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Imaging surveys of galaxies will have a high number density and angular resolution yet a poor
redshift precision. Intensity maps of neutral hydrogen (HI) will have accurate redshift resolution
yet will not resolve individual sources. Using this complementarity, we show how the clustering
redshifts approach, proposed for spectroscopic surveys can also be used in combination with inten-
sity mapping observations to calibrate the redshift distribution of galaxies in an imaging survey
and, as a result, reduce uncertainties in photometric redshift measurements. We show how the
intensity mapping surveys to be carried out with the MeerKAT, HIRAX and SKA instruments can
improve photometric redshift uncertainties to well below the requirements of DES and LSST. The
effectiveness of this method as a function of instrumental parameters, foreground subtraction and
other potential systematic errors is discussed in detail.

I. INTRODUCTION

Photometric redshift surveys are an economic way of
building up a detailed map of the large scale structure of
the Universe. By imaging large swathes of the sky, it is
possible to construct catalogues of individually resolved
galaxies with high number density (and therefore a low
“shot” noise). The trade-off for such a large number of
objects is the inability to obtain accurate redshift mea-
surements for individual objects. Thus, photometric red-
shift surveys are orders of magnitude less resolved in the
radial direction than the sparser spectroscopic redshift
surveys. The uncertainty in the individual redshifts and
in the overall galaxy redshift distribution can severely
degrade the constraining power of such datasets for cos-
mology.

Galaxies cluster to form the cosmic web, and one ex-
pects structures in the galaxy distribution to be spatially
correlated with structures in any other tracer of the dark
matter density. For example, if one has an imaging sur-
vey of galaxies (where redshifts are poorly resolved) and a
spectroscopic catalog (where redshifts are well resolved),
they should have non-trivial cross-correlations; in par-
ticular, structures in the imaging survey should be mir-
rored in the spectroscopic survey. A natural step is to
use these cross-correlations so that the precise redshift
measurements of the spectroscopic survey can be used to
sharpen the photometric redshifts in the imaging survey,
or at least calibrate its redshift distribution. These types
of methods have been advocated in [1–6], and employed
in the analysis of several datasets (e.g. [7–11]).

One does not necessarily have to use a catalogue of
resolved sources to follow this rationale. In particular,
if one can accurately map out, in redshift, any tracer of
the dark matter, it can in principle be used to improve
redshift measurements in a sister imaging survey. A no-
table example is that of an unresolved map of neutral
hydrogen, HI, through a technique known as intensity
mapping [12–22]. Radio observations at a GHz or be-

low will map out the distribution of neutral hydrogen
out to redshifts, z ∼ 2 or higher. The neutral hydrogen
traces the large scale structure of the dark matter and
thus, inevitably, will be correlated with any other tracer.
Maps of HI will be exquisitely resolved in the frequency
domain and therefore will map out the density distribu-
tion, in detail, in redshift. Although intensity mapping
observations will not resolve individual objects, they will
be able to achieve sufficient angular resolution for cosmo-
logical studies (although this statement depends on the
observing mode).

In this paper we explore the use of HI intensity map-
ping to calibrate photometric redshift surveys. In par-
ticular we show that forthcoming intensity mapping ex-
periments such as those undertaken by MeerKAT [23],
HIRAX [24] and the SKA [25] can be used to reduce
the uncertainties related to photo-z systematics well be-
low the requirements currently posited by the DES and
LSST surveys, thus improving final constraints on cos-
mological parameters. We structure this paper as fol-
lows: in Section II we describe the formalism and discuss,
in detail, various aspects of the instrumental and obser-
vational models we are assuming. Section III presents
our results as a function of experimental configuration
and foreground uncertainties. In Section IV we discuss
the prospects of using such a method and compare with
other proposals currently being developed. The appen-
dices present a number of calculations which are essential
for the models considered here.

II. FORMALISM

A. Clustering-based photo-z calibration

Consider two galaxy samples with redshift distribu-
tions φi(z) (i = {1, 2}), and let ai`m be the harmonic
coefficients of their projected overdensity of counts on
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FIG. 1. Left panel: example of a redshift bin for a photometric survey and the redshift bins chosen for an overlapping
spectroscopic survey. Right panel: amplitude of the cross-correlation with an overlapping spectroscopic survey as a function
of spectroscopic redshift bin (x axis) and angular scale (y axis). The amplitude of the cross-correlation traces the redshift
distribution, and can therefore be used to constrain it.

the sky. Their cross-correlation is given by:

〈ai`ma
j∗
`m〉 = N ij

` + Sij` (1)

Sij` =
2

π

∫
dz

∫
dz′ φi(z)φj(z

′)× (2)

×
∫
dk k2 bi(z)bj(z

′)Pm(k, z, z′) j`(kχ(z)) j`(kχ(z′)),

where Pm is the matter power spectrum, χ is the ra-
dial comoving distance, j`(x) is a spherical Bessel func-

tion, N ij
` is the cross-noise power spectrum between

samples i and j, bi is the linear bias of the i-th sam-
ple and we have neglected redshift-space distortions and
all other sub-dominant contributions to the observed
power spectrum. In the Limber approximation - where
j`(x) →

√
π/(2`+ 1)δD(` + 1/2 − x) - this expression

simplifies to:

Sij` =

∫
dk Pm(k, z`)

H2(z`)b
i(z`)b

j(z`)

`+ 1/2
φi(z`)φj(z`),

(3)
where χ(z`) ≡ (`+ 1/2)/k.

For the purposes of this discussion, the most impor-
tant feature of Equation 3 is the fact that the amplitude
of the cross-correlation is proportional to the overlap be-
tween the redshift distributions of those samples. This
is especially relevant if one of the samples has good ra-
dial resolution, in which case it can be split into narrow
bins of redshift. The cross-correlations of all narrow bins
with the other sample will therefore trace the amplitude
of its redshift distribution, and can effectively be used to
constrain it. This is illustrated in Fig. 1, which shows
the cross-power spectrum between a Gaussian photo-z
bin of width σ = 0.05 and a set of narrow redshift bins
(δz ∼ 0.002).

Note also that Eq. 3 implies that the redshift distribu-
tion and the redshift-dependent galaxy bias of the photo-
metric sample are completely degenerate in this method,
and therefore additional information is needed in order to
separate both quantities (e.g. including prior information
or lensing data). Since this is an inherent problem of the
method, and not specific to the case of intensity mapping,
we will simply assume that b(z) is a sufficiently smoothly-
varying function of z, thus treating IM and spectroscopic
surveys on an equal footing. The more complicated bias-
ing scheme that arises on small scales also prevents the
use of those modes to constrain φ(z) [4], and therefore one
must be conservative when deciding the range of scales
to include in the analysis.

Different recipes have been formulated to carry out this
kind of analysis, such as the optimal quadratic estimator
method of [26]. The forecasts presented here will inter-
pret the redshift distribution (in a parametric or non-
parametric form) as a set of extra nuisance parameters,
on which we will carry out the Fisher matrix analysis de-
scribed in Section II E. Thus, even though our results will
be optimistic in as much as the Fisher matrix saturates
the Rao-Cramer bound, they will account for all correla-
tions between redshift distribution parameters and with
the cosmological parameters, as well as the presence of
redshift-space distortions and magnification bias (effects
that have been overseen in previous works).

For the purposes of estimating the ability of future
surveys to calibrate photometric redshift distributions
through cross-correlations, we will always consider an in-
dividual redshift bin for a photometric sample with un-
known distribution, together with a set of overlapping
narrow redshift bins of spectroscopic galaxies or inten-
sity mapping observations. Let Np(z) be the overall true
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redshift distribution of the photometric sample, and let
p(zph|z) be the conditional distribution for a photo-z zph

given the true redshift z. Then, the redshift distribution

in a photo-z redshift bin b with bounds zib < zph < zfb is
given by

φb(z) ∝ Np(z)

∫ zfb

zib

dzph p(zph|z). (4)

In what follows we will consider two degrees of complexity
in terms of describing the unknown redshift distribution:

1. We will assume Gaussian photo-zs with a given
variance (σ2

z) and bias ∆z:

p(zph|z) ≡ N (zph −∆z; z, σz)

≡
exp

[
− 1

2
(zph−z−∆z)2

σ2
z

]
√

2πσz
, (5)

and we will assume that the uncertainty in the red-
shift distribution is fully described by ∆z and σz.

