
Software Product Line for web-based
Geographic Information Systems

Autor: Alejandro Cortiñas Álvarez
Tesis doctoral UDC / 2017

Directores:
Miguel Rodríguez Luaces
Óscar Pedreira Fernández

Programa Oficial de Doctorado en Computación

PhD thesis supervised by
Tesis doctoral dirigida por

Miguel Rodríguez Luaces
Departamento de Computación
Facultad de Informática
Universidade da Coruña
15071 A Coruña (España)
Tel: +34 981 167000 ext. 1254
Fax: +34 981 167160
luaces@udc.es

Óscar Pedreira Fernández
Departamento de Computación
Facultad de Informática
Universidade da Coruña
15071 A Coruña (España)
Tel: +34 981 167000 ext. 6028
Fax: +34 981 167160
opedreira@udc.es

Miguel Rodríguez Luaces y Óscar Pedreira Fernández, como directores, acredita-
mos que esta tesis cumple los requisitos para optar al título de doctor internacional
y autorizamos su depósito y defensa por parte de Alejandro Cortiñas Álvarez cuya
firma también se incluye.

iii

iv

A mi familia.

v

vi

Acknowledgements

First of all, thanks to Miguel, the person who has introduced me to researching and
who has invested more time and effort in helping me for many years. Thanks also
to Oscar for his help since I arrived at the laboratory and throughout my thesis.
I am also grateful for the support and the welcoming of all my colleagues at the
Databases Laboratory of the University of A Coruña, especially to Nieves, who has
always advised me and has taken care of me, without her help I would not be where
I am. My fellow doctoral students, Fernando, Cristina, Adrián, Tirso and even
Daniil deserve a special mention, thanks for making this whole path much more
pleasant. I also want to thank my colleagues from Enxenio, in special to Carlos,
Santi and Alejandro, for their collaboration throughout this work. And to all of
you who gather to have lunch every day, sometimes I feel like working just to chat
with you.

Besides I would like to thank my friends from Como, Mehdi, Theo, Shruti,
Melisa and all the others for having made those three months flown by. Thanks
to all those people of CUAC that have been standing me for many years and my
colleagues in Spoiler (talking about series. . . seriously). Thanks to Vanisa for those
remote talks that help me to disconnect. Thanks to the hillbillies I have for friends,
especially Pata, Seo and Shorkan, who are always there bothering (was it the other
way around?). Thanks to Antonio, who finally finished his project.

Lastly, I am very grateful to my family, who are not to blame for anything and
who have always trusted and supported me.

vii

viii

Agradecimientos

Ante todo gracias a Miguel, la persona que me ha introducido en la investigación y
que más tiempo y esfuerzo ha depositado en mí desde hace ya muchos años. Gracias
también a Óscar por su ayuda desde que llegué al laboratorio y a lo largo de mi
tesis. Me gustaría agradecer también el apoyo y acogida de todos mis compañeros
y compañeras del LBD, especialmente a Nieves, que siempre me ha aconsejado y
ha tirado de mí, sin su ayuda no estaría donde estoy. Mención aparte merecen
mis colegas doctorandos, Fernando, Cristina, Adrián, Tirso y hasta Daniil, gracias
por hacer todo este camino mucho más agradable. También quiero agradecer a
mis compañeros de Enxenio, especialmente a Carlos, Santi y Alejandro, por su
colaboración a lo largo de este trabajo. Y a todos los que nos reunimos para comer
cada día, que a veces apetece trabajar sólo para charlar con vosotros.

Por otro lado me gustaría dar las gracias a mis amigos y amigas de Como, a
Mehdi, Theo, Shruti, Melisa y a todos los demás por haber hecho que esos tres
meses hayan pasado volando. Gracias a toda esa gente de CUAC que me lleva
aguantando ya muchos años y a mis colegas de Spoiler (hablamos de series. . . en
serio). Gracias a Vanisa por esas charlas en remoto que me ayudan a desconectar.
Gracias a los garrulos que tengo por amigos, sobre todo a Pata, Seo y a Shorkan,
que siempre están ahí dando la tabarra (¿o era al revés?). Gracias a Antonio, que
por fin se sacó el proyecto.

Por último, muchas gracias a mi familia, que los pobres no tienen culpa de nada
y siempre han depositado toda su confianza y su continuo apoyo en mí.

ix

x

Abstract

Software Product Line Engineering (SPLE) is a research field that seeks to
industrialize software development using techniques such as mass-production and
mass-customization or reusing software components. A geographic information
system (GIS) is an information system that works, in some way, with geographic
information. Although each GIS is used in a particular area, there are many features
common to all of them. In addition, strong standardization has been carried
out so that most GIS software components are interoperable. Consequently, the
application of SPLE in this domain is a feasible and interesting problem.

Applying SPLE to a new domain is a complex process and, in order to guarantee
the validity of the final design of the SPL and its evolution, it is important to strictly
follow a methodology appropriate to the specific domain. Considering that it does
not exist a suitable methodology for the context of our work (i.e., web-based GIS
applications developed in a software company with several products in the market),
we have decided to combine several existing methodologies and extend their scope
with additional tasks that will are very useful in our context.

After defining our SPL following this methodology, we found that the traditional
techniques to implement SPL are not suitable for our domain, due to the
peculiarities and requirements in the development of web-based GIS applications.
Therefore, we have defined and implemented a new derivation engine for automatic
software generation that maintains the formalities behind SPLE but at the same
time provides a new degree of flexibility thanks to the use of a well-known industrial
technique: scaffolding.

xi

xii

Resumen

La ingeniería de líneas de producto software (LPS) es un campo de investigación que
pretende industrializar el desarrollo de software usando técnicas como la producción
y customización en masa, o la reutilización de componentes software. Un sistema de
información geográfica (SIG) es un sistema de información que trabaja, de alguna
manera, con información de carácter geográfico. A pesar de que cada SIG se utiliza
en un área en particular, hay muchas características comunes a todos ellos. Además,
se ha llevado a cabo una fuerte estandarización de forma que la mayor parte de
componentes software SIG son interoperables. En consecuencia, la aplicación de la
ingenería de LPS en este dominio es un problema factible e interesante.

Aplicar ingenería de LPS a un nuevo dominio es un proceso complejo y, para
garantizar la validez del diseño final de la LPS y su evolución, es importante seguir
de manera estricta una metodología adecuada al dominio concreto. Considerando
que no existe una metodología adecuada para el contexto de nuestro trabajo (es
decir, aplicaciones SIG basadas en web desarrolladas en una compañía de desarrollo
de software con varios productos en el mercado), hemos decidido combinar varias
metodologías existentes y extender su alcance con determinadas tareas que servirán
para sacar el máximo provecho a nuestro contexto.

Tras la definición de nuestra LPS siguiendo esta metodología, hemos encontrado
que las técnicas tradicionales para implementar LPS no son adecuadas para
nuestro dominio, debido a las particularidades y requerimientos en el desarrollo de
aplicaciones GIS basadas en la web. Por lo tanto hemos definido e implementado un
nuevo motor de derivación para la generación automática de software que mantiene
las formalidades detrás de las LPS pero, al mismo tiempo, proporciona un nuevo
grado de flexibilidad gracias al uso de una conocida técnica industrial: scaffolding.

xiii

xiv

Resumo

A enxeñería de liñas de produto software (LPS) é un campo de investigación
que pretende industrializar o desenvolvemento de software usando técnicas como
a producción e customización en masa, ou a reutilización de componentes software.
Un sistema de información xeográfica (SIX) é un sistema de información que
traballa, de algún modo, con información de carácter xeográfico. Aínda que cada
SIX utilízase nun área en particular, existen moitas características comúns a todos
eles. Ademáis, levouse a cabo unha forte estandarización de xeito que a maior
parte dos componentes software SIX son interoperables. Polo tanto, a aplicación
da inxeñería de LPS neste dominio é un problema factible e interesante.

Aplicar enxeñería de LPS a un novo dominio é un proceso complexo e, para
garantizar a validez do deseño final da LPS e a súa evolución, é importante seguir de
maneira estricta unha metodoloxía adecuada ao dominio concreto. Tendo en conta
que non existe ningunha metodoloxía adecuada para o contexto do noso traballo (é
dicir, aplicacións SIX baseadas na web desenvoltas nunha compañía de desarrollo de
software con varios productos no mercado), decidimos combinar varias metodoloxías
existentes e extender o seu alcance con determinadas tarefas que servirán para sacar
o máximo aproveitamento ao noso contexto.

Tras a definición da nosa LPS seguindo esta metodoloxía, encontramos que as
técnicas tradicionais para implementar LPS non son axeitadas para o noso dominio,
debido ás particularidades e requerimentos no desenvolvemento de aplicacións SIX
basadas na web. Polo tanto deseñamos e implementamos un novo motor de
derivación para a xeración automática de software que mantén as formalidades
das LPS pero, ó mesmo tempo, proporciona un novo grado de flexibilidade grazas
ó uso dunha coñecida técnica industrial: scaffolding.

xv

xvi Contents

Contents

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Contributions . 6
1.3 Thesis Outline . 7

I Software Product Line Engineering: methodology 9

2 SPLE: state of the art 11
2.1 Basic Concepts . 11
2.2 Advantages of software product lines 14
2.3 Unsolved problems . 15

3 Industrial expertise in the definition of a SPL: a new methodology 19
3.1 Introduction and motivation . 19
3.2 Definition of a new methodology . 22

3.2.1 Requirement Analysis . 22
3.2.2 Architecture Design . 23
3.2.3 Evaluation . 24
3.2.4 Derivation of a product . 24

II Definition of a SPL for web-based GIS 25

4 GIS: state of the art 27
4.1 Introduction . 27
4.2 Basic Concepts . 28
4.3 GIS features . 29
4.4 GIS software . 34

4.4.1 Commercial GIS tools . 35

Contents xvii

4.4.2 Spatial DBMS . 36
4.4.3 Map Servers . 38
4.4.4 Map Visualization Clients . 40

4.5 Summary . 41

5 Requirements Analysis: identifying our features 43
5.1 Introduction . 43
5.2 Domain Analysis . 44

5.2.1 Requirements for our products 44
5.2.2 Features derived from the set of requirements 46

5.3 Product Planning: analysing existing products 54
5.3.1 Description of the analysed products 54
5.3.2 Feature validation . 59

5.4 Feature Model of our Software Product Line 64
5.5 Summary . 66

6 Architecture Design: architecture for Web GIS 69
6.1 Introduction . 69
6.2 Reference architectures identification and selection 70
6.3 Analysis of architectures of existing products 72
6.4 Elements selection/prioritization . 75
6.5 Product Line Architecture Structure Building 78
6.6 Technology analysis: identifying state of the art technologies 82
6.7 Summary . 86

7 Architecture Evaluation and Derivation 87
7.1 Introduction . 87
7.2 Architecture Evaluation: maintaining the traceability 88
7.3 Derivation process in our SPL . 93
7.4 Summary . 95

III GISBuilder 97

8 SPL implementation techniques & Scaffolding: state of the art 99
8.1 Introduction . 99
8.2 SPLE: Approaches and tools . 100

8.2.1 Compositional or positive approach 100
8.2.2 Annotative or negative approach 104
8.2.3 Alternatives using other approaches 107

xviii Contents

8.2.4 Summary . 107
8.3 Scaffolding: industrial generation of code 108

8.3.1 Scaffolding vs SPLE . 110
8.3.2 Libraries and frameworks using scaffolding 111

8.4 Summary . 112

9 GISBuilder’s design 113
9.1 Introduction . 113
9.2 Architecture . 114
9.3 Derivation Engine . 116
9.4 Runtime Product Preview . 121

9.4.1 Motivation and conceptual approach 121
9.4.2 Improving GISBuilder with Runtime Product Preview 124

10 Validation of GISBuilder 127
10.1 Case of use . 127
10.2 Using the specification interface . 130

10.2.1 Project: basic data and languages 131
10.2.2 Features: variability selection 133
10.2.3 GUI: designing the interface 133
10.2.4 Menus . 134
10.2.5 Data Model . 136
10.2.6 Static Pages . 137
10.2.7 Forms . 138
10.2.8 Lists . 139
10.2.9 Map viewers . 140
10.2.10 Product Preview . 141

IV Summary of the thesis 143

11 Conclusions and Future Work 145
11.1 Summary . 145
11.2 Future Work . 146

A JSON Schema for our tool 149

B GISBuilder screenshots 167

C Publications and Other Research Results Related to the Thesis 199

Contents xix

D Resumen del Trabajo Realizado 203
D.1 Introducción . 203
D.2 Estructura de la tesis . 208
D.3 Contribuciones y Conclusiones . 209
D.4 Trabajo Futuro . 210

Bibliography 211

xx Contents

List of Figures

2.1 Example of a simple feature model 13
2.2 Break-even point for a SPL . 15
2.3 Time to market for a SPL . 16

3.1 Structure of ProSA-RA2PLA by [NBM13] 21
3.2 Methodology . 23

4.1 EIEL user interface . 30
4.2 TomTom Go 1600 user interface . 31
4.3 Waze application user interface . 32
4.4 User interfaces for many different apps: Simplytrack, Flightradar24,

Quartix and MarineTraffic . 33
4.5 Result of a GIS for the calculation of flooded areas 33
4.6 User interface of a GIS for managing the process of land consolidation 34

5.1 Requirements analysis stage . 44
5.2 WebEIEL screenshot . 55
5.3 Galician Cultural Heritage screenshot 56
5.4 Via Maps screenshot . 57
5.5 Google Maps screenshot . 58
5.6 OpenStreetMap screenshot . 59
5.7 First level features of the resulting feature model 65
5.8 Data feature and its subfeatures . 65
5.9 Gui feature and its subfeatures . 66
5.10 Map viewer feature and its subfeatures 67
5.11 User management feature and its subfeatures 68

6.1 Architecture design stage . 70
6.2 Web-based GIS architecture according to [Per02] 71
6.3 First generation architecture for GIS 73

xxi

xxii List of Figures

6.4 Second generation architecture for GIS: dual architecture 73
6.5 Second generation architecture for GIS: layered architecture 74
6.6 Third generation architecture for GIS 74
6.7 PLA Structure . 79
6.8 Technological architecture of the products 83

7.1 Architecture evaluation and derivation of a specific product stages 88

8.1 Example of a generic in Java . 101
8.2 Example of a enum type definition in Java 101
8.3 Example of a parameter annotations in Java 102
8.4 Example of code generated by AHEAD 102
8.5 Example of code generated by FeatureHouse 103
8.6 Example of HTML5 code . 104
8.7 Scaffolding example . 109

9.1 Classical architecture for a SPL . 114
9.2 Functional architecture of GISBuilder 115
9.3 Component diagram of the derivation engine 117
9.4 Excerpt of the GISBuilder feature model 118
9.5 Excerpt of the XML representing the feature model 118
9.6 Annotated Java class . 120
9.7 Simplified excerpt of model transformation template 120
9.8 Activity diagram of the development process 122
9.9 Architecture changes in our tool . 125

B.1 Global data and parametrization of the project 168
B.2 Initial feature model . 169
B.3 Enabling user registration feature 170
B.4 Full variability selection (I) . 171
B.5 Full variability selection (II) . 172
B.6 Parametrization of the graphical user interface 173
B.7 Example of menu configuration - editing a View element 174
B.8 Example of menu configuration - editing a View element with

restricted access . 175
B.9 Example of menu configuration - editing a Menu element 176
B.10 Example of menu configuration - editing a Url element 177
B.11 Data model: section to define the enums of the application 178
B.12 Data model: Truck entity definition 179
B.13 Data model: PickUpLocation entity definition 180

List of Figures xxiii

B.14 Data model: Warehouse entity definition 181
B.15 Data model: a list with the three entities previously defined 182
B.16 Static pages WYSIWYG editor . 183
B.17 List of the static pages to be created for the application 184
B.18 Defining a form to create, edit and remove trucks 185
B.19 Defining a form to create and edit warehouses 186
B.20 Defining a simple form that only shows three properties of the pick

up locations . 187
B.21 Defining a list to show only the active trucks 188
B.22 Defining a list to show the pick up locations 189
B.23 Creating a new map for the application 190
B.24 Specifying a map to visualize the trucks managed by the application191
B.25 Specifying a map to visualize the pick up locations managed by the

application . 192
B.26 Section to preview and generate the products 193
B.27 Previewing a product, showing the authentication page 194
B.28 Previewing a product, trying to create a new truck 195
B.29 Previewing a product, listing the pick up locations 196
B.30 Previewing a product, showing a static page 197

xxiv List of Figures

List of Tables

5.1 Requirement list . 46
5.2 Feature list . 53
5.3 Product planning . 63

6.1 Services selection . 78

7.1 Traceability feature - service . 92

xxv

xxvi List of Tables

1
Introduction

1.1 Background and Motivation
The traditional approach to software development consists of a series of steps that
must be repeated for each new product. Requirements analysis, solution design,
implementation, testing and maintenance are performed over and over even when
similar products are developed. It is still common that software is developed in
an artisan way following this process. The problem with this approach is that
both software development itself and product maintenance are slow and highly
costly processes in order to produce high quality software. For this reason, many
efforts have been made to industrialize software development. Software product line
engineering and model driven development are two of the main research fields in
this direction.

Software product line engineering (SPLE) uses strategies such as mass produc-
tion, mass customization or reusable software artefacts to automate the development
of software product families. That is, this discipline is used to create similar software
systems that are different only in certain characteristics [ABKS13]. A software
product line is defined as “set of software-intensive systems sharing a common,
managed set of features that satisfy the specific needs of a particular market segment
or mission and that are developed from a common set of core assets in a prescribed

1

2 Chapter 1. Introduction

way” [CN02]. In short, a software product line allows us to generate a family of
similar software products built by assembling and automatically integrating a set
of common reusable components. The set of features provided by a SPL is usually
organized in what we call a feature model, and each of the products to be generated
is defined as the set of features that it provides.

Model driven development (MDD) is a paradigm for applying the modelling
advantages to software engineering activities [BCW12]. The two main concepts
in MDD are models, which are simplified representations of reality centered on a
particular domain, and transformations, which are manipulative operations on these
models that allow them to be transformed into new, more refined models, or even
source code of the final system. The actual implementation of MDD in the industry
is very low [BCW12]. Nevertheless, there is a technique used in industry that is an
informal application of some principles of MDD: scaffolding. This technique was
popularized in 2005 by Ruby on Rails1, and it allows accelerating the development
of software by generating source code. It is usually used by programmers in the early
stages of software development, because scaffolding tools allow to generate repetitive
and easily abstracted code from a specification. Other current frameworks using
this technique are Grails2, Spring Roo3 or Yeoman4.

The objective of SPL and MDD is not only to improve the efficiency in the
production of software, but also the quality of the software systems produced.
Both seek to change the paradigm of software development from artisanal to
industrial production. The difference is that SPL focuses on building product
families that share identical and reusable components, which differ only in some
features, while MDD generates platform-specific code from a more abstract and
flexible model. As a consequence, the range of different products that can be
created with MDD is broader than those that can be created by SPL, but products
generated by an SPL are easier to specify and are normally ready for production
when they are generated [PPP09, CAK+05]. Hence, both approaches seek to
automate and industrialize the development of complex software systems, but the
tools and features provided by each approach are very different in nature. Previous
investigations have resolved that some application domains would benefit from a
combination of SPL and MDD [TBD07, CFP08]. Geographic information systems
(GIS) are one such domain.

A GIS is an information system with geospatial features and capabilities [WD04].
Within a geographic information system, geographic data such as the shape of a

1http://rubyonrails.org/
2https://grails.org/
3http://projects.spring.io/spring-roo/
4http://yeoman.io/

http://rubyonrails.org/
https://grails.org/
http://projects.spring.io/spring-roo/
http://yeoman.io/

1.1. Background and Motivation 3

river or the area of a building can be handled and represented in a map viewer.
GIS are widely used in various general-purpose applications (e.g. web search
engines, social networks, etc.) and in various fields of research and production (e.g.
engineering, resource management, biology, ecology, logistics, etc.). The impulse
that has occurred in communication technologies and the improved Internet access
allows the current use of GIS in many mobile devices to visualize and manage
geographic data stored on computers over the Internet. Furthermore, the advance
in the geolocation capabilities allows any common device such as mobile phones
can get our position. This has benefited the appearance of new GIS features in
existing applications and the improvement of working workflows. Examples of this
are all the positioning functionalities of applications such as Facebook5 or Twitter6.
Another change in the GIS software provoked by these advances is the increase of
the functionalities and use of the geographic information systems based on web.
Traditionally, these web-based GISs have provided a small set of features but, with
today’s technology, they can be as powerful as desktop GIS applications retaining
all the benefits of being a web application.

Geographic information systems have always shared an enormous amount of
functionality and features between them, regardless of the GIS application context.
Certain requirements, such as storing and indexing georeferenced data, performing
location-based queries, displaying information as a set of layers, or grouping layers
on different maps are shared by a good number of existing GISs. However, the
early components and GIS software used to be implemented following different and
incompatible conceptual, logical and physical models. For example, depending on
the software used the polygon data type had a different definition, or the overlaps
predicate had a different semantic meaning in each case. Because of this, it
was very complex to develop interoperable applications, software or components
because one could not even migrate data from one application to another without
implementing an ad-hoc process. To solve this problem, a joint and collaborative
effort was undertaken by two organizations, the International Organization for
Standardization7 (ISO) by means of the the ISO/TC 211 [fSn] that is defining
the ISO 19100 set of standards, and the Open Geospatial Consortium8 (OGC).
Most GIS software now complies with these standards, interoperability between the
different components is simple, and equivalent components can be replaced without
problem.

Since the functionalities of GIS are very similar between the different applica-

5https://facebook.com/
6https://twitter.com/
7https://www.iso.org/home.html
8http://www.opengeospatial.org/

https://facebook.com/
https://twitter.com/
https://www.iso.org/home.html
http://www.opengeospatial.org/

4 Chapter 1. Introduction

tions, they usually share a common set of components, such as the map viewer or
the geographic data import library. The biggest difference between the different
applications is the specific domain to which the GIS is being focused, which directly
affects the dataset that is handled by the application. That is to say, it is not
the same to make a GIS application that improves the workflow of a transport
company, where we can see the position of the trucks, than an application for the
identification of agricultural parcels. But even those modules that depend on the
data to be handled are very similar to each other and their code can be abstracted
and generalized based on specifications such as the data model. Therefore, although
each application may have a different purpose, they are all very similar from the
point of view of architecture, components and technology.

As a result, we find that web-based GIS applications have many modules
that can be produced by assembling components of the more classic SPL style
(e.g., a map viewer library with its sub-features, a mapping importer, etc.), but
there are other modules that need to be generated specifically for each product
depending on some specification (e.g.., all modules related to the data model, such
as georeferenced entities, properties, relations, layers, maps, or the structure of
the menu, etc.). Current SPL implementation techniques, most of them shown
in [ABKS13,MTS+14], are not suitable for generating dynamic code from product
specifications. We find that the scaffolding technique, wich can be considered a
subset of the MDD paradigm, can be applied to extend the classical functionalities
of SPL and automate the development of those parts of the system. Therefore, our
hypothesis is that we can combine SPL and MDD techniques to produce web-based
GIS applications more efficiently and with greater quality.

Although the idea of combining SPL and MDD has already appeared in previous
research papers [CAK+05, VG07], its practical combination, which is precisely our
focus on this work, is far from easy. First, most existing tools for SPL or MDD have
emerged from research projects and they are strongly academy-oriented instead of
industry-oriented. Therefore, they have some difficulties supporting the wide variety
of technologies applied in web applications, geographic information systems and in
both types combined. Furthermore, the tools developed to support SPL and the
tools developed to support MDD are not the same, and there is no platform capable
of combining these two approaches. Therefore, the first objective of this thesis is to
design and implement a derivation engine for a SPL that can assemble components
from a set of features selected in a feature model, but that it is also able to follow
a MDD approach to generate source code by transforming high-level models of the
system. Furthermore, the derivation engine must be based on modern software
development technologies in order to be used directly in the industry.

In order to validate the derivation engine and the SPL for web-based GIS

1.1. Background and Motivation 5

applications, it is necessary to apply them in a real industry environment. We can
achieve this by joining efforts with Enxenio, which is a Spanish SME (small and
medium-sized company) with experience in geographic information systems. To take
full advantage of this collaboration, the knowledge of experts in GIS architectures,
requirements and technology must be considered in the process that defines the
SPL. We also have access to existing product code, so it must also be considered
when defining the SPL. In addition, geographic information systems are a field with
strong standardization and a large collection of service definitions and architectures
that must be taken into account. Finally, if the software product line is to be used in
the real industry, both the SPL and the products generated will evolve in time. As
we have not found a methodology that covers all these points, the second objective
of this thesis is to define a methodology to create SPLs that takes into account all
these aspects.

Given that the software product line is designed to be used within a SME, we
cannot assume that the analysts that will define and generate products are expert
domain engineers with background in SPLE. Therefore, the process for the definition
and derivation of products must be simple and it must not require deep knowledge
on SPL or any specific technology, apart from the ones that are already present in
the common industry practice. For this reason, the third objective of this thesis
is to develop a tool for the definition and the derivation of the products in a way
that its usage is non-intrusive with the current processes within the company. To
comply with this, the tool must be developed using web technologies so the tool
can be used from any device of the company without requiring the installation of
any additional software.

To summarize, the main goal of this thesis is to prove that SPL and MDD
techniques can be combined to produce web-based GIS applications more efficiently
and with greater quality. In order to do that, we divide this goal into three specific
sub-goals:

1. To design and implement a derivation engine that can assemble components
using SPL techniques but that it is also able to generate source code using
MDD approaches.

2. To define a methodology to create SPLs that is tailored to SMEs in terms of
knowledge elicitation and the evolution of the SPL and its products.

3. To develop a tool for the specification and derivation of the products within
the SPL in a way that its usage is non-intrusive with the current workflow of
a software development company.

6 Chapter 1. Introduction

1.2 Contributions

Our first contribution is a methodology for the definition of software product lines
based on other two methodologies and enhanced by ourselves taking into account
the input of experts from industry. Due to the context of our work, we decided to
develop a new methodology that can exploit the advantages in our context, such
as having a supporting company (Enxenio) with GIS experts and existing products.
At the same time, we also looked for existing methodologies that fit our problem,
and we have found two different methodologies that combined work in synergy to
complement each others: Magro et al. [MGP08] defines a process in six steps but
without defining the process of construction of the architecture of the product line;
Nakagawa et al. [NBM13] focuses precisely on the definition of the software product
line architecture and therefore complements the above. In addition, we have taken
into account traceability considerations proposed by Iida et al. [IMY+16], and we
have extended all phases of the methodology to introduce our own steps.

Our second contribution is the design of a software product line for web-based
geographic information systems. This design is the result of the application of our
methodology. Two derived contributions are:

• An exhaustive list of features for generic web-based geographic information
systems, taking into account different existing products.

• An architecture for web-based geographic information systems based on an
architecture of reference, specified by standards, and enhanced with features
from architectures of existing products.

Our last contribution is a tool for the definition and generation of web-based
geographic information systems. This tool follows the specifications determined in
the design of our SPL, and it includes several contributions to the state of the art
technology for the implementation of software product lines:

• A derivation engine based on scaffolding providing a grade of flexibility not
found in the state of the art alternatives.

• A previewing component that enables our tool to show the analyst a preview
version of the products in run-time, thus allowing him or her to validate
and refine the definition of the products before their real generation and
deployment.

1.3. Thesis Outline 7

1.3 Thesis Outline
This thesis is composed by three parts. The first part is dedicated to the
methodology and it consists of three chapters. Chapter 2 introduces the concepts
behind software product lines and it describes the state of the art of the field,
including the advantages of SPL and their unsolved problems. Chapter 3 shows the
methodology we have defined for the application of software product line engineering
in any domain.

The second part covers the application of the previously defined methodology
within our context, web-based geographic information systems. In Chapter 4, we
make a brief summary of the basic concepts for geographic information systems,
and we describe some software related to GIS. In the rest of the chapters of this
part, each step of our methodology is addressed: requirement analysis in Chapter 5,
extracting requirements and features from existing products; architecture design in
Chapter 6, where we study the reference architectures for GIS and we select one
as our own; evaluation and derivation of the products in Chapter 7, showing the
traceability between the features and the architecture and the details regarding the
derivation of specific products.

The last part is about GISBuilder, a tool implementing the specifications
extracted from our process. In Chapter 8, the state of the art in software product
lines technologies and in industrial generation of software techniques is shown.
In Chapter 9, we describe our tool and each part that compose it. Finally, in
Chapter 10 we validate our tool and propose some use cases. The last chapter is
conclusions and future work.

8 Chapter 1. Introduction

Part I

Software Product Line
Engineering: methodology

9

2
Software Product Line Engineering:

state of the art

2.1 Basic Concepts
Traditionally, the development of every software product goes through a series of
steps: elicitation of requirements, design, implementation, testing and maintenance.
When a software development company has to build a family of products, all the
stages mentioned must be done for each one of them, even when the products share
functionalities or are focused in the same specific market. The downside of this
approach is that it requires high development and maintenance costs in order to
produce high quality products, while the time to market for each product is long
since development starts from scratch.

In other classic manufacturing industries, such as the automotive or the textile,
the way the products are built went from a manual manufacturing process to
industrial processes that use proper machinery [KS90]. This change allowed
industries not only to produce their products massively, but also to confront the
rising demand for individualised products [PBL05], i.e., mass-customization, and
large-scale production of goods tailored to the individual customers’ needs [Sta87].

Software product lines engineering (SPLE) [Bos00,PBL05,vdLSR+07,ABKS13]

11

12 Chapter 2. SPLE: state of the art

is a discipline that aims at applying the same kind of evolution to the way software
is built, i.e., applying mass-production, mass-customization and reuse strategies to
software development. In [CN02], Clements provides the most well-known definition
of a software product line (SPL):

A software product line is a set of software-intensive systems sharing
a common, managed set of features that satisfy the specific needs of
a particular market segment or mission and that are developed from a
common set of core assets in a prescribed way.

This is, a software product line is a family of software products sharing features
developed from a common set of reusable core assets that can be combined and
configured in different ways for different products. A SPL separates the development
of these core, reusable assets (i.e., the platform), and the development of the actual
applications (i.e., the products). This definition includes five fundamental concepts:

• “a set of software-intensive systems. . . ”: a SPL does not pretend the
development of a single product, but of many similar products (i.e., a family
of products). Therefore, a domain engineer has to decide the scope of the
products to build within a SPL.

• “. . . common, managed set of features. . . ”: each product built within a SPL
shares a set of features with every other product of the family.

• “. . . satisfy the specific needs of a particular market segment or mission. . . ”:
a SPL makes only sense to produce specialized products, this is, a set of
products solving similar problems.

• “. . . a common set of core assets. . . ”: the products within a SPL are built
using the same components. This is, the code of the different generated
applications is shared and not unique for each application. In order to generate
products that support variable requirements, a domain engineer has to specify
variability within the set of components of the SPL. Therefore, some of these
core assets are optional or variants.

• “. . . in a prescribed way.”: the products built from a SPL are assembled or
generated in a predefined way, i.e., following a pre-established architecture.

The scope and range of products that a product line can deliver is determined
by the flexibility of the platform, which in turn is determined by the variability
of the features defined for the family of products. A feature is an end-user
visible aspect or characteristic of a software system [KCH+90]. Features are

2.1. Basic Concepts 13

Figure 2.1: Example of a simple feature model

used in product line engineering to specify and communicate commonalities and
differences of the products between stakeholders, and to guide structure, reuse,
and variation across all phases of the software life cycle [ABKS13]. The platform
of a SPL is modelled as a set of features, and variability management involves
the tasks of identifying and defining the platform features, defining the functional
and technological architectures of the product, and defining the product line
configuration and derivation processes. Hence, variability management is one
of the main tasks in SPL development. There are many modelling techniques
to identify and define the platform features, such as FODA (Feature Oriented
Domain analysis) [KCH+90], FORM (Feature Oriented Reuse Method) [KKL+98],
FM (Feature Modeling) [CGR+12], DM (Decision Model) [SRG11], or OVM
(Orthogonal Variability Model) [PBL05].

Features are usually classified within a feature model, which represents the
features of a family of products, the relationship among them and whether if a
feature is common (mandatory), alternative or optional [KCH+90, CHE05]. A
simple feature model can be seen in Figure 2.1.

A product is specified by a feature selection, i.e., a subset of the features of
the product line. However, not every subset of features is valid since there are
relationships among the features and cross-tree constraints [Bat05] that need to be
fulfilled. In Figure 2.1 we can see that the feature “standardDataImport” has two
sub-features, “csvImport” and “spreadsheetImport” in an OR relationship. This
means that if a product includes the feature “standardDataImport”, then it must
also include at least one of its sub-features in order to be a valid product of the SPL.
In Figure 2.1 we can also see the cross-tree constraint “standardDataImport implies
fileUploader”. Therefore, beyond includying at least one of its sub-features, the
product must also include the feature “fileUploader” to be a valid product. Precisely,
there is an operation called valid product that checks wheter a subset of features of

14 Chapter 2. SPLE: state of the art

a feature model complies with the restrictions and relationships specified on it and
therefore a product can be generated from this selection of features. Besides this
operation, there are many more useful ones associated to feature models [BSRC10],
such as number of products or valid feature model.

2.2 Advantages of software product lines

The main target of SPLE is to be able to build customized products at a fraction of
the cost, solving customers needs with full products specifically crafted from their
requirements.

The evolution of costs between conventional development and SPL is very
different. Following a traditional approach, this cost grows linearly as the number of
products to be developed increases. On the contrary, the cost of developing a SPL
is very high initially, but it is being amortized with each new product of the family
that is built. According to [PBL05], the break-even point for the cost of developing
a SPL is when the number of products of the family developed is three. From that
number, the SPL offers very remarkable development cost savings especially if we
also consider the maintenance of the products, as we can see in Figure 2.2.

In a conventional environment, a very common approach is “copy & own”. A
developer starts by copying a previous application similar to the one he or she
needs to built, and from there the copy evolves independently. This is applied not
only for full applications but also for every core asset. The similarity between the
two applications serves to speed development, but in no case for their maintenance.
In case a bug is discovered, the development team in charge of the maintenance
must debug the code in both applications. In case new features are required,
they will have to develop them in both applications. This is, the similarity
between the applications is not exploited to reduce the maintenance costs. Reuse is
opportunistic, and the management of similarity (common parts and variable parts)
is secondary. Therefore, the traditional environment tends to focus on the product:
each conventional product is maintained and human teams also tend to fragment
in this way. The company does not take advantage of the potential synergies that
could be derived from the similarity between products, and the number of different
products that can be managed effectively is very limited.

On the contrary, a SPL environment is specifically designed to manage both the
commonalities and the variabilities among the products. Reuse is not opportunistic,
but planned, implemented, and the incorporation of new variants is done in
a systematic and controlled manner. This streamlines not only the product
development and its time-to-market, but also maintenance. Maintenance efforts

2.3. Unsolved problems 15

Figure 2.2: Break-even point for a SPL

are capitalized by all products. An error detected in a product can be relatively
easy to correct in all products of the line thanks precisely to the existence of the
common framework offered by the product line. As a straight consequence from
this point, the quality of the products is enhanced. The products built within a SPL
are much less prone to have bugs because their code has already been tested for the
rest of the products already built.

