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Abstract 

The solar wind modulates the flux of galactic cosmic rays impinging on Earth inversely with 

solar activity. Cosmic ray ionisation is the major source of air’s electrical conductivity over 

the oceans and well above the continents. Differential solar modulation of the cosmic ray 

energy spectrum modifies the cosmic ray ionisation at different latitudes, varying the total 

atmospheric columnar conductance. This redistributes current flow in the global atmospheric 

electrical circuit, including the local vertical current density and the related surface potential 

gradient. Surface vertical current density and potential gradient measurements made 

independently at Lerwick Observatory, Shetland, from 1978 to 1985 are compared with 

modelled changes in cosmic ray ionisation arising from solar activity changes. Both the lower 

troposphere atmospheric electricity quantities are significantly increased at cosmic ray 

maximum (solar minimum), with a proportional change greater than that of the cosmic ray 

change.  
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1. Introduction 

Surface measurements of atmospheric electricity have long been thought to show evidence of 

solar modulation. Early statistical comparisons of the surface potential gradient and sunspot 

activity associated with terrestrial magnetism supported this view (Chree, 1906; Bauer, 

1925), but physical explanations for correlations were not readily apparent. Surface 

atmospheric electricity measurements made during the first half of the twentieth century 

appeared to vary in phase with the 11-year (Schwabe) cycle of solar activity (Israël, 1973), 

but later work, which identified the importance of cosmic rays, showed an anti-phase 

response to solar activity. For example, cosmic rays showed a positive correlation with the 

ionospheric potential during the late 1960s and early 1970s (Mülheisen, 1977; Markson and 

Muir, 1980; Markson, 1981). Establishing whether the sign and existence of solar effects in 

atmospheric electricity has varied with time requires study of measurements from a variety of 

periods and sites. 

 

The global atmospheric electrical circuit (Rycroft et al, 2000) drives current from disturbed 

weather regions to fair weather regions, through the positively electrified ionosphere. In fair 

weather regions this causes a small current to flow continuously between the ionosphere and 

the surface. Variations in the total conductivity of an atmospheric column change the local 

vertical current density flowing in fair weather regions, and the associated potential gradient 
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at the surface. As galactic cosmic rays provide the principal source of ionisation causing the 

conductivity of atmospheric air, solar modulation of cosmic ray ionisation physically links 

solar activity with the lower atmosphere through atmospheric electricity. The vertical current 

flow is known to be sustained through regions of water droplets (Bennett and Harrison, 

2009), and, specifically, cloudy conditions (Nicoll and Harrison, 2009). If clouds respond to 

the current flow, modulation of the fair weather vertical current density would provide a 

potential climate influence, because of the sensitivity of the atmospheric energy balance to 

cloud properties. Cloud edge charging effects on the microphysics of stratiform clouds from 

the vertical current density have been suggested (Zhou and Tinsley, 2007; Harrison and 

Ambaum, 2008).  

 

Atmospheric electricity measurements are rare compared with meteorological measurements, 

which hampers studies of solar influences. The most abundant measurements made are those 

of the surface potential gradient (PG), with the vertical conduction current density (Jc) 

measured at only a few sites globally. In general Jc measurements are preferable as they show 

much smaller local pollution effects than PG (Märcz and Harrison, 2005), but, as studies into 

solar effects require long period (~ several years to decades) surface atmospheric electricity 

data, insufficient data duration presents a practical difficulty in separating solar-induced 

atmospheric electricity changes from other effects.  Analysis methods include comparison of 

transient changes in atmospheric electricity coincident with solar flares (Cobb, 1967) or 

Forbush cosmic ray decreases (Märcz, 1997), and identification of periodicities characteristic 

of cosmic rays (e.g. at 1.68 years during the 1980s) in long term PG data (Harrison and 

Märcz, 2007). Using Jc data obtained from 1966 to 1977 by Prof. D. Olson over northern 

Minnesota, Markson and Muir (1980) reported a 30% solar cycle variation in Jc, in phase 

with the galactic cosmic ray variation. The difference in phase of response to the solar cycle 

in Olson’s measurements from measurements in the first half of the twentieth century has 

been attributed to changes in stratospheric aerosol loading following volcanic eruptions 

(Tinsley, 2005). A further possible explanation is that the earlier measurements were 

incompletely compensated for surface conductivity variations. 

