

∫
Γ+∪Γ−

gφ̄ dσ +

∫
Γe∪Γs

c rφ̄ dσ.

Hence, taking into account an adequate functional space setting for the data and for the
unknown field in order to obtain a well-posed weak problem, it is necessary to introduce
the bounded sesquilinear form Aβ : H1(Ω) × H1(Ω) → C associated to the variational
formulation and defined by

Aβ(z, φ) =

∫
Ω

c2∇z · ∇φ̄ dx− iωβ
∫

Γe∪Γs

c zφ̄ dσ, z, φ ∈ H1(Ω), (3.15)

and given f ∈ L2(Ω), cr ∈ H−
1
2 (Γe∪Γs), and g ∈ H−

1
2 (Γ+∪Γ−) it can be defined the linear

functional ` : H1(Ω)→ C by

`(φ) =

∫
Ω

fφ̄ dx+

∫
Γ+∪Γ−

gφ̄ dσ +

∫
Γe∪Γs

c rφ̄ dσ, φ ∈ H1(Ω), (3.16)

where the integral notation has been abused since the second and third integrals should be
understood as a duality pair product between elements in H

1
2 (Γ+ ∪ Γ−) and H

1
2 (Γe ∪ Γs)

spaces and its corresponding dual spaces H−
1
2 (Γ+∪Γ−) and H−

1
2 (Γe∪Γs), respectively. For

instance, on Γe ∪ Γs the boundary term should be read∫
Γe∪Γs

ϕφ̄ dσ = 〈ϕ, φ〉
H−

1
2 (Γe),H

1
2 (Γe)

+ 〈ϕ, φ〉
H−

1
2 (Γs),H

1
2 (Γs)

.

Remark 3.2.1. The unusual condition cr ∈ H−
1
2 (Γe ∪ Γs) cannot be replaced by r ∈

H−
1
2 (Γe ∪ Γs) since c is a piecewise constant function with a jump discontinuity on Γe and
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Γs. In fact, if it is simply assumed r ∈ H−
1
2 (Γe∪Γs) then the duality product

∫
Γe
crφ̄ dσ would

be well defined only for those functions φ ∈ H1(Ω) whose traces hold cφ|Γe ∈ H
1
2 (Γe). In fact,

a sufficient condition to ensure that cφ|Γe ∈ H
1
2 (Γe) would be that φ|Γe∩∂Ω+ ∈ H

1
2
00(Γe∩∂Ω+)

and φ|Γe∩∂Ω− ∈ H
1
2
00(Γe ∩ ∂Ω−) (see [20] for a detailed discussion).

Hence, the transverse displacement field is the solution of the following weak problem:
Given the source term f ∈ L2(Ω), and the boundary loads cr ∈ H−

1
2 (Γe ∪ Γs) and g ∈

H−
1
2 (Γ+ ∪ Γ−), find u ∈ H1(Ω) such that

Aβ(u, φ)− ω2〈u, φ〉0,Ω = `(φ) for all φ ∈ H1(Ω). (3.17)

From the definition of the form Aβ, it could be defined the associated linear operator
Aβ : L2(Ω)→ L2(Ω) as follows:

given z ∈ L2(Ω), its image Aβz is defined as the solution of the variational problem

Aβ(Aβz, φ) + 〈Aβz, φ〉0,Ω = 〈z, φ〉0,Ω for all φ ∈ H1(Ω). (3.18)

Clearly, this operator Aβ is bounded due to the coercivity of the sesquilinear form Aβ(·, ·)+
〈·, ·〉0,Ω, but, in general, it is not self-adjoint since the sesquilinear form Aβ does not satisfy

Aβ(z, v) = Aβ(v, z). Only when β = 0, the sesquilinear form A0 is hermitian, and so
the bounded operator A0 is self-adjoint. In addition, since the solution of the variational
problem (3.18) belongs to H1(Ω), the operator A0 : L2(Ω) → L2(Ω) is compact due to the
compact inclusion of H1(Ω) into L2(Ω).

Consequently, for β = 0, the combination of the classical Fredholm’s alternative theorem
(see [44]) and the spectral decomposition of self-adjoint compact operators can be applied to
deduce the existence and uniqueness of solution of the weak problem, except for an infinitely
countable set of frequencies, which corresponds to the eigenvalues of finite multiplicity of
the operator A0 (see Section 3.3.2 for further details).

However, for the other cases where β > 0, it is necessary to characterize the spectrum of
a quadratic eigenvalue problem to derive such uniqueness and existence of solution in the
source problem. With this aim, the following section is devoted to the study of the spectral
analysis in these two cases separately (for β = 0 and β > 0).

3.3 Spectral analysis

The spectrum of operators associated to the source problem (3.17) is clearly of different
nature attending to the value of β. If β = 0, classical results on linear eigenvalue problems
lead to the conclusion that its spectrum is only given by the discrete spectrum (consisting
on a sequence of isolated eigenvalues of finite algebraic multiplicity). On the contrary, in
the case β > 0, the spectrum of the operator Aβ, associated to the quadratic eigenvalue
problem related to (3.17), contains both the discrete spectrum but also a non-empty es-
sential spectrum. In what follows, the characterization of both spectra are described in
detail.
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3.3.1 Spectral characterization for β > 0

The strong formulation of the spectral problem associated to the source problem (3.10)-
(3.14) consists in finding the eigenpairs (w, λ), w 6= 0, such that

λ2u− div
(
c2∇u

)
= 0 in Ω+ ∪ Ω−, (3.19)

c2 ∂u

∂ν
= 0 on Γ+ ∪ Γ−, (3.20)

λβu+ c
∂u

∂ν
= 0 on Γe ∪ Γs, (3.21)

u|Ω− = u|Ω+
on ΓI , (3.22)

c2
−
∂u

∂ν

∣∣∣∣
Ω−

= c2
+

∂u

∂ν

∣∣∣∣
Ω+

on ΓI . (3.23)

Obviously, due to the presence of terms multiplied by λ2 and λ, problem (3.19)-(3.23) is an
example of the so-called quadratic eigenvalue problems (see [7]). Consequently, the spectral
analysis cannot be based on the classical results regarding linear eigenvalue problems. The
analysis of the quadratic problem will be made following the guidelines described in [31] and,
more precisely, it has been developed a similar mathematical analysis to the one described
in [4], but adapted to the present functional framework.

In this way, instead of characterizing directly the spectrum of the quadratic problem
(3.19)-(3.23), it will be analysed the spectrum of a more general spectral quadratic problem,
which will be rewritten as a linear generalized eigenvalue problem. In what follows, each
one of these steps are described in detail.

Firstly, the new general quadratic spectral problem is introduced. Let α ≥ 0 be a
constant parameter, which is introduced in the original quadratic problem (3.19)-(3.23) on
the Robin boundary condition as follows:

λ2u− div
(
c2∇u

)
= 0 in Ω+ ∪ Ω−, (3.24)

c2 ∂u

∂ν
= 0 on Γ+ ∪ Γ−, (3.25)

(α + λβ)u+ c
∂u

∂ν
= 0 on Γe ∪ Γs, (3.26)

u|Ω− = u|Ω+
on ΓI , (3.27)

c2
−
∂u

∂ν

∣∣∣∣
Ω−

= c2
+

∂u

∂ν

∣∣∣∣
Ω+

on ΓI . (3.28)

Using similar arguments to those described in Section 3.2.2, the weak formulation of the
perturbed quadratic spectral problem for α, β ≥ 0 is stated as follows: Find λ ∈ C and
u ∈ H1(Ω), u 6= 0, such that∫

Ω

c2∇u·∇φ̄ dx+

∫
Γe∪Γs

αcuφ̄ dσ+λ

∫
Γe∪Γs

βcuφ̄ dσ+λ2

∫
Ω

uφ̄ dx = 0 for all φ ∈ H1(Ω).

(3.29)
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It is easy to check that any non-null eigensolution (λ 6= 0) of (3.29) satisfies Reλ < 0.

Proposition 3.3.1. Let λ ∈ C and 0 6= u ∈ H1(Ω) solution of the quadratic problem (3.29).
If α ≥ 0 and β > 0 then either λ = 0 or Reλ < 0.

Proof. If the eigenpair (λ, u) is solution of the quadratic problem (3.29), taking into account
φ = u, it holds Aλ2 +Bλ+ C = 0 with

A =

∫
Ω

|u|2 dx > 0, B =

∫
Γe∪Γs

cβ|u|2 dσ ≥ 0, and C =

∫
Ω

c2|∇u|2 dx+

∫
Γe∪Γs

cα|u|2 dσ ≥ 0.

Firstly, notice that for α > 0 it is easy to check that λ 6= 0, since C is an equivalent
H1(Ω)-norm of the function u (see Remark 3.3.3). Since λ = (−B ±

√
B2 − 4AC)/(2A), it

is straightforward to check that if C > 0 and B > 0 then Reλ < 0. To show it, two cases
must be distinguished: (i) if B2−4AC ≥ 0 and since C > 0 and A > 0 then B2−4AC < B2

and so −B +
√
B2 − 4AC < 0 (in addition, it is trivial that −B −

√
B2 − 4AC < 0); (ii) if

B2 − 4AC < 0 then Reλ = −B/(2A) < 0.
Finally, the limit cases C = 0 and B = 0 must be analysed. In the first case, (iii) if

C = 0 then λ = 0 or λ = −B/A. For B > 0, the statement is proved and the case B = 0
again implies λ = 0. The last case, (iv) if B = 0 then u = 0 on Γe ∪ Γs. From the spectral
problem (3.29) using as testing functions φ ∈ C∞(Ω̄) ⊂ H1(Ω), it holds∫

Ω

c2∇u · ∇φ̄ dx+ λ2

∫
Ω

uφ̄ dx = 0 for all φ ∈ C∞(Ω̄).

and hence, from a distributional sense, it leads to the conclusion that u is solution of the
following problem:

λ2u− div
(
c2∇u

)
= 0 in Ω, (3.30)

∂u

∂ν
= 0 on ∂Ω, (3.31)

u = 0 on Γe ∪ Γs. (3.32)

Consequently, u should be an eigenfunction of a second-order coercive elliptic operator (with
L∞-bounded coefficients in a two-dimensional smooth domain Ω) satisfying simultaneously
homogeneous Dirichlet and Neumann boundary conditions on Γs∪Γe. Using the Uniqueness
Principle of Continuation for local Cauchy data (see for instance [45]), the unique solution
of (3.30)-(3.32) is given by u = 0, what is not possible since u 6= 0 is an eigenfunction of
problem (3.29).

Remark 3.3.2. Despite the previous result for α ≥ 0 and β > 0, it cannot be guaranteed
the existence and uniqueness of solution of the source problem associated to the eigenvalue
problem (3.24)-(3.28) for complex-valued eigenvalues λ = −iω with ω > 0 due to the possible
presence of accumulation points in its spectra (part of the essential spectrum of the associated
operator) on the imaginary axis Reλ = 0. This is the main reason because of a detailed
analysis of the spectrum must be made.
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Remark 3.3.3. If α > 0 then λ = 0 is not an eigenvalue of the quadratic problem (3.29)
since

‖u‖2
α =

∫
Ω

c2|∇u|2 dx+

∫
Γe∪Γs

αc|u|2 dσ (3.33)

is an equivalent norm to the standard H1(Ω)-norm. In fact, the first integral in the ex-
pression above is the classical semi-norm in H1(Ω) and the second boundary integral is a
continuous semi-norm in H1(Ω), whose value is null only for the null constant function
(among the polynomials of order zero). Hence, from [3, Theorem 7.3.12 ], it is ensured that
‖ · ‖α is an equivalent norm to the standard H1(Ω)-norm.

Using an standard procedure, the quadratic eigenvalue problem (3.29) can be rewritten
as a linear eigenvalue problem doubling the size of the spectral problem. With this aim,
there exist multiple ways to write such an equivalent linear eigenvalue problem. Following
the ideas presented in [4], an equivalent linear eigenvalue problem is rewritten as follows:
The linear eigenvalue problem is introduced by considering the new unknown function
v = λu. So the original weak formulation of the spectral problem can be stated: Find
λ ∈ C and (u, v) ∈ H1(Ω)× L2(Ω) with (u, v) 6= (0, 0) such that∫

Ω

c2∇u · ∇φ̄ dx+

∫
Γe∪Γs

αcuφ̄ dσ = λ

(
−
∫

Γe∪Γs

βcuφ̄ dσ −
∫

Ω

vφ̄ dx

)
, (3.34)∫

Ω

vψ̄ dx = λ

∫
Ω

uψ̄ dx, (3.35)

for all (φ, ψ) ∈ H1(Ω)× L2(Ω). Now, the next step consists in showing the equivalence be-
tween the linear spectral problem (3.34)-(3.35) and the perturbed quadratic problem (3.29).

Lemma 3.3.4. For α ≥ 0, the pair (λ, u) ∈ C × H1(Ω) is an eigenpair of the quadratic
problem (3.29) if and only if (λ, (u, v)) ∈ C× (H1(Ω)× L2(Ω)) is an eigenpair of the linear
problem (3.34)-(3.35).

Proof. Firstly, if an eigensolution (λ, u) of (3.29) is fixed, v can be defined as v = λu ∈
H1(Ω) ⊂ L2(Ω) (it holds from (3.35) due to the density of H1(Ω) in L2(Ω)). Then, if the
expression of v is inserted in (3.34), the resulting expression coincides with (3.29), and
hence u is also solution of (3.34). Reciprocally, if (λ, (u, v)) is an eigenpair of the linear
problem (3.34)-(3.35), inserting (3.35) in (3.34), it holds straightforwardly the original
quadratic problem (3.29).

Due to this equivalence between the quadratic problem and this linear spectral problem,
studying the eigensolutions of the quadratic problem will be equivalent to analysing the
spectrum of the linear operator associated to (3.34)-(3.35). Such analysis will be different
from α = 0 and α > 0. So, despite its similarities, for completeness in the description of
the mathematical analysis, both cases will be considered separately.
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Spectrum for α, β > 0

If α > 0 then λ = 0 is not an eigenvalue of problem (3.34)-(3.35), since from (3.34) with
φ = u it is deduced that ‖u‖α = 0 and from (3.35) it holds v = 0, so (u, v) = (0, 0). Now,
the operators associated to the perturbed linear problem (3.34)-(3.35) will be introduced.
For this purpose, consider the sesquilinear form B : H1(Ω)× H1(Ω)→ C defined by

B(u, φ) =

∫
Ω

c2∇u · ∇φ̄ dx+

∫
Γe∪Γs

αcuφ̄ dσ for all u, φ ∈ H1(Ω),

and the sesquilinear forms B̃, D̃ : V × V→ C with V = H1(Ω)× L2(Ω) given by

B̃((u, v), (φ, ψ)) = B(u, φ) +

∫
Ω

vψ̄ dx, (3.36)

D̃((u, v), (φ, ψ)) = −
∫

Γe∪Γs

βcuφ̄ dσ −
∫

Ω

vφ̄ dx+

∫
Ω

uψ̄ dx, (3.37)

for all (u, v), (φ, ψ) ∈ V. From the definitions written above, if α > 0 then it is trivial to
check that form B is H1(Ω)-coercive (in fact, it is the inner product associated to the H1(Ω)
norm ‖ · ‖α). Consequently, it also holds that B̃ is V-coercive. Now, let be the bounded
linear operator B : V→ V defined such that B(f, g) = (u, v) if and only if

B̃((u, v), (φ, ψ)) = D̃((f, g), (φ, ψ)) for all (φ, ψ) ∈ V. (3.38)

Taking into account this definition and those tests functions with φ = 0, it is clear v = f
and hence u is solution of the variational problem

B(u, φ) = −
∫

Γe∪Γs

βcfφ̄ dσ −
∫

Ω

gψ̄ dx for all φ ∈ H1(Ω),

which has an unique solution due the H1(Ω)-coercivity of B (using the Lax-Milgram theo-
rem). Hence, the operator B is well-defined.

Lemma 3.3.5. For α > 0, (µ, (u, v)) is an eigenpair of B with µ 6= 0 if and only if and
(1/µ, (u, v)) is an eigensolution of (3.34)-(3.35).

Proof. If (µ, (u, v)) is an eigenpair of B with µ 6= 0 then, from (3.38), it holds

B̃((u, v), (φ, ψ)) =
1

µ
D̃((u, v), (φ, ψ)) for all (φ, ψ) ∈ V. (3.39)

and hence similar arguments to those ones used to split the definition of each component of
the image of B (taking as test functions those ones with φ = 0) leads to v = u/µ ∈ H1(Ω)
and consequently (3.35) holds with λ = 1/µ. Inserting the expression of v in (3.39), it
again results (3.35) with λ = 1/µ. Hence, (1/µ, (u, v)) is an eigensolution of (3.34)-(3.35).
Conversely, let (1/µ, (u, v)) and eigensolution of (3.34)-(3.35), adding both equations it is
obtained (3.39).
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Since B is a bounded operator in V, in general its spectrum σ(B) could be formed
by the discrete spectrum (set of isolated eigenvalues of finite algebraic multiplicity) and
the essential spectrum (the set of eigenvalues of infinite algebraic multiplicity and the
accumulation points of σ(B)). To characterize the spectrum of B, the ideas introduced
in [31] (and, in particular, in [4]) will be followed.

With this aim, two new bounded operators B1 : H1(Ω) → H1(Ω) and B2 : L2(Ω) →
H1(Ω) are considered:

B1f = u1 ∈ H1(Ω) : B(u1, φ) =

∫
Γe∪Γs

βcfφ̄ dσ for all φ ∈ H1(Ω), (3.40)

B2g = u2 ∈ H1(Ω) : B(u2, φ) =

∫
Ω

gφ̄ dσ for all φ ∈ H1(Ω). (3.41)

Both operators are well defined since the sesquilinear form is H1(Ω)-coercive. In addition,
since B is hermitian they are self-adjoint and due to the Lax-Milgram theorem, the solution
of the variational problems (3.40)-(3.41) depends continuously on the data and consequently
B1 and B2 are bounded operators in H1(Ω) and L2(Ω), respectively. Moreover, due to the
regularity of the solution of the elliptic problem with piecewise constant coefficients in an
smooth domain and L2(Ω) source data, then u ∈ H1+s(Ω) for some s > 0 (due to the
presence of a cross-point on the boundary, see [20, 30] for further details). Hence, using the
compact embedding of H1+s(Ω) in H1(Ω), it is clear that B2 is compact. In addition, B2 is
positive definite with respect to the inner product B(·, ·) since

B(B2g, g) = B(u2, g) =

∫
Ω

|g|2 dx > 0 for all g ∈ H1(Ω), g 6= 0.

Taking into account the definitions (3.40)-(3.41) of bounded operators B1 and B2, the
operator B acting on V can be rewritten in terms of a block operator matrix acting on
V = H1(Ω)× L2(Ω) as follows:

B =

(
−B1 −B2

I 0

)
. (3.42)

Since B2 is compact and positive definite, it admits the computation of its square root

operator B
1
2
2 (by using the projections onto its spectral basis [29]). If the operators S, U

and H are defined by

S =

(
I 0

0 B
1
2
2

)
, U =

(
−B1 −B

1
2
2

I 0

)
, and H =

(
−B1 −B

1
2
2

B
1
2
2 0

)
.

It is straightforward to show that SB = HS, B = US, H = SU , and UH = BU . In
addition, due to the positive definite character, B2 is invertible (0 /∈ σ(B2)) and hence the
operators S, U , and H are also invertible and the following result follows.

Proposition 3.3.6. The spectrum of operator B and H coincides.
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Proof. See [4] for a detailed proof, where it is shown that the eigenvalues of B and H and
their algebraic multiplicities coincide. The proof is based on the analysis of the Jordan
chains associated to each eigenvalue.

Since the operator H can be written as the sum of a self-adjoint operator E and a
compact operator C as follows

H = E + C with E =

(
−B1 0

0 0

)
and C =

(
0 −B

1
2
2

B
1
2
2 0

)
(3.43)

then it is trivial to check using the Weyl’s theorem (see for instance [44]) that H and B
share the same essential spectrum, and hence

σess(H) = σess(B) = σess(B1) ∪ {0}, σdisc(H) = σ(H) \ σess(H).

Lemma 3.3.7. For α > 0, σess(B1) = {0}.

