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Abstract 

Enzyme regulation proteins are very important due to their involvement in many biological processes that sustain 

life. The complexity of these proteins, the impossibility of identifying direct quantification molecular properties 

associated with the regulation of enzymatic activities, and their structural diversity creates the necessity for new 

theoretical methods that can predict the enzyme regulatory function of new proteins. The current work presents 

the first classification model that predicts protein enzyme regulators using the Markov mean properties. These 

protein descriptors encode the topological information of the amino acid into contact networks based on amino 

acid distances and physicochemical properties. MInD-Prot software calculated these molecular descriptors for 

2415 protein chains (350 enzyme regulators) using five atom physicochemical properties (Mulliken 

electronegativity, Kang–Jhon polarizability, vdW area, atom contribution to P) and the protein 3D regions. The 

best classification models to predict enzyme regulators have been obtained with machine learning algorithms 

from Weka using 18 features. K* has been demonstrated to be the most accurate algorithm for this protein 

function classification. Wrapper Subset Evaluator and SVM-RFE approaches were used to perform a feature 

subset selection with the best results obtained from SVM-RFE. Classification performance employing all the 

available features can be reached using only the 8 most relevant features selected by SVM-RFE. Thus, the 

current work has demonstrated the possibility of predicting new molecular targets involved in enzyme regulation 

using fast theoretical algorithms. 
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Introduction 

Enzymes are large biological molecules responsible for the thousands of chemical 

interconversions that sustain life.
1,2

 This paper is focused on enzymes, which are proteins with a 

significant influence on metabolic reactions. Usually, the influence on those metabolic reactions is 

reflected in a great accelerating rate and specificity of reactions.  

 

This enzyme influence is very important for life reactions, for example, the same reactions 

without enzymes are among the slowest that have ever been measured, some with half-times 

approaching the age of the earth. Enzymes are needed in most chemical reactions in a biological cell, 

and should occur at rates sufficient for life; thus, this difference provides a measure of the importance 

and proficiencies of enzymes as catalysts and their relative susceptibilities to inhibition by transition-

state analogue inhibitors.
3
 

 

Furthermore the set of enzymes made in a cell determines which metabolic pathways occur in that 

cell. It is important to note that only a small portion of the enzyme (less than 4 amino acids) is related 

to the catalysis in a direct way.
4
 The region that contains these catalytic residues, binds the substrate 

and then carries out the reaction is known as the active site. 

 

The enzymes that catalyse chemical reactions are regulated enzymes. Some examples of enzyme 

regulators are cyclase regulators, enzyme activators, enzyme inhibitors and kinase regulators. 

 

The experimental method of characterizing the proteins that act as enzyme regulators is expensive 

and time-consuming, and is impossible to apply to test thousand of proteins with other functions or 

without any known function. Therefore, theoretical methods are useful to predict protein functions 

such as enzyme regulation. In order to create quantitative prediction models for a specific function of 

proteins, the molecular information should be encoded into specific numbers (molecular descriptors) 

using any type of information available such as molecular topology, 3D protein conformation, and 

atom/amino acid physicochemical properties. These numbers are unique for a specific protein and 

they can be used to obtain classification models using machine learning techniques. 

 

Examples in this regard are the molecular descriptors based on electrostatic potential that have 

been used to predict enzyme class,
5
 DNA-cleavage protein activity,

6
 protein–protein interactions in 

parasites,
7,8

 drug–protein interactions
9
 or lipid-binding proteins.

10
 The classifier represents a 

Quantitative Structure–Activity Relationship (QSAR)
11

 between the protein 3D structure and the 

biological activity/function. The QSAR models
12

 for drugs have been intensively used for a large 

spectrum of studies such as target searching,
13–15

 and antifungal,
16

 antiviral
17

 and antimalarial
18

 

activity. Other types of QSAR models used the structures of peptides,
19

 proteins
20

 and DNA 

promoters.
21

 

 

The aim of this study is to demonstrate the possibility of encoding protein chain 3D structure 

information into new molecular descriptors using molecular topology and atom physicochemical 

properties in order to obtain QSAR classification models that can predict enzyme regulatory function 

for new peptides. 

