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Resumo 
  

A acidificação do oceano, causada por níveis elevados de dióxido de carbono (CO2) 

atmosférico, é reconhecida como uma ameaça aos ecossistemas marinhos. A maioria dos 

estudos tem-se centrado nos organismos de calcificação marinha, devido à dependência de 

carbonato de cálcio, que poderá ficar limitado no futuro. Menos atenção tem sido dada aos 

peixes, mas estudos recentes sobre os estados larvares sugerem que o comportamento, 

crescimento, desenvolvimento e mesmo a dimensão de estrutura como otólitos podem ser 

afetados com o aumento dos níveis de CO2. Contudo, outros estudos não conseguem detectar 

efeitos negativos, sugerindo vulnerabilidades variáveis entre espécies. 

Neste estudo foram testados os efeitos da acidificação no período larvar de 

Lepadogaster lepadogaster, uma espécie de peixe marinho temperado. Foram incubados ovos 

e desenvolvidas as larvas em cativeiro e em condições de controlo e de pCO2 elevado. As 

alterações morfométricas e o tamanho de otólitos foram examinados em larvas em pré-

assentamento. Foi ainda testada a resposta comportamental a um odor de predador em larvas 

de L. lepadogaster e de Atherina presbyter, mantidas em condições de pCO2 elevado. A 

capacidade de reconhecer odores de predadores por ser uma resposta chave para a 

sobrevivência, sendo reconhecido em diversos estudos como um dos mais afetados em peixes 

expostos a altos níveis de CO2. 

Os resultados sugerem que as fases larvares de L. lepadogaster podem ser mais 

resilientes a cenários de acidificação, enquanto A. presbyter parece ser mais suscetível, com 

potenciais efeitos na sua sobrevivência. Estudos futuros deverão abordar a capacidade de 

diferentes espécies se adaptarem às condições de acidificação previstas até final deste século. 

 

Palavras-chave: Acidificação; Desenvolvimento larvar; Comportamento larvar; 

Lepadogaster lepadogaster; Atherina presbyter. 
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Abstract 
 

Ocean acidification, caused by elevated levels of atmospheric carbon dioxide (CO2), is 

recognized as a serious threat to marine ecosystems. Until now, most studies have focused on 

marine calcifying organisms, due to dependence on calcium carbonate, which is likely to 

become limited under future acidification scenarios. Less attention has been given to fish, but 

recent studies on the early life stages suggest that behavior, growth, development and otolith 

size may be highly affected by increasing CO2 levels. Other studies, on the other hand, fail to 

detect negative effects, suggesting species-specific vulnerabilities to increasing concentrations 

of CO2 and point to a need of further research. 

Here we tested the effects of CO2-induced ocean acidification on the early life stages of 

a temperate marine fish, the clingfish Lepadogaster lepadogaster, by rearing larvae since 

hatching in control and high pCO2 conditions. Size-at-age metrics and otolith size were 

examined in pre-settlement stage larvae. Additionally, behavioral response to a predator odour 

was tested in L. lepadogaster larvae and in Atherina presbyter larvae, maintained in high pCO2 

conditions. Recognition of predator odours is a key behavior for predator avoidance and 

survival, and is one of the most commonly affected behaviors in fishes exposed to high CO2 

levels.   

Results suggest that early life stages of L. lepadogaster might be resilient to future 

scenarios of ocean acidification, whereas A. presbyter might be more susceptible, with potential 

impacts on its future survival. Future studies should address species capacity to adapt to the 

predicted ocean acidification over the next century. 

 

Keywords: Ocean acidification; larval development; larval behavior;  

Lepadogaster lepadogaster; Atherina presbyter. 
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Introduction 
 

Oceans are a natural carbon sink and uptake nearly thirty to forty percent of the 

anthropogenic carbon dioxide (CO2) added to the atmosphere (Doney, Fabry, Feely, & Kleypas, 

2009; Wood, Spicer, & Widdicombe, 2008). However, the continuous uptake of atmospheric 

CO2 is changing oceans’ chemistry, leading to increasing levels of CO2 partial pressure (pCO2) 

and decreasing pH levels, in a process known as ocean acidification (OA) (Doney, Balch, 

Fabry, & Feely, 2009). Average pH has decreased by approximately 0,1 units since 

preindustrial times, while ocean pCO2 levels have increased from approximately 280 ppm to 

406 ppm in 2016 (www.esrl.noaa.gov/gmd/ccgg/trends/, 25 July 2016), which is the highest 

recorded level in the past 800 000 years (Lüthi et al., 2008). Depending on the emission 

trajectory, pCO2 is expected to reach 800 to 900 ppm by the end of this century and pH is 

expected to fall a further 0,3-0,4 units (IPCC, 2013). Effects of ocean acidification may be more 

pronounced in coastal zones compared to open-ocean waters (Reum et al., 2014), due to 

processes related with coastal erosion, upwelling, eutrophication and also abundant and 

biologically active assemblages of coastal organisms (Cai et al., 2011; Hendriks et al., 2015; 

Melzner et al., 2013). As a result, contemporary coastal organisms already experience a wide 

range of pH and CO2 conditions, most of which are not predicted to occur in the open ocean for 

hundreds of years (Hofmann et al., 2011). 

Due to reduced carbonate ion saturation states caused by ocean acidification, most 

studies have traditionally focused on calcifying organisms, such as corals and other 

invertebrates that precipitate aragonite skeletons (Orr et al., 2005). Effects include, among 

others, the dissolution of calcifying plankton, reduced growth and shell thickness in gastropods 

and echinoderms, and reduced growth of reef-building corals (Hoegh-Guldberg et al., 2007). 

Although the impact in calcifying organisms is well-known, the increase of atmospheric 

CO2 could have significant impacts on a wide range of marine species, including fish (Philip L 

Munday, Jones, Pratchett, & Williams, 2008). The available literature suggests that adult fishes 

are relatively tolerant to moderate increases in CO2 and decreases in pH, likely due to well-

developed mechanisms for acid-base regulation that can cope with pCO2 levels, preventing the 

acidosis of the blood and tissues (Brauner & Baker, 2009; Ishimatsu, Kikkawa, Hayashi, Lee, 

& Kita, 2004; Kikkawa, Ishimatsu, & Kita, 2003). However, early life history stages are more 

vulnerable to changes in the environment because they are yet developing the physiological 

regulatory processes and at the same time undergoing rapid morphological changes (Llopiz et 
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al., 2014; Munday et al., 2009a). Therefore, effects of acidification are most likely to be 

detected on this critical phase of the lifecycle. Understanding the consequences of high pCO2 

levels and low pH on  survival, growth and behavior during these early life stages is critically 

important as what happens during this phase will have major implications for recruitment and 

adult populations (Llopiz et al., 2014).   

