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Iñigo Arregui, Beatriz Salvador and Carlos Vázquez

Dept. of Mathematics, University of A Coruña, Campus de Elviña, 15071 A Coruña, Spain

Abstract

Since the last financial crisis, a relevant effort in quantitative finance research
concerns the consideration of counterparty risk in financial contracts, specially
in the pricing of derivatives. As a consequence of this new ingredient, new mod-
els, mathematical tools and numerical methods are required. In the present
paper, we mainly consider the problem formulation in terms of partial differen-
tial equations (PDEs) models to price the total credit value adjustment (XVA)
to be added to the price of the derivative without counterparty risk. Thus, in
the case of European options and forward contracts different linear and nonlin-
ear PDEs arise. In the present paper we propose suitable boundary conditions
and original numerical methods to solve these PDEs problems. Moreover, for
the first time in the literature, we consider XVA associated to American options
by the introduction of complementarity problems associated to PDEs, as well
as numerical methods to be added in order to solve them. Finally, numerical
examples are presented to illustrate the behaviour of the models and numerical
method to recover the expected qualitative and quantitative properties of the
XVA adjustments in different cases. Also, the first order convergence of the
numerical method is illustrated when applied to particular cases in which the
analytical expression for the XVA is available.

Keywords: option pricing, counterparty risk, credit value adjustments,
(non)linear PDEs, characteristics method, finite elements, augmented
Lagrangian active set method

1. Introduction

Since 2007 crisis, when important financial entities went bankrupt, the coun-
terparty risk has become an important ingredient that needs to be taken into
account in all financial contracts. It can be described as the risk to each party
of a contract that the counterparty will not live up to its contractual obliga-
tions. Different institutions and financial analysts consider that the crisis was
due to the mistakes made in the financial system, namely in the management
of the risk. The complexity of the financial derivatives and the consideration of
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a low probability of default were two of the factors that led to the crisis. As a
consequence, a review of the counterparty risk consideration has been addressed.

From the point of view of the seller, the risk neutral value of a derivative
can be currently adjusted by the following items:

• It is reduced by the existence of funding costs, in the case the latter takes
part (FCA).

• It is increased in the case its value produces liquidity for the entity (FBA).

• It is reduced by the necessary costs to compensate the credit risk due to
the counterparty (CVA).

• If a bilateral counterparty risk is assumed, the derivative value is increased
by its potential benefits due to the issuer probability of default and the is-
suer has not to face its contractual responsibilities, when those are positive
for the issuer (DVA).

• It is increased by the cost of borrowing the collateral (CollVA).

The FCA and the FBA can be merged and the sum of them is known as
FVA (funding valued adjustment), understood as the correction to the risk-free
price to account for the funding costs. The presence of FVA in the adjustment
is reasonable in the case of non-collateralized trades; however when a collateral
is posted to fully cover the counterparty risk then the FVA reduces to zero. In
this sense, FVA is given by the difference of price between non-collateralized and
fully collateralized contracts (see [25]). CVA represents the price to mitigate
counterparty credit risk on a trade and the concept was first introduced in
[27, 19, 13]. However, as no parts in the contract are risk-free, then DVA
is the price of the hedging used to mitigate the own credit risk, so from the
other counterparty is understood as a CVA. DVA was first introduced in [13]
to account for the presence of two risky counterparties and the consideration of
DVA allows to agree on the price by both traders (symmetric prices). However,
a long controversy exists about the consideration of DVA and the same happens
with FVA (see [16, 17, 21, 7] for different views on FVA).

Thus, including counterparty risk in the pricing of derivatives represents
an important change in the existent risk–free pricing models. In particular, in
this setting nonlinear partial differential equations (PDE) models can be posed,
which have to be mathematically analysed and solved by means of suitable nu-
merical methods. The main goal of the present paper concerns the computing
of the European and American options price, accounting for all the associated
cash flows that come from the derivative itself, the act of hedging, the default
risk management and the funding costs. Following the usual terminology, we
will refer to the total value of these adjustments as XVA, which in terms of the
previously introduced notations is defined by:

XVA = DVA – CVA – FCA + FBA + CollVA = DVA – CVA + FVA + CollVA .
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So, we pose the PDE models for the derivative value, V̂ , from the point of
view of the seller, when the trade takes place between two risky counterparties.
More precisely, we focus on the case of European and American vanilla op-
tions. We use hedging arguments to derive the extensions to the Black–Scholes
PDE in the presence of bilateral jump–to–default model and include funding
considerations into the financing of the hedge positions.

Actually, nowadays there are three main methodologies to include funding
costs, collateral and credit risk in the pricing of derivatives. A first approach,
following the seminal papers by [25] and [4] that obtain PDE formulations by
means of suitable hedging arguments and the use of Ito lemma for jump-diffusion
processes. In [25] funding costs are introduced while in [4] both funding costs
and bilateral counterparty credit risk are considered. This approach is also
followed in [14] in the more general setting of stochastic spreads, in which three
underlying stochastic factors are involved. Moreover, in [14] the solution is also
equivalently written in terms of expectations. A second approach follows the
initial ideas in [2] to include DVA by means of expectations, next extended to
the collateralized, close-out and funding costs in [23]. A third approach is based
on backward stochastic differential equations introduced in [10] and [11]. In all
previous papers, the case of European derivatives is addressed.

In the present paper we follow the first approach in the line of [4] and pro-
pose original numerical methods for solving the PDE models. Thus, after recall-
ing the hedging strategy proposed in this paper of the case of European-style
derivatives, different kinds of PDEs arise depending on the assumption of the
mark-to-market value at default. Thus, if this mark–to–market value is equal
to the riskless derivative then a linear PDE that involves the value of the risk-
less derivative is obtained. However, if the mark–to–market value is given by
the risky derivative, then a nonlinear PDE is obtained. In the linear case, the
equivalent expression of the solution in terms of expectations can be solved.
In the nonlinear case, this equivalent expression takes the form of a nonlinear
integral equation and numerical methods are also required. In the present pa-
per we propose a set of numerical techniques to solve the resulting PDEs for
both choices of the mark–to–market at default. For this purpose, we truncate
the unbounded asset domain and pose original suitable boundary conditions at
the boundaries of the resulting bounded domain, following some ideas in [8] also
taken from [12]. After truncation, we propose a time discretization based on the
method of characteristics combined with a finite elements discretization in the
asset variable. For the case leading to a nonlinear PDE a fixed point iteration
algorithm is proposed.

Another original point is the consideration of American-style options. In this
case, previously we have to solve numerically the associated obstacle problems
as an additional nonlinearity. For this purpose we use an augmented lagrangian
active set (ALAS) algorithm proposed in [20], already used in [1] and [6] for
problems related to investment valuation and pension plans with early retire-
ment opportunity, respectively.

The plan of the paper is the following. In Section 2, some one stochastic
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factor models in the literature to price European-style options in the presence of
counterparty credit risk are described. More precisely, first counterparty credit
risk and funding costs are considered, while in a second step the collateral is
added to the previous model. In Section 3 we incorporate original models to
price American-style options when XVA is considered. Section 4 is devoted to
the description of different numerical methods that are proposed to solve the
linear and nonlinear PDE models stated in Section 2. Particularly, the domain
truncation to pose the PDE problem in a bounded domain requires the con-
sideration of appropriate and original boundary conditions. In Section 5 we
present and discuss the numerical results for different examples. Finally, some
conclusions are indicated.