 

To investigate the phase and magnitude responses to solar changes in lower troposphere 

atmospheric electricity, a later (1978-1985) series of northern latitude measurements made by 

the UK Met Office at their Lerwick Observatory (Shetland Islands) is studied here. This 

island site has little local pollution and frequent rainfall, yielding intermittent periods of fair 

weather atmospheric electricity conditions. The Lerwick surface Jc and PG data show 

properties characteristic of clean air, such as correlated variations of the independently 

observed Jc and PG (Harrison and Nicoll, 2008). Good agreement between simultaneous 

European and atlantic measurements of the global circuit’s ionospheric potential and the 

Lerwick PG has also been observed (Harrison and Bennett, 2007; Rycroft et al 2008). 

Additionally, the PG measured at Lerwick during September 1928 showed similarities with 

atlantic PG measurements made on cruise VII of the geophysical research ship Carnegie, 

(Harrison, 2004a). The late Lerwick measurements are considered here in terms of solar 

changes, using a model to calculate the expected solar-induced column ionisation changes 

above the measurement site (Usoskin and Kovaltsov, 2006). 

 

2 Data analysis 

(a) Lerwick atmospheric electricity data 

Lerwick Observatory remains an operational geophysical and meteorological site, which, 

from 1926 to 1985, made routine hourly PG measurements. From 1978 to 1985, Jc 

measurements were also made. The PG was measured using a radioactive probe, and Jc was 
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measured with a horizontal collecting plate, as described by Harrison and Nicoll (2008). 

Following their investigation and in common with the Met Office conventions in atmospheric 

electricity, the 15UT measurements are used here for further analysis. Figure 1 shows time 

series of the 15UT PG and Jc from Lerwick in fair weather, throughout the available Jc 

measurements. Because of the site’s climatology, fair weather periods only occur 

intermittently and the dataset is sparse with appreciable variability. Robust statistical methods 

employing threshold tests on median values are therefore used for the analysis. A preliminary 

aspect is that some seasonality is apparent in the data. The seasonality has been removed by 

calculating a daily mean value for each day of the year using the available values across the 

seven years, and fitting a slowly varying (90-day) moving average to the daily mean values 

found. This smoothed annual cycle was then subtracted from the measured daily values.  

 

From inspection of figure 1 no clear 11-year solar cycle variation is seen, which indicates 

local variations at the site such as those associated with changes in weather conditions, 

variations in the application of “fair weather” criteria to the data (or limitations in the 

criteria), or indeed instrument uncertainties. Calculation of the expected local effects from 

solar-induced changes in cosmic ray ionisation is used for further investigation of the data. 

 

(b) Columnar resistance variations at Lerwick 

Cosmic ray variations arising from solar activity modify the local volumetric ion production 

rate q. In clean air containing bipolar ions with mean mobility µ, the total air conductivity σ 

is given by 

α
µσ

q
e2=       (1), 

 

where α is the ion-ion recombination coefficient and e the elementary charge. Analysis of 

atmospheric electricity changes at Lerwick in the years following nuclear weapon 

radioactivity deposition showed that the square root dependency of ionisation rate was an 

appropriate assumption for the site (Pierce, 1972), which illustrates the negligible aerosol 

concentration present. The conductivity can be integrated with height to determine the total 

conductance or, more usually, the total resistance. For a unit area column, the columnar 

resistance Rc is found from 

 

∫=
Iz

c
h

dh
R

0
)(σ

      (2), 

where σ(h) represents the total air conductivity variation with height h and zI is the effective 

ionospheric height. Rc varies with latitude and with aerosol concentration (Roble and Tzur, 

1986). For the polluted site at Kew, London, experimentally derived Rc measurements vary 

from 64 to 310 PΩ m
2
 (Harrison, 2005; Rycroft et al, 2008), from which Harrison and 

Nicoll (2008) estimated Rc for Lerwick as 70 PΩ m
2
, using a short period of overlapping 

data. 

 

For equations (1) and (2) to be used to calculate Rc, the cosmic ray induced ionisation (CRII) 

q is required. The CRII can be computed using a numerical model (Usoskin and Kovaltsov 

2006), which considers in detail the nuclear-electromagnetic-muon cascade initiated by 

energetic cosmic ray particles in the atmosphere. Temporal variations of the cosmic ray 

spectrum are accounted for by using data from the worldwide neutron monitor network 
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(Usoskin et al., 2005). The model, verified against sporadic direct measurements of CRII 

(Bazilevskaya et al., 2008), allows the CRII to be computed at a given location and time. To 

find the CRII for a specific location, the geomagnetic rigidity cut-off is required, which, for 

Lerwick, is about 0.8 GV. Figure 2 shows the calculated air conductivity using the CRII 

model (upper panel), and the derived Rc (lower panel). Much of the variation in air 

conductivity from cosmic rays occurs in the upper troposphere (upper panel) and lower 

stratosphere (middle panel), which is where the cosmic ray influence on Rc dominates. 

