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Abstract

The massive use of Internet in the last twenty years has created a huge
demand for telecommunications networks capacity. In this work, financial
option pricing methods are applied to the problem of network investment
decision timing. The main innovative aspect is the consideration of two un-
certain factors: the capacity demand and the bandwidth price, the evolution
of which are modeled by suitable stochastic processes. Thus, we consider the
optimal decision problem of upgrading a line in terms of the (highly volatile)
uncertain demand for capacity and the price. By using real options pricing
methodology, a set of partial differential equation problems are posed and
appropriate numerical methods based on characteristics methods combined
with finite elements to approximate the solution are proposed. The combi-
nation with a dynamic programming strategy gives rise to a global algorithm
to help in the decision of optimizing the value of the line.

Keywords: Telecommunications networks planning, real options pricing,
numerical methods, decision making

1. Introduction

Financial valuation of telecommunication networks, such as Internet and
dark fiber networks, is a relevant current subject, as these kinds of infras-
tructure are the object of important trading activities and companies have
to make large investments on them. When the infrastructure starts to op-
erate, an important question is to price it as an asset that will generate
revenues in future dates depending on the future market uncertainty. Dif-
ferent approaches have been made to this interesting problem in a telecom-
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munications networks setting. More specifically, concerning to the network
planning problem we address to Kenyon and Cheliotis [8], for example. Un-
like the previously described problem, a second very important one concerns
to the decision of expanding or not an existing network which is already gen-
erating revenues. In this second setting the optimal solution depends on the
market demand of capacity and the bandwidth prices. So, this new problem
can be related to risk management and investment decision problems. Also
time results very relevant, as decisions can be delayed waiting to the arrival
of more information.

In both different problems, a real options approach can be considered
[1]. For example, in [8], the first setting is addressed and the price of the
bandwidth is the only underlying uncertain factor, which is modelled as an
stochastic process and the network value is computed by means of a binomial
tree technique. More recently, in D’Halluin et al [2, 3] the second problem
has been formulated by also using the real options theory, when only the un-
certainty in market demand is considered. More precisely, the price is given
by a deterministic function in terms of time and demand, the latter being
the only stochastic factor. Furthermore, a partial differential equation (PDE)
formulation combined with a dynamic programming strategy is posed in [2]
to solve the network planning capacity problem. In this problem, for a given
set of lines with different technical features and already generating revenues,
the objective is to find the percentage at which it is optimal to upgrade the
line. This percentage is referred to the maximum transmission rate of the
line. In [2] it is argued that while telecommunication markets are inefficient
the demand is the main uncertain driving factor of the network price, so that
the stochastic variation of the bandwidth price can be neglected.

In the present paper, we mainly address the second problem: the optimal
decision to expand an existing network that is already producing revenues.
In this setting, the main innovation comes from the assumption that the
value of the line (that can be understood as the expected revenue for the
owner) depends on two underlying stochastic factors: the capacity demand
and the bandwidth price, which jointly evolve in time according to their re-
spective stochastic differential equations. In the here presented approach, the
model for the stochastic evolution of demand is mainly taken from [2], while
the stochastic dynamics of the bandwidth price is adapted from [8]. Addi-
tionally, as we have selected a mean reversion process for bandwidth price,
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several possible cases are considered for the mean reversion value: constant,
time dependent or stochastic. Accordingly, we obtain a constant, a time
dependent or a stochastic coefficient on the corresponding PDE in two spa-
tial like variables. In the latter case, an alternative PDE model with three
spatial like variables can be posed. However, the consideration of a stochas-
tic coefficient in the PDE in two variables allows the use of Monte Carlo
techniques to obtain the expectation of the line value from the different sim-
ulated scenarios of the stochastic coefficient and avoids the building and use
of a more complex computational code for the PDE with three spatial vari-
ables. For the numerical solution of the involved PDE problems we propose
a characteristics method for the time discretization to cope with the con-
vection dominated situations, while the spatial discretization is carried out
by a finite elements method. The consideration of upgrading decision can be
related to the pricing problem of callable bonds with notice, where the notice
date is analogous to the upgrading decision date. In this specific issue, we
follow the ideas in [4, 5] for callable bonds. In order to show the good per-
formance of the proposed model and the whole numerical algorithm, several
test examples have been considered and some numerical results are presented.

The plan of the paper is the following. In Section 2 the different math-
ematical models are posed. Section 3 describes the various numerical tech-
niques that have been proposed. In Section 4 several examples with the
corresponding numerical results are shown. Finally, some conclusions are
indicated in Section 5.