The last main advantage of using a SPL is the reduction of time to mar-
ket [PBL05], often a very critical success factor. Although the time to market
for the first products of a SPL is higher, because the common artefacts have to be
built first, as soon as the SPL is developed and running the time to market of new
products is shortened since most of the code of the new products is already written.
As opposite, in traditional development, this time is always linear to the number
of products (see Figure 2.3). Even in the case that a customer requires a feature
not provided by a SPL, a similar product an be generated with all the rest of the
features and then this new feature can be added, shortening anyway the time to
market of this new application.

2.3 Unsolved problems
There are many well-known success stories in the use of software product
line [WCK06]. However, despite the years that have passed since they were initially

16 Chapter 2. SPLE: state of the art

Figure 2.3: Time to market for a SPL

proposed, SPL still pose many challenges from the research point of view [MP14].
Some of them as discussed below.

• Optimizing the scope of a SPL. Instead of developing very specialized
product families, it would be interesting to optimize the scope of a product
taking into account not only market aspects but technical aspects such as the
life-cycle management of features, the core assets which implement them and
the product architecture. Finally, the economic viability of the whole product
line has to be considered as well.

• Describing the interrelation between scope, requirements, features
and other development activities. This is, traceability has to be explicitly
stated between all the stages of the development of a product within a SPL.
This way, the impact of requirement changes and the evolution of both the
platform of the SPL and the product can be properly handled. Maintaining
a clear traceability also facilitates changing a specific core asset for a new
version, for example.

• Eliciting and handling application-specific deviations. State of the art
SPL usually do not cope with customer-specific requirements. However, even
when we are dealing with products belonging to a family, there are domains in
which some application-specific requirements, features or components needs

2.3. Unsolved problems 17

have to be managed by th SPL in all the stages of the development process,
from the design of the products to their maintenance, going through the
derivation of the application-specific code. We deal with one of such domains
in this work, web-based geographic information systems (see Chapter 5).

In this work we address each one of this issues. The methodology we use to
approach the definition of our product line, described in Chapter 3, specifically
provides tasks for solving the first and second issue: most of the decisions regarding
the product line are solved by taking into account technical aspects of existing
products, literature and technical knowledge from experts; at the same time,
traceability is maintained all over our process. Furthermore, handling application-
specific deviations is totally achieved in our product line from the moment we deal
with specific data model specifications for each product.

To conclude, the application of software product lines in the development
companies of software has been limited to very specific contexts such as the
development of embedded systems [BRN+13,WCK06,Van02]. In other more complex
areas, such as the development of web applications or other fields with cutting-edge
and changing technologies, the application of SPLE is becoming more frequent.
But the proposals in the literature usually focus in the domain variability model
at a higher abstraction level rather than in the management of variability at
the implementation level [MSC+14]. Therefore, there is a need for new SPL
methodologies, technologies, and tools for this type of cases [UBFC14].

18 Chapter 2. SPLE: state of the art

3
Industrial expertise in the definition of a

Software Product Line: a new methodology

3.1 Introduction and motivation
One of the objectives of this work is to use the resulting tool within a real software
development company, Enxenio. In order to achieve this goal, we have had the
collaboration of GIS experts from the company all over our process, taking us
to a privileged and unusual context for carrying out this work. Enxenio is a
Spanish small and medium enterprise with expertise in geographic information
systems. In fact, this company is a leading provider of web-based geographic
information systems at the Galicia region, with many previous projects for the public
administration and private clients. Enxenio has collaborated with the Database
Laboratory at the University of A Coruña for a long time, and several works, such
as [LPFCP09,BCLF+07,PBF+07], are some results from this relationship. For our
present work, Enxenio has been helping with their expertise and their existing web-
based GIS applications. This collaboration is not altruistic since Enxenio would
benefit greatly from the outcome of this thesis, since the application of SPLE for
the development of future GIS would give the company a strategic advantage.

In order to make the best from this collaboration, we have looked for the

19

20 Chapter 3. Industrial expertise in the definition of a SPL: a new methodology

most adequate methodology for the definition of our SPL. We have found that
the methodology to follow must comply with the next requirements:

• The methodology has to make the role of experts with knowledge about
architectures, requirements and technology explicit.

• Considering that direct access to the souce code of the products may be
provided, the methodology must take the source code into account.

• The software product line domain (in our case, geographic information
systems) may have undergone a strong standardization effort that the
methodology must not ignore.

• Finally, if the software product line is to be used in the real industry,
the platform and the generated products will evolve and therefore, the
methodology must facilitate handling this evolution.

We have found two different methodologies that comply with some of this
requirements: Magro et al. [MGP09] and Nakagawa et al. [NBM13].

Magro et al. [MGP09] defines six steps based on the works of Bosch [Bos00],
DSouza & Wills [DW99], and Mili et al. [MMYA02], and shows an example of its
application for the construction of a SPL for validation systems. The six steps
defined in this work are:

1. Definition and analysis of the domain, not only to use this information in
furthers steps of the process but also to check if the application of SPLE in
the selected domain is feasible and advantageous.

2. Product planning. All kind of requirements associated to the different
products of the domain have to be accounted for.

3. Design of the architecture of reference by identifying the architectural
components, their design and their interactions.

4. Development of the reference architecture components. This fourth step
consisted in specifying and analysing the components of the architecture.

5. Architecture evaluation in order to detect problems and drawbacks.

6. Derivation of a specific product.

Nakagawa et al. in [NBM13] describe ProSA-RA2PLA, a methodology focused
on the product line architecture (PLA) design. They define an iterative process of
five steps (see Figure 3.1):

3.1. Introduction and motivation 21

1. Reference architecture identification/selection, in which the reference archi-
tecture is selected taking into account the needs and the scope of the product
line.

2. Elements selection/prioritization. They sort the elements from the reference
architecture in order of importance, and even not all of them need to be
considered for the product line.

3. PLA structure building, the step in which the product line architecture is
designed.

4. Variability model building. The PLA variability is identify and designed in
this step.

5. PLA evaluation to check if the elements from the reference architecture that
were considered important for the product line were indeed added to the final
PLA.

Figure 3.1: Structure of ProSA-RA2PLA by [NBM13]

We adapted the methodology of Magro et al. by decomposing the steps related
with the PLA design (three and four) into those suggested by Nakagawa et al. In

22 Chapter 3. Industrial expertise in the definition of a SPL: a new methodology

addition, we also considered the work of Diaz et al. [DPG14], since the traceability
among the requirements and the PLA is a key issue for guaranteeing the SPL
maintenance [AK04]. This issue was also considered by Iida et al. [IMY+16] for the
construction of an automotive braking system SPL.

3.2 Definition of a new methodology
We have defined a new methodology based on the two previous ones, mentioned
above, that we consider complementary one to each other, and some extensions
related to other issues that we consider critical to take advantage of our situation.
We can see our methodology in Figure 3.2. The methodology is framed into the
two levels of SPLE: domain engineering and application engineering [PBL05]. The
application engineering stage is in charge of the derivation of products, whereas
the domain engineering stage is divided into three phases (see Figure 3.2). Among
these two levels we define a process which consists on four activities or stages of
high level that are executed iteratively. The first stage is the requirements analysis,
resulting on the definition of the feature model of the SPL. The second stage is the
architecture design that leads to the design of the product line architecture. Next,
the third stage is the architecture evaluation, whose result is the identification of
issues in the feature model or in the product line architecture. This may lead to
a new iteration of the process, going again to the first stage. The last stage is the
derivation of a specific product in the the application engineering level. Each one of
this stages is divided into steps or tasks which are described next. The steps that
are based on another methodology are coloured in blue in the figure. The steps
proposed by us are coloured in white.

3.2.1 Requirement Analysis
The first stage of our process is the requirements analysis, composed in turn by in
two steps: domain analysis and product planning.

The domain analysis step (see the step 1.1, Figure 3.2) extends the work of Magro
et al. [MGP09], which was only focused on analysing the domain to determine the
feasibility of constructing a SPL and extracting the requirements of the products to
identify the commonalities and variabilities of the domain. This takes place on the
first task, requirements (see the step 1.1.1, Figure 3.2). In our case, we add a second
task, related work analysis, in which we also consider the related work to determine
requirements of the domain that may have not appeared in the previous analysis
(see the step 1.1.2, Figure 3.2). For example, if the experts in a company extract the
requirements for the family of products, then this step would help by considering

3.2. Definition of a new methodology 23

Figure 3.2: Methodology

requirements that have not appeared previously in product of the company but still
are interesting. This is a good point specially to help designing an SPL even more
prepared for its evolution. In addition, analysing the related work may reveal other
SPLs of the domain that could help and not starting from scratch.

The product planning step considers all kind of requirements associated to
the different products that can result from the SPL deployment (see the step 1.2,
Figure 3.2). But it considers not only those that belong to the company (see the
step 1.2.1, Figure 3.2), but also it is important to consider other projects that are
known or relevant in the domain (see the step 1.2.2, Figure 3.2). Once the phase is
complete, from these complete analyses of requirements, a feature model should be
constructed.

3.2.2 Architecture Design

The second phase consists in the architecture design, which is divided into five steps
(see Figure 3.2) heavily based on the methodology by Nakagawa et al. [NBM13].
The first step, reference architectures identification and selection, tries to identify
existing reference architectures or standards in the field in order to not start
from scratch (see the step 2.1, Figure 3.2). This is very adequate in our domain
due to the strong standardization we have mentioned already (see Chapter 4 and

24 Chapter 3. Industrial expertise in the definition of a SPL: a new methodology

Section 6.2). Next step, analysis of products architectures, is added in top of the
existing methodology to contemplate the architectures used by previously developed
products in the company (see the step 2.2, Figure 3.2). Analysing and taking into
account these architectures is interesting since it may enrich the architecture of
the SPL. The steps 3 and 4 are proposed by Nakagawa et al. In the elements
selection/prioritization the elements of the architecture are identified and selected
(see the step 2.3, Figure 3.2), whereas in the PLA structure building the architecture
is designed (see the step 2.4, Figure 3.2). Finally, we added a new step, development:
technology analysis, to analyse the technology requirements in order to determine
needs and interoperability problems, once again benefiting from our relationship
with Enxenio (see the step 2.5, Figure 3.2). This step is also important since it
helps to plan the technology evolution. As a result of this second phase, a PLA is
obtained.

3.2.3 Evaluation
The third stage consists in mapping the features and architectural elements, in
order to guarantee that all features of the SPL are supported by the PLA (see
the stage 3, Figure 3.2). This is important not only to observe and guarantee the
coherence between the feature set and the PLA, but also to prepare the SPL for its
evolution. In these steps, it is important to check that there are no inconsistencies
or drawbacks between previous stages and the results obtained. If something is
missing, this should be solved in previous stages and the process starts again from
stages 1 and 2, checking again all the steps (see the feedback arrows, Figure 3.2).

3.2.4 Derivation of a product
The last stage is the actual derivation and deployment of the products. This activity
takes no part in the domain engineering processes but it is more a application
engineering one. Our methodology only focus on the requirements, so this task is
the analysis of the requirements for the derivation process so afterwards we can
implement the tool or platform for the SPL. However, after finishing our process
we have already developed a specific tool that follows the guidelines extracted from
the process. We describe our tool in Part III.

Part II

Definition of a Software
Product Line for web-based

Geographic Information
Systems

25

4
Geographic Information Systems:

state of the art

4.1 Introduction

In Part I we have described a new methodology that benefits of the particular
context of this work whereas it is still based on proven methodologies from the
literature. Choosing a methodology is the obvious first step in order to define our
software product line with the formalism that is required if we want to guarantee
the quality of the design and the right and managed evolution of the product line.

Now that the methodology to apply is explained, in Part II we can proceed with
the design of a software product line for web-based geographic information systems.
Some steps of the methodology require to study the domain for the SPL, web-based
geographic information systems, from a more technical point of view. For example,
we need to define the list of requirements of this domain and also we need to study
the existing reference architectures. Therefore, before starting this process, in this
chapter we describe GIS from a more functional point of view, giving the reader an
idea of what a GIS is and providing some examples of GIS applications and features.
We also enumerate a list of software used by GIS to provide part of the features.

27

28 Chapter 4. GIS: state of the art

4.2 Basic Concepts
Geographic information, displayed as paper maps, has been one of the driving
forces behind the progress of our society for many centuries. Until a few decades
ago the representation, manipulation and synthesis of geographic information was
limited to the use of paper maps, and these tasks were limited to manual, non-
interactive processes. The exponential improvement in the performance of IT-based
technologies and the increasing demand for manipulation and interactive analysis of
geographic information have triggered the need for geographic information systems
(GIS).

GIS are used in many fields, each one of them with its specific point of view.
Due to that, there are many definitions of what is a GIS:

• A geographic information system is an application to assist in making decisions
related to geography [HA03,LGM15].

• A geographic information system is a set of computer tools that allow
analyzing and performing geographic type simulations [LT92, BMML15,
RSV01].

• A geographic information system is a set of data structures and algorithms
to represent, query, manipulate and visualize geographic information [WD04,
RSV01].

We can make a more complete definition based on all the mentioned: a
geographic information system is a set of software tools to model, represent,
store, manipulate, query, analyze and display information that includes a geographic
component. We consider a geographic information system as a set of computer tools
without having into account the organizational and business aspects of its use, which
are mentioned, for example, in [HA03]. In addition, the system must be able to
model, represent and store geographic information by providing tools for conceptual
modeling of applications, representation of information in data structures, and
efficient storage [MPV05, SC03]. Finally, the system must allow the analysis of
information by providing tools for the manipulation of the stored information, its
querying and its visualization [YG05].

GIS is a field that has been receiving a lot of attention lately. We can note its
presence in applications used everyday by millions of people, like Google Maps1,
or social networks with location-based features like Facebook or Twitter. Google
Maps and Google Earth2 represent an inflection point regarding web-based GIS.

1https://maps.google.com
2https://www.google.com/earth/

https://maps.google.com
https://www.google.com/earth/

4.3. GIS features 29

Before these two applications appeared, web map viewers were primitive and very
focused on specific fields. Since they appeared, they have laid the foundations of
how a web-based GIS should be. Besides these well-known examples, there are
many disciplines using GIS to improve and facilitate its work, such as cartography,
biology, ecology, transportation and warehouse logistics. GIS has also reached the
mobile systems thanks to the huge evolution in communication technologies and
the increased penetration of Internet access.

Even though GIS are used in many disciplines and with a variety of purposes,
there are many features shared between almost every one of them. Examples of
these common features are storing and indexing geo-referenced data, displaying
information as a set of layers, or displaying information in map viewers with zooming
and panning capabilities. At first, even with similar features, the software artefacts
used to implement each GIS followed different and incompatible conceptual, logical
and physical data models. For example, even a simple concept like the data type
polygon had inconsistent definitions between GIS technologies. In the last years,
the Open Geospatial Consortium (OGC) and the International Organization for
Standardization (ISO) have defined a set of standards. With these standards
being followed by most software artefacts, these artefacts become interoperable and
because of this, a current GIS application can switch its components easily. The
standardization processes also affected the architectures and services provided by
the geographic information systems, establishing a series of standard services that
include the most common ones. We detail this part of the standards in Section 6.2
as part of our methodology.

4.3 Geographic Information Systems features

Current geographic information systems provide lots of features. The most
important is the visualization of maps, with the mentioned Google Maps and Google
Earth as the two most representative examples. Furthermore, there are GIS features
integrated in general purpose applications that do not require any map viewing.
Anyone with a mobile device could be using this features without even noticing.
For example, when a person publishes a tweet in Twitter, he or she has the option
to add the geographical location of the device to the tweet so all his followers can
know where was the message originated.

Beyond the map visualization, geographic information systems have been
traditionally used as tools to manage and inventory resources. An example
is the geographical information system EIEL (Encuesta sobre Infraesctructura
y Equipamientos Locales), of the Provincial Council of A Coruña (Figure 4.1),

30 Chapter 4. GIS: state of the art

Figure 4.1: EIEL user interface

developed by the Databases Laboratory of the University of A Coruña since
2000 [BCLF+07]. This geographic information system consists of a cartographic
inventory of the infrastructures and the equipment of the province that allows to
manage of the territory, to verify the correct provision of services and to coordinate
the services of different municipalities in common actions. This geographic
information system has two different tools: a web-based map viewer that allows the
user to visualize the information entered from the management tool (WebEIEL3),
and a desktop tool available for the technical staff of the Provincial Council and of
the municipalities of the province (gisEIEL4).

Another area in which geographic information systems are currently being used
daily by lots of people are navigation devices. Such devices have emerged thanks to
the development of the global positioning system (GPS), initially only for military
use, in the 1960s, but extended to its civil use since the 1990s. This system allows
the localization of an object through a series of satellites. A GPS receiver is
incorporated into a mobile device which is capable of accurately determining its
location. In addition, the road network is represented by a graph in which the
nodes correspond to intersections of the roads and are labelled with the permitted
turns, and the edges correspond to segments of the roads and are labelled with the
allowed direction, the length, and the type. With this information the system can
compute the optimum route between two points taking into account factors such
as distance or time required. In addition, the system can show the user a map of
the area with the location, direction and speed of the vehicle. This type of devices
include also functionalities for calculation and communication of routes, which can

3http://webeiel.dicoruna.es/
4http://webeiel.dicoruna.es/giseiel

http://webeiel.dicoruna.es/
http://webeiel.dicoruna.es/giseiel

4.3. GIS features 31

Figure 4.2: TomTom Go 16005 user interface

include in these calculations variables in real time such as current traffic, road events
such as accidents or atmospheric difficulties.

Initially, GPS devices were designed and marketed independently only to provide
this feature, and they are the only devices that can manage to do that. Some brands
were very popular, such as TomTom6 (see Figure 4.2). However, with the emergence
of the smartphones which include GPS receivers themselves, nowadays most of
these features can be used by them (see Figure 4.3), with different and numerous
applications providing this kind of features and even more than the previous GPS
devices.

The current high availability of devices with GPS receivers and mobile com-
munication networks allows the use of geographic application systems to build
fleet control tools. In this case, besides using a vehicle navigation device, this
device communicates to a central server its location using mobile technology (GSM,
GPRS, UMTS, or HSDPA). The server is responsible for storing the location of the
vehicles and it can use this information to perform the tasks that are needed, for
example, locating stolen vehicles, picking and delivery planning in parcel companies,

5https://www.tomtom.com/es_es/drive/car/products/go-6100-europe
6https://www.tomtom.com/es_es/
7https://www.waze.com/es/

https://www.tomtom.com/es_es/drive/car/products/go-6100-europe
https://www.tomtom.com/es_es/
https://www.waze.com/es/

32 Chapter 4. GIS: state of the art

Figure 4.3: Waze7 application user interface

calculating the nearest vehicles for a taxi stand or managing traffic. Currently, there
are different commercial systems following this philosophy, both for vehicles, ships
and aircraft (Figure 4.4).

A more specific scope for geographic information systems more focused on
simulation instead of management is the analysis of flooded areas. In this case, a
digital terrain model is used to represent the height of each point (usually visualized
on a 2D map using color), with a model of the hydrographic network representing
the river channel and the river flow rate that can withstand naturally. From this
information, together with data about precipitations or thawing in the area, the
risk of flooding at each point of the terrain can be calculated [EIA+11] (Figure 4.5).

All the engineering disciplines that work with the terrain are frequent users of
geographic information systems (road engineering, forest engineering, agronomic
engineering). One example is the process of land consolidation (Figure 4.6), in
which a new distribution of the properties in an area is carried out to increase the
average size of the plots, reducing the smallholding and facilitating its exploitation.
To do this, the geographic information system should include information about the

11https://www.simplytrak.com/
11https://www.flightradar24.com/
11https://www.quartix.net/
11https://www.marinetraffic.com/

https://www.simplytrak.com/
https://www.flightradar24.com/
https://www.quartix.net/
https://www.marinetraffic.com/

4.3. GIS features 33

Figure 4.4: User interfaces for many different fleet management apps:
Simplytrack8, Flightradar249, Quartix10and MarineTraffic11

Figure 4.5: Result of a GIS for the calculation of flooded areas

34 Chapter 4. GIS: state of the art

Figure 4.6: User interface of a GIS for managing the process of land
consolidation

types of soil in the area, existing plots and their current owners, and should allow
the definition of new replacement farms by automatically performing calculations
and quality controls, allowing the technicians to work quickly and efficiently.

4.4 Geographic Information Systems software

To provide the reader with an idea of GIS tools, in this section we describe different
types of resources and real tools that allow developers and users to implement and
access GIS features.

There are currently many accessible projects whose purpose is the collection of
information in the field of GIS or space DBMS. In this sense, these projects do
not provide specific tools or resources, but act as repositories to find other existing
projects.

The Open Geospatial Consortium12 is dedicated to the definition of standards
for geographic information. However, it is possible to find in this portal different
proposals, articles and discussions on the different standards and technologies used.
The organization also provides access to validation tools to check compliance with
its standards, as well as a repository of tools conforming to those standards13.

The Open Source Geospatial Foundation14 works mainly as a project incubator
of open source software projects related to spatial information.

12http://opengeospatial.org
13http://www.opengeospatial.org/resource/products/compliant
14http://www.osgeo.org/

http://opengeospatial.org
http://www.opengeospatial.org/resource/products/compliant
http://www.osgeo.org/

4.4. GIS software 35

4.4.1 Commercial GIS tools

In this section some commercial tools supporting GIS features are briefly introduced.
ArcGIS, by ESRI15, is currently the market leader and has a very wide range

of integrated functionalities as well as the possibility to integrate with a multitude
of external tools.

ArcGIS has connectors for databases with SFS (Simple Feature Specifica-
tion [fSi]) support such as Oracle Spatial or PostGIS. In addition, it also provides
support for many other DBMS, such as Access, Oracle, DB2, SQL Server or Informix.
Two data servers are provided, ArcSDE and ArcIMS, which allow the integration of
geographic information from different environments by sending it to ArcGIS desktop
systems or to other specific applications.

The platform has many functionalities for managing geographic information,
both in the vector model and in the raster model. It also provides a free viewer,
called ArcExplorer16.

ArcGIS stores and exports information in Shapefile (SHP) format. This format
is so widely used that nowadays it can be considered the de facto standard in
geographic information systems. The technical description of this format has been
published by ESRI [ESR], and it is used as an exchange format of geographic
information thanks to many libraries that implement its functionalities. Shapefile
allows the general inclusion of alphanumeric and geographic data. However, and
despite being widely used, it has some limitations, such as not allowing geometries
of different types in the same file.

Hexagon GeoMedia17 can be considered the great rival of ESRI today. It
has most of ArcGIS functionality and some similar tools. Like ArcGIS, Geomedia
provides connectors for SFS databases such as Oracle Spatial and PostGIS. It also
provides support for other databases, among which we can mention Access, SQL
Server or DB2. The GeoMedia family of tools also provides a data server called
Geomedia WebMap Professional18, a web server-based solution that enables
the availability of information through the web and mobile devices with ease. In
terms of functionalities, GeoMedia provides many possibilities for managing vector
and raster information, and a free viewer (GeoMedia Viewer19) for displaying the
geographic information generated.

15http://www.esri.com/
16http://www.esri.com/software/arcgis/explorer
17http://www.hexagongeospatial.com/
18http://www.hexagongeospatial.com/products/power-portfolio/geomedia-webmap
19http://www.hexagongeospatial.com/products/power-portfolio/geomedia-add-ons/

geomedia-viewer

http://www.esri.com/
http://www.esri.com/software/arcgis/explorer
http://www.hexagongeospatial.com/
http://www.hexagongeospatial.com/products/power-portfolio/geomedia-webmap
http://www.hexagongeospatial.com/products/power-portfolio/geomedia-add-ons/geomedia-viewer
http://www.hexagongeospatial.com/products/power-portfolio/geomedia-add-ons/geomedia-viewer

36 Chapter 4. GIS: state of the art

MapInfo20 provides support for the most common databases and spatial
information formats, conforming to standards such as WMS [fSj] and WFS [fSl],
and advanced functionalities for vector and raster information analysis, publication
of thematic maps, etc.

AutoCAD Map 3D21, which is part of the family of tools AutoCAD by
Autodesk, provides more specific functionality that allows access to both spatial
information and CAD information within the tool. Autodesk Infrastructure
Map Server22 is also a map server that allows the publishing GIS and CAD
information.

Bentley Map23 is the evolution of the Microstation Geographics tool. It
allows the management of vector and raster information, it supports numerous
GIS information formats and specific functionalities such as visualization and 3D
processing.

All these tools have the usual advantages and problems in commercial products.
On one side, the products are available immediately, have a large set of features
and the support provided by a large company. In addition to the main applications,
the product packages for these tools usually include different utilities to extend the
functionalities and facilitate the integration with other systems of the same family.
However, the features provided by these products, integrated into large specific
packages, may not fit the specific needs of many companies since the product is
normally sold in closed packages. On the other hand, since these products are not
open source, the software has to be used as a black box, which prevents any access,
inspection or modification beyond the extension points defined by the tool itself.

4.4.2 Spatial DBMS
This section describes the main database management systems with support for
spatial information.

Oracle Spatial24, currently known as Oracle Spatial and Graph, is a plugin
that adds spatial functionalities to Oracle 11g DBMS.

In the last versions, Oracle has included in their DBMS the component Oracle
Locator, providing the most basic tools to allow working with spatial information.
Available functionalities include specific data types and operators, following OGC

20http://www.pitneybowes.com/us/location-intelligence/geographic-information-systems/
mapinfo-pro.html

21https://www.autodesk.es/products/autocad-map-3d/overview
22https://www.autodesk.com/products/infrastructure-map-server/overview
23https://www.bentley.com/en/products/product-line/asset-performance/bentley-map
24http://www.oracle.com/technetwork/database/options/spatialandgraph/overview/index.

html

http://www.pitneybowes.com/us/location-intelligence/geographic-information-systems/mapinfo-pro.html
http://www.pitneybowes.com/us/location-intelligence/geographic-information-systems/mapinfo-pro.html
https://www.autodesk.es/products/autocad-map-3d/overview
https://www.autodesk.com/products/infrastructure-map-server/overview
https://www.bentley.com/en/products/product-line/asset-performance/bentley-map
http://www.oracle.com/technetwork/database/options/spatialandgraph/overview/index.html
http://www.oracle.com/technetwork/database/options/spatialandgraph/overview/index.html

4.4. GIS software 37

and SQL/MM standards [fSm]. Coordinate systems are also included, and the
DBMS is improved with spatial indexes.

Oracle Spatial is an extra option that adds additional functionalities to the
previous ones. Some of these new features are: support for raster information,
models to represent topologies and networks, and support for 3D information. It also
includes a route calculation engine. Finally, Oracle Spatial provides web services for
publishing information conforming to OGC standards. The MapViewer tool allows
the visualization of this information in a web application, and it is compatible with
other applications in the Oracle suite.

PostGIS25, developed by Refractions Research, is an extension to the DBMS
PostgreSQL26. This extension provides data types and operations for geographic
objects based on the vector model and, since version 2.0, also based on the raster
model. PostGIS is an open source tool published under the GPL license. PostGIS
provides management functions for the creation and deletion of geometric tables
and columns, as well as the management of spatial reference systems. It also
provides access and editing operators for the geometry types. Supported operations
include modification of coordinates, transformation of spatial reference system,
realization of different related transformations (rotation, displacement, scaling)
and simplification of geometries. It also provides numerous functionalities for
transforming and converting formats, supporting standard formats and shapefiles.

Raster related features are much more recent in PostGIS, and they include
elements similar to those already defined for vector data: new data types, import
utilities, etc.

The DBMS MySQL27 includes support for geographic information natively,
without requiring any extensions, integrating geographic data types transparently.
However, unlike PostGIS, MySQL does not support spatial reference systems.
Spatial predicates are implemented using bounding boxes instead of the actual
geometries, and it does not provide spatial operators and editing operations.

MySQL supports conversion only among Well-Known Text (WKT) and Well-
Known Binary (WKB) formats. It also does not directly support importation and
exportation of data, for which external tools are needed.

SQLite28 is a C library that implements a self-contained DBMS. A SQLite
database is stored in a single file in a portable way. SpatiaLite and VirtualShape29

provide SQLite extensions with geographic functionality. SpatiaLite provides

25http://www.postgis.org/
26https://www.postgresql.org/
27https://www.mysql.com/
28http://www.sqlite.org/
29http://www.gaia-gis.it/gaia-sins/

http://www.postgis.org/
https://www.postgresql.org/
https://www.mysql.com/
http://www.sqlite.org/
http://www.gaia-gis.it/gaia-sins/

38 Chapter 4. GIS: state of the art

functionalities for working with WKT and WKB formats, as well as support
for spatial reference systems. In the same way, it allows the construction of
geometries and provides some access and measurement operations. It also includes
spatial predicates calculated with the bounding box, and allows the realization of
transformations like rotation, scaling and displacement. VirtualShape also provides
shapefiles importation and exportation, as well as the use of shapefiles directly from
SQL.

4.4.3 Map Servers

This section describes some of the most widespread geographic information web
services currently available.

UMN MapServer30 is the most successful web service today. It is implemented
with C++ and it can be used as a web service, using CGI, and as a library
(supporting PHP, Python, Perl, Ruby, Java and C#). Although it has been
developed for Linux, it can also be used within Windows following a much more
complex installation and configuration process. MapServer web service allows the
developer to use all types of data sources: ESRI datasources such as shapefiles or
ArcSDE, different DBMS such as Oracle, PostGIS, or MySQL, and many other
data formats using the GDAL/OGR library31. This library allows reading, and
sometimes writing, information in a large number of formats. MapServer supports
the main standards of geographic information: WMS (client and server), WMC32,
SLD33, WFS (non-transactional), Filter Encoding34, WCS35 and GML36.

Geoserver37 has a big advantage versus the previous alternative: it is the
easiest geographic information web service to install and configure. Geoserver is
implemented with Java and it can be used as a web service through its J2EE
application. It can be configured through its own user interface in a simple way.
However, one drawback in this web service is its limited performance, as it is slower
than other competitors.

GeoServer uses OpenLayers as integrated viewer for visualization of the
geographic data within the tool itself, and additionally it allows to generate maps
in many formats: Google Earth KML, PDF or SVG.

30http://mapserver.org/
31http://www.gdal.org/
32http://www.opengeospatial.org/standards/wmc
33http://www.opengeospatial.org/standards/sld
34http://www.opengeospatial.org/standards/filter
35http://www.opengeospatial.org/standards/wcs
36http://www.opengeospatial.org/standards/gml
37http://geoserver.org/

http://mapserver.org/
http://www.gdal.org/
http://www.opengeospatial.org/standards/wmc
http://www.opengeospatial.org/standards/sld
http://www.opengeospatial.org/standards/filter
http://www.opengeospatial.org/standards/wcs
http://www.opengeospatial.org/standards/gml
http://geoserver.org/

4.4. GIS software 39

Geoserver can use different data sources with different levels of integration.
Among the sources of data that we can consider mature are the DBMS PostGIS,
Oracle, DB2, ArcSDE or Shapefile formats. It also supports other WFS, MapInfo,
or MySQL data sources. This service supports, like the previous one, most of the
standards for the interoperability and communication of geographic information,
including WMS, SLD, WFS, Filter Encoding, WCS and GML.

Deegree38 is probably the most complete web service discussed here. It is
developed with Java and it can be used as a web service through its J2EE application.
The main problem of Deegree is the complex configuration, in addition to having
worse documentation than other tools. However, this web service provides good
performance and it is the one tool supporting more OGC standards. Deegree
includes its own GeoPortal. Data sources supported by Deegree include all types
of DBMS (PostGIS, Oracle, and others such as SQL Server or DB2 that can be
supported as generic SQL) as well as ESRI data sources (ArcSDE and Shapefile).

As we have already indicated, Deegree supports a multitude of standards. Like
the previous ones, it supports WMS and SLD, WFS (transactional) and Filter
Encoding, WCS or GML. It also provides functionalities in accordance with other
standards: catalogues according to the CSW standard39, interactions according to
the Web Processing Service (WPS40) protocol.

MapGuide41 is a tool released by Autodesk as open source software. This tool
is part of the commercial software of Autodesk, and is implemented with C++. It
can be used as a web service using CGI or as a library in PHP, Java or .NET.
MapGuide provides ready-to-use web clients. MapGuide supports access to data
using the FDO library42. This allows you to use ESRI formats such as Shapefile or
ArcSDE, MySQL, ODBC or GDAL / OGR formats as data sources. You can also
use it as a WMS and WFS client. This web service supports the basic standards of
OGC WMS and WFS.

TileCache43 is an implementation of a WMS-C performed by MetaCarta. It
is implemented in Python and it can be used as a CGI web service. Instead of
generating the image with each request to the WMS, TileCache stores a tile cache.
In this way, for each zoom level, the cartography is rendered in advance as a set of
cells. TileCache acts as a WMS-C service that can be used on clients that support
this standard.

38http://www.deegree.org/
39http://www.opengeospatial.org/standards/cat
40http://www.opengeospatial.org/standards/wps
41https://mapguide.osgeo.org/
42http://fdo.osgeo.org/
43http://tilecache.org/

http://www.deegree.org/
http://www.opengeospatial.org/standards/cat
http://www.opengeospatial.org/standards/wps
https://mapguide.osgeo.org/
http://fdo.osgeo.org/
http://tilecache.org/

40 Chapter 4. GIS: state of the art

FeatureServer44 is a feature server developed by MetaCarta, just like Tile-
Cache. It is also implemented in Python and can be used as a CGI web service.
FeatureServer supports DBM, BerkeleyDB and PostGIS DBMS data sources. It
can also function as a WFS service client, and you can use other OGR data sources
(Shapefile, GML, etc.) or even Flickr images. This web service provides services
based on different formats. It allows the use of JSON, GeoRSS or KML in different
services for both input and output data. It also provides services for sending data
in HTML, WFS (GML) or OpenStreetMap format.

GeoNetwork45 is a metadata catalogue implemented in Java, and available as a
web service in a J2EE application. It allows to manage and publish metadata of the
spatial data infrastructure. GeoNetwork can use data sources based on ISO 19115
and 19139 metadata standards [fSe, fSk]. It also supports FGDC standards [Com],
used in the United States, or the Dublin Core standard [KB07]. This server
provides catalogues compatible with the OGC CSW standard, specific for the
availability of metadata catalogues. It also supports the OpenSearch standards
(for the provision of search results) and the Open Archives Initiative standard for
content interoperability on the Web [LdS01].

4.4.4 Map Visualization Clients

After our brief introduction to map servers, in this section we describe some of the
web map viewers more used nowadays. Some of these clients are targeted to use
specifically with UMN MapServer (Chameleon, CartoWeb and Ka-Map), whereas
others are server-independent and can be used with any server that follows the
standards (Leaflet and OpenLayers).

