Journal of Siberian Federal University. Engineering & Technologies, 2017, 10(6), 783-793

 \sim \sim \sim

УДК 551.507; 551.524; 550.34

Atmospheric Temperature Anomalies During Seismic Activity

Leonid G. Sverdlik*a and Sanjar A. Imashev^b

^aKyrgyz-Russian Slavic University 44 Kievskaya Str., Bishkek, 720000, Kyrgyzstan ^bResearch Station of the Russian Academy of Sciences in Bishkek Bishkek, 720049, Kyrgyzstan

Received 19.12.2016, received in revised form 16.05.2017, accepted 22.08.2017

Presented results were obtained by means of methods of temperature anomalies diagnosing and on the basis of retrospective analysis of temperature profiles transformation in border of troposphere and stratosphere over epicenters of earthquakes with energy class of K>13.0, occurred in Northern and Central Tien-Shan during 2003-2015. Abnormal temperature perturbations observed in about 70% of cases in 1–5 days before the main seismic event.

Keywords: earthquake, satellite data, temperature profiles, tropopause, anomalies, outgoing longwave radiation.

Citation: Sverdlik L.G., Imashev S.A. Atmospheric temperature anomalies during seismic activity, J. Sib. Fed. Univ. Eng. technol., 2017, 10(6), 783-793. DOI: 10.17516/1999-494X-2017-10-6-783-793.

© Siberian Federal University. All rights reserved

^{*} Corresponding author E-mail address: l.sverdlik@mail.ru

Аномалии температуры атмосферы в периоды сейсмической активности

Л.Г. Свердлик^а, С.А. Имашев⁶

^аКыргызско-Российский Славянский университет Кыргызстан, 720000, Бишкек, ул. Киевская, 44 ⁶Научная станция Российской академии наук в г. Бишкек Кыргызстан, 720049, Бишкек

Представлены результаты, полученные с использованием разработанной методики диагностирования аномалий температуры и основанные на ретроспективном анализе процессов трансформации профилей температуры в зоне раздела тропосферы и стратосферы над эпицентрами землетрясений энергетического класса K>13.0, произошедших в Северном и Центральном Тянь-Шане с 2003 по 2015 г. Аномальные возмущения температуры наблюдались примерно в 70 % случаев за 1-5 дней до основного сейсмического события.

Ключевые слова: землетрясение, спутниковые данные, профили температуры, тропопауза, аномалии, уходящая длинноволновая радиация.

Введение

Взаимодействие двух крупных горных систем, Тянь-Шаня и Памира, определяют сложный характер геодинамических процессов и высокий уровень сейсмической активности в Центральной Азии, а соответственно, проведение многочисленных геофизических и геологических исследований с помощью наземных наблюдений и средств космической геодезии (GPS). В то же время диагностике связанных с землетрясениями возмущений в атмосфере уделяется недостаточное внимание, как и использованию спутникового дистанционного зондирования, к достоинствам которого можно отнести глобальность охвата, включая горные районы, и регулярность получения данных о пространственно-временной структуре различных параметров атмосферы [1]. Одним из направлений применения результатов спутниковых измерений в последние годы является установление связи между динамикой литосферных и атмосферных процессов, например, в период катастрофического землетрясения в Японии в 2011 г. [2, 3], а также сильных сейсмических событий на территории России [1]. Если обратиться к этим данным, наиболее сильная отрицательная корреляционная связь между изменениями температуры в области тропопаузы совпадала с периодом высокой сейсмической активности; предполагается, что возможной причиной наблюдаемых вариаций температуры могли быть землетрясения. Мы представляем методику и результаты ретроспективного анализа спутниковых измерений, которые позволили выявить аномальные вариации температуры в верхней тропосфере как вероятные предвестники сильных сейсмических событий в регионе Северного и Центрального Тянь-Шаня.