2. Mathematical model

2.1. A one factor model

Following [2], we assume that the time evolution of demand for capac-
ity (measured in megabytes), can be modeled as a stochastic process, Qt,
satisfying the stochastic differential equation:

dQt = µQt dt+ σQQt dZt ,

where µ and σQ denote the drift (or growth) rate and the instantaneous
volatility of the demand, respectively, while Zt represents a Wiener process.

Assuming that there exists a function V , such that the value of the net-
work is a stochastic process given by Vt = V (t, Qt) (in monetary units), and
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using Ito lemma (see [9], for example) plus classical dynamic hedging ar-
guments, the function V is the solution of the following partial differential
equation:

∂V

∂t
+
σ2
Q

2
Q2∂

2V

∂Q2
+ (µ− κσQ)Q

∂V

∂Q
− rV +R(t, Q) = 0 , (1)

where R is a revenue term we will detail later in the two factors case, r is the
risk free interest rate and κ represents the market price of risk associated to
demand uncertainty. Moreover, we consider that the value V is known at a
given finite time horizon (final condition). In our case, we consider an invest-
ment time horizon T and assume that VT = 0, so that V (T,Q) = 0, which
seems an appropriate hypothesis in the rapidly changing telecommunications
market. Concerning the boundary conditions, at Q = 0 we just pass to the
limit in the equation when Q → 0. After time discretization, homogeneous
Dirichlet boundary condition naturally arises from the initial condition and
the fact thatR(0, Q) = 0. For Q→∞ we assume an homogeneous Neumann
boundary condition holds. Other additional issues in the one factor model
will be explained in the two factors model described in next section.

2.2. A two factors model

In the present paper we assume that the value of the line depends not
only on the capacity demand but also on the bandwidth price. In this new
setting we pose Vt = V (t, Qt, St), the additional stochastic factor St being
the price at time t. In order to pose the stochastic model for prices evolution
we mainly follow [8], thus assuming that the logarithmic price, Xt = logSt,
follows the following Orstein-Uhlenbeck process:

dXt = η(X −Xt) dt+ σSdWt ,

where Xt is therefore a mean reverting Ito process, X represents its long
term value to which Xt tends for large t, η is the speed of reversion to the
long term price X and Wt denotes a Wiener process.

Next, in order to obtain the stochastic differential equation satisfied by
the real price process, St, let f denote the function such that:

St = f(t,Xt) = exp(Xt) .
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Thus, applying Ito lemma [9] we obtain:

f(t,Xt)− f(s,Xs) =

∫ t

s

[
η(X −Xu) exp(Xu) +

σ2
S

2
exp(Xu)

]
du

+

∫ t

s

σS exp(Xu) dWu ,

or, in differential form,

dSt =

[
η(X −Xt) exp(Xt) +

σ2
S

2
exp(Xt)

]
dt+ σS exp(Xt) dWt

which is equivalent to:

dSt =

[(
η(X − logSt) +

σ2
S

2

)
St

]
dt+ σSSt dWt .

Next, we take into account that Vt = V (t, Qt, St) and assume that dWt

and dZt are correlated Wiener processes with constant correlation ρ, i.e.
dWtdZt = ρdt. Then, Ito lemma for two stochastic factors leads to [9]:

dVt =

[
∂V

∂t
(t, Qt, St) +

σ2
Q

2
Q2
t

∂2V

∂Q2
(t, Qt, St) +

σ2
S

2
S2
t

∂2V

∂S2
(t, Qt, St)

+ ρσQσS QtSt
∂2V

∂Q∂S
(t, Qt, St)

]
dt+

∂V

∂Q
(t, Qt, St) dQt +

∂V

∂S
(t, Qt, St) dSt

=

[
∂V

∂t
(t, Qt, St) +

σ2
Q

2
Q2
t

∂2V

∂Q2
(t, Qt, St) +

σ2
S

2
S2
t

∂2V

∂S2
(t, Qt, St)

+ ρσQσS QtSt
∂2V

∂Q∂S
(t, Qt, St)

]
dt

+

[
µQt

∂V

∂Q
(t, Qt, St) +

(
η(X − logSt) +

σ2
S

2

)
St
∂V

∂S
(t, Qt, St)

]
dt

+ σSSt
∂V

∂S
(t, Qt, St) dWt + σQQt

∂V

∂Q
(t, Qt, St) dZt .