The three web clients oriented to work with UMN MapServer have many things
in common: they are implemented in PHP and JavaScript, oriented to AJAX and
all of them are currently reducing their activity in favour of technology-independent
projects. Chameleon46 is designed to be extended through widgets. CartoWeb47

provides a scalable architecture based on a highly modular design, and its main
difference is that it implements a complete geoportal, providing the possibility of
acting as a data server without requiring any other software artefact. Ka-Map48

bases its operation on the use of tiling and PreCache. It is a project carried out
in collaboration with OpenLayers, which we will see below. Ka-Map is the least

44http://featureserver.org
45http://geonetwork-opensource.org/
46http://chameleon.maptools.org/index.phtml
47http://cartoweb.org/
48http://ka-map.maptools.org/index.phtml

http://featureserver.org
http://geonetwork-opensource.org/
http://chameleon.maptools.org/index.phtml
http://cartoweb.org/
http://ka-map.maptools.org/index.phtml

4.5. Summary 41

dependent on MapServer among the clients introduced so far, but it still needs some
adaptation to make it truly independent.

Leaflet49 is a server-independent web client. This is, it does not require any
specific server side infrastructure (the three alternatives defined above require
a PHP server, at least). It is implemented as a JavaScript library providing
functionality to easily include maps in HTML pages. The only step needed to
create a Leaflet map is to include Leaflet’s JavaScript library in the HTML of the
page. Its usage is very simple to web developers since it provides APIs based on
web technologies, and extending its behaviour through plugins is also very easy. It
is a very active project, with new versions every few months.

OpenLayers50 is a standalone web client, similar to Leaflet. It is developed
in JavaScript, and makes extensive use of AJAX, tiles and cache. OpenLayers is
a project with a lot of activity and synergy with many other projects in the area
of geographic information. For this reason it is a more complete tool than Leaflet
and provides a greater number of controls and options, although Leaflet can provide
greater performance in simple maps. OpenLayers is also more complex to use and
extend than Leaflet. OpenLayers provides functionalities as a JavaScript library for
creating and manipulating maps and layers from different data sources. It can act
as a client for WMS, WFS, WMC services, and use GeoRSS, KML, or GeoJSON
data sources, among others.

4.5 Summary
In this section we have described what is a geographic information system, providing
many examples about their functionalities and features, as well as several examples
of GIS applications that have been in the market for some time. We could see
that GIS applications can be used within many different fields without relationship
among them but the functionalities provided by them are usually the same. Finally,
we have also shown many common software artefacts providing GIS features, both
commercial and open source.

The information provided in this section serves to the purpose of introducing the
reader to geographic information systems. During the process to define our software
product line, we need to formally describe a generic GIS both from a functional and
a non-functional point of view, and therefore this introduction is required to provide
a better understanding of the process.

49http://leafletjs.com/
50http://openlayers.org/

http://leafletjs.com/
http://openlayers.org/

42 Chapter 4. GIS: state of the art

5
Requirements Analysis:
identifying our features

5.1 Introduction
After the definition of the methodology to guide the design of our software product
line, and after providing some concepts to introduce the reader into geographic
information systems, our domain, we are now ready to begin the actual process.
This chapter is the starting point for the definition of our software product line in
the domain of web-based geographic information systems. That is, in this chapter
we begin the application of our methodology. The initial stage of this methodology
is the requirements analysis (see Figure 5.1). This stage is composed by two steps:
domain analysis and product planning.

The domain analysis step consists on the identification and definition of the
requirements for our products. These requirements are contrasted with related work
from literature on the topic of software product lines for GIS. In the second step,
product planning, we analyse existing products of our domain. These analysis serve
as validation for our requirements and, at the same time, to classify the features
into mandatory, optional or alternative regarding their appearances in the existing
products. The output of this phase is the feature model of our product line.

43

44 Chapter 5. Requirements Analysis: identifying our features

Figure 5.1: Requirements analysis stage

5.2 Domain Analysis
The first step of the requirements analysis stage is the domain analysis (see the step
1.1, Figure 5.1). It is composed by two tasks or sub-steps: requirements and related
work analysis, which are detailed in the following sections.

5.2.1 Requirements for our products
Having the collaboration of Enxenio, and since one of the goals of the thesis is
to guarantee the generation of products that can be really used in the industry,
it makes sense that experts of the company help deciding the product family and
the requirements of the platform. Therefore, we have based our decisions for this
step (see the step 1.1.1, Figure 3.2) not only in our previous knowledge but also
in the expertise on web-based GIS of project managers from Enxenio, to whom we
have conducted discussions and interviews. The requirements of the platform were
extracted from these meetings. We classified these requirements in four different
groups:

R1) Data Management, which includes every requirement related to how the data,
both alphanumeric and geometrical, is stored, introduced in the system and
internally processed.

R2) Graphical User Interface requirements, related to the way the alphanumeric
data is accessed through the web interface, and which data is provided to the
final user.

5.2. Domain Analysis 45

R3) Map Viewer requirements, regarding how the geographic data must be shown
in the web application.

R4) User Management requirements, since there are some required functionalities
regarding authentication of users and management of their roles, as in any
other web application.

We found 17 requirements belonging to these four categories or groups. We do
not fully detail every requirement since it would be long and boring whereas it would
not provide more value to this work. The complete list can be seen in Table 5.1.

Id Description

Group R1: Data Management

R1.1
The spatial database management system of each product can be

chosen among the alternatives complying with the standard:
PostgreSQL with PostGIS, MySQL and Oracle Spatial.

R1.2
The spatial data is complementary to alphanumeric data. Therefore,
there must be a way to access the latter using current web standards

such as REST services.

R1.3

Spatial data is hard to input manually. For example, manually defining
the perimeters of the administrative divisions of a nation is a non

assumable task. Therefore, data input procedures must be varied and
comply with the standards in GIS, such as allowing the importation of

shapefiles or the digitizing of maps.

R1.4 The products must be able to run typical GIS operations, such as
Route Calculation or Addresses Geolocalization.

Group R2: Graphical User Interface

R2.1 Every functionality of the product can be accessed through an element
in the menu of the application.

R2.2 The web application, as any other application, should allow the input
of data trough forms.

R2.3

Data of the elements handled by the application can be viewed using
lists. These lists may be sorted, and the elements shown in them

filtered. For each element, there can be links to a form to edit it, or a
map to view its position if it is a geolocalized element.

46 Chapter 5. Requirements Analysis: identifying our features

Id Description

R2.4
Web applications may have, apart from dynamic content, some static
pages to show information not changing, such as a contact or welcome

pages.
Group R3: Map Viewer

R3.1 The map server can be chosen among GeoServer and Deegree, which
are two popular alternatives.

R3.2
Typical GIS tools like zooming, panning, measuring distances or

objects, geo localizing the user or showing the context information of
the map should be available in the products.

R3.3 In the map viewer, there should be a way to select whether to show or
not different layers, as well as setting their opacity, sort them, etc.

R3.4 The map centre can be set to the user position, or to a specific region
of the world.

R3.5 When a user clicks on an element of a map, a popup must show the
information regarding this element.

Group R4: User Management

R4.1 Anonymous users can register and login. The activation of the
accounts can be manual or automatic using an email.

R4.2
Information of the users can be updated, and the products may store
additional information about them, such as the birthday or the social

networks accounts.

R4.3 The type of security can be chosen among the most common
alternatives used nowadays in the industry.

R4.4 LDAP server can be used for authentication.

Table 5.1: Requirement list

5.2.2 Features derived from the set of requirements
From these requirements we derived the set of features that the SPL platform must
provide in order to generate the desired products. In Table 5.2, the features are
identified and described, as well as associated with the requirement from which
they are derived, keeping the traceability. At this point, the features are just listed
but we still do not have the information regarding to whether they are mandatory
or optional, nor which features are dependent to each others. This information is

5.2. Domain Analysis 47

obtained in a further step (Section 5.3) by analysing existing products.

Req. Feature Id Description

R1 DataManagement Product stores data and provides
functionalities for its management

R1.1 DM_SpatialDatabase Existence of a Spatial Database
Management System

R1.1 DM-SD_PostGIS Using PostGIS (and PostgreSQL) as
the DBMS

R1.1 DM-SD_MySQL Using MySQL as the DBMS
R1.1 DM-SD_OracleSpatial Using Oracle Spatial as the DBMS

R1.2 DM_DataServer Existence of a service providing
standard (non-spatial) data

R1.3 DM_DataInput Users can input geographic and
alphanumeric data

R1.3 DM-DI_DataFeeding Existence of services allowing the user
to import data

R1.3 DM-DI-DF_Shapefile

Importation of shapefiles: the user can
load alphanumeric and spatial

information from shapefiles into the
application

R1.3 DM-DI-DF_Raster Importer of raster files
R1.3 DM-DI-DF_Network Importer of network files

R1.3 DM-DI_Digitizing Existence of services allowing the user
to digitize geographic data

R1.3 DM-DI-D_Form

Digitizing from forms: the user can
edit the geographic information of new

or existing elements using a map
within a standard form

R1.3 DM-DI-D_Map

Digitizing from maps: the user can
create batches of new geolocalized

elements by drawing their shape on a
map, and setting their alphanumeric

data in a subsequent step
R1.4 DM_Algorithmics Users can execute GIS procedures

48 Chapter 5. Requirements Analysis: identifying our features

Req. Feature Id Description

R1.4 DM-A_Connectivity Users can execute connectivity
procedures

R1.4 DM-A-C_RouteCalculation Route calculation from an origin and
destiny points within a map

R1.4 DM-A-C_NetworkTracing Check which nodes of a network can
be reach from a given node

R1.4 DM-A-C_ConectivityCheck Check which nodes of a network are
not connected

R1.4 DM-A_Geolocalization Users can execute geolocalization
procedures

R1.4 DM-A-G_Addresses Geolocalization of textual addresses

R1.4 DM-A-G_Documents Geolocalization of geographic named
entities on textual documents

R2 GraphicalUserInterface Existence of a graphical user interface

R2.1 GUI_Menu Standard menu with links and
submenus grouping menu items

R2.1 GUI-M_Top An horizontal menu placed in the top
of the page

R2.1 GUI-M_Bottom An horizontal menu placed in the
bottom of the page

R2.1 GUI-M_Right A vertical menu placed in the right
side of the page

R2.1 GUI-M_Left A vertical menu placed in the left side
of the page

R2.2 GUI_Forms Forms for visualizing and editing of
elements in the data model

R2.2 GUI-F_Editable Capability of a form to modify the
information of the associated instance

R2.2 GUI-F_Creatable Capability of a form to create new
instances of the associated entity

R2.2 GUI-F_Removable Capability of a form to remove the
currently loaded instance

5.2. Domain Analysis 49

Req. Feature Id Description

R2.2 GUI-F-R_ConfirmationAlert Showing a modal warning alert when
removing an element in a form

R2.3 GUI_Lists Lists of elements of data from the data
model

R2.3 GUI-L_Sortable Lists can be sorted by the user

R2.3 GUI-L_Filterable Lists elements can be filtered by the
user

R2.3 GUI-L-F_RowFilter The filters are applied for each
row/property of the elements listed

R2.3 GUI-L-F_BasicSearch There is a field to make search over all
properties of the elements listed

R2.3 GUI-L_LocateInMap

For elements which have a
geographical property, there is a link
so an user can view the same element

within a map viewer

R2.3 GUI-L_ViewListAsMap
For elements which have a

geographical property, show all the
elements within a map viewer

R2.3 GUI-L_FormLink
There is a link for each element that

leads to a form where the element can
be edited

R2.4 GUI_StaticPages There are some static pages defined by
the analyst

R2.4 GUI-SP_Management
The static pages can be created,

modified and removed from the final
application

R3 MapViewer User can view geographic information
using a map viewer

R3.1 MV_MapServer
Cartography is retrieved from an

internal map server instead of using
publicly available servers

R3.1 MV-MS_GeoServer The map server used is GeoServer
R3.1 MV-MS_Deegree The map server used is Deegree

50 Chapter 5. Requirements Analysis: identifying our features

Req. Feature Id Description

R3.2 MV_Tools The map viewers provides tools so the
user can interact with it

R3.2 MV-T_Pan
The map can be moved with the

mouse, changing the portion of Earth
viewed

R3.2 MV-T_Zoom The user can zoom in/out the map

R3.2 MV-T_ZoomWindow The user can zoom directly to a
rectangle draw with the mouse

R3.2 MV-T_Measure There is a tool that allows to measure
different things in the map

R3.2 MV-T-M_Distance Distances between two points can be
measured

R3.2 MV-T-M_Line
The user can draw a line composed of

multiple segments and measure its
length

R3.2 MV-T-M_Polygon The user can draw a polygon and
measure its area

R3.2 MV-T-M_MapElement
The user can measure an element

shown in the map, i.e., a geographic
property of an instance

R3.2 MV-T_Export
The current view of the map can be

exported to a file so the user can
download it

R3.2 MV-T-E_SetScale The user can choose the scale of the
map before exporting it

R3.2 MV-T-E_ShowLegend
The user can choose whether the

legend of the map is shown or not in
the exported image

R3.2 MV-T-E_DRM The user can add DRM protection to
the created file

R3.2 MV-T-E_Type
File types that the user can choose to
download the map, in case that there

is more than one

5.2. Domain Analysis 51

Req. Feature Id Description

R3.2 MV-T-E-F_PNG Current view of the map is exported
as PNG

R3.2 MV-T-E-F_PDF Current view of the map is exported
as PDF

R3.2 MV-T-E-F_URL A custom URL is created for the
current view of the map

R3.2 MV-T_Filterable Map elements can be filtered by the
user

R3.2 MV-T-F_RowFilter The filters are applied for each
property of the elements listed

R3.2 MV-T-F_BasicSearch There is a field to search over all
properties of the elements in the map

R3.2 MV-T_UserGeolocation The map can show the position of the
user, geolocating him or her

R3.2 MV-T_InformationMode
Instead of panning the map on click,

information about the element clicked
is shown in this mode

R3.2 MV-T_ViewMapAsList Shows a list with the current elements
of the map

R3.2 MV_ContextInformation The map viewer shows information
regarding the current state of the view

R3.2 MV-CI_Map
The context information window has a
mini map showing the position of the
current view within the whole map

R3.2 MV-CI_Scale Adds scale information to the context
information

R3.2 MV-CI_CenterCoordinates The coordinates of the center of the
current view are shown

R3.2 MV-CI_Dimensions The context information shows the
current dimensions of the map

R3.3 MV_LayerManagement Layers of the map can be manipulated
from within the map viewer

R3.3 MV-LM_Order Layers of the map can be sorted
R3.3 MV-LM_HideLayer Layers of the map can be hidden

52 Chapter 5. Requirements Analysis: identifying our features

Req. Feature Id Description
R3.3 MV-LM_Opacity Opacity of the layers can be set
R3.3 MV-LM_Style Style of the layers can be set

R3.3 MV-LM_ExternalLayer The user can add external layers to
the map from a map server

R3.3 MV-LM_Clustering

Elements of the layers can be
clustered, showing the number of

elements when the zoom is out and the
singular elements when the zoom is in

R3.4 MV_MapCenter The initial view of the map can be set

R3.4 MV-MC_BBox The initial view of the map is set to an
specific bounding box

R3.4 MV-MC_UserPosition The initial view of the map is centred
on the location of the user

R3.5 MV_DetailOnClick
When the user click on the elements of

the map, a popup with the element
information is shown

R4 UserManagement
The web application distinguish

between different types of users and
handles access permissions

R4.1 UM_Registration Users can be registered

R4.1 UM-R_ByAdmin Users can be registered by the
administrator

R4.1 UM-R_Anonymous Anonymous users can register
themselves

R4.1 UM_Authentication Users can log in the web application

R4.1 UM-A_RememberPass

The users have the choice to store the
session so next time the load the web
application they do not have to write

the password again

R4.1 UM-A_RecoverPass The users can recover their password if
they forgot it

R4.1 UM_AccountActivation The user accounts have to be activated
before the first log in

5.2. Domain Analysis 53

Req. Feature Id Description

R4.1 UM-AA_ByEmail The users activate their accounts by
receiving an email with a link

R4.1 UM-AA_ByAdmin The accounts can be activated by the
administrator

R4.2 UM_UpdateEmail Registered users can update their
email

R4.2 UM_UpdatePassword Registered users can change their
password

R4.2 UM-UP_ByUser Registered users can change their
password themselves

R4.2 UM-UP_ByAdmin Administrator users are the only who
can change the passwords of users

R4.2 UM_UserProfile Extra information for user accounts is
stored

R4.2 UM_UserCRUD Administrator can access to lists of
users and create, edit and remove users

R4.3 UM_SecurityType The type of security of the web
application

R4.3 UM-ST_Session Security is provided by HTTP sessions

R4.3 UM-ST_JWT Security is provided by JSON Web
Tokens

R4.4 UM_LDAP

The web application is linked to a
LDAP, so users do not need to register

but they can use their existing
accounts in the LDAP

Table 5.2: Feature list

Related work about SPLE applied on GIS is very scarce (see the step 1.1.2,
Figure 3.2). We have found only one series of works regarding SPLE for GIS
[PBC+12,BCA+13,BCP+14,BCPA14,BPCA16,BCPA16], and a work not strictly
on the field of SPLE but which also explores automatic generation of web-based
GIS [DMG13].

[BCP+14] is a good representative of the series of works by professor Bucella. It
defines a SPL for GIS in the marine ecology, showing a non-exhaustive list of features.

54 Chapter 5. Requirements Analysis: identifying our features

We can see some similarities with our features, such as “Calculate distances (meters)
between points in specific zones” or “Panning & zoom”, but their SPL is focused
on a much more concrete domain and most of the features are very specific to this
domain, such as “Look for fishing areas with similar characteristics” or “Abundance
of biological data of stations by tables”. Therefore, we cannot use this work as
reference for our generic GIS products.

In [DMG13], a tool for the automatic generation of web-based GIS from a
data model is shown. However, in this case the design of the data model is the
only variability of the generated applications, having all of them the same features.
We have this kind of variability into account, but it affects to the domain of the
application engineering, ergo, the derivation phase Chapter 7.

5.3 Product Planning: analysing existing prod-
ucts

The next step of the requirements analysis stage is the product planning (see the
step 1.2, Figure 5.1). In this step we contrast the set of features identified and
described in the previous section with existing products. Specifically, we use three
products developed by Enxenio, which are representative examples of applications
that our SPL should be able to produce. Therefore, the set of features identified and
the ones existing in these products must match. These products are webEIEL, a
GIS developed for the Provincial Council of A Coruña (Spain); Galician Cultural
Heritage, a GIS to promote cultural and tourist points of interest designed to be
used in desktop computers; and Via Maps, a mobile GIS to promote points of
interest designed to be used in mobile devices with low bandwidth. Furthermore,
we also contrast our decisions against two well-known external products, Google
Maps and OpenStreetMap. Before the proper product planning step, we describe
all the products taken into account.

5.3.1 Description of the analysed products

The three products by Enxenio, described below, cover a wide range of user needs
in many different concerns. For example:

1) User expertise: webEIEL is expected to be used by experts, whereas both the
Galician Cultural Heritage and Via Maps web applications are used by casual
users.

5.3. Product Planning: analysing existing products 55

Figure 5.2: WebEIEL screenshot

2) Map viewer tools: the level of personalization of the map viewers vary among
the applications, from “as many tools as possible” (webEIEL), to “some
personalization tools” (Galician Cultural Heritage), to “almost none” (Via
Maps).

3) Expected bandwidth of the users: webEIEL and Galician Cultural Heritage
users are expected to have a proper broadband connection, whereas Via Maps
was designed to be used with a limited bandwidth connection.

4) Device used: both webEIEL and Galician Cultural Heritage are designed for
desktop computers, but Via Maps is preferably viewed with a mobile device.

WebEIEL1 is a GIS developed for the Provincial Council of A Coruña (Spain)
between 2000 and 2008. It is currently being used by five additional Provincial
Councils. WebEIEL can be used to record and digitize infrastructures and facilities
such as administration buildings, road networks, supply and sanitation networks,
health centres, etc. The information is stored in a DBMS using PostGIS and it can

1WebEIEL. Encuesta sobre Infraestructuras y Equipamiento Local: http://webeiel.dicoruna.
es/gl

http://webeiel.dicoruna.es/gl
http://webeiel.dicoruna.es/gl

56 Chapter 5. Requirements Analysis: identifying our features

Figure 5.3: Galician Cultural Heritage screenshot

be managed using a desktop application. Information available in the GIS can be
loaded massively from standard formats, such as shapefiles or manually digitizing
using forms and maps.

The resulting GIS provides a huge amount of information, accessed through a
web application. This web-based GIS application (see Figure 5.2) can be used to
browse, query and print the information, with the common set of map tools of GIS
applications (zoom and pan the map, select the visible layers, etc.). Furthermore,
it provides additional tools such as measuring distances and surfaces, exporting
information, including layers from external sources, etc.

The Galician Cultural Heritage web-based GIS application2 is a system to
promote cultural and tourist heritage that can be used to display on a map
natural, cultural and tourist points of interest and to provide detailed cataloguing
information (see Figure 5.3). It also displays routes, although unordered, and it
provides a tool to search elements by name, type, and geographic location. All the

2Galician Cultural Heritage: http://www.patrimonioculturalgalego.org/ViaxeVirtual/
AmosarViaxeVirtual.do

http://www.patrimonioculturalgalego.org/ViaxeVirtual/AmosarViaxeVirtual.do
http://www.patrimonioculturalgalego.org/ViaxeVirtual/AmosarViaxeVirtual.do

5.3. Product Planning: analysing existing products 57

Figure 5.4: Via Maps screenshot

information is stored in a DBMS using PostGIS and it can be managed with a web
interface that can be used to create and update the geographic and cataloguing
information of the elements. The information can be browsed and filtered using
lists and maps. The map viewer provides tools to select the visible layers, as well
as zooming and panning the map, and retrieving the information of any element.
However, the advanced map tools provided by webEIEL are not required in this
application.

Via Maps3 is another web-based GIS to promote cultural heritage. However, it
is focused on mobile devices in low-bandwidth environments such as limited public
Wi-Fi networks. It was developed as part of the ENVIA project4, whose goal was

3Via Maps: https://madrid.via1101.pv.enxenio.net/Servicios/visorgis/m/mapa/verMapa.
htm

4ENVIA project: Environment for the creation of a cloud of services for the intelligent pavement.
Ministry of Industry, Tourism and Trade Avanza plan (Ref. TSI-020302-2011-6) - http://www.

https://madrid.via1101.pv.enxenio.net/Servicios/visorgis/m/mapa/verMapa.htm
https://madrid.via1101.pv.enxenio.net/Servicios/visorgis/m/mapa/verMapa.htm
http://www.viainteligente.com/envia.html

58 Chapter 5. Requirements Analysis: identifying our features

Figure 5.5: Google Maps screenshot

providing the cities with infrastructures and software that enabled the citizens to
enjoy free Internet access (within the legislative limits) and different social, cultural
and commercial services. The anonymous user view of the prototype that was
deployed in Madrid can be seen in Figure 5.4. These users have tools to find
resources, and they can also use the geopositioning capabilities of their mobile
device to locate themselves on the map and find nearby elements. Given that the
network connection was expected to have a low bandwidth, the user interface was
designed as simple as possible. The information is stored in a DBMS using PostGIS
and it can be managed with a complete web-based application that can be used to
create, browse and update the elements.

Apart from these specific developed products, Google Maps and
OpenStreetMaps are two of the most used GIS applications, and their set of
features is an indicator of users expectations on GIS. Therefore, they are an
important part of our process.

Google Maps5 is a web mapping service provided by Google. It offers several
different layers, such as a satellite imagery layer, a traffic layer, etc., and its main
feature is route planning (Figure 5.5). Google Maps was launched in 2005, and it
sooner became the most popular web-based GIS. Apart from providing cartography
and route calculation, it has many advanced features which are linked with the

viainteligente.com/envia.html
5https://www.google.com/maps

http://www.viainteligente.com/envia.html
http://www.viainteligente.com/envia.html
http://www.viainteligente.com/envia.html
http://www.viainteligente.com/envia.html
http://www.viainteligente.com/envia.html
http://www.viainteligente.com/envia.html
https://www.google.com/maps

5.3. Product Planning: analysing existing products 59

Figure 5.6: OpenStreetMap screenshot

Google ecosystem, and the application is used embedded in many other Google web
applications. For example, an user can visualize its location history or edit positions
on a map to identify the places where he or she travelled.

OpenStreetMap6 (OSM) is a free, editable map of the whole world that is being
built by volunteers largely from scratch and released with an open-content license.
Its creation was motivated by restrictions on use or availability of map information
across much of the world. The data of OSM, which is the main point of this GIS, can
be generated by any user or linked application, as well as used by anyone. Therefore,
it is presented as an alternative to proprietary tools such as Google Maps, and many
mobile applications are using it as the main datasource. The site is supported by
the OpenStreetMap Foundation, a non-profit organisation, and it only uses Open
Source technology from the map interface to the underlying data access API. Apart
from cartography visualization and geographic data managing, OSM also provides
route calculation, as we can see in Figure 5.6.

5.3.2 Feature validation

Apart from validating the coherence of our identified features, with this step we are
also able to set the priority of each feature, and to decide which ones are common
to every product, therefore mandatory, and which appear only in some of them,

6https://www.openstreetmap.org/

https://www.openstreetmap.org/

60 Chapter 5. Requirements Analysis: identifying our features

being then optional features. In Table 5.3 we can see all the non-abstract features
(features that effectively are part of the product, this is, they are not features to
group other subfeatures) identified in Table 5.2. We have used in the table the
number of times that each feature appears in the products is taken into account to
calculate the priority of each feature. If the feature appears in any of the products,
the priority is the sum of the number of appearances in the products, being 5 the
maximum priority that a feature can achieve. In case the feature is not included in
any of the analysed applications, the GIS experts in Enxenio have set the priority
between 0 and 1 to determine how important the feature is for the SPL.

Feature
SME existing apps External apps

Pri.
Web
EIEL

Cult.
Her-
itage

Via
Maps

Google
Maps OSM

DataManagement X X X 3
DM_SpatialDatabase X X X 3
DM-SD_PostGIS X X X 3
DM-SD_MySQL 0
DM-SD_OracleSpatial 0
DM_DataServer X X X 3
DM_DataInput X X X 3
DM-DI_DataFeeding 0.9
DM-DI-DF_Shapefile 0.9
DM-DI-DF_Raster 0.6
DM-DI-DF_Network 0.3
DM-DI_Digitizing X X X 3
DM-DI-D_Form X X X 3
DM-DI-D_Map X 1
DM_Algorithmics X X 2
DM-A_Connectivity X X 2
DM-A-C_RouteCalculation X X 2
DM-A-C_NetworkTracing 0.3
DM-A-C_ConectivityCheck 0.3
DM-A_Geolocalization X X 2
DM-A-G_Addresses X X 2

5.3. Product Planning: analysing existing products 61

Feature
SME existing apps External apps

Pri.
Web
EIEL

Cult.
Her-
itage

Via
Maps

Google
Maps OSM

DM-A-G_Documents 0.6
GraphicalUserInterface X X X X X 5
GUI_Menu X X X X X 3
GUI-M_Top X X X 3
GUI-M_Bottom X 1
GUI-M_Right 0
GUI-M_Left X X 2
GUI_Forms X X X X 4
GUI-F_Editable X X X X 4
GUI-F_Creatable X X X X 4
GUI-F_Removable X X X X 4
GUI-F-R_ConfirmationAlert X 1
GUI_Lists X X 2
GUI-L_Sortable X 1
GUI-L_Filterable X 1
GUI-L-F_RowFilter 0.9
GUI-L-F_BasicSearch X 1
GUI-L_LocateInMap X 1
GUI-L_ViewListAsMap 0.8
GUI-L_FormLink 0.9
GUI_StaticPages X X X 3
GUI-SP_Management 0.5
MapViewer X X X X X 5
MV_MapServer X X X 3
MV-MS_GeoServer X X X 3
MV-MS_Deegree 0
MV_Tools X X X X X 5
MV-T_Pan X X X X X 5
MV-T_Zoom X X X X X 5

62 Chapter 5. Requirements Analysis: identifying our features

Feature
SME existing apps External apps

Pri.
Web
EIEL

Cult.
Her-
itage

Via
Maps

Google
Maps OSM

MV-T_ZoomWindow X 1
MV-T_Measure X 1
MV-T-M_Distance X 1
MV-T-M_Line X 1
MV-T-M_Polygon X 1
MV-T-M_MapElement 0.7
MV-T_Export X X X 3
MV-T-E_SetScale X 1
MV-T-E_ShowLegend 0.3
MV-T-E_DRM 0
MV-T-E_Type X 1
MV-T-E-F_PNG 0.8
MV-T-E-F_PDF X 1
MV-T-E-F_URL X X 2
MV-T_Filterable X X X 3
MV-T-F_RowFilter X 1
MV-T-F_BasicSearch X X X 3
MV-T_UserGeolocation X X X 3
MV-T_InformationMode X 1
MV-T_ViewMapAsList X 1
MV_ContextInformation X X 2
MV-CI_Map X X 2
MV-CI_Scale X X 2
MV-CI_CenterCoordinates X 1
MV-CI_Dimensions X 1
MV_LayerManagement X X X X 4
MV-LM_Order X 1
MV-LM_HideLayer X X X X 4
MV-LM_Opacity X 1

5.3. Product Planning: analysing existing products 63

Feature
SME existing apps External apps

Pri.
Web
EIEL

Cult.
Her-
itage

Via
Maps

Google
Maps OSM

MV-LM_Style X 1
MV-LM_ExternalLayer X X 2
MV-LM_Clustering 0.7
MV_MapCenter X X X 3
MV-MC_BBox X 1
MV-MC_UserPosition X X 2
MV_DetailOnClick X X X 3
UserManagement X X X X 4
UM_Registration X X 2
UM-R_ByAdmin 0.9
UM-R_Anonymous X X 2
UM_Authentication X X X X 4
UM-A_RememberPass X X X 3
UM-A_RecoverPass X X 2
UM_AccountActivation 0.5
UM-AA_ByEmail 0.5
UM-AA_ByAdmin 0.5
UM_UpdateEmail X X 2
UM_UpdatePassword X X X X 4
UM-UP_ByUser X X X X 4
UM-UP_ByAdmin 0.2
UM_UserProfile X X 2
UM_UserCRUD 0.9
UM_SecurityType X X 2
UM-ST_Session X X 2
UM-ST_JWT 0.3
UM_LDAP 0.5

Table 5.3: Product planning

64 Chapter 5. Requirements Analysis: identifying our features

It is somehow curious that Enxenios experts asked for some costly features that
were not included in any of the analysed products, such as the possibility of use any
of the three main spatial database management systems, MySQL, Oracle Spatial
or PostGIS. The cost of implementing these features is very high, and it seems
unreasonable to do that when in the analysis of existing products we have found
that all of them use the same DBMS, PostgreSQL with PostGIS.

One of the advantages of a SPL is that the set of features provided can evolve
over time. This way, not every feature of the SPL platform needs to be included
at the same time, and every time a new product needs to be generated, if a new
feature is required and it is generic and useful enough, then it can be added to the
SPL platform. Therefore, the priority value on the table is very useful to determine
which features should be included sooner into the platform, and which ones can be
postponed. Consequently, MySQL and Oracle Spatial are clear examples of features
that can be included in the platform as soon as a product requires them.

Moreover, we found some features in the products that were not initially included
in the requirements, but that were interesting to the Enxenio’s experts, so we have
iterated over this step including the new features. This was the case of “Filter
elements over a map” or “View a map as a list”, for example.

5.4 Feature Model of our Software Product Line

Finally, we obtained the feature model of our SPL, which is very large so we have
divided its representation in several figures. In Figure 5.7, the first level features of
the feature model are shown without any of their subfeatures. We can see each of
its features in its own figure: the data management feature is shown in Figure 5.8,
the graphical user interface feature is shown in Figure 5.9, the map viewer feature
is shown in Figure 5.10 and the user management feature is shown in Figure 5.11.

Globally, we can see that features appearing in every product are mandatory,
features appearing in some of the applications are optional and the ones not
appearing at all have been removed from the feature model. We also decided the
types of aggregation (between XOR and OR) depending on the appearance of the
features. For example, every product analysed included both the features of zooming
and panning the map viewer. Therefore, both features are mandatory for products
including a map viewer. Nevertheless, not all of the map viewers include the feature
of showing a context information window, so this option remain optional.

5.4. Feature Model of our Software Product Line 65

Figure 5.7: First level features of the resulting feature model

Figure 5.8: Data feature and its subfeatures

66 Chapter 5. Requirements Analysis: identifying our features

Figure 5.9: Gui feature and its subfeatures

5.5 Summary
In this section we have showed the results obtained after the first stage of our
methodology, the requirements analysis. We have identified the list of requirements
for our domain, web-based geographic information systems, from our experience and
conversations with experts from Enxenio. From these set of requirements, we have
derived the proper features, and we have studied existing web-based GIS in order
to both validate the identified features and to establish the relationship between
these features.

To be more concrete, during this step we have analysed products developed by
the associated company, Enxenio, but also from companies external to our process.
By doing this analysis, we have also obtained information to prioritize the features.
This way, when the actual development of the components starts, we already have
information about which feature should be available first due to its importance.

Lastly, we have shown the complete feature model of our product line.

5.5. Summary 67

Figure 5.10: Map viewer feature and its subfeatures

68 Chapter 5. Requirements Analysis: identifying our features

Figure 5.11: User management feature and its subfeatures

6
Architecture Design: generic architecture

for Web-based GIS applications

6.1 Introduction
At this point we have showed the results obtained after the first stage of our
methodology, the requirements analysis. It is important to remember that our
process is iterative, and we have gone several times over every stage. Therefore, the
results we address in this document are the final ones obtained when there were no
more iterations. In this case, the output of the first stage is the feature model of
our product line.

The current section corresponds with the second stage of our methodology
(see Figure 6.1), the architecture design. The goal of this stage is to design the
product line architecture (PLA) shared by all the products built within our SPL
and to identify every component or service in it. In order to design the PLA,
we mostly follow the guidelines from [NBM13], as we have already explained when
describing our methodology (see Chapter 3), starting from the choice of the reference
architecture, but we also have added our own tasks in which the experts from
Enxenio would provide their knowledge: analysis of products architectures and
technology analysis.

69

70 Chapter 6. Architecture Design: architecture for Web GIS

Figure 6.1: Architecture design stage

During this chapter, we consider the concepts of service and component as
equivalent. We use mostly the former because it is the one employed by the Open
Geospatial Consortium (OGC) in their documentation.

6.2 Reference architectures identification and se-
lection

There have been many attempts to define a reference architecture for web-based
geographic information systems. ESRI1, the leading company of the sector, has
been proposing system architectures that include their products for decades. A
constant aspect of these architectures is that they are layer-based (3-tiered or n-
tiered) [ESR17]. However, in addition to depending heavily on ESRI products, the
architecture does not provide enough detail for the components.

Another major driving force has been the European Commission through the
INSPIRE directive [INS] that establishes an infrastructure for spatial information
in the European Community. The INSPIRE directive has been reflected in a
collection of implementing rules that describe with much detail data models and
web services to store and publish geographic information. Even though INSPIRE
provides much detail on specific services, and it defines a service bus-based system
architecture [INS08], it does not describe the way in which the services are expected
to interact in the architecture and it does not provide any detail on the services

1http://www.esri.com/

http://www.esri.com/

6.2. Reference architectures identification and selection 71

that are out of the scope of the directive (e.g., the functionality of the web client).