Materials and methods 

Fig. 1 shows the steps performed to predict proteins related to the enzyme regulation process. 
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Fig. 1 Flow chart of the methodology using 3D Markov mean properties for proteins and machine learning technologies to 

obtain an enzyme regulator/non-enzyme regulator related classification model. 

 

In the first step, the dataset was created from two well-known classes of protein chains: one of 

them related to enzyme regulatory function and the other not related to this function. These protein 

chains can be checked at the Gene Ontology
22

 website GO:0030234. 

 

The MInd-Prot
23

 tool turns this information into molecular descriptions that will be used in the 

next step as inputs in the Weka
24

 suite. This suite includes several machine learning algorithms
25

 for 

solving data mining problems related to different fields such as SNPs,
26

 gene identification,
27

 

phenotype–genotype mapping,
28

 microarrays,
29

 and so on. These Weka algorithms will be used to 

search for the best classification method to classify a new 3D protein structure related to the enzyme 

regulation function. Finally, this classification model will allow to get a QSAR
30

 model from the new 

3D structure and the enzyme regulation function. 

Protein set 

To obtain the protein 3D structure, the authors have used two different databases containing a 

total number of 2415 samples: out of those, 350 samples correspond to proteins whose chains are 

identified as enzyme regulators (positive group) and 2065 chains are protein chains non-related to any 

enzyme regulatory function (negative group). The PDBs for the positive group have been 

downloaded from the Protein Databank,
31

 the “Enzyme Regulator” list (GO ID30234
22

) obtained with 

the “Molecular Function Browser (GO)” in the “Advanced Search Interface” (protein identity cutoff 

= 30%, downloaded on November 13th, 2012).  

 

The negative chain group was selected from the PISCES CulledPDB
32

 list of proteins. This 

database was downloaded on November 16th, 2012 from http://dunbrack.fccc.edu/PISCES.php. In 

order to generate a better set, the selection was made with an identity of less than 20% (similarity 

among two different sequences), resolution of 1.6 Å and R-factor of 0.25. These parameters in the 

selection guarantee that the proteins do not have any other possible biological function. The PDB 

files of the negative groups were downloaded from the same Protein Databank. The protein chains 

from the positive group that were present in the negative group were eliminated from the latter. 

 

Therefore, the dataset is composed of two different subsets, one with a biological function related 

to enzyme regulation and another without this function. Using these data, the authors have developed 

a classification model for this property, explained in the next section. Those protein chains are 

characterised by numerical properties that will be used in the classification model (features). This 
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conversion from a 3D protein structure to molecular descriptors was carried out with the MInD-Prot 

tool. 

Markov mean properties 

MInD-Prot
23

 is a Python software for the calculation of the mean properties of the Markov indices 

(molecular descriptors) for drugs (simple/medium molecules) and proteins (macromolecules). The 

inputs for this tool are the PDB/FASTA files for proteins and the SMILE codes for drugs. In the 

current study, the protein chains have been turned into contact networks by using the information 

from the 3D coordinates of the amino acids (PDB files). Therefore, the nodes are the alpha-carbon 

atoms of each amino acid and the links are defined by a cutoff geometrical distance.  