For simplicity, hereafter we remove the subindex t in all stochastic processes.
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Next, we build up the portfolio Π = V1 −∆2V2 −∆1Q, so that:

dΠ = dV1 −∆2dV2 −∆1dQ

=

[
∂V1

∂t
+
σ2
Q

2
Q2∂

2V1

∂Q2
+
σ2
S

2
S2∂

2V1

∂S2
+ ρσQσS QS

∂2V1

∂Q∂S

+µQ
∂V1

∂Q
+

(
η(X − logS) +

σ2
S

2

)
S
∂V1

∂S

]
dt

+ σQQ
∂V1

∂Q
dZ + σSS

∂V1

∂S
dW

−∆2

[[
∂V2

∂t
+
σ2
Q

2
Q2∂

2V2

∂Q2
+
σ2
S

2
S2∂

2V2

∂S2
+ ρσQσS QS

∂2V2

∂Q∂S

+µQ
∂V2

∂Q
+

(
η(X − logS) +

σ2
S

2

)
S
∂V2

∂S

]
dt

+σQQ
∂V2

∂Q
dZ + σSS

∂V2

∂S
dW

]
−∆1 (µQdt+ σQQdZ) .

In order to guarantee that the portfolio Π is risk free, we remove the
random component of dΠ with the following choice:

∆1 =
∂V1

∂Q
− ∂V1/∂S

∂V2/∂S

∂V2

∂Q
and ∆2 =

∂V1/∂S

∂V2/∂S
.

Thus, using the classical no arbitrage argument, we deduce:

dΠ = rΠ dt = r

[
V1 −

∂V1/∂S

∂V2/∂S
V2 −

(
∂V1

∂Q
− ∂V1/∂S

∂V2/∂S

∂V2

∂Q

)
Q

]
dt ,

and:

1

∂V1/∂S

[
∂V1

∂t
+
σ2
Q

2
Q2∂

2V1

∂Q2
+
σ2
S

2
S2∂

2V1

∂S2
+ ρσQσSQS

∂2V1

∂Q∂S
+ rQ

∂V1

∂Q
− rV1

]
dt

=
1

∂V2/∂S

[
∂V2

∂t
+
σ2
Q

2
Q2∂

2V2

∂Q2
+
σ2
S

2
S2∂

2V2

∂S2
+ ρσQσSQS

∂2V2

∂Q∂S
+ rQ

∂V2

∂Q
− rV2

]
dt ,

so that both members of the equation are independent of i and therefore
equal to a function depending on t, Q and S, that we denote by a. Thus, we
have:

a(t, Q, S) =
1

∂V/∂S

[
∂V

∂t
+
σ2
Q

2
Q2∂

2V

∂Q2
+
σ2
S

2
S2∂

2V

∂S2
+ ρσQσSQS

∂2V

∂Q∂S
+ rQ

∂V

∂Q
− rV

]
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Next, as usual in many financial problems, we choose the following expres-
sion for function a in terms of λ, which represents the market price of risk
associated to the uncertainty in the bandwidth price:

a(t, Q, S) = σSλ(t, Q, S)S −
(
η(X − logS) +

σ2
S

2

)
S

By identifying both previous expressions of a, we deduce the following PDE:

∂V

∂t
+
σ2
Q

2
Q2∂

2V

∂Q2
+
σ2
S

2
S2∂

2V

∂S2
+ ρσQσSSQ

∂2V

∂Q∂S
+ rQ

∂V

∂Q

+

[
η(X̄ − logS) +

σ2
S

2
− σSλ

]
S
∂V

∂S
− rV = 0 .

Analogous arguments can be developed in the presence of a revenue term
R, thus leading to:

∂V

∂t
+
σ2
Q

2
Q2∂

2V

∂Q2
+
σ2
S

2
S2∂

2V

∂S2
+ ρσQσSSQ

∂2V

∂Q∂S
+ rQ

∂V

∂Q

+

[
η(X̄ − logS) +

σ2
S

2
− σSλ

]
S
∂V

∂S
− rV +R = 0 . (2)

Although it is not strictly necessary, we introduce a time to horizon T
variable, τ = T − t, in order to write (2) forward in time and pose an initial
value problem:

∂V

∂τ
−
σ2
Q

2
Q2∂

2V

∂Q2
− σ2

S

2
S2∂

2V

∂S2
− ρσQσSSQ

∂2V

∂Q∂S

− rQ∂V
∂Q
−
[
η(X̄ − logS) +

σ2
S

2
− σSλ

]
S
∂V

∂S
+ rV = R (3)

with the initial condition V (0, Q, S) = 0.

Adapting some ideas in [2], one possibility for the revenue function is
given by

R(τ,Q, S) = min(Q,Q)DP (τ, S) ,

where Q is the maximum capacity of the line, D is its length and P represents
the discounted price, which now depends not only on time as in the one factor
case in [2], but also on price S. We choose the expression:

P (τ, S) = S e−α(T−τ) ,
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α > 0 being a decay rate of the price.