The stakeholders that have defined a large collection of standards for GIS that
are currently followed by most software libraries are the Open Geospatial Con-
sortium (OGC) and the International Organization for Standardization (through
ISO/TC 211 and the 19100 standard collection). Particularly, the OpenGIS
Service Architecture Version 4.3 [Per02], which is the same document as ISO
19119:2005 [fSg], defines a geographic services architecture identifying architecture
patterns for service interfaces and the relationships among them, and providing
guidelines for the selection and specification of geographic services from platform-
neutral and platform-specific perspectives. The system architecture is based
on Reference Model of Open Distributed Processing (RM-ODP) [ISO09] and it
is described from the five RM-ODP viewpoints: the enterprise viewpoint, the
computational viewpoint, the information viewpoint, the engineering viewpoint
and the technology viewpoint. Furthermore, a large number of services are
identified, described and categorized. We selected ISO 19119:2005 as the reference
architecture given the high level of detail provided. ISO 19119:2005 is revised in
ISO 19119:2016 [fSh], but without any changes that would affect our work.

Figure 6.2: Web-based GIS architecture according to [Per02]

72 Chapter 6. Architecture Design: architecture for Web GIS

Figure 6.2 shows the logical architecture presented in the engineering view-
point of [Per02]. It is a 4-tier architecture that categorizes the services into
seven categories. Four of the categories are the four tiers of the architecture:
human interaction services, user processing services, shared processing services,
model/information management services. The processing services are further
divided into spatial, thematic, temporal, and metadata services. The other three
categories are auxiliary services that are used to connect services of different tiers
(i.e., communication services), to manage service composition (i.e., workflow/task
services), or to provide cross-cutting functionality (e.g., system management
services). In [Per02], the logical 4-tier architecture is also mapped to different
physical architectures (e.g., 2-tier, 3-tier with a thin client and 3-tier with a thick
client). Furthermore, a large collection of example services are given for each
category: 14 human interaction services, 18 spatial processing services, 16 thematic
processing services, 4 temporal processing services, 2 metadata processing services,
12 model/information management services, 6 communication services, and 3
workflow/task services. No geographic-specific system management services are
described, even though some general services like authorization and authentication
are identified.

6.3 Analysis of architectures of existing products

Even when we follow a reference architecture, the expertise of the GIS experts
from Enxenio can be used to enhance the PLA. To achieve, in this step, analysis
of architectures of existing products (see the step 2.2, Figure 6.1), we consider a
set of products developed by Enxenio and we study their features as well as the
decisions made when they were designed to improve the reference architecture for
our particular product line. But before, we explain the evolution of the architectures
of geographic information systems to create the context for the decisions made.

GIS architectures have evolved since their first appearance. First generation of
GIS tools were proprietary systems, designed to use specific data structures that
store the information in files with proprietary format (Figure 6.3). This architecture
is not used any more due to its numerous problems, such as using a proprietary
geographic data formats, so interoperability with other GIS was not easy and the
integration with other sources have to be done within the GIS application in an
ad-hoc manner.

The second generation of GIS tools is consisted of systems that were integrated
with Database Management Systems (DBMS). In these tools we can distinguish
between dual architecture tools and layered architecture tools. Dual architecture

6.3. Analysis of architectures of existing products 73

Figure 6.3: First generation architecture for GIS

Figure 6.4: Second generation architecture for GIS: dual architecture

tools use an independent subsystem for each kind of information (Figure 6.4). This
way, old software artefacts can still be used to handle some of the data types, and
the access to each data type is very efficient. The big problem is to model, query,
optimize and integrate all the information. Layered architecture tools (Figure 6.5)
use a traditional DBMS to store all the geographic information, with the main
advantage of using all the features from the DBMS. The problem in this case is the
limited efficiency.

The third and current generation of GIS uses an extensible DBMS to implement
the geographic features (Figure 6.6). DBMS used are Oracle, PostgreSQL and
MySQL. The main advantage of this approach is that the implementation is
integrated within the DBMS, so it is highly efficient. The disadvantage is that
it requires a last generation DBMS and not every GIS feature can be implemented

74 Chapter 6. Architecture Design: architecture for Web GIS

Figure 6.5: Second generation architecture for GIS: layered architecture

within the DBMS.
The three applications taken into account during this process (described in

Section 5.3.1) follow this last kind of architecture, and so we do in our SPL as
we can see in Section 6.6.

As something to highlight, from the analysis of these applications and taking into
account the ideas extracted from conversations with experts from Enxenio, we have
identified two characteristics that need to be added to the reference architecture:

i) The products must work both on desktop browsers and mobile browsers.
Therefore, the client must be developed using responsive web design and a
JavaScript web framework to ensure cross-browser support.

ii) Some clients require that the product conforms to the INSPIRE directive
and/or international standards. The components of the architecture must
follow these standards as closely as possible.

6.4 Elements selection/prioritization
Next step is the element selection (see the step 2.3, Figure 6.1). The GIS
architecture from the standards (see Section 6.2) provide a very exhaustive set of
services covering most of the possible features for any geographic information system.
However, we do not pretend to maintain this kind of scope for our products, but we
focus on products similar to the ones analysed in Section 5.3. Therefore, we need
to identify the services that we require in our products. In Table 6.1 we can see

6.4. Elements selection/prioritization 75

Figure 6.6: Third generation architecture for GIS

all the services identified in [Per02] as part of a GIS architecture, and the subset of
components in which we have decided to focus.

Category Service Sel.

Geographic human
interaction services

Catalogue viewer
Geographic viewer X
Geographic viewer - animation
Geographic viewer - mosaicing X
Geographic viewer - perspective
Geographic viewer - imagery X
Geographic spreadsheet viewer
Service editor
Chain definition editor
Workflow enactment manager
Geographic feature editor X
Geographic symbol editor X
Feature generalization editor
Geographic data-structure viewer

76 Chapter 6. Architecture Design: architecture for Web GIS

Category Service Sel.

Geographic
model/information
management
services

Feature access service X
Map access service X
Coverage access service X
Coverage access service - sensor
Sensor description service
Product access service
Feature type service X
Catalogue service
Registry service
Gazetteer service X
Order handling service
Standing order service

Geographic process-
ing services - spa-
tial

Coordinate conversion service
Coordinate transformation service
Coverage/vector conversion service
Image coordinate conversion service
Rectification service
Orthorectification service
Sensor geometry model adjustment service
Image geometry model conversion service
Subsetting service
Sampling service
Tiling change service
Dimension measurement service X
Feature manipulation services
Feature matching service
Feature generalization service
Route determination service X
Positioning service X
Proximity analysis service X

6.5. Product Line Architecture Structure Building 77

Category Service Sel.

Geographic process-
ing services - the-
matic

Geoparameter calculation service
Thematic classification service
Feature generalization service
Subsetting service
Spatial counting service
Change detection services
Geographic information extraction services
Image processing service
Reduced resolution generation service
Image manipulation services
Image understanding services
Image synthesis services
Multi-band image manipulation
Object detection service
Geoparsing service X
Geocoding service X

Geographic process-
ing services - tem-
poral

Temporal reference system transformation service
Subsetting service

Geographic commu-
nication services

Encoding service
Transfer service
Geographic compression service
Geographic format conversion service X
Messaging service
Remote file and executable management

Table 6.1: Services selection

6.5 Product Line Architecture Structure Building

After deciding which services we need to maintain in our product line, we start the
fourth step of this stage, the PLA structure building (see the step 2.4, Figure 6.1).

78 Chapter 6. Architecture Design: architecture for Web GIS

Figure 6.7: PLA Structure

6.5. Product Line Architecture Structure Building 79

The final product line architecture (PLA) of the SPL is shown in Figure 6.7. It
provides all the services selected from the reference architecture, but also two other
services added afterwards (namely Geoportal and Access control). The new services
are motivated by inconsistencies discovered in the stage of Architecture Evaluation,
as mentioned in Chapter 7.

We have maintained the same logical architecture from [Per02], and we have
classified every new service within this architecture, showing also the relations
among services.

• Human Interaction Services. Services for managing user interfaces,
graphics, multimedia and presentation of composed documents. In our case,
the web interface belongs to this group, as well as the possible documents that
can be generated from the data of the applications, i.e., images of the maps.

– Geoportal. As any web application, our products will have some features
similar to the ones provided by any other management web application,
such as listings, menus or pages providing static information. The
geoportal service encompasses these kind of functionalities, and it serves
as the main service through which the rest of the services can be accessed.

– Geographic Viewer . The geographic viewer service allows a user to
visualize geographic information within maps. It also provides features
related to how this information is viewed. For example, panning and
zooming the map, or some more complex operations such as managing
the different feature collections shown.

– Geographic Symbol Editor . This client service allows a human to
select the symbol libraries, that is, the styles in which the geographic
information will be rendered.

– Geographic Feature Editor . Service that extends the geographic viewer
allowing a user to interact with feature data. This is, the user is able to
modify the geographic information of the geographic elements managed
by the application. Geographic feature editor service is used in two ways:
the first one allows the user to change an element already viewed in the
geographic viewer; the second one is to change an element by triggering
the geographic viewer from a alphanumeric element.

• User Processing Services. The set of processing services responsible for
the functionality required by the user. This is, the processes that can be
instantiated by an user in a given moment and whose result will only be
provided to himself or herself in that moment.

80 Chapter 6. Architecture Design: architecture for Web GIS

– Dimension Measurement. Service to compute dimensions of objects
visible in an image or other geodata. In a geographic viewer, a user
can measure a distance between two points or the area of a geographic
element, for example.

– Positioning. The positioning service shall be provided by a device
that can obtain and unambiguously interpret the own device position
information. A standard relevant to position services is ISO 19116 [fSf].

– Proximity Analysis. Given a position or geographic feature, finds all
objects with a given set of attributes that are located within an user-
specified distance of the position or feature.

• Shared Processing Services. Processing services responsible for common
services (both domain specific and general) usually required by many users.
This is, processes that can be run by users but whose result is stored and
shared among all the users. Also, this processes can be run in background
after its initialization.

– Route Determination. This service determines the optimal path between
two specified points, taking into account the input parameters and a
feature collection. It also can determine the measured distance between
two points following a specific path, or the length of times it takes to
follow the mentioned path.

– Geocoding. Service to augment location-based text references with
geographic coordinates (or some other spatial reference). This is, from
a text document which contains geopolitical named entities or addresses,
this service is able to identified the related geographic coordinates.

– Geoparsing. Complementary to the geocoding service, this service scans
text documents for location-based references such as geopolitical named
entities or addresses.

• Model/Information Management Services. Set of services responsible
for physical data storage and data management.

– Coverage Access. Service that provides a client access to and manage-
ment of a coverage store. An access service may include a query that
filters the data returned to the client. ISO 19123 and ISO 19111 are
relevant to coverage access.

– Map Access. Service that provides a client access to geographic graphics,
i.e., pictures of geographic data. ISO 19128 [fSj] is relevant to map access.

6.6. Technology analysis: identifying state of the art technologies 81

– Feature Type. Feature type service provides a client access and
management of features type definitions. The static and dynamic
information models for a feature type catalogue are provided in ISO
19110 [fSb].

– Feature Access. Service providing a client access and management of a
feature store. This is, it allows the user to access the geographic and
alphanumeric data related to a set of features. ISO 19125-1 [fSi], ISO
19107 [fSa] and ISO 19111 [fSc] are relevant to feature access.

– Access Control. Every aspect related to the authentication and user
management, which is common to many other web applications, is
handled by access control services.

– Gazetteer . Gazetter services provide access to a directory of geolocated
instances of real world, therefore facilitating processes such as the
provided by geocoding services. An information model for a gazetteer is
provided by ISO 19112 [fSd].

• Communication Services. Responsible for connecting the different tiers of
services.

– Geographic Format Conversion. This service provides conversion fea-
tures for geographic data. Usually it should cover most of standards
formats used to share geographical information. However, some non-
standard formats which are very popular can also be useful, such as
shapefile.

• Spatial DBMS. The software artefacts in charge of storing the geographic
data. These services also provide some low-level processing feature with high
efficiency. For example, some of the services for geographic format conversion
can be run within a DBMS.

6.6 Technology analysis: identifying state of the
art technologies

After defining the PLA for our product line, we still have a last step pending,
the technology analysis (see the step 2.5, Figure 6.1). Regarding technologies, we
have four different types of technologies and tools in function of the part of the
architecture where they are used: DBMS, map server, data server and web client.
The selection of the technologies for the DBMS and the map server is already in the

82 Chapter 6. Architecture Design: architecture for Web GIS

Figure 6.8: Technological architecture of the products

6.6. Technology analysis: identifying state of the art technologies 83

requirements of our SPL, so it belongs to the selection of features from the feature
model for each product. This is, some of the technologies depend directly of the
requirements of the SPL, and they can even vary in function of different products.
Regarding the data server and web client, we try to use similar technologies to the
ones applied in Enxenio, so the products can be used indistinguishably from the
products manually developed in the company. Still, since a SPL is thought for the
future, we choose the most updated but still stable variants of the frameworks and
libraries. The technological architecture of our products can be seen in Figure 6.8.

As we have already explained in Section 4.4, there are three main variants
regarding the software used as database management system: PostgreSQL2 and
PostGIS3; MySQL4; and Oracle Spatial5 (we discarded SQLite since being portable
is not desired feature for our products). Nevertheless, as mentioned in Section 5.3.2,
the initial version of the SPL only implements one of the variants for it, specifically
PostGIS, since the requirements validation reflected that the priority of the rest of
them is very low.

From the requirements (Chapter 5) we have two variants to use as map server :
GeoServer6 and Deegree7. Both of the alternatives are Open Source, community-
driven and comply to the standards, providing most of the common services such as
WMC, WMS or WFS. GeoServer is the oldest of the two, and also the most-known.
It is also the alternative used in Enxenio, so the initial version of the SPL uses it.

Regarding the data server, Enxenio is expert in Java technologies, which are
also used in most of the applications developed by the company. Therefore, we use
Spring and its set of libraries (such as Spring MVC, Spring Security, etc.) because
it is the most known alternative for Java Data Server.

In the side of the web client, current web applications tend to follow the
single page application (SPA) pattern. A single page application [MP13] is a web
application that tries to replicate the behaviour and feeling of a desktop application,
providing dynamic or real time interaction and feedback to the user. Traditionally,
a web application is composed by HTML pages which are linked trough hyperlinks.
Each time a link is clicked, the browser asks the server for a new page, and the server
returns the complete page again, including the related style sheets and JavaScript
libraries. Even when some of these resources will be stored in the cache of the
browser, the page has to totally refresh and to show a new view. The objective
of the SPA pattern is to avoid this refreshing because it only updates the part of

2https://www.postgresql.org/
3http://postgis.net/
4https://www.mysql.com/
5https://www.oracle.com/database/spatial/index.html
6http://geoserver.org/
7http://www.deegree.org/

https://www.postgresql.org/
http://postgis.net/
https://www.mysql.com/
https://www.oracle.com/database/spatial/index.html
http://geoserver.org/
http://www.deegree.org/

84 Chapter 6. Architecture Design: architecture for Web GIS

the web view which needs to be updated. To achieve this, a SPA does not ask the
server for every new view with GET HTTP petitions, but the JavaScript library
related to the application is the one handling the rendering of the different sections.
With every link clicked, an event is triggered and handled by JavaScript, and the
HTML view is rendered directly within the browser. In these applications, the data
transmission is usually made using REST services.

In current web application development, there are mainly two alternatives to
build single page applications: React8 and Angular9. React is a simple visualization
library that allows the developer to build the interface from JavaScript with
some specific components that represent every HTML component. Then, these
components are built within a virtual DOM, and every time this DOM is stable,
the virtual DOM is converted to real HTML. This way, only components from the
DOM whose HTML representation has changed are rendered.

Angular, on the other way, is a complete framework that includes several utilities
and libraries including everything needed to build a whole application just using the
framework. This is, React only handles the rendering of the view, requiring external
libraries to provide some other features needed for web applications, but Angular
handles most of what is required to build a web application. Angular has two well
differentiated versions: AngularJS, or Angular 1.x, and Angular, or Angular 2.x and
upper. We have decided to use AngularJS, which has become a de facto standard
library for web applications development.

For the web map viewer, most current GIS with web map viewers use
OpenLayers10 or Leaflet11 as the map viewer library. OpenLayers is the most
complete open source library for map visualization on web. It provides most of
the features that a map viewer need, and it can be extended with plugins. However,
its usage is pretty complex and requires a deep understanding of the library, as
well as studying its documentation deeply, and usually most of its features are not
needed. Leaflet is another map visualization library that provides basic features
but a much simpler library to develop with. Also, Leaflet provides a simple API
based on web standards to extend its features in any way needed. Its usage is more
focused on mobile devices. For these reasons we choose Leaflet, specially because it
is more lightweight and mobile-friendly, given that one of our characteristics is to
build products that work both on desktop and mobile devices.

8https://facebook.github.io/react/
9https://angularjs.org/

10https://openlayers.org/
11http://leafletjs.com/

https://facebook.github.io/react/
https://angularjs.org/
https://openlayers.org/
http://leafletjs.com/

6.7. Summary 85

6.7 Summary
In this section we have described the different tasks regarding the second stage of
our process, the architecture design. First we have chosen to base the architecture
of our products in a reference architecture defined by a GIS standard, enhanced
by some traits extracted from architectures of existing products developed by
Enxenio. These two tasks are the two first steps of this stage: reference architectures
identification and selection, and analysis of products architectures.

Once we have identified every component and service in our architecture, in
the next step, elements selection and prioritization, we carried out a prioritization
process to decide which features should have higher importance and therefore should
be implemented first. Finally we have designed our full architecture in the step PLA
structure building. The last step is development: technology analysis, in which the
experts from the company Enxenio determined which is the technology that the
implementation of our products must be based on.

86 Chapter 6. Architecture Design: architecture for Web GIS

7
Architecture Evaluation and

Derivation of the products

7.1 Introduction
So far we have defined the feature model of our product line, as well as the product
line architecture that the generated products need to follow. These two things
should be related to each other, since the architecture should support and implement
the features belonging the feature model, and the same way, each feature should be
linked to a service or component within the PLA. In this chapter we focus precisely
on this topic, analysing both things together to determine if the coherence in both
parts is maintained. After that, there are no more steps in the context of the domain
engineering and we need to focus on the actual generation of the products.

The last stages of our methodology, as seen in Figure 7.1, are the architecture
evaluation and the derivation of a specific product. This chapter describes both of
them. To evaluate the chosen architecture first we need to establish the relationship
or traceability between the features identified in the domain analysis stage and the
components or services defined in the architecture design stage. Then we can finally
evaluate the product line architecture as a whole. The derivation of a specific
product is described in the second section of this chapter. The derivation process is

87

88 Chapter 7. Architecture Evaluation and Derivation

Figure 7.1: Architecture evaluation and derivation of a specific product
stages

the actual generation of a product of the product line from a subset of features. In
this stage we leave the context of the domain engineering to enter in the application
engineering.

7.2 Architecture Evaluation: maintaining the
traceability

Maintaining the traceability between the different layers of a SPL is important if
we want to be able to evolve adequately the platform and the products when the
requirements, components or technology changes. For example, if we need to add a
new requirement to the platform, keeping the traceability allows to easily identify
possible features related to this new requirement. These features can be matched
with the set of components or services implementing them and therefore with the
specific technologies used to implement them. This way we know all the elements
involved in adding this new requirement.

In Section 5.2 we have already shown the traceability model between require-
ments and features as part of the domain analysis stage. In this section we complete
this traceability model by linking features to components from the functional
architecture. We show the results in Table 7.1.

7.2. Architecture Evaluation: maintaining the traceability 89

Feature Service
DM_SpatialDatabase

Spatial DBMS
DM-SD_PostGIS
DM-SD_MySQL
DM-SD_OracleSpatial
DM_DataServer Feature access
DM-DI-DF_Shapefile

Geographic format conversionDM-DI-DF_Raster
DM-DI-DF_Network
DM-DI-D_Form

Geographic feature editor, Feature Type
DM-DI-D_Map
DM-A_Connectivity

Route determination
DM-A-C_RouteCalculation
DM-A-C_NetworkTracing
DM-A-C_ConectivityCheck
DM-A-G_Addresses Gazetteer, Gazetteer
DM-A-G_Documents Geocoding, Gazetteer
GUI-M_Top

Geoportal
GUI-M_Bottom
GUI-M_Right
GUI-M_Left
GUI_Forms

Geographic feature editor, Feature Type
GUI-F_Editable
GUI-F_Creatable
GUI-F_Removable
GUI-F-R_ConfirmationAlert

90 Chapter 7. Architecture Evaluation and Derivation

Feature Service
GUI_Lists

Geoportal

GUI-L_Sortable
GUI-L_Filterable
GUI-L-F_RowFilter
GUI-L-F_BasicSearch
GUI-L_LocateInMap
GUI-L_ViewListAsMap
GUI-L_FormLink
GUI_StaticPages
GUI-SP_Management
MapViewer Geographic viewer
MV_MapServer

Map accessMV-MS_GeoServer
MV-MS_Deegree
MV-T_Pan

Geographic viewerMV-T_Zoom
MV-T_ZoomWindow
MV-T-M_Distance

Dimension measurement
MV-T-M_Line
MV-T-M_Polygon
MV-T-M_MapElement
MV-T-E_SetScale

Geographic format conversion

MV-T-E_ShowLegend
MV-T-E_DRM
MV-T-E-F_PNG
MV-T-E-F_PDF
MV-T-E-F_URL
MV-T_Filterable

Feature access, Feature TypeMV-T-F_RowFilter
MV-T-F_BasicSearch
MV-T_UserGeolocation Positioning, Proximity analysis

7.2. Architecture Evaluation: maintaining the traceability 91

Feature Service
MV-T_InformationMode Geographic viewer
MV-T_ViewMapAsList Geoportal
MV_ContextInformation

Geographic viewer

MV-CI_Map
MV-CI_Scale
MV-CI_CenterCoordinates
MV-CI_Dimensions
MV-LM_Order
MV-LM_HideLayer
MV-LM_Opacity
MV-LM_Style Geographic symbol editor
MV-LM_ExternalLayer

Geographic viewer
MV-LM_Clustering
MV-MC_BBox
MV-MC_UserPosition
MV_DetailOnClick Feature access

92 Chapter 7. Architecture Evaluation and Derivation

Feature Service
UserManagement

Access control

UM_Registration
UM-R_ByAdmin
UM-R_Anonymous
UM_Authentication
UM-A_RememberPass
UM-A_RecoverPass
UM_AccountActivation
UM-AA_ByEmail
UM-AA_ByAdmin
UM_UpdateEmail
UM-UP_ByUser
UM-UP_ByAdmin
UM_UserProfile
UM_UserCRUD
UM-ST_Session
UM-ST_JWT
UM_LDAP

Table 7.1: Traceability feature - service

Although we started from a reference architecture (see Section 6.2), in the first
iteration of this step we found that many of the features of the SPL platform were
not provided for any of the services of our PLA structure, such as Access control.
This reflects the importance of following a serious methodology and even more, the
importance of the step of validation within it. When we found the inconsistencies
described, we started a new iteration of the process, solving these problems in the
first stages of the methodology with the feedback provided in this step by adding
the required components (see Chapter 3). We considered the end of this iterative
process when we do not found inconsistencies between the features and the set of
components providing them.

7.3. Derivation process in our SPL 93

7.3 Derivation process in our Software Product
Line

The derivation process is the actual generation of a product from a SPL. This step
of our methodology serves to analyse the particulars for the derivation of products
within our product line.

In most SPL the analyst simply selects a set of features and then the derivation
engine assembles the required components into the final source code. In the case
of our SPL, given that each web-based GIS is built for a specific data domain,
the selection of features is not enough to build the products. Hence, in the first
step of the derivation process for the products of our software product line, the
analyst needs to provide the data model definition for the product. This way, the
code generated can adjust to the specific data model for the product. There is
already another tool that creates web-based GIS applications from a data model,
GENGHIS [DMG13], but, unlike our SPL, the data model is the only variability
of the products generated by GENGHIS, being every product exactly the same
application with a different data model.

The actual feature selection is the second step of our derivation process. The
analyst selects a set of features from the feature model, and this selection must be
validated within the derivation process (using operations defined in [BSRC10], for
example), so the analyst receives feedback in case he or she makes a mistake in the
selection.

At this point, the analyst has chosen the entities that the application will
manage, and the set of features that the application will provide. However, not even
this is enough for products of our domain: just deciding to have the feature “map
viewer” does not provide information regarding how many map viewers the product
requires or which layers should be shown in each map viewer. The analyst needs
to answer these questions among others, and some of them need to be answered for
each one of the map viewers of the product:

1) Which base layer uses the map viewer?

2) Which entity or entities are shown in the map viewer?

3) Can the user make a textual search over the elements shown in the map viewer?

4) Can the user click on the elements shown in the map viewer? What happens if
he or she clicks?

5) Can the user update the geographic data related to a specific element?

94 Chapter 7. Architecture Evaluation and Derivation

6) . . .

All these options do not belong to the feature model but are something
specifically related to each one of the products. Thus, they belong to the application
engineering domain and our derivation process needs to provide a way to define
all these aspects. Moreover, there are more features susceptible of this kind of
specialization. For example, the set of forms that the final product will have, the
menu entries that we want to show (instead of just showing everything) or the
sorting order of these entries.

To summarize, our domain requires a further step beyond the selection of
features or the definition of the data model. We have called this step parametrization
of the product. It is important to note that this step does take into account both
the data model and the feature model defined previously, since the parameters or
“questions to ask” depend on which features are selected or which entities are defined.
For example, to configure a map to visualize the cars managed by the application,
we first need to include an entity “Car” within our data model.

So far, we have described the requirements of the process regarding the “inputs”
required, but we also need to point out some requirements about how this derivation
is produced and how should be the code produced by it. These requirements are
the result of discussion with project managers from Enxenio, and they reflect some
requirements that the product must comply with in order to integrate the SPL
within their organization:

• Static binding [ABKS13]. The product is the generated code itself, so it is
important that the implementation technique allows derivation in the earliest
stage, before the compilation step, to get the product variant source code.

• Clean output code. After generating each product, the code may evolve
independently from the platform because developers may modify it with
custom features not belonging to the platform. To allow this, the final code
must be maintainable and as well-written as possible, and must not depend on
anything beyond the own product (e.g., implementing variability with aspects
makes the product dependant of them).

• Allow different programming languages. The implementation of web applica-
tions, nowadays, involves lots of different programming languages. Just in
the client side, HTML, JavaScript and CSS are the main ones, but there are
many frameworks that do not work directly with these but uses many other
languages to generate them, such as template engines like Jade1, JavaScript

1http://jadelang.net/

http://jadelang.net/

7.4. Summary 95

derived languages like Dart2 or TypeScript3, or stylesheets preprocessors like
Sass4. In the server side, there are many choices to implement the features
depending on the ecosystem: Java for Spring, JavaScript (or any variant) for
Node, PHP, Ruby, etc. Therefore, our derivation engine has to handle different
programming languages.

• IDE independent. The technique used cannot impose any IDE or tool
restriction to the developers of the source code. Many of the existing tools
[ADT07, MSC+14, MTS+14] share the same problem: they depend on an
outdated IDE. We want to avoid this dependency, making our derivation
engine independent of any other software as much as possible.

• Derivation independent of the design of the products. This is, the products
should be very close to the same products if they were manually developed;
“sacrifices” in the code just to fit the derivation engine shall be minimum or
null.

7.4 Summary
In this section we have described the last two steps in our methodology: the
architecture evaluation and the derivation of a specific product.

In order to do a proper architecture evaluation, we have gone through each one
of the different components and services identified for our architecture and we have
joined them with features extracted from our set of requirements. Every time there
were miss-matches between both elements, it was a time for a new iteration in our
process, adjusting both the feature model and the product line architecture until
both things were totally coherent with each other.

Afterwards, once the PLA is finished and the traceability is maintained, the SPL
is ready to be used to generate products, and we have proposed a set of requirements
for the derivation process. These requirements are decisive for the evolution of the
platform, and the derivation engine used to generate the products for this line must
comply them.

2https://www.dartlang.org/
3https://www.typescriptlang.org/
4http://sass-lang.com/

https://www.dartlang.org/
https://www.typescriptlang.org/
http://sass-lang.com/

96 Chapter 7. Architecture Evaluation and Derivation

Part III

GISBuilder: a tool for the
semi-automatic generation of
web-based GIS applications

97

8
SPL implementation techniques &

Scaffolding: state of the art

8.1 Introduction

In the previous part, we have fully detailed the definition of our software product line
for web-based geographic information systems. We have identified the requirements
of the products, we have designed an architecture for them, and finally we have
described how the derivation of these products must be done. Once this definition
is finished, the next step is its actual implementation. In SPLE, the actual
implementation is usually a very simple process (or at least a non-interesting
process) in which developers must code the different features. However, we
defined some very specific and advanced requirements for the derivation of each
product (see Section 7.3) that are not contemplated by any state of the art SPLE
implementation technique. In this part we show the particular implementation of
our SPL (see Chapter 9), but first, we describe the state of the art regarding SPLE
implementation techniques and their issues with the requirements of our derivation
process, as well as basic concepts about scaffolding, that will help the reader to
better understand the importance of our solution.

99

100 Chapter 8. SPL implementation techniques & Scaffolding: state of the art

8.2 SPLE: Approaches and tools
SPL implementation techniques can be classified into two approaches: composi-
tional [ABKS13] and annotative [KAK08]. The compositional approach requires
having the code for each feature separated from the code of the rest of the features
until the product is built. At this point, all the code for the selected features is
assembled together by the derivation engine. The annotative approach is just the
opposite: the code for all the features is together and the developers use annotations
to delimit the code for each one. During the derivation process, the derivation engine
removes the code for the features not selected.

Apel et al. [ABKS13] presented an extensive list of tools for implementing SPL
that can be complemented with [ADT07, MSC+14, MTS+14, Dat]. We do not
describe each of these tools and techniques in this work, but we describe the issues
we have found in the most popular for their usage in our context (see Section 7.3).
We classify the tools by their approach. The code examples are from a simple
web calculator [BCLP16] implemented using several techniques to illustrate their
problems.

8.2.1 Compositional or positive approach
The compositional approach implements features as distinct modules. That is, the
particular code affecting each feature is separated from the code of the rest of
the features. At the moment of the derivation of a product, the modules of the
selected features are composed into the final source code. The main advantage of
this approach is the clear separation of the code of the different features and that
the traceability between the code and the features is explicit. Besides, having the
code organized in features makes the maintenance of this code easier. However,
there are some big problems with this approach [ABKS13]:

• Tools have to be constructed for every language. There have been some
attempts of tools supporting more than one language, but they require anyway
extra plugins or enhancements to support them.

• Lack of tooling support: most tools are academic and outdated, and they do
not support composition on the set of programming languages used nowadays
in a web application.

• The development team needs to adopt a language extension, which may be
different for every language used in their developments, and they need to learn
how to use unfamiliar composition tools as part of the development process.

8.2. SPLE: Approaches and tools 101

• Composition mechanisms are usually limited regarding to where the variability
can be applied. For example, variability in Java can usually only be applied at
the level of “methods”, and there is no support for variability on other points,
such as annotations, classes or method parameters.

There are several tools following this approach, being the most used AHEAD
and FeatureHouse, described next.

AHEAD

The first and main problem of AHEAD [BSR04] is that generics are not
supported. Generics [Bra04] were added to Java in the version 5.0, and they
have became one of the main artefacts to create good and extensible code strongly
checked during compilation. An example is shown in Figure 8.6. Nowadays, we
cannot imagine to create Java code without generics.

List <Integer > list = new ArrayList <Integer >();

Figure 8.1: Example of a generic in Java

AHEAD does not support variability when defining enums. An enum
type is a special data type that enables for a variable to be a set of predefined
constraints1. We can see an example of enum in Figure 8.2. Enums are very
common in Java software development, but we cannot compose them with AHEAD.
In fact, enums cannot even be defined at all on jak files, which is the format used
by AHEAD.

public enum Operation {
ADD ,
SUBTRACT ,
MULTIPLY ,
DIVIDE

}

Figure 8.2: Example of a enum type definition in Java

Java annotations are not fully supported. For example, class and method
annotations can be used, but they must be repeated in all the features refining the
same item in order to make the composed code to maintain the annotation. Besides,
parameter annotations are not allowed, such as the one shown in Figure 8.3.

1https://docs.oracle.com/javase/tutorial/java/javaOO/enum.html

https://docs.oracle.com/javase/tutorial/java/javaOO/enum.html

102 Chapter 8. SPL implementation techniques & Scaffolding: state of the art

public ResponseEntity < ResponseJSON > calculate (@Valid @RequestBody RequestJSON
request) {...}

Figure 8.3: Example of a parameter annotations in Java

To generate the output code, AHEAD converts the refinements in inheritance
of abstract classes. If several features are implied in the same class, each refinement
constitutes an abstract class except the last one. Hence, the output code is
hard to understand and to extend with new functionalities, as we can see in
Figure 8.4.

@RestController
@RequestMapping ("/api/ calculator ")
abstract class CalcResource$$Base$... $controller {

@RequestMapping (method = RequestMethod .POST)
public ResponseEntity calculate (

RequestJSON request) {

return response entity ;
}

}

@RestController
@RequestMapping ("/api/ calculator ")
public class CalcResource extends CalcResource$$Base$... $controller {

@RequestMapping (method = RequestMethod .POST)
public ResponseEntity calculate (

RequestJSON request) {

if operation is division {...}

return super . calculate (request);
}

}

Figure 8.4: Example of code generated by AHEAD

The issues explained in this section affect not only to the AHEAD composer,
but also to other tools included in the AHEAD Tools Suite, like reform or jak2java.

8.2. SPLE: Approaches and tools 103

FeatureHouse

FeatureHouse [AKL09] shares some of the problems of the previous tool, AHEAD.
For example, annotations are not supported. In this case, parameter
annotations are partially supported, since only one annotation is allowed. Again, as
in AHEAD, in order to use annotations in methods we need to repeat the annotation
for every feature related to the particular method, so it is not possible to apply
variability within the annotations. That is, even when we can use some annotations
in our code, we cannot apply variability to them. So we cannot choose to use one
or another annotation depending on the selected feature.

To generate code, FeatureHouse converts the refinements in different chained
private methods. As in the previous case, the generated code is hard to read
and edit, as we can see in Figure 8.5.

