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Abstract. In this paper, a novel classification method of two-dimensional poly-

acrylamide gel electrophoresis images is presented. Such a method uses textural 

features obtained by means of a feature selection process for whose implemen-

tation we compare Genetic Algorithms and Particle Swarm Optimization. Then, 

the selected features, among which the most decisive and representative ones 

appear to be those related to the second order co-occurrence matrix, are used as 

inputs for a Support Vector Machine. The accuracy of the proposed method is 

around 94%, a statistically better performance than the classification based on 

the entire feature set. This classification step can be very useful for discarding 

over-segmented areas after a protein segmentation or identification process. 

Keywords: Texture analysis, Feature Selection, Electrophoresis, Support Vec-

tor Machines, Genetic Algorithm, Proteomic Imaging 

1 Introduction 

Proteomics is the study of protein properties in a cell, tissue or serum aimed at obtain-

ing a global integrated view of disease, physiological and biochemical processes of 

cells, and regulatory networks. One of the most powerful techniques, widely used to 

analyze complex protein mixtures extracted from cells, tissues, or other biological 

samples, is two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). In this 

method, proteins are classified by molecular weight (MWt) and iso-electric point (pI) 

using a controlled laboratory process and digital imaging equipment. 

Since the beginning of proteomic research, 2D-PAGE has been the main protein 

separation technique, even before proteomics became a reality itself. The main ad-

vantages of this approach are its robustness and its unique ability to analyze complete 

proteins at high resolution, keeping them intact and being able to isolate them entirely 

[1]. However, this method has also several drawbacks like its very low effectiveness 
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in the analysis of hydrophobic proteins, as well as its high sensitivity to dynamic 

range (i.e. the quantitative ratio between the rarest protein expressed in a sample and 

the most abundant one) and quantitative distribution issues [2]. The outcome of the 

process is an image like the ones showed in  [3, 4]. 

Dealing with this kind of images is a difficult task because there is not a common-

ly accepted ground truth [3, 4]. Another aspect that makes the work difficult from a 

computer vision point of view is that both protein images and background noise seem 

to follow a Gaussian distribution [5]. The inter- and intra-operator variability of the 

outcome of manual analysis of these images is also a big drawback [6]. 

The aim of this paper is to demonstrate that there is enough texture information in 

2D-electrophoresis images to discriminate proteins from noise or background. In this 

work the most representative group of textural features are selected using two 

metaheuristics, namely Genetic Algorithms [7] and Particle Swarm Optimization [8]. 

2 Theoretical Background and Related Work 

The method proposed in this work intends to assist 2D-PAGE image analysis by 

studying the textural information they carry. To do so, a novel combination of 

metaheuristics and Support Vector Machines [9] is presented. In this section, the main 

techniques used in our approach are briefly introduced and explained.  

2.1 Texture 

One of the most important characteristics used for identifying objects or regions of 

interest in an image is texture, which is related with the spatial (statistical) distribution 

of the grey levels within an image [10]. Texture is a surface’s property and can be 

regarded as an almost regular spatial organization of complex patterns, always present 

even if they could exist as a non-dominant feature. Different approaches to texture 

analysis have been applied which are extensively reviewed in [11, 12]. 

There are four major issues one can relate with texture: synthesis, classification, 

segmentation and shape from texture [12, 13]. 
 Texture synthesis: this is a subjective process which creates textures in syn-

thetic images. It is important where the goal is to obtain object surfaces as 
realistic as possible [14]. 

 Texture classification: the goal is to classify regions of interest in the image 
according to the kind of texture they embed [15]. This particular issue is 
widely studied in medical imaging, quality control and remote sensing 
among others. Classification algorithms can rely on a quantitative measure of 
success. It is necessary to have a-priori knowledge of the possible texture 
types in order to perform such a task. 

 Texture segmentation: the principal task here is to find the texture bounda-
ries in an image with a large number of textural types [16]. This is a blind 
process in the sense that there is no a priori information available about them 
or about how many different textures or types of textures are there. 