Используемые данные

Всего в период с 2003 по 2015 г. на территории, ограниченной координатами 39÷43 °N, 71÷79 °E, произошло 5075 сейсмических событий, имеющих энергетический класс выше 6.0.

Преобладающий вклад вносили землетрясения с 7.0 по 9.0 классы. Исследование потенциальных возможностей спутникового мониторинга применительно к выявлению аномалий температуры атмосферы проведено на примере 15 наиболее сильных землетрясений, которые характеризовались энергией сейсмических волн (К) от 13.0 до 14.8. Приведенные в табл. сведения об этих сейсмических событиях взяты из каталога землетрясений Института сейсмологии НАН КР и Научной станции РАН в г. Бишкеке, составленного по данным сейсмологической сети *KNET* [4].

Расположения эпицентров землетрясений (рис. 1) большей частью были сконцентрированы в зоне пересечения активных региональных разломов.

Для анализа временных и высотных вариаций температуры атмосферы использовали данные спутниковых измерений (*MERRA 3D*) на 23-х изобарических уровнях (p_k) от 800 до 10 гПа [5]. Вертикальные профили температуры T(p) были восстановлены над каждым участком размером $\pm 1^\circ$ от эпицентра землетрясения для временных периодов, составляющих 45–60 дней до и 30–45 дней после каждого из рассматриваемых событий. Выбранное время регистрации (00:00 и 12:00 *UTC*) и дискретность измерений (Δt =12 ч) позволили ослабить суточную составляющую и сохранить особенности временной изменчивости температуры.

Карты пространственного распределения уходящей длинноволновой радиации (*OLR*) в пределах области, охватывающей всю территорию Кыргызстана ($35.0-45.0 \ ^\circ N$; $65.0-85.0 \ ^\circ E$), построены по данными *NOAA/ESRL* [6].

N₂	Date	Time	Latitude N	Longitude E	Dept, km	К	n
EQ01	22.05.2003	18:11:18	42-59.32	72-48.82	7.0	14.26	18
EQ02	16.01.2004	09:06:09	42-32.96	75-17.82	13.95	13.68	14
EQ03	02.06.2004	17:15:11	42-16.55	74-54.85	17.88	13.25	2
EQ04	08.11.2006	02:21:27	42-33.91	75–21.35	18.56	13.37	5
EQ05	25.12.2006	20:00:58	42-06.74	76-01.93	0.12	14.83	20
EQ06	06.06.2007	11:09:25	42-34.14	75-23.99	12.96	13.25	7
EQ07	05.10.2008	15:52:41	38-53.75	73–23.70	50.18	13.25	2
EQ08	02.03.2010	01:55:36	42-25.95	75-39.66	19.30	13.34	22
EQ09	18.03.2011	09:36:27	43-00.33	74-55.22	17.08	13.00	2
EQ10	09.04.2011	12:30:25	42-03.07	74-50.01	6.27	13.20	2
EQ11	05.02.2012	07:10:15	41-23.77	74-45.67	13.42	13.21	5
EQ12	23.11.2013	09:42:06	42-25.62	75-41.22	9.92	13.46	13
EQ13	14.11.2014	01:24:17	42-11.35	77-13.75	10.08	13.98	1
EQ14	17.11.2015	17:29:37	40-25.54	73-11.23	3.06	13.53	7
EQ15	07.12.2015	08:30:53	41-39.62	74-41.68	15.91	13.60	3

Таблица. Характеристики землетрясений энергетического класса K>13.0 (2003–2015 гг.) Table. Characteristics of earthquakes of energy class K>13.0 (2003-2015)

* К – энергетический класс; D – глубина очага землетрясения (км); n – количество сейсмических толчков в течение указанных суток.