@RestController
@RequestMapping ("/api/ calculator ")
public class CalculatorResource {

@RequestMapping (method = RequestMethod .POST)
private ResponseEntity < ResultJSON > calculate__wrappee__Base (@RequestBody
RequestJSON request) {

return response entity ;
}

@RequestMapping (method = RequestMethod .POST)
public ResponseEntity < ResultJSON > calculate (@RequestBody RequestJSON
request) {

if operation is division {...}

return calculate__wrappee__Base (request);
}

}

Figure 8.5: Example of code generated by FeatureHouse

XAK

We have not found any major limitation with XAK [ADT07] regarding the
capabilities of the derivation of the products. The only minor issue found is that its
scope is limited to well-formed XML files. In order to apply XAK to HTML5 files,
which are not well-formed XML files, the developers would not be able to write the

104 Chapter 8. SPL implementation techniques & Scaffolding: state of the art

following code, which is valid HTML5:

<div class ="a- class " required />

Figure 8.6: Example of HTML5 code

However, the big issue with XAK is the complexity to implement the refinements.
Although this alternative is based on a compositional approach, in order to refine
the different XML artefacts the developer also needs to annotate the XML files
with determined tags, so the implementation effort is doubled since it is necessary
to maintain both a compositional structure and the annotations.

8.2.2 Annotative or negative approach
The annotative approach consists on having the code for all the features together
and using some annotations with a particular syntax to delimit the code related
to each feature. This way, in the moment of derivation of a product, the engine
does not assemble or compose the features together but it does just the opposite,
removing all the code related to the features that have not been selected.

The main advantage of using annotations is that the code produced by the SPL
can be as good as the annotated source code is, without any added complexity
imposed by the technique. That is, in the compositional tools we have reviewed,
such as AHEAD or FeatureHouse, it does not matter how nice the code that
implements the features is, because the derivation process will mess the final source
code. In the annotative approach, the derivation process is not as intrusive and the
quality of the annotated code is maintained in the final code.

However, in this case it is the code of the platform the one that is hard to
read and maintain, specially if the annotations are undisciplined and complex
or the variability is implemented with fine-grained extensions [KAK08]. Fine-
grained extensions, or fine granularity variability, are points of variability that are
implemented at the level of lines of code. That is, in the compositional approach
one of the restrictions is that the developer can usually only implement variability
at the method level, modifying the behaviour of a method depending on the selected
features. In the case of the annotative approach, we do not have this restriction
and variability can be applied at any level to the point we can even change a line of
code depending on the selected features. This is a big advantage, but abusing this
kind of annotations only leads to the #ifdef hell [SC92]. Traceability is also hard
to maintain beyond the file-level, since the annotations take place at the different
files, and this approach has no notion of modularity [ABKS13].

8.2. SPLE: Approaches and tools 105

Preprocessors are the most popular alternative to implement a SPL following
the annotative approach.

Preprocessors: CPP, GPP and GNU M4

CPP2 is one of the most common alternatives used by the industry [GLA+09,
JB09, PO97, SLB+10, TSSPL09, BRN+13] to implement SPL, even when there
are many works criticising CPP annotations [SC92, LST+06, SLSA13]. Annotated
code is prone to simple errors and makes type-checking and debugging process
an arduous task, even when the developers try to maintain discipline for their
annotations [SLSA13]. However, recent research works are focusing on this
approach, trying to analyse the use of annotations [HZS+15,LKA11,LAL+10] and
to improve it [KAK08,FKA+13,KATS12].

One known downside when working with CPP is that only a few programming
languages (C and variants, mostly) support these annotations. So, working on Java
code annotated with CPP, for example, is tricky since the common code editors will
not be able to check for syntax and grammar compliance. The same happens with
JavaScript or CSS code annotated with CPP or any other kind of code not related
to the C family. There are code editors like FeatureCommander [FPK+11,FKA+13]
that facilitate working with CPP annotated code by colouring the different features,
but still do not help solving this kind of issues.

GPP3 and GNU M44 are general preprocessors. That is, they are independent
of any programming language and mostly they provide the same functionality than
CPP. Both of them allow custom delimiters so the annotated code does not interfere
with concrete language IDEs or tools.

The downside of these alternatives is the difficulty of using them to implement
a SPL, specially for our context, web-based GIS, because:

1. These alternatives are old software assets. CPP is the only that can still being
installed and configured “easily”, but making GPP or GNU M4 work is really
hard even in Unix-based systems. In any case, all of these tools are strange
to the current development of web applications, and they cannot be easily
integrated with the tools that are being used nowadays.

2. CPP annotations interfere with any IDE or compiler of any language code
that is not based on C. GPP and M4 allow for the definition of customs
annotations, but doing it requires a hard effort.

2https://gcc.gnu.org/onlinedocs/cpp/
3http://en.nothingisreal.com/wiki/GPP
4http://www.gnu.org/software/m4/m4.html

https://gcc.gnu.org/onlinedocs/cpp/
http://en.nothingisreal.com/wiki/GPP
http://www.gnu.org/software/m4/m4.html

106 Chapter 8. SPL implementation techniques & Scaffolding: state of the art

3. They are not designed to be used to implement SPL. They all lack of any
variability managing beyond the simple annotations, and of course they do
not validate the specifications of the products.

Antenna and Munge

Antenna5 and Munge6 are tools that enable conditional compilation on Java. That
is, they are similar to CPP but for Java. In fact, the annotations mimics the CPP
syntax, but they are written in Java comments to not interfere with code editors.
Besides, there are plugins for Eclipse to facilitate the use of them.

The big difference between the two alternatives is that Antenna comments out
code annotated with features not selected, so the compiler omits it, while Munge
acts like a proper preprocessor and the annotated code is processed to obtain code
without annotations and ready to compile.

FeatureJS

FeatureJS [MSC+14] is the only tool we have found that is focused on the JavaScript
language, one of the most popular languages nowadays. We agree with the analysis
made by Machado et al. in [MSC+14] regarding the state of SPL researching and
tools for web-based applications: the domain of web systems is not often considered
as a potential domain for developing SPLs, unlike other domains such as embedded
systems or mobile applications, and most of the literature proposing new research
initiatives handling SPL for web systems [BRPD05, TBD07, PJ05, LGBH09, GG02,
FAB+13,CD03] are mostly concerned with modelling the variability at a high-level
abstraction but without doing the same at the implementation level.

FeatureJS mixes composition and annotations, but, as far as it is detailed
on [MSC+14], it does not provide any way of refining artefacts, so the compositional
feature is equivalent to annotating the whole JavaScript code file. Anyway, refining
and composing JavaScript code does not seem feasible due to its own characteristics
and its flexibility, as they also remark.

CIDE

CIDE [KAK08] is an eclipse-based IDE which annotates the features directly on
the Abstract Syntax Tree and shows the different features with different colours.
CIDE appeared as a way to improve the legibility of the annotated source code to
overcome some of the issues of fine granularity variability.

5http://antenna.sourceforge.net/
6http://weblogs.java.net/blog/tball/archive/2006/09/munge_swings_se.html

http://antenna.sourceforge.net/
http://weblogs.java.net/blog/tball/archive/2006/09/munge_swings_se.html

8.2. SPLE: Approaches and tools 107

Using CIDE imposes an obvious IDE restriction, since it is based on Eclipse.
Moreover, the last version available is built for Eclipse Galileo, from 2009, which
does not support Java 8 syntax, among other things. Moreover, the community
support for this version of Eclipse is minimum.

8.2.3 Alternatives using other approaches
Besides the two main approaches for the implementation of SPL, there are some
other alternatives that were not really designed to be a SPL implementation
technique but that can be used that way.

AspectJ7 is an aspect-oriented programming (AOP) extension for Java. It can
be used through an Eclipse plugin. It has become a de facto standard for AOP due
its popularity. DeltaJ8 is a Java-like new language which allows to organize classes
into modules, so then the code can be specified by adding, modifying or removing
delta modules. The big issue of both these alternatives is that they deeply change
the way the projects are implemented, forcing the development teams to change
their procedures and even to get formation on new techniques that they do not
require.

Another alternative to create ad hoc SPLs is through version control systems
(VCS) since they highlight as evolution managing systems for both the platform
and the variant products when applying methodologies like [MD15]. However, we
see VCS more as a complement to handle evolution, through a similar methodology,
than a technique to implement the SPL.

8.2.4 Summary
To summarize, we have described several tools of the main approaches followed to
implement SPL and we have discussed the main problems against using them for
our SPL.

For compositional tools, the main issue is that the output source code is
objectively bad. This happens with all the alternatives tested to a greater or lesser
extent, and we show some examples above. Besides, there are not compositional
tools for all the languages taking part on the development of a web application with
state-of-the-art technologies.

The annotative tools and, more concrete, the general purpose preprocessors
(GPP), seem to be more adequate to our context even with their problems, very
present in the literature. The code generated with these tools is clean, they

7https://eclipse.org/aspectj/
8http://deltaj.sourceforge.net/

https://eclipse.org/aspectj/
http://deltaj.sourceforge.net/

108 Chapter 8. SPL implementation techniques & Scaffolding: state of the art

allow templates of any programming languages and the generated products are
independent of the products. However, even when they are not strictly dependent
on any IDE, installing and using these alternatives is very complicated. Nowadays,
it is maintained by one person who does not provide a binary installer for non-Unix
based operating systems, so we need to compile it in our own (or look for non official
sources) if we want to make it available for every operating system. Furthermore,
this software cannot be easily integrated with the set of tools that are currently used
for development of web applications. Finally, GPP does not provide functionalities
for managing the variability or validating it, which is quite important.

Regarding the rest of the approaches, like aspect-oriented programming, our
requirement for making the product code totally independent of the SPL technique
and our need to support several languages at the same time disable the use of this
kind of techniques.

Some of the issues mentioned could be overcome with some extensions or
enhancements over them, but the conceptual problems behind these issues are
harder to solve. Besides, instead of going through the effort of modifying of these
tools, we consider that it is more profitable to design and develop a new tool from
scratch that uses current technology and that complies all our requirements.

8.3 Scaffolding: industrial generation of code
In the last years, new techniques and methodologies have emerged in software
development industry to speed up and to improve the development processes.
Scaffolding is one of these new techniques, mainly popularized by Ruby on Rails9

from 2005, but currently used by many trending software development frameworks,
such as Yeoman10 or Spring Roo11. Scaffolding consists on generating code from
predefined templates and some specification provided by the developer. This way,
most of the repetitive and generic code of the applications is automatically written,
and the developer can start its work from a mid-stage or half-built architecture.
Scaffolding is not limited to any context, and it can be used to generate any kind
of code or text, from code related to the user interface of an application to its
documentation.

Although the scaffolding concept applied to software development is relatively
new, in fourth generation programming languages (4GL), fashionable in the 1980s,
there was a similar feature in database code generators, such as Oracles CASE
Generator or dBase IV APPSGEN tool, which were able to generate forms directly

9http://rubyonrails.org/
10http://yeoman.io/
11http://projects.spring.io/spring-roo/

http://rubyonrails.org/
http://yeoman.io/
http://projects.spring.io/spring-roo/

8.3. Scaffolding: industrial generation of code 109

Figure 8.7: Scaffolding example

from the data model of the database. Likewise, we can see scaffolding as an informal
application of some concepts from Model Driven Development. MDD combines
domain-specific modelling languages, which formalize the application structure,
behaviour, and requirements within particular domains, with transformation
engines and generators that analyse certain aspects of models and then synthesize
various types of artefacts [BCW12]. This is, from a set of models defined for
an application, and through a series of transformations, some code is generated
specifically for the product. However, this code is usually not replicated in any
other product unless the models are the same. Therefore, MDD is useful to reduce
the cost of developing a single product, but it is not as useful in the case of families
of similar products and it does not provide for any mechanism to explicitly handles
variability. We have also found that the tooling support for MDD is mostly academic
and most tools are not ready to be used in industry, which also explains the fact
that MDD application in industry is not common [BCW12].

In Figure 8.7 a conceptual diagram of how scaffolding works is shown. In the left
part, we can see an annotated template with two blocks, identified by “Block_1”
and “Block_2”. Each one of this blocks have themselves a variable, identified as
“Value_A” and “Value_B”. If the developer provides the specification shown in the
middle of the figure, he or she is configuring the code to include only the second
block and it provides a value for one of the variables. Once the scaffolding process
is done, the resulting code is exactly the demanded one.

110 Chapter 8. SPL implementation techniques & Scaffolding: state of the art

8.3.1 Scaffolding vs SPLE

Even when they are not the same, we can make an informal comparison, at a
practical level, between scaffolding and SPL. There are four different points in
which there are conceptual differences:

• Product specification. In a SPL, the specification of a product is something
as simple as the selection of a subset of the features provided by the product
line. We can have an idea of how simple it is by thinking in its representation,
which would be a list of strings. As opposite, the specification in a scaffolding-
based tool can be as complex as required by the predefined templates. For
example, Spring Roo12 allows the analyst to define the data model for the
domain of an application (classes and properties), and the source code of a
web application with five layers (view, controller, service, DAO13 and model)
is automatically generated.

• Code generation. The way a final product is assembled within a SPL is by
adding or excluding the different assets. This is, the code implementing an
asset is already created exactly as it will be used in the final product, and it
can be added to the final product or not. In the case of a scaffolding tool,
going along with our previous example of a Java class, there is no way of
having the code for it prior to the definition of it by the analyst. This is,
the code for a class has to be really generated from the specification, not just
taken and assembled together with the rest of the code.

• Development stage for its application. Usually, a developer uses a
scaffolding tool in the first steps of the development of an application. Once
the code is generated, he or she will continue with the development of the
application and probably he or she will modify the generated code once the
product evolves. Just the opposite is what occurs in the case of a SPL, when
usually the generated code is really to be deployed and used by final users.

• Maintainability. As a derived effect from the previous point, the code
generated by a SPL is not thought to be modified. Therefore, it is not
important its quality, regarding maintainability, nor its extensibility. This
is not the case for Scaffolding generated code, which needs to be well-formed
and clear so the developer can understand and extend it properly.

12http://projects.spring.io/spring-roo/
13http://www.oracle.com/technetwork/java/dataaccessobject-138824.html

http://projects.spring.io/spring-roo/
http://www.oracle.com/technetwork/java/dataaccessobject-138824.html

8.3. Scaffolding: industrial generation of code 111

8.3.2 Libraries and frameworks using scaffolding

The first framework using the term scaffolding was Ruby on Rails14, a server-side
web application framework written in Ruby15. The scaffolding concept was not the
only thing that this framework popularized, but also the own Ruby language was not
very known before Rails. It is based on the model-view-controller (MVC) pattern
but it also follows other well-known patterns and paradigms such as convention
over configuration [Che06], don’t repeat yourself [WAB+14] and the active record
pattern. Rails provide default structures for the database, web services and web
pages, allowing the developer to focus on coding itself. With the same philosophy,
Ruby on Rails uses scaffolding to automatically construct the models and views for
a basic web application so the developer can skip these generic and repetitive tasks.

Grails16 is a web application framework that uses Groovy17. Groovy is
a dynamic language, optionally typed, with static-typing and static compilation
capabilities, for the Java platform. Grails framework targets to increase the
developer productivity by following the paradigm of convention over configuration
with sensible defaults and opinionated APIs. Its goal is similar to the Rails one,
allowing the developers to focus on coding and, in fact, they both appeared in the
same year, 2005. Grails lets developers to use both dynamic and static scaffolding.
With dynamic scaffolding, the models and views are created when the application is
deployed, whereas with static scaffolding the code is generated when the developer
requires it. It also allows the developer to customize the templates used by the
scaffolding engine.

Another Java framework that benefits from the scaffolding technique is Spring
Roo18, a software developer tool that again follows the paradigm of convention
over configuration to provide rapid application development. With Spring Roo, a
developer only needs to run a series of terminal commands to have the full source
code of a complete web application with the data model specified, with views and
models and everything ready to be deployed. Some of the code related to Spring Roo
projects is implemented with aspects. However, in any point of the development a
project created with Spring Roo can be converted in an independent project and
be treated as any other Java development.

So far we have described three different frameworks focused on more or less the
same: improving the developers productivity by generating source code. Yeoman19

14http://rubyonrails.org/
15https://www.ruby-lang.org/en/
16https://grails.org/
17http://groovy-lang.org/
18http://projects.spring.io/spring-roo/
19http://yeoman.io/

http://rubyonrails.org/
https://www.ruby-lang.org/en/
https://grails.org/
http://groovy-lang.org/
http://projects.spring.io/spring-roo/
http://yeoman.io/

112 Chapter 8. SPL implementation techniques & Scaffolding: state of the art

is a totally different thing, a library that facilitates the implementation and usage
of generator projects. This is, Yeoman is somehow a “scaffolding platform”, a
library that allows you to implement scaffolding tools in any context or domain,
and to use them. While Yeoman itself does not create anything, there are currently
over six thousand different public generators. jHipster20 is one of the most
known, and it can create the code of a complete web application using current
technologies (Hibernate, Spring, Angular, Sass, etc.) and providing the typical set
of features for web applications (authentication, lists, forms, metrics for the services,
internationalization, etc.) in a matter of seconds.

8.4 Summary
In this chapter we have presented the most popular approaches for implementing
a software product line: the compositional approach and the annotative approach.
We have described the details regarding each approach and we listed the most used
tools for both of them. For each of these tools, we have shown how they do not
comply the particular requirements of our context, described in Section 7.3.

Afterwards we have introduced a technique called scaffolding, common in
industry practice. Scaffolding is used nowadays to accelerate the development of
web applications by generating parts of the code that are easily abstracted and
reproduced. A tool based in this concept can satisfy all the requirements for our
context, and it can be implemented and delivered with updated technologies to
reduce the effort required to implement it on a real company.

20https://jhipster.github.io/

https://jhipster.github.io/

9
GISBuilder’s design

9.1 Introduction
Once the main goal of this thesis, the definition of a software product line for
the domain of web-based geographic information systems, is achieved, we need to
use this definition to actually design a tool able to generate GIS applications. In
the previous section we have already described the problems found in the existing
tools to implement a SPL, and how a tool based on scaffolding can comply all of
our requirements and be the most adequate solution in our context. This chapter
describes the different aspects of the tool designed and implemented from the results
of our previous process. This tool is called GISBuilder.

In the design of GISBuilder we have taken into account all the requirements
detailed in Chapter 7 since we want to guarantee the evolution of our product
line. The rest of the chapter is organized in three sections: the design of the
architecture for our tool based on the typical architecture for the software product
lines; our derivation engine, based on scaffolding technique, that is not only able
to assemble components in the classical way but also to generate product-specific
code; an enhancement made to GISBuilder in which all of its components are able
to run within the browser and that enables a previewing component so the analyst
can view the product without any deployment.

113

114 Chapter 9. GISBuilder’s design

Figure 9.1: Classical architecture for a SPL

9.2 Architecture

The architecture of our tool is very similar to the typical architecture for a software
product line, which we can see in Figure 9.1. The analyst interacts with the
specification interface to select the features that he or she wants in a concrete
product. Once the configuration of the product is finished, the derivation engine
takes the set of selected features and assembles the related components into a final
product. The components are stored in the component repository so the derivation
engine can access and take the ones it needs to assemble each product.

The architecture for our tool is quite similar, as we can see in Figure 9.2. Most
of the modules are analogous to the previous architecture, with the exception of
the project repository. This module stores the specification of all the generated
products, as we describe below together with the motivation of this new module.
Next we describe each one of this modules.

The specification interface allows an analyst to define different products using
two strategies: on the one hand, he or she can select the features included in the
product as in any other SPL; on the other hand, the interface provides tools for
the analyst to define the data model, the menu structure, and the lists, forms
or map viewers that are included in the final product. Behind the scenes, the
interface builds the product specification, an instance of the GISBuilder domain
specific language (DSL) represented as a JSON document, and validates it using

9.2. Architecture 115

Figure 9.2: Functional architecture of GISBuilder

JSON Schema [WA17]. JSON Schema is a vocabulary to describe the data format
that a JSON document should have. This way, we can later check if any JSON
document complies the particular structure and therefore validating it is adequate
to be processed by our derivation engine. The schema currently used by GISBuilder
is shown in Appendix A.

The project repository is a database where all the product specifications are
stored as JSON documents. This way, an analyst can restore a previously defined
product and generate it again, refine it, or create a new version of it. This is
important as the products built will evolve over time, and keeping the specification
prevents the analyst from having to configure the product again from scratch when
probably a new version will have small changes over the previous one. In the case of
a classical SPL in which the configuration of a product corresponds to the selection
of features for it, this module would not have sense. However, the specification of
our products is more complex than that, and the process for the definition of a
product can be pretty long and complex. The reader can get an idea about the
complexity of the process in Chapter 10.

When the analyst decides that the specification of a product is finished and the
product is ready to be generated, the JSON document representing the product
specification is sent to the derivation engine. Then the derivation engine assembles

116 Chapter 9. GISBuilder’s design

the different components and generates the required product-specific code, using
the reusable software assets and code templates from the component repository to
achieve this. The output of the engine would be the source code of the product
specified by the analyst. Being the derivation engine the most important part of
our system, we carefully explain it in Section 9.3.

In software product lines it is common that the specification interface is simple or
almost non-existent, since it is only used to select which features are included in the
product. However, due to the complexity of our products and their definition, we
decided that the specification interface of GISBuilder should be a proper application,
and particularly a web application in order to be able to use the tool without any
installation, from everywhere and with any device.

In terms of the technology, using a framework that allows us to decouple the
different modules is very beneficial. Also, there is more need for flexibility than
stability, since our platform is an evolving set of artefacts whose components are
supposed to grow in size and quantity, and it is not expected to be used by many
people at the same time. That is the reason to implement it on Node.js1, a platform
build on Chrome’s JavaScript runtime2 for easily building fast applications. It is
lightweight, independent of operating systems and IDEs and currently one of the
most important platforms, with growing popularity. Node.js provides for a huge
flexibility that facilitates the integration of its libraries and applications.

Therefore, GISBuilders specification interface is a web application implemented
with Angular that communicates with a Node.js server via REST. This server
handles the interaction with the project repository and with the derivation engine.
Since the project specification is represented with a JSON document, the technology
chosen to store these specifications is MongoDB, a document oriented database that
handles the data precisely in this format. The derivation engine is also a Node.js
tool, so the integration is straightforward using an API provided by the engine.
Lastly, the component repository is nothing more than a directory with files of the
code of every asset and template, which are accessed directly by the derivation
engine.

9.3 Derivation Engine
Our derivation engine consists on three different components, as we can appreciate
in Figure 9.3: the variability handler, the file manager, and the template engine.
The derivation engine itself defines an API used by the specification interface to

1https://nodejs.org/en/
2https://developers.google.com/v8/

https://nodejs.org/en/
https://developers.google.com/v8/

9.3. Derivation Engine 117

Figure 9.3: Component diagram of the derivation engine

generate the different products. It also provides a small command line utility so
the engine can be used independently of the tool, which is specially useful when
developing or debugging the platform.

The variability handler is the component in charge of validating the feature
selection made by the analyst. To do that, we first need to load the feature
model of our SPL. We can do that by providing the feature model in two different
formats, both of them allowing to define cross-tree constraints: as a JSON document
following a schema designed by ourselves, or as a XML document with the same
schema used by Feature IDE [KTS+09]. Therefore, we can design our feature model
graphically with this tool and then take the XML file that represents it. The
feature model can also be described programmatically using an API provided by
the variability handler. In Figure 9.4 we can see a excerpt of the feature model of
our tool, whereas in Figure 9.5 the XML of its definition is shown. This component
validates the feature selection made by the analyst in real time: as soon as the
analyst selects one feature or another, it evaluates the feature model and the
cross-tree constraints and returns the proper warning message. If this evaluation
concludes that any other feature must be selected, such as a mandatory child feature
or any other feature that should be selected due to the constraints, this information
is also returned so the specification interface can act accordingly. This library
has been designed independently of the rest of the tool so it can be integrated in
any other tool that requires feature model validation. Also, there are many other
operations for feature models [BSRC10] that can be added in the future.

118 Chapter 9. GISBuilder’s design

Figure 9.4: Excerpt of the GISBuilder feature model

<?xml version ="1.0" encoding ="UTF -8" standalone ="no"?>
<featureModel >

<properties />
<struct >

<and abstract ="true" mandatory ="true" name="GIS -SPL">
<and mandatory ="true" name=" MapViewer ">

<and mandatory ="true" name=" MV_Tools ">
<feature mandatory ="true" name="MV - T_Pan "/>
<feature mandatory ="true" name="MV - T_Zoom "/>
<feature name="MV - T_ZoomWindow "/>
<or name="MV - T_Measure ">

<feature mandatory ="true" name="MV -T- M_Distance "/>
<feature mandatory ="true" name="MV -T- M_Line "/>
<feature mandatory ="true" name="MV -T- M_Polygon "/>
<feature mandatory ="true" name="MV -T- M_MapElement "/>

</or >
<feature name="MV - T_UserGeolocation "/>
<feature name="MV - T_ViewMapAsList "/>

</and >
</and >

</and >
</ struct >
<constraints />
<calculations Auto="true" Constraints ="true" Features ="true"
Redundant ="true" Tautology ="true"/>

<comments />
<featureOrder userDefined =" false "/>

</ featureModel >

Figure 9.5: Excerpt of the XML representing the feature model

9.3. Derivation Engine 119

The file manager handles all the tasks related to the access to the templates.
For example, it allows the derivation engine to walk through every template of a
directory recursively and apply changes to them. It also detects when a binary file
is found in order to skip processing it and just copy it to the output.

The latest and more important part of the derivation engine is the template
engine. In a SPL, there is usually a derivation engine handling the process of
assembling the product from a set of features using the reusable components. In
MDD, transformations are applied to models to generate new models in different
levels of the architecture, until one of these transformations generates source code.
Our template engine is able to handle these two kinds of operations, being able
to generate products from:

• SPL-like assemblable components: for each product, it can be specified a
set of features to be included in it, like in a classic SPL. Our engine takes the
components implementing these features and assembles them into the final
product.

• MDD-like model transformations: a set of models are used to generate
each product. These models specify the data model, layers and maps of each
product, as well as many other generic parameters like graphical interface
options. Our engine transforms these models into specific modules included
in the final product.

In order to handle this duality, we have designed the template engine to be based
on the scaffolding technique. It treats every module as a set of templates, no matter
whether the module is a reusable component that needs just to be assembled or
whether its code must be specifically generated from the application models. Thus,
the component repository described in Section 9.2 is nothing but the templates
of every module, including the code for the reusable software assets and the code
templates that are used to transform the modules into product specific code.

In Figure 9.6 a excerpt of the Java code for the geographic data importer is
shown. In the static block we can see some variation of the code to produce
depending on the selected features. Template annotations are defined as comments
of the programming language in which the template is written and its content can
be any JavaScript code. Thus, they do not interfere with the compiler, IDE or
validation tool used by the developer of the platform code.

Besides annotations related to which code blocks are included in the product, our
template engine allows using variables and complex control sequences in the code.
Moreover, the developer of the platform can even create JavaScript functions to use
within the annotations, or use temporal variables to store data used more than once.

120 Chapter 9. GISBuilder’s design

1 private static final Set <String > validExtensions = new HashSet <String >();
2

3 static {
4 /*% if (feature .DM -DI - DF_Shapefile) { %*/
5 validExtensions .add("shp");
6 /*% } %*/
7 /*% if (feature .DM -DI - DF_Raster) { %*/
8 validExtensions .add("tiff");
9 validExtensions .add("gif");

10 /*% } %*/
11 /*% if (feature .DM -DI - DFNetwork) { %*/
12 validExtensions .add("pbf");
13 /*% } %*/
14 }
15

16 @Component
17 public class DataImporter () {
18 // ...
19 }

Figure 9.6: Annotated Java class

1 /*%@ return entities .map(function (en) {
2 return {
3 fileName : en.name + ’.java ’,
4 context : en
5 };
6 }) %*/
7 package es.udc.lbd. gisbuilder . model . domain ;
8

9 @Entity
10 @Table (name = "t_ /*%= context .name. toLowerCase () %*/")
11 public class /* %= context .name %*/ {
12 /*% context . properties . forEach (function (prop) {
13 var propertyClass = prop. class ;
14 var validGeomTypes = [’ Point ’, ’MultiLineString ’, ’MultiPolygon ’];
15

16 if (validGeomTypes .find(propertyClass) != null) { %*/
17 @JsonSerialize (using = CustomGeometrySerializer .class)
18 @JsonDeserialize (using = Custom /* %= propertyClass %*/ Deserializer . class)
19 @Column (columnDefinition =" geometry (/*%= propertyClass %*/ , 4326) ")
20 /*% } %*/
21 private /* %= propertyClass %*/ /* %= normalize (prop.name) %*/;
22 /*% }); %*/
23 }

Figure 9.7: Simplified excerpt of model transformation template

9.4. Runtime Product Preview 121

In Figure 9.7 a simplified template to generate entities of a product is shown. The
template specifies how to create Java classes for each entity defined by the analyst.
Inside the class, the code for each property of the entity is created depending on
its specification. The latter is an example of a code template generating product
specific code, whereas the former example is just a reusable software asset with
an small variation depending on the sub-features selected. Even with the latter
template simplified, we can see the difference of complexity between the two types
of templates.

As we could see along this section, our scaffolding engine works somehow like a
preprocessor but the rich semantic of JavaScript provide a high level of capabilities
in the annotations in a very flexible way without compromising the easiness of
usage. By basing our tool in this technology we are providing the developers a way
to implement the variability without requiring to learn any new language, and since
our engine is implemented in Node.js it can be integrated with any other tool for
web development since most of them (Gulp3, Grunt4, NPM5, etc.) are based also
in Node.js.

9.4 Runtime Product Preview

9.4.1 Motivation and conceptual approach
SPLE, MDD or similar methodologies for the semi-automatic generation of software
tackle intrinsic repetitive structures in the development of software products, either
full software components like the ones assembled within a SPL, or actual generation
of code from high level descriptions and model-to-model/code transformations like
in MDD. These approaches are particularly suited to the iterative evolution of the
project, by means of small improvements which can be easily tested and validated.
However, the nature of web applications makes the evaluation of these new features
complex, due to the fact that a new full deployment is necessary after each change.

Continuous deployment [CSA15] is particularly suited to bring these new
functionalities to a set of evaluators, but it is not suitable for an integration in
the development cycle itself due to its complexity. The main problematic in trying
to integrate an evaluation of the final product within SPLE or MDD is related to
the full code generation intrinsic in these approaches. Changes to the final product
cannot be applied directly to the deployed application, but instead the high level
description needs to be updated and a full code generation triggered.

3http://gulpjs.com/
4https://gruntjs.com/
5https://www.npmjs.com/

http://gulpjs.com/
https://gruntjs.com/
https://www.npmjs.com/

122 Chapter 9. GISBuilder’s design

(a
)

O
ri

gi
na

l

(b
)

A
ft

er
ap

pl
yi

ng
ou

r
ap

pr
oa

ch

F
ig

ur
e

9.
8:

A
ct

iv
ity

di
ag

ra
m

of
th

e
de

ve
lo

pm
en

t
pr

oc
es

s

9.4. Runtime Product Preview 123

We show in Figure 9.8a a simplified workflow with processes and stakeholders
involved in the development of a web application with automatic or semi-automatic
generation of software. We can see how the analyst, with input from the client,
elaborates the Software Specification; then the generation of the product, which can
be based on SPLE, MDD or any other methodology, begins. The generated software
has to be deployed for evaluation by a different actor, the system administrator.
At this point, the analyst and the client can, together, evaluate the product and
determine whether the product is the one required by the client or some changes are
required. If the product is finished, then the system administrator can deploy the
final version into production environment and the process ends. If the product is not
complete, then the process starts again and the system administrator is involved,
again, to make a redeployment in the testing environment. There are some cases
when the analyst is the one that deploys the product for evaluation. In these cases,
even when there is not an extra actor involved, this deployment still needs a complex
environment and it is time consuming.

We propose an approach to simplify and improve the workflow for the
development of web applications through automatic generation techniques by
removing the necessity of an actual deployment during the development process.
Only when the analyst decides that a project is correct, the full-source is generated
and deployed.

The workflow, when our approach is applied, is shown in Figure 9.8b. It is
analogous to the previous one but, in this case, the same tool that generates the
product provides a preview of it to the analyst and/or to the client. Therefore, it
does not involve a real deployment of the product at this point, so the third actor,
a system administrator, is not required, nor a complex environment or any extra
tool for the evaluation deployment of the project. This tool we are talking about is
nothing but a web browser.

Modern web browsers are able to execute code generation frameworks by means
of JavaScript code, and they are able to fully or partially execute the generated
applications by means of iFrames and WebWorkers. Of course, we cannot expect
that absolutely every feature of the product can be previewed this way but, using
mocks and similar techniques, the client can have a real idea of how the product is
and introduce the required changes on the earliest stage. The generated application
can be evaluated directly inside the browser following three different strategies,
complemented using mocks responding to any XHR request.

Code execution. Applications fully developed with JavaScript can be fully
executed inside the browser. The client-side part of the application is executed
inside an iFrame which is able to fully resemble a standalone browser. The server-
side part of the application is executed inside a properly instrumented WebWorker

124 Chapter 9. GISBuilder’s design

able to resemble a NodeJS environment.
Full emulation. Applications developed with different technologies can exploit

the full code generation intrinsic to SPLE and MDD to trigger a different version
of the transformation. This way, it can generate a functionally equivalent version
of the application in JavaScript which can be tested using the previous strategy.

Partial emulation. Applications developed with a mixture of JavaScript and
other technologies can use a mixed strategy; this is, the non JavaScript parts can
be replaced by a functionally equivalent version and then the product is executed
within an iFrame.

All the three strategies can be used to evaluate the final application without the
need of complex server side deployed infrastructures, increasing productivity and
reducing tools configuration complexity.

We have tried our approach within two different tools [CBLF17], one based in
SPLE and the other one in MDD, but our approach can be applied to any other
software generation technique as long as the engine is built with JavaScript, which
is the programming language that can be run on a web-browser6

9.4.2 Improving GISBuilder with Runtime Product Preview
GISBuilder highly reduces the time to market by reusing components and generating
the applications from a set of specifications. However, the products generated,
web-based GIS applications, require complex development environments in order to
allow users to test and evaluate their design, since every time the product is built it
needs to be deployed in a web server with all the required software available. This
process is slow and it usually requires more than one person, since the analyst is
not in charge of preproduction deployments. In the case the analyst is building an
application for a client who provides feedback which derivates on changes on the
definition of the product, the product needs to be fully redeployed. Therefore, the
interaction between the analyst and client will be slow also, even for small changes.

We want this interaction between clients and analyst to be in real-time. To
achieve this, we have applied the approach presented in the previous section an we
have enhanced GISBuilder to generate and show a preview of the designed products
at runtime, directly on the browser, without the need of any server-side structure.

The changes required affect to the very architecture of GISBuilder, as we can
see in Figure 9.9b. The main changes made are:

1) We have implemented a new version of the derivation engine that is able to
run entirely on the web browser. Instead of getting the component templates

6In any other case our approach is still conceptually valid but the generation must occur in the
server side and after it, the source code must be loaded within the web client.

9.4. Runtime Product Preview 125

(a) Original architecture (b) Adapted architecture

Figure 9.9: Architecture changes in our tool

from the file system, they are loaded from a zip file. Similarly, it can generate
the products in memory and provide a zip file with them.

2) The derivation engine is integrated within the specification interface, as
well as the component repository, provided as a ZIP file.

3) Our preview component intercepts XHR request of the previewing application
and returns mocks responses to each specific REST petition.

