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The control of the evolution of road traffic streams is highly related to productivity, safety,
sustainability and, even, comfort. Although, nowadays, the findings from research efforts
and the development of new technologies enable accurate traffic forecasts in almost any
conditions, these calculations are usually limited by the data and the equipment available.
Most traffic management centres depend on the data provided, at best, by double-loop
detectors. These loops supply time means over different aggregation periods, which are
indiscriminately used as the bases for subsequent estimations. Since space mean speeds
are those needed in most applications (note the fundamental relationship between flow
and density in traffic flow theory), most current practice begins with an error. This paper
introduces a simple algorithm that the allows estimation of space mean speeds from the
data provided by the loops without the need for any additional financial outlay, as long
as the traffic in each time interval of aggregation is stationary and its speed distribution
is log-normal. Specifically, it is focused on the calculation of the variance of the speeds with
regard to the time mean, thus making possible to use the relationship between time mean
speeds and space mean speeds defined by Rakha (2005). The results obtained with real
data show that the algorithm behaves well if the calculation conditions help fulfil the ini-
tial hypotheses. The primary difficulties arise with transient traffic and, in this case, other
specific methodologies should be used. Data fusion seems promising in this regard. Never-
theless, it cannot be denied that the improvement provided by the algorithm turns out to
be highly beneficial both when used alone in the case of stationarity or as a part of a fusion.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

As society evolves, new requirements and needs may appear. With regard to road transport, researchers, administrations
and private companies are aware that controlling the evolution of traffic results in an increase of productivity and safety,
allows the exploitation of synergies among different means of transport and contributes to a more sustainable growth
(SHRP2, 2013). Many different initiatives, such as real time calculation of travel times, active traffic management procedures
or automated driving systems, emerge as examples of these key achievements.

Although these lines of research are very different, they share two commonalities: the need for appropriate data and well-
founded calculations. The development of new technologies and computer software offers the possibility of collecting varied
data and combining all this information in order to obtain accurate results (Yuan et al., 2014). Mobile phones, GPS (Global
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Positioning System), Bluetooth, Optical Character Recognition (OCR) cameras and many other devices arise as invaluable
sources of traffic data which can later be used for different calculations. As an example, GPS-enabled mobile phones have
meant a new way of collecting traffic data as they are able to register vehicle trajectories (Hiribarren and Herrera, 2014).
Unfortunately, neither totally accurate data nor the most complex programs are usually available (at least, in a sufficient
amount) in less trafficked areas, such as, for example, secondary roads, rural areas or for small traffic management centres.
In fact, the majority of these centres located in developed countries depend on pieces of equipment such as loop detectors
and regular cameras (which are unable to identify vehicles). In these situations, loops are the main sources of data. Traffic
researchers have clearly demonstrated the advisability of deploying double loops (in pairs in each section of each lane) rather
than single loops in order to obtain a higher amount of data and, therefore, better results in subsequent calculations (Chen
et al., 2003). Luckily, this trend is, at present, usually followed.

All inductive loop detectors are similar. They consist of a wire loop installed under the pavement of a lane which is able to
detect the presence of a vehicle (in essence, a metallic object) thanks to the changes that it causes in the electromagnetic
properties of the loop. The main differences are related to the software which manages and stores these data, as it can be
programmed in several and various ways. When applying the double-loop configuration, the data usually available for pre-
viously determined time intervals of aggregation are:

� number of vehicles that pass over the detectors,
� lengths of these vehicles: the software that manages the information usually classifies them into groups and only stores

the number of vehicles for each group. For example, in Spain the usual classification is as follows: groups of vehicles
shorter than 6 m, between 6 and 10 m and larger than 10 m,
� spot speed measurements: again, and although individual spot speeds are initially detected, the software only calculates

and registers their mean, i.e., the time mean speed, the average speed of all the vehicles passing over a particular spot,
� number of vehicles that pass over the detectors with a speed lower than a particular reference speed. In this case, it is

usual to have two different references. Only the number of vehicles that meet this requirement is stored. It must be high-
lighted that the chance of obtaining these data directly from the software of loop detectors is not a standard in the USA,
but it is quite common in Europe. As an example, all Spanish freeway traffic centres manage them.

The duration of the time intervals of aggregation ranges from 20 to 30 s in the USA up to 15 min in some European coun-
tries. Intervals between 3 and 5 min have proven to be the most suitable (Soriguera and Robusté, 2013). Nevertheless, both
shorter and longer durations have some advantages and disadvantages, as discussed in Section 5.

Variation of traffic speeds at various places over the time turns out to be one of the basic inputs for subsequent studies,
such as, for instance, the indirect estimation of travel times. However, the main problem is that most studies are based on the
fundamental equation of traffic flow (Eq. (1)). This equation provides the relationship between flow q and density k through a
specific type of speed, the so-called space mean speed v s, which is, in fact, a harmonic mean calculated under specific con-
ditions (Wardrop, 1952). Further explanation about this point is included in Section 2.
q ¼ v sk ð1Þ
The use of the data provided by loop detectors involves various difficulties when determining the evolution of speeds:

� individual speeds are measured at fixed points of a road and must be extrapolated to some extent, in order to achieve the
spatial implication needed. This spatial generalisation is extremely complicated, particularly in the case of congestion,
� as mentioned, the software usually provides time mean speeds. The use of these time means as substitutes of the space

means required for calculations can cause a considerable loss of accuracy in the results,
� although loops are simpler, more economical and more common than other devices commonly used to collect traffic data,

their usefulness depends on their density on the road (Bachmann et al., 2013). Some invaluable research has resulted in
the development of simple search algorithms which efficiently select the sensor locations in order to obtain suitable data
when the number of available sensors is limited (Viti et al., 2014). Nevertheless, difficulties still remain in those roads
already constructed.