 

The tool is able to calculate Markov Mean Properties (MP) using different molecule 

physicochemical properties in order to encode specific molecular information in addition to the 

topology. The algorithm is a modification of the Markov Chains (MC) method, called MARCH-

INSIDE (MI), introduced by Gonzalez-Diaz et al.
33–35

 The node weights for each amino acid, such as 

the physicochemical properties, are calculated as a sum of all atomic properties from each type of 

amino acid. Thus, the tool uses four types of properties such as Mulliken Electronegativity (EM), 

Kang–Jhon Polarizability (PKJ), van der Waals area (vdWA)
36

 and Atom Contribution to P 

(AC2P).
37

 

 

The contact network representation of a protein chain is a static model with the amino acids 

distributed spatially, with specific 3D Cartesian coordinates (xi, yi, zi) for each Cα atoms (the network 

nodes). A Euclidean distance cutoff (roff) of 7 Å between two Cα atoms is used to obtain the amino 

acid contact network for each protein chain. Thus, all the amino acids at an Euclidean distance less 

than roff are connected (αij = 1 elements in the connectivity matrix A). Each amino acid has a different 

contribution to interactions with other molecules for the enzyme regulation function and depends on 

the type of the amino acid and the 3D position. Therefore, the 3D structure of the protein is virtually 

divided into spherical spatial regions (R): core (c), inner (i), middle (m) and surface (s). Each region 

is calculated as a percentage of the longest distance rmax with respect to the protein chain geometrical 

center: c between 0% and 25%, i between 25% and 50%, m between 50% and 75%, and s between 

75% and 100%. The total region (t) is considered as the entire protein chain space (0% to 100%). The 

tool uses the Markov Chain theory to calculate the probabilities of interaction between any two amino 

acids placed at a topological distance k (0–5). These values are averaged by all k values for each 

region R. Thus, it is possible to calculate k-averaged parameters (MPR) for the amino acids contained 

in a specific region (R = c, i, m, s, t)
38–42

 and for a specific physicochemical property. 

 

The following algorithm is used to calculate the indices for each physicochemical property: 

 

Calculation of the squared connectivity matrix of Cα atoms (A) using the 3D coordinates from 

PDBs; n × n matrix, n = the number of amino acids in the protein chain, αij = elements with values of 

1 for connected amino acid pairs and 0 for the non-connected ones. 

 

Calculation of the weighted matrix (W) by adding the values of the physicochemical property for 

each type of connected amino acid (wj elements from vector w as amino acid weight vector). 

 

Calculation of the interaction probability matrix (
1
Π) obtained by the normalisation of W. 

 

Calculation of similar interaction probability matrices (
k
Π) for other k steps of interactions (k = 0–

5), for a specific molecular property. 

 

The matrices 
k
Π are used to calculate the 3D Markov mean properties corresponding to the entire 

protein chain, 
k
MPt, for a specific k (see eqn (1)); the central matrix 

k
Π is multiplied from the left by 

the probability vector 
0
p for all amino acids without considering the network connectivity; the result 

is multiplied from the right by the vector of the amino acid weights (w); the values correspond to 

elements from 1 to n. 

 

The MPs corresponding to a specific 3D region R (c, i, m, s) are obtained using the same formula 

by multiplying only the values that correspond to the amino acids in an R.  
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In the final step, 
k
MPR are averaged for all k values resulting in Markov Mean Properties MPR 

(see eqn (2)). 

 

In conclusion, MInD-Prot
23

 calculates for each protein chain 20 molecular descriptors MPR that 

correspond to 4 types of physicochemical properties, and averaged for all the k values into 5 regions 

R: EMR, PKJR, vdWAR and AC2PR. 

 

 

 

(1) 

 

(2) 

 

 

The 3D structure and physicochemical property information of the protein chains encoded into 

these indices were used as input for the machine learning methods from Weka
24

 in order to find the 

best QSAR classification model that can predict the enzyme regulatory protein chains. Additional 

information about the transformation of the sequence database into molecular descriptors and the 

input for the classification models can be found as ESI.† 

Classification methods 

With the aim to minimize influence of the configuration of training and validation dataset, the 

authors have applied in this paper the different classification methods using the well-known 10-fold 

cross-validation technique to split data.
43

 This technique splits the dataset into 10 random equal-size 

subsets, 9 of which are chosen 10 times to train the models and the remaining set is used to test them. 

Notice that, each time, a random subset is chosen to be the test set.  