 Shape from texture: the task is to reconstruct a three-dimensional object from 
a two-dimensional image based on textural information. Firstly proposed by 
Gibson [17]. 

This paper is focused on texture classification, where texture can be computed 

from the variations in the intensities within the image. As said before, there is no tex-

tural information in one pixel, so texture is a contextual property related with gray 

levels in a neighborhood. First-order statistics depend only on individual pixel values 

and can be computed from the histogram of pixel intensities in the image, but second-

order statistics depend on pairs of grey values, concerning their relative position and 

spatial resolution. Commonly used second-order statistics can be derived from the so-

called Grey Level Co-Occurrence Matrix (GLCM), first proposed by Haralick [9]. 

Common properties playing an important role with texture definition, as identified by 

Laws [18], are: density, coarseness, uniformity, roughness, regularity, linearity, direc-

tionality, direction, frequency, and phase. All these properties are often related [19]. 

2.2 Metaheuristics  

Genetic Algorithms (GAs) are search techniques inspired by Darwinian Evolution 

and developed by Holland in the 1970s [7]. In a GA, an initial population of individu-

als, i.e. possible solutions defined within the domain of a fitness function to be opti-

mized, is evolved by means of genetic operators: selection, crossover and mutation. 

The selection operator ensures the survival of the fittest individuals, crossover repre-

sents the mating between individuals, and mutation introduces random modifications 

into the population. GAs possess effective capabilities to explore the search space in 

parallel, exploiting the information about the quality of the individuals evaluated so 

far [20]. Using the crossover operator, GAs combine the features of parents to pro-

duce new and better solutions, which preserve the parents’ best characteristics. Using 

the mutation operator, new information is introduced in the population in order to 

explore new areas of the search space. The strategy known as elitism, which is a vari-

ant of the general process of constructing a new population, allows the best organisms 

from the current generation to survive to the next, remaining unaltered. At the end of 

the process, the population of solutions is expected to converge to the global optimum 

of the fitness function. 

Particle Swarm Optimization [8] (PSO) is a bio-inspired optimization algorithm 

based on the simulation of the social behavior of bird flocks. In the last fifteen years 

PSO has been applied to a very large variety of problems [21] and numerous variants 

of the algorithm have been presented [22]. 

During the execution of PSO a set of particles moves within the function domain 

searching for the optimum of the function (best fitness value). The motion of each 

particle is driven by the best positions visited so far by the particle itself and by the 

entire swarm (gbest PSO) or by some pre-defined neighborhood of the particle (lbest 

PSO). Consequently, each particle relies both on “individual” and on “swarm” intelli-

gence, and its motion can be described by two simple discrete-time equations which 

regulate the particle’s position and velocity. 



2.3 Support Vector Machines 

Vapnik introduced Support Vector Machines (SVMs) in the late 1970s on the 

foundation of statistical learning theory [9]. The basic implementation deals with two-

class problems in which data are separated by a hyperplane defined by a number of 

support vectors.  This hyperplane separates the positive from the negative examples, 

maximizing the distance between the boundary and the nearest data point in each 

class; the nearest data points are used to define the margins, known as support vectors 

[23]. These classifiers have also proven to be exceptionally efficient in classification 

problems of high dimensionality [24, 25], because of their ability to generalize in 

high-dimensional spaces, such as the ones spanned by texture patterns. SVMs use 

different non-linear kernel functions, like polynomial, sigmoid and radial basis func-

tions, to map the training samples from the input spaces into a higher-dimensional 

feature space through a mapping function [23]. 