It has been shown that survival and growth (Baumann et al., 2011), tissue development 

(Frommel et al., 2011), otolith morphometry (S Bignami, Sponaugle, & Cowen, 2014; Sean 

Bignami, Sponaugle, & Cowen, 2013), and behavior, such as olfactory preferences (Dixson, 

Munday, & Jones, 2010; Dixson, Pratchett, & Munday, 2012; Philip L Munday, Dixson, et al., 

2009), are compromised by exposure to elevated CO2 levels. However, other studies fail to 

recognize any impact of acidification on early development (S Bignami et al., 2014; Sean 

Bignami, Sponaugle, et al., 2013; Chambers et al., 2014a, 2014b; Franke & Clemmesen, 2011; 

Hurst, Fernandez, & Mathis, 2013; Hurst, Laurel, Mathis, & Tobosa, 2015; P. L. Munday, 

Hernaman, Dixson, & Thorrold, 2011; Philip L Munday, Donelson, et al., 2009) or behavior (S 

Bignami et al., 2014; Sean Bignami, Sponaugle, et al., 2013; Dixson et al., 2012; Jutfelt & 

Hedgärde, 2013, 2015; Philip L Munday, Dixson, et al., 2009), pointing to a species-specific 

response to increasing pCO2 levels and need of further research. 

 In this study, we examined the effects of exposure to high pCO2 levels on larvae of two 

temperate species – clingfish, Lepadogaster lepadogaster, and sand smelt, Atherina presbyter. 

L. lepadogaster are small-size reef associated fish, demersal spawners, and like most reef fishes, 

have a pelagic larval phase, after which larvae settle to a hard substrate and remain hidden 

underneath rocks during their entire adult life (Gonçalves, Gonçalves, Almada, & Almeida, 

1998). A. presbyter is a coastal associated species, spawning benthic eggs attached to 

vegetation, but opposite to L. lepadogaster, larvae do not settle to a benthic habitat, but remain 

in the pelagic environment. 

 The specific goals of the study were to investigate the effects of high pCO2 on: 

1) Larval and otolith development. Otoliths are an important part of the auditory 

lateralization and body orientation in fishes, and since they are composed of aragonite, 

they could be susceptible to the declining carbonate ion concentrations associated with 

ocean acidification (Sean Bignami, Enochs, Manzello, Sponaugle, & Cowen, 2013). For 

this goal, L. lepadogaster eggs were collected in the field, brought to the laboratory, and 

hatching larvae were randomly assigned to either a control or a high pCO2 treatment, 

and reared till pre-settlement phase. At this phase larvae were sampled for 

morphometric traits and otoliths’ size and shape; 
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2) Olfactory preferences, specifically, the response to predator odours. Olfactory 

preferences are one of the most commonly affected behavior in marine fishes exposed 

to high CO2 levels (Dixson et al., 2010; Jutfelt, Bresolin de Souza, Vuylsteke, & Sturve, 

2013; Philip L Munday, Cheal, Dixson, Rummer, & Fabricius, 2014) and is key to 

predator avoidance and survival. For this goal, L. lepadogaster larvae reared for 8 days 

under control and high pCO2 conditions, and wild-caught A. presbyter larvae 

maintained for approximately 15 days under control, mid and high pCO2 conditions 

were tested in a choice flume chamber. 

Methods 

1. Collection of Samples 

1.1. Collection of Lepadogaster lepadogaster eggs and larval rearing  
L. lepadogaster eggs were collected between April and June 2015, during low tide, at 

Praia de Alpertuche, Luiz Saldanha Marine Park (38°28'04.1"N 8°59'26.3"W), Portugal. Rocks 

with eggs were placed in buckets with fresh seawater, with gentle aeration, immediately 

transferred to the laboratory, and placed in a 100-L aquarium until larvae hatched. Eggs were 

maintained with gentle aeration and daily inspected for removal of dead eggs and assessment 

of embryonic stage. At hatching, larvae were gently collected using a plastic pipette, randomly 

placed in 35-L aquaria assigned to either a control or high pCO2 treatment, and reared under 

these conditions for 8 days post hatching (dph, close to settlement stage). Due to the low 

availability of L. lepadogaster larvae it was not possible to rear larvae under a medium pCO2 

condition. Larvae were daily fed with Artemia naupli ad libitum and maintained under a light 

cycle of 12 h simulated with fluorescent lights. 

 

1.2. Collection of Atherina presbyter larvae and larval rearing 
Shoals of A. presbyter larvae were collected in July 2015, at Portinho da Arrábida, Luiz 

Saldanha Marine Park (8º 28’48’’ N | 8º 58’59” W), Portugal, using a 1 mm mesh hand net. 

Larvae were placed in a bucket with fresh seawater, with gentle aeration, immediately 

transferred to the laboratory and placed in 35-L aquaria with continuous supply of recirculating 

seawater matching field temperature conditions and left for one day to recover from transport 

and handling stress. Subsequently, larvae were randomly assigned to a control and two acidified 
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treatments (medium and high pCO2) and reared under these conditions for 13-15 days. Larvae 

were daily fed with Artemia naupli ad libitum and maintained under a light cycle of 12 h 

simulated with fluorescent lights. 

 

2. Experimental setup and seawater manipulations 
Artificial seawater was used in the experiments by blending a commercial salt mixture 

(Tropic Marin®) with filtered freshwater. Seawater was diffused with either ambient air 

(control) or CO2, in 200 l sumps to achieve the chosen pH. A pH-controller (Tunze 

Aquarientechnik, Germany) set pH at the desired level in the mid and high pCO2 treatment 

(pHNBS 7.8 and pHNBS 7.6, respectively). Each 200 l sump, equipped with biological, 

mechanical, chemical and ultraviolet filtration, delivered seawater at approximately 600 ml 

min-1 into 35-L rearing tanks, sealed on top with clear glass lids to limit CO2 exchange with the 

atmosphere. Oxygen levels were maintained above 90% saturation and temperature, salinity, 

and pH of each aquarium were measured twice daily, with a portable meter (SevenGo DuoPro, 

SG23).  

Samples for total alkalinity (TA) determination were collected every week from each 

treatment, and analyses performed using automated Gran titrations, with certified reference 

material supplied by A. Dickson (Scripps Institutions of Oceanography, San Diego). Average 

seawater pCO2 was calculated using TA and pHNBS in CO2SYS, with the constants of 

Mehrbach, Culberson, Hawley, & Pytkowicx, (1973) refit by Dickson & Millero, (1987). 

Estimated seawater parameters are shown in Table 1. 