Рис. 1. Расположение эпицентров землетрясений энергетического класса от 13.0 до 14.8. Обозначения сейсмических событий соответствуют таблице

Fig. 1. The location of the epicenters of the earthquakes of the energy class from 13.0 to 14.8. Denote seismic events correspond to the table

Методика анализа временных рядов температуры атмосферы

На начальном этапе были сформированы непрерывные временные ряды, содержащие значения температуры на всех высотных уровнях атмосферы, которые затем приведены к безразмерному виду вместе с исключением нелинейности высотного распределения температуры. Для этого традиционным образом рассчитывалась временная динамика аномалий температуры (ΘT), как отклонение текущего значения температуры от среднемесячного уровня, нормированное на среднеквадратичное отклонение, а именно:

$$\Theta T(x, y, n, t, p) = \frac{T(x_i, y_j, n, t, p_k) - \langle T(x_i, y_j, p_k) \rangle}{\sigma_T(x_i, y_j)} = \frac{\Delta T(x_i, y_j, n, t, p_k)}{\sigma_T(x_i, y_j)},$$

где *n* – день измерения; *t* – время измерения; *x* – широта, *y* – долгота; *i*, *j* – точки сетки координат; $T(x_i, y_j, t, p_k)$ – текущее значение температуры на каждом уровне (p_k) ; $\langle T(x_i, y_j, p_k) \rangle$ – среднее значение температуры; $\sigma_T(x_i, y_j)$ – среднеквадратическое отклонение.

Рассматривались различные варианты представления временных рядов аномалий температуры ΘT для анализа. В окончательном виде был использован подход с вычислением средних значений температурных аномалий в слое 600–300 гПа, который примерно соответствует свободной тропосфере (ΘT_{FT}) и в области, расположенной выше тропопаузы (ΘT_{TP}). При этом выбор высотного диапазона над тропопаузой, в котором производится усреднение значений, являлся ситуативным и в каждом случае строился на визуальном и корреляционном сравнении поведения аномалий температуры на уровнях в интервале от 200 до 70 гПа [7], исходя из максимального подобия временной изменчивости ΘT . Как результат таких вычислений, на рис. 2 приведены 14-дневные фрагменты графиков, которые демонстрируют в том или ином виде наличие перед сильными землетрясениями аномалий температуры, превышающих 2 σ и характеризующихся противофазными из-

Рис. 2. Вариации аномалий температуры ΘТ_{FT} и ΘТ_{TP} перед землетрясениями К≥13.0: 16 января 2004 г. (а); 05 октября 2008 г. (b); 18 марта 2011 г. (c). Треугольными маркерами показаны моменты сильных землетрясений

Fig. 2. Variations of temperature anomalies ΘT_{FT} and ΘT_{TP} before earthquakes K \geq 13.0: January 16, 2004 (a); 05 October 2008 (b); March 18, 2011 c). Triangular markers shows the moments of strong earthquakes

менениями вследствие различия поведения градиента температуры в слоях ($\gamma_{FT}=\Delta T/\Delta p<0$; $\gamma_{TP}=\Delta T/\Delta p>0$).

Чтобы объективно характеризовать наблюдаемые особенности изменчивости рядов температурных аномалий, выполнялось преобразование временных рядов ΘT_{FT} и ΘT_{TP} с использованием метода скользящего «окна», который основан на представлении каждого члена ряда в виде дисперсии некоторого числа (*m*) предыдущих значений. Размер «окна», как правило, принимался равным *m*=6, что позволило анализировать присутствующие в спектре колебаний короткопериодные вариации температуры [3]. Обусловленные литосферными процессами относительно быстрые (*n*=2–3 дня), аномальные ($\Delta T(x_i, y_j, n, t, p_k) >$ $\sigma_T(x_i, y_j)$) и коррелированные ($D_{\Theta T}^{FT} \ge 1$ и $D_{\Theta T}^{TP} \ge 1$) изменения температуры определялись как произведение значений дисперсии в двух выбранных высотных диапазонах атмосферы:

$$D = D(\Theta T_{FT}) \cdot D(\Theta T_{TP}) = D_{\Theta T}^{FT} \cdot D_{\Theta T}^{TP}.$$