2. We will use a non-parametric form for φb(z), given
as a piecewise function with a free amplitude for
each spectroscopic redshift bin.

Our assumed fiducial value for ∆z and σz, as well as the
binning scheme used are described in Section II B.

We finish this section by noting that the use of cross-
correlations with spectroscopic surveys or intensity map-
ping observations for photo-z calibration is not limited to
the measurement of the redshift distribution of a given
galaxy sample, but that they can also be used to im-
prove the precision of photometric redshift estimates for
individual galaxies (e.g. [27]). Although we leave the
discussion of this possibility for future work, we describe
a Bayesian formalism for this task in Appendix A.

B. Photometric redshift surveys

This section describes the model used here for a LSST-
like photometric redshift survey. As in [28], we base our
description of the number density of sources and their
magnification bias on the measurements of the luminos-
ity function of [29], with k-corrections computed with
kcorrect [30]. We assume a magnitude cut of 25.3 in
the i band, corresponding to the so-called “gold” sample
[31]. Unlike [28], and for simplicity, we will consider a sin-
gle galaxy population, instead of splitting it into “red”
and “blue” sources. The resulting redshift distribution is
shown by the solid black line in Figure 2.

We model the linear galaxy bias as a function of red-
shift as b(z) = 1+0.84z, based on the simulations of [32],
and quoted in the LSST science book [31].

The photometric redshift requirement for the gold sam-
ple as stated in the LSST science book are σz/(1 + z) <
0.05, with a goal of 0.02. Here we have taken a con-
servative estimate, assuming a standard deviation σz =
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FIG. 2. Angular number density of galaxies as a function
of redshift for the LSST gold sample (solid black line). The
colored lines show the window functions of the 15 redshift
bins considered here.

Experiment SKA MeeKAT HIRAX

Tinst 25K 25 K 50 K

ttot 10000 h 4000 h 2.8 × 104 h

Ndish 197 64 1024 (32 × 32)

Ddish 15 m 13.5 m 6 m

ν range 350-1050 MHz 600-1050 MHz 400-800 MHz

fsky 0.4 0.1 0.4

TABLE I. Experimental specifications assumed for SKA,
MeerKAT and HIRAX. The baseline distributions for each
experiment are described in Section II C. Note that the fre-
quency ranges above correspond to the UHF band of SKA
and MeerKAT.

0.03(1 + z). We then split the full sample into redshift
bins with a width given by 3×σ̄z, where σ̄z is the photo-z
variance at the bin centre. This binning scheme is cho-
sen to reduce the correlation between bins induced by
the tails of the photo-z distribution, and results in the
15 redshift bins shown in Fig. 2 (where the redshift distri-
butions are computed with Eq. 4). Our fiducial photo-z
model will assume biased Gaussian distributions, fully
determined by σz and ∆z.

C. Intensity mapping

Intensity mapping (IM) is a novel observational tech-
nique that circumvents the long integration times needed
to obtain reliable spectroscopic redshifts for individual
objects through an approach that is transverse to that
used by photometric surveys. The idea [13, 15, 17, 21]
is to observe the unresolved combined emission of many
line-emitting sources in a relatively wide pixel at different
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frequencies. The signal-to-noise ratio of the correspond-
ing line emission is much stronger than that of the indi-
vidual sources, and thus, combining the intensity mea-
sured across the sky and relating the intensity observed
at a given frequency to the rest-frame wavelength of the
emission line it is possible to produce three-dimensional
maps of the density of the line-emitting species. This
technique is particularly appealing for isolated spectral
lines, as is the case of the 21cm line caused by the spin-flip
transition in neutral hydrogen atoms (HI), and thus HI
intensity mapping has been proposed as an ideal method
to cover vast volumes at relatively low cost.

A number of experiments have been proposed to carry
out IM measurements of the baryon acoustic oscillation
scale, such as BINGO [33], CHIME [34], FAST [35], HI-
RAX [24], SKA [25] and Tianlai [36]. The different in-
strumental approaches to IM can be broadly classified
into two camps:

• Interferometers: the sky emission is measured by
a set of antennas, and the measurements of pairs
of antennas separated by a given baseline d are
cross-correlated to produce the measurement of an
angular Fourier mode with scale l ∼ 2πd/λ (where
λ is the observed wavelength). The intensity map
is then reconstructed by combining pairs with dif-
ferent baselines.

• Single-dish: in this case the sky emission is mea-
sured and auto-correlated by individual antennas.
A band-limited intensity map with a resolution
δθ ∼ λ/Ddish is then produced by varying the an-
tenna pointing, where Ddish is the antenna diame-
ter.

The expressions for the noise power spectrum for both
cases are derived in Appendix C, and can be summarized
as:

Nν
l =

T 2
sys4πfsky

η2∆νttot

{
1

NdishB2(l) , single dish
Ωp

Nd(d=lλ/(2π))λ2 , interferometer.

(6)
Here Tsys is the system temperature, given as a com-
bination of instrumental and sky temperature (see Ap-
pendix C), fsky is the sky fraction covered by the obser-
vations, η2 is the antenna efficiency1, ∆ν is the band-
width in that channel, ttot is the total observation time
for the survey, Ndish is the number of dishes, B(l) is the
harmonic transform of the antenna beam, Nd(d) is the
distribution of baselines and Ωp is the solid angle cov-
ered per pointing. For all experiments discussed here
we will assume η = 1, Gaussian beams so that B(l) =
exp[−`(`+1)θ2

FWHM/(16 log 2)], and Ωp = θ2
FWHM, where

θFWHM is the beam full-width at half maximum, which

1 η is defined as the ratio of the effective to real antenna area.

will approximate as θFWHM = 1.22λ/Ddish. Note that
the baseline distribution Nd is normalized such that:

Ndish(Ndish − 1)

2
=

∫
dd2Nd(d), (7)

where Ndish(Ndish− 1)/2 is the total number of indepen-
dent baselines.

Given their expected full overlap with LSST, we will
consider here the two main currently envisaged southern-
hemisphere intensity mapping experiments: SKA (and
its pathfinder, MeerKAT) and HIRAX.

1. MeerKAT and the SKA

MeerKAT is the 64-dish precursor to the mid-
frequency component of the SKA. MeerKAT is com-
prised of 13.5 metre dishes and will operate between
∼ 550− 3 GHz using three separate receivers. Although,
it will predominantly used as an interferometer, and as
such only be sensitive to relatively small spatial scales,
there is a proposed project to use MeerKAT in single-dish
mode [23]. If such a mode of operation is viable, then
MeerKAT will become an extremely efficient intensity-
mapping facility operating at frequencies that allows the
detection of Hi to z ∼ 1.5. Indeed, a proposed open-time
survey would provide a several thousand square degree
sky survey over the Dark Energy Survey and/or Kilo-
degree Survey areas, which will provide excellent visible
wavelength coverage.

In the 2020s, MeerKAT will be enhanced by the addi-
tion of 130, 15 metre dishes to form the mid-frequency
SKA. Operating at similar frequencies to MeerKAT, the
additional 130 dishes will provide much more sensitiv-
ity for all science aims, and is capable of carrying out a
∼ 10, 000 deg2 intensity mapping survey [25].

As such, both MeerKAT and the SKA will provide
a unique view on the Hi Universe, and as we will show,
can enhance the cosmological science with the LSST with
cross-correlations.