 

 
Table 1. Measured seawater parameters in the experimental systems for a) Lepadogaster lepadogaster 
and b) Atherina presbyter.  

	
a) 

Treatment pHNBS ± SD T(ºC) ± SD Salinity ± SD TA µmol Kg-1 SW 

± SD 

pCO2 µatm ± SD 

Control 8.10±0.05 15.91±0.65 33.85±0.71 2545.00±231.39 537.15±55.98 

High CO2 7.61±0.02 15.98±0.42 33.69±0.22 2876.67±148.99 2080.56±99.37 
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b) 
Treatment pHNBS ± SD T(ºC) ± SD Salinity ± SD TA µmol Kg-1 SW 

± SD 

pCO2 µatm ± SD 

Control 8.00±0.05 16.00±0.42 33.75±1.06 2224.87±0.90 623.83±7.06 

Medium CO2 7.81±0.01 16.10±0.14 35 2217.00±5.43 1011.14±42.29 

High CO2 7.65±0.06 16.55±0.49 35.25±0.35 2214.61±1.54 1541.68±235.87 

 

3. Larval development 
Impacts of exposure to high pCO2 on larval development were followed only for L. 

lepadogaster, as we were able to rear larvae since hatching in each treatment. Multiple clutches 

were used for this purpose. At hatching and at 8 dph, larvae were sampled (control n=155, high 

n=182), anesthetized using MS-222, and immediately photographed under a dissecting 

microscope for morphometric traits measures. Standard length (SL), Total length (TL), Anal 

Height (HA), Head Height (HH) and precaudal body length (BL) were extracted from 

photographs using ImageJ software (http://imagej.nih.gov/ij/). Larvae were then placed in 96º 

ethanol for otoliths extraction.  

 Relative growth rate (RGR) was calculated as: RGR = (LnSLf –LnSLi)*100)/ (tf-ti),  

where SL = standard length, i and f correspond to 0 and 8 dph, and t = time. 

Survival Rate (SR) was calculated as: SR = (Nf/Ni)*100, 

where N= number of larvae that survived till 8 days and, i and f correspond to 0 and 8 dph. 

 

Left and right sagitta otoliths (control n=23, high n=22) were dissected and mounted in 

preheated microscope slides using CRYSTAL BOND™, and photographed under immersion 

oil using a compound microscope for later size and shape measurements. Using ImageJ 

software (http://imagej.nih.gov/ij/), each otolith was digitally outlined and data was collected 

for otolith area, length, width, rectangularity, and roundness. 

 

4. Olfactory choice tests 
A two channel choice flume was used, adapted from Gerlach, Atema, Kingsford, Black, 

& Miller-Sims,(2007). Larvae could swim freely to either side of the chamber. Water from two 

different sources, treated with different olfactory cues, flowed through plastic tubes to the 

chamber (see figure 1). The flume allows a laminar flow separation of the two water sources, 
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and a 100-mL min-1 flow per channel, measured with a flow meter, was maintained throughout 

the trial. At the beginning of each trial, a single larva was released into the center of the 

downstream end of the chamber and allowed to acclimatize to the two water choices for 2 min. 

After this, the position of larva on each side of the chamber was recorded every 5 secs, over 2 

min. This procedure was followed by 1 min of rest, during which the water sources were 

switched, to outwit any side preference unrelated with the water source, and after this minute, 

the entire test was repeated, including the 2-min acclimation period. 

 
Figure 1.Two channel choice flume (design adapted from  Gerlach et al., 2007). 

In each trial, a larva was given a choice in the flume chamber between a water source 

treated with a specific olfactory cue and a water source without biological cues (artificial 

seawater). Each larva was used only once.  

For logistical reasons, untreated (control) seawater was used for all groups. However, 

preliminary tests suggested that there was no difference in behavior when larvae were tested in 

control or treatment water. Moreover, it has been reported that the behavioral CO2 effects are 

retained for several days after transfer to untreated seawater (Philip L Munday et al., 2010).  

 

Both species were tested in the following pairwise choices:  

(1) Artificial seawater vs. artificial seawater (blank 1 vs. blank 2) - used as a blank 

control (L.lepadogaster  - control: n=41, high: n=34; A.presybter - control: n=17, mid: n=14, 

high: n=15)) 

(2) Predator odour vs. artificial seawater (L.lepadogaster  - control: n=54, high: n=64; 

A.presybter - control: n=8, mid: n=6, high: n=6)) 

 

Juvenile Diplodus sargus were used as the source of predator odours. D. sargus were 

kept in a 100-l tank with gentle aeration, fed every day with mussel, except for the day before 

the experiments took place.  

 

For L. lepadogaster, 2 other tests were performed, which included the following pairwise 
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choices: 

(3) Reef water vs. artificial seawater (control: n=27, high: n=28) 

(4) Reef water with conspecific odour vs. artificial seawater (control: n=13, high: n=13) 

 

For test (3), reef water at the habitat site was collected, and for test (4), adult conspecifics were 

immersed in reef water from the habitat site and used as potential odour cue. Due to low 

availability of larvae, these two tests are considered preliminary as the number of tested larvae 

does not allow to make further conclusions. 

5. Statistical analysis 
Data were analyzed in Statistica 10, following verification of normality and 

homoscedasticity by Shapiro–Wilk.  

A one-way analysis of variance (ANOVA) was used to compare size-at-age between 

larvae reared in control water vs. larvae reared in acidified water (L. lepadogaster).  

A Wilcoxon test was used to compare the proportion of time that individuals spent in 

the stream of water containing the olfactory cue versus the proportion of time that individuals 

spent on one side of the chamber when no cues were presented. A one-way analysis of variance 

(ANOVA) was also used to compare the proportion of time that individuals spent in the stream 

of water containing the olfactory cue when reared in control water vs. the proportion of time 

that individuals spent in that stream of water when reared in acidified water, when normality 

was obtained. In non-normal distribution of data, Kruskal -Wallis ANOVA was used. 

To investigate directional asymmetry of the otoliths (i.e. is the right or left otolith 

usually larger), signed differences in otolith morphometries were obtained by subtracting the 

value for the left otolith from that of the right otolith (R- L) for otolith area, maximum length, 

and maximum breadth. To determine if pCO2 condition affected the magnitude of otolith 

asymmetry with respect to otolith area, maximum length, and maximum breadth, a Mann-

Whitney U test was used to compare unsigned differences between left and right otoliths for 

these traits.  

When applicable, results are presented as mean ± standard-deviation (SD). For all 

statistical tests, the significance level was set at p-value ≤0.05. 
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Results 

Larval development (Lepadogaster lepadogaster) 
	
Exposure to acidification did not influence most of the measured morphometric traits in L. 

lepadogaster larvae, at 8 dph - Standard length (SL) (p = 0.211), Total length (TL) (p = 0.269), 

Anal Height (HA) (p = 0.164) and precaudal body length (BL) (p = 0.072). However, larvae 

under high pCO2 have higher Head Height (HH) compared to control larvae (p = 0.016) (Figure 

2b).  

 
 
a)	

 

b)	

 

Figure 2. Morphometric traits of L. lepadogaster larvae reared for 8 dph under control and acidified 

conditions. Results are expressed as mean ± 0.95 confidence interval. The two different treatments – 

Control (n=155) and High (n=182) are represented in white and black bars. SL = Standard Length; TL 

= Total Length; HA = Anal Height; HH = Head Height; BL = Precaudal body length.  