2. Mathematical models for pricing European-style options

2.1. Pricing with counterparty credit risk and funding costs

In this section, following [4] we model the derivative value by considering
different adjustments on the value of the corresponding risk–free derivative,
where risk-free derivative means a derivative without counterparty risk. In
particular, bilateral default risk and funding costs are taken into account. More
precisely, we consider the following assets associated to the trading [4]:

• Counterparty B zero recovery bond price, PB , with yield rPB
.

• Counterparty C zero recovery bond price, PC , with yield rPC
.

• Underlying asset with no default risk.

Due to the involved risks, the stock and the bond prices are modeled as stochas-
tic processes satisfying the following stochastic differential equations (SDEs):

dPBt = rPB
(t)PBtdt− PBtdJ

B
t

dPCt
= rPC

(t)PCt
dt− PCt

dJCt (1)

dSt = rR(t)Stdt+ σ(t)StdWt ,

where Wt is a Wiener process, and JBt and JCt are two independent jump
processes that change from 0 to 1 on default of B and C, respectively.

Next, we consider a derivative trade where both counterparties, the seller
B and the counterparty C, can default. From the point of view of the seller,
the value of this derivative at time t is denoted by V̂t = V̂ (t, St, J

B
t , J

C
t ) and it

depends on the spot value of the asset, St, and on the default states at time t, JBt
and JCt , of the seller B and counterparty C, respectively. The value of the same
derivative when the trade takes place between two default free counterparties is
denoted by Vt = V (t, St).

Since the trade takes place between defaultable counterparties, we need to
incorporate some technical issues around close–outs. In this paper it is assumed
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that the close–out mark–to–market can only take two possible values, namely
the value of the risk-free derivative or the one of the defaultable derivative.
The value of the defaultable derivative, V̂ (t, St, J

B
t , J

C
t ), includes adjustments,

such as CVA, DVA and FCA, into valuation whereas the value of the derivative
without default risk, V (t, St), does not include any counterparty adjustment.
Moreover, we assume a setting such that the function V (t, St) can be computed
as the solution of a classical Black–Scholes model.

The conditions of the risky value upon default of the issuer or the counter-
party are:

• if counterparty B defaults first,

V̂ (t, St, 1, 0) = M+(t, St) +RBM
−(t, St) (2)

• if counterparty C defaults first,

V̂ (t, St, 0, 1) = RCM
+(t, St) +M−(t, St) , (3)

where RB ∈ [0, 1] and RC ∈ [0, 1] represent the recovery rates on the derivatives
position of parties B and C, respectively, and M represents the close–out mark–
to–market value.

In order to deduce the value of the credit risky derivative, we hedge the
derivative with a self–financing portfolio Π which covers all underlying risk
factors of the model. Thus, we have:

−V̂t = Πt.

Let r denote the risk–free interest rate, rF the funding rate from issuer, rR
the rate paid for the underlying asset in a repurchase agreement and sF = rF−r
the funding cost of the entity. Since PB and PC are zero recovery bonds, their
spreads are equal to the default intensities λB and λC , respectively:

λB = rPB
− r , λC = rPC

− r . (4)

Following [4], we can obtain the PDE that models the value of a European-
style derivative including the counterparty risk:

∂tV̂ +AV̂ − rV̂ = (λB + λC)V̂ + sFM
+

−λB(RBM
− +M+)− λC(RCM

+ +M−)

V̂ (T, S) = H(S) ,

(5)

where the differential operator A is given by

AV ≡ 1

2
σ2S2 ∂

2V

∂S2
+ rRS

∂V

∂S
, (6)

and M refers to the mark–to–market. Moreover H(S) represents the pay–off of
the derivative.
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According to the two scenarios usually considered for the determination of
the derivative mark–to–market value at default, M , two different PDE problems
are obtained [4]:

• If M = V̂ ,{
∂tV̂ +AV̂ − rV̂ = (1−RB)λBV̂

− + (1−RC)λC V̂
+ + sF V̂

+

V̂ (T, S) = H(S) .

• If M = V ,
∂tV̂ +AV̂ − (r + λB + λC)V̂ = −(RBλB + λC)V −

−(RCλC + λB)V + + sFV
+

V̂ (T, S) = H(S) .

European vanilla call and put options and forwards will be considered.

The derivative value with counterparty risk can be written as:

V̂ = V + U ,

where U is the total value adjustment (XVA) and the counterparty risk–free
value of the derivative, V , satisfies the classical linear Black–Scholes equation:{

∂tV +AV − rV = 0 ,

V (T, S) = H(S) .
(7)

Thus, the PDE problems satisfied by U are the following:

• If M = V̂ , we get a final value nonlinear problem:
∂tU +AU − rU = (1−RB)λB(V + U)−

+(1−RC)λC(V + U)+ + sF (V + U)+

U(T, S) = 0 .

(8)

• If M = V , an analogous linear problem is deduced:
∂tU +AU − (r + λB + λC)U = (1−RB)λBV

−

+(1−RC)λCV
+ + sFV

+

U(T, S) = 0 .

In both cases, variable S lies in the unbounded domain [0,+∞) while t ∈ [0, T ].
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2.2. Pricing with counterparty credit risk, funding costs and collateral

Many contracts include the collateralization of an asset. Collateral is a
property or other assets that a borrower offers a lender to secure a loan. If the
borrower stops making the promised loan payments, the lender can seize the
collateral to fully or partly recover its losses.

In this section, mainly following [5], a credit risky collateralized derivative
value is modelled in terms of PDEs, so a more generalized framework is studied.
For this purpose, we assume an agreement between two risky counterparties
B and C, where B is the issuer. As in the previous section, a self–financing
hedging portfolio is used. The main difference with respect to the former setting
is that in the present one the hedging portfolio hedges out the derivative when
the counterparty does not default, whereas in the previous section the hedging
portfolio perfectly hedges the derivative.

When the counterparty B defaults, the difference between the hedging port-
folio and the short derivative value is known as hedge error.

In a similar way to the previous section, we want to deduce the PDE model
for a collateralized derivative. Thus, we need to describe all the items taking
part in this new setting. For this purpose, in [5] the authors consider the general
case in which B has a portfolio made up of two bonds, P1 and P2, with different
seniorities and different recoveries, R1 and R2, respectively. More precisely, for
R2 > R1:

• P1 is an issued junior bond with recovery R1 ≥ 0 and yield r1

• P2 is an issued senior bond with recovery R2 > 0 and yield r2.

Thus, we assume the price processes satisfy the following SDEs:

dSt = rR(t)Stdt+ σ(t)StdWt (9)

dPCt = rPC
(t)PCtdt− PCtdJ

C
t (10)

dP1t = r1(t)P1tdt− (1−R1)P1tdJ
B
t (11)

dP2t = r2(t)P2tdt− (1−R2)P2tdJ
B
t . (12)

The total position, at time t, in the B issued bond is given by

PBt
= α1(t)P1t + α2(t)P2t (13)

and the value of PB in the issuer’s default instant is defined as

PDt
= α1(t)R1P1t + α2(t)R2P2t . (14)

The conditions of the collateral derivative value upon default of both coun-
terparties are:

• if B defaults first, then

V̂ (t, St, 1, 0) = gB(Mt, Xt) = Xt + (Mt −Xt)
+ +RB(Mt −Xt)

− (15)
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• if C defaults first, then

V̂ (t, St, 0, 1) = gC(Mt, Xt) = Xt + (Mt −Xt)
− +RC(Mt −Xt)

+ , (16)

where Xt represents the collateral and Mt is the mark–to–market value. These
conditions represent an extension of the ones given in (2–3), which are clearly
recovered for Xt = 0.