Proof. It is clear from the definition of operator B1 that λ = 0 is an eigenvalue of infinite
algebraic multiplicity since any function in v ∈ H1

Γe∪Γs
(Ω) satisfies B1v = 0. Straightforward

computation also show that λ = β/α is one of its isolated eigenvalues of finite algebraic
multiplicity whose eigenfunctions are the constant functions. Due to the self-adjoint char-
acter of B1, the rest of the eigenfunctions are in the orthogonal space of the direct sum of
the subspace generated for both the eigenfunctions associated to both eigenvalues. Hence,
its orthogonal complement will be computed with respect to the inner product B, this is

X = {w ∈ H1(Ω) : B(w, φ) = 0, for all φ ∈ H1
Γe∪Γs(Ω) and φ = 1},

and it holds σ(B1) = {0, β/α} ∪ σ(B1|X). Since B(w, φ) =
∫

Ω
c2∇w · ∇φ dx = 0 for all

φ ∈ H1
Γe∪Γs

(Ω), using φ ∈ C∞(Ω̄) such that φ|Γe∪Γs = 0, any w ∈ X is solution of the
following problem in the sense of the distributions:

−div(c2∇w) = 0 in Ω, (3.44)

w = g on Γe ∪ Γs, (3.45)

c2∂w

∂n
= 0 on Γ+ ∪ Γ−, (3.46)

where the Dirichlet boundary data g ∈ H
1
2 (Γe ∪ Γs) holds the orthogonality condition∫

Γe∪Γs
cg dσ = 0. Let T : H

1
2 (Γe∪Γs)→ H1(Ω) be the operator defined by w = T g being w

the solution of the variational problem associated to (3.44)-(3.46). The coercive character
of this problem and the use of the Lax-Milgram theorem ensures that T is well-defined. In
addition, a standard Green’s formula shows that if w = T g then∫

Ω

c2∇w · ∇φ̄ dx =

∫
Γe∪Γs

c2∂w

∂n
φ̄ dσ = 0 for all φ ∈ H1(Ω). (3.47)
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Analogously, since λ = 0 /∈ σ(B1|X), the spectral problem B1|Xw = λw admits the varia-
tional formulation∫

Ω

c2∇u · ∇φ̄ dx =
β − λα
λ

∫
Γe∪Γs

cuφ̄ dσ = 0 for all φ ∈ H1(Ω). (3.48)

Comparing the variational terms in (3.47) and (3.48), it follows that the spectral problem
restricted to the subspace X can be rewritten as

c
∂

∂n
T g =

β − λα
λ

g, (3.49)

for those g ∈ H
1
2 (Γe∪Γs) satisfying

∫
Γe∪Γs

cg dσ = 0. Clearly, ∂nT : H
1
2 (Γe∪Γs)→ H−

1
2 (Γe∪

Γs) is a linear bounded operator due to the boundedness character of the normal derivative
of the solution of a second-order coercive elliptic problem stated in an smooth domain
(see [20]). In addition, ∂nT has a bounded inverse (∂nT )−1 : H−

1
2 (Γe ∪ Γs)→ H

1
2 (Γe ∪ Γs)

defined as follows: if f ∈ H−
1
2 (Γe ∪ Γs) (∂nT )−1f is defined as the trace on Γe ∪ Γs of the

solution v of the problem

−div(c2∇z) = 0 in Ω, (3.50)

c2 ∂z

∂n
= f on Γe ∪ Γs, (3.51)

c2 ∂z

∂n
= 0 on Γ+ ∪ Γ−. (3.52)

Due to the existence and uniqueness solution of the Laplace like problem, the inverse oper-
ator is well-defined and since the solution of this second-elliptic problem depends continu-
ously with respect to the Neumann boundary data f , then (∂nT )−1 is a bounded operator.
To check that it is actually the inverse of ∂nT , it is enough to consider f = ∂nw on Γe ∪Γs
in (3.50)-(3.52) being u the weak solution of (3.44)-(3.46) and consider the trace of z on
Γe ∪ Γs, i.e., g = z|Γe∪Γs , in (3.44)-(3.46) being w the weak solution of (3.50)-(3.52). In
both cases, due to the existence and uniqueness of solutions of both Laplace problems, it is
obtained that z (the solution of problem (3.50)-(3.52)) is solution of (3.44)-(3.46) and recip-
rocally, w (the solution of problem (3.44)-(3.46)) coincides with the solution of (3.50)-(3.52).

This fact shows that (∂nT )(∂nT )−1 is the identity in H−
1
2 (Γe ∪ Γs) and (∂nT )−1(∂nT ) is

the identity in H
1
2 (Γe ∪ Γs).

Finally, applying (∂nT )−1 in (3.49) and taking into account that λ = α/β /∈ σ(B1|X),

the following spectral problem is obtained: find (µ, g) ∈ C× H
1
2 (Γe ∪ Γs), g 6= 0 satisfying∫

Γe∪Γs
cg dσ = 0, such that

(
(∂nT )−1 ◦ i∗

) g
c
− µg = 0 with µ =

λ

β − λα, (3.53)

where i∗ is the dual continuous embedding operator from L2(Γe∪Γs) to H−
1
2 (Γe∪Γs). Since

the continuous embedding i : H
1
2 (Γe ∪ Γs) → L2(Γe ∪ Γs) is compact (and using the Riesz
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identification of L2(Γe∪Γs) with its dual space) then also i∗ is compact and consequently the
composition operator (∂nT )−1 ◦ i∗ is compact. Hence, the spectral decomposition theorem
for compact operators can be applied to show that there exists only an isolated countable
discrete set of eigenvalues for the spectral problem (3.53). Hence, it is concluded that
σ(B1|X) is discrete and so σess(B1|X) = ∅. Hence, using again that σ(B1) = {0, β/α} ∪
σ(B1|X), and since α/β is an isolated eigenvalue of finite multiplicity and only λ = 0 has
infinite multiplicity, it is obtained that σess(B1) = {0}.

In summary, the spectrum of H (and hence the spectrum of B too) is composed by the
null value (the essential spectrum composed by an eigenvalue of infinite multiplicity) and
a countable discrete (isolated) set of eigenvalues with finite algebraic multiplicity. Since
Lemmas 3.3.4 and 3.3.10 ensure the equivalence between the spectrum {µj}j∈N ∪ {0} of
operator B and eigenvalues {λj = 1/µj}j∈N of the perturbed quadratic problem (3.29) with
α, β > 0, then the eigensolutions of the perturbed quadratic problem are given by the
union of a discrete set of pairs {(λj, uj)}j∈N with finite algebraic multiplicity, with +∞
as the unique accumulation point, which could be formally associated to an eigenvalue of
infinite algebraic multiplicity.

Finally, this spectral characterization leads to the following existence and uniqueness
result on the solution of a perturbed source problem.

Theorem 3.3.8. For any ω > 0 and α, β > 0 and given f ∈ L2(Ω), cr ∈ H−
1
2 (Γe ∪ Γs),

and g ∈ H−
1
2 (Γ+∪Γ−), there exists an unique solution u ∈ H1(Ω) of the variational problem

associated to the time-harmonic source problem (3.10)-(3.14), where the first Robin term in
(3.12), −iωβu, has been replaced by α− iωβu.

Proof. Due the discrete character of the eigensolutions {(λj, uj)}j∈N of the associated spec-
tral quadratic problem (3.29) and since Reλj > 0 with an unique accumulation point at
+∞, all the complex values λ = −iω with ω > 0 do not belong to the spectrum of the
quadratic problem. Now, taking into account that the variational problem (3.17) associ-
ated to the source problem (with the modification in the Robin boundary condition) can
be rewritten as

B̃((u, v), (φ, ψ)) + iωD̃((u, v), (φ, ψ)) = `(φ) for all (φ, ψ) ∈ H1(Ω)× L2(Ω),

with the linear form ` defined by (3.16), then the Fredholm’s alternative applied to operator
B ensures that the solution of the source problem exists and it is unique.

Spectrum for α = 0 and β > 0

If the quadratic problem is stated in the case of α = 0 and β > 0 then λ = 0 is an
eigenvalue since the constant functions satisfies the quadratic problem (3.19)-(3.23) with
a null eigenvalue. In that case, following [4], the variational formulation of the quadratic
problem cannot be stated in whole space H1(Ω) and it should be restricted to an subspace
which should contain all the eigenfunctions of the quadratic problem different from the
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constant ones. To define such subspace, consider an eigenmode ((u, v), λ) ∈ (H1(Ω) ×
L2(Ω)) × C with λ 6= 0 of the equivalent linear problem (3.34)-(3.35) with α = 0. Taking
into account that the (u, v) = (1, 0) is the eigenmode associated to λ = 0, if the test function
is chosen as (φ, ψ) = (1, 0) then from (3.34)-(3.35), it holds∫

Γe∪Γs

βcu dσ +

∫
Ω

v dx = 0,

which is equivalent to the orthogonality condition

〈u, 1〉β + 〈v, 1〉L2(Ω) = 0, (3.54)

being 〈·, ·〉β the H1(Ω)-inner product

〈φ, ψ〉β =

∫
Ω

c2∇φ · ∇ψ̄ dx+

∫
Γe∪Γs

βcφψ̄ dσ. (3.55)

This inner product is equivalent to the usual H1(Ω) inner product using the arguments
described in Remark 3.3.3 (replacing there the role of α and β play in the norm ‖ · ‖α).

In conclusion, the spectral analysis of the linear eigenvalue problem (3.34)-(3.35) will
be restricted to the subspace

V = {(φ, ψ) ∈ H1(Ω)× L2(Ω) : 〈φ, 1〉β + 〈ψ, 1〉L2(Ω) = 0}. (3.56)

Regarding the definition of V, it will be useful to rewrite this orthogonal complement of the
one-dimensional space K = 〈1〉 ⊂ H1(Ω) in terms of different subspaces, which take into
account the orthogonal restriction of each component in H1(Ω) and L2(Ω) separately.

Lemma 3.3.9. Let V ⊂ H1(Ω)× L2(Ω) be defined by (3.56) and K = 〈1〉, it holds:

(i) If K⊥ is the orthogonal complement of K in L2(Ω) with respect to the standard L2(Ω)-
inner product, and |Ω| and |Γe ∪ Γs| denote the Lebesgue measures of domains Ω and
Γe ∪ Γs using the measures dx and βc dσ, respectively, then

V =
(
K⊥β × {0}

)
⊕
(
{0} ×K⊥

)
⊕ 〈(|Ω|,−|Γe ∪ Γs|)〉 , (3.57)

(ii) If W ⊂ H1(Ω)× L2(Ω) is defined by

W =

{(
− 1

|Γe ∪ Γs|

∫
Ω

ψ dx, ψ

)
: ψ ∈ L2(Ω)

}
(3.58)

then V =
(
K⊥β × {0}

)
⊕W.

Proof. (i) From the subspace defined in the right-hand side of (3.57), it is clear that each
subspace K⊥β ×{0}, {0}×K⊥, and (|Ω|,−|Γe∪Γs|) satisfy the orthogonal condition stated
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in (3.56). Hence, its direct sum is contained in V. From (3.56), it is also clear that
H1(Ω)× L2(Ω) = V ⊕ 〈(1, 1)〉, so to conclude (3.57), it is enough to check that it holds

H1(Ω)× L2(Ω) =
(
K⊥β × {0}

)
⊕
(
{0} ×K⊥

)
⊕ 〈(|Ω|,−|Γe ∪ Γs|)〉 ⊕ 〈(1, 1)〉 . (3.59)

Since the measures of domains Ω and Γe∪Γs are strictly positive, the direct sum of the two
last subspaces in (3.59) generate the two-dimensional constant space {(γ, δ) : γ, δ ∈ C}.
Hence, since any (φ, ψ) ∈ H1(Ω)× L2(Ω) can be rewritten as follows

(φ, ψ) =

(
φ− 1

|Γe ∪ Γs|

∫
Γe∪Γs

cβφ dσ, 0

)
+

(
0, ψ − 1

|Ω|

∫
Ω

ψ dx

)
+

(
1

|Γe ∪ Γs|

∫
Γe∪Γs

cβφ,
1

|Ω|

∫
Ω

ψ dx

)
,

then (3.59) holds since the first term belongs to K⊥β and the second one is in K⊥. Conse-
quently (3.57) is verified.

(ii) To show (3.58), it is equivalent to show W =
(
{0} ×K⊥

)
⊕ 〈(|Ω|,−|Γe ∪ Γs|)〉 by

using (3.57). For any ψ ∈ L2(Ω), it is clear that(
− 1

|Γe ∪ Γs|

∫
Ω

ψ dx, ψ

)
=

(
0, ψ − 1

|Ω|

∫
Ω

ψ dx

)
︸ ︷︷ ︸

∈{0}×K⊥

−
(

1

|Γe ∪ Γs||Ω|

∫
Ω

ψ dx

)
(|Ω|,−|Γe ∪ Γs|)

what leads to W ⊆
(
{0} ×K⊥

)
⊕ 〈(|Ω|,−|Γe ∪ Γs|)〉. Conversely, consider any element of(

{0} ×K⊥
)
⊕ 〈(|Ω|,−|Γe ∪ Γs|)〉. It is given by (γ|Ω|, ϕ − γ|Γe ∪ Γs|) with ϕ ∈ K⊥ and

γ ∈ C. It is obvious that ψ = ϕ− γ|Γe ∪ Γs| belongs to L2(Ω) and moreover

− 1

|Γe ∪ Γs|

∫
Ω

ψ dx = − 1

|Γe ∪ Γs|

∫
Ω

(ϕ− γ|Γe ∪ Γs|) dx = γ|Ω|,

since
∫

Ω
ϕ dx = 0. Hence,

(
{0} ×K⊥

)
⊕ 〈(|Ω|,−|Γe ∪ Γs|)〉 ⊆ W and consequently (3.58)

is obtained.

In the case of α = 0, for those eigenfunctions in V all the eigenvalues of (3.34)-(3.35)
are not null and satisfy Reλ < 0. Now, the operators associated to the perturbed linear
problem (3.34)-(3.35) will be introduced. For this purpose, consider the sesquilinear form
B : K⊥β ×K⊥β → C defined by

B(u, φ) =

∫
Ω

c2∇u · ∇φ̄ dx for all u, φ ∈ K⊥β ,

and the sesquilinear forms B̃, D̃ : V × V→ C with V =
(
K⊥β × {0}

)
⊕W given by

B̃((u, v), (φ, ψ)) = B(u, φ) +

∫
Ω

vψ̄ dx, (3.60)

D̃((u, v), (φ, ψ)) = −
∫

Γe∪Γs

βcuφ̄ dσ −
∫

Ω

vφ̄ dx+

∫
Ω

uψ̄ dx, (3.61)



3.3. Spectral analysis 123

for all (u, v), (φ, ψ) ∈ V. From the definitions written above, it is trivial to check that form
B is K⊥β -coercive (since the sesquilinear form B coincides with the inner product 〈·, ·〉β in
K⊥β). Consequently, it also holds that B̃ is V-coercive. Now, define the bounded linear
operator B : V→ V such that B(f, g) = (u, v) if and only if

B̃((u, v), (φ, ψ)) = D̃((f, g), (φ, ψ)) for all (φ, ψ) ∈ V. (3.62)

Taking into account this definition and those tests functions with φ = 0, it is clear v = f
and hence u is solution of the variational problem

B(u, φ) = −
∫

Γe∪Γs

βcfφ̄ dσ −
∫

Ω

gψ̄ dx for all φ ∈ K⊥β ,

which has an unique solution due the K⊥β -coercivity of B (using the Lax-Milgram theorem).
Hence, the operator B is well-defined.

Lemma 3.3.10. For α = 0 and β > 0, (µ, (u, v)) is an eigenpair of B with µ 6= 0 if and
only if and (1/µ, (u, v)) is an eigensolution of (3.34)-(3.35).

Proof. If (µ, (u, v)) is an eigenpair of B with µ 6= 0 then, from (3.62), it holds

B̃((u, v), (φ, ψ)) =
1

µ
D̃((u, v), (φ, ψ)) for all (φ, ψ) ∈ V. (3.63)

and hence similar arguments to those ones used to split the definition of each component
of the image of B (taking as test functions those ones in W) leads to v = u/µ ∈ L2(Ω)
and consequently (3.35) holds with λ = 1/µ. Inserting the expression of v in (3.63), it
again results (3.35) with λ = 1/µ for those test functions in V. To show that (3.34) is is
satisfied for any test function in H1(Ω) × L2(Ω), it is easy to check (3.63) holds inserting
(φ, ψ) = (1, 1). In that case, since (u, v) ∈ V, this choice of test functions leads to∫

Ω

v dx =
1

µ

∫
Ω

u dx,

which is verified since v = u/µ. Hence, (1/µ, (u, v)) is an eigensolution of (3.34)-(3.35).
Conversely, let (1/µ, (u, v)) be an eigensolution of (3.34)-(3.35), adding both equations it
is obtained (3.63) for any test function in H1(Ω)×L2(Ω), and, in particular, in V. To show
that (u, v) ∈ V for µ 6= 0, it is only necessary to recall that V has been defined by using
the orthogonality condition (3.54), coming from (3.34)-(3.35) with test function (1, 0) (the
eigenfunction associated to the null eigenvalue).

Since B is a bounded operator in V, in general its spectrum σ(B) could be formed
by the discrete spectrum (set of isolated eigenvalues of finite algebraic multiplicity) and
the essential spectrum (the set of eigenvalues of infinite algebraic multiplicity and the
accumulation points of σ(B)). To characterize the spectrum of B, the ideas introduced
in [31] (and, in particular, in [4]) will be followed.
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With this aim, the operator B will be written as a matrix of operators acting on K⊥β ×
L2(Ω). Notice that this identification between B and its matrix rewriting can be done since
V =

(
K⊥β × {0}

)
⊕W and K⊥β × {0} is isometric to K⊥β and W is isometric to L2(Ω).

In that manner, four operators should be considered using different variational problems
restricted to K⊥β ×{0} and W. The first problem defines the operator B1 as follows: given
f ∈ K⊥β , find u1 = B1f ∈ K⊥β such that it is the solution of the variational problem

B̃((u1, 0), (φ, 0)) = −D̃((f, 0), (φ, 0)) for all φ ∈ K⊥β .

Due to the orthogonality condition on f and B(φ, 1) = 0 for all φ ∈ H1(Ω), the variational
problem stated above is equivalent to find u1 ∈ K⊥β such that

B1f = u1 ∈ K⊥β : B(u1, φ) =

∫
Γe∪Γs

βcfφ̄ dσ for all φ ∈ H1(Ω). (3.64)

Since the sesquilinear form B is coercive in K⊥β then the operator B1 : K⊥β → K⊥β defined
by B1f = u1 is well-posed and bounded. The second problem defines the operator B2 as
follows: given g ∈ L2(Ω), find u2 = B2f ∈ K⊥β such that it is the solution of the variational
problem

B̃((u2, 0), (φ, 0)) = −D̃
((
− 1

|Γe ∪ Γs|

∫
Ω

g dx, g

)
, (φ, 0)

)
for all φ ∈ K⊥β .

Due to the orthogonality condition satisfied by the test functions the null average functions
in L2(Ω), the variational problem stated above is equivalent to find u2 ∈ K⊥β such that

B2g = u2 ∈ K⊥β : B(u2, φ) =

∫
Ω

(
g − 1

|Ω|

∫
Ω

g dx

)
φ̄ dx for all φ ∈ H1(Ω). (3.65)

Again, since the sesquilinear form B is coercive in K⊥β then the operator B2 : L2(Ω)→ K⊥β

defined by B2g = u2 is well-posed and bounded. The third problem is stated as follows:
given f ∈ K⊥β , find v1 ∈ L2(Ω) such that it is the solution of the variational problem

B̃

((
− 1

|Γe ∪ Γs|

∫
Ω

v1 dx, v1

)
,

(
− 1

|Γe ∪ Γs|

∫
Ω

ψ dx, ψ

))
= −D̃

(
(f, 0),

(
− 1

|Γe ∪ Γs|

∫
Ω

ψ dx, ψ

))
for all ψ ∈ L2(Ω).

Due to the orthogonality condition satisfied by f and since B(1, 1) = 0, the variational
problem stated above is equivalent to find v1 ∈ L2(Ω) such that∫

Ω

v1ψ̄ dx =

∫
Ω

fψ̄ dx for all ψ ∈ L2(Ω),

which leads to the identity operator I since v1 = If = f . Rigorously, I should be un-
derstood as the compact embedding of K⊥β in L2(Ω). However, since such compactness
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character will not be used throughout the rest of this section then the composition with
this compact embedding will be omitted and denoted by the identity operator I. Finally,
the fourth problem is stated as follows: given g ∈ L2(Ω), find v2 ∈ L2(Ω) such that it is the
solution of the variational problem

B̃

((
− 1

|Γe ∪ Γs|

∫
Ω

v2 dx, v2

)
,

(
− 1

|Γe ∪ Γs|

∫
Ω

ψ dx, ψ

))
= −D̃

((
− 1

|Γe ∪ Γs|

∫
Ω

g dx, g

)
,

(
− 1

|Γe ∪ Γs|

∫
Ω

ψ dx, ψ

))
for all ψ ∈ L2(Ω).