  * 
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Relative growth rate did not differ between treatments (p = 0.787), neither did survival rate, 

with mean (± SE) SR’s of 12.06 ± 3.29 and 9.78 ± 2.29 for control and high pCO2 treatment, 

respectively. 

 

Regarding otolith metrics of pre-settlement phase larvae, there were no significant differences 

between treatments, except for roundness in right otoliths, although its p-value is close to non-

significance. There was no evidence of directional asymmetry between the left or the right 

otolith, and no difference in the distribution of positive and negative asymmetry among 

treatments for any of the otolith measurements (Table 2).  

	
Table 2. Results of Mann-Whitney U Test for left (a) and right (b) otoliths of L. lepadogaster larvae (8 

days post hatching), reared under control (n= 23) and high pCO2 conditions (n= 22).   

Variable d.f Mann-Whitney U Test p -value 

(a) Left otoliths  

Area 1 233 0,657 

Perimeter 1 238 0,741 

Width 1 245 0,864 

Roundness 1 185,5 0,128 

(b) Right otoliths 

Area 1 207 0,301 

Perimeter 1 205 0,28 

Width 1 225 0,532 

Roundness 1 165 0,046* 

	
	

Olfactory choice tests 

Lepadogaster lepadogaster 
	
When tested in control situation (artificial seawater in both sides of the choice flume), larvae 

from both treatments spent equal amounts of time on each side of the chamber (p = 0.722), and 

no pCO2 effect was detected (p = 0.736), which indicates that larval behavior was what would 

be expected in the flume chamber when both water streams contained unmanipulated water 

(figure 3).  
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There were also no significant differences between treatments in artificial seawater vs predator 

odour (p = 0.977). Larvae reared under high pCO2 conditions showed no preference between 

cues, spending almost the same time in both sides of the choice flume (p = 0.227). Control 

larvae showed the same behavior as larvae from high pCO2 conditions (p = 0.235) (figure 3).  

 

 
Figure 3. Percentage of time (mean ± 0.95 confidence interval) that L. lepadogaster larvae, reared under 

control or high pCO2 conditions, spend on the side of flume that contains the olfactory cue from a 

predator (first pair of columns; control: n= 54, high: n= 64), or no cue (second pair of columns; control: 

n= 41, high: n= 34).  

	
In the preliminary test that tested the potential use of habitat water as a preferred odour cue, no 

significant differences between larvae reared under control and high pCO2 conditions were 

detected (p =0.488), although larvae from high pCO2 treatment tends to spend less time in reef-

water (p = 0.205). Larvae reared in control treatment showed no preference between the choice 

waters, spending almost the same time in both (p = 0.518) (figure 4). 
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Figure 4. Percentage of time (mean ± 0.95 confidence interval) that L. lepadogaster larvae, reared under 

control or high pCO2 conditions, spend on the side of flume that contains the olfactory cue from habitat 

water (first pair of columns; control: n= 27, high: n= 28), or no cue (second pair of columns; control: n= 

41, high: n= 34).   

	
When tested in reef water with conspecifics,	larvae reared under control conditions showed no 

preference between choice waters (p = 0.673) (figure 5). However, larvae from high pCO2 

treatment spent more time in reef-water with conspecific odours when compared to artificial 

seawater (blank) (p = 0.046*).  
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Figure 5. Percentage of time (mean ± 0.95 confidence interval) that L. lepadogaster larvae, reared under 

control or high pCO2 conditions, spend on the side of flume that contains the olfactory cue from habitat 

water with adult conspecifics (first pair of columns; control: n= 13, high: n= 13), or no cue (second pair 

of columns; control: n= 41, high: n= 34).  

Atherina presbyter 
	
Summary to L. lepadogaster, in the blank control, A. presbyter showed no preference for either 

sides of the chamber (control (p = 0.612), mid (p = 0.281) and high (p = 0.753), and no 

significant differences between rearing conditions were detectable (p =0.704) (figure 6). When 

given the choice between artificial seawater and a predator odour, A. presbyter larvae reared 

under control conditions showed no preference for either cues (p = 0.569), but larvae from mid 

and high pCO2 conditions were significantly attracted to predator odour (p = 0.030). Percentage 

of time larvae spent in predator odour was significantly different between control and high 

pCO2 conditions (p = 0.006) and, although not significant, some tendencies can be observed 

between control and mid pCO2 conditions (p = 0.096) (figure 6).  

 

 

  * 
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Figure 6. Percentage of time (mean ± 0.95 confidence interval) that A. presbyter larvae, reared under 

control, mid or high pCO2 conditions, spend on the side of flume that contains the olfactory cue from 

predator (first trio of columns; control: n= 17, mid: n= 14, high: n= 15), or no cue (second trio of 

columns; control: n= 8, mid: n= 6, high: n= 6).  

Discussion 
	

Improving the knowledge about which marine species are sensitive to elevated CO2 and 

reduced pH, and which species can tolerate these changes, is critical for assessing the impacts 

of ocean acidification on marine biodiversity and ecosystem function (Fabry, Seibel, Feely, & 

Orr, 2008).   

Our study suggests that L. lepadogaster larvae are more resilient to future ocean 

acidification scenarios, as neither survival, growth, size-at-age, otolith size and shape or 

olfactory capability were significantly influenced by an increase in pCO2. On the contrary,        

A. presbyter might be more vulnerable to future scenarios of ocean acidification as exposure to 

high levels of pCO2 lead to olfactory disruption.  

The lack of a treatment effect on morphometric traits of L. lepadogaster is consistent 

with studies on temperate and cold-water fishes (Ishimatsu et al., 2004; Kikkawa et al., 2003), 

which indicate that they can tolerate high CO2 levels. Perry et al., (2015) show that elevated 

levels of pCO2 (1200-2600 µatm) had no effect on growth and survival of juvenile scup, 

Stenotomus chrysops, after an 8-week exposure period.  

Although previous study have found potential effects of ocean acidification on fish 

otoliths (Checkley et al., 2009), our results suggest that size, shape and symmetry of otoliths 

  a 
  b   b 
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in L. lepadogaster pre-settlement larvae were not influenced by exposure to simulated ocean 

acidification scenarios. Other authors corroborate this lack of effect. Frommel, Schubert, 

Piatkowski, & Clemmesen, (2013)  did not detect any effect of elevated CO2 on otolith size of 

Baltic cod, Gadus morhua, reared for 2 weeks in treatment up to 3.200 µatm CO2. On a tropical 

species, Munday, Hernaman, Dixson, & Thorrold, (2011) did not detect any effect of elevated 

CO2 on otolith size of juvenile spiny damselfish, Acanthochromis polyacanthus, reared for 3 

weeks in treatments up to 841 µatm CO2. 