The hedging portfolio built up in this model only hedges out the derivative
when the counterparty B does not default, so that, in this case

Πt + V̂t = 0 . (17)

When the counterparty B does not default, we have a perfectly hedged
portfolio, so that the following funding constraint is obtained:

V̂t + PBt −Xt = 0 . (18)

We can interpret this equation in the following way: if V̂t−Xt < 0, then B bonds
are used to fund the difference between the derivative value and the collateral.
Conversely, if that difference is positive then they are used to repurchase B
issued bonds. Finally, if the risky value is fully hedged by the collateral then
the bond position will be reduced to zero. If the collateral is zero, the trade will
be financed by B’s bonds.

Next, let us consider the case when the counterparty B defaults. In this
situation the derivative value is the solution of the final value problem:
∂V̂

∂t
+AV̂ − (r + λB + λC)V̂ = λBhe − λBgB(M,X)− λCgC(M,X) + sXX

V̂ (T, S) = H(S) .

(19)
If we compare (19) with the PDE problem (5) obtained in the case without

collateral, the two additional terms λBhe and sXX appear. Furthermore, the
terms gB and gC are now more general.

In addition, in case of counterparty B default a hedge error arises. Never-
theless, while the issuer B is alive, B will incur a cost or gain of size λBhe per
unit time. In [3] it is proved that this gain is equal to the hedge error, he.

As in the case without collateral of previous section, our goal is the compu-
tation of the total value adjustment. For this purpose, we write the risky value
as the sum of risk–free value, V , and the total value adjustment, U . Depending
on the mark–to–market value, we obtain two different equations:

• If M = V̂ , we get a final value problem governed by a nonlinear PDE:
∂U

∂t
+AU − rU = λBhe + λB(1−RB)(V + U −X)−

+λC(1−RC)(V + U −X)+ + sXX

U(T, S) = 0 .

(20)
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• If M = V , an analogous linear problem is deduced:
∂U

∂t
+AU − (r + λB + λC)U = λBhe + λB(1−RB)(V −X)−

+λC(1−RC)(V −X)+ + sXX

U(T, S) = 0 .

(21)

Finally, different assumptions are made on counterparty B bond. As a result,
three particular different models can be proposed. Note that the linear versions
corresponding to (20) have been proposed in [3].

Collateral model 1: Perfect hedging

If all risks are perfectly hedged, then he is reduced to zero; thus we get:

he = gB(Mt, Xt)+PDt−Xt = gB(Mt, Xt)+α1(t)R1P1t +α2(t)R2P2t−Xt = 0 .
(22)

In this case the PDE which models the risky derivative value is reduced to
∂V̂

∂t
+AV̂ − (r + λB + λC)V̂ = −λCgC(M,X)− λBgB(M,X) + sXX

V̂ (T, S) = H(S) ,

and the PDEs for the total value adjustment, U , are:

• If M = V̂ ,
∂U

∂t
+AU − rU = λB(1−RB)(V + U −X)−

+λC(1−RC)(V + U −X)+ + sXX

U(T, S) = 0 .

• If M = V ,
∂U

∂t
+AU − (r + λB + λC)U = λB(1−RB)(V −X)−

+λC(1−RC)(V −X)+ + sXX

U(T, S) = 0 .

Notice that Funding Cost Adjustment vanishes because hedge error is null, so
that only CVA, DVA and CollVA are taken into account in the XVA.

Collateral model 2: Two bonds model

In this model, we assume that counterparty B has two bonds. More precisely,
a zero recovery bond P1 and a bond P2 with recovery R2. This recovery is
equivalent to the recovery rate of counterparty B on a derivative trade, so
R2 = RB . Under this assumption, the corresponding PDE is deduced.
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Assuming the funding constraint (18), we write:

PBt
= α1(t)P1t + α2(t)P2t = −(V̂t −Xt) . (23)

Now, taking into account this assumption, the general PDE (19) turns into:
∂V̂

∂t
+AV̂ − (r + λB + λC)V̂ = λB(1−RB)(M −X)+

−λBgB(M,X)− λCgC(M,X) + sXX

V̂ (T, S) = H(S) ,

and the PDE models satisfied by XVA are given by:

• If M = V̂ ,
∂U

∂t
+AU − (r + λB(1−RB))U = λB(1−RB)(V −X)

+λC(1−RC)(V + U −X)+ + sXX

U(T, S) = 0 .

• If M = V ,
∂U

∂t
+AU − (r + λB + λC)U = λB(1−RB)(V −X)

+λC(1−RC)(V −X)+ + sXX

U(T, S) = 0 .

Collateral model 3: One bond model

Finally, only one bond from B, with recovery rate RB , is considered so that
taking α1(t) = 0 in (23) we set PBt

= α2(t)P2t .
Considering this assumption, the following PDE modelling the risky value

is obtained:
∂V̂

∂t
+AV̂ − (r + λB(1−RB) + λC)V̂ = λB(RB − 1)X − λCgC(M,X) + sXX

V̂ (T, S) = H(S) ,

and the PDEs for the XVA are:

• If M = V̂ ,
∂U

∂t
+AU − (r + λB(1−RB))U = λB(1−RB)(V −X)

+λC(1−RC)(V + U −X)+ + sXX

U(T, S) = 0 .

(24)
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• If M = V ,
∂U

∂t
+AU − (r + λB(1−RB) + λC)U = λB(1−RB)(V −X)

+λC(1−RC)(V −X)+ + sXX

U(T, S) = 0 .

(25)

We can observe that in the linear problem (25), when M = V , if a fully
collateralized derivative is considered then only CollVA exists in the adjustment
upon risk–neutral value, i.e. CVA, DVA and FCA vanish.

If we analyze the current situation, in which only funding desk can issue
bonds in the bank, model 3 results the most realistic one because the trader can
not issue bonds in order to raise cash for trade, so that only one bond from B
has to be considered.

3. XVA pricing models for American-style options

In this section, we take into account the XVA in the pricing of American
options with couterparty risk. So, we will deduce the PDE problem which
models the derivative value. Similar techniques as in European options are
employed: self–financing portfolios and absence of arbitrage. Without loss of
generality, we only deduce the case without collateral.

The same asset trading as in European options is considered, that is: two
bonds of counterparties B and C, and the underlying asset with no default risk,
the processes of which will be modeled by (1).

Thus, we consider a derivative trade between two default counterparties,
the issuer B and the buyer C. From the point of view of the seller the risky
derivative value, at time t, is denoted by V̂ (t, St, J

B
t , J

C
t ), where JB and JC

are the same jump processes defined in the case with European options. The
counterparty risk–free American option price is denoted by V (t, St), which can
be computed using the Black–Scholes complementarity problem for American
options (see [29, 30], for example).

Conditions of the defaultable American option price upon the default of
different counterparties are given by (2–3). In order to derive the value of the
American option with counterparty risk, at time t, we consider the self–financing
portfolio Πt, used in the European option case, which consists of

• ∆(t) units of the underlying asset St,

• αB(t) units of PBt , a default risky, zero–recovery, zero–coupon bond of
party B

• αC(t) units of PCt
, an analogous bond for the counterparty C

• γ(t), which is made up of a financing amount, the cash needed to buy a
position in C’s bonds and a repo amount, such that the portfolio value
at time t hedges out the value of the derivative contract to the seller.
Furthermore, the following issues need to be pointed out:
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1. The cost of the portfolio is denoted by γP , whereas the amount which
is necessary to buy a position in B’s bonds or the cash obtained from
selling B’s bonds is denoted by γPB

. Thus, the funding account,
denoted by γF is defined as the difference between the cost of the
hedging portfolio and the price of the position in counterparty B’s
bonds, so γF = γP − γPB

. The positive amounts in the funding
account will be invested at the risk–free rate, r, while lending cash
will be done at an unsecured funding rate, rF .