So far we have modelled the evolution of the value of a particular line
in terms of demand and price. However, in practice, a telecommunication
line can be upgraded by increasing its maximum capacity. For example,
let us assume a line with N possible maximum capacities (it can be equiv-
alently understood as N different lines), the values of which are given by
Vi = Vi(t, Qt, St) (i = 1, . . . , N). Initially, the manager of the line offers the
lowest (and cheapest) maximum capacity. However, as time passes by and
the demand of capacity increases, it may be interesting to offer a better max-
imum capacity in order to give a better (and more expensive) service to the
users. This upgrading possibility requires a capital investment that should
be balanced by (uncertain) future revenues. So, a decision of investment
under uncertainty arises.

The decision on upgrading will be taken periodically at the so called no-
tice dates in the following way [2] . The word notice comes from the problem
of callable bonds with notice —treated, for example, in [4] and [5], in which
the issuer of the bond has the right to call it back at a given call price but
having to notice this decision in a previous date (notice date). In telecom-
munication planning, an analogous situation arises; in this case technological
constraints for upgrading require to take the decision in a previous time to
actual upgrade date. Thus, at notice date all possible alternative line up-
grades are evaluated and the one that leads to the maximum value of the
line is chosen. Nevertheless, for technical reasons related to the upgrading
procedure, a time delay is in practice needed between the notice (tn) and
the upgrade (tu) instants. In Section 3.1 concerning to the global algorithm,
the way to account this upgrading procedure is detailed in terms of the time
variable τ and Figure 1 further illustrates it.

Additionally, for each level of upgrade, the periodic maintenance costs
need to be considered. Thus, at fixed maintenance times τmk

the value of the
line i is corrected due to these periodic maintenance costs:

Vi(τ
+
mk
, Q, S) = Vi(τ

−
mk
, Q, S)−MiD∆τm , i = 1, . . . , N, k = 1, 2, . . . ,

(4)
where Mi is the unitary maintenance cost of line i and ∆τm is the period be-
tween maintenance dates (for example, ∆τm = 1/12 corresponds to monthly

8



payments). The values τ−mk
and τ+

mk
represent the dates immediately before

and after τmk
, respectively. In this case, the analogy in interest rates deriva-

tives pricing appears in jumps in bond values at coupon payment dates [13].
For the numerical computations, the finite differences mesh in time include
all the maintenance dates, so that the jump conditions (4) are incorporated
at these dates.

Note that initially the previous PDEs are posed in an unbounded domain.
In particular, the domain in variable Q is initially unbounded. So, in order
to apply numerical methods we need to define an approximated problem in
a bounded domain to be denoted by Ω. Typically, this is a characteristic
of financial problems, in which localization or truncation of the domain is
a common practice, the analysis of the truncation error has been rigorously
analyzed for the classical European vanilla option in [6]. As we are solving a
PDE for each line, we consider that each (upgrade level of) line has a maxi-
mum capacity Qi, with Qi < Qj for i < j. Let Q∗ = max

i=1,...,N
Qi = QN .

Concerning the price coordinate, we assume that S is lower bounded by
Smin and upper bounded by Smax. Thus, we introduce the bounded spatial
domain Ω = (0, Qmax) × (Smin, Smax), with Qmax = 6Q∗, so that we can use
a unique mesh for the numerical solution in order to compare the different
lines. In practice, the value of Qmax is selected so that the numerical values
of V in the region of financial interest (for example, Q ≤ Q∗) are not affected
by this choice (in our numerical examples we have checked no variation in
the numerical results for this region with respect to the alternative choice
Qmax = 7Q∗).

Once the bounded domain Ω has been fixed, we consider the following
boundary conditions:

Vi(τ, 0, S) = 0 , A∇Vi(τ,Qmax, S) = 0 ,

A∇Vi(τ,Q, Smin) = 0 , A∇Vi(τ,Q, Smax) = 0 ,

where operator A comes from expressing equation (3) in divergence form and
is defined in the next section. Note that boundary conditions at Q = 0 and
Q = Qmax are in agreement with those ones chosen in the one factor case.
Conditions at S = Smin and S = Smax are chosen to minimize the effects of
the domain truncation.
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2.3. Three factors model

In the previous two factors model, the long term value X has been taken
as a constant. However, in the more general setting proposed in [8], the long
term mean can be considered a stochastic process. Note that the consider-
ation of stochastic mean reversion level in a mean reverting process for the
price evolution of commodities has been previously used in [10] and [11], for
example. In this latter case, we can assume the following stochastic dynamics
for X t:

dX t = −νdt+ σdBt ,

where the constants ν and σ are the positive instantaneous rate of mean re-
version value decrease and the uncertainty of this rate, respectively, and Bt

represents a standard Wiener process which is assumed to be uncorrelated
with the process Wt. In case ν > 0 we assume that the long term price to
which prices are reversing decreases with time. This decline can be motivated
by new advances in technology and can be known in terms of t when σ = 0 or
stochastic when σ > 0. Note that vanishing some coefficients in the previous
stochastic differential equation allows to recover the cases of constant or time
dependent long term price. Additional characteristics like regime switching
or jumps in prices are out of the scope of the present work.