L. lepadogaster and A. presbyter larvae, reared under increasing pCO2 levels, responded 

differently in the olfactory choice test in the presence of a predator odour. However, and 

opposite to what was expected, larvae of both species, reared in control conditions, did not 

avoid the predator chemical cue. This lack of anti-predator response was surprising since           

D. sargus is known to be an omnivore fish with various preys (Figueiredo, Morato, Barreiros, 

Afonso, & Santos, 2005; Osman & Mahmoud, 2009). We argue there might be four hypotheses 

explaining these results:  

i) The first possibility might be related to the predator’s diet – a recent study suggests 

that larvae respond to the predator’s diet odour and not the predator’s odour itself. Juvenile      

D. sargus, used as source of predator odours, were fed a mixture of clams and shrimps, which 

could explain the results.	The role of predator diet in predator detection has been well studied 

in freshwater systems, with most studies showing the importance of predator diet with naïve 

prey organisms responding to chemical cues. However, in some scenarios, prey may respond 

to lingering chemical alarm cues from ingested prey in the faecal matter of the predator, and, 

therefore generalization of predators is limited because recognition of alarm cues requires 

learning and tends to be species specific (G. E. Brown, Chivers, & Smith, 1995). 

ii) Second possibility is that it is known that the development of anti-predator response 

of many fish is influenced by learning (Ferrari et al., 2012; Ferrari, Wisenden, & Chivers, 2010). 

This learning can be key to acquire new knowledge, skills and behaviors, and 

interaction/experience with predators. For aquatic species, one way to learn to recognize 

predators is through the simultaneous detection of novel predators and cues from injured 

conspecifics (Ferrari et al., 2012). Learning can also play a role to individuals in identifying 

new food sources, habitats or mates, new threats and, due to environmental changes, adapt their 

phenology and behavior (G. Brown & Chivers, 2005; Dugatkin, 1992; Visser & Visser, 2008). 

It is possible that L. lepadogaster larvae were still naïve to any cues produced by juveniles D. 

sargus, due to the absence of previous contact with the species; given that A. presbyter were 
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also recently hatched larvae at the time they were sampled, it is also likely that they haven’t 

experienced any predator attack by D. sargus.  

iii) Another possibility is related to the fact that predator’s body size influences prey 

response (odours and others) to potential predators (Kusch, Mirza, & Chivers, 2004). Perhaps 

L. lepadogaster and A. presbyter larvae small body is not part of the size selection ranges of 

the juveniles D. sargus, and therefore do not represent a major predator threat. However, there 

is no evidence of this fact (Figueiredo et al., 2005; Osman & Mahmoud, 2009). 

iv) The last hypotheses is related to the lack of knowledge of the olfactory system: the 

spectra, sensitivity, nature and sources of olfactory signals to detect odours is largely unknown 

for most species. Studies suggest that the type and development of the olfactory system may 

influence the capacity to recognize the cues, and that may affect the detection of predators (Atta, 

2013; Kasumyan, 2004; Pashchenko & Kasumyan, 2015). L. lepadogaster larvae might still 

lack a fully developed olfactory system, which might help explaining the lack of response to 

olfactory stimuli in general (predator, habitat water and conspecifics). This hypothesis, 

however, cannot be applied to A. presbyter, as in this case, it was observed a disruption in the 

olfactory system under high pCO2 levels, suggesting that the olfactory system is well 

developed.  

 

Exposure to elevated pCO2 levels did not cause any disruption in the olfactory behavior 

of L. lepadogaster, but A. presbyter under high pCO2 levels were significantly attracted to the 

predator odour. This result agrees with other published results on tropical fish species odours 

(Dixson et al., 2010; Philip L Munday et al., 2010). The mechanisms responsible for behavioral 

impairment in fish larvae exposed to high CO2 appear to be caused by a disturbance in the 

GABA-A receptor, the primary inhibitory neurotransmitter receptor in the vertebrate brain 

(Hamilton, Holcombe, & Tresguerres, 2013; Nilsson et al., 2012). Future studies should address 

this hypothesis by treating larvae with an antagonist of GABA-A receptor, such as gabazine 

(Hamilton et al., 2013; Lopes et al., 2016; Nilsson et al., 2012). 

 

The lack of significant pCO2 effects on L. lepadogaster larvae suggest that this species 

is less susceptible to environmental disturbances. Clingfish inhabit the intertidal rock pools, 

and are likely to be better adapted to stressful environmental conditions, namely daily pH 

fluctuations. The pCO2 is elevated by excessive photosynthetic activity relative to respiration 

in tide pools, when they are isolated at low tide, promoting and precipitation drop in CO2 

concentrations and increase in pH (Pörtner, 2008). Other studies have suggested that responses 
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to ocean acidification may vary within species and can be related to their life histories. For 

example, the spiny damselfish, A. polyacanthus, also seems to be quite resilient to increasing 

pCO2 levels. It has direct developing juveniles that stay on the reef after hatching, and juveniles 

remain in shelter with their parents in small caves, where CO2 levels may rise due to respiration, 

being adapted to periods of high ambient CO2 (Philip L Munday et al., 2010). Other example 

is the clownfish, Amphiprion percula, which has pelagic larvae but is a demersal spawner. 

Benthic eggs are likely to experience significant fluxes in ambient CO2 due to consumption of 

CO2 by photosynthesis during the day and release of CO2 by respiration of reef organisms at 

night. Hatching them may precondition larval clownfishes to moderate increases in ambient 

CO2 (Philip L Munday et al., 2008). On the contrary, it is suggested that pelagic species, which 

have adapted to a much stable environment, may be more susceptible to future environmental 

changes (Philip L Munday et al., 2008; Pörtner, 2008). A. presbyter is a benthic spawner, as L. 

lepadogaster, however larvae, juveniles and adults live in the pelagic environment, and might 

experience more stable environmental conditions throughout their life, being more susceptible 

to changes in CO2 conditions. In fact, recent studies on this species suggest altered behavior 

(lateralization, Lopes et al., 2016), and changes in growth and energy allocation (Silva et al., 

2016) under high pCO2 levels. 

Overall, this study adds to the growing body of literature that suggests species-specific 

response to future levels of ocean acidification, and reinforces the need of additional studies 

across a wide range of fish species with contrasting life histories and habitats. Moreover, it will 

be critically important to evaluate species capacity to adapt to the predicted ocean acidification 

over the next century.  It has recently been shown that transgenerational plasticity could be an 

important mechanism by which fish can adjust to higher pCO2 levels (Miller, Watson, Donelson, 

McCormick, & Munday, 2012; Philip L Munday, 2014), but due to complexity associated to 

multigenerational experiments on long-generation species, there are still few studies. This 

should, however, be a priority for future research.  

Final Considerations 
Results of the present study contribute to the increasing list of bibliography on the 

effects of exposure to high CO2 levels on marine fish larvae. However, and as most studies, it 

has its limitations and ends with more relevant questions that need to be addressed in the future. 