2.4 Related work 

With respect to related work, the authors were not able to find any other work in 

the literature dealing with evolutionary computation in combination with texture 

analysis in 2D-electrophoresis images, while we did find one article describing a dis-

criminant partial least squares regression (PLSR) method for spot filtering in 2D-

electrophoresis [26]. The authors use a set of parameters to build a model based on 

texture, shape and intensity measurements using image segments from gel segmenta-

tion. As regards texture information, they focus on the descriptors related to the noisy 

surface texture of unwanted artifacts and conclude that their textural features allow 

them to distinguish noisy features from protein spots. In their work, five out of the 

eleven second-order textural features are used, along with five new textural features 

accounting for intensity relationships among sets of three pixels. They distinguish 

proteins in the image by using shape information, since cracks and artifacts in gel 

surface deviate from a circular shape. Besides that, a degree of Gaussian fit is calcu-

lated as an indicator of whether the image segment corresponds to a protein or to an 

artifact. Textural features are used for noise and crack detection and as a complement 

for spot segmentation.  Finally, the 17 initial variables are reduced to five PLSR com-

ponents to account for 85% of the total variation with respect to the response factor, 

and 82% of the total variation in the data matrix. 

3 Materials 

In order to generate the dataset, ten 2D-PAGE images, representative enough of dif-

ferent types of tissues and different experimental conditions, were used. These images 

are similar to the ones used by G.-Z. Yang (Imperial College of Science, Technology 

and Medicine, London), and are available for download at the webpage 

http://personalpages.manchester.ac.uk/staff/andrew.dowsey/rain/. It is important to 

notice that Hunt et al. [27] determined that 7-8 is the minimum acceptable number of 

samples for a proteomic study. 

http://personalpages.manchester.ac.uk/staff/andrew.dowsey/rain/


For each image, 50 regions of interest (ROIs) representing proteins and 50 repre-

senting non-proteins (noise, black non-protein regions, and background) were selected 

to build a training set with 1000 samples in a double-blind process in which two clini-

cians selected the fifty ROIs they considered and after that, within which they select-

ed proteins which were representative of the different possible scenarios (isolated, 

overlapped, big, small, darker, etc.). For each ROI, as will be seen later, 296 texture 

features are computed. 

The ROIs were selected taking into consideration that, for each manually selected 

protein, there is an area of influence surrounding it. It means that, once the clinician 

has selected a protein, the ROI is slightly larger than the visible dark surface of such a 

protein. This assumption is made because texture characterizes not only the darkest 

regions but also the lightest ones. 

As said before, proteins seem to fit a Gaussian peak, and ideally the center of the 

protein is in the darkest zone of that peak. This approach prevents the loss of infor-

mation caused by neglecting the lowest values of the inverted protein (grey levels 

closest to white) that also fit the Gaussian peak. This information could be useful to 

classify a ROI as including a protein or to discard it. 

4 Proposed Method 

This paper goes further than related work in texture analysis of 2D-electrophoresis 

images, studying the ability of textural features to discriminate not only cracks from 

proteins but background and non-protein dark spots as well. 

The first step in texture analysis is texture feature extraction from the ROIs. With 

a specialized software called Mazda [28], 296 texture features are computed for each 

element in the training set. Various approaches have demonstrated the effectiveness 

of this software in extracting textural features from different types of medical images 

[29-33].  

These features [34], reported in Table 1, are based on: 
 Image histogram. 
 Co-occurrence matrix: information about the grey level value distribution of 

pairs of pixels with a preset angle and distance between each other. 
 Run-length matrix: information about sequences of pixels with the same grey 

level values in a given direction. 
 Image gradients: spatial variation of grey level values. 
 Autoregressive models: description of texture based on the statistical correla-

tion between neighboring pixels. 
 Wavelet analysis: information about the image frequency content at different 

scales. 
 

Thus, within each ROI, texture information was analyzed by extracting first and 

second-order statistics, spatial frequencies, co-occurrence matrices and two other 

statistical methods as autoregressive model and wavelet based analysis, preserving the 

original gray-level and spatial resolution in all runs. Histogram-related measures con-

form the first-order statistics proposed by Haralick [10] but second-order statistics are 

those derived from the Grey Level Co-occurrence Matrices (GLCM). Additionally, a 



group of features derived from the textural ones is also calculated, such as the area of 

the ROI, but cannot be used for texture characterization. 