2. HIRAX

The Hydrogen Intensity mapping and Real-time Anal-
ysis eXperiment (HIRAX) is a proposed close-packed ra-
dio array comprising 1024 six metre dishes disposed in a
32 × 32 grid and operating at 400-800 MHz. The tele-
scope will be located on the South African Karoo site,
which has very low levels of RFI in this band, and pro-
vides an ideal location to overlap in sky coverage with
other planned southern sky cosmological surveys. The
large collecting area and field-of-view provide excellent
sensitivity and mapping speed, with the high density of
short baselines allowing for sensitive measurements of
the baryon acoustic oscillation (BAO) scale in the cos-
mic HI distribution from redshift ∼0.8 to 2.5, which in
turn will provide competitive constraints on dark energy
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[24]. HIRAX will make high signal-to-noise maps of 21cm
intensity fluctuations over 15,000 sq degrees (taken to
overlap fully with LSST) on cosmological scales of inter-
est, with the relatively high frequency resolution (1024
channels over the 400 MHz bandwidth) allowing for ac-
curate redshift calibration of 21cm intensity maps. This
makes it ideal for calibration of LSST photometric red-
shifts through the cross-correlation technique.

3. Generic IM experiment

Besides SKA and HIRAX we will also explore the ca-
pabilities of a generic intensity mapping experiment in
terms of photo-z calibration. The performance of a given
experiment is roughly determined by three quantities:

• The range of angular scales over which the noise
power spectrum is low enough to probe the cosmo-
logical HI emission. This range can be character-
ized by the minimum and maximum baselines dmin

and dmax.

• The noise level (normalized by the bandwidth ∆ν)
σT on this range of scales. For a fixed integration
time, this is determined by the system temperature
Tsys and the observed sky area fsky.

Here we will model the effects of the minimum and maxi-
mum baselines as a sharp and an inverse-Gaussian cutoff
respectively. Thus, our model for the angular noise power
spectrum is:

Nν
` =

σ2
T

∆ν

[
Θ

(
`λ

2π
, dmin

)]−1

exp

[
`(`+ 1)

θ2
beam

8 log 2

]
,

(8)
where θbeam ≡ 1.22λ/dmax and Θ(x, xi) is 1 if xi < x
and 0 otherwise. Note that by definition σT has units

of [mK rad MHz1/2]. For comparison, the equivalent val-
ues of these parameters that roughly reproduce the noise
curves for HIRAX are:

dHIRAX
min = 6 m, dHIRAX

max ∼ 300 m,

σHIRAX
T ∼ 10−3 mK rad MHz1/2

4. Foregrounds

One of the main obstacles that HI intensity mapping
must overcome to become a useful cosmological tool is
the presence of galactic and extragalactic foregrounds
several orders of magnitude larger than the 21cm cos-
mological signal [37, 38]. Under the assumption that
foregrounds are coherent in frequency (as opposed to the
cosmic signal tracing the density inhomogeneities along
the line of sight), these foreground sources can be in
principle efficiently removed using component-separation
methods [38–40]. However, instrumental imperfections,

such as frequency-dependent beams or polarisation leak-
age, can generate foreground residuals with a non-trivial
frequency structure that could strongly bias cosmologi-
cal constraints from 21cm data alone. In any case, the
removal of frequency-smooth components will introduce
large uncertainties on the large-scale radial modes of the
21cm fluctuations.

Here we have introduced the effect of foregrounds by
including an extra component, f , in the sky model for
HI accounting for foreground residuals. Thus we will as-
sume that the measured harmonic coefficients at a given
frequency ν are given by:

aν`m = sν`m + fν`m + nν`m, (9)

where sν`m and n`m are the true cosmological signal and
the instrumental noise contribution. We will model f as
an almost-correlated component with a cross-frequency
power spectrum given by

Cνν
′

f,`m ≡ 〈fν`mfν
′∗

`m 〉

= AFG

(
`

`∗

)β (
νν′

ν2
∗

)α
exp

[
− log2(ν/ν′)

2ξ2

]
. (10)

Here AFG and β parametrise the amplitude of the fore-
ground residuals and their distribution on different an-
gular scales, and α describes their mean frequency de-
pendence. Finally, ξ parametrises the characteristic fre-
quency scale over which foregrounds are decorrelated.
When including the effects of foregrounds (Section III C)
we will also marginalize over (AFG, α, β, ξ). For α and β
we will use the fiducial values α = −2.7 and β = −2.4,
corresponding to galactic synchrotron emission [37, 41],
and we will set AFG = 1 mK2, large enough for the resid-
uals to dominate the equal-ν power spectrum2. We will
study the final constraints as a function of ξ.

Effectively, this extra component cancels the constrain-
ing power of all radial modes of the 21cm fluctuations
with comoving radial wavenumbers k‖ below a scale kFG

‖ ,

related to ξ through

kFG
‖ ∼ πH(z)

c (1 + z) ξ
(11)

The effect of foregrounds on the ability to constrain
redshift distributions can be readily understood as loss of
information in the k‖−k⊥ space. In the flat-sky approxi-
mation, and on linear scales, the angular power spectrum
between two tracers i and j of the matter density can be
computed as:

Cijk⊥ =

∫
dk‖

2π
P (k‖, k⊥)W i(k‖)W

j∗(k‖), (12)

2 We use a pivot scale `∗ = 1000 an a privot frequency ν∗ =
130 MHz, as in [37].
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where we have again ignored the effect of redshift-space
distortions and:

W k(k‖) ≡
∫
dx‖ φ

k(x‖)b
k(x‖)D(x‖)e

ix‖k‖ . (13)

Here D is the linear growth factor and bk and φk are the
linear bias and selection function for the k-th tracer. Let
us assume that i is a photometric redshift bin and j is a
narrow intensity mapping frequency shell with comoving
width δχ centered at χ∗. Assuming D and the bias bj to
be slowly-varying functions of χ we obtain:

Cijk⊥ =

∫
dk‖

2π
P (k‖, k⊥)W i(k‖)D(χ∗)b

j(χ∗)j0(k‖δχ/2).

(14)
Now, assuming that φi has support over a wide range
of redshifts, corresponding to a comoving width ∆χ, its
Fourier transform (∼ W i) will only have support over
wavenumbers k‖ . 1/∆χ. Since the Bessel function j0
provides support over all values of k‖ . 1/δχ, and un-
der the assumption that δχ < ∆χ, the total number of
modes that contribute to Cij is bound by ∼ 1/∆χ. Since
foreground contamination will mostly affect large radial
modes, eventually a large fraction of this k‖-range be-
comes dominated by foreground uncertainties and stops
contributing efficiently to the overall signal-to-noise ra-
tio, thus degrading the final constraints on any model
parameter.

We finish this Section by noting that, as described in
Section II A, the main constraining power for photo-z
calibration comes from the cross-correlation of the pho-
tometric and spectroscopic samples. Since the photo-
metric sample would not suffer from foreground contam-
ination, these cross-correlations are very robust against
foreground biasing, which makes photo-z calibration an
ideal application of IM.

D. Spectroscopic surveys

In order to showcase the possibility of calibrating red-
shift distributions through cross-correlation with future
intensity mapping experiments we will compare their
forecast performance against that of the most relevant
future spectroscopic suveys:

• The Dark Energy Spectroscopic Instrument (DESI)
[42] is a spectroscopic galaxy survey planned to
cover ∼ 14000 deg2 from its northern-hemisphere
location at Kitt Peak National Observatory. We as-
sume an area overlap of fsky = 0.2 with LSST, and
we model the number density and clustering bias of
the two galaxy samples considered here (Luminous
Red Galaxies and Emission Line Galaxies) as done
in [43].

• The Euclid galaxy survey [44] is a space-borne
infrared spectrograph that will aim to detect ∼
5 × 107 Hα-emitting galaxies in the redshift range

0.0 0.5 1.0 1.5 2.0 2.5 3.0
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∝ ρHI

FIG. 3. Angular number density of galaxies as a function of
redshift for the three spectroscopic surveys considered here:
DESI (solid), Euclid (dashed) and WFIRST (dot-dashed).
The red solid line shows the redshift dependence of the mean
HI density (arbitrarily normalized) for comparison.

0.65 < z < 2 over ∼ 15000 deg2. We assume full
overlap with LSST, and we model the number den-
sity and bias as in [43].