2. The cash needed to buy a position in C’s bonds, or the cash received
from selling C’s bonds is denoted by γPC

. This bonds position is
used to hedge out the counterparty risk of C. The bonds are placed
in a repo agreement, assuming that the repo rate to compute the
financing costs is equal to the risk–free rate, r, for the bond (as in
[4]).

3. The repo account contains the amount of cash invested or borrowed
in order to fund the stock position ∆(t)St through a repurchase agree-
ment, this account is denoted by γR.

4. Although γP , γPB
and γF depend on t, for simplicity we do not

explicit this dependence in the forthcoming expressions.

Thus, the portfolio is given by

Πt = ∆(t)St + αB(t)PBt + αC(t)PCt + γt . (26)

As the portfolio is self–financing, its change is given by

dΠt = ∆(t)dSt + αB(t)dPBt + αC(t)dPCt + (rγ+F + rF γ
−
F − rγPC

− rRγR)(t)dt .
(27)

In addition, to avoid arbitrage opportunities we introduce the hedging equation:

dΠt + dV̂t ≤ 0 . (28)

The change in the derivative value is obtained by applying Ito’s lemma for jump
diffusions, so this change is given by:

dV̂t =
∂V̂

∂t
dt+

∂V̂

∂S
dSt +

1

2
σ2S2

t

∂2V̂

∂S2
dt+ ∆V̂BtdJ

B
t + ∆V̂CtdJ

C
t

=

(
∂V̂

∂t
+ rR

∂V̂

∂S
+

1

2
σ2S2

t

∂2V̂

∂S2

)
dt+ σSt

∂V̂

∂S
dWt + ∆V̂Bt

dJBt + ∆V̂Ct
dJCt .

(29)

By replacing the change of the portfolio and the change of the derivative
value in (28), we obtain

∆(t)dSt + αB(t)dPBt
+ αC(t)dPCt

+ (rγ+F + rF γ
−
F − rγPC

− rRγR)dt

≤ −

(
∂V̂

∂t
dt+

∂V̂

∂S
dSt +

1

2
σ2S2

t

∂2V̂

∂S2
dt+ ∆V̂BtdJ

B
t + ∆V̂CtdJ

C
t

)
,

12



where V̂ and all partial derivatives of V̂ are evaluated at the point (t, St, J
B
t , J

C
t ).

Moreover, we use the notation

∆V̂Bt = V̂ (t, St, 1, 0)− V̂ (t, St, 0, 0) ,

∆V̂Ct
= V̂ (t, St, 0, 1)− V̂ (t, St, 0, 0) ,

which can be computed using the boundary conditions (2) and (3).
Keeping in mind expressions (27) and (29) we deduce the following equation:

∆(t)dSt + αB(t)dPBt + αC(t)dPCt + (rγ+F + rF γ
−
F − rγPC

− rRγR)dt

≤ −

(
∂V̂

∂t
dt+

∂V̂

∂S
dSt +

1

2
σ2S2

t

∂2V̂

∂S2
dt+ ∆V̂Bt

dJBt + ∆V̂Ct
dJCt

)
.

(30)
According to the SDEs in (1) we obtain:

∆(t)dSt + αB(t)(rPB
PBt

dt− PBt
dJBt ) + αC(t)(rPC

PCt
dt− PCt

dJCt )

+ (rγ+F + rF γ
−
F − rγPC

− rRγR)dt

≤ −

(
∂V̂

∂t
dt+

∂V̂

∂S
dSt +

1

2
σ2S2

t

∂2V̂

∂S2
dt+ ∆V̂BdJ

B
t + ∆V̂CdJ

C
t

)
.

(31)

Moreover, we choose the following weights:

∆(t) = −∂V̂
∂S

,

αB(t) =
∆V̂Bt

PBt

= − V̂t − (M+
t +RBM

−
t )

PBt

, (32)

αC(t) =
∆V̂Ct

PCt

= − V̂t − (M−t +RCM
+
t )

PCt

in order to remove all risks in the portfolio Πt. Thus, equation (31) leads to

αBrPB
PB + αCrPC

PC + (rγ+F + rF γ
−
F − rγPC

− rRγR)+

+

(
∂V̂

∂t
+

1

2
σ2S2 ∂

2V̂

∂S2

)
≤ 0 . (33)

In order to obtain the PDE that models the derivative value, we simplify
the following terms

αBrPB
PB + αCrPC

PC + rγ+F + rF γ
−
F − rγPC

− rRγR .

For this purpose, we consider the equivalences: γPB
= αBPBt , γPC

= αCPCt ,

13



rF = r + sF and γF = γP − γPB
, so that

αBrPB
PB + αCrPC

PC + rγ+F + rF γ
−
F − rγPC

− rRγR
= αBrPB

PB + αCrPC
PC + r(γP − γPB

)+ + rF (γP − γPB
)−

− rαCPC − rRγR
= αBrPB

PB + αCrPC
PC + r(γP − αBPB) + sF (γP − αBPB)−

− rαCPC − rRγR .

According to the REPO account, we have γR = ∆S, so that the previous
identity becomes:

αBrPB
PB + αCrPC

PC + rγ+F + rF γ
−
F − rγPC

− rRγR
= rγP + sF γ

−
F − rR∆S + (rPC

− r)αCPC + (rPB
− r)αBPB .

In order to avoid arbitrage opportunities, the hedging portfolio value has to
be equal to the derivative value, so that γP = −V̂ . Moreover, by considering
the expressions in (4) then the previous equation can be further reduced to

αBrPB
PB + αCrPC

PC + rγ+F + rF γ
−
F − rγPC

− rRγR
= −rV̂ + sF γ

−
F − rR∆S + λCαCPC + λBαBPB .

Finally, considering the addends in which αBPBt and αCPCt take place and
expressing them in terms of the mark–to–market value we get

αBrPB
PB + αCrPC

PC + rγ+F + rF γ
−
F − rγPC

− rRγR
= −(r + λB + λC)V̂ + sF γ

−
F − rR∆S

+ λB(M+ +RBM
−) + λC(M− +RCM

+) .

Thus, we introduce the previous expression in (33) to obtain the inequality that
models the value of the derivative including the counterparty risk:

∂V̂

∂t
+AV̂ − rV̂ ≤ (λB + λC)V̂ + sFM

+

− λB(M+ +RBM
−)− λC(M− +RCM

+) , (34)

so the PDE problem which models the American options price in the presence
of counterparty risk is the following:

Lt(V̂ ) = ∂tV̂ +AV̂ − rV̂ − (λB + λC)V̂

−sFM+ + λB(RBM
− +M+) + λC(RCM

+ +M−) ≤ 0

V̂ (t, S) ≥ H(S)

Lt(V̂ ) (V̂ −H) = 0

V̂ (T, S) = H(S)

(35)

where the differential operator A is defined in (6).
According to the choice of the mark–to–market value, two different obstacle

problems are obtained:

14



• If M = V̂ , we obtain the following complementarity problem associated
to a nonlinear partial differential equation:

L1(V̂ ) = ∂tV̂ +AV̂ − rV̂
−(1−RB)λBV̂

− − (1−RC)λC V̂
+ − sF V̂ + ≤ 0

V̂ (t, S) ≥ H(S)

L1(V̂ ) (V̂ −H) = 0

V̂ (T, S) = H(S) .