In this new setting, by using analogous arguments as in the two factors
case, a PDE in three spatial like variables can be obtained for a function V
such that Vt = V (t, Qt, St, X t). More precisely, this equation can be written
in the form

∂V

∂t
+
σ2
Q

2
Q2∂

2V

∂Q2
+
σ2
S

2
S2∂

2V

∂S2
+
σ̄2

2

∂2V

∂X̄2
+ ρ1σQσSQS

∂2V

∂Q∂S
+ ρ2σQσ̄Q

∂2V

∂Q∂X̄

+ rQ
∂V

∂Q
+

(
η(X̄ − log(S)) +

σ2
S

2
− σSλ

)
S
∂V

∂S
+ rX̄

∂V

∂X̄
− rV +R = 0,

where, as in Kenyon and Cheliotis [8], we have assumed that there is no
correlation between bandwidth price St and the mean reversion value X t.
Note that in this modelling approach we assume the possibility of correla-
tion between demand Qt and the other two stochastic underlying factors,
which also seems financially reasonable.

In next section, instead of using numerical methods for the initial-boundary
value problem associated to the previous PDE, we will address the three fac-
tors model by considering the stochastic parameter X in the two factors PDE
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model, following the dynamics prescribed by the corresponding stochastic
differential equation, as detailed in next section.

3. Numerical methods

In this section we describe the set of numerical techniques we propose
for solving the two and three factors models. First, we present the global
algorithm to account with the upgrading decision. Inside this algorithm we
have to solve several PDE problems by appropriate numerical techniques.

3.1. Overall global algorithm
In Figure 1 we consider the time variable τ and the different possibilities

of upgrading for each line at the two pairs of notice/upgrade dates when
four different lines are available. For example, we show how at the notice
date three possible upgrades exist for Line 1 (to Lines 2, 3 or 4), two for
Line 2 and just one for Line 3. The decision is taken at notice date and the
upgrading starts at the upgrade date. It is important to point out that in
terms of (computational) backward times τ (time moves from τ = 0, which
corresponds to t = T , until τ = T , which corresponds to present date t = 0),
the upgrade dates (τuk) are previous to the corresponding notice ones (τnk

).
Thus, in the outer loop of the algorithm the eventual possible upgrades are
taken into account in the following way:

• Between notice time (τnk+1
) and upgrade time (τuk), the forward in

time PDE (3) is solved for each line i, independently of the other lines.

• Between upgrade time (τuk) and notice time (τnk
), we solve (3) for

each line i with initial condition Vj(τuk , Q) (with j = i, . . . , N). Thus,
N × (N + 1)/2 initial value problems are solved. Next, at notice time
τnk

we take:

Vi(τnk
, Q, S) = max

j=i,...,N
{Vj(τnk

, Q, S)−Ki→j(τnk
)}

for each discrete values (Q,S) associated to mesh points. The resulting
j indicates the line to which line i is upgraded for each capacity demand
Q, and the time dependent function Ki→j is given by:

Ki→j(τ) = Ki→j exp(−α(T − τ)) .

In Table 2 a particular choice of constants Ki→j is shown.

This procedure is carried on as many times (k = 1, 2, . . .) as pairs of no-
tice/upgrade instants are considered.
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L4

L2

L3

L1

τnk+1
τ ττnu uk+1 k k

Figure 1: Sketch of possible upgrading with 4 available lines

3.2. PDE numerical solver

At different steps of the global algorithm, we need to solve the set of N
PDEs of the form:

∂Vi
∂τ
−
σ2
Q

2
Q2∂

2Vi
∂Q2

− σ2
S

2
S2∂

2Vi
∂S2

− ρσQσSSQ
∂2Vi
∂Q∂S

− rQ∂Vi
∂Q

−
[
η(X̄ − logS) +

σ2
S

2
− σSλ

]
S
∂Vi
∂S

+ rVi = R , (5)

with the corresponding initial and boundary conditions for i = 1, . . . , N .