• The Wide Field Infrared Survey Telescope
(WFIRST) [45] is a future space observatory in the
infrared that will measure redshifts for ∼ 2.6× 107

objects over ∼ 2000 deg2. The deep nature of
WFIRST will make it ideal to calibrate the LSST
redshift distribution at high redshifts. We model
the number density and bias of the WFIRST sam-
ple as in [43], and we assume a full overlap with
LSST (fsky = 0.05).

Figure 3 shows the redshift distributions for galaxies de-
tected by these three experiments.

E. Forecasting formalism

Our formalism will distinguish between two types of
tracers of the density field:

• Spectroscopic: tracers whose redshift distribution
is well known. This would correspond to tracers
with good radial resolution such as a narrow red-
shift bin of spectroscopic sources or an intensity
map in a narrow frequency band, as well as other
tracers with a well-known window function, such as
a CMB lensing map.

• Photometric: tracers whose redshift distribution
is unknown or uncertain. This would correspond
to e.g. a photometric-redshift bin, a radio contin-
uum survey or a map of the Cosmic Infrared Back-
ground.
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Let us start by considering a set of sky maps corre-
sponding to a number of tracers, and let a be the corre-
sponding vector of maps expressed in a given basis. In
the following sections we will assume that a is stored in
terms of spherical harmonic coefficients and that it takes
the form a`m = (p`m, s

1
`m, ...s

Ns

`m), where p`m is a photo-
metric tracer and si`m is a set of spectroscopic tracers.
For the moment, however, we will keep the discussion
general.

Assuming that a is Gaussianly distributed with zero

mean and covariance Ĉ ≡ 〈aa†〉, its log-likelihood is given
by:

L ≡ −2 log p(a) = a†Ĉ−1a + log(det(2πĈ)). (15)

Now let qi be a set of parameters modelling Ĉ, including
(but not limited to) the parameters describing the photo-
metric redshift distribution. A maximum-likelihood esti-
mator for qi can be defined by using an iterative Newton-
Raphson method to minimize Eq. 15. This is described
in [26, 46, 47], and yields the iterative algorithm:

qni = qn−1
i + [F̂−1]ij

[
a†Ĉ−1Ĉ,jĈ

−1a− Tr(Ĉ,jĈ
−1)
]
,

(16)

F̂ij ≡
〈

∂2L
∂qi∂qj

〉
= Tr

(
Ĉ−1Ĉ,iĈ

−1Ĉ,j
)
,

where, in Eq. 16 there is an implicit summation over j,
the sub-index ,i implies differentiation with respect to qi,

F̂ is the Fisher matrix, qni is the n−th iteration of the
solution for qi and the previous iteration qn−1

i is used to

compute Ĉ and Ĉ,i in the second term. Note that we
have simplified a pure Newton-Raphson iteration by tak-
ing the ensemble average of the likelihood Hessian (i.e.
the Fisher matrix). Furthermore, in the case where the

likelihood is well-approximated by a Gaussian, F̂−1 is the
covariance matrix of the qi. Eq. 16 is the basis of the
method proposed in [26] (with a number of simplifica-
tions) and used in [11] to constrain the redshift distribu-
tion of galaxies in the KiDS survey.

In our case, we mainly care about the uncertainty in
the redshift distribution parameters included in the qi,
and therefore we will simply estimate the Fisher matrix

F̂. In the case where a is a set of spherical harmonic co-

efficients with power spectrum 〈a`ma†`′m′〉 = δ``′δmm′ Ĉ`,

F̂ is given by

F̂ij =

`max∑
`=2

fsky(`+ 1/2) Tr
(
Ĉ−1
` Ĉ`,iĈ

−1
` Ĉ`,j

)
, (17)

where we have approximated the effects of a partial sky
coverage by scaling the number of independent modes per
` by the sky fraction fsky. The form of the power spectra

Ĉ` for the different tracers considered in this work is given
in Appendix B.

As explicitly shown in Eq. 17, smaller-scale modes
carry a higher statistical weight (proportional to ∼ `),

and would in principle dominate the redshift distribution
constraints. The smallest scales are, however, dominated
by theoretical uncertainties from non-linearities in the
evolution of the density field and the galaxy-halo con-
nection, and therefore a multipole cutoff `max must be
used to contain the constraining power of systematics-
dominated modes. In this paper we use a redshift-
dependent cutoff defined as follows. Let z be the mean
redshift of a given redshift bin, and let σ2(k∗) be the vari-
ance of the linear density field at that redshift on modes
with wavenumber k < k∗:

σ2(k∗, z) ≡
1

2π2

∫ k∗

0

dk k2 Pm(k, z). (18)

We then define the cutoff scale as `max(z) = χ(z) kmax(z),
where kmax(z) satisfies σ(kmax, z) = σthr for some choice
of σthr. In what follows we will use a fiducial threshold
σthr = 1, corresponding to kmax(z = 0) ' 0.3hMpc−1,
and we will study the dependence of our results on this
choice. Besides this choice of `max, we will also im-
pose a hard cutoff for all galaxy-survey and intensity-
mapping tracers of ` < 2000 (thus, in reality, `max =
min(χkmax, 2000)).

III. RESULTS

In order to forecast for the ability of future exper-
iments to constrain photometric redshift distributions,
in the following sections we will use the formalism de-
scribed in Section II E with a data vector given by
a`m = (p`m, s

1
`m, ..., s

Ns

`m), where p is a photometric red-
shift bin and si are a set of overlapping redshift bins for
a spectroscopic tracer (either an intensity mapping ex-
periment or a spectroscopic galaxy survey). The number
Ns, width and redshift range of the spectroscopic redshift
bins is chosen in order to adequately sample the changes
in the photometric redshift distribution. We choose the
redshift bin width to be 33% of the photo-z uncertainty
σz, which governs the variability of the redshift distri-
bution (i.e. each redshift interval of σz is sampled in 3
points). In order to sample the tails of the distribution
we then define the redshift range of the set of spectro-

scopic bins as [zib − 3σz, z
f
b + 3σz], where zib and zfb are

the edges of the photometric redshift bin. The number
of spectroscopic redshift bins Ns is then defined in terms
of these numbers.

The model parameters qi in the following sections will
be given by:

• All of the parameters needed to determine the red-
shift distribution (σz, ∆z or the amplitude N(z)
in different spectroscopic bins, depending on the
case).

• Two overall clustering bias parameters, bp and bs,
corresponding to the bias of the photometric and
spectroscopic tracers.
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FIG. 4. Left panel: forecast 1σ constraints on the photo-z scatter σz (solid lines) and bias ∆z (dashed lines) for the three IM
experiments under consideration: HIRAX (blue), SKA (red) and MeerKAT (yellow). Right panel: comparison of the previous
three intensity mapping experiments, in terms of the forecast constraints on σz, with three future spectroscopic surveys: DESI
(black solid), Euclid (black dashed) and WFIRST (black dot-dashed). In both panels, the thin solid line shows the photo-z
calibration requirement on both σz and ∆z for LSST, with the corresponding requirement for DES shown as a thin dashed line
in the right panel. The coloured bands in the upper part of all plots show the proposed frequency ranges for the three 21cm
experiments (same color code). We have assumed using the UHF band for SKA and MeerKAT. The L-band would be able to
cover all redshifts below z ∼ 0.35.

• We will also include two cosmological parameters:
the fractional matter density ΩM and the ampli-
tude of scalar perturbations As, in qi in order to
account for the possible cosmology dependence of
the results.

We will change this setup in Section III E, where we
will explore the impact of the achieved constraints on
the photo-z parameters on the final cosmological con-
straints. In this section a will correspond to the 15 pho-
tometric redshift bins for LSST, for both galaxy cluster-
ing and weak lensing (i.e. 30 sets of spherical harmon-
ics). Likewise qi will contain the cosmological parameters
(ωc, ωb, h, w0, wa, As, ns, τreio) as well as all the baseline
photo-z parameters (∆z and σz for all redshift bins), with
priors corresponding to the constraints found in the pre-
ceding sections.