(36)

• If M = V , we obtain the following complementarity problem associated
to the linear partial differential equation:

L2(V̂ ) = ∂tV̂ +AV̂ − (r + λB + λC)V̂

+(RBλB − λC)V − + (RCλC + λB)V + − sFV + ≤ 0

V̂ (t, S) ≥ H(S)

L2(V̂ ) (V̂ −H) = 0

V̂ (T, S) = H(S) .

(37)

Thus, to compute the price of an American option including counterparty
risk, either a nonlinear or a linear complementarity problem has to be solved.

In order to compute the XVA value, previously the Black–Scholes equation
for American options without counterparty risk has to be solved. More pre-
cisely, the American option price without counterparty risk, V , is solution of
the classical problem: 

L̃(V ) = ∂tV +AV − rV ≤ 0

V (t, S) ≥ H(S)

L̃(V ) (V −H) = 0

V (T, S) = H(S) .

(38)

Finally, the XVA value is obtained after solving the two obstacle problems and
is given by U = V̂ − V .

Remark. In the case of a collateralized contract, in order to obtain the corre-
sponding obstacle problems the following portfolio has to be considered:

Πt = ∆(t)St + PBt + αC(t)PCt + γ(t)−Xt ,

where Xt denotes the amount of collateral, and in this case γ(t) consists on an
amount of stock position in a repurchase agreement, γR(t), and the cash amount
necessary to purchase αC(t) bonds of C, γPC

.

4. Numerical methods

In order to solve the previous models, in this section different numerical
methods are proposed. We will mainly focus on nonlinear problems, similar
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methods being used in the corresponding linear ones. Moreover, we only develop
the problem with collateral, as we can consider the model without collateral as
a particular case.

We have developed an approach based on finite elements for spatial dis-
cretization. As the initial domain of the problem is unbounded in variable S,
a localization procedure to define a suitable bounded domain is required and
adequate boundary conditions are deduced and implemented.

We first propose a set of numerical methods to solve PDE problem (20),
the solution of which is the adjustment value considering CVA, DVA, FCA and
CollVA. Finally, we introduce the Augmented Lagrangian Active Set (ALAS)
for obstacle problems in order to solve (36) concerning the case of American
options.

In all cases, the change of time variable τ = T − t is considered in order to
write (20) forward in time, so the following initial value problem is obtained:

∂U

∂τ
− σ2

2
S2 ∂

2U

∂S2
− rRS

∂U

∂S
+ rU = −λBhe − (1−RB)λB(V + U −X)−

−(1−RC)λC(V + U −X)+ − sXX
U(0, S) = 0 .

(39)
Moreover, as we propose to solve (39) by a finite elements method, we write

it in divergencial form:

∂U

∂τ
− ∂

∂S

(
σ2

2
S2 ∂U

∂S

)
+ (σ2 − rR)S

∂U

∂S
+ rU = −λBhe

− (1−RB)λB(V + U −X)− − (1−RC)λC(V + U −X)+ − sXX . (40)

4.1. Characteristics method

Analogously to other advection–diffusion equations, we propose a semi–
Lagrangian discretization combined with finite elements. More precisely, for
time discretization we use a characteristics method first proposed in financial
setting in [28]. For this purpose, we consider the material derivative of function
U :

DU

Dτ
=
∂U

∂τ
+
∂U

∂S

dS

dτ
for a given function S = S(τ). Thus, we can write equation (40) as:

DU

Dτ
− σ2

2

∂

∂S

(
S2 ∂U

∂S

)
+ rU = −λBhe − (1−RB)λB(V + U −X)−

− (1−RC)λC(V + U −X)+ − sXX . (41)

Taking into account that the coefficient of the advective term in (40) is (σ2 −
rR)S, hereafter referred as the velocity, we introduce ∆τ > 0 and τn = n∆τ for
n = 0, 1, 2, . . . and the final value ODE problem:

∂χ

∂τ
= (σ2 − rR)χ(τ)

χ(τn+1) = S ,
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the analytical solution of which is:

χ(S, τn+1; τn) = S exp((rR − σ2)∆τ) .

Note that function χ represents the characteristic curve associated to the veloc-
ity passing through point S at time τn+1.
We approximate the material derivative in (41) by a first order quotient, so that
equation (41) is approximated by:

Un+1 − Un ◦ χn

∆τ
− σ2

2

∂

∂S

(
S2 ∂U

n+1

∂S

)
+ rUn+1

= −λBhe − (1−RB)λB(V + Un+1 −X)−

− (1−RC)λC(V + Un+1 −X)+ − sXX. (42)

We can evaluate Un◦χn at each step of (42) in the mesh points by interpolation.

4.2. Fixed point scheme

In order to solve the nonlinear equation (42) at each iteration of the charac-
teristics method, we propose a fixed point algorithm. Thus, the global scheme
can be written in the following way:

Let N > 1, ε > 0, U0 given.

For n = 0, 1, 2, . . .

Let Un+1,0 = Un

For k = 0, 1, 2, . . . , we compute Un+1,k+1 satisfying:

(1 + r∆τ)Un+1,k+1 − σ2∆τ

2

∂

∂S

(
S2 ∂U

n+1,k+1

∂S

)
= Un ◦ χn −∆τ

[
λBhe + (1−RB)λB(V n+1 + Un+1,k −X)−

+(1−RC)λC(V n+1 + Un+1,k −X)+ + sXX
]

(43)

until ‖Un+1,k+1 − Un+1,k‖ ≤ ε.

4.3. Boundary conditions

As previously indicated, we will use a finite elements method to discretize
the previous equations and approximate the solution. Thus, we need to truncate
the unbounded domain [0,+∞) into a bounded one, so that the solution is not
affected by the truncation in the region of financial interest. We will assume
S ∈ [0, S∞], where S∞ > 0 is a large enough value; a typical choice in financial
problems is S∞ = 4E where E represents the strike of the option.

Next, we deduce the boundary conditions from the partial differential equa-
tion. More precisely, let us introduce function f , defined by:

f(U, V ) = λBhe+(1−RB)λB(V +U−X)−+(1−RC)λC(V +U−X)+ +sXX ,
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representing the right hand side of (43).
The boundary condition at S = 0 is obtained just by replacing S = 0 in

(39). Thus, we obtain the nonlinear ODE:

∂τU + rU = −f(U, V ) .

This equation is discretized by a characteristics (in this case, equivalent to an
implicit Euler) method combined with a fixed point scheme:

Un+1,k+1(0)− Un(0) + ∆τ r Un+1,k+1(0) = −∆τ f(Un+1,k(0), V n+1(0)) ,

for k ≥ 0 and n ≥ 0, so that a nonhomogeneous Dirichlet boundary condition
is obtained at each step of the global algorithm:

Un+1,k+1(0) =
1

1 + r∆τ
(Un(0)−∆τ [λBhe

+(1−RB)λB(V n+1(0) + Un+1,k(0)−X)−

+(1−RC)λC(V n+1(0) + Un+1,k(0)−X)+ + sXX
])
. (44)

In order to deduce the boundary condition at S = S∞, we first multiply
equation (39) by S−2. Next, by taking the limit when S tends to infinity the
following property is obtained:

lim
S→∞

∂2U

∂S2
= 0 . (45)

Then, following [8], when S →∞ we consider a solution of the form:

U = H0(τ) +H1(τ)S , (46)

where H0(τ) and H1(τ) are constant coefficients with respect to variable S.