Since B(1, 1) = 0, the variational problem stated above is equivalent to find v2 ∈ L2(Ω)
such that∫

Ω

v2ψ̄ dx = −
∫

Γe∪Γs

βc

(
− 1

|Γe ∪ Γs|

∫
Ω

g dx

)(
− 1

|Γe ∪ Γs|

∫
Ω

ψ̄ dx

)
dσ

−
∫

Ω

g

(
− 1

|Γe ∪ Γs|

∫
Ω

ψ̄ dx

)
dx+

∫
Ω

(
− 1

|Γe ∪ Γs|

∫
Ω

g dx

)
ψ̄ dx

= − 1

|Γe ∪ Γs|

∫
Ω

g dx

∫
Ω

ψ̄ dx =

∫
Ω

(
− 1

|Γe ∪ Γs|

∫
Ω

g dx

)
ψ̄ dx

for all ψ ∈ L2(Ω) and hence the one-rank (and so compact) operator B3 : L2(Ω) → L2(Ω)
is a constant function given by

B3g = v2 ∈ L2(Ω) : v2 = − 1

|Γe ∪ Γs|

∫
Ω

g dx (3.66)

In addition, since B is hermitian, operator B1 is self-adjoint. Due to the Lax-Milgram
theorem, the solution of the variational problems (3.64)-(3.65) depends continuously on the
data and consequently B1 and B2 are bounded operators. Moreover, due to the regularity
of the solution of the elliptic problem with piecewise constant coefficients in an smooth
domain and L2(Ω) source data, then the variational problem (3.65) stated in H1(Ω) admits
the infinity family of solution of type u2 + γ with γ ∈ C and u2 ∈ H1+s(Ω) for some s > 0
(due to the presence of a cross-point on the boundary, see [20, 30] for further details).
Hence, using the compact embedding of H1+s(Ω) in H1(Ω) and fixing the value of γ with
the orthogonality condition of belonging to K⊥β , it is concluded that B2 is compact. In
addition, B2 is positive definite with respect to the inner product B(·, ·) since

B(B2g, g) = B

(
u2, g −

1

|Ω|

∫
Ω

g dx

)
=

∫
Ω

∣∣∣∣g − 1

|Ω|

∫
Ω

g dx

∣∣∣∣2 dx > 0,

for all g ∈ K⊥β , g 6= 0.
Taking into account the definitions (3.64)-(3.66) of bounded operators B1, B2 and B3,

the operator B acting on V can be rewritten in terms of a block operator matrix acting on
V = K⊥β × L2(Ω) as follows:

B =

(
−B1 −B2

I B3

)
(3.67)
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Since B2 is compact and positive definite, it admits the computation of its square root

operator B
1
2
2 (by using the projections onto its spectral basis [29]). If the operators S, U

and H are defined by

S =

(
−I 0

0 B
1
2
2

)
, U =

(
−B1 −B

1
2
2

I B3B−
1
2

2

)
, and H =

(
−B1 −B

1
2
2

B
1
2
2 B

1
2
2 B3B−

1
2

2

)
.

It is straightforward to show that SB = HS, B = US, H = SU , and UH = BU . In
addition, due to the positive definite character, B2 is invertible (0 /∈ σ(B2)) and hence the
operators S, U , and H are also invertible and the following result follows.

Proposition 3.3.11. The spectrum of operator B and H coincides.

Proof. See [4] for a detailed proof, where it is shown that the eigenvalues of B and H and
their algebraic multiplicities coincide. The proof is based on the analysis of the Jordan
chains associated to each eigenvalue.

Since the operator H can be written as the sum of a self-adjoint operator E and a
compact operator C as follows

H = E + C with E =

(
−B1 0

0 0

)
and C =

(
0 −B

1
2
2

B
1
2
2 B

1
2
2 B3B−

1
2

2

)
(3.68)

then it is trivial to check using the Weyl’s theorem (see for instance [44]) that H and B
share the same essential spectrum, and hence

σess(H) = σess(B) = σess(B1) ∪ {0}, σdisc(H) = σ(H) \ σess(H).

Lemma 3.3.12. For β > 0, σess(B1) = {0}.
Proof. It is clear from the definition of operator B1 that λ = 0 is an eigenvalue of infinite
algebraic multiplicity since any function in v ∈ H1

Γe∪Γs
(Ω) ⊂ K⊥β satisfies B1v = 0. Due to

the self-adjoint character of B1, the rest of the eigenfunctions are in the orthogonal space
of the direct sum of the subspace generated for both the eigenfunctions associated to both
eigenvalues. Hence, its orthogonal complement will be computed with respect to the inner
product 〈, 〉β, this is

X = {w ∈ K⊥β : 〈w, φ〉β = 0 for all φ ∈ H1
Γe∪Γs(Ω)},

and it holds σ(B1) = {0} ∪ σ(B1|X). Since 〈w, φ〉β = B(w, φ) =
∫

Ω
c2∇w · ∇φ dx = 0 for

all φ ∈ H1
Γe∪Γs

(Ω), using φ ∈ C∞(Ω̄) such that φ|Γe∪Γs = 0, any w ∈ X is solution of the
following problem in the sense of the distributions:

−div(c2∇w) = 0 in Ω, (3.69)

w = g on Γe ∪ Γs, (3.70)

c2∂w

∂n
= 0 on Γ+ ∪ Γ−, (3.71)
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where the Dirichlet boundary data g ∈ H
1
2 (Γe ∪ Γs) holds the orthogonality condition∫

Γe∪Γs
cg dσ = 0. Let T : H

1
2 (Γe∪Γs)→ H1(Ω) be the operator defined by w = T g being w

the solution of the variational problem associated to (3.69)-(3.71). The coercive character
of this problem and the use of the Lax-Milgram theorem ensures that T is well-defined. In
addition, a standard Green’s formula shows that if w = T g then∫

Ω

c2∇w · ∇φ̄ dx =

∫
Γe∪Γs

c2∂w

∂n
φ̄ dσ = 0 for all φ ∈ H1(Ω). (3.72)

Analogously, since λ = 0 /∈ σ(B1|X), the spectral problem B1|Xw = λw admits the varia-
tional formulation∫

Ω

c2∇u · ∇φ̄ dx =
β

λ

∫
Γe∪Γs

cuφ̄ dσ = 0 for all φ ∈ H1(Ω). (3.73)

Comparing the variational terms in (3.72) and (3.73), it follows that the spectral problem
restricted to the subspace X can be rewritten as

c
∂

∂n
T g =

β − λα
λ

g, (3.74)

for those g ∈ H
1
2 (Γe∪Γs) satisfying

∫
Γe∪Γs

cg dσ = 0. Clearly, ∂nT : H
1
2 (Γe∪Γs)→ H−

1
2 (Γe∪

Γs) is a linear bounded operator due to the boundedness character of the normal derivative
of the solution of a second-order coercive elliptic problem stated in an smooth domain
(see [20]). In addition, ∂nT has a bounded inverse (∂nT )−1 : H−

1
2 (Γe ∪ Γs)→ H

1
2 (Γe ∪ Γs)

defined as follows: if f ∈ H−
1
2 (Γe ∪ Γs) (∂nT )−1f is defined as the trace on Γe ∪ Γs of the

solution v of the problem

−div(c2∇z) = 0 in Ω, (3.75)

c2 ∂z

∂n
= f on Γe ∪ Γs, (3.76)

c2 ∂z

∂n
= 0 on Γ+ ∪ Γ−. (3.77)

Due to the existence and uniqueness solution of the Laplace like problem, the inverse oper-
ator is well-defined and since the solution of this second-elliptic problem depends continu-
ously with respect to the Neumann boundary data f , then (∂nT )−1 is a bounded operator.
To check that it is actually the inverse of ∂nT , it is enough to consider f = ∂nw on Γe ∪Γs
in (3.75)-(3.77) being u the weak solution of (3.69)-(3.71) and consider the trace of z on
Γe ∪ Γs, i.e., g = z|Γe∪Γs , in (3.69)-(3.71) being w the weak solution of (3.75)-(3.77). In
both cases, due to the existence and uniqueness of solutions of both Laplace problems, it is
obtained that z (the solution of problem (3.75)-(3.77)) is solution of (3.69)-(3.71) and recip-
rocally, w (the solution of problem (3.69)-(3.71)) coincides with the solution of (3.75)-(3.77).

This fact shows that (∂nT )(∂nT )−1 is the identity in H−
1
2 (Γe ∪ Γs) and (∂nT )−1(∂nT ) is

the identity in H
1
2 (Γe ∪ Γs).
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Finally, applying (∂nT )−1 in (3.74) and taking into account that β > 0, the following

spectral problem is obtained: find (µ, g) ∈ C×H
1
2 (Γe∪Γs), g 6= 0 satisfying

∫
Γe∪Γs

cg dσ = 0,
such that (

(∂nT )−1 ◦ i∗
) g
c
− µg = 0 with µ =

λ

β
, (3.78)

where i∗ is the dual continuous embedding operator from L2(Γe∪Γs) to H−
1
2 (Γe∪Γs). Since

the continuous embedding i : H
1
2 (Γe ∪ Γs) → L2(Γe ∪ Γs) is compact (and using the Riesz

identification of L2(Γe∪Γs) with its dual space) then also i∗ is compact and consequently the
composition operator (∂nT )−1 ◦ i∗ is compact. Hence, the spectral decomposition theorem
for compact operators can be applied to show that there exists only an isolated countable
discrete set of eigenvalues for the spectral problem (3.78). Hence, it is concluded that
σ(B1|X) is discrete and so σess(B1|X) = ∅. Hence, using again that σ(B1) = {0} ∪ σ(B1|X),
it is obtained that σess(B1) = {0}.

In summary, the spectrum of H (and hence the spectrum of B too) is composed by the
null value (the essential spectrum composed by an eigenvalue of infinite multiplicity) and
a countable discrete (isolated) set of eigenvalues with finite algebraic multiplicity. Since
Lemmas 3.3.4 and 3.3.10 ensure the equivalence between the spectrum {µj}j∈N ∪ {0} of
operator B and eigenvalues {λj = 1/µj}j∈N of the perturbed quadratic problem (3.29)
with β > 0, then the eigensolutions of the quadratic problem are given by the union of a
discrete set of pairs {(λj, uj)}j∈N with finite algebraic multiplicity, with +∞ as the unique
accumulation point, which could be formally associated to an eigenvalue of infinite algebraic
multiplicity.

Finally, this spectral characterization leads to the following existence and uniqueness
result on the solution of a perturbed source problem.

Theorem 3.3.13. For any ω > 0 and β > 0 and given f ∈ L2(Ω), cr ∈ H−
1
2 (Γe ∪ Γs), and

g ∈ H−
1
2 (Γ+ ∪ Γ−), there exists an unique solution u ∈ H1(Ω) of the variational problem

associated to the time-harmonic source problem (3.10)-(3.14).

Proof. Due the discrete character of the eigensolutions {(λj, uj)}j∈N of the associated spec-
tral quadratic problem (3.29) and since Reλj > 0 with an unique accumulation point at
+∞, all the complex values λ = −iω with ω > 0 do not belong to the spectrum of the
quadratic problem. Now, taking into account that the variational problem (3.17) associated
to the source problem can be rewritten as

B̃((u, v), (φ, ψ)) + iωD̃((u, v), (φ, ψ)) = `(φ) for all (φ, ψ) ∈ H1(Ω)× L2(Ω),

with the linear form ` defined by (3.16), then the Fredholm’s alternative applied to operator
B ensures that the solution of the source problem exists and it is unique.

3.3.2 Spectral characterization for β = 0

Since the proposed methodology of a modal-based PUFEM method requires the com-
bination of a spectral basis with the partition of unity finite element method, a complete
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Hilbert basis should be considered. The most suitable candidate for such spectral basis
can be computed from the time-harmonic model chosen β = 0. In this case, since A0 is
self-adjoint and compact in L2(Ω), it is guaranteed that the spectral problem associated
to (3.17) defines a complete Hilbert basis in L2(Ω).

More precisely, the strong formulation of the spectral problem consists in finding the
eigenpairs (w, λ), w 6= 0, such that

λw − div
(
c2∇w

)
= 0 in Ω, (3.79)

∂w

∂ν
= 0 on ∂Ω, (3.80)

w|Ω− = w|Ω+
on ΓI , (3.81)

c2
−
∂w

∂ν

∣∣∣∣
Ω−

= c2
+

∂w

∂ν

∣∣∣∣
Ω+

on ΓI . (3.82)

and requiring the standard normalization in L2-norm, i.e., ‖w‖0,Ω = 1. As it is also described
in the section above, the weak formulation of the spectral problem relies on the adequate
functional setting and the self-adjoint compact operator A0. More precisely, it is stated as
follows: Find the eigenpairs (w, λ) ∈ L2(Ω)× C, w 6= 0, such that

A0w = λw. (3.83)

The standard spectral theory (see the theorem of spectral decomposition of self-adjoint
compact operators [44] poses that spectral problem (3.83) has an infinite countable family
of eigenpair solutions {(wn, λn)}n∈N ⊂ L2(Ω) × R such that λ0 = 0 < λ1 ≤ λ2 ≤ . . . λn ≤
. . . < +∞, and {wn}n∈N is a Hilbert basis in L2(Ω). Furthermore, the sequence {λn}n∈N
tends to infinity and the multiplicity of each eigenvalue is finite.

Theorem 3.3.14. For any ω > 0 and β = 0 and given f ∈ L2(Ω), cr ∈ H−
1
2 (Γe ∪ Γs),

and g ∈ H−
1
2 (Γ+ ∪ Γ−), there exists an unique solution u ∈ H1(Ω) of the variational

problem associated to the time-harmonic source problem (3.10)-(3.14), except for a infinity
numerable set of resonance frequencies {ωj}j∈N, which tends to infinity.

Proof. Taking into account the definition of A0 and the variational problem (3.17) associ-
ated to the source problem, the Fredholm’s alternatives theorem ensures that the operator
A0 − λI is invertible for those frequencies such that λ = ω2 + 1 6= λj for all j ∈ N. Since
λj ∈ R with an unique accumulation point at +∞, the uniqueness and existence of solu-
tion for the source problem is guaranteed except for a infinity numerable set of frequencies
ωj =

√
λj − 1, j ∈ N.

Modal decomposition for β = 0

Obviously, in the case β = 0, the solution of the source problem (3.10)-(3.14) can be
written in terms of the eigenfunctions wn. To deduce an explicit series representation of
the solution of the source problem in terms of the Hilbert basis, first let us consider a lift
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function z ∈ H1(Ω) from the boundary data g and r. More precisely, since g ∈ H−
1
2 (Γe∪Γs)

and r ∈ H−
1
2 (Γ+ ∪Γ−), the existence of a continuous lift operator from this boundary data

is ensured by solving the Laplace problem with this boundary data on the smooth domain
Ω: the lift function satisfies

−div
(
c2∇z

)
= 0 in Ω, (3.84)

c2 ∂z

∂ν
= g on Γ+ ∪ Γ−, (3.85)

c
∂z

∂ν
= r on Γe ∪ Γs, (3.86)

z|Ω− = z|Ω+
on ΓI , (3.87)

c2
+

∂z

∂ν

∣∣∣∣
Ω−

= c2
−
∂z

∂ν

∣∣∣∣
Ω+

on ΓI . (3.88)

In fact, from the coercivity of the weak formulation of the Laplace problem, it is straight-
forward to show that there exists a constant C > 0 only dependent on Ω and c such that

‖z‖1,Ω ≤ C
(
‖g‖

H−
1
2 (Γ+∪Γ−)

+ ‖r‖
H−

1
2 (Γe∪Γs)

)
.

Once the lift function z has been computed, the solution of the problem (3.10)-(3.14) is
translated in order to obtain a new rewriting version of the original source problem but
now with homogeneous boundary conditions. With that purpose, a new unknown field y
is defined such that u = y + z. In this manner, inserting this relation for u in (3.10)-(3.14)
and taking into account that z is solution of problem (3.84)-(3.88), the unknown function
y satisfies

−ω2y − div
(
c2∇y

)
= f + ω2z in Ω, (3.89)

c2 ∂y

∂ν
= 0 on Γ+ ∪ Γ−, (3.90)

c
∂y

∂ν
= 0 on Γe ∪ Γs, (3.91)

y|Ω− = y|Ω+
on ΓI , (3.92)

c2
+

∂y

∂ν

∣∣∣∣
Ω−

= c2
−
∂y

∂ν

∣∣∣∣
Ω+

on ΓI . (3.93)

Now, if it is assumed that f ∈ L2(Ω) then it is clear that f +ω2z belongs also to L2(Ω).
Hence, it this case, this function admits the series representation in the Hilbert basis

f + ω2z =
∞∑
n=0

〈f + ω2z, wn〉L2(Ω)wn.

To compute the solution y of the translated problem (3.89)-(3.93), the series representation
y =

∑∞
n=0 ynwn is inserted in the weak formulation of the time-harmonic problem. Using
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the orthogonality of the Hilbert basis and using the elements of the basis as test functions,
it is deduced from −ω2〈y, wn〉L2(Ω) + A0(y, wn) = 〈f + ω2z, wn〉L2(Ω) and the definition of
the operator A0 that

−(ω2 + 1)yn + λnyn = 〈f + ω2z, wn〉L2(Ω)

and hence the solution y is given by

y =
∞∑
n=0

〈f + ω2z, wn〉L2(Ω)

λn − (ω2 + 1)
wn,j.

Finally, the solution of the original source problem (3.10)-(3.14) is given by

u = y + z =
∞∑
n=0

〈f + λnz, wn〉L2(Ω)

ω2
n − ω2

wn,

where ωn =
√
λn − 1 for n ∈ N are the resonance frequencies where the existence and

uniqueness of solution is not ensured.
From standard results on the regularity of the solution u with respect to the source term

and the boundary data, the rate of convergence of this series depends on the smoothness
of the right hand side f + ω2z, and in the particular case of being in the domain of A−m0

(in this case H2m(Ω)), the truncation error of the series representation to N terms is of
order O((ω2

N+1−ω2)−m) (see for example [13]) and hence it is enough to truncate the series
only using the very first terms to obtain accurate approximations of the exact solution of
problem (3.10)-(3.14) with β = 0.

However, if the same Hilbert basis is used to represent the solution of the source problem
(3.10)-(3.14) with β 6= 0, then the convergence is very slow due to the elements of the basis
do not satisfies the Robin boundary conditions on Γe ∪Γs. To deal with this drawback, the
partition of unity finite element method it is used to replace the factor depending on the
x2 coordinate in each eigenfunction wn. In this way, it will be the PUFEM approximation
which will have to handle the Robin boundary conditions on Γe∪Γs. The following sections
describes in detail this novel numerical procedure and the modal basis used in the proposed
discretization.

3.3.3 Dispersion equations for β = 0 in a rectangular domain

The analytic computation of these eigenpairs is straightforward using a classical sepa-
ration of variables procedure (see for instance [15]). For completeness, the computations
related to the separation of variables are described in detail. Firstly, let us consider the
spectral problem in its strong form (3.83) and assume that the non-null eigenfunctions are
smooth enough and are given by the product w = q⊗p, i.e., w(x1, x2) = q(x1)p(x2). In this
case, since the profile of the speed of sound c is piecewise constant, the Helmholtz equation
in Ω+ = (0, L)× (0, H) is rewritten as −c2

+q
′′p− c2

+p
′′q = λqp. Since q and p only depends
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on an unique spatial variable, x1 and x2 respectively, then there exists a constant µ such
that

q′′ + µq = 0 in (0, L) and − c2
+p
′′ − (λ− c2

+µ)p = 0 in (0, H).