A. Baseline forecasts

Using the formalism described above, and in the sim-
plified scenario of Gaussian photo-zs, we present, in the
left panel of Figure 4, the forecast constraints on the
photo-z bias (∆z) and variance (σz) for the key intensity
mapping experiments introduced in Section II C. In this
and all subsequent plots, the thin black solid line shows
the LSST requirement of σ(∆z, σz) . 10−3(1+z) [48, 49],
while the thin dashed line corresponds to the nominal re-
quirement for the Dark Energy Survey (2 × 10−3) [50].
The coloured bars in these and all subsequent plots show
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z
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)

SKA full
SKA sing. dish
SKA interf.

MeerKAT full
MeerKAT sing. dish
MeerKAT interf.

FIG. 5. Forecast constraints on the LSST photo-z scatter σz

for SKA (red) and MeerKAT (yellow) assuming only interfer-
ometric observations (dot-dashed lines), single-dish observa-
tions (dashed lines) and both simultaneously (solid lines).

the redshift ranges corresponding to the proposed fre-
quency bands of the three IM experiments explored here.

Two key features must be noted in this figure: first, the
uncertainties grow steeply at low redshifts. This is due
to the reduced number of modes available in that regime,
associated with the smaller comoving volume and the im-
pact of non-linearities on lower values of k. The latter
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FIG. 6. Dependence of the constraints on the LSST photo-
z scatter σz on the overdensity variance threshold used to
filter out non-linear scales (see Equation 18). The results are
shown for HIRAX (blue), SKA (red) and MeerKAT (yellow).
The fiducial value used in this analysis is shown as solid lines,
while a more optimistic scenario where all multipoles up to
` = 5000 are included at all redshifts is shown as a dashed line.
This case would mostly benefit interferometric observations,
given their higher sensitivity on small angular scales.

effect is especially severe for HIRAX, given its inability to
measure angular modes larger than its beam size. Note,
however, that this regime lies outside the proposed fre-
quency ranges for both HIRAX (0.8 . z . 2.5) and SKA
(0.35 . z . 3).

Secondly, the ratio between σ(σz) and σ(∆z) stays
roughly constant (∼ 1.4). This is compatible with the
expected ratio between the uncertainties associated to
the maximum-likelihood estimates of the mean and stan-
dard deviation of a Gaussian distribution from a finite
number of samples (σ(σ)/σ(µ) =

√
2). This result holds

for most of the cases explored here (see Section III C for
an exception), and thus we have omitted the curves for
σ(∆z) in most of the subsequent figures.

The right panel of Fig. 4 compares the constraints
achievable by IM experiments with those forecast for the
spectroscopic surveys described in Section II D. We see
that both SKA and HIRAX would be able to satisfy the
LSST requirements over the redshift range of interest.
The SKA precursor MeerKAT would fall short except
at low redshifts. However, the shorter-term timeline of
MeerKAT (2018 onward) would make it an ideal exper-
iment to prove the viability of this technique in cross-
correlation with the Dark Energy Survey (DES) [50], par-
ticularly in the light of the proposed intensity mapping
surveys [23] targeting a full overlap with DES3.

3 Note that the photo-z calibration requriements, defined in terms

As discussed in [22], the dish size of SKA is not ideal
for cosmological observations, since it is not large/small
enough to resolve the angular BAO scale sufficiently well
in either single-dish or interferometric modes, although
single-dish observations are able to address important sci-
ence cases such as primordial non-Gaussianity [28, 51].
Small scales carry a larger statistical weight, however,
and it is not clear that a single-dish strategy would also
be ideal for the purposes of photo-z calibration. This is
explored in Figure 5, which shows the constraints on σz
achievable with single-dish (dashed lines) and interfer-
ometric (dash-dotted lines) observations for SKA (red)
and MeerKAT (yellow). The constraints from a joint
auto- and cross-correlation analysis are shown as solid
lines, and correspond to the results reported here. We
see that, in the case of SKA, the single-dish mode out-
performs the interferometer up to z ∼ 1.4, when a suf-
ficiently large number of usable modes enter the regime
probed by the latter. This suggests that, if simultane-
ous single-dish and interferometric observations proved
to be unfeasible, the photo-z calibration requirements
could still be met by using either mode in different red-
shift ranges.

The performance of this method at low redshift de-
pends crucially on the prescription used to isolate the
effect of non-linearities. Here we have done this in
terms of the threshold rms variance σthr defined in Eq.
18 for a fiducial value of σthr = 1, corresponding to
kmax ∼ 0.3 Mpc−1 h at z = 0. Figure 6 shows the re-
sult of relaxing or tightening this criterion. The effect
on SKA and MeerKAT is only moderate, since these ex-
periments gather most of their sensitivity from the large,
linear scales in auto-correlation mode. HIRAX, on the
other hand, loses sensitivity more rapidly as the scale of
non-linearities removes a larger fraction of the available
modes. Nevertheless, even for σthr = 0.5 (corresponding
to kmax = 0.1 Mpc−1 h at z = 0) the LSST calibration re-
quirements are satisfied in the redshift range correspond-
ing to the HIRAX frequency band.

B. Dependence on experimental parameters

We have so far quantified the potential of currently-
proposed experimental configurations for photo-z cali-
bration. The aim of this section is to identify the optimal
instrumental specifications for this task.

We start by exploring the balance between noise level
and sky fraction, varying the total overlapping area of
the three experiments explored in the previous section
(SKA, MeerKAT and HIRAX) keeping the total obser-
vation time fixed. The result is presented in Figure 7,
which shows the achievable constraints on σz when re-
ducing the sky area by successive factors of 2. We find

of the degradation of the final constraints, should be less strin-
gent for DES
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FIG. 7. Dependence of the forecast constraints on the LSST
photo-z scatter σz on the overlap sky fraction for constant
total observation time. In all cases the constraints are mostly
insensitive to the trade-off between sky area and noise level,
although larger areas are marginally preferred, which reflects
the fact that these measurements are mostly dominated by
cosmic variance and not noise.

that, although the results are almost insensitive to the
reduction in fsky, larger sky areas are always preferred, a
reflection of the fact that the constraints are dominated
by cosmic variance rather than noise.

As we have discussed in the previous section, the key
drawback of single-dish experiments is their inability to
access angular scales smaller than the beam size (with
their higher statistical weight). Conversely, interferom-
eters are unable to cover scales larger than that probed
by their smallest baseline, and therefore they have access
to a limited number of reliable (i.e. mildly non-linear)
modes. Using the generic instrument parametrization
given by Eq. 8, and the fiducial parameters correspond-
ing to HIRAX, Figure 8 explores these issues.

The upper panel shows the constraints achievable by a
single-dish experiment for different dish sizes. Dishes of
at least 15m (corresponding to the SKA case) are needed
in order to achieve the LSST requirements at all red-
shifts, while a ∼ 100m dish (e.g. such as the Green Bank
Telescope [20]) would be able to achieve constraints sim-
ilar to those of HIRAX. The largest currently planned
experiment is FAST [35], with a dish size of 500m.

The lower panel of the figure shows the performance of
an interferometer as a function of the minimum baseline
dmin. In this case the main effect is the loss, at lower red-
shifts, of the large, mildly non-linear scales. A maximum
baseline of at most 12m is needed in order to calibrate
redshift distributions below z ∼ 0.5 with sufficient accu-
racy.
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FIG. 8. Upper panel: dependence of the forecast constraints
on the LSST photo-z scatter σz on the dish size for single-dish
IM observations. A dish size of at least ∼ 15m is needed to
match the LSST requirements throughout the whole redshift
range. Lower panel: dependence on the minimum baseline
for interferometers. Baselines of at most ∼ 12m are needed
to successfully constrain photo-z systematics below z ∼ 0.5.

C. Foregrounds

As we discussed in Section II C 4, the main effect of
radio foregrounds for 21cm observations is to make large
radial scales (i.e. modes with k‖ smaller than some kFG

‖ )

useless. We have parametrised this by introducing an
extra component corresponding to foreground residuals
characterised by an amplitude AFG and a frequency cor-
relation length ξ (see Section II C 4 and Eq. 10 for a
full description). We set AFG to a value large enough
to dominate the emission on radial scales larger than the
comoving length corresponding to ξ (see Eq. 11), and
study the final constraints as a function of ξ.