Next, by assuming S2 ∂
2U

∂S2
→ 0 when S →∞ in (39) we have

∂U

∂τ
− rRS

∂U

∂S
+ rU = −f(U, V ) , (47)

when S →∞.
Discretizing (47) by the characteristic curve, we have:

(1 + r∆τ)Un+1,k+1 = Un ◦ χn −∆τ f(Un+1,k, V n+1) (48)

where χn ≡ χ(S, τn+1; τn) is solution of the final value problem
dχ

dτ
= −rRχ(τ)

χ(τn+1) = S .
(49)

Thus, the characteristic curve is given by χ(S, τn+1; τn) = S exp(rR∆τ).
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Introducing the expression (46) into each fixed point iteration (48), we ob-
tain:

(1 + r∆τ) (Hn+1,k+1
0 +Hn+1,k+1

1 S∞)

= Un ◦ χn −∆τ
[
λBhe + (1−RB)λB(V n+1 + Un+1,k −X)−

+(1−RC)λC(V n+1 + Un+1,k −X)+ + sXX
]
. (50)

If we choose Hn+1,k+1
0 = 0, a nonhomogeneous Dirichlet boundary condition is

deduced:

Un+1,k+1(S∞) = Hn+1,k+1
1 S∞

=
1

(1 + r∆τ)
((Un ◦ χn)(S∞)

−∆τ
[
λBhe + (1−RB)λB(V n+1(S∞) + Un+1,k(S∞)−X)−

+(1−RC)λC(V n+1(S∞) + Un+1,k(S∞)−X)+ + sXX
])
.
(51)

Thus, (44) and (51) are evaluated at each iteration of the fixed point algo-
rithm as a previous step to the stating of the linear system of equations issued
from the finite elements method.

4.4. Finite elements method

We can now proceed with the spatial discretization. At each time step,
n = 0, 1, 2, . . ., and each fixed point iteration, k = 0, 1, 2, . . ., a variational
formulation for (43) is posed: find Un+1,k+1 ∈ H1(0, S∞) such that:

(1 + r∆τ)

∫ S∞

0

Un+1,k+1ϕdS −∆τ

∫ S∞

0

∂

∂S

(
σ2

2
S2 ∂U

n+1,k+1

∂S

)
ϕdS

=

∫ S∞

0

(Un ◦ χn)(S)ϕdS −∆τ

∫ S∞

0

f(Un+1,k, V n+1)ϕdS , ∀ϕ ∈ H1
0 (0, S∞) ,

or, after applying Green’s theorem,

(1 + r∆τ)

∫ S∞

0

Un+1,k+1ϕdS + ∆τ
σ2

2

∫ S∞

0

S2 ∂U
n+1,k+1

∂S

∂ϕ

∂S
dS

=

∫ S∞

0

(Un ◦ χn)(S)ϕdS −∆τ

∫ S∞

0

f(Un+1,k, V n+1)ϕdS , ∀ϕ ∈ H1
0 (0, S∞) .

For a fixed natural numberM > 0, we consider a uniform mesh of the compu-
tational domain Ω = [0, S∞], the nodes of which are Sj = j∆S, j = 0, . . .M+1,
where ∆S = S∞/(M + 1) denotes the constant mesh step. Associated to this
uniform mesh a piecewise linear Lagrange finite elements discretization is con-
sidered.

19



More precisely, we search Un+1,k+1
h ∈Wh such that:

(1 + r∆τ)

∫ S∞

0

Un+1,k+1
h ϕhdS + ∆τ

σ2

2

∫ S∞

0

S2 ∂U
n+1,k+1
h

∂S

∂ϕh
∂S

dS

=

∫ S∞

0

(Unh ◦ χn)(S)ϕhdS −∆τ

∫ S∞

0

f(Un+1,k
h , V n+1)ϕhdS , ∀ϕh ∈Wh,0 ,

(52)

where the finite elements spaces are

Wh = {ϕh : (0, S∞)→ R/ϕh ∈ C(0, S∞), ϕh|[Sj ,Sj+1] ∈ P1} ,
Wh,0 = {ϕh ∈Wh/ϕh(0) = 0, ϕh(S∞) = 0} ,

P1 being the space of polynomials of degree less or equal than one.
The coefficients of the matrix and right hand side vector defining the linear

system associated to the fully discretized problem are approximated by adequate
quadrature formulae. In particular, Simpson, three nodes Gaussian, midpoint
and trapezoidal formulae have been used for the different terms, depending on
the degree of the resulting polynomials to be integrated in each term. Finally,
the system of linear equations is solved by a partial pivoting LU factorization
method.

The value of the derivative without counterparty risk, V n+1, is known at
each time step. Actually, it is obtained as the solution to the Black–Scholes
equation for options with dividends,

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
− rV = 0 in [0, T ]× [0,∞)

V (T, S) = H(S) S > 0 ,
(53)

where D0 ≡ r−rR. Thus, depending on the type of financial derivative we have
different payoff functions. In some cases, the value of the derivative admits
an analytical expression. For example, in the three case here treated these
expressions come from the wellknown formulae:

• Call option:

V (t, S) = S exp(−D0(T − t))N(d1)− E exp(−r(T − t))N(d2)

• Put option:

V (t, S) = E exp(−r(T − t))N(−d2)− S exp(−D0(T − t))N(−d1)

• Forward:

V (t, S) = S exp

((
σ2

4
+
r2R
σ2
− r
)

(T − t)
)

− E exp

((
σ2

(
rR
σ2
− 1

2

)2

− r

)
(T − t)

)
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where:

d1 =
log(S/E) + (r −D0 + σ2/2)(T − t)

σ
√
T − t

d2 =
log(S/E) + (r −D0 − σ2/2)(T − t)

σ
√
T − t

and N(x) represents the distribution function of the standard N (0, 1) random
variable.

4.4.1. Augmented Lagrangian Active Set for American options

All the previous numerical methods have been explained for European op-
tions, in which there is no early exercise opportunity. For the pricing of Amer-
ican options, problems (36), (37) and (38) have been previously presented. In
these cases, the unknowns V n+1 and V̂ n+1,k+1 satisfy complementarity prob-
lems associated to linear and nonlinear partial differential equations. In order to
explain their numerical solution, let us first focus on the nonlinear problem for
V̂ n+1,k+1. After a time discretization with characteristic method and a spatial
discretization with finite elements, the fully discretized problem can be written
in the form: 

AhV̂
n+1,k+1
h ≥ bn+1,k+1

h

V̂ n+1,k+1
h ≥ Ψh(
AhV̂

n+1,k+1
h − bn+1,k+1

h

) (
V̂ n+1,k+1
h −Ψh

)
= 0

(54)

where Ψh denotes the discretized exercise value, H(S), which also coincides with
the value at maturity.

Following [1], the Augmented Lagrangian Active Set (ALAS) algorithm pro-
posed by [20] has been implemented to solve (54). For this purpose, we introduce
a multiplier Ph in order to write (54) in the equivalent form:

AhV̂
n+1,k+1
h + Pn+1,k+1

h = bn+1,k+1
h

V̂ n+1,k+1
h ≥ Ψh

Pn+1,k+1
h ≤ 0

(V̂ n+1,k+1
h −Ψh)Pn+1,k+1

h = 0 .

(55)

Note that the last equation in (54) and (55) should be understood as compo-
nentwise.

ALAS algorithm consists of two steps. The first step decomposes the domain
into active (that is, where Pn+1,k+1

h < 0) and inactive (where Pn+1,k+1
h = 0)

regions. In the second step, a reduced linear system associated to the inactive
part is solved.