Similar arguments can be performed for Ω− = (0, L)×(−a, 0). In both cases, the differential
equation satisfied by q is given by q′′ = µq, which is completed with the homogeneous
Neumann boundary conditions at x1 = 0 and x1 = L. Straightforward computations show
that there exists a sequence of eigenpairs {(µn, qn)}n∈N (normalized with respect the L2(0, L)
norm) defined by

q0(x1) =

√
1

L
, µ0 = 0, (3.94)

qn(x1) =

√
2

L
cos (
√
µnx1) , µn =

(nπ
L

)2

, n ∈ N, n 6= 0. (3.95)

For each eigenpair (µn, qn), the x2-dependent factor p = pn must be computed. If the
differential equation satisfied by pn is completed with the homogeneous Neumann boundary
conditions at x2 = −a and x2 = H, pn satisfies

−
(
c2p′n

)′ − (λn − c2µn
)
pn = 0 in (−a, 0) ∪ (0, H), (3.96)

p′n(−a) = p′n(H) = 0, (3.97)

pn(0+) = pn(0−), (3.98)

c2
+p
′
n(0+) = c2

−p
′
n(0−). (3.99)

For each fixed value of n ∈ N, there exist a sequence of eigenpairs {(λn,j, pn,j)} which are
solution of the spectral differential problem (3.96)-(3.99). To describe them, two different
cases should be considered. First, those eigenmodes which can be understood as interface
waves (the so-called Love waves) which satisfy µnc

2
− < λn,j < µnc

2
+. Having into account

this condition, the solutions of equation (3.96), can be written

pn,j(x2) =

 C1 cos(Kn,j
− (x2 + a)) + C2 sin(Kn,j

− (x2 + a)) if x2 ∈ (−a, 0),

D1 cosh(Kn,j
+ (x2 −H)) +D2 sinh(Kn,j

+ (x2 −H)) if x2 ∈ [0, H),

being C1, C2, D1 and D2 constants to be determined and where the positive wave numbers
in each subdomain are given by

Kn,j
− =

√√√√µn

((
ξn,j
c−

)2

− 1

)
, Kn,j

+ =

√√√√µn

(
1−

(
ξn,j
c+

)2
)
, (3.100)

where ξn,j =
√
λn,j/µn and hence variables ξn,j ∈ (c−, c+). The Neumann boundary condi-

tions (3.97) give that C2 = D2 = 0. Applying now the interface conditions (3.98)-(3.99) in
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order to find C1 and D1, the next system has to be solved C1 cos(Kn,j
− a) = D1 cosh(Kn,j

+ H),

C1K
n,j
− sin(Kn,j

− a) = D1K
n,j
+ sinh(Kn,j

+ H).
(3.101)

To assure that the determinant of the matrix in system (3.101) is null, the following dis-
persion equation must be fulfilled

c+

c−

√
c2

+ − (ξn,j)2

(ξn,j)2 − c2
−

tanh

H
√√√√µn

(
1−

(
ξn,j
c+

)2
) = tan

a
√√√√µn

((
ξn,j
c−

)2

− 1

) .

(3.102)
As the system is indeterminate, it is chosen that C1 = cos(Kn,j

− a)−1 and then, from the
first equation in (3.101), it can be deduced that D1 = cosh(Kn,j

+ H)−1. So in this case, the
eigenfunctions pn,j (normalized to satisfy pn,j(0) = 1) are given by

pn,j(x2) =


cos(Kn,j

− (x2 + a))

cos(Kn,j
− a)

if x2 ∈ (−a, 0),

cosh(Kn,j
+ (x2 −H))

cosh(Kn,j
+ H)

if x2 ∈ [0, H).

(3.103)

The second type of eigenmodes are the so-called interior waves. They correspond to
those eigenmodes whose eigenvalue satisfies λn,j > µnc

2
+. Having into account this condi-

tion, the solutions of equation (3.96) for this case can be written

pn,j(x2) =

 C̃1 cos(K̃n,j
− (x2 + a)) + C̃2 sin(K̃n,j

− (x2 + a)) if x2 ∈ (−a, 0),

D̃1 cos(K̃n,j
+ (x2 −H)) + D̃2 sin(K̃n,j

+ (x2 −H)) if x2 ∈ [0, H),

being C̃1, C̃2, D̃1 and D̃2 constants to be determined and where the positive wave numbers
in each subdomain are given by

K̃n,j
− =

√√√√µn

((
ζn,j
c−

)2

− 1

)
, K̃n,j

+ =

√√√√µn

((
ζn,j
c+

)2

− 1

)
. (3.104)

In the expressions written above ζn,j =
√
λn,j/µn and hence ζn,j ∈ (c+,+∞). The Neumann

boundary conditions (3.97) give that C̃2 = D̃2 = 0. Applying now the interface conditions

(3.98)-(3.99) in order to find C̃1 and D̃1, the next system has to be solved C̃1 cos(K̃n,j
− a) = D̃1 cos(K̃n,j

+ H),

−C̃1K̃
n,j
− sin(K̃n,j

− a) = D̃1K̃
n,j
+ sin(K̃n,j

+ H).
(3.105)
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To assure that the determinant of the matrix in system (3.105) is null, the following dis-
persion equation must be fulfilled

c+

c−

√
(ζn,j)2 − c2

+

(ζn,j)2 − c2
−

tan

H
√√√√µn

((
ζn,j
c+

)2

− 1

)+ tan

a
√√√√µn

((
ζn,j
c−

)2

− 1

) = 0.

(3.106)

As the system is indeterminate, it is chosen that C̃1 = cos(K̃n,j
− a)−1 and then, from the

first equation in (3.105), it can be deduced that D̃1 = cos(K̃n,j
+ H)−1. So in this case, the

eigenfunctions pn,j (normalized to satisfy pn,j(0) = 1) are given by

pn,j(x2) =


cos(K̃n,j

− (x2 + a))

cos(K̃n,j
− a)

if x2 ∈ [−a, 0],

cos(K̃n,j
+ (x2 −H))

cos(K̃n,j
+ H)

if x2 ∈ [0, H].

(3.107)

Figure 3.1 illustrates two eigenmodes, a Love wave on the left plot and an internal wave
on the right one. The speed of sound has been taken c− = 1/2 in Ω− and c+ = 1 in Ω+. The
geometrical dimensions of the computational domain are given in this example by L = 1,
a = 0.2 and H = 0.8. The eigenmode Love wave, described by equation (3.103) for n = 15
and j = 5, has an oscillatory behaviour in (−a, 0) and decays exponentially in (0, H), as
it can be observed in the left plot. The right plot illustrates the eigenmode internal wave,
described by equation (3.107) for n = 15 and j = 5. It has an oscillatory behaviour in
the whole domain, although the oscillation changes when the wave crosses the interface at
x2 = 0.
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Figure 3.1: Love wave pn,j from equation (3.103) (left) and internal wave pn.j from equation
(3.107) (right) plotted with respect to x2, for n = 15 and j = 5. It can be observed the
exponential decay of the Love wave and the oscillatory behaviour of the internal wave in
(0, H), being H = 0.8.
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Note that the eigenmodes whose eigenvalue satisfies λn,j < µnc
2
− are not considered,

because the dispersion equation that should be fulfilled is

c+

c−

√
c2

+ − (ξn,j)2

c2
− − (ξn,j)2

tanh

H
√√√√µn

(
1−

(
ξn,j
c+

)2
)+ tanh

a
√√√√µn

(
1−

(
ξn,j
c−

)2
) = 0.

(3.108)
for ξn,j =

√
λn,j/µn ∈ (−∞, c−), which it is impossible as the arguments of the hyperbolic

tangents are strictly positive.
In conclusion, the eigenpairs {(λn,j, wn,j)}n,j∈N of the spectral problem (3.79)-(3.80) are

given by wn,j(x1, x2) = qn(x1)pn,j(x2), where qn are defined by (3.94)-(3.95) and pn,j are
given by (3.103)-(3.106). To distinguish those eigenpairs which correspond to internal waves
from those ones which are associated to Love waves, for each index n ∈ N, which fixes the
mode qn with the x1-dependency, the indexes j ∈ N will be split in two disjoint sorted
subsets: wn,j with j ∈ In ⊂ N will be considered internal modes whereas if j ∈ Ln ⊂ N
will denote Love eigenpairs. The ordering of subsets Ln and In are given by the natural
ascending order with respect to the magnitude of their associated eigenvalues λn,j.

Remark 3.3.15. Despite the spectral problems with β = 0 and β > 0 share similar vari-
ational formulations, the change of nature on the boundary condition type (from Robin to
Neumann boundary condition on Γe ∪ Γs) implies that the eigenfunctions of the spectral
problem (3.79)-(3.82) are not eigenfunctions of problem (3.19)-(3.23). Moreover, even in
the case of constant functions, it is straightforward to show that the spectral problem (3.19)-
(3.23) for β > 0 does not admit eigenfunctions of type w(x1, x2) = p(x2) since the non-null
constant functions do not satisfied the Robin conditions (3.19).

3.4 Modal-based PUFEM method

The partition of unity finite element method [35] is considered as an enriched method
where the standard discretization of a classical finite element method is used as partition
of unity and hence, every local polynomial basis is multiplied by a exact solution of the
problem to be solved numerically. Usually, in the case of the Helmholtz equation stated in
two dimensions, this enrichment procedure involves plane waves [36, 42], radial solutions
(written in terms of Bessel functions) [36] or two-dimensional eigenfunctions [10], which
are multiplied by piecewise polynomials functions defined on a two-dimensional triangular
mesh.

3.4.1 Modal-based enrichment

However, in the present approach, the PUFEM method is only used in the x1-axis and
hence requiring only an inexpensive one-dimensional domain, keeping the expressions pn,j
of modal decomposition with the x2 dependency. The second main difference with respect
to the standard PUFEM discretization lies on the fact that the enrichment in the x1-axis
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is not based on plane waves with a fixed wave number. At the contrary, it will be ensured
that the modal contributions of every qn with the x1-dependency belongs to the PUFEM
discrete space.

Clearly, if expressions qn(x1) were used directly to define the enrichment of the PUFEM
space, since qn are computed to satisfy homogeneous Neumann boundary conditions (ob-
tained with β = 0), a lack of convergence will again arise mainly around the boundaries
where the Robin conditions (with β 6= 0) were considered. To avoid this kind of drawbacks,
qn is rewritten in terms of complex exponential of different sign, i.e.,

qn(x1) = C0q
+
n (x1) + C1q

−
n (x1), n ∈ N, n 6= 0,

where C0 = C1 =
√

2/L/2, q+
n (x1) = exp(i

√
µnx1) and q−n (x1) = exp(−i√µnx1). Taking

this new rewriting of the modes qn using complex exponential expressions, if both functions
q+
n and q−n are involved separately in the PUFEM enrichment, it is guaranteed that any

boundary condition at x1 = 0 and x1 = L could be satisfied by a linear combination of type
C0q

+
n + C1q

−
n with adequate constants C0 and C1.

The modal contribution for n = 0 will be treated in a different way. Since q0 is a constant
function, it belongs to the standard piecewise linear polynomial finite element space and,
hence, it does not add any new feature to the classical discrete FEM approximation. In
addition, for the case n = 0, it can be deduced from the dispersion equation (3.102) that
there does not exist any Love eigenmodes associated to n = 0. In fact, as it has been
discussed in Remark 3.3.15, there does not exist any eigenfunction, solution of the quadratic
eigenvalue problem (3.19)-(3.23), which depends only on the x2 spatial coordinate. Hence,
the proposed numerical method approximates the solution of the source problem without
the contribution of mode associated to n = 0 in the PUFEM modal enrichment. It is,
the eigenfunctions (internal waves) w0,j with j ∈ I0, will not be used in the discretization
method.

Obviously, as it has been already discussed in the section above, for each n ∈ N, the
eigenmodes associated to the internal waves are infinite (but countable) and for discretiza-
tion purposes, such set modes must be truncated and so only considering a finite number
of eigenmodes with the smallest eigenvalues. The truncated set of indexes for the interior
modes will be denoted by IJnn , being Jn the number of internal modes used in the discretiza-
tion. The criterion to truncate the infinite sequence of internal modes corresponds to keep
in the discretization only those internal eigenvalues λn,j which satisfy

c2
+µn ≤ λn,j ≤ c2

0µn for n = 0, . . . , N,

and where c0 is the maximum value allowed for the solutions ζn,j of the dispersion equa-
tion (3.106). In the case of the eigenpairs associated to Love waves, its dispersion equation
only admits a finite number of solutions and so, for a fixed value of n ∈ N, all the Love
eigenmodes are considered in the discretization. The number of Love eigenmodes included
in the subset Ln will be denoted by Ln. Using this notation, if λn,j is a eigenvalue of the
spectral problem then there exists a k-th family of eigenmodes such that the pair of indexes
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(n, j) ∈ {k} × (Lk ∪ IJkk ), this is,

n = k and j ∈ {1, . . . , Lk︸ ︷︷ ︸
j∈Lk

, Lk + 1, . . . , Lk + Jk︸ ︷︷ ︸
j∈IJkk

}, with 0 ≤ k ≤ N.

To describe precisely the proposed modal-based PUFEM method, an one-dimensional
finite element mesh must be introduced. For simplicity, an uniform mesh of size h will be
used throughout the rest of the present work, this is, a mesh with M elements and whose
nodes are given by {ym = hm : m = 0, . . . ,M} ⊂ [0, L]. Clearly, such mesh has M + 1
nodes and a mesh size h = L/M . In addition, it has been chosen as local polynomial basis
{ϕm}Mm=0 the standard Lagrange P1 (piecewise linear) finite element basis, defined by the
nodal relation ϕm(yl) = δlm, where δlm is the Kronecker’s delta. Hence, the discrete space
Xh will be defined by the span

Xh =
〈{

(ϕmq
+
n )⊗ pn,j, (ϕmq

−
n )⊗ pn,j, m = 0, . . . ,M,

(n, j) ∈ {k} × (Lk ∪ IJkk ) for k = 1, . . . , N
}〉

, (3.109)

where recall that [(ϕmq
±
n )⊗pn,j](x1, x2) = ϕm(x1)q±n (x1)pn,j(x2) and the ordering of indexes

(n, j) in the subsets Lk and IJkk are given by the natural ascending order with respect to
the magnitude of their associated eigenvalues λn,j.

From the definition of Xh and since {ϕm}Mm=0 is a partition of unity of the interval [0, L],
i.e.,

∑M
m=0 ϕm(x1) = 1, it is clearly deduced that

wn,j =

√
1

2L

M∑
m=0

(ϕmq
+
n + ϕmq

−
n )⊗ pn,j,

with (n, j) ∈ {k} × (Lk ∪ IJkk ) and any k = 1, . . . , N , belongs to the discrete space Xh.
Due to this fact, the proposed discretization inherits potentially the spectral convergence
of the modal basis approximations (see Section 3.5 for the illustration of the numerical
behaviour of the proposed method). Simultaneously, due to the use of a partition of unity,
the functions used for the enrichment in the discrete space has not to satisfy all the boundary
conditions of the source problem, what increase the flexibility of choice for the modal basis.
In addition, due to the compact support of the finite element basis {ϕm}Mm=0, the matrix of
the discrete problem will be sparse, what decreases the computational storage requirements
for a typical modal discretization which uses full discrete matrices.

Since the modal-based PUFEM enrichment is flexible enough to select only a part of
the spectral basis, the impact in the accuracy of considering only Love waves in the discrete
space has been analysed in the numerical results shown in Section 3.5.1. In this case, the
discrete space is defined by

XLh =
〈{

(ϕmq
+
n )⊗ pn,j, (ϕmq

−
n )⊗ pn,j, m = 0, . . . ,M,

(n, j) ∈ {k} × Lk for k = 1, . . . , N}〉 , (3.110)

The numerical features of the proposed modal-based PUFEM discretization with these
two discrete spaces are described in detail in the following two sections.
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3.4.2 Discrete problem

To write the matrix description of the variational problem using the discrete space Xh

(and analogously XLh ), each term of the variational formulation associated to the sesquilin-
ear form Aβ, the L2 -inner product and the source and boundary data contributions are
computed for unknown and test functions belonging to the discrete space. Hence, the dis-
crete variational formulation can be stated as follows: Given the source term f ∈ L2(Ω),

and the boundary loads r ∈ H−
1
2 (Γe ∪ Γs) and g ∈ H−

1
2 (Γ+ ∪ Γ−), find uh ∈ Xh such that

Aβ(uh, vh)− ω2〈uh, vh〉L2(Ω) = `(vh) for all vh ∈ Xh. (3.111)

Clearly, any function uh ∈ Xh is determined by their coordinate vectors

~uh = ((u+
mnj, u

−
mnj)j∈Ln∪IJnn )M,N

m,n=0

= (u+
011, u

−
011, u

+
012, u

−
012, . . . , u

+
01L1+J1

, u−01L1+J1
, . . . ,

u+
0NLN+JN

, u−0NLN+JN
, u+

111, u
−
111, . . . , u

+
MNLN+JN

, u−MNLN+JN
), (3.112)

and so these coordinate coefficients define the discrete function

uh =
M∑
m=0

N∑
n=0

Ln+Jn∑
j=1

(
u+
mnj(ϕmq

+
n )⊗ pn,j + u−mnj(ϕmq

−
n )⊗ pn,j

)
. (3.113)

The coordinate ordering in (3.112) has been chosen to reduce as much as possible the
bandwidth of the sparse matrices involved in the discretization. In fact, since the de-
grees of freedom related to the same finite element basis ϕm are stored consecutively, it
is straightforward to show that due to the compact support of the one-dimensional finite
element basis, the bandwidth of the matrix description is given by 6 max1≤n≤N(Ln + Jn).

Taking into account this basis representation in Xh, the discrete variational formula-
tion (3.111) admits the matrix description

− ω2M~uh − iωβC~uh +K~uh = ~bh, (3.114)

where the coefficients of the matrix M, C, and K (with respect to the coordinates u±mnj
induced by the basis of Xh) are given by the following expressions: taking into account the
expression of the sesquilinear form (3.17), the mass matrix M is defined by

[M]++
mnj, lki =

∫
Ω

(ϕmq
+
n )⊗ pn,j(ϕlq+

k )⊗ pk,i dx =

(∫ L

0

ϕmϕlq
+
n q
−
k dx1

)(∫ H

−a
pn,jpk,i dx2

)
,

[M]+−mnj, lki =

∫
Ω

(ϕmq
+
n )⊗ pn,j(ϕlq−k )⊗ pk,i dx =

(∫ L

0

ϕmϕlq
+
n q

+
k dx1

)(∫ H

−a
pn,jpk,i dx2

)
,

[M]−+
mnj, lki =

∫
Ω

(ϕmq
−
n )⊗ pn,j(ϕlq+

k )⊗ pk,i dx =

(∫ L

0

ϕmϕlq
−
n q
−
k dx1

)(∫ H

−a
pn,jpk,i dx2

)
,

[M]−−mnj, lki =

∫
Ω

(ϕmq
−
n )⊗ pn,j(ϕlq−k )⊗ pk,i dx =

(∫ L

0

ϕmϕlq
−
n q

+
k dx1

)(∫ H

−a
pn,jpk,i dx2

)
,
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the damping matrix C is given by

[C]++
mnj, lki =

∫
Γe∪Γs

c (ϕmq
+
n )⊗ pn,j(ϕlq+

k )⊗ pk,i dσ

=
(

(ϕmϕlq
+
n q
−
k )
∣∣
x1=0

+ (ϕmϕlq
+
n q
−
k )
∣∣
x1=L

)(∫ H

−a
pn,jpk,i dx2

)
,

[C]+−mnj, lki =

∫
Γe∪Γs

c (ϕmq
+
n )⊗ pn,j(ϕlq−k )⊗ pk,i dσ

=
(

(ϕmϕlq
+
n q

+
k )
∣∣
x1=0

+ (ϕmϕlq
+
n q

+
k )
∣∣
x1=L

)(∫ H

−a
pn,jpk,i dx2

)
,

[C]−+
mnj, lki =

∫
Γe∪Γs

c (ϕmq
−
n )⊗ pn,j(ϕlq+

k )⊗ pk,i dσ

=
(

(ϕmϕlq
−
n q
−
k )
∣∣
x1=0

+ (ϕmϕlq
−
n q
−
k )
∣∣
x1=L

)(∫ H

−a
pn,jpk,i dx2

)
,

[C]−−mnj, lki =

∫
Γe∪Γs

c (ϕmq
−
n )⊗ pn,j(ϕlq−k )⊗ pk,i dσ

=
(

(ϕmϕlq
−
n q

+
k )
∣∣
x1=0

+ (ϕmϕlq
−
n q

+
k )
∣∣
x1=L

)(∫ H

−a
pn,jpk,i dx2

)
,

and the stiffness matrix is defined by

[K]++
mnj, lki =

∫
Ω

c2

∫
Ω

∇((ϕmq
+
n )⊗ pn,j) · ∇((ϕlq

+
k )⊗ pk,i) dx

=

(∫ L

0

(ϕmq
+
n )′(q−k ϕl)

′ dx1

)(∫ H

−a
pn,jpk,i dx2

)
+

(∫ L

0

ϕmq
+
n q
−
k ϕl dx1

)(∫ H

−a
p′n,jp

′
k,i dx2

)
,
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[K]+−mnj, lki =

∫
Ω

c2

∫
Ω

∇((ϕmq
+
n )⊗ pn,j) · ∇((ϕlq

−
k )⊗ pk,i) dx

=

(∫ L

0

(ϕmq
+
n )′(q+

k ϕl)
′ dx1

)(∫ H

−a
pn,jpk,i dx2

)
+

(∫ L

0

ϕmq
+
n q

+
k ϕl dx1

)(∫ H

−a
p′n,jp

′
k,i dx2

)
,

[K]−+
mnj, lki =

∫
Ω

c2

∫
Ω

∇((ϕmq
−
n )⊗ pn,j) · ∇((ϕlq

+
k )⊗ pk,i) dx

=

(∫ L

0

(ϕmq
−
n )′(q−k ϕl)

′ dx1

)(∫ H

−a
pn,jpk,i dx2

)
+

(∫ L

0

ϕmq
−
n q
−
k ϕl dx1

)(∫ H

−a
p′n,jp

′
k,i dx2

)
,

[K]−−mnj, lki =

∫
Ω

c2

∫
Ω

∇((ϕmq
−
n )⊗ pn,j) · ∇((ϕlq

−
k )⊗ pk,i) dx

=

(∫ L

0

(ϕmq
−
n )′(q+

k ϕl)
′ dx1

)(∫ H

−a
pn,jpk,i dx2

)
+

(∫ L

0

ϕmq
−
n q

+
k ϕl dx1

)(∫ H

−a
p′n,jp

′
k,i dx2

)
.