Figure 9 shows the result of this analysis: while suffi-
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FIG. 9. Upper panel: dependence of the forecast constraints
on the LSST photo-z scatter on the frequency correlation
length of foreground residuals (a measure of the coherence of
these residuals across frequencies). Correlation lengths above
ξ ∼ 0.1 (corresponding to radial scales k‖ ∼ 0.01hMpc−1)
are necessary to limit the degradation of the photo-z calibra-
tion. Lower panel: impact of the foregrounds wedge on the
final constraints on the photo-z scatter.

ciently coherent foregrounds (ξ & 1) do not qualitatively
modify the final results for the three experiments under
consideration, correlation lengths smaller than ξ ∼ 0.1
would result in a fast degradation of the performance for
photo-z calibration. In particular, the associated loss
of k-space volume would prevent MeerKAT and SKA
from reaching the calibration requirements for DES and
LSST. The peformance of HIRAX would also be severely
compromised by foreground contamination, although it
would still be able to reach the required constraints
within its proposed frequency range.

These results pose the question of how uncorrelated
we can expect foreground residual to be. For reference,
raw foreground components are constrained to have cor-

relation lengths of ξ ∼ 1 − 10 [37]. On the other hand,
more complicated residuals arising from leaked polarised
synchrotron would exhibit a much richer frequency struc-
ture caused by Faraday rotation, with correlation lengths
ξ ∼ 0.1 at high frequencies (∼ 800 MHz) decreasing for
longer wavelengths [39, 40, 52]. An exquisite instrumen-
tal calibration will therefore be necessary in order to op-
timise the scientific output of 21cm experiments. It is
worth noting that the comoving scale corresponding to
ξ ∼ 0.1 (k‖ ∼ 0.01hMpc−1 at z ∼ 1) is similar to the
cut suggested by [39], although the expontial form as-
sumed here for the power spectrum of the foreground
residuals (Eq. 10) extends the degrading effect into larger
wavenumbers.

A further complication comes in the form of the so-
called “foreground wedge”, produced by the long time-
delay contribution of foregrounds from antennas with far
side-lobe responses [53–56]. As proven in [57, 58], this
effect makes the region of k-space defined by:

khor
‖ <

χ(z)H(z)

c(1 + z)
k⊥ (19)

liable to foreground contamination. This is the so-called
“horizon” wedge, and corresponds to the case where fore-
ground contamination can be caused by the sources in the
horizon picked up by very far sidelobes. Under optimistic
assumptions, however, we can consider the case where
this effect extends only up to foreground sources located
in the outer fringes of the primary beam, in which case
the size of the wedge is reduced to the so-called primary-

beam wedge [58], given by kpb
‖ = sin(θFWHM/2)khor

‖ . The

lower panel of Figure 9 shows that the LSST photo-z cali-
bration requirements are still met after accounting for the
loss of k-space to the primary beam wedge.

D. Generalized redshift distributions

Even though the simple parametrization of photo-z
systematic uncertainties in terms of ∆z and σz allows
us to easily compare the performance of different exper-
iments in terms of photo-z calibration, in a realistic sce-
nario we would like to calibrate generic redshift distribu-
tions without assuming a particular parametrization.

This is typically done by promoting the amplitude of
the redshift distribution of the photometric sample in
each narrow redshift interval to a free parameter that
can be constrained from the cross-correlation with the
spectroscopic survey. In this section we explore this sce-
nario for the same redshift bins considered in the previous
sections.

For this we use the method proposed by [26]. In
essence, this method is equivalent to the formalism out-
lined in Section II E, where the free parameters qi con-
sidered are the amplitudes of the photometric redshift
distribution. The method is further simplified in [26] to
make it applicable to the analysis of real data using the
following approximations:
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FIG. 10. Non-parametric reconstruction of the redshift distribution for four different redshift bins. The points with error bars
show the 1σ constraints on φ(z) achievable with HIRAX (blue), SKA (red) and MeerKAT (yellow), as well as two spectroscopic
surveys (green), DESI and WFIRST, at low and high redshifts respectively. Note that, given the proposed frequency band for
HIRAX, it would not be able to calibrate the low and high-redshift bins shown here.

1. All power spectra are computed using the Limber
approximation. This implies (among other things)
that all cross-correlations between non-overlapping
redshift bins are neglected.

2. The contributions from RSDs and magnification
bias are not included in the model for the angu-
lar power spectra.

3. No marginalization over cosmological or other nui-
sance parameters is carried out.

4. The auto-correlation of photometric sources does
not contain information about their redshift distri-
bution.

We have adopted these same assumptions here to simplify
the discussion.

Figure 10 shows the constraints achievable by different
IM experiments and spectroscopic surveys on the general-
ized form of the redshift distribution for three photomet-
ric redshift bins centered around z ∼ 0.5, 1.35 and 2.64.
The constraining power displayed in this figure matches
the results shown in the right panel of Figure 4.

Note that the uncertainties on the amplitude of the
redshift distribution found this way can be translated
into uncertainties on the two parameters ∆z and σz used
to characterize this distribution in the previous section
by performing a simple 2-parameter likelihood analysis
for the model in Eqs. 4 and 5. We find that, using this
procedure, we recover constraints on ∆z and σz that are
a factor ∼ 2−3 worse than in the optimal case. This can

4 Note that the first and last bins would lie outside the proposed
frequency range of HIRAX

be understood in terms of the simplifying assumptions
adopted here, such as neglecting the information encoded
in cross-bin correlations and in the auto-correlation of the
photometric sample. In all cases, however, we recover the
same relative performance between different experiments
in terms of σ(σz,∆z).

E. Impact on cosmological constraints

In order to study the impact of photo-z calibration on
the final cosmological constraints we have run a Fisher
matrix analysis using the formalism described in Section
II E with the specifications for LSST described in Section
II B. In this case we consider a set of 54 free parameters:

• 3 nuisance parameters for each of the 15 redshift
bins: the balaxy bias b, the photo-z bias ∆z and
the photo-z scatter σz.

• 9 cosmological parameters: the fractional density
of cold dark matter Ωc h

2, the fractional density in
baryons Ωb h

2, the normalized local expansion rate
h, the amplitude and tilt of primordial scalar per-
turbations As and ns, the optical depth to reion-
ization τ , the equation of state of dark energy in
the w0-wa parametrization and the sum of neutrino
masses

∑
mν .

In order to pin down the early-universe parameters, we
also include information from a hypothetical ground-
based Stage-4 CMB experiment [59] using the specifi-
cations assumed in [60] and complemented by Planck at
low multipoles.

For the photo-z nuisance parameters we then add
Gaussian priors corresponding to the 1σ uncertainties
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FIG. 11. Constraints on the equation of state of dark energy
and the sum of neutrino masses in the absence of external
photo-z calibration (blue ellipses), with redshift distributions
calibrated through cross-correlation with a HIRAX-like 21cm
experiment (red ellipses) and in the case of perfect calibration
(dashed lines). The constraints also include early-universe
information from a Stage-4 CMB experiment.

on σz and ∆z found using the procedure described in
the previous sections for the different experiments con-
sidered in this paper. The results of this exercise are
displayed in Figure 11, which shows the constraints on
the most relevant late-universe parameters: the dark en-
ergy equation of state parameters, w0 and wa, and the
sum of neutrino masses. The results shown correspond to
the 1σ contours in the absence of photo-z uncertainties
(dashed black line), with photo-z systematics constrained
through cross-correlation with a 21cm experiment, in this
case HIRAX (red ellipse) and in the absence of external
data for photo-z calibration (blue ellipse).

It is important to stress that the overall constraints
on these parameters forecast here depend heavily on the
survey specifications assumed (e.g. photo-z model and
uncertainties), as well as the scales included in the anal-
ysis, a point where we have tried to be very conserva-
tive. Thus, the results shown in Figure 11 should not
be taken to represent the final constraints achievable by
LSST. The main result shown in this figure is the rela-
tive improvement on the final constraints after photo-z
calibration, which should be more robust to these con-
siderations.