 

The result from the test phase for a two-class problem is usually presented by using a confusion 

matrix (see Fig. 2), which provides a good number of different measures that help to understand the 

results of the classification method based on a comparison between the class provided by the 

classificatory model with the real or actual class: true positives (TP), false positives (FP), false 

negatives (FN) and true negatives (TN). 

 
 

 
Fig. 2 Confusion matrix. 
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Some of the most commonly used measures within the machine learning field are accuracy, 

precision and recall. The first one, accuracy (eqn (3)), establishes the percentage of correctly labelled 

samples, the precision (eqn (4)) is the fraction of all samples positive-labelled that really are positive, 

while recall (eqn (5)) is the fraction of all positive samples that have been detected by the 

classification model. 

 

 
Accuracy = (TP + TN)/(TP + TN + FP + FN) (3) 

  

Precision = TP/(TP + FP) (4) 

  

Recall = TP/(TP + FN) (5) 

 

 

These metrics present major drawbacks when the dataset is not balanced and there is a more 

representative class than the other. In these situations with very skewed classes the use of metrics like 

F-score (eqn (6)) should be better.
45

 

 

 
F_1 Score = 2(precision·recall)/(precision + recall) (6) 

 

 

The Receiver Operating Characteristic (ROC) curve is a comparison between two operating 

characteristics, usually a true positive rate and a false positive rate as the criterion changes. The ROC 

curve is a plot that represents the performance of a binary classifier as its discrimination threshold is 

varied. Accuracy and ROC measurements help to select better models and discard the worst ones 

independently of the cost context or the class distribution. Thus, the analysis of the accuracy and 

ROC are an estimation of cost-benefit of diagnostic decision-making and allow an easy comparison 

between different models. 

 

The Area Under Receiver Operating Characteristic Curve (AUROC)
44

 is one of the most 

commonly used ways to measure the performance of a diagnostic test: the larger the area (closer to 

1), the more accurate the diagnostic test is. 

 

All those measurements were used as a tool to compare the different techniques that the authors 

have compared within the frame of this work in order to perform the main task, which is to develop a 

model that can distinguish enzyme regulatory proteins among SVM-RFE; this model was first 

presented by Guyon et al.
62

 in order to select genes within a cancer classification problem. The 

method ranks all features within the original data according to some score function that will be 

assigned by means of a training set of a SVM with a linear kernel. Subsequently, it uses that score to 

drop the feature (or features) with the lowest scores. Thus it provides information about what are the 

most relevant features within a dataset (those that remain included in the feature set). This elimination 

process is repeated until the best classification accuracy is reached. 

 

The authors have performed several experiments in order to select the best models. The 

classification implementations used in those tests were the ones included in the well-known machine 

learning library Weka.
24

 More specifically, the authors have used: AdaBoost (AB),
46

 MultiLayer 

Perceptron (MLP),
47,48

 Naïve Bayes (NB),
49

 Random Forest (RF),
50

 J48
45

 (the Weka implementation 

of c4.5 algorithm) and K*. Among all these classifiers, K*
51

 was chosen because of the reasons 

presented in the next point. 

 

The K* algorithm attempts to offer an efficient approach in problems that deal with missing 

values, real valued features or symbolic features. K* is included in Weka's instance-based learning 

algorithms, which are intended to make the most of some of the benefits of the use of entropy as a 

distance measure instead of the traditional Euclidean distance used within traditional Instance Based 

Learning
52

 algorithms. 