Параметр *D* значительно превышает единицу при больших значениях $D_{\Theta T}$, но существенно меньше единицы в отсутствие флуктуаций температуры, когда естественная изменчивость не выходит за пределы среднемесячных значений: $\Delta T(x_i, y_j, n, t, p_k) < \sigma_T(x_i, y_j)$, или при воздействии случайных факторов, когда один из сомножителей меньше единицы $(D_{\Theta T}^{FT} \le 1$ или $D_{\Theta T}^{TP} \le 1)$. Поведение этого параметра (*D*) определяет положение на временной шкале аномальных вариаций температуры в обоих слоях. Графики, иллюстрирующие все этапы применения методики к временным рядам температуры атмосферы в марте–апреле 2011 г., представлены на рис. 3. Показаны ряды средних значений ΘT_{FT} и ΘT_{TP} в слоях 600–300 и 200–150 гПа (рис. 3*a*), скользящие дисперсии (рис. 3*b*) и их произведение (*D*) (рис. 3*c*), которое коррелирует с сейсмическими данными (рис. 3*d*) и свидетельствует о резких изменениях температуры накануне двух сильных сейсмических событий. Наряду

Рис. 3. Временная динамика аномалий средних значений температуры (а) и скользящей дисперсии (b) в слоях 600–300 и 200–150 гПа, параметра *D* (c), вычисленного с использованием среднего квадрата отклонений (*Method 1*), размаха (*Method 2*) и коэффициента вариации (*Method 3*); сейсмическая активность в марте–апреле 2011 г. (d)

Fig. 3. Temporal dynamics of anomalies of average temperature (a) and moving variance (b) in the layers 600-300 and 200-150 hPa, the parameter D (c) calculated using average square deviation (Method 1), range (Method 2) and the coefficient of variation (Method 3); seismic activity in March–April 2011 (d)

с дисперсией (*Method 1*) рассматривались другие статистические показатели: размах $R_{\Theta T}$ (*Method 2*) и коэффициент вариации $V_{\Theta T}$ (*Method 3*), но сопоставление данных показало преимущество применения дисперсии ($D_{\Theta T}$) с более надежным выделением аномалий температуры.

Результаты и обсуждение

Диагностирование аномалий температуры атмосферы

Несмотря на специфические особенности динамики развития температурных аномалий накануне различных сейсмических событий, предлагаемая методика позволила определить основные закономерности изменения температуры, характерные для большей части произошедших сильных землетрясений. Результаты диагностирования аномалий температуры атмосферы (параметр D) перед сильными сейсмическими событиями ($K \ge 13.0$) в разные годы, сведенные вместе и приведенные к одному моменту землетрясения, показаны на рис. 4. Важно отметить, что во всех случаях области высоких значений параметра D либо совпадали с сейсмическими ударами (как в 2013 и 2015 гг.), либо предваряли их (в остальных эпизодах). И не было ни одного случая, когда они проявлялись после землетрясений. Поскольку все точки графиков параметра D фактически прогностические, они, вероятно, характеризуют фазу подготовки землетрясения как период быстрых изменений температуры. Такая синхронизация по времени температурных аномалий и сильных сейсмических событий может означать некоторую общность протекающих при этом физических процессов.

Рис. 4. Результаты диагностирования аномалий температуры атмосферы (параметр D) перед сейсмическими событиями К≥13.0 в разные годы, приведенные к одному моменту землетрясения

Fig. 4. Results of diagnosis of temperature anomalies of atmosphere (D parameter) before seismic events K \geq 13.0 for various years, shifted for the same event time

Аномалии температуры в области тропопаузы над эпицентральной областью предстоящего сильного землетрясения показали большое сходство в плане синхронности возникновения во времени с типичными, в пределах 1−5 дней, интервалами до основного сейсмического толчка и наблюдались в 10 случаях из 14 проанализированных землетрясений, что составляет примерно 70 %. Кроме того, аномалии температуры наблюдались даже в целом ряде случаев более низкого энергетического класса землетрясений (К≥10.0). Таким образом, аномальное поведение температуры – достаточно устойчиво проявляющая тенденция.