 

For figure 2, the air conductivity was found from equation (1) using temperature and pressure 

profiles to find the local values of α and µ appropriate to the height. For a CRII at standard 

conditions of qS (ion-electron pairs per unit mass per unit time), the local volumetric ion 

production rate q was calculated as 

),( TPqq Sρ=       (3), 

where ρ is the air density found from the gas law for air temperature T and pressure P, which 

each vary with height h. The local recombination rate and ion mobility were found from 
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respectively, with αS=1.6x10
12

m
3
s

-1
 (Callahan et al 1951) and µS=1.2x10

-4
m

2
V

-1
s

-1
. The P 

and T profiles used were: (1) P(h) was assumed to vary vertically according to an exponential 

atmosphere profile with scale height 6 km, and (2) T(h) was assumed to follow a dry 

adiabatic lapse rate from the surface to 213K, above which the temperature remained 

constant. With these profiles, the local air conductivity was integrated with height using 

equation (2) to find Rc, assuming equation (1), i.e. with a negligible effect of local aerosol. 

The median Rc value found from the calculations is 69 PΩ m
2
, close to 70 PΩ m

2
 previously 

estimated by Harrison and Nicoll (2008). This further supports the clean air assumption 

made.  

 

(c) Solar activity variations 

During the Lerwick Jc measurements, solar activity variations modulated the cosmic ray 

ionisation, which would have varied Rc above the site. Occasional rapid changes increases in 

Rc are apparent, which arise from Forbush decreases in galactic cosmic rays. During CRmin 

(solar maximum), Rc is at its greatest, and during CRmax (solar minimum), Rc is at its least. To 

separate the cosmic ray minimum (CRmin) and maximum (CRmax) conditions at Lerwick, 

whilst retaining a considerable amount of the data, the upper 40
th
 and lower 40

th
 percentiles 

of Rc are used (figure 3(a)). 

 

Figure 3 shows the data from figures 1 and divided by days of CRmin and CRmax. Firstly, 

figure 3(b) summarises the effect of splitting the Rc values; the Rc values for CRmax are more 

skewed than for CRmin, but using the upper 40
th
 and lower 40

th
 percentiles the CRmax and 

CRmin values of Rc become distinct. Figures 3(c) 3(d) show the Lerwick PG and Jc divided in 

the same way. From the notches on the boxplots (95% confidence levels), both the PG and Jc, 



 5

are larger for CRmax than CRmin, as expected from the reduced Rc. As the Jc and PG 

distributions are skewed, the differences in the distributions between CRmax and CRmin have 

also been tested using the Mann-Whitney test (Mann and Whitney, 1947). Using this test, the 

changes in the PG and Jc distributions are significantly greater than zero with p<0.001 

(confidence level > 99.8%) and p<0.02 (confidence level >98%) respectively. In addition to 

the significant CRmax to CRmin changes found in PG and Jc, it should be noted that the PG and 

Jc were measured separately (there are, for example, some days with PG measurements but 

without Jc measurements), and that the division into CRmax and CRmin categories is 

independent of the actual atmospheric electricity data. 

 

Table 1 summarises the differences between the CRmin and CRmax conditions. Daily 

measurements from the Climax neutron monitor (NM) for the same time period are also 

given, divided according to the same Rc criteria. For the NM, there is an increase of 8.4% 

from CRmin to CRmax, to which q is approximately proportional. The associated reduction in 

the calculated Rc from the CRII model is smaller (5.1%) than for the NM, due to the clean air 

assumption causing the square-root dependence in equation (1). (In highly polluted air, σ 

varies directly with q, rather than q
1/2

.) Both the independently measured atmospheric 

electrical quantities at Lerwick show a positive change from CRmin to CRmax with a change in 

their medians of 12% in PG and 16.5% in Jc. 