It should be noted that all the integrals stated below have been computed using one-
dimensional exact integration with closed form integral formulas (without requiring the
use of quadrature formulas). Such exact integration strategy has been applied also to the

right-hand side term ~bh but restricted to five-order polynomial source function f = f1 ⊗ f2

and boundary functions g and r.

Analogous considerations are applied to the computation of the coefficients of the right-
hand side in the linear system (3.114), which are given by

[~bh]
+
mnj =

∫
Ω

f(ϕmq+
n )⊗ pn,j dx+

∫
Γ+∪Γ−

g(ϕmq+
n )⊗ pn,j dσ +

∫
Γe∪Γs

c r(ϕmq+
n )⊗ pn,j dσ

=

(∫ L

0

f1ϕmq
−
n dx1

)(∫ H

−a
f2pn,j dx2

)
+ pn,j(−a)

∫ L

0

g|x2=−aϕmq
−
n dx1

+ pn,j(H)

∫ L

0

g|x2=Hϕmq
−
n dx1 + (ϕmq

−
n )
∣∣
x1=0

∫ H

−a
cr|x1=0pn,j dx2

+ (ϕmq
−
n )
∣∣
x1=L

∫ H

−a
cr|x1=Lpn,j dx2,
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and

[~bh]
−
mnj =

∫
Ω

f(ϕmq−n )⊗ pn,j dx+

∫
Γ+∪Γ−

g(ϕmq−n )⊗ pn,j dσ +

∫
Γe∪Γs

c r(ϕmq−n )⊗ pn,j dσ

=

(∫ L

0

f1ϕmq
+
n dx1

)(∫ H

−a
f2pn,j dx2

)
+ pn,j(−a)

∫ L

0

g|x2=−aϕmq
+
n dx1

+ pn,j(H)

∫ L

0

g|x2=Hϕmq
+
n dx1 + (ϕmq

+
n )
∣∣
x1=0

∫ H

−a
cr|x1=0pn,j dx2

+ (ϕmq
+
n )
∣∣
x1=L

∫ H

−a
cr|x1=Lpn,j dx2.

Obviously, from the hermitian character of the L2-inner product and the sesquilinear form
Aβ for β = 0, both matrices M and K are hermitian matrices. A direct inspection on
coefficients of damping matrix C also reveals that it is an hermitian matrix.

3.4.3 Analysis of the condition number

It is well known in the scientific computing literature that the enriched methods and,
in particular, those ones which are based on partition of unity and the use of plane-waves
suffer from a poor conditioning. The proposed modal-based partition of unity method also
share this kind of conditioning drawbacks even with the PUFEM discretization is restricted
to a one-dimensional discretization in the x1 axis.

To check the origin of this conditioning problem, the condition number κ(M) of the
mass matrix M will be analysed in a very simple case: it has been considered the pure
Neumann problem (with β = 0) for a one-layer material (i.e. c+ = c−). Similar argu-
ments could be also applied to the stiffness and damping matrix K and C in the linear
system (3.114). To highlight the different order of magnitude of conditioning in PUFEM
methods, it will be compared with those condition numbers coming from an standard finite
element discretization.

First, notice that the condition number of the mass matrix is not an issue in a stan-
dard piecewise linear finite element discretization (in one-dimension with a uniform mesh).
In this case, for the finite element mass matrix, its condition number is upper bounded
independently of the mesh size, this is, κ(M) = O(1). On the contrary, the condition
number of the finite element stiffness matrix grows as O(h−2) (see [18] for further details).
In what follows, it will be checked that the condition number of the modal-based PUFEM
mass matrix increases when the number of eigenmodes is enlarged and simultaneously a
refined finite element mesh is used in the partition of unity). In fact, it will be shown that
κ(M) = O(h−2).

Firstly, in the simple case of β = 0 and c− = c+, the modal basis solution of the spectral
problem is given by wn,j = qn ⊗ pj where recall that qn, n ∈ N, n 6= 0 are defined by (3.95)
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and pj, j ∈ N are given as follows:

p0(x1) =

√
1

a+H
, (3.115)

pj(x1) =

√
2

a+H
cos

(
jπx1

a+H

)
, j ∈ N, j 6= 0. (3.116)

Notice that {pj}j∈N is a Hilbert basis in L2(−a,H).
Since the discretization space Xh admits a discrete basis where the elements are tensor

products of functions (with independent factors), i.e., it holds

Xh =
〈{

(ϕmq
+
n )⊗ pj, (ϕmq

−
n )⊗ pj, m = 0, . . . ,M, n, j = 0, . . . , N, n 6= 0

}〉
,

(3.117)
then, the complex-valued mass matrix M of size 2N(N + 1)(M + 1)× 2N(N + 1)(M + 1)
also inherits this separation of variables and after a reordering (permutation of rows and
columns), it can be written as a Kronecker product of matricesM = A⊗B (where the size
of A is 2(M + 1)N × 2(M + 1)N and the size of B is (N + 1)× (N + 1)) being

[A]++
mn, lk =

∫ L

0

ϕmϕlq
+
n q
−
k dx1, [A]+−mn, lk =

∫ L

0

ϕmϕlq
+
n q

+
k dx1, (3.118)

[A]−+
mn, lk =

∫ L

0

ϕmϕlq
−
n q
−
k dx1, [A]−−mn, lk =

∫ L

0

ϕmϕlq
−
n q

+
k dx1, (3.119)

for 0 ≤ m, l ≤M , 1 ≤ n, k ≤ N , and

[B]i,j =

∫ H

−a
pjpi dx2,

for 0 ≤ i, j ≤ N . Trivially, from the orthogonality of the basis {pj}j∈N, it is obtained that B
is the identity matrix I. Hence, in the simple case considered here, M = A⊗ I. Classical
linear algebra results show that the spectrum ofM and A coincides (see [32]) and so their
condition number also coincides.

Lemma 3.4.1. Let A be the matrix defined by (3.118)-(3.119). If there exists Ñ ∈
{1, . . . , N} such that the size of the finite element mesh satisfies h < L/(2(Ñ + 1)) then it
holds

κ(A) ≤ Ch−2, (3.120)

where C is a positive constant independent of M and N , only dependent of L and Ñ .

Proof. With the aim of estimating κ(A), some estimates will be computed from the nu-
merical range of A. Firstly, fixed m ∈ {0, . . . ,M} and n = Ñ , consider the coordi-
nate vector ~v ∈ C2(M+1)N associated to the function of the discrete space Xh given by
v(x1) = ϕm sin(nπ(x1 − mh)/L), which corresponds to the linear combination of basis
functions

v =
ϕm
2i

(
q+
n

q+
n (mh)

− q−n
q−n (mh)

)
∈ Xh. (3.121)
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It holds

~v∗A~v =

∫ L

0

v(x1)v̄(x1) dx1 =

∫ L

0

ϕ2
m(x1) sin2

(
nπ(x1 −mh)

L

)
dx1

= 2

∫ h

0

s2

h2
sin2

(nπs
L

)
ds ≤ C

∫ h

0

s4

h2
ds ≤ Ch3,

where each occurrence of constant C could denote a different value independent of h (only
dependent on L and n = Ñ). To obtain the estimate above, it has been used the first
order Taylor polynomial approximation of the sine function around the origin. Now, it is
straightforward to show from (3.121) that the unique non-null coefficients of ~v are given by
(1/(2iq+

n (mh)),−1/(2iq−n (mh))) and hence

~v∗~v =

∣∣∣∣ 1

2i
e−i

nπ
L
mh

∣∣∣∣2 +

∣∣∣∣ 1

2i
e+inπ

L
mh

∣∣∣∣2 =
1

2
,

and consequently, it has been shown that there exists ~v 6= ~0 such that

~v∗A~v
~v∗~v

≤ 2Ch3.

Secondly, a different vector coordinate ~v is taken into account. In this case, fixed
m ∈ {0, . . . ,M} and n = Ñ , consider the coordinate vector ~v ∈ C2(M+1)N associated to
the function of the discrete space Xh given by v(x1) = ϕm cos(nπ(x1 − mh)/L), which
corresponds to the linear combination of basis functions

v =
ϕm
2

(
q+
n

q+
n (mh)

+
q−n

q−n (mh)

)
∈ Xh. (3.122)

It holds

~v∗A~v =

∫ L

0

v(x1)v̄(x1) dx1 =

∫ L

0

ϕ2
m(x1) cos2

(
nπ(x1 −mh)

L

)
dx1

= 2

∫ h

0

s2

h2
cos2

(nπs
L

)
ds ≥ C̃

∫ h

0

s2

h2
ds ≥ C̃h, (3.123)

where each occurrence of constant C̃ could denote a different value independent of h
(only dependent on L and n = Ñ). To obtain the estimate above, it has been used
a strictly positive lower bound for the cosine function around in the compact interval
[0, h] ⊂ [0, L/(2(n + 1))] (where it is ensured that cos(nπs/L) is strictly positive for any
n). Now, it is straightforward to show from (3.122) that the unique non-null coefficients of
~v are given by (1/(2q+

n (mh)), 1/(2q−n (mh))) and hence

~v∗~v =

∣∣∣∣12e−inπL mh

∣∣∣∣2 +

∣∣∣∣12e+inπ
L
mh

∣∣∣∣2 =
1

2
,
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and consequently, it has been shown that there exists ~v 6= ~0 such that

~v∗A~v
~v∗~v

≥ 2C̃h. (3.124)

Now, if λmin and λmax are respectively the largest and smallest eigenvalues of matrix A,
using the classical property of the Rayleigh quotient for hermitian complex-valued matrices
(which ensures that the numerical range is a real interval with eigenvalues as endpoints
[49]), it holds

λmin ≤
~v∗A~v
~v∗~v

≤ λmax for all ~v 6= ~0.

Then, from (3.124) and (3.123), there exist two positive constants C and C̃, independent
of M and N (and hence also independent of h) such that

2C̃h ≤ λmax and λmin ≤ 2Ch3.

Consequently, since A is a positive definite hermitian matrix (it is associated to the L2-inner
product in Xh), it is satisfied

κ(A) =
λmax

λmin

≥ C̃

C
h−2, (3.125)

and hence (3.120) is obtained.

Consequently, from Lemma 3.4.1, since the spectrum of A and M coincides, it is ob-
tained that κ(M) = O(h−2), what implies an increasing behaviour of the condition number
as soon as the finite element mesh is refined. This high condition number (compared with
respect to the low conditioning of standard finite element methods) in the mass matrix could
indicate the numerical mechanism because of the the matrix of the linear system (3.114)
suffers for high condition numbers (in comparison with an standard finite element dis-
cretization). As it is reported in the following section, to mitigate as much as possible the
conditioning issues, the finite element meshes have been kept as coarse as possible in most
of the numerical test.

3.5 Numerical results

A wide battery of numerical test has been considered to illustrate the performance and
the potential drawbacks of the proposed modal-based PUFEM method. With this aim,
Section 3.5.1 includes some numerical tests are done to show the accuracy of the modal-
based PUFEM method but with a discrete space that only involves Love waves rather
than the complete modal space. Next, in Section 3.5.3 the numerical results illustrate the
different numerical performance obtained with a discrete space that only involves Love
waves or with another space that includes both, Love and interior waves.

Last Section 3.5.4 includes the numerical results obtained with the modal-based PUFEM
where a complete modal based with Love and interior waves. The goals of this section are
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focused on three topics: (i) the illustration of the accuracy of the method for smooth
and non-smooth solutions, (ii) the deterioration of the numerical results due to the high
condition numbers of the discrete matrix and its potential mitigation using regularization
techniques, and (iii) the accuracy of the modal-based method for solutions which are close
to the constant-valued eigenmode (which is not included in the modal enrichment). In
those numerical simulations where internal modes are involved, the eigenmodes used in the
modal-based PUFEM discretization hold the condition

c2
+µn ≤ λn,j ≤ c2

0µn for n = 0, . . . , N,

with c0 = 2c+, or equivalently, it is only considered those solutions ζn,j of the dispersion
equation (3.106) which belong to the interval (c+, 2c+).

Throughout this section, the relative errors are computed using a point-wise L∞-norm
on an 5× 5 equispaced grid of points {yjk}5

j,k=1 in the rectangular domain [0, L]× [−a,H].
More precisely, the relative error is given by

εh =
max

1≤j,k,≤5
|u(yjk)− uh(yjk)|

max
1≤j,k,≤5

|u(yjk)|
,

where u is the exact solution of the source problem and uh is the approximated solution
computed with the proposed modal-based PUFEM method. Notice that the grid points
are either on the exterior boundary ∂Ω or in the interior of the computational domain, but
in any case they are not lying on the coupling interface ΓI . Other finer grids with a larger
number of points have been also considered leading to similar relative errors. To illustrate
the approximated solution computed by means of the modal-based PUFEM method, for
every test the real part of the approximation is plotted on a 17 × 17 equispaced grid of
points {yjk}17

j,k=1 in the rectangular domain [0, L] × [−a,H]. Additionally, the point-wise
relative error with respect to L∞-norm is also plotted in the computational domain Ω.

3.5.1 Accuracy of the method for x1-dependent problems

In order to check the accuracy of the method, first only Love eigenmodes have been
considered in the discretization, i.e, the discrete space used in the numerical test presented
in this section is given by XLh , which only contains Love waves. Despite the Loves waves
does not form a Hilbert basis, the combination of the PUFEM method in the x1-direction
with this modal enrichment allows to reach accurate results for certain solutions that only
depend on the x1 spatial coordinate.

For this first numerical test, the problem (3.10)-(3.14) has been settled with constant
speed of sound c = 1 in Ω, the angular frequency ω = π and the parameter β = 1 (absorbing
boundary conditions on Γe ∪ Γs). The geometric dimensions of the computational domain
Ω = (0, L)× (−a,H) are given by a = 0.2, H = 0.8, L = 1.

In this test, instead of computing the solution of the dispersion equation for Love waves,
it is assumed that there exists an eigenmode almost independent of the x2-direction (i.e.,
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except for a round-off error ε). More precisely, it is used the discrete space XLh with only
the Love wave w1,1 (what implies that N = 1) and where the wave numbers are given by
K1,1
− = K1,1

+ = ε = 10−13. The boundary data in problem (3.10)-(3.14) has been chosen
such that the exact solution is u(x1, x2) = e−iωx1/c. Obviously, if K1,1

− = K1,1
+ = 0 then

the exact solution u would belong to the discrete space XLh and consequently the error
would be null theoretically. However, due to the round-off error introduced in the modal
basis element w1,1, the relative errors should be expected of order ε since the exact solution
coincides with the expression of q−1 (x1).

Figure 3.1: Real part of the approximate solution (left) and relative error (right) obtained
from the modal-based PUFEM method with a one-dimensional mesh of ten elements (i.e.
M = 10), for a discretization involving only the first Love mode w1,1, where it has been
settled K1,1

− = K1,1
+ = 10−13. The exact solution coincides with q−1 .

Table 3.1 show the relative errors and the condition number obtained with three different
finite element meshes of M = 1, 10 and 100 elements. For the first two meshes, the relative
error has order O(δ) as it would be expected. In addition, it can be observed that the
condition number grows with the mesh size, what also produces a growth on the relative
error. Figure 3.1 illustrates the real part of the approximated solution and the relative error
for M = 10.

M dof εh κ

1 4 3.72× 10−16 5.2× 100

10 22 1.40× 10−13 8.1× 105

100 202 1.50× 10−11 7.6× 1011

Table 3.1: Relative error εh and condition number κ for different finite element mesh with
M elements and obtained for a discretization involving only the first Love mode w1,1, where
it has been settled K1,1

− = K1,1
+ = 10−13. The exact solution coincides with q−1 .

Now, an additional perturbation parameter δ > 0 on the wave number is introduced in
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the expression of the exact solution in order to avoid that it coincides with q−1 (x1), this is,
the boundary condition of problem (3.10)-(3.14) are chosen such that the exact solution is
given by u(x) = e−i(ω/c+δ)x1 . From Table 3.2 it can be concluded that the proposed modal-
based PUFEM recovers the same order of convergence O(δ2h2) as it has been analysed
for a planewave-based PUFEM method in one-dimensional problems (see [25] for further
details). Figure 3.2 illustrates the real part of the approximated solution and the relative
error for M = 10.

M δ dof εh κ

10−3 4 2.08× 10−8 5.2× 100

1 10−2 4 2.08× 10−6 5.2× 100

10−1 4 2.12× 10−4 5.2× 100

10−3 22 1.15× 10−10 8.1× 105

10 10−2 22 1.10× 10−8 8.1× 105

10−1 22 1.12× 10−6 8.1× 105

10−3 202 4.13× 10−9 7.6× 1011

100 10−2 202 3.28× 10−10 7.6× 1011

10−1 202 1.46× 10−9 7.6× 1011

Table 3.2: Relative error εh and condition number κ for different finite element mesh with
M elements and obtained for a discretization involving only the first Love mode w1,1,
where it has been settled K1,1

− = K1,1
+ = 10−13. The exact solution is a perturbation of q−1

multiplying it by the factor eiδx1 .

Figure 3.2: Real part of the approximate solution (left) and relative error (right) obtained
from the modal-based PUFEM method with a one-dimensional mesh of ten elements (i.e.
M = 10), for a discretization involving only the first Love mode w1,1, where it has been
settled K1,1

− = K1,1
+ = 10−13. The exact solution is a perturbation of q−1 multiplying it by

the factor eiδx1 , with δ = 10−2.
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Finally, to illustrate the numerical behaviour of the proposed modal-based PUFEM
method to handle x1-dependent solutions, it has been considered the adequate boundary
functions g and r and source term f to obtain as exact solution the following expression:

u(x1, x2) =
1

2ω2
(e−iω(x1−1)/c + eiωx1/c − 2). (3.126)

In particular, due to the constant term in the exact solution, f(x1, x2) = 1. As it can be
observed in Table 3.3 the typical order of convergence of a linear finite element method
O(h2) is recovered (it should be notice that the piecewise linear finite element basis is been
used in the present method as partition of unity). Figure 3.3 illustrates the real part of the
approximated solution and the relative error for M = 10.

M dof εh κ

1 4 4.13× 10−2 5.2× 100

10 22 2.48× 10−4 8.1× 105

100 202 2.73× 10−7 7.6× 1011

Table 3.3: Relative error εh and condition number κ for different finite element mesh with M
elements and obtained for a discretization involving only the first Love mode w1,1, where
it has been settled K1,1

− = K1,1
+ = 10−13. The exact solution consists in the addition of

one-dimensional plane waves and a constant term (3.126).

Figure 3.3: Real part of the approximate solution (left) and relative error (right) obtained
from the modal-based PUFEM method with a one-dimensional mesh of ten elements (i.e.
M = 10), for a discretization involving only the first Love mode w1,1, where it has been
settled K1,1

− = K1,1
+ = 10−13. The exact solution consists in the addition of one-dimensional

plane waves and a constant term (3.126).
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3.5.2 Numerical comparison with a two-dimensional finite ele-
ment method

Instead of considering homogeneous speed of sound profiles as it has been used pre-
viously, now the problem (3.10)-(3.14) is settled such as c− = 1/2 and c+ = 1 in Ω− =
(0, L) × (−a, 0) and Ω+ = (0, L) × (0, H), respectively. Again, the angular frequency is
given by ω = π and Robin boundary conditions are assumed in the left and right bound-
aries (β = 1) on the square domain Ω = (0, L)× (−a,H), being a = 0.2, H = 0.8, L = 1.