I herein present suggestions of future studies which will provide a better understanding of the 

responses seen in this study: 
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- The use of video monitoring to assess fish behavior in the choice flume has been 

recently suggested as a  complementary tool, as it allows to analyze not only the percentage of 

time spend in each side of the flume, but also mean and variance of speed, rapid and accelerated 

changes in movements as a response of passing through different water masses , Jutfelt, Sundin, 

Raby, Krång, & Clark, (2016).  

- Testing wild caught larvae vs. laboratory reared larvae will allow to understand 

whether larvae have an innate ability to recognize predator odours or if there is a learning 

process involved.  

- Testing a different predator, and changing our predators’ diet to a diet rich in fish 

proteins, will allow us to test the hypothesis that larvae are not responding to the predators’ 

odours but to their diet (Dixson et al., 2012). 

- Histological studies of the olfactory organs will provide extra information on the 

ability to detect chemical stimuli. 

- Future studies should also aim at increasing the number of tested larvae, as for some 

cues (habitat water and conspecifics) there seemed to be a trend, but the low availability of 

larvae did not allow to make further conclusions.	

- finally, it will be critically important to evaluate species capacity to adapt to the 

predicted ocean acidification over the next century. This represents a major challenge for future 

studies, as it requires multigenerational experiments, which are logistically very demanding.  
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Introduction 
	

Ocean acidification 

 
Anthropogenic climatic changes have been associated with extremely high greenhouse 

gases emissions, resultant mainly from deforestation, cement production, fossil fuel combustion 

and agriculture (IPCC, 2014). Carbon dioxide, CO2, is one the major greenhouse gases, and is 

nowadays recognized as one of the most serious threats to our planet as its effects are 

irreversible on ecological timescales and globally pervasive (Doney et al., 2012). The 

consequences of the emissions are related with higher global mean temperatures (global 

warming), and multiple physical and chemical changes in marine ecosystems (Figure 7).   

Direct effects of changes in ocean temperature and chemistry may alter the 

physiological functioning, behaviour, and demographic traits (e.g., productivity) of organisms, 

leading to shifts in the size structure, spatial range and seasonal abundance of populations 

(Doney et al., 2012).  

 

 

 
Figure 7. Important abiotic changes related with global change. Human activities lead to higher 

concentrations of greenhouse gases in the atmosphere, which results in physical and chemical changes 

in oceans. Upwelling consequences are uncertain (adapted from Harley et al., 2006) 
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Recent studies suggest that prior to the industrial revolution, and for at least 650 000 

years, atmospheric CO2 concentrations varied between 180 and 300 ppm (Siegenthaler et al., 

2005). Over the last century, atmospheric CO2 levels increased by nearly 40%, from 

preindustrial levels of approximately 280 ppm (parts per million) to nearly 384 ppm in 2007 

(IPCC, 2007). Currently, as a result of human activity, today´s atmospheric CO2 concentration 

is ~ 404 ppm and increases at a rate of 2 ppm year -1 (Dlugokencky & Tans, 2016; Melzner et 

al., 2013). 

Oceans act as a natural carbon sink, absorbing nearly 30% of atmospheric CO2. 

However, the absorption of the CO2 in excess in the atmosphere leads to an increase of oceanic 

CO2 partial pressure (pCO2), which in turn results in a pH decrease and reduction in the 

availability of carbonate ions, a process known as ocean acidification (Doney, Fabry, Feely, & 

Kleypas, 2009). Ocean acidification is recognized as an emerging global threat to the health of 

marine ecosystems, because it alters patterns of biogenic carbonate formation and may also 

significantly affect other ocean biogeochemical cycles (Cai et al., 2011). Ocean’s acidification 

process starts when atmospheric CO2 reacts with ocean surface, being absorbed by ocean water. 

CO2 is dissolved in water and reacts with its molecules (H2O) forming carbonic acid (H2CO3): 

(1) [CO2](atmos) « [CO2] (aq) +[H2O] « [H2CO3 ] 

Carbonic acid dissociates into H+ (hydrogen ion) and HCO3
- (bicarbonate ion): 

(2) [H2CO3] « [H
+
] + [HCO3

−
]  

Due to the increase of H+, CO3
2- (carbonate ion) reacts with H+ forming HCO3

-: 

(3) [H
+
]

 
+ [CO3

2−
] « [HCO3

−
]  

For calcifying organisms, CO3
2- is crucial to form calcium carbonate, along with calcium atoms 

(Ca2+): 

(4) [CaCO3] « [CO3

2− ] + [Ca
2+
] 

 

The seawater reactions are reversible and near equilibrium; adding CO2 to seawater 

increases hydrogen ion concentrations that can also recombine with carbonate ions forming 

more bicarbonate instead of calcium carbonate (Fabry et al., 2008). 

Since preindustrial times, and with the increase of pCO2, the average ocean surface 

water pH has fallen by approximately 0.1 units, from approximately 8.21 to 8.10, and it’s 

expected to decrease a further 0.3–0.4 pH units by the end of 21stcentury (year 2100), 

corresponding to an increase of pCO2 to 700-1,000 µatm (Figure 2) (Caldeira & Wickett, 2005; 

The Royal Society, 2005).  
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Figure 8. Projected values of atmospheric CO2 concentrations and seawater surface pH under three 

different scenarios: IS92a the "business-as-usual" CO2 emissions, B1 the most and A1F1 the least 

conservative scenario (Adapted from Meehl et al., 2007 in Fabry et al., 2008). 

 

The ocean uptake of anthropogenic CO2 will occur more rapidly in coastal regions when 

compared to open-ocean waters (Reum et al., 2014). Coastal regions are typically 

unequilibrated, because of high rates of respiration, eutrophication and heterotrophic 

degradation. Changing land use and river flow can alter river alkalinity and, in turn, influence 

coastal inorganic carbon balance, which is necessarily related to the production of CO2 (Cai et 

al., 2011; Frank Melzner et al., 2013). Moreover, in coastal ecosystems, the excessive biological 

production of organic matter induced by human inputs of nutrients (eutrophication)  - and the 

subsequent development of hypoxia due to respiration of the sinking organic matter -, has been 

reported with increasing frequency, which leads to carbon dioxide production and increased 

acidity (Hendriks et al., 2015; Frank Melzner et al., 2013). Additionally, upwelling systems 

may be particularly vulnerable to acidification because upwelling process brings deep, cold, 

nutrient-rich waters up onto the continental shelf, with relatively low pH, increased via 

dissolution of CO2 into seawater.  
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Impacts of ocean acidification on marine organisms 

 

Recent work shows that the oceanic uptake of anthropogenic CO2 and the concomitant 

changes in seawater chemistry produce adverse consequences for many calcifying organisms, 

and may result in changes to biodiversity, trophic interactions, and other ecosystem processes 

(Fabry et al., 2008). 