 

2. Related global circuit changes 

As for the case of the 1966-1977 Minnesota Jc data considered by Tinsley (2005), the 

Lerwick surface atmospheric electricity data appear likely to have increased more 

substantially with solar activity than expected from modelled columnar resistance changes 

alone, although their lower bound changes are not incompatible with the modelled columnar 

resistance change. Further factors are therefore likely to be modulating Jc, such as local 

aerosol effects generated by cosmic ray ionisation in the lower troposphere, or changes in 

current flow in the global circuit. Of those, the first possibility arises as cosmic ray ionisation 

is thought, in suitable circumstances, to generate ultrafine aerosol particles (e.g. Kazil et al 

2008). In the lower troposphere, such particle formation would, however, act to remove ions 

and reduce the air conductivity (Harrison and Carslaw, 2003), increasing the columnar 

resistance. Cosmogenic aerosol production would therefore act to reduce Jc at CRmax, which 

is opposite to the observed Jc response. A second possibility is that current flow in the global 

circuit is redistributed at CRmax, adding to the local effect of reduced Rc at Lerwick. 

Quantitative support exists for this from intensive studies of the ionospheric potential in the 

1960s and 1970s (Mülheisen 1971, 1977; Markson and Muir, 1980; Markson, 1981).  

 

(a) Ionospheric potential modulation 

The ionospheric potential, VI, is found by integrating the electric field profile vertically, 

obtained using a balloon or aircraft ascent. As it can be assumed globally to be an 

equipotential, the sounding position is unimportant. In terms of the conduction current 

density Jc measured at the surface, a combined effect of VI and Rc arises through Ohm’s Law, 

i.e. from 

I
c

c

V
J

R
=       (6). 

Studies of VI and NM data (Markson and Muir, 1980; Markson, 1981) showed that VI was 

proportional to neutron count rate, i.e. that VI increases with cosmic ray ionisation, and 

therefore, for equation (6), the numerator increases and the denominator decreases with 

increasing cosmic rays. A reason originally suggested (Markson, 1981) for the relationship 

with NM counts was the cosmic ray modulation of the above-thunderstorm coupling 
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resistance. Subsequently the possibility that cosmic rays directly modulate lightning flash 

rates (with an implied related effect on global circuit currents) has received more attention, 

although the sign of the relationship remains uncertain and shows strong regional sensitivity 

(Schlegel et al, 2001). 

 

(b) Sensitivity to combined global circuit and column changes 

A difficulty in assessing the sensitivity in equation (6) is that the ionospheric potential VI has 

only been sampled intermittently and, furthermore, only some of this data is widely available. 

The most numerous series of soundings available is that made between 1959 and 1976 by 

Prof. R. Mühleisen, based in Weissenau, former E. Germany (Mülheisen 1971; 1977). Most 

of the Mühleisen VI radiosonde balloon ascents (from 1959 to 1971) are tabulated in Budyko 

(1971), together with ascents made during short measurement campaigns from the Meteor 

research ship in the Atlantic. The data tables record the launch time, and the quality of the 

data determined from a comparison of the VI values found from ascent and descent, and the 

altitude reached. Further soundings in the early 1970s were given in Markson and Muir 

(1980), from which daily averages were calculated. Only data after the beginning of 1966 is 

considered, to remove possible stratospheric columnar resistance perturbations of the 

volcanic eruption during 1963 (Meyerott et al, 1983; Tinsley, 2005) or ionisation effects from 

atmospheric nuclear tests (Harrison, 2004b). The VI dataset is clearly sparse and the available 

measurements are generally concentrated into periods of intensive observations. Monthly 

averages have been calculated for those months in which there are four or more 

measurements available. Monthly average neutron count rates at the Climax NM have also 

been calculated using the same days’ data as the soundings. Figure 4(a) shows time series of 

VI and Climax NM count rates, with calculated monthly averages. 

 

Figure 4(b) shows the monthly averages of VI and Climax NM count rate plotted against each 

other. VI increases with neutron count rates and, if the monthly averages are assumed 

independent of each other, a linear model provides a significant fit to the data. (A correction 

has been applied to the launch time to obtain the effective sampling time, as explained in 

Appendix A.) The sensitivity is such that, for a 100% change in Climax neutrons, there is a 

154% change in VI. This is close to the sensitivity found by Markson (1981), who also used 

the Mühleisen data, but without excluding the VI measurements during the volcanic aerosol 

period and without including the Meteor cruises. Only a few further measurements of VI were 

made up until the early 1980s, which did not show a modulation with cosmic rays (Markson, 

1985). It is possible that the solar modulation was not apparent in these later soundings 

because of insufficient measurements to average out natural variability, unlike the earlier 

period considered for which many more soundings, although intermittent, are available. 