 

The traditional Instance Learning-based methods make comparisons between test samples and a 

previously annotated database of instances. In order to perform this comparison, the algorithm needs 

to use a similarity function, since one of the most simple ways to address this comparison is the use 

of nearest neighbour algorithms,
53

 which usually are based on the Euclidean distance between the test 

http://pubs.rsc.org/-/content/articlehtml/2014/mb/c3mb70489k#eqn3
http://pubs.rsc.org/-/content/articlehtml/2014/mb/c3mb70489k#eqn4
http://pubs.rsc.org/-/content/articlehtml/2014/mb/c3mb70489k#eqn5
http://pubs.rsc.org/-/content/articlehtml/2014/mb/c3mb70489k#eqn6
http://pubs.rsc.org/-/content/articlehtml/2014/mb/c3mb70489k#cit45
http://pubs.rsc.org/-/content/articlehtml/2014/mb/c3mb70489k#cit44
http://pubs.rsc.org/-/content/articlehtml/2014/mb/c3mb70489k#cit62
http://pubs.rsc.org/-/content/articlehtml/2014/mb/c3mb70489k#cit24
http://pubs.rsc.org/-/content/articlehtml/2014/mb/c3mb70489k#cit46
http://pubs.rsc.org/-/content/articlehtml/2014/mb/c3mb70489k#cit47
http://pubs.rsc.org/-/content/articlehtml/2014/mb/c3mb70489k#cit49
http://pubs.rsc.org/-/content/articlehtml/2014/mb/c3mb70489k#cit50
http://pubs.rsc.org/-/content/articlehtml/2014/mb/c3mb70489k#cit45
http://pubs.rsc.org/-/content/articlehtml/2014/mb/c3mb70489k#cit51
http://pubs.rsc.org/-/content/articlehtml/2014/mb/c3mb70489k#cit52
http://pubs.rsc.org/-/content/articlehtml/2014/mb/c3mb70489k#cit53


instance and the annotated samples (the test instance will be labelled as the class of the closest 

annotated sample). Another option is performing the comparison between one sample and a subset of 

the k nearest samples of the training set, such as the KNN algorithm (in this case, a particular 

instance will be labelled with the most common class among this subset). By using this kind of 

comparison, some previous work provides correct classifications using noisy data or is able to 

manage either non-relevant or symbolic values.
52,54–56

 

 

As previously stated, the K* algorithm differs from this kind of instance-based algorithms 

because it does not use an Euclidean measure approach: K* uses an entropy-based distance function, 

extracted from the information theory,
57,58

 in order to compute the similarity between two different 

samples. In short, the entropy can be defined as a measure about how unsorted the data are. It allows 

a better approach to address problems related to missing and real feature values. 

Feature selection: SVM-RFE 

Support Vector Machines Recursive Feature Elimination (SVM-RFE) is one of the most 

successful classification algorithms based on the foundations of statistical learning theory used by 

Vapnik in the 70s when he proposed SVMs.  

 

In this kind of problem, the SVM-based techniques are aimed at finding the hyperplane that 

allows discrimination between positive and negative samples. Furthermore, they are also aimed at 

maximising the distance between this hyperplane and the different samples to allow a better 

generalization,
59

 as shown in Fig. 3. SVM also introduces the key-concept of kernel: it is a function 

that provides data with a higher dimensionality, which allows convertion of the original data from 

non-linearly separable to linearly separable. It yields very good results when dealing with high-

dimensional data.
60,61

 

 
 

 
Fig. 3 SVM schema: optimal hyperplane and max. 

margin hyperplanes (support vectors). 

In this work, the R Statistical Package
63

 has been used to conduct SVM-RFE with linear 

regression functions (more specifically the Caret
64

 and pROC
65

 packages). As SVM-RFE states, the 

Caret package (an acronym of Classification and Regression Training) provides a set of functions to 

perform a backward selection of features based on score ranking. 
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Results and discussion 

Dataset description 

As noted previously, trials described in this section were developed by using a database composed 

of 2415 samples. Each and every one of those samples was labelled with one of the groups that make 

up the dataset. Specifically, the dataset was composed of 350 samples corresponding to enzyme 

regulatory proteins and 2065 samples of proteins with no enzyme regulatory function. This kind of 

unbalanced data is not the most suitable to be used as inputs for learning algorithms because the 

results would present a high sensitivity and low specificity because the learning algorithms would 

tend to classify most of samples as part of the most common group.
66

 To avoid this situation, a pre-

processing phase must be used to get a more balanced dataset, in this case by means of the synthetic 

minority oversampling technique (SMOTE),
67

 a technique included within Weka. In short, SMOTE 

provides a more balanced dataset using an expansion of the lower class by creating new samples, 

interpolating other minority-class samples. After this pre-processing, the final dataset is composed of 

1750 positive samples and 2065 samples of negative or non-enzyme regulatory proteins.  