Table 1.  Textural features extracted and used in this work 

Group Features 

Histogram Mean, variance, skewness, kurtosis, percentiles 1%, 10%, 50%, 90% and 

99% 

Absolute 

Gradient 

Mean, variance, skewness, kurtosis and percentage of pixels with 

nonzero gradient 

Run-length 

Matrix 

Run-length non-uniformity, grey-level non-uniformity, long-run em-

phasis, short-run emphasis and fraction of image in runs 

Co-ocurrence 

Matrix 

Angular second moment, contrast, correlation, sum of squares, in-

verse difference moment, sum average, sum variance, sum entropy, 

entropy, difference variance and difference entropy 

Autoregressive 

Model 

Theta: model parameter vector, four parameters; Sigma: standard de-

viation of the driving noise 

Wavelet Energy of wavelet coefficients in sub-bands at successive scales; max 

four scales, each with four parameters 

 

All these feature sets were included in the dataset. The normalization method ap-

plied was the one set by default in Mazda: image intensities were normalized in the 

range from 1 to Ng=2
k
, where k is the number of bits per pixel used to encode the 

image under analysis. 

Two solutions are available for decreasing the dimensionality: extraction of new 

features derived from the existing ones and selection of relevant features to build 

robust models. In order to extract a feature set from the problem data, principal com-

ponent analysis (PCA) has been commonly used. In this work, we use GAs to find the 

smallest feature subset able to yield a fitness value above a threshold. Besides opti-

mizing the complexity of the classifier, feature selection may also improve the classi-

fiers’ quality. In fact, classification accuracy could even improve if noisy or depend-

ent features are removed. 

The use of GAs for feature selection were first proposed by Siedlecki and 

Skalansky [35]. Many studies have been done on GAs for feature selection since then 

[36], concluding that they are suitable for finding optimal solutions to large problems 

with more than 40 features to select from. GAs for feature selection could be used in 

combination with a classifier such as SVM, k-nearest neighbor (KNN) or artificial 

neural networks (ANN), optimizing its performance. In terms of classification accura-

cy with imaging problems, SVMs have shown to yield good performance with textur-

al features [37-39], but also KNN [40]; hybrid approaches which use a combination of 

both classifiers [41] have obtained good results. Other techniques use GAs to opti-

mize both feature selection and classifier parameters [42, 43]. 

In our method, based on both GAs and SVMs, there is not a fixed number of varia-

bles. As GAs continuously reduce the number of variables that characterize the sam-

ples, a pruned search is implemented. Each individual in the genetic population is 

described by p genes (using binary encoding). The fitness function (1) considers not 



only the classification results but also the number of variables used for such a classifi-

cation, so it is defined as the sum of two terms, one related to the classification results 

and another to the number of variables selected. In (1) the number of genes with a true 

binary value (feature selected) is represented by numberActiveFeatures. Regarding 

classification results, taking into account the F-measure apparently gives better results 

than only using the accuracy obtained with image features [44, 45]. F-measure (2) is a 

function made up of the recall (true positives rate or sensitivity: proportion of actual 

positives which are correctly identified) and precision (or positive predictive value: 

proportion of positive test results that are true positives) measurements. 

 

              
                    

                   
 

(1) 

 

 

    
                 

                
 

(2) 

 

Therefore individuals with fewer active features (genes) are favored. Once the re-

duced feature dataset is generated, a statistical parametric test is made to evaluate the 

adequacy of the feature selection process. 