 

The different sensitivities in the NM and VI are likely to result from energy differences 

between cosmic rays able to affect the global circuit by ionisation compared with those 

generating secondary particles reaching a surface-located neutron monitor. With such a 

combination of local and global factors modulating Jc, the combined sensitivity of Jc to 

neutron rate can be estimated from (6) using the quotient rule as 
2

1c cI
c I

c

dJ dRdV
R V

dC R dC dC

   = −     
    (7) 

where C is the Climax NM count rate. The VI sensitivity 1966-1972 may not remain 

appropriate for the 1978-1985 period of the Lerwick data, but, using it with values from 

Table 1, gives an estimate from equation (7) of a 23% change in Jc from CRmin to CRmax. This 
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is within the confidence range of the Lerwick changes in Jc and PG, and broadly consistent 

with the solar cycle Minnesota Jc changes of 30%. 

 

4. Discussion and conclusions 

Changes in the global circuit’s fair weather conduction current are potentially important to 

cloud properties, as the conduction current may influence the clouds through which it passes. 

Modulation of the global circuit’s current density occurs as a result of solar induced cosmic 

ray ionisation changes, and this study shows that, from 1978 to 1985, the current density at 

Lerwick increases with increasing galactic cosmic ray ionisation, with changes between 

cosmic ray minimum and maximum of 12% in PG and 16.5% in Jc. This response is 

consistent with the analysis of Olson’s Minnesota measurements from 1966 to 1977, 

extending the period of a positive response in current density with cosmic rays in northern 

latitudes to encompass 1966 to 1985. In both cases the observed response in current density 

was greater than the associated change in neutron monitor measurements of cosmic rays, by 

two to three times in the case of the Lerwick data.  

 

This increased sensitivity over the neutron monitor change arises because the atmospheric 

columnar resistance and/or thunderstorm modulation effects on the global circuit respond to 

lower energy cosmic rays than neutron monitors, which detect secondary particles from 

energetic collisions. Beyond the different sensitivities of the global circuit and neutron 

monitors to cosmic rays, the solar modulation of cosmic rays also varies with their energy. 

There is a greater modulation of the lower energy cosmic rays (an order of magnitude at 

~100MeV), compared with higher energy cosmic rays (several per cent at ~10 GeV). The 

Climax neutron monitor has somewhat higher geomagnetic cut-off rigidity (~3 GV compared 

to 0.8 GV at Lerwick), which also slightly (by a few percent) reduces the solar cycle variation 

of the Climax data. In summary, the enhanced solar response of the current density over that 

of neutron monitors results from the different sensitivities of neutron monitors and the global 

circuit to the local cosmic rays of different energies. 

 

 

 

Appendix. Effective sampling times 

For a balloon sounding of electric field to represent the daily ionospheric potential VI, a 

correction for the VI sampling time is required. VI is known to vary diurnally with the 

Carnegie curve, originally determined for oceanic PG measurements. The Carnegie curve 

variation (as a fraction of the daily mean value fCarnegie) with the UT hour of day h is given by 

Israël (1973) as 

 

191.9667 2 232.85
( ) 100 14.46sin 2 4.43sin 2

24 360 24 360
Carnegie

h h
f h π π

         = + + + +                  
 (A1). 

If the balloon sampling time hs is known, equation (A1) can be used to correct the VI 

determined to an effective daily mean value. For the Mülheisen balloon ascents, only the UT 

launch time h0 is available and consequently hs can only be estimated. The practice of 

Mülheisen was to compare the VI values from the ascent and descent soundings for 

agreement, therefore hs was appreciably later than h0, depending on the ascent and descent 

speeds and the balloon burst height. For 26 Weissenau ascents (Gringel, 1978), the most 

common burst height was 24 km although this varied considerably (standard deviation 

8.6km). Ascent rates vary inversely with burst height and decrease with height above 10km 

(HMSO, 1961), but for the 1.1kg payloads of the Weissenau sondes (Gringel, 1978), typical 
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mean ascent rates would be 5 to 8 ms
-1

 (HMSO, 1961). Assuming similar descent rates, the 

flight times (allowing for 1 standard deviation on the burst height) would therefore be ~1 to 4 

hours. Since the majority of the VI sounding occurs in the resistive lower part of the 

atmosphere, the mean VI obtained by averaging the two soundings from ascent and descent 

would represent VI at about 2 to 3.5 hours after launch. 

 

Figure 4(b) shows the relationship between monthly mean neutron count rates and the 

derived monthly mean VI from individual soundings for which the launch time was recorded. 