 

This resultant dataset was processed by MInD-Prot
23

 to obtain the 20 Markov Mean Properties for 

each sample chain, which will be used as features by the classification techniques. Those 20 features 

can be classified into 4 subsets depending on the physicochemical properties: Mulliken 

Electronegativity (EM), Kang–Jhon Polarizability (PKJ), van der Waals area (vdWA) and Atom 

Contribution to P (AC2P). Table 1 shows the performance over validation data of the most common 

machine learning algorithms included in Weka, used with the standard/recommended configurations. 

Table 1 Classification model result. K* yields the best results  

 Accuracy F-measure AUROC No. of features 

     

ABa 0.637 0.622 0.627 20 

MLPb 0.637 0.622 0.627 20 

NBc 0.625 0.632 0.645 20 

RFd 0.839 0.84 0.917 20 

J48e 0.733 0.734 0.766 20 

K* f 0.867  0.867 0.948  20 

     

 
a weka.classifiers.meta.AdaBoostM1 -P 100 -S 1 -I 10 -W. b functions.MultilayerPerceptron ‘-L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 
20 -H a’ -5990607817048210779. c bayes.NaiveBayes -D 5995231201785697655. d trees.RandomForest ‘-I 10 -K 0 -S 1’ 

4216839470751428698. e trees.J48 ‘-C 0.25 -M 2’ -217733168393644444. f lazy.kstar -B 20 -M a. 

Reference model 

The first experiment, as always, was used to choose the most suitable classification model using 

all the available information. As mentioned in the “Classification methods” section, in order to 

minimise the influence of the randomness of the partitions among training and testing sets, a 10-fold 

cross validation was used to perform the experiments and to choose the best classification technique. 

In the “Dataset description” section, it is also explained that in order to obtain a more balanced 

training data, the SMOTE algorithm was applied to the original dataset. In Table 1, there is a 

summary of the results and measures obtained for accuracy, F-measure and AUROC values for the 

validation dataset and the total number of features used to obtain the classification model.  

 

The validation phase was performed using the classification model obtained with the resampled 

data in the training phase and applied to the original data. K* yields the best results, as shown in 

Table 1, with values of accuracy of 0.867 and AUROC over 0.9 for validation. Comparing these 

results with the rest of the tested techniques, we found that it improved significantly the results 
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offered by AB (0.637 and 0.627), MLP (0.637 and 0.627), NB (0.625 and 0.645) and J48 (0.733 and 

0.766). Moreover, it also improves the results of RF (0.839 and 0.917), but with a minor 

improvement level. AUROC plots for these models are represented in Fig. 4. 

 
 

 
Fig. 4 AUROC for reference models. 

 

Feature subset selection 

Once the reference model and the best classification technique were chosen based on the results 

of the previous section, it was also of interest to determine the main features to discriminate between 

the proteins with enzyme regulator properties.  

 

The first (and simplest) approach is a grouping of the features based on the physicochemical 

properties. New models were developed using the K* algorithm and only the selected group of 

variables. Table 2 and Fig. 5 show the results obtained when all the features are used and the results 

for each one of the physicochemical groups (EM, PKJ, vdWA and AC2P). 

Table 2 Feature selection grouping by type of physicochemical property using K*  

Features Accuracy F-measure ROC area Features 

     

All features 0.867 0.867 0.948 20 

EM 0.812 0.812 0.905 5 

PKJ 0.844 0.843 0.936 5 

vdWA 0.821 0.821 0.912 5 

AC2P 0.823 0.823 0.916 5 
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Fig. 5 AUROC for feature selection grouping by type of 

physicochemical property using K*. 