Elevated pCO2 in seawater (also known as hypercapnia) can impact marine organisms 

both via decreased calcium carbonate (CaCO3) saturation, which affects calcification rates, and 

via disturbance to acid–base (metabolic) physiology (Fabry et al., 2008). Due to the dependence 

of calcium carbonate to form shells and skeletons, most studies on the impacts of ocean 

acidification have focused on marine calcifying organisms (Figure 9). A reduction in the 

number of carbonate ions available, due to the  recombination with reactive hydrogen ions, will 

likely make these organisms more susceptible to the destruction of their external structures, 

which in turn will cause a greater exposure to predators, pathogens, infections, debility and 

even death (Hoegh-Guldberg et al., 2007; Hofmann et al., 2010).  

 

 

 
Figure 9. Sensitivities of animal taxa to ocean acidification. Percentage (%) of coral, echinoderm, 

mollusc, crustacean and fish species demonstrated negative, no or positive effects on performance 

indicators related to pCO2 ranges (µatm). Significantly count ratios are represented in bars above 

columns (adapted from Wittmann & Pörtner, 2013). 

 

Due to increase energetic costs of calcification, ocean acidification may have major 

negative impacts on biogenic habitat (e.g., coral reefs, oyster beds) (Guinotte & Fabry, 2008; 

Hoegh-Guldberg et al., 2007), food webs (e.g., pteropods and other mollusks) (Doney et al., 

2012; Guinotte & Fabry, 2008) and even geochemical cycles at the planetary scale, due to 
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reduced growth and calcification of coccolithophore algae. Coccolithophores are responsible 

for producing an important contributor to the formation of clouds – dimethyl sulfide ((CH3)S2), 

so alterations on their existence may increase the rate of global warming (Malin & Steinke, 

2004). 

For carbon-limited autotrophs (including seagrasses and some phytoplankton) (Harley 

et al., 2006), on the contrary, increased CO2 may promote photosynthesis, whereas for others 

(particularly calcifying taxa) photosynthesis may be either reduced or unaffected (Doney et al., 

2012).  
Marine fishes do not have extensive calcium carbonate skeletons, and therefore the 

decline in seawater pH and concomitant changes in the saturation state of carbonate ions is not 

considered a threat to fishes in general. However, the rise in ocean pCO2 is likely to be a greater 

concern as higher ambient CO2 levels (hypercapnia) can cause acidosis of the blood and tissues 

(Llopiz et al., 2014). In general, juvenile and adult fishes appear to be relatively tolerant to mild 

increases in CO2 and decreases in pH, due to well-developed mechanisms for acid-base 

regulation, mostly across the gills, and small changes in internal or external pH can readily be 

compensated (F. Melzner et al., 2009). Despite these compensatory mechanisms, early life 

history stages are likely to be most vulnerable because physiological homeostasis might not be 

fully developed and their small body size makes them more sensitive to environmental variation 

(Brauner, 2008; F. Melzner et al., 2009). 

Early research on larval fishes demonstrated significantly reduced survival at low pH 

(Ishimatsu, Kikkawa, Hayashi, Lee, & Kita, 2004; Kikkawa, Ishimatsu, & Kita, 2003), and 

verified that CO2-induced acidification produces negative effects. Literature suggests that, for 

some species, exposure to elevated pCO2 adversely affects embryonic development and 

hatching (Frommel, Schubert, Piatkowski, & Clemmesen, 2013), larval and juvenile growth 

(Baumann, Talmage, & Gobler, 2011), tissue/organ health (Frommel et al., 2011), survival 

(Baumann et al., 2011), metabolism and condition (Franke & Clemmesen, 2011), and behavior 

(Dixson, Munday, & Jones, 2010; Ferrari et al., 2012; Leduc, Munday, Brown, & Ferrari, 2013; 

Philip L Munday, Dixson, et al., 2009; Philip L Munday et al., 2010; Simpson et al., 2011).  

However, other studies show that eggs and embryos of some marine fishes appear to be 

relatively tolerant to CO2 levels within the range projected for the near future. Embryonic 

duration and hatching success are unaffected at high CO2 in the majority of experiments 

conducted to date (review by Llopiz et al., 2014). This fact is corroborated with other studies, 

which state that it wasn’t detected any effect upon embryogenesis (Franke & Clemmesen, 

2011), hatching (Frommel et al., 2013), growth and development (Bignami, Sponaugle, & 
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Cowen, 2013; Philip L Munday, Donelson, Dixson, & Endo, 2009; Philip L. Munday, Gagliano, 

Donelson, Dixson, & Thorrold, 2011), or swimming ability (Silva et al., 2016).  

   

Fish calcifying internal structures, such as bones and otoliths, are composed of 

aragonite, and therefore, these are the structures that could directly be affected because of the 

declining carbonate ion concentrations associated with ocean acidification or even due to 

physiological stress caused by elevated pCO2. Otolith size, shape and symmetry between left 

and right can affect sound detection, body orientation and acceleration from the position of the 

otoliths in the inner ear and movement of the otoliths over sensory hair cells. Any substantial 

change to the size, shape, or symmetry of otoliths could have serious implications for auditory 

sensitivity and survival  (P. L. Munday, Hernaman, Dixson, & Thorrold, 2011). As seen for 

other traits, there is also considerable variation regarding the impacts of exposure to high pCO2 

levels on otoliths, with some studies reporting larger otoliths (Bignami, Enochs, Manzello, 

Sponaugle, & Cowen, 2013; P. L. Munday et al., 2011), but others failing to detect any effect 

(Franke & Clemmesen, 2011; P. L. Munday et al., 2011). 

Most notorious are the results of the effects of elevated CO2 on larval and juvenile 

behavior. Predicted levels of ocean acidification are likely to affect olfactory  (Dixson et al., 

2010; Philip L Munday, Dixson, et al., 2009; Philip L Munday, Cheal, Dixson, Rummer, & 

Fabricius, 2014) and auditory preferences (Simpson et al., 2011), behavioral lateralization 

(Lopes et al., 2016), activity levels (Pimentel, Pegado, Repolho, & Rosa, 2014), and learning 

(Ferrari et al., 2012). The reason for this diverse suite of sensory and behavioral impairments 

appears to be interference of high CO2 with the function of GABA-A neurotransmitters 

(Hamilton, Holcombe, & Tresguerres, 2013; Nilsson et al., 2012). 