The algorithm introduced in this paper is aimed at calculating spot space mean speeds exclusively from the data provided
by double-loop detectors, thus avoiding extra expenses for governmental agencies and other related bodies. Specifically, it is
focused on the calculation of the variance of the speeds with regard to the time mean, thus allowing, in the case of station-
arity, the application of the relationship between time mean speeds and space mean speeds defined by Rakha (2005). Further
improvements must be implemented in order to reach the final objectives and goals (for example, their extrapolation to
entire links), but any lack of accuracy with regard to this first basic factor will already spread to any other result that
may depend on it. The next sections of this paper cover the following aspects: Section 2 provides the background of different
traffic speed definitions and summarises their relationships according to various researchers; Section 3 develops the pro-
posed algorithm, whereas its implementation with artificial and real data is demonstrated in Section 4, as well as compared
with other methodologies; Section 5 discusses the results, while conclusions and a proposal for new lines of research are
presented in Section 6.
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2. Background

Since 1952, when Wardrop stated his two principles concerning the idea of traffic equilibrium previously developed by
Knight (1935), the differences between the time mean speed and the space mean speed have been widely demonstrated. The
space mean speed v s is the average speed of all the vehicles in a particular stretch of a road at a specific instant (Homburger
et al., 1996). The time mean speed v t is the average of the speeds of all the vehicles that pass over a section of a road during a
certain time interval. It is easy to deduce that the time mean speed is greater than the space mean speed (Daganzo, 1997)
since fast vehicles contribute more to the time-mean than the slow ones, whereas vehicles of all speeds equally contribute to
the space-mean. Space averages equal time averages only in the case of space–time homogeneous traffic (Breiman, 1969).

As it has been explained before, loops in a road detect and average spot speeds in stipulated time intervals, thus also pro-
viding time mean speeds. However, if individual spot speeds were stored, v s could be calculated by giving them a certain
spatial nature and, also, by assuming stationary traffic in the section (Edie, 1965), as Eq. (2) shows:
vs ¼
Pn

i¼1xiPn
i¼1tti

¼ ndxPn
i¼1

dx
v i

¼ 1
1
n

Pn
i¼1

1
v i

ð2Þ
where
xi = distance covered by vehicle i,
tti = time used by vehicle i to cover the distance xi,
v i = spot speed of vehicle i,
n = number of vehicles that pass over the detector during the time interval,
dx = differential length taken up by the detector.

Therefore, in these conditions the space mean speed could be calculated as the harmonic mean of the individual spot
speeds. It must be highlighted, however, that, in the origin of this formulation, neither a time mean nor a space mean
was established, but a generalised definition of the average speed. The fact of labelling this generalised definition of the aver-
age speed as space mean speed v s is an abuse of notation. Actually, vs does not share the spatial implications of the original
space mean speed definition unless traffic is stationary. Some limitations have been imposed for that reason, considering
that this identification is only performed when the average speed is computed over a narrow rectangular strip in the x–t
plane with a spatial width dx and a time length T, which corresponds to the measurement region of a loop detector on a high-
way. Taking this definition into account, space mean speed appears, for example, in the mathematical definition of the aver-
age travel time TT of n vehicles that cover a specific distance of a road L at a constant speed v i (Eq. (3)):
TT ¼
Pn

i¼1TTi

n
¼
Pn

i¼1
L
v i

n
¼ L � 1

n

Xn

i¼1

1
v i
¼ L

v s
ð3Þ
In consequence, travel times would be underestimated if v t were used instead of v s (Soriguera and Robusté, 2011). This sub-
stitution could lead to other inaccuracies such as wrong estimates of jam densities or shock wave speeds (Knoop et al., 2007).
The data aggregation process is, in fact, an important source of noise and errors normally present in conventional measures
of the traffic state (Coifman, 2014). Many authors have already stated the importance of using time-based or space-based
data accurately and correctly, regardless of their source. For example, the inverse of the harmonic mean of instantaneous
speeds from probe vehicles results in an unbiased and consistent estimator of the mean segment travel time when sampling
by space, but biased upwards when sampling by time (Jenelius and Koutsopoulos, 2015).

Clearly, upgrades in the loop software would allow these devices to store individual data or even to directly calculate
space mean speeds. However, the large number of loops deployed world-wide and human inertia have so far precluded those
modifications. Therefore, many researchers have tried to calculate space mean speeds from the time mean speeds provided
by the loops, especially in the case of stationarity, which is the common hypothesis of all the following methodologies.