Table A1 shows the effect on the linear fit in figure 4(b) of using different lag times from the 

launch time to correct the VI soundings to a daily mean value. For no lag, the fit is significant, 

but the fit is improved if the lag time is increased to between 3 and 5 hours. For lag times 

longer than this time, or for negative lag times (i.e. an unphysical sampling time of before the 

launch), the fit is not significant at 95% confidence. The improvement of significance in the 

linear fit using a sampling time correction suggests that the VI-neutron relationship is 

physically based. 
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Figure 1. Daily (15UT) fair weather atmospheric electricity measurements at Lerwick. (a) Potential Gradient (PG) and (b) conduction current 

density (Jc). For both plots grey points show the raw data and black points the seasonally corrected values, adjusted by the median of the raw 

data values. 
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Figure 2. Air conductivity profiles (against atmospheric pressure P) for Lerwick 1978-1985 

from the CRII cosmic ray ion-production model. Conductivity time series are shown for the 

troposphere (upper panel) with the upper troposphere (middle panel), both using the same 

conductivity scale (top bar). The lower panel shows the surface-stratosphere columnar 

resistance Rc derived from integrating the air conductivity profile with height, with the 

median Rc marked (dashed line).  
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Figure 3. (a) Histogram of calculated columnar resistances Rc for Lerwick with the upper and 

lower 40% quantiles marked to distinguish between “CRmin” (dotted line) and “CRmax” 

(dashed line) respectively. (b), (c), (d) Comparisons of CRmin and CRmax columnar 

resistances Rc (b), with measured and seasonally corrected Potential Gradient (c) and  

conduction current density (d), from Lerwick. Dashed line shows the medians of the 

undivided data set. (For the boxplots, the box width is proportional to the square root of the 

number of values in each interval; the box edges and the line in the centre of each box show 

the upper and lower quartiles and the median respectively. Notches indicate the 95% 

confidence limits on the medians and the whiskers extend to 1.5 times the inter-quartile 

range.) 
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Figure 4. Comparison of ionospheric potential (VI) and neutron counter data at Climax (grey line), measured from 1966-1972. (a) VI soundings 

of Mülheisen from Weissenau, Germany (blue points, individual soundings) and the Meteor research ship in the mid-atlantic (brown diamonds, 

individual soundings), and of Markson from the Bahamas (green triangles, daily averages). Hollow circles show monthly averages for months 

having 4 or more VI points available, with the monthly neutron counter averages using the same days’ data as for VI. (b) Monthly-averaged VI 

plotted against monthly average neutron count rate. Error bars represent two standard errors. (Individual Mülheisen VI soundings have been 

corrected to equivalent daily values using the Carnegie curve, assuming the sounding to be representative of VI at 3.5 hours after launch time.) 
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Table 1. Changes in 1978-1985 Lerwick fair weather atmospheric electricity quantities 

between cosmic ray maximum (CRmax) and minimum (CRmin)  

 

 

location quantity median median value 

during CRmin 

 

[95% confidence 

range] 

median value 

during CRmax 

 

[95% confidence 

range] 

change 

CRmin to 

CRmax 

Climax  neutron count rate 

(measured) 

3801 x 10
2
 hr

-1
 3629 x 10

2
 hr

-1 

 

[3622 to 3637] 

(986 values) 

3932 x 10
2
 hr

-1 

 

[3921 to 3943] 

(982 values) 

    8.4% 

 

Lerwick 

columnar 

resistance Rc 

(calculated) 

69 PΩm
2
 70.9 PΩm

2 

 

[70.8 to 71.0] 

(1019 values) 

67.3 PΩm
2 

 

[67.2 to 67.5] 

(1012 values) 

   -5.1% 

potential gradient 

PG (measured) 

160.5 Vm
-1 

 

151.7 Vm
-1 

 

[144.2 to 159.2] 

(266 values) 

170.0 Vm
-1 

 

[160.9 to 179.0] 

(193 values) 

   12.0% 

current density Jc 

(measured) 

2.76 pA m
-2

 2.51 pA m
-2 

 

[2.36 to 2.67] 

(202 values) 

2.93 pA m
-2 

 

[2.70 to 3.50] 

(120 values) 

   16.5% 

 

 

 

 

 

Table A1. Effect of sampling time on linear fit in figure 4(b) 

 

sampling time hs 

from launch (hours) 

p-value confidence 

level 

hs < -1 >0.05  

0≤ hs ≤2 <0.05 >95% 

2< hs <3 <0.02 >98% 

3< hs <5 <0.001 >99.8% 

5< hs <8 <0.02 >98% 

hs >10 >0.05  

 

 