 

According to these results, the best classification is provided by the PKJ subset. This result is also 

close to the one yielded by the complete model and the result of the other subsets. Thus, these results 

seem to indicate that more than one of these features can be used to detect protein enzyme regulator 

behaviour. Any of these subsets yields an accuracy of over 80% and an AUROC of 90%, which is 

significantly high, showing a good classification result. The best results (both for accuracy and 

AUROC) were obtained with the Kang–Jhon polarizability properties and these results are very close 

to the results obtained using all the features. 

 

Therefore, Table 2 shows that successful classifications can be performed with good results using 

only five features from the original dataset. Thus, now the question should be: is there another 

different subset of five (or less) features that yields better results than those in Table 2? In the next 

two subsections we will try to answer this question. 

 

Wrapper subset evaluator. The first approach to address this question is based on the use of the 

Wrapper Subset Evaluator provided by the Weka suite.
68

 This algorithm makes an exhaustive search 

within the set of features to determine the most relevant.  

 

It evaluates feature sets by means of the learning scheme, in which case the K* algorithm is the 

one that provides the most suitable results. Furthermore, a cross validation scheme is used to estimate 

the accuracy of the learning scheme for a set of features. As in the previous test, the AUROC measure 

is used. Over each fold, the Wrapper Subset Evaluator will select the most representative set of 

variables, so the final set of variables selected as the most representative will be the sum of all the 

variables selected over all the different folds. 

 

Table 3 shows the variables selected by the wrapper algorithm (and the number of folds where 

they appear). It should be noted that a total of six variables are selected in all the folds (EM i, PKJi, 

PKJm, PKJt, vdWAc and AC2Pm), so they could be considered the most relevant ones. On the other 

hand, there are other features that are never selected or marked as relevant (EMt and vdWAt) 
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Table 3 Feature selection by means of Wrapper Subset Evaluator  

Feature % folds where feature appears 

  

EMc 40 

EMi 100 

EMm 70 

EMs 50 

EMt 0 

PKJc 90 

PKJi 100 

PKJm 100 

PKJs 90 

PKJt 100 

vdWAc 100 

vdWAi 70 

vdWAm 60 

vdWAs 90 

vdWAt 0 

AC2Pc 80 

AC2Pi 80 

AC2Pm 100 

AC2Ps 40 

AC2Pt 20 

  

 

Once the wrapper selected the most relevant features, it is time to check their performance, shown 

in Table 4. 

Table 4 Classification results for variables selected by means of Wrapper Subset approach. Best results achieved with 18 

variables from the original  

10CV-validation 

Feature Accuracy F-measure ROC area Features 

     

All available features (reference) 0.867 0.867 0.948 20 

Selected at least in one fold 0.872  0.872 0.950  18 

Selected in 100% folds 0.841 0.841 0.934 6 

Selected in ≥ 90% folds 0.863 0.863 0.944 9 

Selected in ≥ 80% folds 0.870 0.870 0.945 11 

     

 

Using this approach, the results achieved using all the variables can be improved with a lower 

number of features provided by the wrapper subset algorithm (18 variables that appear at least in one 

fold or 11 variables that appear in more than 80% of the folds along the process). Furthermore, the 

results of the classification model shown in Table 4 (which selected features by means of 

physicochemical properties) are also improved although a great number of features were used. 
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SVM-RFE. The results provided by Wrapper Subset Evaluator are good (in comparison with the 

reference models) but present two major drawbacks. Firstly, the wrapper approach makes an 

exhaustive search because it proves all the possible combinations of features to select the most 

suitable one, which implies that the time needed for its execution is high (almost 5 days in the 

computing server used). Secondly, the number of variables finally selected is also quite high to get 

results similar to the reference models.  

 

In the case of SVM-RFE, the computation time needed to finish the test was reduced to only six 

hours in the same computing server and as we will see the results are improved using a lower number 

of features. 