The first of these relationships, shown in Eq. (4), is due to Wardrop (1952):
v t ¼ v s þ
r2

s

v s
ð4Þ
where r2
s is the variance of the speed with regard to the space mean for the specific time interval of aggregation which has

been chosen. The accuracy of the formula has been experimentally verified, but most traffic management centres cannot use
it because individual speeds are needed in order to calculate the variance with regard to the space mean. This formula was
actually devised to calculate time means from space means, what is not usually necessary in real life.

Another postulated formula to relate both means is that of Garber (2002), which is shown in Eq. (5):
v t ¼ 0:966v s þ 3:541 ð5Þ
The main problem of this relationship is that it was established based only on experimental data. Thus, it cannot be
extrapolated to many situations in which the boundary conditions differ from the original ones. Therefore, it must be
continuously calibrated and, ultimately, it is not really worth using.
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Eq. (6) has been used in several traffic studies. It was first derived by Khisty (2003), but, in fact, it was Rakha (2005) who
proved it analytically:
vs ¼ v t �
r2

t

v t
ð6Þ
In this equation r2
t is the variance of the speed with regard to the time mean for the specific time interval of aggregation

which has been chosen. However, the impossibility of calculating the variance arises again. Nevertheless, and taking into
account the usefulness of this formula, Soriguera and Robusté (2011) was able to estimate this variance by applying the com-
mon hypothesis of stationary traffic to each time interval of aggregation and, additionally, by assuming normality of the
speed distribution. The variance with regard to the time mean speed is obtained through Eq. (7) below:
rt ¼
va � v t

F�1 nva

n

� � ð7Þ
rt = standard deviation of the speed with regard to the time mean,
va = value of the speed chosen by traffic management centres,
F�1 = inverse of the cumulative standard normal distribution,
nva = number of vehicles that pass over the detectors with a speed lower than va in each time interval of aggregation,
n = number of vehicles that pass over the detectors in each time interval of aggregation.

Although this methodology shows a good performance in specific conditions, El Faouzi and Maurin (2007) has already
pointed out that it is inappropriate to use it indiscriminately, especially in the cases of shock wave onsets and offsets or with
‘‘stop and go situations’’. As Cassidy (1998) has already stated, stationarity ensures some otherwise senseless relationships.
However, the relationship established by Rakha (2005) has been proved to be useful under certain conditions, even with
non-spot data such as those from GPS (Poomrittigul et al., 2008).

Another fact that must be taken into account in order to establish these relationships between speeds is that they
approximately fit common statistical distributions. Thus, an as a general rule, normal, log-normal, gamma and bimodal dis-
tributions tend to appear in the majority of traffic studies.

Normal distribution is, undoubtedly, the most widely used because of its simplicity, and it performs well when traffic
conditions are homogeneous. Consequently, the assumption of multivariate normal distributions for link travel times tends
to be quite common as well (Jenelius and Koutsopoulos, 2013). However, the log-normal and gamma distributions are usu-
ally more suitable, as they have additional advantages (Haight, 1962):

� they help to avoid the appearance of negative speeds,
� they keep their shape when either time speeds or space speeds are fitted.

In the case of the log-normal distribution, another important advantage is the fact that the distribution of travel times
based on speeds that fit this distribution maintains the same shape (El Faouzi and Maurin, 2007). If the log-normal speed
distribution has a mean l and a standard deviation r, the distribution of travel times will follow Eq. (8):
f t tð Þ ¼ 1ffiffiffiffiffiffiffi
2p
p

rt
e
� Lntþlð Þ2

2r2

h i
ð8Þ
In the cases where the traffic is too heterogeneous (for example, because there are many different vehicle types that may
behave differently or because of the existence of phases of free flow after congestion periods), unimodal distributions should
be avoided (Dey et al., 2006). In this situation, bimodal or even multimodal distributions might be used instead. Each of their
components would often be a normal or a log-normal distribution (May, 1990).

Many other complex distributions have already been applied in different pieces of research, but their high level of com-
plexity prevents them from being put into practice (Zou and Zhang, 2011). Even for log-normal distributions, some improve-
ments can be expected if the distributions are truncated because only a range of speeds makes sense. In addition, the
variances of these truncated distributions are always smaller than those of the original ones (Wang, 2012).
3. Simple algorithm for the estimation of space mean speeds from the data provided by double-loop detectors

Having analysed previous investigations, and taking into account the data available, the authors decided to use the equa-
tion of Rakha (2005) in order to solve the problem of not having an explicit value of the variance. The reason underlying this
motivation is based on the fact that the validity of this formula has been widely demonstrated in experimental studies.

To be able to estimate the variance, two important hypotheses are assumed. In each time interval of aggregation T:

� traffic is stationary,
� the speed distribution is log-normal.
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The validity of these hypotheses will be discussed in Section 5. The first one has also been taken for granted in the other
methodologies discussed in this paper. With regard to the second, the authors exploit the advantages of the log-normal dis-
tribution mentioned in Section 2. Assuming that the distribution of individual speeds v i in each time interval of aggregation T
is log-normal, the distribution of the logarithms of these speeds x = Lnv is a normal distribution Nðlx;rx). Therefore, the
probability density function of the speeds, their mean and their variance are given by Eqs. (9)–(11), respectively:
f vðvÞ ¼
1ffiffiffiffiffiffiffi

2p
p

rxv
e
� Ln v�lxð Þ2

2r2
x

h i
con v > 0 ð9Þ

lv ¼ v t ¼ elx þ r2
x

2
ð10Þ

r2
v ¼ r2

t ¼ er2
x � 1

� �
� e2lxþr2

x ð11Þ
where
v = individual speed,
lx = arithmetic mean of the logarithms of the speeds,
r2

x = variance of the logarithms of the speeds with regard to the mean.