Вариации температуры и давления атмосферы на уровне тропопаузы

В результате анализа многолетних спутниковых данных было обнаружено, что наиболее сильным землетрясениям (K>10.0) часто предшествовало резкое изменение температуры на уровне тропопаузы, фактически означающее перепады атмосферного давления. Совместный анализ временных рядов аномалий температуры на изобарическом уровне 150 гПа, давления на уровне тропопаузы (p_{TP}) и сейсмической активности в период с 28 ноября 2011 г. по 25 февраля 2012 г. указывает на согласованность изменений процессов в земной коре и атмосфере (рис. 5*a*, *b*). Как видно, пять сейсмических событий выше 10.0 энергетического класса (включая K≥13.0) происходили после быстрого (в течение 1–3 сут) перепада давления, составляющего Δp =30–120 гПа. Однако при этом не просматривалась связь между величиной изменения давления Δp и энергетическим классом землетрясения.

Такие резкие колебания температуры, а соответственно, и давления являются следствием развития циклонических процессов и распространения атмосферных фронтов, перемещение которых может вызывать многократные квазипериодические деформации земной поверхности, способные спровоцировать землетрясения, назревающие в земной коре независимо от атмосферных процессов [8]. На рис. 5*с* показана карта пространственного распределения перепада давления на уровне тропопаузы между двумя датами: 03 февраля 2012 г. и днем землетрясе-

Рис. 5. Вариации аномалий температуры (ΘT /150 *hPa*/), давления на уровне тропопаузы (*TropoPress*) (а) и сейсмическая активность (b) в период с 28 ноября 2011 г. по 25 февраля 2012 г. (M – магнитуда). Пространственное распределение разности давления на уровне тропопаузы (*TropoPress*) между 03 февраля и днем землетрясения 05 февраля 2012 г. (с)

Fig. 5. Variations of temperature anomalies (Θ T /150 hPa/), the pressure level of the tropopause (TropoPress) (a) and seismic activity (b) in the period from 28 November 2011 until 25 February 2012 (M – magnitude). The spatial distribution of pressure difference at the level of the tropopause (TropoPress) between 03 February and the day of the earthquake, February 05, 2012 (c)

Рис. 6. Вариации разности температуры между уровнями 250 и 70 гПа и сейсмичность в декабре 2006 г. (а) и пространственное распределение ΔT 25 декабря 2006 г. (b)

ния 05 февраля 2012 г. Явно выраженные зоны положительных (Δp =150 гПа) и отрицательных (Δp = –120 гПа) барических градиентов на широтах 50 °N и 30 °N, соответственно, располагались на смежных блоках земной коры симметрично и равноудаленно относительно активных разломов и эпицентра землетрясения.

Диагностирование аномалий пространственного распределения температуры атмосферы и уходящей длинноволновой радиации

Для локализации области подготовки землетрясений использовались следующие подходы. Во-первых, по профилям температуры T(p) были идентифицированы случаи наличия двойной тропопаузы [4] и определена разность температур (ΔT) между изобарическими поверхностями, соответствующими уровням полярной и тропической тропопаузы. На рис. 6 приведены результаты для самого сильного за последние 24 года сейсмического события класса K=14.8 (магнитудой M=6.5), произошедшего 25 декабря 2006 г. Явно выраженный минимум на временном ряду разности температур был отмечен за двое суток до землетрясения (рис. 6*a*), что являлось следствием увеличения вертикальных градиентов над и под полярной тропопаузой или положительного тренда контрастности тропопаузы. В то же время поведение температуры на уровне 70 гПа близко совпадало с вариациями содержания озона в этой области высот с запаздыванием на ~1 сут.