As we propose to solve (5) by using a finite element method, we introduce
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matrix A and vector b given by:

A(Q,S) =

 σ2
Q

2
Q2 ρσQσS

2
QS

ρσQσS
2

QS
σ2
S

2
S2


b(Q,S) =


(
σ2
Q +

ρσQσS
2
− r
)
Q(

−η(X − logS − logSmax) +
σ2
S

2
+ σSλ+

ρσQσS
2

)
S


so that we can write (5) in divergence form:

∂Vi
∂τ
− div (A(Q,S)∇Vi) + b(Q,S) · ∇Vi + rVi = R . (6)

We note that PDE (6) becomes strongly convection-dominated in certain
regions for the set of realistic parameters to be used, that is, the first order
derivatives terms are much larger than second order derivatives ones in these
regions. This gives rise to large gradients in the solution, as observed in the
forthcoming numerical results, so that standard finite differences or finite
element discretizations may lead to spurious numerical oscillations which do
not appear in the exact solution. In order to avoid this drawback, we propose
to use a semi-Lagrangian discretization combined with finite elements. The
use of a characteristics method (also known as semilagrangian scheme) has
been first introduced in [12] in combination with finite differences methods
for vanilla option pricing problems. In other works, the method has been
combined with finite elements (also known as Lagrange-Galerkin technique).

In order to describe the numerical solution of the PDE with the proposed
method, we first introduce the so called material derivative, which is defined
as follows:

DVi
Dτ

=
∂Vi
∂τ

+ b(Q,S) · ∇Vi . (7)

Thus, equation (6) can be written in the equivalent form:

DVi
Dτ
− div (A(Q,S)∇Vi) + rVi = Ri(τ

n+1, Q, S) . (8)

Then, for a given constant time step ∆τ > 0, we consider τn = n∆τ (n =
0, 1, . . .) and we approximate the material derivative in (8) by the following
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first order quotient:

V n+1
i − V n

i ◦ χn

∆τ
− div

(
A(Q,S)∇V n+1

i

)
+ rV n+1

i = Ri(τ
n+1, Q, S) , (9)

where V n
i (·, ·) ≈ Vi(τ

n, ·, ·) depends on S andQ, and χn ≡ χ((Q,S), τn+1; τn).
In order to obtain χn, we note that χ((Q,S), τn+1; τ) represents the charac-
teristic curve associated to the vector field b passing through the point (Q,S)
at time τn+1. Thus, the function χ = (χ1, χ2) can be obtained as the solution
of:

dχ1

dτ
=
(
σ2
Q +

ρσQσS
2
− r
)
χ1

dχ2

dτ
=

(
−η(X − logχ2 − logSmax) +

σ2
S

2
+ σSλ+

ρσQσS
2

)
χ2

(10)

with the final conditions χ1(τn+1) = Q and χ2(τn+1) = S. In this case we
can obtain the analytical expression of χ1, so that χn1 is given by :

χn1 = χ1(Q, τn+1; τn) = Q exp
[
−(σ2

Q +
ρσQσS

2
− r) ∆τ

]
,

while χn2 depends on the expression of X.

As we are generalizing from one to two factors by adding the stochastic
model for prices, we distinguish three different cases depending on the as-
sumption on X: constant, time dependent or stochastic. The constant and
time dependent cases can be framed into the two stochastic factors setting,
while the third case corresponds to a three factors setting. In our numerical
approach based on the solution of a PDE problem in two spatial-like vari-
ables, the choice of X affects to the kind of coefficients appearing in the PDE
(constant, time dependent or stochastic) and particularly to the expression
of χn2 . Thus, we distinguish three cases:

(a) X is constant (ν = σ = 0): in this case we get

χn2 =
1

Smax
exp

[
−
ρσQσS

2η
+X −

σ2
S

2η
− σSλ

η

+ exp(−η∆τ)

(
log(SSmax) +

ρσSσQ
2η

−X +
σ2
S

2η
+
σSλ

η

)]
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(b) X is a deterministic function (σ = 0): in this case X(t) satisfies the ODE
dX(t) = −ν dt, the solution of which is X(t) = X0 − νt. Thus X is a time
dependent function coefficient in the PDE. More precisely, we can obtain

χn2 =
1

Smax
exp

[
−
ρσSσQ

2η
−
σ2
S

2η
+X0 − ντn −

ν

η
− σSλ

η

+ exp(−η∆τ)

(
log(SSmax) +

σ2
S

2η

+
ρσQσS

2η
−X0 + ντn+1 +

σSλ

η
+
ν

η

)]
.