For this numerical test, the source term has been chosen as f = 0, the boundary terms
are given by g = 0 on Γe ∪ Γs, r = 0 on Γ− and r = 1 on Γ+. With these boundary
conditions, the exact solution is not known in closed form and hence it is not possible to
compute the relative error. As alternative, the numerical comparison of the approximated
solution uh computed with the modal-based PUFEM method has been made with respect
to the piecewise linear finite element approximation ufem in two dimensions.

For this purpose, the PUFEM solution uh is computed taking into account a one-
dimensional mesh with M = 10 elements and the first ten families of Love eigenmodes,
this is, the definition of XLh involves the Love modes wn,j with (n, j) ∈ {k} × Lk for
k = 1, . . . , N = 10. To compare both approximations, the relative difference dh of the
PUFEM solution uh and the FEM approximation uFEM is computed as the maximum norm
of the difference between both functions evaluated at the nodes of the two-dimensional fi-
nite element mesh used to compute ufem and normalized with respect to the maximum
point-wise value of uh on those nodes.

A variety of two-dimensional regular triangular meshes with different maximum diame-
ter hmax has been used. Table 3.4 illustrates that the relative difference in L∞-norm behaves
like O(hmax) as it is predicted for the approximation of piecewise linear finite element meth-
ods applied for regular solutions in two dimensions (see [11, Chapter 3, Section 3.3]). Such
behaviour indicates that the relative difference is dominated by the finite element error
which is larger than the error coming from the PUFEM approximation even when the
value of M = 10 is fixed.

hmax dh

1.2× 10−1 4.43× 10−2

6.2× 10−1 1.16× 10−2

3.1× 10−2 2.30× 10−3

1.5× 10−2 9.19× 10−4

7.7× 10−3 1.35× 10−3

3.8× 10−3 1.43× 10−3

1.9× 10−3 1.45× 10−3

Table 3.4: Relative difference dh between the modal-based PUFEM approximation uh com-
puted with M = 10, N = 10 and the standard piecewise linear finite element approximation
with different mesh sizes hmax. The exact solution is not known in closed form.
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3.5.3 Numerical comparison of discrete spaces with or without
internal waves

To illustrate the relevance of including the internal waves on the discrete space (and
consequently use the whole Hilbert basis in the enrichment of the PUFEM method), a
detailed comparison between the modal-based method have being carried out using the
discrete spaces XLh (only considering Love eigenmodes) and Xh (using Love and internal
eigenmodes).

As it has been used previously, problem (3.10)-(3.14) is settled with angular frequency
ω = π, but now pure Neumann boundary conditions have been considered in the whole
boundary ∂Ω (taking β = 0). The square domain Ω = (0, L)× (−a,H) with a = 0.2, H =
0.8, L = 1 is split in two subdomains where the speed of sound is given by c− = 1/2 in
Ω− = (0, L)× (−a, 0) and c+ = 1 in Ω+ = (0, L)× (0, H). The source term is given by

f(x1, x2) =

{
1 for (x1, x2) ∈ Ω+,

x2 for (x1, x2) ∈ Ω−,

and the boundary functions are fixed to g = 0 and r = 0. Under these boundary conditions
and this source term, it is straightforward to compute the exact solution in closed form.
More precisely, the exact solution is given by

u(x1, x2) =


A+e

−iωx2/c+ +B+e
iωx2/c+ − 1

ω2
if (x1, x2) ∈ Ω+,

A−e
−iωx2/c− +B−e

iωx2/c− − x2

ω2
if (x1, x2) ∈ Ω−,

(3.127)

being A+, B+, A−, B− coefficients that are determined solving the system
0 0 e−iωH/c+ −eiωH/c+

eiωa/c− −e−iωa/c− 0 0
1 1 −1 −1
1 −1 −c+/c− c+/c−



A−
B−
A+

B+

 =


0

ic−/ω
3

−1/ω2

ic−/ω
3

 .

that results from applying the boundary conditions and the coupling conditions.

Table 3.5 shows the relative error for both, an approximated solution in the discrete
space XLh involving only Love eigenmodes and an approximated solution in the discrete space
Xh with Love and internal eigenmodes. As it is expected, if internal and Love waves are
included in the discretization (this is, if a whole Hilbert basis is used in the discretization)
in the discretization then the approximated PUFEM solutions are much more accurate than
those computed with only Love waves. This conclusion is valid for any value of mesh size
M and any number of eigenmodes N as it can be checked in Table 3.5. Figures 3.4 and 3.5
illustrate the real part of the approximated solution and the relative error for M = 4 and
N = 10 computed using the discrete space XLh and Xh, respectively.
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XLh (without internal waves) Xh (with internal waves)
M N dof εh κ dof εh κ

1 4 1.26× 100 4.1× 100 12 9.42× 10−2 1.5× 102

2 8 1.35× 100 2.3× 101 32 1.25× 10−2 3.8× 106

3 16 1.65× 100 1.1× 103 60 2.14× 10−3 1.5× 108

1 4 24 2.40× 100 8.5× 103 96 1.11× 10−4 1.5× 1011

5 32 2.95× 100 5.0× 104 140 3.00× 10−5 3.1× 1013

10 100 1.87× 100 9.4× 108 500 1.55× 10−5 1.2× 1019

1 6 1.25× 100 4.8× 101 18 4.19× 10−2 2.2× 103

2 12 1.81× 100 3.2× 102 48 6.21× 10−3 6.7× 107

3 24 2.70× 100 1.3× 104 90 4.80× 10−4 2.5× 1010

2 4 36 3.69× 100 1.8× 105 144 3.28× 10−5 4.9× 1012

5 48 9.51× 100 1.5× 106 210 2.23× 10−5 2.5× 1015

10 150 3.44× 10−2 1.6× 1011 750 8.00× 10−6 2.1× 1020

1 8 1.25× 100 5.9× 102 24 1.44× 10−2 2.2× 104

2 16 1.95× 100 2.7× 103 64 4.60× 10−3 8.8× 107

3 32 3.21× 100 1.5× 105 120 2.43× 10−4 1.3× 1011

3 4 48 1.93× 102 2.4× 106 192 3.11× 10−5 3.3× 1013

5 64 7.30× 10−1 1.5× 107 280 1.88× 10−5 6.7× 1015

10 200 7.12× 10−3 1.0× 1011 1000 5.47× 10−6 1.9× 1020

1 10 1.25× 100 3.4× 103 30 1.34× 10−2 1.2× 105

2 20 2.38× 100 1.5× 104 80 2.63× 10−3 5.4× 108

3 40 3.53× 100 1.0× 105 150 7.28× 10−5 2.7× 1012

4 4 60 1.92× 100 2.4× 107 240 1.86× 10−5 4.4× 1014

5 80 4.45× 10−1 1.1× 108 350 1.72× 10−5 5.2× 1016

10 250 3.30× 10−3 1.3× 1014 1250 3.88× 10−6 1.0× 1023

1 12 1.25× 100 1.3× 104 36 1.28× 10−2 4.5× 105

2 24 2.48× 100 5.6× 104 96 1.31× 10−3 3.2× 109

3 48 4.52× 100 4.5× 106 180 4.88× 10−5 2.1× 1013

5 4 72 9.20× 10−1 1.6× 108 288 1.95× 10−5 3.0× 1015

5 96 2.60× 10−1 6.8× 108 420 1.80× 10−5 4.1× 1018

10 300 1.51× 10−3 6.9× 1014 1550 5.43× 10−6 7.3× 1019

1 22 1.25× 100 8.1× 105 66 1.11× 10−2 2.7× 107

2 44 2.61× 100 3.6× 106 176 1.83× 10−4 1.0× 1012

3 88 5.17× 100 3.5× 108 330 2.73× 10−5 3.6× 1015

10 4 132 3.76× 10−1 8.8× 1010 528 1.44× 10−5 1.2× 1017

5 176 6.62× 10−2 4.1× 1011 770 7.74× 10−6 2.0× 1018

10 550 3.69× 10−4 6.2× 1016 2750 1.97× 10−5 2.2× 1019

Table 3.5: Comparison of the relative error εh and the condition number κ for two different
approximated PUFEM solutions, one in the discrete space XLh that only includes Love
waves, and another one belonging to the discrete space Xh with both Love and interior
eigenmodes. The numerical results are shown for different values of the mesh size M , the
number of eigenpair families considered in the discretization N , and the degrees of freedom
(dof) of the discrete approximation.
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Figure 3.4: Real part of the approximate solution (left) and relative error (right), obtained
from the modal-based PUFEM method with a one-dimensional mesh of four elements (i.e.
M = 4) and considering the family of Love waves wn,j with (n, j) ∈ {1, . . . , 10}×{Ln} (i.e.
N = 10). The exact solution is given by (3.127).

Figure 3.5: Real part of the approximate solution (left) and relative error (right), ob-
tained from the modal-based PUFEM method with a one-dimensional mesh of four el-
ements (i.e. M = 4) and considering the family of Love and interior waves wn,j with
(n, j) ∈ {1, . . . , 10} × {Ln ∪ IJnn } (i.e. N = 10). The exact solution is given by (3.127).

It is also relevant that, if the relative errors obtained with both discrete spaces are com-
pared for similar values of degrees of freedom (and hence with almost similar computational
cost), the numerical results reached with the discrete Xh outperforms those results obtained
with only Love waves in XLh . In conclusion, the numerical results described throughout the
rest of this section, will take into account both Love and interior eigenmodes and hence the
modal-based PUFEM discretization will always use the discrete space Xh.
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3.5.4 Consistency of the modal-based PUFEM method with Love
and internal waves

In order to check the consistency of the PUFEM method, using the discrete space with
both internal and Love waves, the relative error has been analysed in two numerical tests
where the exact solutions belong to the discrete space Xh. In the first case the exact
solution is given by a Love wave and in the second case, an internal wave is imposed as
exact solution.

For the first numerical test, problem (3.10)-(3.14) is settled with an angular frequency
ω = π, and assuming pure homogeneous Neumann boundary conditions (this is, the pa-
rameter β is null and the boundary functions are fixed to g = 0 and r = 0. As in previous
cases described above, the speed of sound is given by c− = 1/2 in Ω− = (0, L) × (−a, 0)
and c+ = 1 in Ω+ = (0, L)× (0, H) being a = 0.2, H = 0.8, L = 1.

The first solution considered is the Love eigenmode with the lowest eigenvalue λ1,j1 ,
i.e., u = w1,j1 being j1 the first index in the sorted set L1. To obtain such exact solution,
the source term in (3.10) has been fixed to f = (λ1,j1 − ω2)w1,j1 . Obviously, from a theo-
retical point of view, since the exact solution belongs to the discrete space, the numerical
approximation error should be null. However, due to the round-off errors introduced by
the double precision arithmetic representation, the relative errors shown in the first rows of
Table 3.6 are of magnitude O(10−13). The numerical results of Table 3.6 also illustrate how
the relative errors are increased as the one-dimensional mesh is refined (M is increased) and
more families of eigenmodes are involved in the discrete space Xh (value of N is increased).
In both cases, since the condition number of the linear system grows, the relative errors are
also increased. Despite of this well-known phenomena, it should be remarked that five digits
of accuracy are kept even in those numerical approximations where the condition number
is as high as O(1018). Figure 3.6 illustrates the real part of the approximated solution and
the relative error for M = 10 and N = 3.
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M N dof εh κ

1 12 2.43× 10−15 1.5× 102

2 32 2.01× 10−15 3.8× 106

1 3 60 1.46× 10−14 1.5× 108

4 96 4.05× 10−13 1.5× 1011

5 140 4.74× 10−12 3.1× 1013

1 66 2.83× 10−13 2.7× 107

2 176 4.65× 10−12 1.0× 1012

10 3 330 1.22× 10−10 3.6× 1015

4 528 3.10× 10−9 1.2× 1017

5 770 1.25× 10−8 2.0× 1018

1 606 2.01× 10−11 2.5× 1013

2 1616 7.11× 10−9 2.0× 1016

100 3 3030 5.45× 10−6 1.4× 1018

4 4848 1.16× 10−7 5.2× 1018

5 7070 3.56× 10−6 9.4× 1018

Table 3.6: Relative error εh and the condition number κ for different values of the mesh size
M , the number of eigenpair families considered in the discretization N , and the degrees of
freedom (dof) of the discrete approximation. The exact solution is given by the Love wave
with the lowest eigenvalue.

Figure 3.6: Real part of the approximate solution (left) and relative error (right) obtained
from the modal-based PUFEM method with a one-dimensional mesh of ten elements (i.e.
M = 10) and considering the family of Love and interior waves wn,j with (n, j) ∈ {1, 2, 3}×
{Ln ∪ IJnn } (i.e. N = 3). The exact solution is the Love mode associated to the lowest
eigenvalue.

For the second numerical test, the exact solution is fixed to be the non-constant internal
eigenmode with the lowest associated eigenvalue, this is u = w1,k1 being k1 the first index
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in the sorted subset IJ11 . To obtain such exact solution, the source term is given by f =
(λ1,k1 − ω2)w1,k1 . As it has been discussed previously, since the exact solution is contained
in the discrete space Xh then the relative error should be null from a theoretically point of
view. As in the previous numerical test, Table 3.7 shows that the first rows corresponding
to coarse meshes and a reduced number of eigenmode families in the discrete space Xh, the
relative errors are of magnitude O(10−13). Again, such non-null relative errors are produced
by the amplification of round-off errors in the numerical solution of a linear system with
large condition numbers. Figure 3.7 illustrates the real part of the approximated solution
and the relative error for M = 10 and N = 3.

M N dof εh κ

1 12 1.49× 10−15 1.5× 102

2 32 4.92× 10−15 3.8× 106

1 3 60 3.81× 10−14 1.5× 108

4 96 5.99× 10−13 1.5× 1011

5 140 6.60× 10−12 3.1× 1013

1 66 3.74× 10−13 2.7× 107

2 176 1.04× 10−11 1.0× 1012

10 3 330 7.28× 10−10 3.6× 1015

4 528 6.01× 10−9 1.2× 1017

5 770 9.30× 10−8 2.0× 1018

1 606 2.78× 10−11 2.5× 1013

2 1616 1.11× 10−8 2.0× 1016

100 3 3030 1.06× 10−5 1.4× 1018

4 4848 3.55× 10−7 5.1× 1018

5 7070 4.92× 10−6 9.5× 1018

Table 3.7: Relative error εh and the condition number κ for different values of the mesh size
M , the number of eigenpair families considered in the discretization N , and the degrees of
freedom (dof) of the discrete approximation. The exact solution is given by the interior
wave with the lowest eigenvalue.
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Figure 3.7: Real part of the approximate solution (left) and relative error (right) obtained
from the modal-based PUFEM method with a one-dimensional mesh of one element (i.e.
M = 10) and considering the family of Love and interior waves wn,j with (n, j) ∈ {1, 2, 3}×
{Ln ∪ IJnn } (i.e. N = 3). The exact solution is the interior mode associated to the lowest
eigenvalue.

3.5.5 Influence of the condition number on the numerical results

In previous subsections, it has been reported that the modal-based PUFEM method
suffers for large condition numbers in the linear systems to be solved. Such issue represents
a potential drawback in the use of direct LU-based solvers. From the numerical results
described in the sections above, this conditioning problem is more relevant as soon as the
one-dimensional finite element mesh is refined and the number of eigenmodes involved in
the discrete space is increased. However, there exists a number of methodologies to deal
with high condition numbers and try to mitigate the amplification of the round-off errors
on the solution of the linear systems. In the present section, three different regularization
techniques are used: a naive damped strategy, the classical Tikhonov filtering, and the
truncated singular value decomposition method. The latter has been already used for
solving linear systems with large condition numbers in the context of two-dimensional
PUFEM discretizations (see [16]).

The LU-based solver and the three regularization techniques that are used in this sub-
section are described as follows. For simplicity in the notation, let Aw = b the system that
has to be solved, being A a square matrix of size n, b the right hand side vector and w the
solution vector. The LU-based solver used consists in writing the matrix A as A = LU ,
where L is a permutation of a lower triangular matrix and U is an upper triangular matrix.
Then, the vector w is calculated by solving two permuted triangular systems, w = U\(L\b).
The approximate solution in eh has been calculated with this LU solver.

The naive damped strategy used in this subsection consists in solving (A + λdI)w = b
instead of Aw = b, being λd a parameter. To solve the modified system, the LU solver
described above is used. The approximate solution in ed has been calculated with this



3.5. Numerical results 157

strategy.
The classical Tikhonov filtering (see [43], [47], [48]) consists in finding

min
{
‖Aw − b‖2

2 − λt‖w − w∗‖2
2

}
,

where w∗ is an initial estimate of the solution and λt is the regularization parameter. The
approximate solutions in et have been calculated with this filtering.

The truncated SVD procedure (see [22], [23], [50] for more detail) consists in writing
the matrix A as

A = UDV t =
n∑
j=1

ujσjv
t
j,

being U = (u1, . . . ,un) and V = (v1, . . . ,vn) matrices with orthonormal columns, U tU =
V tV = In, and where D = diag(σ1, . . . , σn) has non-negative diagonal elements appearing
in non-increasing order such that σ1 ≥ . . . ≥ σn ≥ 0. The numbers σj are the singular values
of A, while the vectors uj and vj are the left and right singular vectors of A, respectively, for
all j = 1, . . . , n. Then, the truncation consists in choosing a parameter λSVD and consider
just the singular values that are larger than λSVD, i.e., in considering the truncated matrix

AT =
k∑
j=1

ujσjv
t
j,

for σ1 ≥ . . . σk > λSVD. The approximate solutions in eSVD have been calculated with this
procedure.

To choose the regularization parameters, several techniques can be applied. In this work,
the L-curve and the generalized cross validation techniques have been used. The so-called
L-curve is a plot of the norm ‖wreg‖2 of the regularized solution (with any of the three
techniques) versus the corresponding residual norm ‖Awreg − b‖2. For discrete ill-posed
problems (see [33], [37] for more details) the L-curve, when plotted in log-log scale, has a
characteristic L-shaped appearance, with a distinct corner separating the vertical and the
horizontal parts of the curve. This corner gives the optimal value for the regularization
parameter. The generalized cross validation (GCV) technique has into account the fact
that the choice of the regularization parameter should be independent of an orthogonal
transformation of the right hand side b (see [51] for more details).

As it has been used previously, problem (3.10)-(3.14) is settled with angular frequency
ω = π, but now pure Neumann boundary conditions have been considered in the whole
boundary ∂Ω (taking β = 0). The square domain Ω = (0, L)× (−a,H) with a = 0.2, H =
0.8, L = 1 is split in two subdomains where the speed of sound is given by c− = 1/2 in
Ω− = (0, L) × (−a, 0) and c+ = 1 in Ω+ = (0, L) × (0, H). Now, to avoid those exact
solutions which could belong to Xh, the source term is given by

f(x1, x2) =


cos

(
3πx1

L

)
for (x1, x2) ∈ Ω+,

(1 + x2) cos

(
3πx1

L

)
for (x1, x2) ∈ Ω−,
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and the boundary functions are fixed to g = 0 and r = 0. Under these boundary conditions
and this source term, it is straightforward to compute the exact solution in closed form and
it is clear that it does not belong to Xh. More precisely, the exact solution is given by

u(x1, x2) = cos

(
3πx1

L

)
A+e

−iα+x2 +B+e
iα+x2 − 1

c2
+α

2
+

if (x1, x2) ∈ Ω+,

A−e
−iα−x2 +B−e

iα−x2 − 1 + x2

c2
−α

2
−

if (x1, x2) ∈ Ω−,

(3.128)
where

α+ =

√
ω2

c2
+

− 9π2

L2
, α− =

√
ω2

c2
−
− 9π2

L2
,

and being A+, B+, A−, B− coefficients that are determined solving the system


0 0 −e−iα+H eiα+H

−iα−eiα−a iα−e
−iα−a 0 0

−1 −1 1 1
ic2
−α− −ic2

−α− −ic2
+α+ ic2

+α+



A−
B−
A+

B+

 =


0

1/c2
−α

2
−

1/c2
+α

2
+ − 1/c2

−α
2
−

−1/α2
−

 .

that results from applying the boundary conditions and the coupling conditions.

Firstly, Table 3.8 shows the comparison of the relative errors obtained with a LU-based
direct solver and with the naive damped algorithm (adding a damping coefficient λd on
the diagonal entries of the matrix). It can be observed that both methodologies lead to
similar relative errors without any significant advantage between both methods. Analogous
conclusions can be deduced from the numerical results reported for the truncated singular
value decomposition (see Tables 3.11 and 3.12), and the Tikhonov filtering technique (see
Tables 3.9, and 3.10), both in the case where the regularization parameter is chosen using
a L-curve strategy and in that one where the generalized cross validation (GCV) method
is utilized.