 

Table 5 and Fig. 6 show how SVM-RFE establishes a ranking between the variables depending on 

their contribution to the overall accuracy of the classification method. A lower value for the order 

column represents a bigger contribution of that variable to the classification task. 

Table 5 Feature selection by means of SVM-RFE  

Feature Accumulated accuracy Order 

   

PKJt 0.7577 1 

AC2Pt 0.7962 2 

EMt 0.8505 3 

EMs 0.8569 4 

wdWAs 0.8659 5 

PKJs 0.8610 6 

wdWAt 0.8624 7 

AC2Ps 0.8964 8 

PKJm 0.9019 9 

PKJi 0.9099 10 

AC2Pi 0.9148 11 

EMi 0.9135 12 

wdWAi 0.9190 13 

wdWAm 0.9162 14 

AC2Pm 0.9201 15 

EMm 0.9272 16 

AC2Pc 0.9288 17 

PKJc 0.9275 18 

EMc 0.9291 19 

wdWAs 0.9280 20 
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Fig. 6 SVM-RFE: evolution of accuracy level. 

It should be noted that the R package for SVM-RFE uses values for accuracy within the reduced 

feature of the elimination process, so this value will be used for comparisons. 

 

According to the variable ranking established by SVM-RFE, the accuracy levels of the 

classification performed with PKJ properties can be reached using only 3 features (instead of 5): 

PKJt, AC2Pt and EMt. The accuracy reached with SVM-RFE is 0.8505 instead of 0.844 reached with 

PKJ properties. 

 

Furthermore, adding only two more features (EMs and wdWAs) accuracy value reaches 0.8659, a 

very similar value to that obtained by K* using all the available features (0.867) and obviously higher 

than the accuracy provided by the classification using the five available PKJ properties. It can be 

noted that these features contain information from the entire protein chain (total region). This can be 

explained by the complexity of the regulation of enzymes. 

 

Comparing these results with the results obtained with Wrapper Subset Evaluator (see Table 4) 

SVM-RFE can achieve (or improve) them using only the first eight variables selected (instead of 18 

or 11 variables selected with the Wrapper approach). 

 

Finally, if we use these 8 most relevant variables from SVM-RFE we will able to improve the 

results employing all the features (0.8964 vs. 0.867). 

Conclusions 

The current work presents the first classification model to predict enzyme regulation function-

related proteins. This classification model was obtained by means of the Markov mean properties 

calculated with the MInD-Prot tool.  

 

The dataset contains a total of 2415 samples, out of which 350 correspond to positive samples, 

that is, to enzyme regulator function proteins. The dataset information is composed of the topological 

information of the amino acid contact networks of the proteins, the atom physicochemical properties 

(Mulliken electronegativity, Kang–Jhon polarizability, van der Waals area, atom contribution to P) 

and the protein 3D regions. 
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First of all, several classification methods were tested using all the information available 

(composed of a total of 20 features). As result of these tests, K* seems to be the algorithm that yields 

the best results. Secondly, we tried to perform the classification using a more reduced set of features, 

so we proposed Wrapper Subset Evaluator and SVM-RFE approaches to establish which of the 

original features provides more information to the final model. 

 

A Wrapper Subset Evaluator approach was tested, obtaining good results. However, it presents 

two major drawbacks: the time needed to perform all the calculations and the high number of 

variables needed to get similar results to those obtained with all the features. 

 

Finally, SVM-RFE selected features to improve the classification results using all the available 

data with only 8 out of 20 features calculated with MInD-Prot. Good results can be obtained using 

only 3 out of the initial 20 features. Therefore, these results can help to predict enzyme regulation 

function-related proteins using only a reduced amount of molecular information encoded into the 

protein 3D structure. Therefore, with the new predictions it is possible to search for new molecular 

targets involved in diverse diseases. 

 

Feature selection by means of SVM-RFE also allows comparisons of how the variables provide 

more information to the final classification task. 
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