(c) X is a stochastic process: we assume that Xt satisfies the following linear
stochastic differential equation

dXt = −ν dt+ σdBt

where ν and ρ are constants and Bt is a Wiener process. Using stochastic
calculus we obtain the following analytic expression for the process:

Xt = X0 − νt+ σBt .

In this case, the PDE contains the random coefficient Xt with known distri-
bution at each time t. So, we simulate χ2 by using an explicit Euler method
to discretize the second equation in (10) and the simulation of the involved
process Bt ∈ N (0, t). More precisely, for τn,k ∈ [τn+1, τn], k = 1, . . . ,K,
and each index ` associated to each simulation, we compute

(χn,k+1
2 )` = (χn,k2 )` + (τn,k+1 − τn,k)

[
σ2
S

2
+
ρσSσQ

2
+ σSλ

− η
(
X0 − ντn,k + σBn,k

` − log
(

(χn,k2 )`

)
− log(Smax)

)]
(χn,k2 )` ,

with (χn,02 )` = (χn−1,K
2 )`. Therefore, for each value of ` and the correspond-

ing path of B`, we have to solve a particular PDE to provide the value of V `.
Next, in order to compare with the other cases, we compute the solution of
this stochastic case as the expected value for all the obtained V `, that is

V =
1

L

L∑
`=1

V ` .
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Next, for ` = 1, . . . , L and each time step n = 0, 1, . . ., a variational formulation
for (9) is posed. Moreover, for the spatial discretization of (9) we consider a
triangular mesh of the computational domain Ω = (0, Qmax) × (Smin, Smax) and
the associated finite elements space of piecewise linear Lagrange polynomials. More
precisely, we search V n+1

i ∈ Vh such that:

(1 + r∆τ)

∫
Ω
V n+1
i ϕdQdS + ∆τ

∫
Ω
A∇V n+1

i ∇ϕdQdS

= ∆τ

∫
Ω
RϕdQdS +

∫
Ω

(V n
i ◦ χn)ϕdQdS

+∆τ

∫
∂Ω

(
(A∇V n+1

i ) · n
)
ϕdΓ , ∀ϕ ∈ Vh (11)

where the finite element space is:

Vh =
{
ϕ : Ω→ R /ϕ ∈ C(Ω) , ϕ|Tk ∈ P1, ∀Tk ∈ Th

}
,

the parameter h being the mesh step. For simplicity, we have dropped the index h
in all the functions appearing in (11). Thus, at each time step the system of linear
equations corresponding to the fully discretized problem is solved by a partial
pivoting LU factorization method.

4. Numerical examples

4.1. Example 1

In order to validate the proposed numerical methods, we have first compared
with different examples in [2], where the one factor model is proposed and nu-
merically solved by means of a finite volume method. Among these examples, we
choose the following one that illustrates the good performance of the proposed al-
gorithm in the one factor case. For this purpose, let us consider a line of D = 550
miles length, that can be provided with four different maximum capacities (as pre-
viously indicated, it can be equivalently understood as four different lines L1 to
L4). Their respective maximum capacities and maintenance costs are indicated in
Table 1. Moreover, the upgrading costs from each line to the other ones are shown
in Table 2.

We consider a five years time horizon (T = 5), with continuous revenues,
monthly maintenance and quarterly upgrade decisions. The parameters related to
these issues are taken from [2] and summarized in Table 3.
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Maximum Maintenance
capacity costs
(Mbps) ($/mile/year)

Line 1 (OC–12) 622 2.4
Line 2 (OC–48) 2488 18.0
Line 3 (OC–192) 9952 48.0
Line 4 (OC–768) 39808 96.0

Table 1: Maximum capacities and maintenance costs for different transmission rates

L1 L2 L3 L4
L1 − 30 000 80 000 160 000
L2 − − 80 000 160 000
L3 − − − 160 000
L4 − − − −

Table 2: Upgrade costs ($)

Volatility σ 0.95
Risk-free interest rate r 0.05
Drift (growth) rate µ 0.75
Market price of risk κ 0.10
Current spot price P 0.90
Decay rate α 1.40

Table 3: Financial parameters for Example 1

Table 4 shows the percentages of maximum capacity of lines L1, L2 and L3 for
which an upgrade to an upper line is convenient in the first two years. Each col-
umn shows an increasing percentage with time, which is associated to decreasing
opportunities to amortize the line, so that the later the upgrade decision is taken
the greater the required demand to obtain enough benefits to be worth to upgrade
the line. Results are partly similar to those ones provided in [2]. Note that we
only show the upgrade to the immediate upper line for the first two years. The
jumping to a second upper line occurs for much larger upgrade percentages, unlike
to what happens in [2] where Line 2 (OC-48) is upgraded to Line 4 (OC-768) for
a lower percentage of the maximum transmission rate.
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After testing the behavior with different numerical parameters, we show the
numerical solution for 600 time steps and a uniform mesh with 1000 finite elements.