3.5. Numerical results 159

M N dof λd er ed κ

1 12 8.7× 10−7 2.98× 10−1 2.98× 10−1 1.4× 102

2 32 8.7× 10−7 2.09× 10−2 2.09× 10−2 3.8× 106

1 3 60 8.7× 10−7 1.13× 10−3 1.14× 10−3 1.5× 108

4 96 1.0× 10−8 7.76× 10−5 8.27× 10−5 1.5× 1011

5 140 5.3× 10−10 1.24× 10−4 1.25× 10−4 3.1× 1013

10 500 2.3× 10−12 1.05× 10−4 3.89× 10−5 1.2× 1019

1 18 8.7× 10−7 9.88× 10−2 9.88× 10−2 2.2× 103

2 48 8.7× 10−7 3.44× 10−3 3.45× 10−3 6.7× 107

2 3 90 8.7× 10−7 2.27× 10−4 3.15× 10−4 2.5× 1010

4 144 8.1× 10−10 1.06× 10−4 1.06× 10−4 4.9× 1012

5 210 1.1× 10−10 8.56× 10−5 9.09× 10−5 2.5× 1015

10 750 1.1× 10−12 3.94× 10−5 3.58× 10−5 1.3× 1020

1 24 8.7× 10−7 7.89× 10−2 7.89× 10−2 2.2× 104

2 64 8.7× 10−7 5.76× 10−3 5.77× 10−3 8.8× 107

3 3 120 8.7× 10−7 2.03× 10−4 2.92× 10−4 1.3× 1011

4 192 1.4× 10−9 1.03× 10−4 1.07× 10−4 3.3× 1013

5 280 8.7× 10−11 5.57× 10−5 6.73× 10−5 6.7× 1015

10 1000 3.5× 10−12 4.63× 10−5 3.04× 10−5 4.4× 1019

1 30 8.7× 10−7 2.27× 10−2 2.27× 10−2 1.2× 105

2 80 5.0× 10−7 3.48× 10−3 3.47× 10−3 5.4× 108

4 3 150 2.8× 10−7 6.79× 10−5 8.33× 10−5 2.7× 1012

4 240 9.3× 10−10 1.01× 10−4 1.06× 10−4 4.4× 1014

5 350 2.3× 10−10 4.70× 10−5 6.61× 10−5 5.2× 1016

10 1250 2.3× 10−12 4.70× 10−5 2.90× 10−5 3.9× 1020

1 36 8.7× 10−7 2.33× 10−2 2.33× 10−2 1.4× 105

2 96 7.1× 10−8 1.69× 10−3 1.69× 10−3 3.8× 109

5 3 180 9.3× 10−8 8.12× 10−5 7.69× 10−5 1.5× 1013

4 288 1.2× 10−9 1.01× 10−4 1.07× 10−4 1.5× 1015

5 420 4.3× 10−11 6.03× 10−5 5.63× 10−5 3.1× 1018

10 1500 5.3× 10−12 5.22× 10−5 2.92× 10−5 1.2× 1020

1 66 8.7× 10−7 2.37× 10−2 2.37× 10−2 1.4× 107

2 176 5.7× 10−7 7.92× 10−4 7.46× 10−4 3.8× 1012

10 3 330 3.8× 10−9 1.33× 10−4 1.22× 10−4 1.5× 1015

4 528 1.3× 10−12 9.88× 10−5 1.01× 10−4 1.5× 1017

5 770 1.0× 10−12 5.47× 10−5 5.71× 10−5 3.1× 1018

10 2750 1.1× 10−12 4.94× 10−5 2.53× 10−5 1.2× 1019

Table 3.8: Comparison of the relative error εh computed from solving the discrete linear
system using a LU-based direct solver and the relative error ed obtained from the ap-
proximated solution using a naive damped method. The relative errors and the condition
number κ are reported for different values of the mesh size M , the number of eigenpair
families considered in the discretization N , and the degrees of freedom (dof) of the discrete
approximation.
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Figure 3.8: Real part of the approximate solution (using a LU-based direct solver) (left)
and relative error (right), obtained from the modal-based PUFEM method with a one-
dimensional mesh of four elements (i.e. M = 4) and considering the family of Love and
interior waves wn,j with (n, j) ∈ {1, . . . , 3} × {Ln ∪ IJnn } (i.e. N = 3). The exact solution
is given by equation (3.128).

Figure 3.9: Real part of the approximate solution (using a naive damped method) (left)
and relative error (right), obtained from the modal-based PUFEM method with a one-
dimensional mesh of four elements (i.e. M = 4) and considering the family of Love and
interior waves wn,j with (n, j) ∈ {1, . . . , 3} × {Ln ∪ IJnn } (i.e. N = 3). The exact solution
is given by equation (3.128).
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M N dof λt (L-curve) er et (L-curve) κ

1 12 6.1× 100 2.98× 10−1 1.18× 100 1.4× 102

2 32 8.2× 10−1 2.09× 10−2 1.31× 10−1 3.8× 106

1 3 60 6.3× 10−5 1.13× 10−3 1.31× 10−3 1.5× 108

4 96 7.2× 10−8 7.76× 10−5 9.40× 10−5 1.5× 1011

5 140 6.2× 10−9 1.24× 10−4 1.22× 10−4 3.1× 1013

10 500 4.8× 10−8 1.05× 10−4 6.79× 10−5 1.2× 1019

1 18 2.7× 10−1 9.88× 10−2 1.03× 10−1 2.2× 103

2 48 1.9× 10−1 3.44× 10−3 4.26× 10−2 6.7× 107

2 3 90 2.9× 10−5 2.27× 10−4 1.30× 10−3 2.5× 1010

4 144 6.1× 10−9 1.06× 10−4 1.08× 10−4 4.9× 1012

5 210 3.5× 10−9 8.56× 10−5 9.84× 10−5 2.5× 1015

10 750 1.0× 10−9 3.94× 10−5 4.38× 10−5 1.3× 1020

1 24 5.5× 10−2 7.89× 10−2 1.33× 10−1 2.2× 104

2 64 1.2× 10−4 5.76× 10−3 5.89× 10−3 8.8× 107

3 3 120 7.0× 10−5 2.03× 10−4 1.10× 10−3 1.3× 1011

4 192 1.1× 10−8 1.03× 10−4 1.15× 10−4 3.3× 1013

5 280 7.1× 10−9 5.57× 10−5 8.09× 10−5 6.7× 1015

10 1000 4.7× 10+2 4.63× 10−5 9.28× 10−1 4.4× 1019

1 30 1.2× 10−2 2.27× 10−2 2.27× 10−2 1.2× 105

2 80 1.6× 10−5 3.48× 10−3 3.47× 10−3 5.4× 108

4 3 150 3.6× 10−6 6.79× 10−5 6.79× 10−5 2.7× 1012

4 240 2.4× 10+2 1.01× 10−4 1.01× 10−4 4.4× 1014

5 350 2.0× 10−9 4.70× 10−5 4.70× 10−5 5.2× 1016

10 1250 4.0× 10+2 4.70× 10−5 4.70× 10−5 3.9× 1020

1 36 4.3× 10−3 2.33× 10−2 2.33× 10−2 1.4× 105

2 96 5.3× 10−3 1.69× 10−3 1.69× 10−3 3.8× 109

5 3 180 9.8× 10−7 8.12× 10−5 8.12× 10−5 1.5× 1013

4 288 2.2× 10+2 1.01× 10−4 1.01× 10−4 1.5× 1015

5 420 3.0× 10+2 6.03× 10−5 6.03× 10−5 3.1× 1018

10 1500 4.0× 10+2 5.22× 10−5 5.22× 10−5 1.2× 1020

1 66 4.4× 10+1 2.37× 10−2 2.37× 10−2 1.4× 107

2 176 2.4× 10−2 7.92× 10−4 7.92× 10−4 3.8× 1012

10 3 330 7.9× 10−5 1.33× 10−4 1.33× 10−4 1.5× 1015

4 528 5.3× 10−8 9.88× 10−5 9.88× 10−5 1.5× 1017

5 770 2.6× 10−11 5.47× 10−5 5.47× 10−5 3.1× 1018

10 2750 6.8× 10−9 4.94× 10−5 4.94× 10−5 1.2× 1019

Table 3.9: Comparison of the relative error εh computed from solving the discrete linear
system using a LU-based direct solver and the relative error et obtained by using the
Tikhonov filtering technique (whose regularization parameter has been chosen by the L-
curve). The relative errors and the condition number κ are reported for different values of
the mesh size M , the number of eigenpair families considered in the discretization N , and
the degrees of freedom (dof) of the discrete approximation.
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Figure 3.10: Real part of the approximate solution (using the Tikhonov filtering technique
whose regularization parameter has been chosen by the L-curve) (left) and relative error
(right), obtained from the modal-based PUFEM method with a one-dimensional mesh of
four elements (i.e. M = 4) and considering the family of Love and interior waves wn,j with
(n, j) ∈ {1, . . . , 3} × {Ln ∪ IJnn } (i.e. N = 3). The exact solution is given by equation
(3.128).
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M N dof λt (GCV) er et (GCV) κ

1 12 1.1× 10+1 2.98× 10−1 1.11× 100 1.4× 102

2 32 2.5× 10−2 2.09× 10−2 2.25× 10−2 3.8× 106

1 3 60 9.2× 10−5 1.13× 10−3 1.24× 10−3 1.5× 108

4 96 1.4× 10−7 7.76× 10−5 9.25× 10−5 1.5× 1011

5 140 2.2× 10−10 1.24× 10−4 1.25× 10−4 3.1× 1013

10 500 1.8× 10−10 1.05× 10−4 4.54× 10−5 1.2× 1019

1 18 5.5× 10−1 9.88× 10−2 1.10× 10−1 2.2× 103

2 48 1.3× 10−5 3.44× 10−3 3.52× 10−3 6.7× 107

2 3 90 8.5× 10−8 2.27× 10−4 2.33× 10−4 2.5× 1010

4 144 1.3× 10−8 1.06× 10−4 1.11× 10−4 4.9× 1012

5 210 2.1× 10−11 8.56× 10−5 8.24× 10−5 2.5× 1015

10 750 1.8× 10−10 3.94× 10−5 3.94× 10−5 1.3× 1020

1 24 1.3× 10−1 7.89× 10−2 1.25× 10−1 2.2× 104

2 64 2.4× 10−5 5.76× 10−3 5.88× 10−3 8.8× 107

3 3 120 5.2× 10−8 2.03× 10−4 2.04× 10−4 1.3× 1011

4 192 9.2× 10−11 1.03× 10−4 1.04× 10−4 3.3× 1013

5 280 1.9× 10−11 5.57× 10−5 5.93× 10−5 6.7× 1015

10 1000 1.6× 10−10 4.63× 10−5 3.45× 10−5 4.4× 1019

1 30 2.9× 10−2 2.27× 10−2 2.52× 10−2 1.2× 105

2 80 4.0× 10−5 3.48× 10−3 3.42× 10−3 5.4× 108

4 3 150 6.0× 10−10 6.79× 10−5 6.78× 10−5 2.7× 1012

4 240 9.7× 10−12 1.01× 10−4 1.01× 10−4 4.4× 1014

5 350 1.7× 10−11 4.70× 10−5 5.52× 10−5 5.2× 1016

10 1250 1.3× 10−10 4.70× 10−5 3.49× 10−5 3.9× 1020

1 36 9.8× 10−3 2.33× 10−2 2.89× 10−2 1.4× 105

2 96 2.1× 10−7 1.69× 10−3 1.69× 10−3 3.8× 109

5 3 180 1.3× 10−10 8.12× 10−5 8.13× 10−5 1.5× 1013

4 288 9.5× 10−12 1.01× 10−4 1.01× 10−4 1.5× 1015

5 420 1.6× 10−11 6.03× 10−5 5.70× 10−5 3.1× 1018

10 1500 1.2× 10−10 5.22× 10−5 3.43× 10−5 1.2× 1020

1 66 3.3× 10−4 2.37× 10−2 2.37× 10−2 1.4× 107

2 176 1.4× 10−9 7.92× 10−4 7.92× 10−4 3.8× 1012

10 3 330 7.9× 10−12 1.33× 10−4 1.33× 10−4 1.5× 1015

4 528 2.9× 10−11 9.88× 10−5 1.01× 10−4 1.5× 1017

5 770 2.4× 10−11 5.47× 10−5 5.88× 10−5 3.1× 1018

10 2750 8.1× 10−11 4.94× 10−5 2.74× 10−5 1.2× 1019

Table 3.10: Comparison of the relative error εh computed from solving the discrete lin-
ear system using a LU-based direct solver and the relative error et obtained by using the
Tikhonov filtering technique (whose regularization parameter has been chosen by the gen-
eralized cross validation technique). The relative errors and the condition number κ are
reported for different values of the mesh size M , the number of eigenpair families considered
in the discretization N , and the degrees of freedom (dof) of the discrete approximation.
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Figure 3.11: Real part of the approximate solution (using the Tikhonov filtering technique
whose regularization parameter has been chosen by the generalized cross validation tech-
nique) (left) and relative error (right), obtained from the modal-based PUFEM method
with a one-dimensional mesh of four elements (i.e. M = 4) and considering the family of
Love and interior waves wn,j with (n, j) ∈ {1, . . . , 3} × {Ln ∪ IJnn } (i.e. N = 3). The exact
solution is given by equation (3.128).
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M N dof λsvd (L-curve) er esvd (L-curve) κ

1 12 4 2.98× 10−1 1.25× 100 1.4× 102

2 32 21 2.09× 10−2 2.75× 10−1 3.8× 106

1 3 60 23 1.13× 10−3 1.53× 10−1 1.5× 108

4 96 17 7.76× 10−5 9.50× 10−1 1.5× 1011

5 140 119 1.24× 10−4 1.39× 10−4 3.1× 1013

10 500 94 1.05× 10−4 8.94× 10−1 1.2× 1019

1 18 8 9.88× 10−2 1.47× 10−0 2.2× 103

2 48 14 3.44× 10−3 1.07× 10−0 6.7× 107

2 3 90 10 2.27× 10−4 1.18× 10−0 2.5× 1010

4 144 58 1.06× 10−4 1.09× 10−2 4.9× 1012

5 210 24 8.56× 10−5 9.42× 10−1 2.5× 1015

10 750 410 3.94× 10−5 4.67× 10−5 1.3× 1020

1 24 1 7.89× 10−2 1.12× 10−0 2.2× 104

2 64 7 5.76× 10−3 1.11× 10−0 8.8× 107

3 3 120 20 2.03× 10−4 1.23× 10−0 1.3× 1011

4 192 61 1.03× 10−4 6.35× 10−2 3.3× 1013

5 280 238 5.57× 10−5 8.06× 10−5 6.7× 1015

10 1000 77 4.63× 10−5 9.25× 10−1 4.4× 1019

1 30 17 2.27× 10−2 2.89× 10−1 1.2× 105

2 80 60 3.48× 10−3 9.50× 10−3 5.4× 108

4 3 150 119 6.79× 10−5 8.94× 10−4 2.7× 1012

4 240 36 1.01× 10−4 1.09× 100 4.4× 1014

5 350 94 4.70× 10−5 1.35× 10−2 5.2× 1016

10 1250 538 4.70× 10−5 4.08× 10−5 3.9× 1020

1 36 13 2.33× 10−2 1.34× 100 1.4× 105

2 96 30 1.69× 10−3 1.22× 100 3.8× 109

5 3 180 150 8.12× 10−5 8.39× 10−4 1.5× 1013

4 288 130 1.01× 10−4 9.74× 10−4 1.5× 1015

5 420 305 6.03× 10−5 1.10× 10−4 3.1× 1018

10 1500 255 5.22× 10−5 1.02× 10−2 1.2× 1020

1 66 29 2.37× 10−2 1.26× 100 1.4× 107

2 176 34 7.92× 10−4 1.17× 100 3.8× 1012

10 3 330 39 1.33× 10−4 1.19× 100 1.5× 1015

4 528 168 9.88× 10−5 1.40× 10−2 1.5× 1017

5 770 678 5.47× 10−5 5.89× 10−5 3.1× 1018

10 2750 568 4.94× 10−5 2.50× 10−4 1.2× 1019

Table 3.11: Comparison of the relative error εh computed from solving the discrete linear
system using a LU-based direct solver and the relative error esvd obtained by using the
truncated singular value decomposition method (whose regularization parameter has been
chosen by the L-curve technique). The relative errors and the condition number κ are
reported for different values of the mesh size M , the number of eigenpair families considered
in the discretization N , and the degrees of freedom (dof) of the discrete approximation.
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Figure 3.12: Real part of the approximate solution (using the truncated singular value
decomposition method whose regularization parameter has been chosen by the L-curve
technique) (left) and relative error (right), obtained from the modal-based PUFEM method
with a one-dimensional mesh of four elements (i.e. M = 4) and considering the family of
Love and interior waves wn,j with (n, j) ∈ {1, . . . , 3} × {Ln ∪ IJnn } (i.e. N = 3). The exact
solution is given by equation (3.128).
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M N dof λsvd (GCV) er esvd (GCV) κ

1 12 4 2.98× 10−1 1.25× 100 1.4× 102

2 32 29 2.09× 10−2 2.15× 10−2 3.8× 106

1 3 60 59 1.13× 10−3 1.25× 10−3 1.5× 108

4 96 94 7.76× 10−5 9.72× 10−5 1.5× 1011

5 140 139 1.24× 10−4 1.24× 10−4 3.1× 1013

10 500 468 1.05× 10−4 3.53× 10−5 1.2× 1019

1 18 14 9.88× 10−2 1.26× 10−1 2.2× 103

2 48 46 3.44× 10−3 3.60× 10−3 6.7× 107

2 3 90 89 2.27× 10−4 2.38× 10−4 2.5× 1010

4 144 139 1.06× 10−4 1.08× 10−4 4.9× 1012

5 210 209 8.56× 10−5 8.50× 10−5 2.5× 1015

10 750 641 3.94× 10−5 3.46× 10−5 1.3× 1020

1 24 22 7.89× 10−2 1.35× 10−1 2.2× 104

2 64 58 5.76× 10−3 5.89× 10−3 8.8× 107

3 3 120 117 2.03× 10−4 2.04× 10−4 1.3× 1011

4 192 190 1.03× 10−4 1.04× 10−4 3.3× 1013

5 280 278 5.57× 10−5 5.61× 10−5 6.7× 1015

10 1000 856 4.63× 10−5 2.51× 10−5 4.4× 1019

1 30 28 2.27× 10−2 2.44× 10−2 1.2× 105

2 80 74 3.48× 10−3 3.42× 10−3 5.4× 108

4 3 150 149 6.79× 10−5 6.78× 10−5 2.7× 1012

4 240 238 1.01× 10−4 1.00× 10−4 4.4× 1014

5 350 345 4.70× 10−5 5.06× 10−5 5.2× 1016

10 1250 1017 4.70× 10−5 2.79× 10−5 3.9× 1020

1 36 31 2.33× 10−2 2.80× 10−2 1.4× 105

2 96 93 1.69× 10−3 1.68× 10−3 3.8× 109

5 3 180 179 8.12× 10−5 8.13× 10−5 1.5× 1013

4 288 285 1.01× 10−4 1.01× 10−4 1.5× 1015

5 420 406 6.03× 10−5 5.76× 10−5 3.1× 1018

10 1500 1262 5.22× 10−5 2.72× 10−5 1.2× 1020

1 66 61 2.37× 10−2 2.36× 10−2 1.4× 107

2 176 175 7.92× 10−4 7.92× 10−4 3.8× 1012

10 3 330 327 1.33× 10−4 1.33× 10−4 1.5× 1015

4 528 526 9.88× 10−5 9.84× 10−5 1.5× 1017

5 770 735 5.47× 10−5 5.73× 10−5 3.1× 1018

10 2750 2500 4.94× 10−5 2.46× 10−5 1.2× 1019

Table 3.12: Comparison of the relative error εh computed from solving the discrete linear
system using a LU-based direct solver and the relative error esvd obtained by using the
truncated singular value decomposition method (whose regularization parameter has been
chosen by the generalized cross validation technique). The relative errors and the condition
number κ are reported for different values of the mesh size M , the number of eigenpair
families considered in the discretization N , and the degrees of freedom (dof) of the discrete
approximation.
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Figure 3.13: Real part of the approximate solution (using the truncated singular value
decomposition method whose regularization parameter has been chosen by the generalized
cross validation technique) (left) and relative error (right), obtained from the modal-based
PUFEM method with a one-dimensional mesh of four elements (i.e. M = 4) and considering
the family of Love and interior waves wn,j with (n, j) ∈ {1, . . . , 3}×{Ln∪IJnn } (i.e. N = 3).
The exact solution is given by equation (3.128).