5 Experimental results 

The test set is composed of ten representative images for the different types of prote-

omic available images, and for each one of them, 50 protein and 50 non-protein ROIs 

have been extracted to generate a dataset with 1000 elements, that was divided ran-

domly in 800 elements, of which 600 elements are used for training and 200 elements 

are used for validation (inside the GA feature selection process) and finally, 200 ele-

ments for test. Once the GA finishes, the best individual found (the one with lowest 

fitness value) is tested, using a 10-fold cross validation (10-fold CV), to calculate the 

error of the proposed model using the full and reduced datasets.  Then, a test set is 

used in order to evaluate the adequacy of the reduction process. 

After a preliminary experimental study of the values suggested in the literature, the 

parameters used in the feature selection process were empirically set the population 

size to 250 individuals, with no elitism, a 95% crossover probability, a 2% mutation 

rate, with scattered crossover, tournament selection and uniform mutation. 

To evaluate the performance of this method, there are several number of well-

known accuracy measures for a two-class classifier in the literature such as: classifi-

cation rate (accuracy), precision, sensitivity, specificity, F-score, Area Under an ROC 

Curve (AUC), Youden’s index, Cohen’s kappa, likelihoods, discriminant power, etc. 

The ROC curve is a graphical plot of the sensitivity against 1-specificity as the detec-

tor threshold, or a parameter which modifies the balance between sensitivity and spec-

ificity. An experimental comparison of performance measures for classification could 

be found in [46]. In [47], the authors proposed that AUC is a better measure in gen-

eral than accuracy when comparing classifiers and in general. The most common 

measures used for their simplicity and successful application are the classification rate 



and Cohen’s kappa measures. Table 3 in the appendix shows the results for classifica-

tion rate (accuracy), AUC, F-measure, Youden’s and unweighted Cohen’s Kappa for 

each kernel. For this problem, all the measures consider the same ranking, and the 

best kernel function is the linear one. For each kernel, Table 4 in the Appendix section 

shows the selected features in their textural membership group. 

Among others, Mazda computes the area for each ROI. This feature merely indi-

cates the number of pixels used to compute the textural features and, since it has noth-

ing to do with the description of textures, it cannot be used for texture characteriza-

tion. With linear, polynomial (order 3), and RBF (C=100 and sigma=10) kernels, non- 

textural features are selected for classification. The results obtained seem to indicate 

that the textural group with more representatives in 2D-PAGE images is the Co-

occurrence matrix Group (second-order statistics). 

As the proposed work intends to evaluate the textural information present in a 2D-

PAGE image, the RBF(2) kernel function is selected as the most appropriate for solv-

ing this problem, since only textural features where selected for classification with 

this kernel, and it yields the best accuracy.  

In order to compare the GA-based feature selection results, a binary Particle 

Swarm Optimization implementation for feature selection is used [48]. PSO is an 

optimization algorithm inspired by the organized behavior of large groups of simple 

animals and, like GAs and other Evolutionary Computation techniques; it is a deriva-

tive-free global optimum solver. Firstly proposed by Kennedy and Eberhart [8] and 

used optimization of non-linear functions [49]. 

The experiments were performed with the same final combination of common pa-

rameters (population size, stall conditions, etc.), and the same elements for training 

and validation separated with the same seed in order to reproduce experimental condi-

tions with the RBF(2) kernel function. Results are shown in Table 2.  

Table 2. Results for the GA and PSO approaches with RBF(2) kernel. 

 Accuracy AUC F-Measure Number of 

variables 

Generations 

GA 0.88 0.88 0.89 6 45 

PSO 0.83 0.86 0.85 58 44 

 

The results show that GA-based have better results, improving the AUC-ROC 

score of the PSO and is able to reduce to 6 features whilst the PSO is only able to 

reduce to 58 features. Both techniques reach the stall condition in a very close number 

of generations. 