First, let N := {1, 2, . . . , Ndof} be the set of degrees of freedom. For any
descomposition N = I ∪ J , the principal minor of matrix Ah is denoted by
[Ah]I,I , while [Ah]I,J is the codiagonal block indexed by I and J . Therefore,
for each time step n + 1 and each fixed point iteration k + 1, ALAS algorithm

21



computes the decomposition N = In+1,k+1∪J n+1,k+1 such that V̂ n+1,k+1
h and

Pn+1,k+1
h are the solution of the following system:

AhV̂
n+1,k+1
h + Pn+1,k+1

h = bn+1,k+1
h

[Pn+1,k+1
h ]j + β[V̂ n+1,k+1

h −Ψh]j ≤ 0 , ∀j ∈ J n+1,k+1

[Pn+1,k+1
h ]i = 0 , ∀i ∈ In+1,k+1

for a given positive parameter β. In the previous equations, In+1,k+1 and
J n+1,k+1 represent the inactive and the active sets, respectively. Namely, the
iterative algorithm builds sequences {V̂ n+1,k+1

h,m }m, {Pn+1,k+1
h,m }m, {In+1,k+1

m }m
and {J n+1,k+1

m }m converging to V̂ n+1,k+1
h , Pn+1,k+1

h , In+1,k+1 and J n+1,k+1

through the following steps:

1. Let be V̂ n+1,k+1
h,0 = Ψh and Pn+1,k+1

h,0 = min{bn+1,k+1
h −AhV̂ n+1,k+1

h,0 , 0} ≤
0. Choose β > 0. Set m = 0.

2. Compute

Qn+1,k+1
h,m = min{0, Pn+1,k+1

h,m + β(V̂ n+1,k+1
h,m −Ψh)}

J n+1,k+1
m = {j ∈ N , [Qn+1,k+1

h,m ]j < 0}

In+1,k+1
m = {i ∈ N , [Qn+1,k+1

h,m ]i = 0}

3. If m ≥ 1 and J n+1,k+1
m = J n+1,k+1

m−1 , then convergence is achieved.

4. Let V̄ and P̄ be the solution of the linear system:

AhV̄ + P̄ = bh

P̄ = 0 on In+1,k+1
m and V̄ = Ψh on J n+1,k+1

m . (56)

Set V̂ n+1,k+1
h,m+1 = V̄ , Pn+1,k+1

h,m+1 = min{0, P̄}, m = m+ 1 and go to step 2.

It is important to notice that, instead of solving the full linear system in (56),
the following reduced one on the inactive set is solved:

[Ah]I,I [V̄ ]I = [bh]I − [Ah]I,J [Ψ]J

[V̄ ]J = [Ψ]J

P̄ = bh −AhV̄

where we have denoted I = In+1,k+1
m and J = J n+1,k+1

m . Therefore, after
applying the ALAS method to problems (36) and (38) or to problems (37) and
(38), we can compute the XVA value as Uh = V̂h − Vh.

5. Numerical results

In order to illustrate the good behavior of the proposed numerical strategy,
we have first compared the results obtained in specific cases for which an ana-
lytical solution is known. Moreover, other examples in which we compute the
XVA in different situations are also presented.
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In all cases, tests have been performed by using Matlab on an Intel(R)
Xeon(R) CPU E3-1241 3.50GHz computer. In all examples, the elapsed com-
putational time is less than 25 seconds.

5.1. Test 1: Convergence

We first study the error and the order of convergence of the applied numerical
methods, for which we take advantage of the analytic solution of the XVA
problem in particular cases. For example, we consider a not collateralized call
option bought by B, with M = V̂ and funding costs. Note that as we consider
sF = (1−RB)λB , the analytical expression of the XVA is:

U(t, S) = −(1− exp(−((1−RB)λB + (1−RC)λC)(T − t)))V (t, S) .

As we can observe in Table 1, the experimental order of convergence obtained
with the discrete norm L∞((0, T )× L2([0, S∞])) is one.

In Figures 1, 2 and 3 we show the XVA value as a percentage of the risk–free
value, V . We can observe the relevance of the choice of the mark–to–market
value at default (either V or V̂ ), as well as the funding costs. These results
correspond to time t = 0 and the following set of financial parameters: σ = 0.25,
rR = 0.015, r = 0.03 and RB = RC = 0.4.

Notice that in the four considered cases, with and without funding costs and
both possibilities of the mark–to–market value, the value of XVA grows as the
default intensity of C increases. Moreover, in the cases which do not consider
funding cost the XVA remains constant, independently of the changes of the
default intensity of B, λB . Nevertheless, when funding costs are considered, the
XVA increases with λB .

Concerning the fixed–point algorithm (43) introduced in Section 4.2, we have
not proved its theoretical convergence. However, convergence is attained in a
reduced number of iterations (less than five) in all the experiments for both
European and American options. We have used ε = 10−11 as the tolerance for
the relative quadratic error between two iterations.

5.2. Test 2: European put option

In this example we analyze the time evolution of the CVA and FVA, in terms
of the spot value. We have considered the case in which no collateral is posted
in the trade.

We assume counterparty B buys a put option from C, the strike depending
on the repo rate (E = 10erRT ), and a maturity period of 0.5 years.

Figure 4 shows the total value adjustment for the European put option.
The XVA value is negative because it represents the decrease in the risk–free
put value due to the probability of default from both counterparties.

Figure 5 shows the credit value adjustment surface for the put option. The
function takes negative values, since it represents the amount that B has to
charge to C due to C’s probability of default. The value is null when the op-
tion expires, because at maturity date the exposure at the counterparty default
disappears. Furthermore, the absolute value is larger when the put option is in
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the money. In this case, B will be interested in exercising and will be (more)
exposed to C’s default.

Figure 6 represents the funding cost adjustment surface for the same Euro-
pean put option. The value is negative because it represents the funding costs
that B charges to C; i.e., B will pay less money to C due to B’s incurring
in funding cost associated to the financing agreements. So, the FCA increases
when the option is in the money, as the funding needed to pay the prime in the
money is larger than if the option is out of the money.

5.3. Test 3: European call option and forward including funding costs

Now, according to the counterparties which take part in the agreement, we
compare the risk–free value and the risky value considering and not considering
funding costs. We have studied the value for an European call option with strike
E = 10erRT and a maturity time of 3 years; the rest of the input parameters
are σ = 0.25, RB = RC = 0.3, r = 0.04, λB = λC = 0.04, rR = 0.06 and
sF = λB(1−RB).

On the one hand, if we assume the trade takes place between banks before
the crisis, these counterparties are considered to be risk–free. Therefore, no
CVA is taken into account and the FCA is negligible; thus the price is equal to
the derivative value without counterparty risk.

Let us now assume that counterparty B is a bank, and C is a risky client.
Thus, the bank will charge C a credit value adjustment on the trade, i.e., the
price B charges to C is equal to the risk–free price plus CVA.

On the other hand, if the trading takes place after the financial crisis, the
banks are no more considered parts without counterparty risk (risk–free). More-
over, they charge a prime due to funds lending in the capital market and coun-
terparty B will not be able to fund the premium of the trade at the risk–free
rate anymore. This means that B will incur in a funding cost in the agreement.
So, the price that B will offer to counterparty C is the risk–free value plus CVA
and FCA. These three situations are represented in Figure 7.

A similar test concerning a forward contract has been done. The risk-free
value and the risky values (with and without funding costs) are presented in
Figure 8(a) for the mark–to–market equal to the risky derivative (non linear
model) and in Figure 8(b) for the mark–to–market equal to the risk–free deriva-
tive (linear model). We can appreciate that when the forward has a positive
value, B has the choice of exercising the contract thus being exposed to C de-
fault. On the other hand, if the forward has a negative value, then B may not
be interested in exercising the contract, so that all the counterparty risk (from
the point of view of B) is included in DVA. As we can observe, the computed
results are similar in both cases. So, there is not a big difference in the choice
of the mark–to–market close out.