4) GISBuilder produces full-stack web applications with Spring in the server side
and Angular in the client side. In the adapted version, GISBuilder creates two
different versions of the products, depending on whether the analyst wants to
preview them or to download the full-stack version.

5) To make the tool runnable without any deployment structure, the project
repository, a MongoDB instance, is now optional. Since project specifications
are just JSON documents, our tool now provides features for downloading and
uploading them.

This way, after a reconfiguration of the product, the analyst can simply run
its preview and show the client its aspect. Of course, the previewing component
does not run every feature of the SPL, but it can still show enough to provide the
customer a realistic view of the application. When the client is satisfied with the
preview, the actual full-stack version of the product can be generated and deployed,
just as before.

126 Chapter 9. GISBuilder’s design

10
Validation of GISBuilder

In this section we describe the usage of GISBuilder. First we introduce a case of
use, an example of an application that belongs to the family of products that our
SPL can generate. We have designed a transport management application that
requires route calculation and digitizing, among other features. This application
is described in the next section. Afterwards, GISBuilder specification interface
is shown, describing each of its parametrization options and using the mentioned
application as an example.

10.1 Case of use
Let us assume we have a transportation company with a set of warehouses. For each
warehouse, there is a number of trucks, which can be more or less depending on how
big is the warehouse, its location or many other factors. Every day the company
has a number or orders for picking up merchandise or packets and delivering it at
other points. Each warehouse controls its near points of picking/delivering packets
(we will call them “pick up locations”) and every morning the route for each truck is
calculated depending on the orders. During the night, the packets are transported
to the warehouses of their area of destination, so another route calculation takes
place. Therefore, the trucks make two routes in a day, one during the day and one

127

128 Chapter 10. Validation of GISBuilder

during the night. However, not every truck is needed every daytime or night time
and, in fact, the company want to minimise the number of routes required every
day. To summarise, this is the process from the moment of placing the order to the
moment of final delivering:

1. The order is placed.

2. The next day, the picking up location is taken into account when the routes
are calculated. A truck is assigned to the route and picks up the packet.

3. At the end of the route, the truck comes back to the warehouse and stores
the packet.

4. The routes for the transportation between warehouses are calculated, and a
truck moves the packet to the destination area.

5. The next day, the delivering location is taken into account when the routes
are calculated in the new warehouse. The truck assigned to the route delivers
the package.

The warehouse managers want a system that helps with this workflow, handling
the route calculation, providing a way to import the warehouses and pick up
locations and to edit this locations manually afterwards. They also want to manage
the trucks associated with each warehouse and they want to know the position of
each truck and their planned routes in real time in order to decide which is the
most suitable one to pick up an order that appears during the day. Of course, they
want that only a set of users can manage the trucks, warehouses and routes, but
they want that the drives can view their routes.

Using our SPL we can speed up the development of this example application,
whose features are not totally basic, by following the next steps. The first step when
creating a new product is to choose the name, version, identifiers (maven-like group
and artefact ids) and languages of the product. After that, the features included in
the product are selected. In this case, a non-exhaustive list of the features required
would be:

• User management with registration by admin. The user accounts for truck
drivers should only be created by the administrators, not by anonymous people
accessing the application.

• Static pages. Probably some documentation needs to be provided to the users
of the application.

10.1. Case of use 129

• Geographic data import. The first time the application is deployed the
managers need an easy method to load all the information about the
warehouses and pick up locations because digitizing all the information
manually seems a hard labour.

• Digitizing. They probably need a way to introduce a new geolocated element
without needing to import it.

• Route calculation. From the description of the problem it is obvious that this
feature is required.

• Map viewer. We need to add this feature to allow visualising the warehouse,
the pick up locations and the drivers.

For the data model, the analyst may define a structure with the next entities:

1. Warehouse. Each warehouse, apart from the autogenerated identifier, has
a name that serves as a textual identification. Each warehouse also has an
address, an email and a telephone as contact information. Of course, the
location of the warehouse must be also stored. The system also has to keep
the set of trucks belonging to each warehouse, and the pick up locations
associated with it.

2. Truck. Each one has a brand, a model and a license number. Thinking already
in the real-time viewer of the position of the trucks, the analyst also wants
to store the location of each truck. It is possible that some trucks have some
problems and are in the garage being repaired, so they are not active. The
analyst can represent this is information with an enum property. Besides,
every day the trucks are associated with a different set of pick up locations, so
this information also needs to be stored as a relationship with the next entity.

3. Pick up location. The pick up locations can be any kind of business, mostly
shops and offices, so the analyst needs to store the name and opening times
for every location. The address and its location must be also saved.

The application does not require additional geographical information apart from
the location of the items from the data model. These locations can be stored as
points in the database and loaded using an external source, such as OpenStreetMap1,
as the base layer of the map. Therefore, this application does not need a map server.

For every entity described, the analyst has to define lists, forms and maps viewers
that allows the administrator to view and edit the different elements.

1openstreetmap.org

openstreetmap.org

130 Chapter 10. Validation of GISBuilder

The specific optimization for the route calculation must be designed and
implemented manually extending the route calculator components. Since the
routing calculation occurs always at two particular moments of the day, probably a
scheduler that runs it should be also implemented manually. A mobile application
or some method to get the real-time position of the trucks must also be implemented,
but the REST service provided by our product is able to handle the data collections
task in the server side.

In this case, our SPL may not be able to generate the full code of a specific
application. However, this is not the objective as much as to speed up the time to
market of new products. By generating everything except the few mentioned details,
GISBuilder saves the time spent on implementing the most general functionalities
and gives developers a quality product to extend with the specific functionalities.

10.2 Using the specification interface
We have described the product that we want to generate, and the analyst, at this
point, should have analysed the requirements and designed the solution. Therefore,
he or she is able to start configuring the product by accessing the starting page of the
specification interface, seen in Figure B.1. The left menu is used to navigate through
the different sections of the application, where we can configure the product to build
in many ways. The different sections of the specification interface are described next.
All the figures referenced along this chapter are group in Appendix B to improve
their clarity.

• Project: general information of the project, including some global parametriza-
tion.

• Features: selection of features to be included in the product.

• GUI : graphical user interface design.

• Menus: definition of the menus of the product to be built.

• Data Model: design of the data model specification for the product.

• Static Pages: creation of the non-dynamic content of the final product.

• Forms: definition of the forms.

• Lists: definition of the lists.

• Maps: definition of the maps.

10.2. Using the specification interface 131

• Generate: runtime previewing of the product and full source code generation.

Note that the first section allows the analyst to parametrize and globally
configure the project, whereas the second section corresponds to the typical feature
selection in any SPL. The next seven menu entries correspond to what we have called
“parametrization” of the product (see Chapter 7), in which the analyst specifies the
aspects more specific to each particular product, such as the data model design or
the organization of the menus. Finally, the last menu entry allows the analyst to
preview the product in construction directly on the browser, so he or she can check
the result of its specification before really generating the product. In this section,
the analyst can also download the full-source of the product.

Now, we will detail all the functionality of the interface specification, using the
case of use described in the previous section as the running example.

10.2.1 Project: basic data and languages
In this section of the interface, shown in Figure B.1, the analyst indicates certain
parameters that affect the project in a global way, such as its identifier and version
or the welcome page that will be displayed to the end user when he or she accesses
the web application.

In software development there are some common tools that are used to manage
the projects themselves. These tools are called build managers. Among other
functions, they are responsible for managing the set of dependencies of the source
code. In order to carry out this task it is necessary that all the projects are uniquely
identified. By convention, this unequivocal identifier consists of three parts: a group
identifier, which is usually the same in projects of the same development team or
company, an artefact identifier, unique among the projects of the same group, and
a version identifier. All three identifiers are alphanumeric and cannot contain any
spaces or odd symbols except the hyphen symbol (-). The most common two tools
of this nature for Java projects are Maven2 and Gradle3. The products generated
by our SPL use a build manager. Therefore, the analyst must indicate these group,
artefact and version identifiers.

Next we list the parameters to indicate in this section beyond those already
mentioned.

• Project Id: the identifier of the project, which is used when we address the
project. In our example the project id is “Route Manager”.

2https://maven.apache.org/
3https://gradle.org/

https://maven.apache.org/
https://gradle.org/

132 Chapter 10. Validation of GISBuilder

• Version: the version of the loaded project. Each project can have many
versions, each one with its specific configuration. The version is used to
differentiate among them, since all of the versions associated with a project
share the project identifier. GISBuilder does not force any convention for
this parameter, so any alphanumeric string can be the version of a project.
Examples of valid versions are “1.0-SNAPSHOT”, “1”, “4.3.2”, “v1.0” o
“alpha-0.2”. In Figure B.1 the version is “0.1.0”.

• Package Info: the two fields within this group are used to identify the product
within the build manager, as explained above.

– Group Id: the group identifier. In the example, “es.udc.lbd”.

– Artefact Id: the artefact identifier. In the example, we use the project
identifier in lower-case and changing the space for a hyphen, “route-
manager”.

• Index Page: the generated product is a web application and, as such, it has
a web page called index which is the first page to load when a user accesses
the web URL. The index page can be anything, like a static page with some
welcome text, a list of articles in the case of a blog or the user authentication
page in case the web has restricted access. In our tool, the index page can be
a view of any component, so it is defined by two fields:

– Component: the component to which the desired view belongs.

– View: the specific view. At this point of the specification process it is
possible that this view is still undefined. For example, if the analyst
wants to show a static page, it may not be defined yet. In this case,
the analyst can leave this field blank and come back afterwards to this
section to set it. In the example we have choose the authentication page
from the user management component. So the first page that a user will
see when accessing the application will be a page to login.

• Languages: the generated product supports internationalization, so the
analyst indicates the languages required. In Figure B.1, the analyst selects
English, Spanish and Galician. This means that in the final product there
will be three sets of localization files, one for each language. The localization
files provide pairs key/value for every string in the web application, from the
menu items to the properties of the entities.

10.2. Using the specification interface 133

10.2.2 Features: variability selection
In a classic SPL, the selection of features to be included in a product is usually
done just by checking which features are desired. In our case, some of the features
can be selected exactly that way whereas some other feature require some complex
parametrization. In this section of the specification interface, the analyst selects the
features that do not need to be parametrized. The parametrization of the rest of
the features, which are actually design tasks, is addressed through the next sections.

The variability selection of our SPL is essentially a list of checkboxes of different
levels that are associated with the different features that a product may or may
not have. For each checkbox, the name of the feature it represents is displayed. In
addition, each may have a set of derived features, which can only be selected if the
“parent” feature has been previously selected.

The specification interface checks the validity of the feature selection. It also
selects those dependent on each other automatically. For example, the “Static Pages
Management” feature (GUI-SP_Management) requires the “User Management”
feature (UserManagement). Therefore, if we select the first one, the second one
is marked automatically, since it is a dependency. The interface also prevents that
more than one characteristic of the same level is marked if they are alternative
features (choose only one feature). In fact, the feature model initially shows more
than the features of first level, since some of them are already mandatory and
therefore they are automatically selected, as we can see in Figure B.2.

Once the analyst selects one feature, its subfeatures are shown. For example, if
we select the “User Registration” feature (UM_Registration), two new features,
“User Registration By Admin” (UM-R_ByAdmin) and “User Registration By
Anonymous” (UM-R_Anonymous) are displayed, anchored to it. We can see that
in Figure B.3.

In Figure B.4 and Figure B.5 we can see the full selection of features for our
example.

10.2.3 GUI: designing the interface
The graphic aspect of the product to be generated is specified in the section labelled
GUI. This menu entry shows the analyst different base templates to choose among,
as we can see in Figure B.6. The chosen template conditions the number and
position of the menus of the final application.

After choosing the desired template, the analyst configures it with the following
parameters:

• Header : configuration regarding the header. It has the next options:

134 Chapter 10. Validation of GISBuilder

– Type: it can be a text or a image.

– Header Id: if the header is a text, the analyst indicates in this field the
specific text that should appear in the header. The text indicated here
will be also the default key for the localization files.

• Image: if the header is an image, the analyst selects which image he or she
wants to be displayed as a banner of the final application.

• Font: settings relative to the font size. It has the following options:

– Family: the analyst indicates which source family wants to use the
product. The source family is the type of typography used for all the
texts of the final application generated.

– Size: from x-small to x-large, it allows the analyst to choose the relative
font size. The larger you choose, the larger the texts of the interface of
the generated product will be.

• Colors: although the analyst does not choose each color of the product
individually, he or she can choose a set of colors from a set. These colors
will be used in the style of the final application.

• Authentication on Menu: this option only appears if the user management
feature is selected. If the analyst activates it for a product, there will be
a section in the menu of the product reserved to display information about
the logged user or some inputs to log in. That is, an icon to access the
authentication page if the user is not authenticated, and once it is, a link to
access your personal profile and another to close your session. In case the
analyst does not want to have this features in the menu of the product, he or
she can associate it with some menu entry.

10.2.4 Menus
By choosing a template in the GUI section, as described above, the analyst
determines the number and position of menus in the product. For each one, a
new submenu item is shown under the “Menus” entry. For example, in Figure B.6,
the analyst chose a design that only has a top menu. Therefore, under the “Menus”
entry there is only one element called “Top”, as we can see in Figure B.7. Clicking
on this item he or she can start parametrizing this menu. If the analyst had chosen
the second template, then we would have two elements in the side menu to configure
the menus, “Top” and “Left”, and clicking on each one would configure these menus.

10.2. Using the specification interface 135

In Figure B.7 we see the definition of the first menu item, a static page that will
appear with the default title of How to use the application?. We can see that this
menu item is a “View”, i. e. a web page associated with one of the components that
will be included in the final product. In this case, the view is from the component
“Static Page” and its name is “Instructions” (defined below in Section 10.2.6). In
Figure B.8, we can see another menu entry of this kind with a view from the
component “List”.

Another type of menu entry is the submenu, used to group a set of other menu
entries itself. We can see an example in Figure B.9, “Lists”, in which we can see a
set of menu entries linking with views that are, all of them, lists. In Figure B.10 we
show the last kind of menu entry: a link to an external URL.

The form in which the analyst defines each menu entry consists on:

• Item Id: identifier of the menu entry, which is used both to identify the entry
itself and to generate its default label text in the localization files.

• Type: menu entry type, to choose between:

– Menu: entry that opens a submenu with a set of other menu entries, set
also by the analyst. The entries belonging a submenu can be also of any
kind.

– URL: this menu entry creates a link to a web address that the analyst
indicates in a text field.

– View: entry linked to a view provided by a component. The analyst in
this case needs to select:

∗ Component: the component to be visualized, among those available
depending on the selected variability.

∗ View: the view itself from the ones available in the selected
component. There are views that are generated in the specification
interface itself, such as static pages, forms, lists or maps. If the
analyst wants to link one view that has not been created yet, he or
she may leave this field blank and come back later, after the creation
of the view.

• Access: if the user management feature is activated, it is possible to indicate,
for each menu item, which user roles can view and access it. This way, there are
three different checkboxes to control the visibility and access to each entry that
corresponds with the roles of the users: Admin, Logged Users and Anonymous.
The checkboxes are not exclusive and, in fact, in a menu entry is available

136 Chapter 10. Validation of GISBuilder

to more than one of the user roles, the analyst needs to select more than
one role. For example, if a menu item is visible to anyone, then the analyst
should check the three checkboxes. If the analyst only activates the checkbox
for the anonymous user, then the menu entry is only visible before the user
authenticates. This is useful to show, for example, the “Sign in” menu.

10.2.5 Data Model
The analyst specifies the data model of every product by defining the entities,
properties and relationships between them. Since the use of the enum data type
in Java applications is quite common, the analyst can also define enums and then
associate them with the entities.

For our example, only one enum is required, shown in Figure B.11. This is the
page with the list of enums of the application, initially empty until the analyst adds
a new enum using the button labelled with the plus (+) symbol. This would be the
way to operate in most of the next sections of this interface. These enums can be
used as classes in the form to set the properties of the entities.

To design the entities of the product the analyst has a complete form like the one
we see in Figure B.12. In this form the analyst indicates the name of the class itself,
its set of properties and what we have called the display string, which is useful to
indicate how each instance of an entity is represented when it needs to be referred
in the web application. We explain more about how the display string works and
its usefulness after describing the fields to input for each property of an entity.

• Property. The name of the property. It also serves as key and default value
for the localization files.

• Class. The class of the property. The available options are:

– Basic types and common Java classes: Boolean, Long, Long auto-
incremental (mainly useful for primary keys), Integer, Double, Decimal,
String, Date and DateTime.

– GIS-related classes: Point, Line, Polygon, MultiPolygon. . .

– User-defined entities: entities that were previously defined for the
product. In this case, a relationship is established with this entity.

– An enum previously defined.

• Primary Key. The property is the primary key of the entity. Only Long,
Integer or String properties can be primary keys.

10.2. Using the specification interface 137

• Required. Property is required. That is, the value of the property cannot be
null.

• Multiple. The property is a collection of elements (a list).

• Unique. The value of the property is unique. In case the property is not
multiple, the analyst may want the values of this property to be unique. For
example, if we have a list of trucks, we want the string of the license number
to be unique.

• Default. If the property is not multiple and its class can be serialized as a
string (i.e, string, integer, enums. . .), the analyst can indicate a default value.

• Bidirectional. If the property is another entity, the relation can be bidirec-
tional. In this case, the analyst indicates the name of the property of the
target entity, which must also be indicated as bidirectional in the form of the
other entity.

• Relationship owner. If the relationship is bidirectional, one of the sides must
be the owner of the relationship.

Regarding the display string field, we can explain its usefulness better with an
example. In the web application that will be generated from this specification,
it is possible that, at some point, an instance of a truck needs to be displayed
as a “readable” string which provides the user enough information as to identify
the specific instance. One choice would be to use always the primary key, as we
know that this property will always identify an instance of an entity unequivocally.
However, we consider that allowing the analyst to set which is this text benefits
the final user. For example, for identifying a truck probably it is better to use
the license number than the identification number, automatically generated by the
database. Therefore, the analyst can set the display string to “$licenseNumber”,
and in the final application the trucks will be referred as “1234BCD” or “6666JJJ”.
If the analyst prefers to represent each truck with its brand and model, the display
string would be “$brand $model”.

Other examples of entities definition are shown in Figure B.13 and in Figure B.14,
and we can see the complete list of entities defined for this example in Figure B.15.

10.2.6 Static Pages
The static pages are defined using a “WYSIWYG” editor that provides the classical
options of any HTML editor of the style: bold, italic, underlined, hyperlinks,

138 Chapter 10. Validation of GISBuilder

numeric and dot lists, citations, tables. . . This kind of editors are very simple to
use and allow the user, in this case the analyst, to design the page using graphical
elements instead of directly editing the HTML code. In addition, the content of
the page is displayed as it would be in the final application at the same the edition
occurs. For advanced use cases, the possibility of directly editing the HTML is also
provided.

In the page listing the static pages, shown in Figure B.17, the analyst can see
which elements are already linked with some menu entry. This serves as a visual
aid to the analyst when configuring the various menus of the application, as he or
she can easily notice the unlinked elements. This behaviour is repeated in the rest
of the lists.

10.2.7 Forms
The analyst can define a set of forms so that users can view, create, edit and delete
elements manually from any of the previously defined entities. Next we describe
the different options:

• Form Id: the identifier of the form to be generated, so it can be referenced in
other sections of the specification interface.

• Entity: the name of the entity of the data model, which must be already
specified, for which the analyst is creating a form. When an entity is selected,
the list of properties or attributes that can be shown in the form are updated,
and the analyst can select which ones the final user can view and/or edit using
this form.

• The analyst has a number of options to indicate the functionality of the form:

– Creatable: the form serves to create new elements of the corresponding
entity.

– Editable: using the form the end user can edit existing elements of the
corresponding entity.

– Removable: the form allows deleting existing items. In case this option
is checked, the analyst also decides if the end user has a confirmation
modal alert before proceeding to the effective deletion.

In Figure B.18 we can see the complete specification of a form that will allow
the user to visualize, create, edit and eliminate elements of the Truck entity. We
have explained in Section 10.1 that in this application the information about the

10.2. Using the specification interface 139

location of the trucks needs to be updated in real-time using some kind of mobile
device. Therefore, the analyst does not want that the location of the trucks can be
changed manually, and he or she can disable that feature using the options provided,
as we can see in Figure B.18. The same way, the pick up locations in which the
truck has to stop are automatically set when calculating the routes, and the analyst
does not want the user able to change them manually. The rest of elements remain
active for edition, except for the automatically generated identifier that cannot be
edited by default.

In Figure B.19 we can see the specification of a form for the Warehouse entity.
In this case, the properties “trucks” and “pickUpLocations” cannot be showed nor
edited in the form because they are both bidirectional relationship and the owner
side is not this entity. Allowing to view or edit these properties in the form would
require some ad-hoc implementation that cannot be automatically abstracted and
generated without causing negative side effects. So the analyst, in this case, lets
the user to edit all the properties that can be enabled, but he or she disables the
possibility of removing a warehouse.

In some occasions the analyst would like to define a form only allowing the
visualization of a small set of properties, as the one in Figure B.20. This is useful
to use the form to show, as a pop-up, in a map associated with the same entity. An
example is shown in Section 10.2.9.

10.2.8 Lists
The listings available in the application are also defined by the analyst in the
specification interface. For each list the analyst must indicate:

• List Id: the identifier of the list. This field is used to identify the list in the
other sections of the specification interface and to generate the pair key/value
in the localization files corresponding to the title of the list.

• Entity: the entity to list. That is, the list will show the elements of the
selected entity.

• Form: optionally, a form associated with the list. If the analyst chooses one,
next to each listed item appears a link to the form showing the particular
element.

• Link to remove: the analyst can add a link to each row that allows deleting
the item directly.

• Static Filter : the analyst has the possibility to filter the visible elements in a
list. To do this, he or she uses this property to define logical statements, using

140 Chapter 10. Validation of GISBuilder

a basic logical grammar that can receive the element properties as parameters,
that can be evaluated to true or false. For example, in Figure B.21 we show
the definition of a list of the trucks which have a concrete status property. The
property status of the entity Truck is of the type TruckStatus, an enum that
can have the following values: ACTIVE and GARAGE. If the analyst wants
to show only the trucks whose status is ACTIVE, he or she can do it with the
static filter field, using the statement $status = ACTIVE. In addition to the
equal operator (=), there are operators such as greater than (>), less than (<)
and the conjunctions “and” and “or”. To reference properties of the entity, as
in the previous example, we can write its name with the dollar symbol ahead
$. If we want to list only active trucks but only those whose id is less than 300,
we could indicate the following filter: $status = ACTIVE AND $id < 300.

• Properties: the analyst must indicate which properties of the entity are
displayed in the list. In addition, if any of the properties chosen is in turn an
entity previously defined in the data model, the analyst can associate a form
(using the “Form” drop-down), so the final user can access the form of the
related instance by clicking on the value of the property within the list. In
Figure B.22, each row of the generated list shows a pick up location, and the
value of column “warehouse” will be a link to the associated form.

• Sorting: the analyst can decide if the list is sortable or not by columns.

• Searching: the list provides the functionality to perform basic searches on the
elements of the list.

• Filtering: the list allows filtering the elements by column.

10.2.9 Map viewers
The analyst can configure map viewers on entities that include some geographic
property. Figure B.23 shows the design of the form to define a map with all the
options that the analyst has to input. The different options are described next.

• Map Id: identifier of the map, which is unique and serves to identify the map
in the other sections of the specification interface. It is also used to generate
the pair key/value in the localization files.

• Entity: entity shown on the map. Obviously, only those that have some
geographic property can be chosen, since otherwise they could not be
represented on a map.

10.2. Using the specification interface 141

• Geometry: geographic property that will be used to represent the entity in the
map, since it may happen that the same entity has more than one geographic
property. Depending on the class of property chosen, the element will be
represented accordingly. For example, if it is a point, it will be represented
by a marker, whereas if it is a polygon we will see an area drawn on the map.

• Base Layer : base map on which to represent the elements. That is, the
background map, being able to use servers like Open Street Map or similar
ones.

• Popup View Form: the end user, on each item shown in the map, can click
to get specific information about it. This information will be displayed in a
floating window over the map and particularly it will display the properties
that have been configured in the form indicated in this field.

• Form: the analyst can add a link on each element to access a form related to
them. In that case, in the floating window that appears when clicking on an
element it will be shown a link that takes the user to the complete form, from
where you can edit or delete the item.

• Static Filter : as we showed before for lists, the analyst can filter the elements
that are shown on the map using logical operators on the properties of the
entity. In the previous section we have already explained how the value of this
filter is specified. An example of this feature is shown in Figure B.24, where
the analyst decides to show only the active trucks.

• Searching: the analyst can enables a searching engine to allow the user
to perform textual searches on the elements of the map, as we can see in
Figure B.25.

10.2.10 Product Preview
In the last section, the analyst can generate the source code of the resulting product
using the “Download the Source Files” button that we see in the upper right.
However, the analyst has also the possibility of running a mock version of the web
interface directly on the browser, without actually installing or deploying anything
on the server side. For example, we can see the welcome screen chosen for our
example (user authentication) in Figure B.27.

Of course, not all options will be available in this mode, since it is running
without server and all requests are being simulated in memory directly. That is, if
we use a form to create a truck (Figure B.28), the element is stored into memory,

142 Chapter 10. Validation of GISBuilder

and the application can show it like the final application should behave (Figure B.29.
We can also preview the static pages, for example, as seen in Figure B.30.

Although it is not possible to test the functionality of most components but
simply its visual aspect, this preview interface component will be very useful to the
analyst when designing the applications to generate, since it will allow to save a lot
of time redeploying the products for changes related to the interface design.

Part IV

Summary of the thesis

143

11
Conclusions and Future Work

11.1 Summary
Software product lines engineering (SPLE) is a field trying to industrialize the
software development. Its application, when feasible, not only improves the quality
of the code but also decrements the cost both in time and in work. Geographic
information systems (GIS) is a field in which there is a strong standardization and
many software components can be reused as they are in different products. This
is a nice scenario to pursue the benefits of SPLE. However, there are modules in
GIS applications that need to be generated specifically for each product depending
on some specification, which is, in exchange, a scenario more adequate for model
driven engineering (MDD). Our main goal was to combine these two fields, SPLE
and MDD, to produce web-based GIS applications more efficiently and with greater
quality.

In order to prove that we have had the collaboration of GIS experts from a
Enxenio, a software development company, and we have defined a methodology to
benefit from its contribution. The first contribution of this work is the definition
of a new methodology for the application of software product line engineering over
a new domain. This methodology takes into account previous methodologies that
combined work in synergy to complement each others, as well as specific tasks to

145

146 Chapter 11. Conclusions and Future Work

explicitly handle the knowledge from experts.
Using this methodology, we have designed a software product line for web-based

geographic information systems, which includes itself two other contributions:

• We have identified a complete and exhaustive set of features for generic web-
based geographic information systems, taking into account different existing
products.

• We have defined an architecture for web-based geographic information systems
based on an architecture of reference, specified in GIS standards, and enhanced
with features from architectures of existing products.

Our last contribution is the design and the implementation of a tool, GISBuilder,
following the specification extracted from our previous process. This tool has
been developed with web technologies, it can be used by analyst with almost no
knowledge about SPLE and the generated products can be incorporated to the
software development processes without any problem. GISBuilder uses two libraries
that are contributions themselves:

• A variability handler able to define, import and export feature models and
that can run operations such as checking if a feature selection corresponds to
a valid product.

• A derivation engine that follows the annotative approach with many advan-
tages compared to the state of the art in SPL implementation techniques.

• A runtime preview component that allows our tool to show, in the browser, a
preview of the projects before actually generating them.

11.2 Future Work
The next steps of our research are:

• Implementation of the features not implemented yet, as well as evolution and
maintenance of the current components taking into account the products using
them.

• Design of a methodology to confront the evolution of the products and the
platform in a synchronized way. One approach in this direction is the usage
of a version control system, like git, to support this methodology.

11.2. Future Work 147

• Design a integrated system based on continuous integration to make the tool
completely independent of the deployment, even for full-stack deployment.
This system must work in sync with the evolution methodology so a
development team can work on a product, move the upgrades done to the
platform code and easily redeploy the product again with the new assets.

• Upgrade the variability handler with more operations from [BSRC10], since
there is not any tool that provides all of them.

• Apply the same methodology on the context of a different product family.

• In the context of web engineering, it would be interesting to go beyond
in the runtime live preview capability and to provide a framework for live
programming the products, showing the running products on one window in
the browser and the specification interface in a different one.

148 Chapter 11. Conclusions and Future Work

A
JSON Schema for our tool

In this appendix we show the JSON Schema that describes and validates the
GISBuilder DSL.

1 {
2 " $schema ": "http:// json - schema .org/draft -04/ schema #",
3 " title ": "A GISBuilder Project Specification ",
4 "type": " object ",
5 " additionalProperties ": false ,
6 " properties ": {
7 " features ": {
8 " description ": "List of the selected features for the product ",
9 "type": " array ",

10 " items ": {
11 " description ": " Feature name",
12 "type": " string "
13 }
14 },
15 " parameters ": {
16 " title ": " Parameters ",
17 " description ": " Component parameters and configuration ",
18 "type": " object ",
19 " additionalProperties ": false ,
20 " properties ": {
21 " global ": {
22 "$ref": "#/ definitions / global "

149

150 Appendix A. JSON Schema for our tool

23 },
24 "gui": {
25 "$ref": "#/ definitions /gui"
26 },
27 " menus ": {
28 "type": " array ",
29 " items ": {
30 "$ref": "#/ definitions /menu"
31 }
32 },
33 " dataModel ": {
34 "$ref": "#/ definitions / dataModel "
35 },
36 " statics ": {
37 "type": " array ",
38 " items ": {
39 "$ref": "#/ definitions / staticPage "
40 }
41 },
42 " forms ": {
43 "type": " array ",
44 " items ": {
45 "$ref": "#/ definitions /form"
46 }
47 },
48 " lists ": {
49 "type": " array ",
50 " items ": {
51 "$ref": "#/ definitions /list"
52 }
53 },
54 "maps": {
55 "type": " array ",
56 " items ": {
57 "$ref": "#/ definitions /map"
58 }
59 }
60 },
61 " required ": [
62 " global ",
63 " dataModel ",
64 "gui",
65 " menus ",
66 " statics ",
67 " forms ",
68 " lists ",
69 "maps"
70]
71 }
72 },
73 " required ": [

151

74 " features ",
75 " parameters "
76],
77 " definitions ": {
78 " global ": {
79 " title ": " Basic project data",
80 "type": " object ",
81 " additionalProperties ": false ,
82 " properties ": {
83 "name": {
84 " description ": " Project name",
85 "type": " string "
86 },
87 " version ": {
88 " description ": " Current version ",
89 "type": " string "
90 },
91 " packageInfo ": {
92 " description ": "Maven -like package info",
93 "$ref": "#/ definitions / packageInfo "
94 },
95 " index ": {
96 " description ": " Welcome page of the application ",
97 "$ref": "#/ definitions / componentView "
98 },
99 " languages ": {

100 " description ": "List of the languages enabled for the project ",
101 "type": " array ",
102 " items ": {
103 " description ": " Language name",
104 "type": " string "
105 }
106 }
107 },
108 " required ": [
109 "name",
110 " version ",
111 " packageInfo ",
112 " index ",
113 " languages "
114]
115 },
116 " packageInfo ": {
117 " title ": " Package info",
118 " description ": "Maven -like package info to identify the application ",
119 "type": " object ",
120 " additionalProperties ": false ,
121 " properties ": {
122 " group ": {
123 " description ": "Maven - style group for the project ",
124 "type": " string "

152 Appendix A. JSON Schema for our tool

125 },
126 " artifact ": {
127 " description ": "Maven - style artifact for the project ",
128 "type": " string "
129 }
130 },
131 " required ": [
132 " group ",
133 " artifact "
134]
135 },
136 " componentView ": {
137 " title ": " Component view",
138 " description ": " Reference to a view of a component . It can refer an

static view, like the authentication page, or an previously specified
element , like a form",

139 "type": " object ",
140 " additionalProperties ": false ,
141 " properties ": {
142 " component ": {
143 " description ": " Component name",
144 "type": " string "
145 },
146 "view": {
147 " description ": "Name of the element or view",
148 "type": " string "
149 }
150 },
151 " required ": [
152 " component ",
153 "view"
154]
155 },
156 " dataModel ": {
157 " title ": "Data model ",
158 " description ": " Specification of the data model , includying entities and

enums ",
159 "type": " object ",
160 " additionalProperties ": false ,
161 " properties ": {
162 " enums ": {
163 "type": " array ",
164 " description ": "List of the enums that exist in the product ",
165 " items ": {
166 "$ref": "#/ definitions /enum"
167 }
168 },
169 " entities ": {
170 " description ": "List of the entities to be managed by the product ",
171 "type": " array ",
172 " items ": {

153

173 "$ref": "#/ definitions / entity "
174 }
175 }
176 },
177 " required ": [
178 " enums ",
179 " entities "
180]
181 },
182 "enum": {
183 " title ": "Enum",
184 "type": " object ",
185 " additionalProperties ": false ,
186 " properties ": {
187 "name": {
188 " description ": "Name of the enum",
189 "type": " string "
190 },
191 " values ": {
192 " description ": " Different values of the enum",
193 "type": " array ",
194 " items ": {
195 "type": " string "
196 }
197 }
198 },
199 " required ": [
200 "name",
201 " values "
202]
203 },
204 " entity ": {
205 " title ": " Entity ",
206 "type": " object ",
207 " additionalProperties ": false ,
208 " properties ": {
209 "name": {
210 " description ": "Name of the entity . Must be unique ",
211 "type": " string "
212 },
213 " properties ": {
214 " description ": " Properties of the entity ",
215 "type": " array ",
216 " items ": {
217 "$ref": "#/ definitions / property "
218 }
219 },
220 " displayString ": {
221 " description ": " String representation of an instance of the entity .

This will be used in the final product in every ocassion where this entity
is referred (in forms or lists). Any string can be set for this value, and

154 Appendix A. JSON Schema for our tool

properties of the entity can be included by naming them with the prefix $.
For example , if the entity has the properties \" id \" and \" name \", a
possible value for \" displayString \" may be \" entity $id: $name \", which be
translated , for example , as \" entity 123: A name \" in the final product web
interface ",

222 "type": " string "
223 }
224 },
225 " required ": [
226 "name",
227 " properties ",
228 " displayString "
229]
230 },
231 " property ": {
232 " title ": " Property ",
233 "type": " object ",
234 " additionalProperties ": false ,
235 " properties ": {
236 "name": {
237 " description ": "Name of the property . Must be unique within the

entity ",
238 "type": " string "
239 },
240 " class ": {
241 " description ": " Class of the property . It can be one of the

following : \n* ** Basic types **: Boolean , Long, Long (autoinc), Integer ,
Double , Decimal , String , Date, DateTime \n* If GIS is enabled , ** geographic
types **: Poing , MultiPolygon ,... \n* Any other previously defined
** entity ** \n* A previously defined ** enum ** \n",

242 "type": " string "
243 },
244 "pk": {
245 " description ": "True for the property that is the primary key of the

entity . Only Long, Integer or String properties can be primary key, and it
implies * unique * and *not multiple *",

246 "type": " boolean ",
247 " default ": false
248 },
249 " required ": {
250 " description ": "True if the property must not be null. It implies

*not multiple *",
251 "type": " boolean ",
252 " default ": false
253 },
254 " multiple ": {
255 " description ": "True in case this property is a collection . Otherwise

it will be a single element . It implies *not unique *",
256 "type": " boolean ",
257 " default ": false
258 },

155

259 " unique ": {
260 " description ": "True if the value of the property cannot be repeated

for any other instance of the entity ",
261 "type": " boolean ",
262 " default ": false
263 },
264 " default ": {
265 " description ": " Default value of the property . It only can be set on

basic types and enums ",
266 "type": " string "
267 },
268 " bidirectional ": {
269 " description ": "In case the property type is another entity , the

relation can be bidirectional , being this value the name of the property
that matches the relationship in the other entity . The other property must
be specified as well, and its \" bidirectional \" value must be accordingly
set",

270 "type": " string "
271 }
272 },
273 " required ": [
274 "name",
275 " class "
276]
277 },
278 "gui": {
279 " title ": "GUI",
280 " description ": " Parametrization on the graphic interface of the product .