It is important to remember that this algorithm is aimed at estimating r2
v , which corresponds to the variance with regard

to the time mean speed that Rakha (2005) named r2
t . Therefore, lx and rx are needed. lv is provided by the loops (the time

mean speed, named v t by Rakha (2005)).
Let na

v be the number of vehicles that pass over the detectors in a section with a speed lower than va in one time interval
of aggregation T. The probability that a vehicle passes over the detector with such a speed is shown in Eq. (12):
P V 6 va½ � � na
v

n
� P e X

6 exa� �
� P Lne X

6 Lnexa
h i

� P X 6 xa½ � ¼ F Z xað Þ½ � ¼ F Z Lnva� �� �
¼ F

Lnva � lx

rx

	 

ð12Þ
where:
va = speed chosen as a reference,
n = number of vehicles that pass over the detectors in each time interval of aggregation,
xa = logarithm of the speed va,
F = cumulative standard normal distribution,
Z( ) = standardised value.
By rearranging Eqs. (10) and 12, a system with two equations (Eqs. (13) and (14)) and two unknowns is obtained:
2lx þ r2
x ¼ Lnv t

2 ð13Þ

lx þ F�1 na
v

n

	 

rx ¼ Lnva ð14Þ
where
F�1 = inverse of the cumulative standard normal distribution.
Finally, Eq. (15) is obtained:
r2
x � 2F�1 na

v
n

	 

rx þ Ln

va

v t

� �2

¼ 0 ð15Þ
When solving Eq. (15), two possible values of rx arise. For two reference values of the speed (va1 and va2Þ, four values are
provided. In practice, some of these are nullified during the calculations due to the fact that some mathematical limitations
for the algorithm arise. In each time interval of aggregation T:

� n cannot be too small or, otherwise, the initial substitution of the theoretical probability for the accumulated frequency
(Eq. (12)) may be problematic and the confidence interval of the estimations is too small,
� the conditions na

v – 0 and na
v – n are necessary. This prevents the inverse of the cumulative standard distribution from

tending to infinite,

� F�1 na
v

n

h i� �2
must be greater than Ln va

v t

� �2
to avoid square roots of negative numbers when solving Eq. (15),

� the condition va

v t
– 0 is necessary in order to avoid natural logarithms of zero.

In those cases where more than one value of rx is obtained, an action protocol must be established in order to help to
choose the most suitable. One possibility is to keep the value with the smallest confidence interval for a specific level of
confidence.
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When a value of rx is found and introduced into Eq. (13), the corresponding lx can be calculated. By using both values in
Eq. (11), r2

t is finally obtained and can be introduced into Eq. (6) in order to estimate vs. The flow chart in Fig. 1 summarises
the main steps of the algorithm.

As it can be deduced, it is not easy in practice to choose the best estimate of r2
t from more than one possible value. There

are no simple methods to calculate the confidence intervals for the variance of log-normal distributions. Bayesian procedures
seem to be the most suitable (Harvey and van der Merwe, 2012), although quite difficult to implement.

A naive solution could be to apply the confidence intervals of a parameter calculated in a previous step of the method, for
example rx. If the best value of rx is chosen, the best r2

t and, thus, a more accurate v s will be obtained. Therefore, and thanks
to the fact that the variable x is normally distributed, the solution for the confidence interval limits of rx proposed by
Soriguera and Robusté (2011) and developed in Eqs. (16) and (17) can be used:
e
rxð1Þ¼�

va�lxð Þezð1Þ
Z Zþezð1Þð Þ

e
rxð2Þ¼�

va�lxð Þezð2Þ
Z Zþezð2Þð Þ

ð16Þ
where
eZ 1ð Þ¼F�1 pþepð Þ�F�1 pð Þ

eZ 2ð Þ¼F�1 p�epð Þ�F�1 pð Þ
ð17Þ
Variable p corresponds to the probability of a vehicle with a speed lower than va passing over the detector in the time inter-
val of aggregation. The circulation of vehicles over the detectors can be considered as a Bernouilli process; the possibilities
are their driving slower than a reference speed or not, these trials being independent. Thus, the estimator of p (p̂Þmatches Eq.
(18):
p̂ ¼ na
v

n
ð18Þ
The proposed methodology heavily relies on the availability of na
v . If na

v is not reported to the traffic management centre
during the normal operation of the system, the method cannot be applied. Obviously, carrying out modifications in the con-
trollers in order to obtain these data lacks any sense, as it would be simpler, in this case, to introduce other modifications in
Fig. 1. Steps of the algorithm.
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order to directly obtain v s. Nevertheless, in the substantial number of countries where na
v is available, the fact of using the

estimated v s instead of working with v t (the current procedure) when making subsequent calculations would imply a higher
level of accuracy without the need of any re-coding.
4. Implementation of the algorithm with artificial and real data

4.1. Implementation with artificial data

In order to first verify the proper performance of the algorithm, it was successfully tested with data generated with Mat-
lab and readjusted to fulfil both the main hypotheses of the method (i.e., the stationarity of the traffic and the log-normality
of the speed distribution in each time interval of aggregation T) and the mathematical requirements detailed in Section 3. For
this very last reason, the reference values were set at 101 km/h and 110 km/h (90% and 98% of the total time mean speed),
thus ensuring the participation of enough vehicles in the calculations. The steps followed and the results are shown in
Table 1, whereas Fig. 2 shows them in comparison with time means and real space mean speeds.