Photo-z calibration improves the constraints on each
of these parametes by a factor ∼ 1.5 − 2, and the dark
energy figure of merit by a factor & 5. Furthermore, we
find that the level of calibration achievable through cross-
correlations with intensity mapping experiments is nearly
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FIG. 12. Forecast constraints on the LSST photo-z bias ∆z
in the absence of external datasets (green), and adding CMB
lensing data from Stage-3 (purple) and Stage-4 (cyan) CMB
experiments.

equivalent to the case of perfect calibration. Equivalent
results are found for SKA and HIRAX, as well as for the
combination of DESI, Euclid and WFIRST, as could be
expected from the results displayed in the right panel of
Figure 4.

IV. DISCUSSION

In this paper we have shown that intensity maps of
the HI emission can be used to improve the scientific
output of photometric redshift surveys. By exploiting
the cross-correlations between imaging surveys of galax-
ies and HI maps, we find that it is possible to optimally
calibrate the photometric redshift distributions. This is
made clear when assessing improvements in constraints
on cosmological parameters: in Figure 11 we see that the
FoM using this method is effectively as good as having
perfect calibration. This also means that, with the aid of
future IM experiments it should be possible to, for exam-
ple, improve the LSST equation of state figure of merit
by approximately a factor of 5.

This approach is promising, but it is important to
highlight some of the limitations that have to be over-
come if IM is to be used successfully in this context.
For a start, it will be important to be able to deal with
foreground contamination. In essence, as we have dis-
cussed, one can model the effect of foregrounds as a
source of noise that cancels the information contained
in long-wavelength radial modes. This effect is therefore
greatly dependent on how coherent foreground residuals
are in frequency. We can expect foregrounds to be highly
correlated in intensity, with correlation lengths of order
ξ ∼ 1 − 10. However, instrumental effects such as po-
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larization leakage or frequency-dependent beams could
spoil this coherence and lead to significant losses in the
coverage of the k‖-k⊥ plane. We estimate that residu-
als with correlation lengths ξ . 0.1 (as expected for po-
larised synchrotron emission, and corresponding to scales
k‖ & 0.01hMpc−1 at z ∼ 1) would significantly degrade
the ability of 21cm maps to calibrate redshift distribu-
tions efficiently. We have furthermore shown that the
calibration requirements of future photometric surveys
can also be matched after accounting for the so-called
“foregrounds wedge”. Finally, it is worth noting that
one of the main strength of the method is its reliance
on cross-correlations between the spectroscopic and pho-
tometric samples, and that this cross-correlation should
be very robust against systematic biases caused by fore-
ground contamination.

If we are to use IM to calibrate future redshift surveys,
then we need to make sure that the observational set up
satisfies minimum requirements and to do so, we have ex-
plored its dependence on experimental parameters. We
have found that, for the noise levels of currently pro-
posed experiments, we are primarily limited by cosmic
variance and therefore there is no advantage in gaining
depth at the cost of sky area: it is preferable to maximize
the overlap between the HI maps and the galaxy imag-
ing survey. Furthermore, if we are to accurately capture
the longer wave-length modes, we need to resort to single
dish observations, a promising but as yet untested mode
of observation for MeerKAT and SKA. In the long term,
“1/f” noise contributions will have to be controlled, and
our analysis shows that the dishes must have a mini-
mum size of ∼ 15 metres. If, on the other hand, we are
to use interferometric observations (a method which is
more tried and tested) then we need to ensure a mini-
mum baseline of ∼ 12 metres to capture the large-scale
angular modes. We have shown how MeerKAT, HIRAX
and SKA fall well within these experimental parameter
constraints.

We must also note that our analysis has been conser-
vative in terms of the ranges of scales that add up to the
constraints on photo-z parameters, only including angu-
lar scales in the regime where non-linear structure forma-
tion is believed to be well understood. It may, however,
be possible to use even smaller scales for the purposes of
photo-z calibration [5], in which case some of the conclu-
sions drawn from this analysis could vary. In particular,
the relative performance of HIRAX and SKA in terms of

photo-z calibration could be significantly different, ow-
ing to the higher sensitivity of the SKA interferometer
to small angular scales (see Figure 13).

It is interesting to consider alternative approaches to
sharpening photometric redshift measurements. Gravita-
tional lensing of the CMB has recently been advocated as
a promising approach, given its perfectly well-determined
radial kernel (e.g. see [61]). We can explore this possibil-
ity by considering correlations between LSST and a CMB
lensing convergence κCMB map as in Section II E. We con-
sider two different generations of CMB experiments: an
ongoing “Stage-3” experiment, characterised by an rms
noise level of σT ∼ 8µK arcmin, and a future “Stage-4”
experiment with σT = 1µK arcmin. In both cases we as-
sume very optimistic configurations, with a beam FWHM
of 1 arcmin and using all angular scales ` ∈ [2, 3000]. We
also fix all cosmological and bias parameters, and only
consider varying ∆z and σz for each LSST redshift bin.
Figure 12 shows the constraint on the photo-z bias ∆z in
the absence of CMB lensing data (green solid line), and
using the cross-correlation with κCMB as measured by S3
(purple) and S4 (cyan) experiments. We clearly see that,
even under these overly optimistic assumptions, adding
CMB lensing information does not significantly help cal-
ibrate photo-z uncertainties.

Experiments to undertake intensity mapping of HI are
an ongoing effort, and will give us an extremely promis-
ing new window on the Universe. We have argued that
they will not only contribute in their own right to the
further understanding of the large-scale structure of the
Universe, but will also help improve the scientific returns
from a plethora of up and coming optical surveys.
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Appendix A: Individual clustering redshifts

The idea of using clustering information to constrain the redshifts of individual objects of a given sample has been
considered before in the literature, and shown to yield interesting results even in the absence of spectroscopic data
[27]. Here we outline the steps that should be taken to include intensity mapping information in this formalism.

Our aim is to find the most general expression for the posterior distribution of the true redshifts of a set of galaxies
for which we only have photometric data and an overlapping intensity mapping survey. We start by considering a
data vector d consisting of:

• n̂: galaxy positions.

• m: galaxy magnitudes.

• δHI: a map of the perturbation in the HI density across angles and redshift

For each galaxy we want to estimate a redshift zi, so let z be a vector containing all those redshifts. We want to study
the posterior probability p(z|δHI, n̂,m). Let us start by noting that, in the standard models of large-scale structure,
both δHI and the galaxy distribution can be thought of as being biased and noisy representations of the underlying
matter overdensity δM. Sampling the galaxy redshifts could then also give us information about δM, and therefore
it’s worth considering the joint distribution p(z, δM|δHI, n̂,m).

One can study this distribution by iteratively sampling the two conditional distributions:

δi+1
M ← p(δM|zi, δHI,m, n̂), zi+1 ← p(z|δi+1

M , δHI,m, n̂).

(A1)

We outline these two steps below.

• Conditional density distribution. We start by noting that, if the true redshifts z are known, then the
photometric redshifts given by the magnitudes m are of no use in constraining the overdensity field, and
therefore

p(δM|δHI, z, n̂,m) = p(δM|δHI, z, n̂) (A2)

= p(δM|δHI, δg), (A3)

where δg(z, n̂) is the galaxy overdensity uniquely defined by the galaxy angular coordinates and redshifts.
p(δM|δHI, δg) can then be decomposed using Bayes’ theorem as:

p(δM|δHI, δg) ∝ p(δg|δM) p(δHI|δM) p(δM), (A4)

where, following the same philosophy as above, we have considered that p(δg|δM, δHI) = p(δg|δM), since δHI is
just a noisy and biased realization of δM. All that remains is then to model the conditional distributions p(δg|δM)
and p(δHI|δM), which is by no means a cursory matter, but something that can certainly be accomplished in the
regime of validity of structure formation models.
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• Conditional redshift distribution. Under the assumptions that galaxies are Poisson-distributed over the (bi-
ased) matter overdensity, and that the photometric redshift errors are independent of the environmental density,
it is possible to show (e.g. [27]) that the galaxy redshifts can be sampled individually with the distribution:

p(z|δ, n̂,m) ∝ [1 + bg(δM)(z, n̂)] p(z|m), (A5)

where bg(δM)(z, n̂) is the galaxy overdensity along the angular direction of each galaxy, and p(z|m) is the prior
photo-z distribution.