We evaluated the reduced textural feature set on the 200 patterns of the validation 

dataset using the RBF (2) kernel, by calculating the F-measure and the areas under the 

receiver operating characteristic curves and a 10-fold CV, using the Libsvm classifier 

implementation [50] in Weka [51] and comparing the results with the same classifier 

using the full dataset. Thus, we have obtained samples composed by 10 AUC 

measures. AUC area can be seen as the capacity to be sensitive and specific at the 

same time, in the sense that the larger is the AUC, the more accurate is the model. We 

use the RBF kernel with different gamma values (the parameter controls the width of 

the kernel) to check if there is a significant improvement when the reduced dataset is 

used. 



In order to use a parametric test, it is necessary to check the independence, nor-

mality and heteroscedasdicity [52]. In statistics, two events are independent when the 

occurrence of one does not modify the probability of the other one. An observation is 

normal when its behavior follows a normal or Gaussian distribution with a certain 

value of mean and variance. The heteroscedasticity indicates the existence of a viola-

tion of the hypothesis of equality of variances [53]. 

With respect to the independence condition, we separate the data using 10-fold 

CV. We perform a normality analysis using the Shapiro-Wilk test [54] with a level of 

confidence alpha=0.05, for the Null Hypothesis that the data come from a normally 

distributed population, and such null hypothesis was rejected. The observed data ful-

fill the normality condition, a Bartlett test [55] is performed in order to evaluate the 

heteroscedasticity with a level of confidence alpha=0.05. 

A corrected paired Student’s t-test could be performed in Weka [51], with a level 

of confidence alpha=0.05, for the Null Hypothesis that there are no differences be-

tween the average values obtained by both methods. Results in average, with standard 

deviation in brackets for AUC-ROC are 0.94 (0.07) for the reduced dataset, and 0.55 

(0.34) for the full dataset and the corrected paired Student’s t-test determines that 

there is a significant improvement in using the reduced dataset. The reduced dataset 

has better accuracy result than the full dataset. Even more, the corrected paired Stu-

dent’s t-test evaluates this improvement as significant with an alpha=0.05. 

6 Summary and conclusions 

To the best of our knowledge, this is the first work in which protein classification 

in two-dimensional gel electrophoresis images is tackled using Evolutionary Compu-

tation, Support Vector Machines and Textural Analysis. In fact, this paper demon-

strates the existence of enough textural information to discriminate proteins from 

noise and background, as well as to show the potential of SVMs in proteomic classifi-

cation problems.  

A new dataset with six features, starting from the 296 original ones, is created 

without loss of accuracy, and the most representative textural group has shown to be 

the one related to the Co-occurrence matrix Group (second-order statistics). A proper 

statistical test has determined that there is a significant improvement in using this 

reduced feature set with respect to the full feature set. 
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Appendix 

Table 3a. Results with different SVM 

Gaussian kernels 

Kernel Type Measure Value 

RBF(1) 

TP 90 

FN 10 

FP 18 

TN 82 

Accuracy 0.86 

AUC 0.86 

F-Measure 0.86 

Youden’s 0.72 

Kappa 0.72 

Nvar 8 

RBF(2) 

TP 94 

FN 6 

FP 17 

TN 83 

Accuracy 0.88 

AUC 0.88 

F-Measure 0.89 

Youden’s 0.77 

Kappa 0.77 

Nvar 6 

RBF (100;10) 

TP 94 

FN 6 

FP 18 

TN 82 

Accuracy 0.88 

AUC 0.88 

F-Measure 0.88 

Youden’s 0.76 

Kappa 0.76 

Nvar 8 
 

Table 3b. Results with different SVM 

polynomial kernels 

Kernel Type Measure Value 

Linear 

TP 95 

FN 5 

FP 11 

TN 89 

Accuracy 0.92 

AUC 0.92 

F-Measure 0.92 

Youden’s 0.85 

Kappa 0.85 

Nvar 6 

Poli (3) 

TP 87 

FN 13 

FP 19 

TN 81 

Accuracy 0.84 

AUC 0.84 

F-Measure 0.84 

Youden’s 0.68 

Kappa 

Nvar 

0.68 
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Table 4. Study of texture parameters between best SVM kernels in accuracy 
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