The estimated space mean speeds are much closer to the real space mean speeds than the time mean speeds the loops
provide. The error introduced by the latter is 2.17%, compared to 0.65% for the estimations of the algorithm. The validity of
the algorithm has been therefore demonstrated in these ideal conditions. The mean relative error was calculated taking into
account the absolute values of the differences. In addition, and with regard to the estimated space means, only values with
differences smaller than the maximum difference reported by the loops were admitted. This procedure was also followed in
Section 4.2 with real data.
4.2. Implementation with real data

The validity of the algorithm has been demonstrated in an ideal situation where all the initial conditions that were
assumed when defining the method were met. However, it is also necessary to test it with different combinations of real
data for which one or more of these conditions probably will not apply.

The data used for this study were collected during two days, on March 31th and April 1st, 2014 in a section with double
loops (P.K. 86 + 211, with two lanes in the direction of A Coruña) of the AP-9 freeway, which runs north and south along the
west coast of Galicia in Spain. The data were provided per lane and for aggregation time intervals T of 15 min. During the
normal management of this freeway, the common data available are:

� number of vehicles that pass over the loops (n),
� number of vehicles with lengths L shorter than 6 m, between 6 and 10 m or longer than 10 m,
� time mean speeds v t: at an initial stage these speeds are averaged every 5 min, but then they are smoothed for time inter-

vals of 15 min,
� number of vehicles (na

vÞ that pass over the loops with speeds lower than 50 km/h (Va1Þ and 100 km/h (Va2Þ, respectively.

Specifically for investigation purposes, however, on this occasion the individual speeds and lengths were also provided,
thus allowing an analysis of the algorithm with a wide range of different boundary conditions, as well as a comparison of the
estimated space mean speeds with the real ones. The algorithm was executed with data obtained on different days, in dif-
ferent lanes (the left, for the fastest vehicles, and the right, for medium–low speed vehicles) and for all vehicles or only those
whose lengths L were within a specified range. In addition, different time intervals of aggregation (T, in minutes) and refer-
ence speeds (Va1 and Va2Þ were used. N corresponds to the number of vehicles detected during the entire data acquisition
period. Table 2 below shows the cases which have been analysed:

In addition, it is also important to point out that neither the stationarity of the traffic flow nor the log-normality of the
speeds is guaranteed. This issue will be discussed in Section 5.
4.2.1. Results obtained with real data
Table 3 shows the difference between using the time mean speeds provided by the loop detectors or the space mean

speeds estimated with the algorithm as the substitute for real space mean speeds. This difference is shown here as it has
been previously done in Section 4.1, i.e., by determining the mean relative error in each case.

In 8 out of the 11 cases analysed (and taking into account that case V has been subdivided) the application of the algo-
rithm implies an improvement, but there are 2 cases where the results have been worse and another in which no reasonable
value has been obtained. This behaviour, which was also analysed and understood, is discussed in Section 5.

Besides, it is worth pointing out that, in most cases, it is not possible to determine the validity of the algorithm by focus-
ing only on one of the boundary conditions; thus, attention to the combination of all of them is required. Nevertheless, once
all the conditions for the calculation have been established, its performance can be improved by changing only one of these
conditions. As an example, between cases VI (Fig. 3) and VII (Fig. 4) only the reference speeds are different. However, the
algorithm only shows a good performance in the latter case.



Table 1
Estimation of space mean speeds and comparison of the results obtained with the data provided by the loops and with real values.

Time period T Number
of
vehicles
n

Classification of vehicles according
to the speeds

nva=n Time
mean
speed
(km/h)

Estimated space
mean speed (km/h)

Real
space
mean
speed

Difference time
mean � real
space mean

Error
(%)

Difference estimated
space mean � real
space mean

Error
(%)