3.5.6 Accurate approximation of eigenmodes not included in the
discrete space

It has been discussed in previous sections that those eigenpairs corresponding to constant
factors q0(x1) are not considered to define the enrichment of the discrete space Xh. So, it
could be natural to conclude that the exact solutions of the problem (3.10)-(3.14) could
be inaccurately approximated by the modal-based PUFEM method. On the contrary, the
numerical test described in this section illustrates the high accuracy of the method even for
the constant case.

With this aim, as it has been considered in the previous sections, problem (3.10)-(3.14)
is settled with angular frequency ω = π, and pure Neumann boundary conditions have
been considered in the whole boundary ∂Ω (taking β = 0). The square domain Ω =
(0, L)× (−a,H) with a = 0.2, H = 0.8, L = 1 is split in two subdomains where the speed
of sound is given by c− = 1/2 in Ω− = (0, L)× (−a, 0) and c+ = 1 in Ω+ = (0, L)× (0, H).

The source term has been fixed to f = 1 to obtain as exact solution u = −1/ω2.
Table 3.13 shows that, even if the eigenmodes which are independent of the x1 spatial
coordinate are not included in the modal-based discretization, the constant exact solution
can be approximated accurately with similar relative errors to those other solutions which
does not belongs to Xh (see for instance, the similar relative errors reported in Table 3.5).
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M N dof εh κ

1 12 1.21× 10−1 1.5× 102

2 32 1.99× 10−2 3.8× 106

1 3 60 2.31× 10−3 1.5× 108

4 96 2.13× 10−4 1.5× 1011

5 140 1.61× 10−5 3.1× 1013

1 66 9.42× 10−3 2.7× 107

2 176 1.56× 10−4 1.0× 1012

10 3 330 1.04× 10−5 3.6× 1015

4 528 5.02× 10−7 1.2× 1017

5 770 1.31× 10−7 2.0× 1018

1 606 9.38× 10−3 2.5× 1013

2 1616 4.72× 10−5 2.0× 1016

100 3 3030 1.66× 10−5 1.4× 1018

4 4848 1.54× 10−6 5.1× 1018

5 7070 1.26× 10−5 8.2× 1018

Table 3.13: Relative error εh and the condition number κ for different values of the mesh
size M , the number of eigenpair families considered in the discretization N , and the degrees
of freedom (dof) of the discrete approximation. The exact solution is constant.

Figure 3.14: Real part of the approximate solution (left) and relative error (right), ob-
tained from the modal-based PUFEM method with a one-dimensional mesh of ten ele-
ments (i.e. M = 10) and considering the family of Love and interior waves wn,j with
(n, j) ∈ {1, . . . , 3} × {Ln ∪ IJnn } (i.e. N = 3). The exact solution is u = −1/ω2.
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3.6 Conclusions

In this chapter, a non destructive testing problem in a bi-layered domain without a
crack has been studied. The existence and uniqueness of the weak problem, together with
its spectral analysis have been deduced. A modal-based partition of unity finite element
method, using Love and internal waves to approximate the solution of the problem, has been
proposed and described in detail. The bad conditioning of the matrix have been studied.
Finally, some numerical results have been presented, in order to illustrate the accuracy of
the method, the deterioration of the results due to the high condition number and some
regularization techniques.



Further research

To finish this PhD dissertation, some of the research lines that could be explored are
briefly described. They can be divided in three large blocks, attending to the aims of
each one: the numerical analysis of partition of unity finite element methods in one, two
and three dimensions, the numerical enhancement of the partition of unity finite element
methods applied to heterogeneous media and the challenges of the application of PUFEM
methods in non destructive testing.

• The first future research line is first devoted to obtain a more accurate error estimate
for the approximation computed with a PUFEM discretization of a one-dimensional
Helmholtz problem. This estimate should confirm the independence on the wave
number observed in the numerical results. The path to follow in order to achieve this
accuracy on the error estimate should be to increase the smoothness of the source
term f . The oscillatory solutions of the variational problem (1.2) considered in the
first chapter of this thesis, are solutions too of the Helmholtz equation with smooth
right-hand side f ∈ Hl(0, 1) with l ≥ 1, and duality stability estimates (analogous to
that one described in [28, Theorem 3.2]) should be used to obtain a more accurate
estimate (possibly independent of k). Then, the possibility of the extension of the
results to two and three-dimensional Helmholtz problems should be studied.

• The second block of open problems arises around the application of PUFEM methods
to acoustic problems in heterogeneous media. A first approach could be to dive into
regularization techniques, in order to find a way to deal with the high condition
number that deteriorates the numerical results (as it happened in chapters 2 and
3). Then, the extension of the transmission-reflection PUFEM methods to problems
where the wave number is not piecewise constant but a variable function, defined
differently in each media, should be considered.

• The last block of future work is the deepening on the non destructive testing problems.
After having applied PUFEM discretizations (by means of involving Love waves in the
enrichment of the FEM functions) to problems in bi-layered media without a crack
on the interface, the natural step would be to continue the study applying partition
of unity finite element methods to approximate the solution of problems with a defect
on the interface between media. And, eventually, to solve an inverse problem in order
to know if a certain object, a pipe with a coating for example, has a defect in the
interface between its layers, after having sent Love waves.
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Resumen en castellano

Son numerosos y variados los problemas de la f́ısica y de la ingenieŕıa cuyos modelos
matemáticos involucran la propagación de ondas acústicas. Por citar algunos, se podŕıan
mencionar problemas como la reducción de ruido (las propiedades acústicas son ya un
criterio emergente de calidad tanto en instalaciones como en productos industriales), la
exploración séısmica, la acústica submarina, los ultrasonidos en medicina o los ensayos no
destructivos. En este contexto, surge la necesidad de resolver problemas de propagación
acústica cada vez más complejos, que no pueden ser resueltos por técnicas basadas en
métodos matemáticos clásicos. Es habitual la construcción de prototipos para asegurar que
las tecnoloǵıas utilizadas sean precisas, pero su alto coste de fabricación hace necesario que
los test se lleven a cabo en fases avanzadas del diseño y con propuestas muy próximas a la
solución final. La simulación numérica es una técnica determinante para analizar y diseñar
sistemas acústicos en poco tiempo y con costes competitivos.

La diversidad matemática de los problemas de propagación acústica hace necesario el
empleo de una amplia variedad de modelos numéricos, y la aplicación de técnicas de com-
putación numéricas avanzadas. De entre todos esos modelos, la ecuación de Helmholtz
es ampliamente utilizada como modelo de referencia en problemas de propagación acústica
armónicos en tiempo. En reǵımenes de altas y medias frecuencias, su aproximación numérica
calculada con un método de elementos finitos (FEM) nodal difiere significativamente de la
solución exacta, debido al llamado efecto de la polución (véase [14]). Por lo tanto, la pre-
cisión de las aproximaciones numéricas de los problemas de Helmholtz se basa en métodos
discretos libres de polución, que debeŕıan tener un comportamiento robusto respecto al
número de onda.

El método de partición de la unidad basado en elementos finitos (PUFEM), introducido
por Babǔska e Ihlenburg en 1996 (véase [36]) será el método libre de polución, escogido
de entre todos ellos, utilizado a lo largo de esta tesis. Las ventajas computacionales y
los inconvenientes en la implementación de las discretizaciones de tipo PUFEM han sido
demostrados de forma numérica en varios trabajos (por ejemplo en [35]), pero no se ha
encontrado en la literatura ninguna estimación de error para PUFEM en términos del
número de onda.

El objetivo del primer caṕıtulo de esta tesis será deducir una estimación de error, en
términos del número de onda, para una discretización de tipo PUFEM, basada en un
enriquecimiento de las funciones base de elementos finitos con ondas planas, aplicado a un
problema de Helmholtz unidimensional. El segundo caṕıtulo se dedicará aproximar de forma
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numérica problemas acústicos armónicos en tiempo uni y bidimensionales, en un dominio
dividido en dos capas. El método PUFEM desarrollado en este caṕıtulo tendrá en cuenta
la transmisión y reflexión que tiene lugar en el interfaz entre subdominios. Finalmente, el
último caṕıtulo de esta tesis propone una novedosa discretización PUFEM que involucra
ondas de Love, como herramienta en ensayos no destructivos.

A continuación, se describe con detalle cada caṕıtulo:

Caṕıtulo 1. Estimaciones de error para soluciones aproximadas de la ecuación
de Helmholtz utilizando un método de partición de la unidad basado en ele-
mentos finitos

Los problemas de Helmholtz con diversas condiciones de contorno surgen de varias
aplicaciones f́ısicas. Para obtener resultados precisos en la aproximación numérica de éstos
problemas (véase [24]), el tamaño de la malla escogida h utilizando métodos de elementos
finitos o diferencias finitas, debe depender del número de onda k, habitualmente según
una regla “rule of the thumb”, que asegura un mı́nimo número de nodos por longitud de
onda. En problemas donde el dominio computacional tiene el mismo orden de magnitud
que la longitud de onda del movimiento armónico, este criterio lleva a precisión en los
resultados. Sin embargo, la calidad de las aproximaciones numéricas con dichos métodos
se deteriora si el dominio computacional o el número de onda son suficientemente grandes.
Nuestra atención se centrará en problemas de propagación acústica en el régimen de medias
a altas frecuencias, en el que que la discretización mediante un método de partición de la
unidad basado en elementos finitos es una de las pocas posibilidades de resolver este tipo
de problemas de forma poco costosa desde un punto de vista computacional.

En este primer caṕıtulo, se deducirán estimaciones de error a priori para una dis-
cretización PUFEM sobre un problema de Helmholtz unidimensional. En primer lugar, se
planteará el problema modelo en el intervalo (0, 1), que consta de la ecuación de Helmholtz
unidimensional con un segundo miembro f en L2(0, 1), y condiciones de contorno de tipo
Dirichlet en el extremo izquierdo y Robin en el derecho. Se deduce su formulación varia-
cional y se demuestra la condición inf-sup continua y un resultado de estabilidad de la
solución del problema débil con respecto de los datos. La discretización PUFEM para di-
cho problema de Helmholtz unidimensional se basa en un enriquecimiento con ondas planas
de las funciones base de elementos finitos. Dicha discretización se describe en términos de
funciones exponenciales y de funciones trigonométricas, siendo esta última descripción más
adecuada para el análisis del error. El número de onda de las funciones base del espacio
discreto, se modifica añadiéndole un parámetro de perturbación adicional δ, para reproducir
situaciones en las que la solución exacta no se conoce o tratar de reflejar los problemas para
aproximar la solución exacta que aparecen en problemas de Helmholtz bidimensionales o en
problemas con número de onda variable. Notar que, si este parámetro δ no se introduce, la
solución exacta cae dentro del espacio de discretización. Después de esto, se deducen varias
estimaciones de interpolación y se demuestran la condición LBB discreta y un resultado
de estabilidad de la solución aproximada con respecto a los datos. En estas condiciones,
se puede demostrar una estimación de error en términos del número de onda k, el tamaño
de malla h y el parámetro de perturbación adicional δ. Los resultados numéricos ilustran
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el orden de convergencia para el tamaño de malla h y el parámtro de perturbación δ, que
coinciden con la estimación obtenida. La independencia del error relativo con respecto al
número de onda que puede observarse en los resultados numéricos no aparece sin embargo
en la estimación, por lo que ésta podŕıa ser mejorada si se añade regularidad a la función
segundo miembro f .

Caṕıtulo 2. Métodos de partición de la unidad basados en elementos finitos en
medios multicapa

Muchos de los problemas acústicos de interés tienen lugar en medios heterogéneos. Es
el caso, por ejemplo, de la acústica submarina, donde las diferentes capas de agua bajo la
superficie de la mar tienen distintos grados de salinidad, de temperatura, diferente profun-
didad y mayor o menor cantidad de componentes biológicos. Esto hace necesario plantear
problemas aproximados que resuelvan problemas acústicos en medios con varias capas.

En este segundo caṕıtulo, se trabaja con varios problemas de Helmholtz. En primer
lugar, se considera un problema de Helmholtz unidimensional en un dominio multicapa.
El problema modelo se plantea en el dominio (0, 1), con condiciones de contorno de tipo
Dirichlet en el extremo izquierdo, Robin en el derecho, y un número de onda k constante
a trozos y estrictamente positivo. Tras deducir el problema continuo, se plantean cuatro
posibles discretizaciones, en términos de la elección del número de onda utilizado en las
funciones base PUFEM. El primero de ellos consiste en calcular la media global del número
de onda variable, y utilizar esa media como número de onda en cada función base. A con-
tinuación, se describe un método local, que considera el número de onda en cada elemento
de la malla a la hora de definir el número de onda de las funciones base. El tercer método
está basado en las aproximaciones introducidas por Pablo Ortiz [41], y consiste en calcular
una media local del número de onda variable en cada elemento. Y finalmente el método pro-
puesto de transmisión-reflexión, que tiene en cuenta cada transmisión y reflexión ocurridas
en cada elemento de la malla. Notar que, en caso de que el número de onda fuera cons-
tante, las cuatro discretizaciones daŕıan lugar al método PUFEM propuesto en el caṕıtulo
1. Tras plantear el problema discreto en notación matricial, se muestran varios resultados
numéricos, que confirman que el método de transmisión-reflexión recupera totalmente la
solución exacta.

El segundo problema considerado en este caṕıtulo es un problema de Helmholtz bidi-
mensional con número de onda constante. Tras introducir el problema modelo, formado
por una ecuación de Helmholtz homogénea bidimensional y condiciones de contorno de tipo
Neumann, y deducir su formulación variacional, se describe en detalle la discretización con-
siderada en este caso, consistente en escoger como espacio discreto el subespacio generado
por las funciones base Lagrange P1 de elementos finitos en dimensión dos, multiplicadas
por ondas planas. Tras plantear el problema discreto y su notación matricial, se especifi-
can algunas de las técnicas de integración utilizadas para calcular la solución aproximada.
En las matrices tanto de masa como de rigidez, aparecen integrandos que están formados
por polinomios multiplicados por exponenciales, que oscilan con respecto a x1 y x2. Para
tratar estas integrales, se seguirá la técnica de rotación introducida por Pablo Ortiz, que
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permitirá reescribir el integrando de tal forma que ahora sólo oscile respecto de una sola
variable. Además, la integración sobre cada tŕıangulo tras el cambio de variable es deta-
llada de forma exhaustiva en seis casos. Los resultados numéricos de esta parte del segundo
caṕıtulo ilustran la precisión del método PUFEM descrito, el decrecimiento exponencial
del error relativo en norma L∞ cuando en número de ondas planas utilizadas en la dis-
cretización se incrementa, y el comportamiento del error relativo con respecto al número
de onda.

Finalmente, el último problema considerado en este caṕıtulo se ocupa de problemas de
Helmholtz en medios bicapa. El problema modelo se plantea considerando la ecuación de
Helmholtz homogénea, condiciones de contorno de tipo Neumann, condiciones de acople
en el interfaz (continuidad de la solución y de su derivada normal) y un número de onda
constante a trozos. Tras plantear la formulación variacional del problema, una novedosa
discretización PUFEM para este tipo de problemas es descrita con detalle. Dicha dis-
cretización consiste en, de forma similar al método PUFEM utilizado en el problema de
Helmholtz bidimensional con número de onda constante, definir el espacio discreto como
el subespacio generado por funciones Lagrange P1 FEM standard, multiplicadas por fun-
ciones tipo onda plana, y de forma similar al método PUFEM de transmisión y reflexión
utilizado en el problema unidimensional con número de onda variable, tener en cuenta a la
hora de definir esas funciones tipo onda plana la transmisión y reflexión ocurrida en cada
trángulo de la malla. Notar que, dependiendo del ángulo de incidencia en esas funciones
de tipo onda plana, puede aparecer evanescencia en alguno de los medios. Tras plantear
el problema discreto y su notación matricial, se explican las técnicas de integración uti-
lizadas en este caso. Debido al fenómeno de evanescencia que aparece en algunas ondas
planas de la discretización, las técnicas utilizadas en el problema bidimensional con número
de onda constante no son aplicables en este caso, por lo que se aplicará un cambio af́ın
al triángulo de referencia. Los resultados numéricos muestran la precisión y eficiencia del
método PUFEM propuesto para aproximar problemas de Helmholtz bidimensionales con
condiciones de contorno Neumann y número de onda constante a trozos.

Caṕıtulo 3. Un método de partición de la unidad modal basado en elementos
finitos para problemas de propagación de ondas en dominios bicapa

El desarrollo de técnicas para encontrar cracks en el interfaz entre dos materiales es
de vital importancia en la detección temprana de posibles defectos en estructuras como
tubeŕıas con revestimientos. Las técnicas más utilizadas en ensayos no destructivos son los
ultrasonidos y las corrientes de Foucault que se propagan de forma transversal al interfaz.
Pero ambas están limitadas a problemas donde la fuente desde la que se env́ıa la onda está
cerca del crack. La posibilidad de utilizar ondas de Love para encontrar un defecto que
esté lejos de la fuente ha sido sugerida recientemente (véase [17]). Es básico en este tipo
de detecciones conocer a priori la solución del problema sin crack.

El objetivo de este caṕıtulo es ofrecer una herramienta para aproximar la solución de
estos problemas sin crack en medios bicapa. Para ello, se propone un método PUFEM
que involucra ondas de Love. Tras plantear el problema modelo y su formulación débil, se



Resumen en castellano 177

lleva a cabo un exhaustivo análisis espectral. En el caso de tener un dominio cuadrangular
y condiciones de contorno de tipo Neumann, se han descrito las ecuaciones de dispersión
tanto para ondas de Love como para ondas internas. En las figuras que las describen, el
decaimiento exponencial de las ondas de Love y el comportamiento oscilatorio de las ondas
internas pueden apreciarse. La discretización propuesta, junto con el problema discreto y
su notación matricial se describen en detalle, junto con el análisis del número de condi-
cionamiento de la matriz del sistema. Una amplia bateŕıa de resultados numéricos ilustran
la precisión del método PUFEM modal propuesto, tanto para el caso de incluir sólamente
ondas de Love como para el caso de considerar tanto ondas de Love como ondas inter-
nas. Describen además el deterioro de los resultados numéricos debido al alto número de
condicionamiento de la matriz discreta y su potencial desaparición aplicando técnicas de
regularización (como estrategias de amortigüación, filtrado clásico de Tikhonov o métodos
de descomposición en valores singulares truncados).

Como posibles ĺıneas futuras, se describen aqúı tres bloques, cada uno con un objetivo
diferente: el análisis numérico de métodos de partición de la unidad basados en elementos
finitos en una, dos y tres dimensiones, mejoras de tipo numérico en los métodos PUFEM
sobre medios heterogéneos y la continuación de la aplicación de métodos PUFEM en ensayos
no destructivos.

• La primera ĺınea de trabajo futuro se dedicaŕıa a obtener una estimación de error
más precisa para aproximaciones calculadas con una discretización de un problema
de Helmholtz unidimensional. Esta estimación debeŕıa confirmar la independencia
respecto al número de onda que se observa en los resultados numéricos. Para conseguir
esta precisión, debeŕıan considerarse términos fuente con mayor regularidad. Una vez
hecho esto, parece natural trabajar en la extensión de estos resultados a problemas
bi y tridimensionales.

• El segundo bloque de problemas abiertos se ocupaŕıa de la aplicación de métodos de
partición de la unidad basados en elementos finitos a problemas acústicos en medios
heterogéneos. Una primera aproximación podŕıa ser estudiar la aplicación de nuevos
métodos de regularización, para conseguir manejar el alto condicionamiento que es-
tropea los resultados numéricos. Además de eso, la extensión de los métodos de
transmisión y reflexión PUFEM a problemas donde el número de onda no es cons-
tante a trozos sino una función definida de forma distinta en cada medio, debeŕıa ser
considerada.

• El último bloque de trabajo futuro seŕıa la profundización en problemas de ensayos
no destructivos. Tras haber aplicado discretizaciones de tipo PUFEM (incluyendo
ondas de Love en el enriquecimiento de las funciones base de elementos finitos) a
problemas en medios bicapa sin crack en su interfaz, el siguiente paso consistiŕıa en
continuar el estudio aplicando métodos de partición de la unidad modales basados
en elementos finitos, a problemas con un defecto entre los dos medios. Y finalmente,
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resolver problemas inversos aplicados a problemas de la ingenieŕıa, para saber por
ejemplo si una tubeŕıa con revestimiento interno presenta un defecto en el interfaz
entre sus dos capas, analizando la onda reflejada tras enviar una onda de Love.
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