Appendix B: Angular power spectra

This section describes the theoretical models used for the angular power spectra entering the computation of the
Fisher matrix (Eq. 17). The cross-power spectrum between two tracers of the cosmic density field, a and b, can be
estimated as:

Cab` = 4π

∫ ∞
0

dk

k
PΦ(k)W a

` (k)W b
` (k), (B1)

where PΦ(k) is the power spectrum of the primordial curvature perturbations and W a
` (k) is the window function for

tracer a, containing information about the different contributions to the total anisotropy in that tracer and about its
redshift distribution.

In the case of galaxy clustering and intensity mapping, and neglecting contributions from magnification bias and
large-scale relativistic effects, W a is given by:

W a
` (k) =

∫ ∞
0

dz φa(z)

[
ba(z)Tδ(k, z)j`(kχ(z)) +

1 + z

H(z)
Tθ(k, z)j

′′
` (kχ(z))

]
, (B2)

where H(z) and χ(z) are the expansion rate and radial comoving distance at redshift z respectively, φa(z) is the source
redshift distribution, and Tδ and Tθ are the transfer functions of the matter overdensity and velocity divergence
fields. Note that, even though we include the effect of non-linearities using the non-linear transfer function for δ
(through the prescription of [62]), we only introduce the effect of redshift-space distortions at the linear level, and
only consider a deterministic linear bias ba(z). This is, nevertheless, a more rigorous treatment than has been used
in the literature, and the procedure used to mitigate the effect of non-linearities described in Section II E should
minimize the corresponding impact on the forecasts presented here.

For galaxy shear tracers of weak lensing, the expression for the window function is:

W a
` (k) = −1

2

√
(`+ 2)!

(`− 2)!

∫ ∞
0

dz

H(z)

∫ ∞
z

dz′φa(z′)
χ(z′)− χ(z)

χ(z′)χ(z)
Tφ+ψ(k, z) j`(kχ(z)), (B3)

where Tφ+ψ is the transfer function for the sum of the two metric potentials in the Newtonian gauge.
The computation of Eq. B1 was carried out using a modified version of the Boltzmann code CLASS [63, 64].

Appendix C: Noise power spectrum for intensity mapping experiments

This section derives the expression for the noise power spectra of single-dish experiments and interferometers
presented in Eq. 6. Similar derivations have been provided before in the literature (e.g. [22]), but we include this
calculation here for completeness.

Throughout this section we will use a flat-sky approach, where angles on the sky are represented by a 2D Cartesian
vector x. In this approximation, the spherical harmonic transform of a field becomes a simple 2D Fourier transform:

f`m ≡
∑
`m

f(n̂)Y`m(n̂)→ fl ≡
∫

(dx)2

2π
eix·lf(x). (C1)

We will also simplify the derivation by writing integrals as Riemann sums. For instance, the Fourier transform above
will read:

fl =
∑
x

(∆x)2

2π
eix·lf(x). (C2)
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Note that, with this normalization, the definition for the power spectrum Pf of a stochastic field f is

〈flf∗l′〉 ≡
δl,l′

(∆l)2
Pf (l), (C3)

where ∆l ≡ 2π/∆x.

Single dish

The flux at angular position x measured by a single dish is the sky intensity I integrated over the instrumental
beam B:

S(x) = NB
∑
x′

(∆x)2I(x′)B(x− x′), (C4)

where NB ≡ 1/B(0). Inserting the definition C2 in the expression above, and using the orthogonality relation∑
x(∆x)2 exp[ix(l− l′)] = δl,l′(2π/∆l)

2, one can relate the Fourier components of S and I as

Il = Sl/[NBB(l)], where B(l) ≡
∑
x

(∆x)2

(2π)2
eix·l. (C5)

The power spectrum for I is then related to that of S(s) as PI(l) = PS(l)/[NBB(l)]2. Assume now that S is purely
white noise with a per-pointing rms flux σS , such that its power spectrum is simply flat with an ampitude:

PS = σ2
S(∆x)2 =

(
2kB Tsys

Ae
√

∆ν tp

)2

(∆x)2 =

(
2kB Tsys

Ae

)2
Ωobs

∆ν ttot
, (C6)

where ∆x is the angular separation between pointings, Tsys is the per-pointing rms temperature fluctuation, Ae is the
effective collecting area of the dish, ∆ν is the channel frequency bandwidth, tp is the integration time per pointing,
Ωtot is the total observed sky area and ttot is the total integration time.

Substituting this into the expression for PI and relating the intensity I to a brightness temperature T through the
Rayleigh-Jeans law (I = 2kBT/λ

2), we obtain the temperature noise power spectrum:

PT (l) =
T 2

sys4πfsky

η2Ndish∆ν ttot
B−2(l), (C7)

where fsky is the observed sky fraction, we have considered the possibility of having Ndish independent dishes, and
we have defined the quantity η ≡ AeNB/λ

2. Note that, for a circular aperture telescope, NB = 4λ2/(πd2), where
d is the dish diameter, and therefore η = Ae/[π(d/2)2] is the ratio of the effective to total dish area, which we have
labelled “efficiency” in Eq. 6.

Interferometers

The visibility observed by a pair of antennas separated by a baseline d ≡ λu is

V (u) ≡
∑
x

(∆x)2T (x)B(x)e2π iu·x −→ T (x)B(x) =
∑
u

(∆u)2e−2π iu·x. (C8)

Transforming this to Fourier space we find:

Tl =
∑
u

(√
2π∆u

)2

V (u)
∑
x

(
∆x

2π

)2
eix·(l−2πu)

B(l)
=
V (l/(2π))

2π
(C9)

where, in the last step, we have used the small-angle approximation B = 1. The variance of Tl is therefore given by

〈|Tl|2〉 =
〈|V (l/(2π))|2〉

(2π)2n(l/(2π))(∆u)2
, (C10)
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FIG. 13. Noise power spectrum at z = 1.2 as a function of transverse wavenumber k⊥ for HIRAX (blue), SKA (red) and
MeerKAT (yellow). The curves for SKA and MeerKAT are separated into single-dish (solid) and interferometer (dashed). The
shot-noise levels for the spectroscopic surveys DESI, Euclid and WFIRST at the same redshift are shown as black solid, dashed
and dot-dashed respectively.

where n(u)(∆u)2 is the number of baselines in a volume (∆u)2 in u-space.
In temperature units, the noise variance per visibility is given by 〈|V (u)|2〉 = [λ2Tsys/(Ae

√
∆ν tp)]

2. Relating
baselines to Fourier coefficients as u = l/(2π) and recalling the definition of power spectrum (Eq. C3), the noise
power spectrum in temperature is then given by

PT (l) =
λ2T 2

sysNp

A2
e ∆ν ttot n(u = l/(2π))

, (C11)

where Np is the total number of pointings. Relating n(u) to the number density of physical baselines, and defining
NpΩp ≡ 4πfsky we recover the expression for the noise power spectrum of interferometers in Eq. 6.

Comparison with spectroscopic surveys

Converting the angular maps in different frequency channels into a three-dimensional map of the HI overdensity,
we can relate the 3D noise power spectrum to its angular counterpart as:

P3D(k‖,k⊥) =
c[(1 + z)r(z)]2

ν21H(z)T 2
HI(z)

PT (l ≡ rk⊥), (C12)

where r is the comoving angular diameter distance to redshift z and THI is the average 21cm temperature. This can
then be directly compared with the shot-noise power spectrum of spectroscopic surveys, given by P 3D = 1/n̄, where
n̄ is the 3D density of sources. The left panel of Figure 13 shows the 3D noise power spectrum at z ∼ 1.2 as a
function of the transverse wavenumber k⊥ for the three IM experiments (HIRAX, SKA and MeerKAT) and the three
next-generation spectroscopic surveys (DESI, Euclid and WFIRST) considered here.
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