V < 101 101 6 V < 110 V P 110 Va ¼ 101 Va ¼ 110

7:30:00 28 0 4 24.00 0.0000 0.1429 123.56 122.22 122.47 1.09 0.89 �0.25 0.20
7:45:00 25 3 9 13.00 0.1200 0.4800 111.10 110.41 110.30 0.79 0.72 0.11 0.10
8:00:00 33 11 8 14.00 0.3333 0.5758 106.51 105.23 105.62 0.89 0.84 �0.39 0.37
8:15:00 32 1 11 20.00 0.0313 0.3750 114.48 113.98 113.58 0.89 0.79 0.39 0.35
8:30:00 36 1 5 30.00 0.0278 0.1667 119.43 118.55 118.41 1.02 0.86 0.14 0.12
8:45:00 45 2 4 39.00 0.0444 0.1333 124.11 122.77 122.67 1.45 1.18 0.10 0.08
9:00:00 36 9 10 17.00 0.2500 0.5278 110.18 108.62 108.55 1.63 1.50 0.07 0.06
9:15:00 51 14 18 19.00 0.2745 0.6275 107.80 106.71 106.87 0.93 0.87 �0.16 0.15
9:30:00 43 7 14 22.00 0.1628 0.4884 111.38 110.37 110.05 1.32 1.20 0.32 0.29
9:45:00 39 11 9 19.00 0.2821 0.5128 108.55 107.13 106.93 1.62 1.52 0.21 0.19
10:00:00 31 8 6 17.00 0.2581 0.4516 112.33 109.87 108.34 3.99 3.68 1.53 1.41
10:15:00 22 10 2 10.00 0.4545 0.5455 104.23 101.48 100.36 3.87 3.86 1.11 1.11
10:30:00 32 18 3 11.00 0.5625 0.6563 103.71 99.80 95.59 8.12 8.49 4.21 4.40
10:45:00 29 4 11 14.00 0.1379 0.5172 110.39 109.70 109.61 0.78 0.71 0.09 0.08
11:00:00 16 5 1 10.00 0.3125 0.3750 114.11 112.97 111.29 2.82 2.54 1.69 1.52
11:15:00 24 2 6 16.00 0.0833 0.3333 114.12 113.28 112.84 1.28 1.14 0.44 0.39
11:30:00 26 8 3 15.00 0.3077 0.4231 111.88 108.45 108.36 3.52 3.25 0.10 0.09
11:45:00 29 7 6 16.00 0.2414 0.4483 116.54 109.99 110.89 5.65 5.09 �0.90 0.81

Total vehicles 577.0 121.0 130.0 Mean error 2.05 0.59
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Fig. 2. Comparison of the real space mean speeds, the time mean speeds and the space mean speeds estimated with the algorithm from data that
completely fulfil the initial conditions of the method.

Table 2
Cases analysed to test the algorithm.

Case Day Lane T (’) L N Va1 Va2

I 31 March right 15 all 4662 50 100
II 01 April right 15 all 2841 50 100
III 01 April right 15 all 2841 98 107
IV 01 April right 5 all 2841 50 100

V 01 April right 5 L < 10 m 2489 50 100
L P 10 m 352 50 100

VI 31 March left 15 all 769 50 100
VII 31 March left 15 all 769 110 120
VIII 01 April left 15 all 596 50 100
IX 01 April left 5 all 595 50 100
X 01 April left 5 all 595 50 115

Table 3
Comparison between the errors derived from the use of time means and those of the algorithm.

Case I II III IV Va Vb VI VII VIII IX X

Weighted error derived from the use of time means (%) 1.35 1.19 1.21 2.04 1.68 0.27 0.56 0.47 0.59 1.48 0.93
Weighted error of the algor. (%) 0.79 0.87 0.99 0.59 0.46 – 0.86 0.44 0.78 0.58 0.50
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The reason underlying this fact is that, in case VI, the sample includes fewer vehicles, since most of them were driving at
speeds higher than 50 km/h. Another example is based on cases IV (Fig. 5) and V (Fig. 6). The segregation of the sample in
accordance with the vehicle length usually improves the performance for light vehicles, as the hypothesis of log-normality is
met in a more complete way. As for heavy vehicles, the algorithm, in this specific example, does not even run due to the
small size of the sample. The influence of the length of the time interval of aggregation can be observed, for example, in cases
II and IV (Figs. 7 and 5). The results of case IV, where T = 5 min, are, undoubtedly, much better.

4.2.2. Comparison between the proposed methodology, the algorithm based on the normal distribution and previous methods.
Because the proposed algorithm is somewhat more complicated than that introduced by Soriguera and Robusté, 2011, a

comparative analysis was performed to verify if it is worth using. In case I, for example, the proposed algorithm demonstrat-
ed good behaviour, thus diminishing by 0.58% the error derived from the use of time mean speeds. Table 4 and Fig. 8 compare
these results with that obtained following the methodology of Soriguera, which, as mentioned before, assumes normality
and stationarity in each time interval of aggregation T.

Only for comparison purposes and being conscious of the dependence of the formula developed by Garber on the bound-
ary conditions, Table 4 also includes the results that would be obtained from its application. The equation of Wardrop, as it
has previously been stated, is useful only to calculate v t from v s, what is not necessary in practical uses.

It can be observed that the use of the algorithm proposed in this paper is more advisable, mainly because, as explained in
Section 2, log-normal distributions represent the character of the speeds more accurately. It can also be observed that, in
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Fig. 3. Comparison of the real space mean speeds, the time mean speeds and the space mean speeds estimated with the algorithm in case VI.
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spite of the mathematical limitations of the proposed methodology (discussed in Section 3), the final number of vehicles
involved in the calculations is greater when assuming log-normality. Besides, and as it had been expected, it would be even
better to substitute space mean speeds for the time mean speeds directly provided by the loops, rather than using the results
obtained from Eq. (5).

5. Discussion

Based on the accuracy of the estimates obtained in each case, some conclusions have been drawn. It seems that the algo-
rithm is worth using in numerous situations, as the results are usually more accurate than the currently accepted values of
time mean speeds. However, while it clearly shows a better performance in some of these cases, it does not work very well in
others.