This section is very flexible depending on each one of the existing
designs . The number and position of menus is related to the design chosen ,
but the menu configuration is done in the \" menus \" section ",

281 "type": " object ",
282 " additionalProperties ": false ,
283 " properties ": {
284 " design ": {
285 " description ": "The chosen design among the existing ones",
286 "type": " integer "
287 },
288 " settings ": {
289 " title ": " Design Settings ",
290 " description ": " Configuration for the design ",
291 "type": " object ",
292 " additionalProperties ": false ,
293 " properties ": {
294 "font": {
295 " title ": "Font Settings ",
296 " description ": " Parametrization on the font style of the

application ",
297 "type": " object ",
298 " additionalProperties ": false ,
299 " properties ": {

156 Appendix A. JSON Schema for our tool

300 " family ": {
301 " description ": " Family of the font to use",
302 "type": " string "
303 },
304 "size": {
305 " description ": "Size of the fonts within the application . All

the font sizes are related to this configuration , meaning not every one
will have exactly this size but a size relative to it",

306 "type": " string "
307 }
308 }
309 },
310 " colorset ": {
311 " description ": "Set of colors used in the style of the

application ",
312 "type": " string "
313 },
314 " authenticationOnMenu ": {
315 " description ": "If user management is active , whether there is

user session related info on the menu",
316 "type": " boolean "
317 },
318 " header ": {
319 " title ": " Header settings ",
320 " description ": " Parametrization of the header of the product ",
321 " additionalProperties ": false ,
322 " properties ": {
323 "type": {
324 " description ": "If the header is just a text or if it is an

image ",
325 "type": " string ",
326 " pattern ": "TEXT| IMAGE "
327 },
328 "text": {
329 " description ": " Default text of the header , and identifier of

the language messages ",
330 "type": " string "
331 },
332 " image ": {
333 " description ": "URI of the image of the header ",
334 "type": " string "
335 }
336 }
337 }
338 }
339 }
340 },
341 " required ": [
342 " design ",
343 " settings ",
344 " header "

157

345]
346 },
347 "menu": {
348 " title ": " Menus ",
349 " description ": " Configuration of the initial menus of the application ",
350 "type": " object ",
351 " additionalProperties ": false ,
352 " properties ": {
353 "id": {
354 " description ": " Identifier of the menu to configure . It must be one

of the existing in the design ",
355 "type": " string "
356 },
357 " elements ": {
358 " description ": " Configuration of the items of the menu",
359 "type": " array ",
360 " items ": {
361 "$ref": "#/ definitions / menuItem "
362 }
363 }
364 },
365 " required ": [
366 "id",
367 " elements "
368]
369 },
370 " menuItem ": {
371 " title ": "Menu item",
372 " oneOf ": [
373 {
374 "$ref": "#/ definitions / viewMenuItem "
375 },
376 {
377 "$ref": "#/ definitions / urlMenuItem "
378 },
379 {
380 "$ref": "#/ definitions / menuMenuItem "
381 }
382]
383 },
384 " menuAccess ": {
385 " title ": "Menu element access control ",
386 " description ": "If the user manager is enabled , using this object the

access to the different elements of the menu can be restricted ",
387 " additionalProperties ": false ,
388 " properties ": {
389 " admin ": {
390 " description ": " Whether the menu element is shown to admin users ",
391 "type": " boolean ",
392 " default ": true
393 },

158 Appendix A. JSON Schema for our tool

394 " logged ": {
395 " description ": " Whether the menu element is shown to logged users ",
396 "type": " boolean ",
397 " default ": true
398 },
399 " anonymous ": {
400 " description ": " Whether the menu element is shown to not logged

users ",
401 "type": " boolean ",
402 " default ": true
403 }
404 },
405 " required ": [
406 " admin ",
407 " logged ",
408 " anonymous "
409]
410 },
411 " viewMenuItem ": {
412 " title ": "View",
413 " description ": "This menu item links a view of the existing componentes ",
414 "type": " object ",
415 " additionalProperties ": false ,
416 " properties ": {
417 " order ": {
418 " description ": " Order of the item within the current menu",
419 "type": " integer ",
420 " minimum ": 1
421 },
422 "id": {
423 " description ": " Identifier of the menu item",
424 "type": " string "
425 },
426 "type": {
427 "type": " string ",
428 " description ": "Type of the menu",
429 " pattern ": "VIEW"
430 },
431 "view": {
432 " description ": "View to link",
433 "$ref": "#/ definitions / componentView "
434 },
435 " access ": {
436 " description ": " Element access from users ",
437 "$ref": "#/ definitions / menuAccess "
438 }
439 },
440 " required ": [
441 " order ",
442 "id",
443 "type",

159

444 "view"
445]
446 },
447 " urlMenuItem ": {
448 " title ": "Link",
449 " description ": "This menu item links an URL",
450 "type": " object ",
451 " additionalProperties ": false ,
452 " properties ": {
453 " order ": {
454 " description ": " Order of the item within the current menu",
455 "type": " integer ",
456 " minimum ": 1
457 },
458 "id": {
459 " description ": " Identifier of the menu item",
460 "type": " string "
461 },
462 "type": {
463 "type": " string ",
464 " description ": "Type of the menu",
465 " pattern ": "URL"
466 },
467 "url": {
468 " description ": "URL to link",
469 "type": " string "
470 },
471 " access ": {
472 " description ": " Element access from users ",
473 "$ref": "#/ definitions / menuAccess "
474 }
475 },
476 " required ": [
477 " order ",
478 "id",
479 "type",
480 "url"
481]
482 },
483 " menuMenuItem ": {
484 " title ": " Submenu ",
485 " description ": "This menu is itself another menu",
486 "type": " object ",
487 " additionalProperties ": false ,
488 " properties ": {
489 " order ": {
490 " description ": " Order of the item within the current menu",
491 "type": " integer ",
492 " minimum ": 1
493 },
494 "id": {

160 Appendix A. JSON Schema for our tool

495 " description ": " Identifier of the menu item",
496 "type": " string "
497 },
498 "type": {
499 "type": " string ",
500 " description ": "Type of the menu",
501 " pattern ": "MENU"
502 },
503 " elements ": {
504 " description ": " Elements of the submenu ",
505 "type": " array ",
506 " items ": {
507 "$ref": "#/ definitions / menuItem "
508 }
509 },
510 " access ": {
511 " description ": " Element access from users ",
512 "$ref": "#/ definitions / menuAccess "
513 }
514 },
515 " required ": [
516 " order ",
517 "id",
518 "type",
519 " elements "
520]
521 },
522 " staticPage ": {
523 " title ": " Static page",
524 " description ": "A static page, which is an HTML that can be link from the

menu",
525 "type": " object ",
526 " additionalProperties ": false ,
527 " properties ": {
528 "id": {
529 " description ": " Identifier of the page",
530 "type": " string "
531 },
532 "html": {
533 " description ": "HTML code of the page",
534 "type": " string "
535 }
536 },
537 " required ": [
538 "id",
539 "html"
540]
541 },
542 "form": {
543 " title ": "Form",
544 "type": " object ",

161

545 " description ": " Specification of a form",
546 " additionalProperties ": false ,
547 " properties ": {
548 "id": {
549 " description ": " Identifier of the form",
550 "type": " string "
551 },
552 " entity ": {
553 " description ": " Entity related ",
554 "type": " string "
555 },
556 " creatable ": {
557 " description ": " Whether this form can be used to create new items ",
558 "type": " boolean ",
559 " default ": true
560 },
561 " editable ": {
562 " description ": " Whether this form can be used to edit existing items ",
563 "type": " boolean ",
564 " default ": true
565 },
566 " removable ": {
567 " description ": " Whether the item viewed with this form can be

removed ",
568 "type": " boolean ",
569 " default ": true
570 },
571 " confirmation ": {
572 " description ": "True if a confirmation warning must be shown before

removing the element ",
573 "type": " boolean ",
574 " default ": false
575 },
576 " properties ": {
577 " description ": "List of the properties that appear on the form",
578 "type": " array ",
579 " items ": {
580 "$ref": "#/ definitions / formProperty "
581 }
582 }
583 },
584 " required ": [
585 "id",
586 " entity ",
587 " creatable ",
588 " editable ",
589 " removable ",
590 " properties "
591]
592 },
593 " formProperty ": {

162 Appendix A. JSON Schema for our tool

594 " title ": "Form property ",
595 " description ": "Each property of the entity shown in the form. For each

one, it can be selected to allow its viewing and/or its edition / creation ",
596 "type": " object ",
597 " additionalProperties ": false ,
598 " properties ": {
599 " property ": {
600 " description ": "The name of the property ",
601 "type": " string "
602 },
603 " viewing ": {
604 " description ": " Whether if the property is viewable ",
605 "type": " boolean ",
606 " default ": true
607 },
608 " editing ": {
609 " description ": " Whether if the property is editable and creatable , in

case the form is",
610 "type": " boolean ",
611 " default ": true
612 }
613 },
614 " required ": [
615 " property ",
616 " viewing ",
617 " editing "
618]
619 },
620 "list": {
621 " title ": "List",
622 "type": " object ",
623 " additionalProperties ": false ,
624 " properties ": {
625 "id": {
626 " description ": " Identifier of the list",
627 "type": " string "
628 },
629 " entity ": {
630 " description ": " Entity related ",
631 "type": " string "
632 },
633 "form": {
634 " description ": "The form that is linked to the list for viewing ,

creating , editing or removing elements ",
635 "type": " string "
636 },
637 " removeLink ": {
638 " description ": "If true, then a link to remove each element appears

in the list",
639 "type": " boolean ",
640 " default ": false

163

641 },
642 " staticFilter ": {
643 " description ": "The analyst can chose to apply static filters

affecting all the data listed . For example , the value for a enum property
can be set so only the elements satisfying that condition are shown ",

644 "type": " string "
645 },
646 " sorting ": {
647 " description ": "True if the user can sort the list by column ",
648 "type": " boolean ",
649 " default ": false
650 },
651 " filtering ": {
652 " description ": "True if the user can apply filters to the columns of

the list",
653 "type": " boolean ",
654 " default ": false
655 },
656 " searching ": {
657 " description ": "True if the user can do simple searches over the

listed data",
658 "type": " boolean ",
659 " default ": false
660 },
661 " properties ": {
662 " description ": "List of the properties that are shown on the list",
663 "type": " array ",
664 " items ": {
665 "$ref": "#/ definitions / listColumn "
666 }
667 }
668 },
669 " required ": [
670 "id",
671 " entity ",
672 "form",
673 " properties "
674]
675 },
676 " listColumn ": {
677 " title ": " Column ",
678 "type": " object ",
679 " additionalProperties ": false ,
680 " properties ": {
681 " property ": {
682 " description ": "Name of the property ",
683 "type": " string "
684 },
685 "form": {
686 " description ": "If the property is an entity , a form can be set and

it will appear as a link",

164 Appendix A. JSON Schema for our tool

687 "type": [
688 " string ",
689 "null"
690]
691 }
692 },
693 " required ": [
694 " property "
695]
696 },
697 "map": {
698 " title ": "Map",
699 "type": " object ",
700 " additionalProperties ": false ,
701 " properties ": {
702 "id": {
703 " description ": " Identifier of the map",
704 "type": " string "
705 },
706 " entity ": {
707 " description ": " Entity related ",
708 "type": " string "
709 },
710 "geom": {
711 " description ": " Geographic property of the entity used to represent

it in the map",
712 "type": " string "
713 },
714 " baselayer ": {
715 " description ": "Base layer of the map",
716 "type": " string "
717 },
718 " popupForm ": {
719 " description ": "A viewing form shown as a popup with a link to the

propper form, if not null",
720 "type": " string "
721 },
722 "form": {
723 " description ": "The form that is linked to the map for viewing ,

creating , editing or removing elements ",
724 "type": " string "
725 },
726 " staticFilter ": {
727 " description ": "The analyst can chose to apply static filters

affecting the data loaded in the map",
728 "type": " string "
729 },
730 " searching ": {
731 " description ": "True if the user can do simple searches over the

listed data",
732 "type": " boolean ",

165

733 " default ": false
734 }
735 },
736 " required ": [
737 "id",
738 " entity ",
739 "geom",
740 " baselayer "
741]
742 }
743 }
744 }

166 Appendix A. JSON Schema for our tool

B
GISBuilder screenshots

In this appendix we have grouped together all the screenshots mentioned in
Section 10.2 to show them as clearly as possible.

167

168 Appendix B. GISBuilder screenshots

F
ig

ur
e

B
.1

:
G

lo
ba

ld
at

a
an

d
pa

ra
m

et
riz

at
io

n
of

th
e

pr
oj

ec
t

169

Figure B.2: Initial feature model

170 Appendix B. GISBuilder screenshots

Figure B.3: Enabling user registration feature

171

Figure B.4: Full variability selection (I)

172 Appendix B. GISBuilder screenshots

Figure B.5: Full variability selection (II)

173

F
ig

ur
e

B
.6

:
Pa

ra
m

et
riz

at
io

n
of

th
e

gr
ap

hi
ca

lu
se

r
in

te
rf

ac
e

174 Appendix B. GISBuilder screenshots

F
ig

ur
e

B
.7

:
Ex

am
pl

e
of

m
en

u
co

nfi
gu

ra
tio

n
-e

di
tin

g
a

V
ie

w
el

em
en

t

175

F
ig

ur
e

B
.8

:
Ex

am
pl

e
of

m
en

u
co

nfi
gu

ra
tio

n
-e

di
tin

g
a

V
ie

w
el

em
en

t
w

ith
re

st
ric

te
d

ac
ce

ss

176 Appendix B. GISBuilder screenshots

F
ig

ur
e

B
.9

:
Ex

am
pl

e
of

m
en

u
co

nfi
gu

ra
tio

n
-e

di
tin

g
a

M
en

u
el

em
en

t

177

F
ig

ur
e

B
.1

0:
Ex

am
pl

e
of

m
en

u
co

nfi
gu

ra
tio

n
-e

di
tin

g
a

U
rl

el
em

en
t

178 Appendix B. GISBuilder screenshots

F
ig

ur
e

B
.1

1:
D

at
a

m
od

el
:

se
ct

io
n

to
de

fin
e

th
e

en
um

s
of

th
e

ap
pl

ic
at

io
n

179

F
ig

ur
e

B
.1

2:
D

at
a

m
od

el
:

Tr
uc

k
en

tit
y

de
fin

iti
on

180 Appendix B. GISBuilder screenshots

F
ig

ur
e

B
.1

3:
D

at
a

m
od

el
:

Pi
ck

U
pL

oc
at

io
n

en
tit

y
de

fin
iti

on

181

F
ig

ur
e

B
.1

4:
D

at
a

m
od

el
:

W
ar

eh
ou

se
en

tit
y

de
fin

iti
on

182 Appendix B. GISBuilder screenshots

F
ig

ur
e

B
.1

5:
D

at
a

m
od

el
:

a
lis

t
w

ith
th

e
th

re
e

en
tit

ie
s

pr
ev

io
us

ly
de

fin
ed

183

F
ig

ur
e

B
.1

6:
St

at
ic

pa
ge

s
W

Y
SI

W
Y

G
ed

ito
r

184 Appendix B. GISBuilder screenshots

F
ig

ur
e

B
.1

7:
Li

st
of

th
e

st
at

ic
pa

ge
s

to
be

cr
ea

te
d

fo
r

th
e

ap
pl

ic
at

io
n

185

F
ig

ur
e

B
.1

8:
D

efi
ni

ng
a

fo
rm

to
cr

ea
te

,e
di

t
an

d
re

m
ov

e
tr

uc
ks

186 Appendix B. GISBuilder screenshots

F
ig

ur
e

B
.1

9:
D

efi
ni

ng
a

fo
rm

to
cr

ea
te

an
d

ed
it

w
ar

eh
ou

se
s

187

F
ig

ur
e

B
.2

0:
D

efi
ni

ng
a

sim
pl

e
fo

rm
th

at
on

ly
sh

ow
s

th
re

e
pr

op
er

tie
s

of
th

e
pi

ck
up

lo
ca

tio
ns

188 Appendix B. GISBuilder screenshots

F
ig

ur
e

B
.2

1:
D

efi
ni

ng
a

lis
t

to
sh

ow
on

ly
th

e
ac

tiv
e

tr
uc

ks

189

F
ig

ur
e

B
.2

2:
D

efi
ni

ng
a

lis
t

to
sh

ow
th

e
pi

ck
up

lo
ca

tio
ns

190 Appendix B. GISBuilder screenshots

F
ig

ur
e

B
.2

3:
C

re
at

in
g

a
ne

w
m

ap
fo

r
th

e
ap

pl
ic

at
io

n

191

F
ig

ur
e

B
.2

4:
Sp

ec
ify

in
g

a
m

ap
to

vi
su

al
iz

e
th

e
tr

uc
ks

m
an

ag
ed

by
th

e
ap

pl
ic

at
io

n

192 Appendix B. GISBuilder screenshots

F
ig

ur
e

B
.2

5:
Sp

ec
ify

in
g

a
m

ap
to

vi
su

al
iz

e
th

e
pi

ck
up

lo
ca

tio
ns

m
an

ag
ed

by
th

e
ap

pl
ic

at
io

n

193

F
ig

ur
e

B
.2

6:
Se

ct
io

n
to

pr
ev

ie
w

an
d

ge
ne

ra
te

th
e

pr
od

uc
ts

194 Appendix B. GISBuilder screenshots

F
ig

ur
e

B
.2

7:
Pr

ev
ie

w
in

g
a

pr
od

uc
t,

sh
ow

in
g

th
e

au
th

en
tic

at
io

n
pa

ge

195

F
ig

ur
e

B
.2

8:
Pr

ev
ie

w
in

g
a

pr
od

uc
t,

tr
yi

ng
to

cr
ea

te
a

ne
w

tr
uc

k

196 Appendix B. GISBuilder screenshots

F
ig

ur
e

B
.2

9:
Pr

ev
ie

w
in

g
a

pr
od

uc
t,

lis
tin

g
th

e
pi

ck
up

lo
ca

tio
ns

197

F
ig

ur
e

B
.3

0:
Pr

ev
ie

w
in

g
a

pr
od

uc
t,

sh
ow

in
g

a
st

at
ic

pa
ge

198 Appendix B. GISBuilder screenshots

C
Publications and Other Research Results

Related to the Thesis

Publications
International Conferences

• Alejandro Cortiñas, Miguel R. Luaces, Oscar Pedreira, Ángeles S. Places, and
Jennifer Pérez: Web-based Geographic Information Systems SPLE: Domain
Analysis and Experience Report. In Proceedings of the 25th International
Systems and Software Product Line Conference (SPLC 2017), ACM, Sevilla
(Spain), 2017. Pending publication.

• Alejandro Cortiñas, Miguel R. Luaces, Oscar Pedreira, and Ángeles S. Places:
Scaffolding and in-browser generation of web-based GIS applications in a
SPL tool. In Proceedings of the 25th International Systems and Software
Product Line Conference (SPLC 2017), ACM, Sevilla (Spain), 2017. Pending
publication.

• Alejandro Cortiñas, Carlo Bernaschina, Miguel R. Luaces and Piero Fraternali:
Enabling Agile Web Development through In-Browser Code Generation and

199

200 Appendix C. Publications and Other Research Results Related to the Thesis

Evaluation. In Proceedings of the 7th International Conference on Model and
Data Engineering (MEDI 2017), Springer, Barcelona (Spain), 2017. Pending
publication.

• Alejandro Cortiñas, Carlo Bernaschina, Miguel R. Luaces and Piero Fraternali:
Improving GISBuilder with Runtime Product Preview. In Proceedings of
the 17th International Conference on Web Engineering (ICWE 2017), LNCS
10360, Springer, Rome (Italy), 2017, pp. 549-553.

• Nieves R. Brisaboa, Alejandro Cortiñas, Miguel R. Luaces, and Oscar Pe-
dreira: Creating web-based GIS applications using automatic code generation
techniques. In Proceedings of the 15th International Symposium on Web
and Wireless Geographical Information Systems (W2GIS 2017), LNCS 10181,
Springer, Shangai (China), 2017, pp. 19-34.

• Nieves R. Brisaboa, Alejandro Cortiñas, Miguel R. Luaces, and Oscar
Pedreira: GISBuilder: A framework for the semi-automatic generation of web-
based geographic information systems. In Proceedings of the 20th Pacific Asia
Conference on Information Systems (PACIS 2016), AIS Electronic Library
(AISeL), Chiayi (Taiwán), 2016.

• Nieves R. Brisaboa, Alejandro Cortiñas, Miguel R. Luaces, and Matías Pol’la:
A Reusable Software Architecture for Geographic Information Systems based
on Software Product Line Engineering. In Proceedings of the 5th International
Conference on Model & Data Engineering (MEDI 2015), LNCS 9344, Springer,
Rodas (Grecia), 2015, pp. 320-331.

National Conferences

• Nieves R. Brisaboa, Alejandro Cortiñas, Miguel R. Luaces, and Oscar
Pedreira: Aplicando scaffolding en el desarrollo de Líneas de Producto
Software. In Proceedings of the XXI Jornadas de Ingeniería del Software
y Bases de Datos (JISBD 2016), Ediciones Universidad de Salamanca,
Salamanca (España), 2016, pp. 23-36.

• Alejandro Cortiñas, and Miguel R. Luaces: Generación, almacenamiento y
consulta de datos espaciales masivos. In Proceedings of the XXII Jornadas de
Ingeniería del Software y Bases de Datos (JISBD 2017), Biblioteca Digital de
Sistedes, La Laguna (España), 2017.

Journals and Book Chapters

• Miguel R. Luaces, Alejandro Cortiñas, and Guillermo de Bernardo: Funda-
mentos de SIG: Tecnologías básicas. Reprografía Noroeste, S. L., 2016.

201

International Research Stays
• January, 2017 - April, 2017. Research stay at Politecnico di Milano,

Dipartimento di Elettronica, Informazione e Bioingegneria (Como, Italy).

202 Appendix C. Publications and Other Research Results Related to the Thesis

D
Resumen del Trabajo Realizado

D.1 Introducción
El enfoque tradicional para el desarrollo de software se compone de una serie de
pasos que deben repetirse para cada producto nuevo. Análisis de requisitos, diseño
de la solución, implementación, testeo y mantenimiento son realizados una y otra
vez incluso cuando se desarrollan productos similares. Todavía es común que se
desarrolle el software de manera artesanal, siguiendo este proceso. El problema de
este enfoque es que tanto el desarrollo de software en sí como el mantenimiento de los
productos son dos procesos lentos y altamente costosos, si queremos realizar software
de calidad. Por esta razón, se han llevado a cabo muchos esfuerzos buscando la
industrialización del desarrollo de software. La ingeniería de líneas de productos
software (LPS) y el desarrollo dirigido por modelos (DDM) son dos de los principales
campos de investigación que trabajan en esta dirección.

La ingeniería de líneas de producto software usa estrategias como la producción
en masa, la personalización en masa o la reutilización de artefactos de software
para automatizar el desarrollo de familias de productos de software. Es decir, esta
disciplina se utiliza en sistemas de software similares, diferentes sólo en ciertas
características [ABKS13]. Una línea de productos software se define como “un
conjunto de sistemas software que comparten un conjunto común de características

203

204 Appendix D. Resumen del Trabajo Realizado

(features), las cuales satisfacen las necesidades específicas de un dominio o segmento
particular del mercado, y que se desarrollan a partir de un sistema común de
activos base (core assets) de una manera preestablecida” [CN02]. En resumen,
una línea de producto software nos permite generar una familia de productos
software semejantes construidos mediante el montaje e integración automática de
un conjunto de componentes reutilizables comunes. El conjunto de características
(features) proporcionadas por una LPS se suele organizar en lo que denominamos
feature model, y cada uno de los productos a generar se define como el conjunto de
características proporcionadas por el mismo.

El desarrollo dirigido por modelos es un paradigma para aplicar las ventajas del
modelado a las actividades de ingeniería de software [BCW12]. Los dos conceptos
principales en DDM son modelos, que son representaciones simplificadas de la
realidad centrada en un dominio concreto, y transformaciones, que son operaciones
manipuladoras sobre estos modelos que permiten transformarlas en modelos nuevos,
más refinados, o incluso en código fuente del sistema final. La implantación real de
DDM en la industria es muy baja [BCW12], pero sin embargo, sí se usa una técnica
que es, de alguna manera, una aplicación informal de algunos principios de DDM: el
scaffolding. Esta técnica fue popularizada en el 2005 por Ruby on Rails1, y permite
acelerar el desarrollo de software mediante la generación de código fuente. Suele ser
utilizado por los programadores en las primeras etapas del desarrollo software, donde
a partir de una especificación una herramienta permite generar código repetitivo y
fácilmente abstraible. Otras plataformas actuales utilizando esta técnica son Grails2,
Spring Roo3 o Yeoman4, por ejemplo.

El objetivo de LPS y DDM no es sólo mejorar la eficiencia en la producción de
software, sino también la calidad de los sistemas de software producidos. Ambos
tratan de cambiar el paradigma del desarrollo de software de la producción artesanal
a la industrial. La diferencia es que las LPS se centran en la construcción de
familias de productos que comparten componentes idénticos y reutilizables, que
sólo difieren en algunas características, mientras que DDM genera código específico
de plataforma a partir de un modelo más abstracto y flexible. Como consecuencia,
la gama de productos diferentes que se pueden crear con DDM es más amplia
que la proporcionada por LPS, pero los productos generados por un LPS son
más fáciles de especificar y normalmente están listos para la producción cuando
se generan [PPP09, CAK+05]. Es decir, ambos enfoques buscan automatizar e
industrializar el desarrollo de sistemas de software complejos, pero las herramientas

1http://rubyonrails.org/
2https://grails.org/
3http://projects.spring.io/spring-roo/
4http://yeoman.io/

http://rubyonrails.org/
https://grails.org/
http://projects.spring.io/spring-roo/
http://yeoman.io/

D.1. Introducción 205

y características proporcionadas por cada enfoque son de naturaleza muy diferente.
Investigaciones anteriores han resuelto que algunos dominios de aplicación se
beneficiarían de una combinación de LPS y DDM [TBD07, CFP08]. Los sistemas
de información geográfica (SIG) son uno de esos dominios.

Un SIG es un sistema de información con características y capacidades
geoespaciales [WD04]. Dentro de un sistema de información geográfica, datos
geográficos como la forma de un río o el área de un edificio se pueden manejar
y representar en un visor de mapas. Los SIG son ampliamente utilizados en
varias aplicaciones de uso general (por ejemplo, motores de búsqueda web, redes
sociales, etc.) y en varios campos de investigación y producción (por ejemplo,
ingeniería, gestión de recursos, biología, ecología, logística, etc.). El impulso que
se ha producido en las tecnologías de las comunicaciones y el acceso a Internet
permiten el uso actualmente de los SIG en multitud de dispositivos móviles para
visualizar y manejar datos geográficos almacenados en ordenadores a través de
Internet. Es más, el avance en las capacidades de geoposicionamiento permite que
actualmente podamos conocer nuestra posición utilizando cualquier móvil de uso
común, lo que ha propiciado la aparición de nuevas funcionalidades de carácter
geográfico en aplicaciones ya existentes y la incorporación de la posición de los
usuarios en muchos flujos de trabajo. Ejemplos de esto son todas funcionalidades
de posición de aplicaciones como Facebook o Twitter. Otro cambio en el software
SIG provocado por estos avances es el incremento de las funcionalidades y uso de
los sistemas de información geográfica basados en web. Tradicionalmente, estos SIG
basados en web han proporcionado un pequeño conjunto de características pero, con
la tecnología actual, pueden ser tan potentes como las aplicaciones SIG de escritorio,
pero contando con todas las ventajas de ser una aplicación web.

Los sistemas de información geográfica siempre han compartido una enorme
cantidad de funcionalidades y características entre ellos, independientemente del
contexto de aplicación del SIG. Ciertos requisitos, como almacenar e indexar datos
georreferenciados, realizar consultas basadas en la ubicación, mostrar información
como un conjunto de capas o agrupar capas en mapas diferentes, son compartido por
una buena parte de los SIG existentes. Sin embargo, los primeros componentes y
software SIG solían ser implementados siguiendo diferentes e incompatibles modelos
conceptuales, lógicos y físicos. Por ejemplo, dependiendo del software utilizado
el tipo de dato polygon tenía una definición diferente, o el predicado overlaps
contaba con un significado semático particular en cada caso. Debido a esto,
era muy complejo desarrollar aplicaciones, software o componentes interoperables
entre sí porque ni siquiera se podían migrar los datos de una aplicación a otra
sin implementar un proceso ad-hoc. Para solucionar este problema, se llevó a
cabo un esfuerzo conjunto y colaborativo por parte de dos organizaciones, la

206 Appendix D. Resumen del Trabajo Realizado

International Organization for Standardization5 (ISO) a través de la ISO/TC
211 [fSn] que define el conjunto de estándares ISO 19100, y el Open Geospatial
Consortium6 (OGC). Actualmente la mayor parte de software SIG los cumple, por
lo que la interoperatibilidad entre los distintos componentes es sencilla y se pueden
reemplazar componentes equivalentes sin problema.

Dado que las funcionalidades de los SIG son muy similares entre las distintas
aplicaciones, éstas por lo general comparten también un conjunto común de
componentes, como el visor de mapas o la biblioteca de importación de datos
geográficos, siendo la mayor diferencia entre las distintas aplicaciones el dominio
concreto al que se está enfocando el SIG, lo que repercute directamente en el
conjunto de datos que se maneja en la aplicación. Es decir, no es lo mismo hacer una
aplicación SIG que mejore el flujo de trabajo de una empresa de transportes, donde
podemos ver la posición de los camiones, que una aplicación para la identificación
de parcelas agrícolas. Pero incluso aquellos módulos que dependen de los datos a
manejar o modelo de datos, son muy parecidos entre sí y su código se puede abstraer
y generalizar en función de especificaciones como el modelo de datos. Por lo tanto,
aunque cada aplicación puede tener un propósito diferente, son todas muy similares
desde el punto de vista de la arquitectura, los componentes y la tecnología.

En consecuencia, encontramos que las aplicaciones SIG basados en web tienen
muchos módulos que se pueden producir ensamblando componentes del estilo
más clásico de las LPS (es decir, una biblioteca de visor de mapas con sus
sub-características, un importador de cartografía, etc.), pero hay otros módulos
que necesitan generarse específicamente para cada producto en función de alguna
especificación (por ejemplo, todos los módulos relacionados con el modelo de datos,
como entidades georreferenciadas, propiedades, relaciones, capas, mapas, etc., o
la estructura del menú, etc. .). Las técnicas actuales de implementación LPS,
la mayoría de ellas mostradas en [ABKS13, MTS+14], no son adecuadas para la
generación de código dinámico a partir de las especificaciones de los productos.
Encontramos que la técnica del scaffolding, que podemos considerar un subcojunto
de los conceptos del DDM, se puede aplicar para extender las funcionalidades
clásicas de las LPS y automatizar el desarrollo de esas partes del sistema. Por
lo tanto, esta tesis parte de la idea de que la combinación de LPS y DDM puede
ayudar a crear una herramienta completa para el desarrollo automatizado de SIG.

Aunque la idea de combinar LPS y DDM ya ha aparecido en trabajos de
investigación anteriores [CAK+05, VG07], su combinación práctica está lejos de
ser fácil, que es precisamente nuestro enfoque en este trabajo. En primer lugar, la
mayoría de las herramientas existentes para LPS o DDM han surgido de proyectos de

5https://www.iso.org/home.html
6http://www.opengeospatial.org/

https://www.iso.org/home.html
http://www.opengeospatial.org/

D.1. Introducción 207

investigación y, algunos de ellos pueden tener dificultades para apoyar la variedad
de tecnologías aplicadas en las aplicaciones web, en los sistemas de información
geográfica y en ambos tipos de sistemas combinados. Por otro lado, las herramientas
de las LPS y del DDM no son las mismas, y no encontramos ninguna plataforma
capaz de combinar estos dos enfoques. Por lo tanto, el primer objetivo de esta tesis
es diseñar e implementar un motor de derivación para LPS que pueda ensamblar
componentes en función de un conjunto de características elegidas de un modelo
de características, pero que también pueda generar código fuente transformando
modelos siguiendo un enfoque más cercano a DDM. Además, el motor de derivación
debe estar basado en tecnologías actuales del desarrollo de software para poder
usarlo directamente en la industria.

A la hora de validar el motor de derivación y la LPS para aplicaciones SIG
basadas en web, es necesario aplicarlos en un contexto industrial real. Nosotros
podemos conseguir esto uniendo esfuerzos con Enxenio, una PYME (pequeña y
mediana empresa) española con experiencia en sistemas de información geográfica.
De hecho, esta empresa es un proveedor líder de sistemas de información geográfica
basados en la web en la región de Galicia, con muchos proyectos previos para
la administración pública y clientes privados. Enxenio ha colaborado con el
Laboratorio de Bases de Datos de la Universidad de A Coruña desde hace mucho
tiempo, y varios trabajos como [LPFCP09, BCLF+07, PBF+07] son algunos de
resultados de esta relación. Para nuestro trabajo actual, Enxenio ha estado
ayudando con su experiencia y sus aplicaciones web existentes basadas en SIG.
Esta colaboración no es altruista ya que Enxenio se beneficiaría enormemente de
los resultados de esta tesis, ya que la aplicación de SPLE para el desarrollo de
futuros SIG daría a la empresa una ventaja estratégica.

Para sacar el máximo provecho de esta colaboración, los conocimientos de los
expertos en arquitecturas, requisitos y tecnologías SIG debe ser tenido en cuenta de
manera explícita a lo largo del proceso que defina la LPS. También tenemos acceso
a código de productos existentes, otra ventaja que debemos aprovechar. Además,
los sistemas de información geográfica son un campo con una fuerte estandarización,
incluyendo definiciones de servicios y arquitecturas que se deben tener en cuenta.
Por último, si la línea de productos de software se va a utilizar en la industria real,
la evolución debe mantenerse tanto para la plataforma como para los productos
generados. Por lo tanto, la metodología seguida debe facilitar el manejo de esta
evolución. Como no hemos encontrado una metodología que cubriera todos todo lo
mencionado, el segundo objetivo de esta tesis es la definición de una metodología
para la creación de líneas de producto software que tenga en cuenta todos estos
aspectos.