Among the several studied behavioral traits, olfactory preferences seem to be one of the 

most commonly affected behavior in fishes exposed to high CO2 levels (Forsgren, Dupont, 

Jutfelt, & Amundsen, 2013; Philip L Munday et al., 2010, 2014).  Early detection and avoidance 

of predators greatly enhances individual survival. In the aquatic environment, chemosensory 

cues produced by predators are thought to be the most useful mechanism of predator detection 

(Ferrari et al., 2012), consequently the inability to detected the odour may increase mortality 

under natural conditions. 
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Conservation efforts  

 
 

Ocean acidification, a consequence of rising anthropogenic CO2 emissions, is 

conditioning marine ecosystems by raising dissolved CO2 and lowering ocean pH, carbonate 

ion concentration, and calcium carbonate mineral saturation state worldwide. From the point of 

view of the human being, the most direct consequence may relate to declining harvests and 

fishery revenues from shellfish, their predators, and loss of coral reef habitats, which will cause 

revenue declines and job losses. Other indirect economic costs may appear if ocean 

acidification broadly damages marine habitats, alters marine resource availability, and disrupts 

other ecosystem services (Cooley & Doney, 2009). On the other hand, at a biological and 

population state, organism-level effects of CO2 induced acidification may exert pressure with 

ecological impacts, since they can influence the dispersal, recruitment and organisms’ survival 

– life events responsible for the replenishment of fish stocks and maintenance of biodiversity 

(Cooley & Doney, 2009). To better predict the ecosystem effects of anthropogenic disturbances, 

it is necessary to consider multiple impacts that occur on a variety of geographical scales. The 

effects of anthropogenically related disturbances on individual species can result in large-scale 

changes in the interaction directions and strengths within ecosystems. However, because 

anthropogenic perturbations to ecosystems do not usually occur in separate, joining two or more 

impacts can result in different outcomes that cannot be determined by simply adding their 

cumulative effects together. 

Ocean acidification could act in concert with many other anthropogenic disturbances to 

affect future marine ecosystems, as the shift in seawater carbonate chemistry is predicted to 

have a wide range of effects on marine species, including interfering with calcareous species’ 

ability to maintain net calcification, altering the acid–base balance within organisms, and 

changing the behavioural traits of fishes and invertebrates.  

Literature indicates that marine reserves protection can mitigate some predicted effects 

of ocean acidification as many trophic groups responded synergistically to the combined effects 

of ocean acidification and marine protection. However, the ecosystem-level impacts of ocean 

acidification are likely to be different when indirect effects are also considered alongside direct 

effects. In fact, it’s essential to consider the role of indirect effects, such as food web feeding 

relationships, to build accurate projections of ocean acidification effects and local stressors on 

ecosystems.  

At a higher level, management of marine ecosystems under climate change requires 
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input from the scientific community. However, the ability to provide such tools, like robust 

quantitative predictions for the marine environment, is influenced by differences in the methods 

used in quantitative research. In addition, caution must be used when extrapolating the results 

of ecosystem models across large areas when predicting the effects of ocean acidification. This 

is due to spatial heterogeneity in pH conditions encountered by marine species and variability 

in other environmental factors (e.g., light, nutrients) that can influence the response of 

organisms to ocean acidification (Cornwall & Eddy, 2015). 

A growing number of studies suggest that global climate changes may not just be a 

conservation problem for the future but may in fact be a current threat to species and ecosystems 

(McCarty, 2001). To plan a better and uniform conservation response, collaboration across 

disciplines is necessary. Biogeography and ecology provide insights into the effects of climate 

change on biodiversity that have not yet been fully integrated into conservation biology and 

applied conservation management (Hannah, Midgley, & Millar, 2002).  

There are some global conservation efforts mentioned on literature that can have a 

significant impact. For example, CCS (Climate Change-integrated Conservation Strategies) 

provide a framework in which biogeographers, ecologists and conservation managers can 

collaborate to address this need (Hannah et al., 2002). In other hand, dynamic landscape 

conservation plans represent just one approach for combining existing management approaches 

with the most up-to-date projections of climate-change effects. Other new and innovative tools 

such as statistical downscaling and small-scale climate-habitat models will undoubtedly 

become increasingly important for managers in the future (Mawdsley, O’Malley, & Ojima, 

2009).  

 

Species under study 

 
 

The clingfish Lepadogaster lepadogaster (Bonaterre, 1788) is a cryptobenthic fish, 

being small bodied (5 to 10 cm) and able to occupy very cryptic microhabitats in the intertidal 

(Miller, 1979; Thresher, 1984). Nearshore cryptobenthic fishes are valuable elements of coastal 

biodiversity, playing an important ecological role in the functioning of littoral ecosystems, and 

occurring from as far north as the extreme north-west of Galicia (Spain) to north-west Africa, 

the Canary and Madeira Islands and the Mediterranean (Henriques et al., 2002).  



	 44	

The adaptation found in this species to explore crevices, holes and narrow spaces 

between rocks, as well as to resist strong water movements (which are prevalent in the intertidal 

and shallow subtidal habitats where they occur) is provided by the presence of a ventral 

adhesive disk (Ana M. Faria & Gonçalves, 2010). 

L. lepadogaster breeds during the spring until the beginning of the summer (March to 

July), and they deposit demersal eggs on the underside of stones, with males providing parental 

care, guarding, fanning and rubbing the eggs until hatching. The egg mass may contain multiple 

batches at different stages of development (Tojeira, Faria, Henriques, Faria, & Gonçalves, 

2012). After approximately 18 days of embryonic development, larvae hatch relatively well 

developed (Tojeira et al., 2012), typical of marine fishes with male parental care that spawn 

demersal eggs. Pelagic larval duration (PLD) is, on average, 14 days (Beldade, Pedro, & 

Gonçalves, 2007). These biological and early life traits, together with data that shows 

considerable larval swimming abilities, suggest that early stages of L. lepadogaster may be able 

to remain nearshore. 

 

The sand-smelt Atherina presbyter Cuvier, 1829, one of the two species of Atherinidae 

family in the north-eastern Atlantic Ocean (Whitehead, Bauchot, Hureau, Niels, & Tortonese, 

1986), is a typical coastal-associated species, occasionally entering coastal lagoons and 

estuaries. Its distribution ranges from the British Isles and southern North Sea to the Canary 

Islands, Mauritania and Cape Verde (Quignard & Pras, 1986), and it has also been reported 

from the Azores archipelago (Santos, Porteiro, & Barreiros, 1997).  A. presbyter have economic 

interest both as commercial target and as a bait in the seasonal live-bait tuna fishery, for 

example in Canary Islands, but not so much in Portugal (Pajuelo & Lorenzo, 2000).  

Characterized as a marine juvenile migrant species, it uses estuaries and coastal lagoons 

primarily as a nursery ground. Although they return seasonally to the estuary,  the main part of 

its adult life is spent at sea (Pombo, Elliot, & Rebelo, 2005). Biological and early life-history 

traits of A. presbyter, such as large size at hatching (Bamber, Henderson, & Turnpenny, 1985), 

possibly short pelagic larval duration and swimming behavior (A. M. Faria, Borges, & 

Gonçalves, 2014), also suggests that larvae might be able to explore the nearshore habitats and 

actively remain close to the coast, thereby preventing offshore dispersal of larvae and juveniles 

from their natal site (A. M. Faria, Borges, & Gonçalves, 2014).  
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Larvae of both species are relatively easy to maintain in artificial laboratory conditions, 

and provide good study models. 
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