The analysis was carried out taking into account the following boundary conditions:

� sample size,
� log-normality of the speed distribution,
� speeds chosen as references,
� length of the time interval of aggregation,
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Fig. 5. Comparison of the real space mean speeds, the time mean speeds and the space mean speeds estimated with the algorithm in case IV.
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� prevailing type of vehicles,
� general traffic conditions,
� place, day and moment of data acquisition.

Regarding the sample size, the larger the sample, the better the performance of the algorithm. The main reasons under-
lying this behaviour are the increase in the probability of having a log-normal distribution of speeds in each time interval of
aggregation and the reduction in the emergence of mathematical inconsistencies during the calculations.

The log-normality of the speed distribution in each time interval of aggregation is one of the main hypotheses of the
method, and, therefore, it must hold. Depending on the conditions established for the calculations, it may be more or less
difficult to meet this hypothesis. For example, with low traffic densities, the behaviours of fast (cars) and slow (trucks, buses,
vans) vehicles can be very different (Dey et al., 2006). If the estimation is made with samples from all lanes, however, bimo-
dal or even multimodal distributions will probably appear. Therefore, the analysis must be carried out by lane (Soriguera and
Robusté, 2011). Nevertheless, with high-medium densities, log-normality could appear even in the whole section because
faster vehicles will not be able to reach their usual speeds. As previously mentioned, log-normality is more suitable when
working with large samples.
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Table 4
Comparison of the errors introduced by different methodologies in case I.

Methodology Vehicles suitable for
calculations

Weighted mean error (%)

Number % of total vehicles

Use of time mean speeds directly delivered by loop detectors 4662 100.00 1.35
Use of the equation (Eq. (5)) proposed by Garber (2002) 4662 100.00 1.56
Use of the algorithm (Eq. (7)) proposed by Soriguera and Robusté (2011) 4547 97.53 1.05
Use of the algorithm (Eq. (6) plus Eq. (15) and precedent) proposed in this paper 4628 99.27 0.79

97

99

101

103

105

107

109

111

113

115

117

11:16:48 13:40:48 16:04:48 18:28:48 20:52:48 23:16:48

Sp
ee

ds
 (K

m
/h

)

Data acquisi�on �me

Real space mean speeds

Time mean speeds

Estimated space mean speeds with the proposed 
algorithm

Estimated space mean speeds with Soriguera
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algorithm of Soriguera and Robusté (2011) in case I.
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To illustrate the importance of fulfilling this hypothesis, two time intervals of T = 5 min obtained from case Va were
chosen (time intervals between 7.40 and 7.45 a.m. and between 11.10 and 11.15 a.m.). The errors of estimation in these
intervals were among the smallest (0.04% and 0.03%, respectively). The logarithms of the speeds were tested with the
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Kolmogorov–Smirnov Test. Table 5 shows the results, where the p-value in both cases was greater than 0.05, indicating nor-
mality of the logarithms and thus log-normality of the speeds. Figs. 9 and 10 also roughly represent this trend.

The election of the speeds chosen as a reference must be made in a logical way with the specific purpose of having a suf-
ficient number of vehicles in the sample. In the particular case of the AP-9 freeway, the values used were 50 and 100 km/h.
Since it is obviously uncommon for a vehicle to drive slower than 50 km/h on a freeway, some data will still be missed. And
since the individual speeds were also available, other values were chosen for some of the analyses, what consequently led to
better results. In this research, values of 90% and 98% of the average speed were chosen. In practice, these values could be
based on (recent) historical data.

As for the lengths of the time intervals of aggregation, both long and short intervals show advantages and disadvantages.
Short durations are more likely to meet the other main hypothesis of this method (i.e. the stationarity of the traffic flow), as
well as to yield more accuracy in subsequent calculations in real time (for example, in travel time calculations).

On the contrary, longer periods involve a greater sample size and a lower need for calculation capacity, since only a small-
er number of iterations will be run each day.

Again, the prevailing type of vehicle is related to the convenience of making the estimations per lane or in a whole section
in order to ensure the appearance of log-normal distributions. If possible, it is always advisable to work per lane and, even, to
divide the vehicles into groups by their usual speeds, although this last step obviously adds some extra effort. In the case of
working per lane, later estimates for the section can be obtained with equations such as Eq. (19), where the superscript i
corresponds to the lanes of the section (Soriguera and Robusté, 2011):
vsection
s ¼ 1

1P
i
ni

	 

�
P

i ni=�v i
s

� � ð19Þ
A preliminary analysis of the behaviour of each type of vehicle should be carried out in order to avoid wasting time and
effort. In this study, the classification of the vehicles into the three different sizes established by the Galician traffic manage-
ment centre provided the same results as their classification into only two different sizes (presumably the fastest and the
slowest ones), or even worse, because of the lack of individuals in some groups.

It is important to point out that the hypothesis of stationarity for the traffic flow has conditioned most of the steps fol-
lowed when deriving the algorithm, and, therefore, its observance is essential to achieve a good performance. This station-
arity is assumed for each (short) time interval of aggregation, and, consequently, it is quite likely to occur. Nevertheless, it
should also be taken into account that there will be frequent occasions in which transients (shock waves, stop and go
Table 5
KS test results for two time intervals with accurate estimates.