Dado que la LPS está diseñada para ser usada dentro de una PYME, Enxenio, no

208 Appendix D. Resumen del Trabajo Realizado

podemos asumir que los analistas que definirán y generarán los distintos proyectos
son expertos ingenieros del dominio con conocimientos en LPS. Por lo tanto, el
proceso de definición y derivación de los productos debe ser simple y no debe requerir
demasiado conocimientos sobre LPS o sobre ninguna tecnología específica más allá
de las que ya están presentes en los procesos industriales. Por esta razón, el tercer
objetivo de esta tesis es desarrollar una herramienta para la definición y derivación
de los productos de manera que su uso no sea intrusivo con los procesos actuales
de la compañía. Para cumplir esto, la herramienta debe ser desarrollada usando
tecnologías web de forma que pueda utilizarse desde cualquier dispositivo de la
compañía sin requerir instalación de ningún software adicional.

Para resumir, el objetivo principal de esta tesis es demostrar que técnicas de
LPS y de DDM pueden combinarse para producir aplicaciones SIG basadas en web
más eficientemente y con mayor calidad. Para llevarlo a cabo, hemos dividido este
objetivo en tres objetivos específicos:

1. Diseñar e implementar un montón de derivación que pueda ensamblar
componentes usando técnicas propias de LPS pero que también sea capaz
de generar código fuente mediante un enfoque DDM.

2. Definir una metodología para crear LPS confeccionada para aprovechar la
aportación de una PYME en cuanto a adquisición de conocimientos y a la
evolución de la LPS y sus productos.

3. Desarrollar una herramienta para la especificación y derivación de los
productos de la LPS de modo que su uso no sea intrusivo con los flujos de
trabajo de una compañía de desarrollo de software.

D.2 Estructura de la tesis
Esta tesis está compuesta por tres partes. La primera parte está dedicada a la
metodología y consta de tres capítulos. El primero introduce los conceptos detrás
de las líneas de productos de software y describe el estado del arte del campo,
incluyendo las ventajas del SPL y los problemas no resueltos. El segundo muestra
la metodología que hemos definido para la aplicación de la ingeniería de línea de
productos software en cualquier dominio.

La segunda parte cubre la aplicación de la metodología previamente definida
dentro de nuestro concurso, los sistemas de información geográfica basados en
la web. En el primer capítulo de esta parte, hacemos un breve resumen de
los conceptos para los sistemas de información geográfica, y describimos algunos
programas relacionados con SIG. En el resto de los capítulos de esta parte, cada

D.3. Contribuciones y Conclusiones 209

paso de nuestra metodología se aborda: análisis de requisitos, extracción de
requisitos y características de productos existentes; Diseño de arquitectura, donde
estudiamos las arquitecturas de referencia para SIG y seleccionamos una como
propia; Evaluación y derivación de los productos, mostrando la trazabilidad entre las
características y la arquitectura y los detalles relativos a la derivación de productos
específicos.

La última parte es sobre GISBuilder, una herramienta que implementa las
especificaciones extraídas de nuestro proceso. En el primer capítulo de esta parte se
muestra el estado de la técnica en las tecnologías de líneas de productos de software
y en la generación industrial de técnicas de software. A continuación describimos
nuestra herramienta y cada parte que la compone. Finalmente validamos nuestra
herramienta y proponemos algunos casos de uso. El último capítulo es conclusiones
y trabajo futuro.

D.3 Contribuciones y Conclusiones
El objetivo principal de nuestro trabajo es el diseño de una línea de productos
software para sistemas de información geográfica. Más específicamente, nos
centramos en aplicaciones SIG en web. No circunscribimos el dominio del SIG
generado, por lo que el LPS debe ser capaz de crear aplicaciones genéricas. Para
lograr este objetivo, seguimos una estrategia de tres pasos: primero abordamos la
decisión sobre la metodología a aplicar, luego definimos nuestro LPS a través de
la aplicación de la metodología elegida y finalmente diseñamos e implementamos
nuestra herramienta siguiendo los requerimientos de Nuestro LPS.

Debido al contexto de nuestro trabajo, decidimos desarrollar una nueva
metodología que pueda aprovechar nuestras ventajas, como contar con una empresa
de apoyo (Enxenio) con expertos SIG y productos existentes. Al mismo tiempo,
también buscamos metodologías existentes que se ajusten a nuestro problema, y
hemos encontrado tres metodologías diferentes que combinadas trabajan en sinergia
para complementarse unas con otras. Por lo tanto, nuestra primera contribución
es el diseño de una metodología para la definición de líneas de productos software,
basada en otras tres metodologías y mejorada por nosotros mismos teniendo en
cuenta la entrada de expertos de la industria.

Nuestra segunda y principal contribución es el diseño de una línea de productos
de software para sistemas de información geográfica basados en la web. Este diseño
es el resultado de la aplicación de nuestra metodología. Dos contribuciones derivadas
son:

• Una lista exhaustiva de características para la información geográfica genérica

210 Appendix D. Resumen del Trabajo Realizado

basada en la web teniendo en cuenta los diferentes productos existentes.

• Una arquitectura para sistemas de información geográfica basados en arquitec-
tura de referencia, especificada por estándares, y mejorada con características
Desde arquitecturas de productos existentes.

Nuestra última contribución es una herramienta para la definición y generación
de sistemas de información geográfica basados en la web. Esta herramienta sigue
las especificaciones determinadas en el diseño de nuestro LPS, e incluye varias
bibliotecas que son contribuciones propias.

D.4 Trabajo Futuro
Los siguientes pasos de nuestra investigación son:

• Implementación de las características aún no implementadas, así como
evolución y mantenimiento de los componentes actuales teniendo en cuenta
los productos que los utilizan.

• Diseño de una metodología para enfrentar la evolución de los productos y la
plataforma de forma sincronizada. Un enfoque en esta dirección es el uso de
un sistema de control de versiones, como git, para apoyar esta metodología.

• Diseñar un sistema integrado basado en la integración continua para que
la herramienta sea totalmente independiente del despliegue, incluso para la
implementación de pila completa. Este sistema debe trabajar en sintonía con
la metodología de evolución para que un equipo de desarrollo pueda trabajar
en un producto, mover las actualizaciones realizadas al código de la plataforma
y reubicar fácilmente el producto nuevamente con los nuevos activos.

• Actualizar el controlador de variabilidad con más operaciones desde [BSRC10],
ya que no hay ninguna herramienta que proporciona todas ellas.

• Aplicar la misma metodología en el contexto de una familia de productos
diferente.

• En el contexto de la ingeniería web, sería interesante ir más allá de la capacidad
de vista previa en tiempo de ejecución y proporcionar un marco para la
programación en vivo de los productos, mostrando los productos en ejecución
en una ventana en el navegador y la interfaz de especificación en otra diferente.

Bibliography

[ABKS13] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. Feature-
Oriented Software Product Lines. Springer, 2013.

[ADT07] Felipe Anfurrutia, Oscar Díaz, and Salvador Trujillo. On Refining
XML Artifacts. Web Engineering, 4607:473–478, 2007.

[AK04] S.A. Ajila and A.B. Kaba. Using traceability mechanisms to support
software product line evolution. In Proceedings of the 2004 IEEE
International Conference on Information Reuse and Integration, 2004.
IRI 2004., pages 157–162. IEEE, 2004.

[AKL09] Sven Apel, Christian Kästner, and Christian Lengauer. FEATURE
HOUSE: Language-Independent, Automated Software Composition.
In Proceedings of the 31st International Conference on Software
Engineering, pages 221–231, 2009.

[Bat05] Don Batory. Feature models, grammars, and propositional formulas.
In International Conference on Software Product Lines, volume 3714,
pages 7–20. Springer, 2005.

[BCA+13] Agustina Buccella, Alejandra Cechich, Maximiliano Arias, Matías
Pol’la, Maria Del Socorro Doldan, and Enrique Morsan. Towards
systematic software reuse of GIS: Insights from a case study.
Computers and Geosciences, 54:9–20, 2013.

[BCLF+07] N R Brisaboa, J A Cotelo-Lema, A Fariña, M R Luaces, J R Parama,
and J R R Viqueira. Collecting and publishing large multiscale
geographic datasets. Software: Practice and Experience, 37(12):1319–
1348, oct 2007.

[BCLP16] Nieves R Brisaboa, Alejandro Cortiñas, Miguel R Luaces, and Oscar
Pedreira. Aplicando scaffolding en el desarrollo de Líneas de Producto

211

212 Bibliography

Software. In Proceedings of the XXI Jornadas de Ingeniería del
Software y Bases de Datos (JISBD 2016), 2016.

[BCP+14] Agustina Buccella, Alejandra Cechich, Matías Pol’la, Maximiliano
Arias, Maria Del Socorro Doldan, Enrique Morsan, Maria del Socorro
Doldan, and Enrique Morsan. Marine ecology service reuse through
taxonomy-oriented SPL development. Computers and Geosciences,
73:108–121, 2014.

[BCPA14] Agustina Buccella, Alejandra Cechich, Matías Pol’la, and Maximiliano
Arias. Un Modelo de Metadatos para la Gestión de la Variabilidad
en Líneas de Productos de Software. 15th Argentine Symposium on
Software Engineering, ASSE 2014, pages 158–172, 2014.

[BCPA16] Agustina Buccella, Alejandra Cechich, Matias Pol, and Maximiliano
Arias. Software Product Line Reengineering : A Case Study on
the Geographic Domain. Journal of Computer Science & Technology,
16(1):14–28, 2016.

[BCW12] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven
Software Engineering in Practice, volume 1. Morgan & Claypool
Publishers, sep 2012.

[BMML15] Peter A Burrough, Rachael McDonnell, Rachael A McDonnell, and
Christopher D Lloyd. Principles of geographical information systems.
Oxford University Press, 2015.

[Bos00] Jan. Bosch. Design and use of software architectures: adopting and
evolving a product-line approach. Addison-Wesley, 2000.

[BPCA16] Agustina Buccella, Matias Pol’La, Alejandra Cechich, and Maxi-
miliano Arias. A Variability Representation Approach Based on
Domain Service Taxonomies and Their Dependencies. In Proceedings
- International Conference of the Chilean Computer Science Society,
SCCC, volume 2016-Septe, pages 116–119, 2016.

[Bra04] Gilad Bracha. Generics in the java programming language.
http://www.oracle.com/technetwork/java/javase/generics-tutorial-
159168.pdf, July 2004. (Accessed: 24-may-2017).

[BRN+13] Thorsten Berger, Ralf Rublack, Divya Nair, Joanne M. Atlee, Martin
Becker, Krzysztof Czarnecki, and Andrzej Wa̧sowski. A survey of
variability modeling in industrial practice. Proceedings of the Seventh

Bibliography 213

International Workshop on Variability Modelling of Software-intensive
Systems - VaMoS ’13, page 1, 2013.

[BRPD05] Luca Balzerani, D Di Ruscio, Alfonso Pierantonio, and Guglielmo
De Angelis. A product line architecture for web applications. In
Proceedings of the 2005 ACM symposium on Applied computing, pages
1689–1693. ACM, 2005.

[BSR04] Don Batory, Jacob Neal Sarvela, and Axel Rauschmayer. Scaling
step-wise refinement. IEEE Transactions on Software Engineering,
30(6):355–371, 2004.

[BSRC10] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. Automated
analysis of feature models 20 years later: A literature review.
Information Systems, 35(6):615–636, sep 2010.

[CAK+05] Krzysztof Czarnecki, Michał Michal Antkiewicz, Chang Hwan
Peter Chp Kim, Sean Lau, and Krzysztof Pietroszek. Model-driven
software product lines. Companion to the 20th annual ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and
applications, pages 126–127, 2005.

[CBLF17] Alejandro Cortiñas, Carlo Bernaschina, Miguel R Luaces, and Piero
Fraternali. Enabling Agile Web Development through In-Browser
Code Generation and Evaluation. Proceedings of the 7th International
Conference on Model and Data Engineering (MEDI 2017), 2017.
Pending publication.

[CD03] Rafael Capilla and Juan C Dueñas. Light-weight product-lines for
evolution and maintenance of web sites. In Software Maintenance and
Reengineering, 2003. Proceedings. Seventh European Conference on,
pages 53–62. IEEE, 2003.

[CFP08] Carlos Cetina, Joan Fons, and Vicente Pelechano. Applying software
product lines to build autonomic pervasive systems. Proceedings - 12th
International Software Product Line Conference, SPLC 2008, 2:117–
126, 2008.

[CGR+12] Krzysztof Czarnecki, Paul Grünbacher, Rick Rabiser, Klaus Schmid,
and Andrzej Wa̧sowski. Cool features and tough decisions: A
comparison of variability modeling approaches. Proceedings of the
Sixth International Workshop on Variability Modeling of Software-
Intensive Systems - VaMoS ’12, pages 173–182, 2012.

214 Bibliography

[CHE05] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Staged
Configuration Through Specialization and Multi-Level Configuration
of Feature Models. Software Process: Improvement and Practice,
10(2):143–169, 2005.

[Che06] Nicholas Chen. Convention over configuration, November 2006.
(Accessed: 24-may-2017).

[CN02] Paul Clements and Linda Northrop. Software Product Lines: Practices
and Patterns. Addison-Wesley, 2002.

[Com] Federal Geographic Data Committee. Geospatial standards.
https://www.fgdc.gov/standards. (Accessed: 22-may-2017).

[CSA15] Gerry Gerard Claps, Richard Berntsson Svensson, and Aybüke Aurum.
On the journey to continuous deployment: Technical and social
challenges along the way. Information and Software technology, 57:21–
31, 2015.

[Dat] Databases and Software Engineering Workgroup University
of Magdeburg. Tools for feature-oriented software develop-
ment. http://wwwiti.cs.uni-magdeburg.de/iti_db/research/
fosd-tools/. (Accessed: 28-mar-2017).

[DMG13] Paule-Annick Devoine, Bogdan Moisuc, and Jerome Gensel.
GENGHIS: an Environment for the Generation of Spatiotemporal
Visualization Interfaces. In Innovative Software Development in GIS,
pages 121–150. John Wiley & Sons, Inc., 2013.

[DPG14] Jessica Díaz, Jennifer Pérez, and Juan Garbajosa. A model for tracing
variability from features to product-line architectures: A case study in
smart grids. Requirements Engineering, 20(3):323–343, 2014.

[DW99] Desmond Francis D’Souza and Alan Cameron Wills. Objects,
components, and frameworks with UML : the catalysis approach.
Addison-Wesley, 1999.

[EIA+11] KARAGIOZI Eleni, FOUNTOULIS Ioannis, KONSTANTINIDIS
Alexandros, ANDREADAKIS Emmanouil, and NTOUROS Konstanti-
nos. Flood hazard assessment based on geomorphological analysis with
GIS tools-The case of Laconia (Peloponnesus, Greece). In Proceedings,
Symposium GIS Ostrava, volume 2011, page 11p, 2011.

http://wwwiti.cs.uni-magdeburg.de/iti_db/research/fosd-tools/
http://wwwiti.cs.uni-magdeburg.de/iti_db/research/fosd-tools/

Bibliography 215

[ESR] ESRI ESRI. Shapefile technical description, jul. 1998. http://
support.esri.com/white-paper/279. (Accessed: 19-may-2017).

[ESR17] ESRI. Architecting the ArcGIS Platform: Best Practices, 2017.

[FAB+13] Marianela Ciolfi Felice, Mathieu Acher, Arnaud Blouin, Olivier
Barais, and Others. Interactive visualisation of products in online
configurators: a case study for variability modelling technologies.
In Proceedings of the 17th International Software Product Line
Conference co-located workshops, pages 82–85. ACM, 2013.

[FKA+13] Janet Feigenspan, Christian Kästner, Sven Apel, Jörg Liebig, Michael
Schulze, Raimund Dachselt, Maria Papendieck, Thomas Leich, and
Gunter Saake. Do background colors improve program comprehension
in the #ifdef hell? Empirical Software Engineering, 18(4):699–745,
2013.

[FPK+11] Janet Feigenspan, Maria Papendieck, Christian Kästner, Mathias
Frisch, and Raimund Dachselt. FeatureCommander: Colorful #ifdef
World. In Proceedings of the 15th International Software Product Line
Conference on - SPLC ’11, page 1, New York, New York, USA, aug
2011. ACM Press.

[fSa] International Organization for Standardization. Iso
19107:2003 - geographic information: Spatial schema.
https://www.iso.org/standard/26012.html. (Accessed: 22-may-2017).

[fSb] International Organization for Standardization. Iso 19110:2016
- geographic information: Methodology for feature cataloguing.
https://www.iso.org/standard/57303.html. (Accessed: 22-may-2017).

[fSc] International Organization for Standardization. Iso 19111:2007
- geographic information: Spatial referencing by coordinates.
https://www.iso.org/standard/41126.html. (Accessed: 22-may-2017).

[fSd] International Organization for Standardization. Iso 19112:2003 -
geographic information: Spatial referencing by geographic identifiers.
https://www.iso.org/standard/26017.html. (Accessed: 22-may-2017).

[fSe] International Organization for Standardization. Iso 19115-1:2014
- geographic information: Metadata - part 1: Fundamentals.
https://www.iso.org/standard/53798.html. (Accessed: 22-may-2017).

http://support.esri.com/white-paper/279
http://support.esri.com/white-paper/279

216 Bibliography

[fSf] International Organization for Standardization. Iso
19116:2004 - geographic information: Positioning services.
https://www.iso.org/standard/37805.html. (Accessed: 22-may-2017).

[fSg] International Organization for Standardization. Iso
19119:2005 - geographic information: Services.
https://www.iso.org/standard/39890.html. (Accessed: 22-may-2017).

[fSh] International Organization for Standardization. Iso
19119:2016 - geographic information: Services.
https://www.iso.org/standard/59221.html. (Accessed: 22-may-2017).

[fSi] International Organization for Standardization. Iso 19125:2004 -
geographic information: Simple feature access – part 1: Common
architecture. https://www.iso.org/standard/40114.html. (Accessed:
22-may-2017).

[fSj] International Organization for Standardization. Iso 19128:2005
- geographic information: Web map server interface.
https://www.iso.org/standard/32546.html. (Accessed: 22-may-2017).

[fSk] International Organization for Standardization. Iso 19139:2007 -
geographic information: Metadata - xml schema implementation.
https://www.iso.org/standard/32557.html. (Accessed: 22-may-2017).

[fSl] International Organization for Standardization. Iso
19142:2010 - geographic information: Web feature service.
https://www.iso.org/standard/42136.html. (Accessed: 22-may-2017).

[fSm] International Organization for Standardization. Iso/iec 13249-
3:2016 - information technology: Database languages - sql
multimedia and application packages - part 3: Spatial.
https://www.iso.org/standard/60343.html. (Accessed: 22-may-2017).

[fSn] International Organization for Standardization. Iso/tc 211
standards catalogue - geographic information/geomatics.
https://www.iso.org/committee/54904/x/catalogue/. (Accessed:
22-may-2017).

[GG02] Hassan Gomaa and Mark Gianturco. Domain modeling for World
Wide Web based software product lines with UML. In International
Conference on Software Reuse, pages 78–92. Springer, 2002.

Bibliography 217

[GLA+09] Dharmalingam Ganesan, Mikael Lindvall, Chris Ackermann, David
McComas, and Maureen Bartholomew. Verifying Architectural Design
Rules of the Flight Software Product Line. In Proceedings of the 13th
International Software Product Line Conference, number July 2015
in SPLC ’09, pages 161–170, Pittsburgh, PA, USA, 2009. Carnegie
Mellon University.

[HA03] John E. Harmon and Steven J. Anderson. The Design and
Implementation of Geographic Information Systems. Wiley, 1st edition,
2003.

[HZS+15] Claus Hunsen, Bo Zhang, Janet Siegmund, Christian Kästner,
Olaf Leßenich, Martin Becker, and Sven Apel. Preprocessor-based
variability in open-source and industrial software systems: An
empirical study. Empirical Software Engineering, apr 2015.

[IMY+16] Takahiro Iida, Masahiro Matsubara, Kentaro Yoshimura, Hideyuki
Kojima, and Kimio Nishino. PLE for automotive braking system with
management of impacts from equipment interactions. Proceedings of
the 20th International Systems and Software Product Line Conference
on - SPLC ’16, pages 232–241, 2016.

[INS] INSPIRE. Directive 2007/2/EC of the European Parliament and of
the Council of 14 March 2007 establishing an Infrastructure for Spatial
Information in the European Community.

[INS08] INSPIRE Network Services Drafting Team. INSPIRE Network
Services Architecture, 2008.

[ISO09] ISO. ISO/IEC 10746-3:2009 - Information technology – Open
distributed processing – Reference model: Architecture, 2009.

[JB09] Hans Peter Jepsen and Danilo Beuche. Running a software product
line: standing still is going backwards. SPLC ’09 Proceedings of the
13th International Software Product Line Conference, pages 101–110,
2009.

[KAK08] Christian Kästner, Sven Apel, and Martin Kuhlemann. Granularity
in software product lines. In Proceedings of the 30th international
conference on Software engineering - ICSE ’08, page 311, New York,
New York, USA, may 2008. ACM Press.

218 Bibliography

[KATS12] Christian Kästner, Sven Apel, Thomas Thüm, and Gunter Saake.
Type checking annotation-based product lines. ACM Transactions on
Software Engineering and Methodology, 21(3):1–39, 2012.

[KB07] J. Kunze and T. Baker. The Dublin Core Metadata Element Set. RFC
5013 (Informational), August 2007.

[KCH+90] Kyo C Kang, Sholom G Cohen, James a Hess, William E Novak,
and a Spencer Peterson. Feature-Oriented Domain Analysis (FODA)
Feasibility Study. Distribution, 17(November):161, 1990.

[KKL+98] Kyo C. Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim, Euiseob
Shin, and Moonhang Huh. FORM: A feature-oriented reuse method
with domain-specific reference architectures. Annals of Software
Engineering, 5(1):143–168, 1998.

[KS90] Sunder Kekre and Kannan Srinivasan. Broader Product Line: A
Necessity to Achieve Success? Management Science, 36(10):1216–1231,
1990.

[KTS+09] Christian Kästner, Thomas Thum, Gunter Saake, Janet Feigenspan,
Thomas Leich, Fabian Wielgorz, and Sven Apel. FeatureIDE: A tool
framework for feature-oriented software development. In 2009 IEEE
31st International Conference on Software Engineering, pages 611–614.
IEEE, 2009.

[LAL+10] Jörg Liebig, Sven Apel, Christian Lengauer, Christian Kästner, and
Michael Schulze. An analysis of the variability in forty preprocessor-
based software product lines. In 2010 ACM/IEEE 32nd International
Conference on Software Engineering, volume 1, pages 105–114, 2010.

[LdS01] Carl Lagoze and Herbert de Sompel. The Open Archives Initiative:
Building a Low-barrier Interoperability Framework. In Proceedings of
the 1st ACM/IEEE-CS Joint Conference on Digital Libraries, JCDL
’01, pages 54–62, New York, NY, USA, 2001. ACM.

[LGBH09] Miguel Laguna, Bruno González-Baixauli, and Carmen Hernández.
Product line development of web systems with conventional tools. Web
Engineering, pages 205–212, 2009.

[LGM15] Paul A Longley, Michael F Goodchild, and David J Maguire.
Geographic Information Science and Systems. Blackwell Publ,
Hoboken, NJ, edición: r edition, mar 2015.

Bibliography 219

[LKA11] Jörg Liebig, Christian Kästner, and Sven Apel. Analyzing the
Discipline of Preprocessor Annotations in 30 Million Lines of C
Code. Proceedings of the 10th ACM International Conference on
AspectOriented Software Development AOSD, pages 191–202, 2011.

[LPFCP09] Miguel R Luaces, David Trillo Pérez, J Ignacio Lamas Fonte, and Ana
Cerdeira-Pena. An Urban Planning Web Viewer Based on AJAX. In
Gottfried Vossen, Darrell D E Long, and Jeffrey Xu Yu, editors, Web
Information Systems Engineering - WISE 2009, Lecture {Notes} in
{Computer} {Science}, pages 443–453. Springer Berlin Heidelberg, oct
2009.

[LST+06] Daniel Lohmann, Fabian Scheler, Reinhard Tartler, Olaf Spinczyk, and
Wolfgang Schröder-Preikschat. A quantitative analysis of aspects in
the eCos kernel. ACM SIGOPS Operating Systems Review, 40(4):191,
2006.

[LT92] Robert Laurini and Derek Thompson. Fundamentals of Spatial
Information Systems. Academic Press, London, 1 edition edition, apr
1992.

[MD15] Leticia Montalvillo and Oscar Díaz. Tuning GitHub for SPL
development: branching models & repository operations for product
engineers. In Proceedings of the 19th International Conference on
Software Product Line Pages - SPLC’15, pages 111–120. ACM, jul
2015.

[MGP08] Belén Magro, Juan Garbajosa, and Jennifer Pérez. A software
product line definition for validation environments. Proceedings - 12th
International Software Product Line Conference, SPLC 2008, pages
45–54, 2008.

[MGP09] Belén Magro, Juan Garbajosa, and Jennifer Pérez. The Development
of A Software Product Line for Validation Environments. In Applied
Software Product Line Engineering, pages 173–200. Taylor and Francis,
2009.

[MMYA02] Hafedh. Mili, Ali Mili, Sherif Yacoub, and Edward Addy. Reuse based
software engineering : techniques, organization and measurement.
Wiley, 2002.

[MP13] Michael S. Mikowski and Josh C. Powell. Single Page Web
Applications: JavaScript end-to-end. Manning, 2013.

220 Bibliography

[MP14] Andreas Metzger and Klaus Pohl. Software product line engineering
and variability management: achievements and challenges. In
Proceedings of the on Future of Software Engineering, pages 70–84.
ACM, 2014.

[MPV05] Yannis Manolopoulos, Apostolos N Papadopoulos, and Michael Gr
Vassilakopoulos. Spatial databases: technologies, techniques and trends.
IGI Global, 2005.

[MSC+14] Ivan Do Carmo Machado, Alcemir Rodrigues Santos,
Yguarata Cerqueira Cavalcanti, Eduardo Gomes Trzan,
Marcio Magalhaes de Souza, and Eduardo Santana de Almeida.
Low-level variability support for web-based software product lines.
Variability Modelling of Software intensive Systems (VaMoS), 2014.

[MTS+14] Jens Meinicke, Thomas Thüm, Reimar Schröter, Fabian Benduhn, and
Gunter Saake. An overview on analysis tools for software product
lines. In Proceedings of the 18th International Software Product Line
Conference on Companion Volume for Workshops, Demonstrations
and Tools - SPLC ’14, pages 94–101, New York, New York, USA, sep
2014. ACM Press.

[NBM13] Elisa Yumi Nakagawa, Martin Becker, and Jose Carlos Maldonado.
Towards a Process to Design Product Line Architectures Based
on Reference Architectures. Proceedings of the 17th International
Software Product Line Conference, pages 157–161, 2013.

[PBC+12] Patricia Pernich, Agustina Buccella, Alejandra Cechich, Maximiliano
Arias, Matías Pol’la, María del Socorro Doldan, and Enrique Morsan.
Product-Line Instantiation Guided By Subdomain Characterization :
A Case Study. Journal of Computer Science & Technology, 12(3):116–
122, 2012.

[PBF+07] Ángeles S. Places, Nieves R. Brisaboa, Antonio Fariña, Miguel R.
Luaces, José R. Paramá, and Miguel R. Penabad. The Galician virtual
library. Online Information Review, 31(3):333–352, jun 2007.

[PBL05] Klaus Pohl, Günter Böckle, and Frank Van Der Linden. Software
Product Line Engineering: foundations, principles and techniques,
volume 49. Springer Science & Business Media, 2005.

[Per02] George Percivall. OpenGIS Service Architecture, 2002.

Bibliography 221

[PJ05] Ulf Pettersson and Stan Jarzabek. Industrial experience with building
a web portal product line using a lightweight, reactive approach. In
ACM SIGSOFT Software Engineering Notes, volume 30, pages 326–
335. ACM, 2005.

[PO97] T.T. Pearse and P.W. Oman. Experiences developing and maintaining
software in a multi-platform environment. In Proceedings International
Conference on Software Maintenance, pages 270–277. IEEE Comput.
Soc, 1997.

[PPP09] B Pérez, M Polo, and M Piatini. Software Product Line Testing-A
Systematic Review. In 4th International Conference on Software and
Data Technologies (ICSoft 2009), Sofia, Bulgaria, 2009.

[RSV01] Philippe Rigaux, Michel Scholl, and Agnes Voisard. Spatial databases:
with application to GIS. Morgan Kaufmann, 2001.

[SC92] Henry Spencer and Zoology Computer. # ifdef Considered Harmful ,
or Portability Experience With C News. Usenix, pages 185–198, 1992.

[SC03] Shashi Shekhar and Sanjay Chawla. Spatial databases: a tour, volume
2003. prentice hall Upper Saddle River, NJ, 2003.

[SLB+10] Steven She, Rafael Lotufo, Thorsten Berger, Andrezj Wasowski, and
Krzysztof Czarnecki. The variability model of the linux kernel. Fourth
International Workshop on Variability Modeling of Software-intensive
Systems (VaMoS 2010), page 108, 2010.

[SLSA13] Sandro Schulze, Jörg Liebig, Janet Siegmund, and Sven Apel. Does
the Discipline of Preprocessor Annotations Matter?: A Controlled
Experiment. In Proceedings of the 12th International Conference
on Generative Programming: Concepts and Experiences, pages 65–74,
2013.

[SRG11] Klaus Schmid, Rick Rabiser, and Paul Grünbacher. A comparison
of decision modeling approaches in product lines. Proceedings of the
5th Workshop on Variability Modeling of Software-Intensive Systems -
VaMoS ’11, pages 119–126, 2011.

[Sta87] Davis M Stanley. Future perfect. Addison-Wesley, 1987.

[TBD07] Salvador Trujillo, Don Batory, and Oscar Diaz. Feature Oriented
Model Driven Development: A Case Study for Portlets. In Software

222 Bibliography

Engineering, 2007. ICSE 2007. 29th International Conference on,
pages 44–53. IEEE, may 2007.

[TSSPL09] Reinhard Tartler, Julio Sincero, Wolfgang Schröder-Preikschat, and
Daniel Lohmann. Dead or Alive. In Proceedings of the First
International Workshop on Feature-Oriented Software Development -
FOSD ’09, page 81, New York, New York, USA, oct 2009. ACM Press.

[UBFC14] S. Urli, M. Blay-Fornarino, and P. Collet. Handling complex
configurations in software product lines: A tooled approach. In
Proceedings of the 18th International Conference on Software Product
Line Pages - SPLC’14, volume 1, pages 112–121, 2014.

[Van02] Frank Van der Linden. Software product families in Europe: The
Esaps & Café projects. IEEE Software, 19(4):41–49, 2002.

[vdLSR+07] Frank van der Linden, Klaus Schmid, Eelco Rommes, Frank van der
Linden, Klaus Schmid, and Eelco Rommes. Software product lines
in action: the best industrial practice in product line engineering.
Springer, 2007.

[VG07] Markus Voelter and Iris Groher. Product line implementation using
aspect-oriented and model-driven software development. Proceedings
- 11th International Software Product Line Conference, SPLC 2007,
pages 233–242, 2007.

[WA17] Austin Wright and Henry Andrews. JSON Schema: A Media Type
for Describing JSON Documents. Internet-Draft draft-wright-json-
schema-01, Internet Engineering Task Force, April 2017.

[WAB+14] Greg Wilson, D A Aruliah, C Titus Brown, Neil P Chue Hong, Matt
Davis, Richard T Guy, Steven H D Haddock, Kathryn D Huff, Ian M
Mitchell, Mark D Plumbley, and Others. Best practices for scientific
computing. PLoS Biol, 12(1):e1001745, 2014.

[WCK06] David M Weiss, Paul Clements, and Charles W Krueger. Software
Product Line Hall of Fame. SPLC 2006: Proceedings of the 10th
International Software Product Line Conference, page 237, 2006.

[WD04] Michael F Worboys and Matt Duckham. GIS: a computing perspective.
CRC Press, Boca Raton, Fla, 2 edition edition, may 2004.

[YG05] José Manuel Cotos Yáñez and José Ángel Taboada González. Sistemas
de información medioambiental. Netbiblo, 2005.

	Contents
	List Of Figures
	List Of Tables
	Introduction
	Background and Motivation
	Contributions
	Thesis Outline

	I Software Product Line Engineering: methodology
	SPLE: state of the art
	Basic Concepts
	Advantages of software product lines
	Unsolved problems

	Industrial expertise in the definition of a SPL: a new methodology
	Introduction and motivation
	Definition of a new methodology
	Requirement Analysis
	Architecture Design
	Evaluation
	Derivation of a product

	II Definition of a SPL for web-based GIS
	GIS: state of the art
	Introduction
	Basic Concepts
	GIS features
	GIS software
	Commercial GIS tools
	Spatial DBMS
	Map Servers
	Map Visualization Clients

	Summary

	Requirements Analysis: identifying our features
	Introduction
	Domain Analysis
	Requirements for our products
	Features derived from the set of requirements

	Product Planning: analysing existing products
	Description of the analysed products
	Feature validation

	Feature Model of our Software Product Line
	Summary

	Architecture Design: architecture for Web GIS
	Introduction
	Reference architectures identification and selection
	Analysis of architectures of existing products
	Elements selection/prioritization
	Product Line Architecture Structure Building
	Technology analysis: identifying state of the art technologies
	Summary

	Architecture Evaluation and Derivation
	Introduction
	Architecture Evaluation: maintaining the traceability
	Derivation process in our SPL
	Summary

	III GISBuilder
	SPL implementation techniques & Scaffolding: state of the art
	Introduction
	SPLE: Approaches and tools
	Compositional or positive approach
	Annotative or negative approach
	Alternatives using other approaches
	Summary

	Scaffolding: industrial generation of code
	Scaffolding vs SPLE
	Libraries and frameworks using scaffolding

	Summary

	GISBuilder's design
	Introduction
	Architecture
	Derivation Engine
	Runtime Product Preview
	Motivation and conceptual approach
	Improving GISBuilder with Runtime Product Preview

	Validation of GISBuilder
	Case of use
	Using the specification interface
	Project: basic data and languages
	Features: variability selection
	GUI: designing the interface
	Menus
	Data Model
	Static Pages
	Forms
	Lists
	Map viewers
	Product Preview

	IV Summary of the thesis
	Conclusions and Future Work
	Summary
	Future Work

	JSON Schema for our tool
	GISBuilder screenshots
	Publications and Other Research Results Related to the Thesis
	Resumen del Trabajo Realizado
	Introducción
	Estructura de la tesis
	Contribuciones y Conclusiones
	Trabajo Futuro

	Bibliography