5.4. Test 4: Collateralized European options

In this example we study again a European put option bought by B. How-
ever, in this example the trading is now on a collateralized derivative and we
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use Model 3 of section 2.2. The strike is E = 10erRT and the maturity time is
equal to 0.5 years. The rest of the parameters are σ = 0.25, rR = 0.06, r = 0.04,
rC = 0.05, RB = RC = 0.3 and λB = λC = 0.04. Thus, we show in Figure
9 the difference between the fully collateralized and a partially collateralized
derivative prices. The difference is positive, because it represents the additional
amount that has to be paid by B if the derivative is collateralized. So, this price
increases as the collateral is larger, thus the exposure facing C’s default is lower.
Therefore, the price of a collateralized European put option is larger than the
not collateralized one. This difference between both of them is the CollVA.

In Figure 10, the XVA surface is represented when the trading takes place
with a collateralized derivative. We show the variation in the XVA value for
different collateral values, which are in all cases a percentage of the derivative
risk–free value. As expected, if the derivative is not collateralized, X = 0 and the
XVA value corresponds with the results obtained in Figure 4. Nevertheless, the
XVA values decrease when the derivative approaches to the fully collateralized
case.

Moreover, we compare the three particular models explained in Section 2.2.
Figure 11 represents the computed XVA value according to the different as-
sumptions made about counterparty B’s bond. We can observe that for a stock
price in the money area, the results obtained using model 2 and model 3 are
similar, whereas the XVA is higher in absolute terms if model 1 is employed. In
any case, the differences between the models are negligible.

5.5. Test 5: American options

In this example we show the results obtained for American options with
the same parameters as in the European case of Test 2 and Test 3. For the
ALAS algorithm, we consider β = 105 and the stopping test equal to 10−5,
thus obtaining the convergence in two or three iterations. In Figure 12 we
have compared the American call option value considering different adjustments
upon risk free value. The input parameters are equal to those ones of the
analogous example in European options. As in the European call option case,
when counterparty B buys a call option, the price that B has to pay by the
risk–free derivative is higher than the amount that has to be paid for an option
if default risk and funding costs are considered. Moreover, as expected in an
option that pays no dividends, risk free value is the same for both options;
in other case, when risky values are considered the American option value is
larger than the European one, due to the fact that the American option can be
exercised before the maturity date.

In Figures 13 and 14, the exercise region for an American put option is
represented in white. We can see that in the case with counterparty risk this
region is larger than the same area in the case of an American put option
without counterparty risk. According to these regions, we can interpret Figure
15, which represents the XVA surface for an American put option. We can
observe that the XVA is negative because it represents the discounted value
upon risk–free value, due to the risk exposure of counterparty B. Moreover,
in terms of absolute value this is larger when the asset value approaches the
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exercise area because the buyer B is more interested in exercising the option.
Moreover, when the spot price is in the exercise region, the XVA surface tends
to zero. This is due to the fact that the risky value and the risk–free value reach
the exercise price, so that XVA = V̂ − V = 0. Finally, the XVA value is zero at
maturity, because the exposure faced by the counterparty has disappeared.

6. Conclusions

In the present paper, we formulate different PDE problems associated to
the pricing of total value adjustments (XVA) to be added to the price of the
derivative without counterparty risk. For a financial derivative without early
exercise opportunity (as European vanilla options or forward contracts) different
linear and nonlinear PDEs arise. In the present paper we propose appropriate
boundary conditions and numerical methods based on characteristics method
(semilagrangian schemes), finite elements and fixed point iteration techniques to
solve these PDE problems. The first order convergence of the numerical method
is illustrated when applied to particular cases in which the analytical expres-
sion for the XVA is available. This is the expected order of convergence to be
obtained for the numerical techniques we propose in the linear and nonlinear
PDEs. Also, the numerical examples clearly illustrate the good performance
of these models and methods for the case of European vanilla options and for-
ward contracts in cases with and without collateral agreements, as different
expected financial properties we discuss are recovered. We note that the models
and methods can be extended to other European-like derivatives, as well as to
the consideration of stochastic default intensities (as proposed in [14]), so that
problems in two or three spatial like variables must be solved. This last issue is
currently under consideration by the authors.

Furthermore, for first time in the literature, the consideration of the XVA
associated to American options is posed. After introducing different complemen-
tarity problems to obtain the XVA associated to American options, augmented
Lagrangian methods are proposed to tackle the additional inequality constraints
involved in the formulation. Numerical examples are presented to illustrate and
discuss the behaviour of the models and numerical methods to compute exer-
cise regions with and without counterparty risk, as well as the interpretation of
the XVA adjustments that have been obtained. Similar extensions than in the
European-style case can be devised.
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cal methods to solve PDE models for pricing business companies in different
regimes and implementation in GPUs. Applied Mathematics and Computa-
tion, 219 (2013) 11233-11257.

[9] P. G. Ciarlet, Introduction à l’analyse numérique matricielle et à
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Table 1: Relative errors in norm L∞((0, T ) × L2([0, S∞])), convergence ratios and order.
Example with finite elements scheme (Test 1). The input parameters are E = 15, S ∈ [0, 4E],
r = 0.03, rR = 0.015, σ = 0.25, t ∈ [0, 5], λB = 0.02, λC = 0.05, RB = 0.4 and RC = 0.4

Time step Space step Error R Order

400 50 0.02232872 - -
800 100 0.01192059 1.87312280 0.90544548
1600 200 0.00617545 1.93031711 0.94883787
3200 400 0.00315299 1.95860211 0.96982435
6400 800 0.00160323 1.96665313 0.97574253

Figure 1: XVA in the cases M = V̂ and M = V for counterparty hazard rate, λC = 0% (Test
1)

Figure 2: XVA in the cases M = V̂ and M = V for counterparty hazard rate, λC = 2.5%
(Test 1)
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Figure 3: XVA in the cases M = V̂ and M = V for counterparty hazard rate, λC = 5% (Test
1)

Figure 4: XVA surface for European put option with input arguments (Test 2): S0 ∈ [0, 20],
E = 10erRT , r = 0.04, rR = 0.06, σ = 0.25, T = 0.5, rPB

= 0.08, rPC
= 0.08, RB = 0.3 and

RC = 0.3
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Figure 5: CVA+DVA surface for European put option with input arguments (Test 2): S0 ∈
[0, 20], E = 10erRT , r = 0.04, rR = 0.06, σ = 0.25, T = 0.5, rPB

= 0.08, rPC
= 0.08,

RB = 0.3 and RC = 0.3

Figure 6: FCA surface for European put option with input arguments (Test 2): S0 ∈ [0, 20],
E = 10erRT , r = 0.04, rR = 0.06, σ = 0.25, T = 0.5, rPB

= 0.08, rPC
= 0.08, sF =

(1−RB)λB , RB = 0.3 and RC = 0.3
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Figure 7: European call option values with CVA and FCA (Test 3)

(a) Case with M = V̂ (b) Case with M = V

Figure 8: Forward values with CVA and FCA (Test 3)
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Figure 9: Collateral Value adjustment for different amount of collateral (Test 4)
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(a) Collateral = 0 (b) Collateral = 0.33V

(c) Collateral = 0.66V (d) Collateral = V

Figure 10: XVA surfaces for different collateral values (Test 4)
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Figure 11: Total Value Adjustment according to the different collateral models (Test 4)

Figure 12: American call option value (Test 5)
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Figure 13: Exercise region (white) for an American put option without counterparty risk (Test
5)

Figure 14: Exercise region (white) for an American put option with counterparty risk (Test
5)
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Figure 15: Total Value Adjustment surface for American put option (Test 5)
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