Test KS 7_45 11_15

Z Kolmogorov–Smirnov 0.481 0.764
P value (bilateral) 0.975 0.604

Fig. 9. Log-normal trend for time interval between 7.45 and 7.50 a.m.



Fig. 10. Log-normal trend for time interval between 11.15 and 11.20 a.m.
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behaviour, etc.) will be present. In these cases, the algorithm, as it stands, will not provide accurate estimates and would
need some complex changes.

To detect these situations, some simple measures can be taken. One parameter that can help detect the presence of tran-
sients is the coefficient of variation (CV) (Eq. (20)):
CVv ¼
rv
�v ð20Þ
where
CVv = speed coefficient of variation,
rv = speed standard deviation,
�v = mean speed.

Theoretically, and assuming the existence of stationary traffic, this parameter tends to increase as the mean speed does.
Although it is in the denominator, the more the mean increases, the more the deviation does. The coefficient of variation also
indicates the importance of distinguishing time mean speeds and space mean speeds based on the relationships established
by Wardrop (1952) or Rakha (2005), as Eq. (21) shows:
v t � vs ¼
r2

t

v t
¼ r2

s

v s
¼ CV � r ¼ CV2 � �v ð21Þ
The formula indicates that greater differences will occur with high CVs and high mean speeds. However, and based on
empirical data, the greatest differences have been commonly found with high CVs and low mean speeds, which are a sup-
posedly incompatible pairing. This fact clearly indicates that the traffic is not stationary (May, 1990;Rakha, 2005; Soriguera
and Robusté, 2011). Fig. 11 shows the relationship between the mean speed and the CV in case VI, in which the algorithm did
not perform well. In this case the CV diminishes with the mean, thus indicating the presence of transients and explaining this
poor operation of the algorithm. In case IX (Fig. 12), the trend matches the assumption of stationarity and the algorithm
provides good results.
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Fig. 11. Mean speeds vs. the coefficient of variation in case VI.
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Fig. 13. Average speeds vs. the difference between time mean speed and space mean speed in case VI.
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Fig. 14. Average speeds vs. the difference between time mean speed and space mean speed in case IX.
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Although similar trends are usually observed by directly comparing average speeds with the difference between time and
space means (Figs. 13 and 14), the fact of not taking into account the variance of the speeds could result in an exaggerated
impression of the magnitude of the relationship. The use of CV is therefore strongly advised.

Finally, the exact place, day and moment when the data are collected are related to some of the issues previously men-
tioned. For example, the number and type of vehicles that use a freeway toward a capital on a workday morning in March
will be very different from that on a Sunday in August on a secondary road surrounding a small town. Therefore the speeds
and traffic conditions will also be very different.

6. Conclusions and further research

The development of road networks and new technologies has proven to be a useful tool to respond to the increasing
demands of society regarding the total control of traffic evolution. Nevertheless, fundamental traffic theory must be correctly
incorporated in modern methodologies in order to obtain accurate results.

This paper introduces an algorithm that estimates space mean speeds in a specific time interval of aggregation. These data
can later be used as a first step, for example, for the calculation of occupancies or travel times. Thus, and after analysing the
results obtained, three main conclusions can be extracted:
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� it is possible to improve the current procedure followed by the majority of traffic management centres, i.e., considering
time means equal to space means. It can be done inexpensively by exploiting all the data delivered by loop detectors.
Specifically, the proposed algorithm allows an estimation of space mean speeds values that are accurate in most cases,
or, at least, much closer to the real values than time mean speeds. The use of these data also improves the results of sub-
sequent calculations,
� the good performance of the algorithm depends on the fulfilment of its initial hypotheses, i.e., stationarity of the traffic

stream and log-normality of speeds in each time interval of aggregation. The boundary conditions for data acquisition and
for the calculations can be established to a certain extent in order to achieve these characteristics,
� in the case of transients, for example the formation or dissipation of shock waves, most of the steps followed to design the

algorithm, such as the extrapolation of the spot speeds to a section at the very beginning of the process, are not valid, and,
thus, other specific methodologies should be used. In this regard, data fusion seems promising, as well as other complete-
ly different approaches which try to explain the propagation of traffic oscillation by means of car-following models (Li and
Cui, 2014).

Further research can be carried out to improve the accuracy of the results or to broad the scope of application of the pro-
posed algorithm. Some lines could be:

� including a smoothing process to remove erroneous data derived from the tendency for traffic loops to drift,
� including the necessary steps in the algorithm to calculate the confidence interval for the means in order to be able to

choose the most accurate when more than one value is obtained,
� designing other algorithms adapted to other common speed distributions in addition to that introduced in this paper and

that of Soriguera and Robusté (2011). Thus, after the application of a prior step which may help to find the most suitable
distribution for the speeds, the appropriate algorithm could be chosen in each case.

As it has been observed, it is necessary to develop different and more evolved methodologies to estimate space mean
speeds in the case of transients, as loop data may probably be insufficient in these situations. Other researchers have already
achieved good results with various techniques of data fusion (Soriguera and Robusté, 2011; Bachmann et al., 2013;Yuan
et al., 2014). However, there is still much work to do, since it is difficult to put most of them into practice due to their degree
of complexity and/or high costs.
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