Figure 2 shows the value of each line at the present time (t = 0). Clearly,
the value of the line increases with demand up to a certain demand level. The
region with increasing behavior corresponds to demand values below the maxi-
mum capacity of the line (Qi). For larger values than Qi the line value tends
to a constant, which is also in agreement with the consideration of a Neumann
homogeneous boundary condition at Qmax and with decreasing marginal benefits
arguments.

Line 1 Line 2 Line 3
Upgrades Capacity Upgrades Capacity Upgrades Capacity

Time (τ) to line (%) to line (%) to line (%)
0.00 2 105.4373 3 90.9655 4 72.8566
0.25 2 109.4955 3 92.8415 4 74.5364
0.50 2 117.8417 3 96.6508 4 76.2353
0.75 2 126.4941 3 100.5368 4 78.8195
1.00 2 135.4528 3 106.5093 4 81.4469
1.25 2 149.4652 3 112.6540 4 85.9214
1.50 2 169.2203 3 123.2782 4 90.5157
1.75 2 195.6371 3 134.3809 4 97.1486
2.00 2 235.8365 3 150.7286 4 105.0162

Table 4: Upgrade percentage for different transmission rates

4.2. Example 2

In this example, we consider a situation in which the value of the lines depends
on the uncertain capacity demand and bandwidth price. As described in previous
section, we pose three possibilities for the long term value X: constant, time de-
pendent in a deterministic way and stochastic. The complete set of parameters is
indicated in Table 5, in particular the values of σQ, σS , ρ and η are taken from
[7]. The values of ν and σ in Table 5 correspond to the stochastic case. For the
time dependent case we use σ = 0 and for the constant case we consider ν = σ = 0.

Figures 3–5 show the solution for different cases. In particular:
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Figure 2: Numerical approximation of the values of the lines (Test 1)

Capacity volatility σQ 0.25
Price volatility σS 0.40
Risk-free interest rate r 0.02
Decay rate α 1.40
Correlation ρ 0.20
Market price of risk λ 0.10
Lower bound for price Smin 0.5376
Upper bound for price Smax 1.30
Initial Xt value X̄0 0.5(log(Smin) + log(Smax))
Price reversion to trend η 3
Average logarithmic price drift −ν 0.8
Average logarithmic price uncertainty σ 0.3

Table 5: Financial parameters for Example 2

• Figure 3 shows the solution in the constant case

• Figure 4 shows the solution in the deterministic time dependent case

• Figure 5 shows the solution in the stochastic case, obtained with 250 samples.

First, notice that the dependence of the line value on the capacity demand
is analogous to the results obtained in the one factor model. Moreover, we can
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appreciate the influence of the price on the value of the lines, generally increasing
their value. This effect cannot be analyzed in the one factor model. Secondly,
concerning the influence of the long term price modelling we choose, the cases with
time dependent and stochastic long term price are closer each other, the maximum
difference being around 0.01%, while a much larger difference with respect to the
constant case is observed, with a maximun around 10% at several mesh points.
In order to illustrate this issue, for Line 4 in Figure 6 we show the differences
in value between the time dependent and constant (left) cases, and between the
time dependent and stochastic (right) ones. The behavior of the other lines is very
similar to Line 4.

Figure 3: Numerical approximation of the values of the lines with constant X

5. Conclusions

In the present paper we have presented a new model to price a telecommuni-
cation line under uncertainty in price and demand, thus more realistic in certain
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Figure 4: Numerical approximation of the values of the lines with deterministic time
dependent X

situations than the only consideration of uncertainty in the demand. Further-
more, we have proposed a set of suitable numerical methods to solve the resulting
Black–Scholes type equation, that we have combined with a dynamic program-
ming strategy to optimize the network management. Up to our knowledge, the
joint consideration of two uncertain factors has not been previously addressed in
the literature.

Clearly, the modelling can be extended to consider jumps in the demand and/or
the prices, thus leading to partial integro-differential equations (PIDEs) instead
of PDEs, so that additional numerical methods are required to treat the nonlocal
terms. Also, as proposed in [7], a regime switching in the price process can be in-
corporated. Additionally, the calibration or estimation of the involved parameters
requires a further study. In the one factor case, the estimation of parameters is
carefully addressed in [2].
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Figure 5: Numerical approximation of the values of the lines with stochastic X
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