Изменения теплового поля на картах пространственного распределения температуры, соответствующих этим уровням (T_{250hPa} и T_{70hPa}), определялись, как

$$\Delta T = \left| T_{250hPa}(x_i, y_j, t, n) - T_{70hPa}(x_i, y_j, t, n) \right|,$$

где *n* – дни; t – время измерения; *x* – широта, *y* – долгота; *i*, *j* – точки сетки координат исследуемой области с разрешением 1.25° × 1.25°.

В двумерном представлении пространственное расположение минимума разности температур (ΔT), соответствующего области максимального перекрытия двух тропопауз, показало изменение положения в виде дуги вокруг эпицентра землетрясения (рис. 6*b*). Эта картина наблюдалась примерно за сутки до землетрясения.

Далее, с учетом большого количества фактического материала, подтверждающего высокую эффективность космического мониторинга теплового излучения Земли и атмосферы при исследовании землетрясений [9], для каждого пиксела ($2.5^{\circ} \times 2.5^{\circ}$) определялась зональная аномалия уходящей длинноволновой радиации как отклонение текущего значения от среднемесячного уровня за 6-летний период (индекс *OLR*). Вариации среднесуточных значений *OLR_dE* над эпицентральной областью в декабре 2006 г. (рис. *7a*) показали колебания с возрастающей амплитудой, которые начались примерно за неделю, а локальный (абсолютный) минимум совпадал с днем землетрясения. Для выделенных на графике овалом дней максимума построены карты пространственного распределения уходящей длинноволновой радиации (рис. *7b*). Аномалии *OLR*, превышающие уровень 2σ , наблюдались вблизи эпицентров за 2 дня до землетрясений. Несмотря на сложный рельеф в регионе, тепловые аномалии были зарегистрированы на сравнительно небольшой площади.

Заключение

Анализ спутниковых данных показал, что возникновению большинства наиболее сильных сейсмических событий (К≥13.0), произошедших в Северном и Центральном Тянь-Шане в 2003–2015 гг., предшествовало резкое изменение температуры в зоне раздела тропосферы и стратосферы. Разработанная методика и средства программного обеспечения позволили исследовать особенности трансформации вертикальной термической структуры атмосферы, вы-

Рис. 7. Аномалии уходящей длинноволновой радиации в декабре 2006 г. (а) и распределение аномалии *OLR* 23 декабря 2006 г. вблизи эпицентров землетрясений, произошедших 24 декабря (K=9.3; 40.9 °N и 74.1 °E) и 25 декабря 2006 г. (K=14.8; 42.1 °N и 76.0 °E) (b)

Fig. 7. Anomalies of outgoing long-wave radiation in December 2006 (a) and distribution of OLR anomaly on 23 December 2006, close to the epicenters of earthquakes that occurred on 24 December (K=9.3; 40.9 °N and 74.1 °E) and 25 December, 2006 (K=14.8; 42.1 °N and 76.0 °E) (b)

явить аномалии температуры и уходящей длинноволновой радиации, которые, вероятно, могут служить характерным признаком подготовки сейсмического события и рассматриваться как краткосрочный предвестник возможного сильного землетрясения. В то же время очевидна необходимость реализации комплексного подхода с привлечением дополнительной информации, других методов и расширением представительности данных.

Авторы выражают благодарность руководителям и сотрудникам научных проектов MERRA-3D и AIRS/Aqua за их усилия по обработке результатов измерений и обеспечение свободного доступа к данным, использующимся в настоящем исследовании.

Отдельная благодарность заведующему лабораторией комплексных исследований НС РАН в г. Бишкек В.Д. Брагину за предоставление цифровых записей сейсмических событий.

Исследование частично осуществлено в рамках выполнения государственного задания HC РАН, тема № 7.

Список литературы

[1] Кашкин В.Б., Романов А.А., Григорьев А.С., Баскова А.А. Тропосферные эффекты землетрясений в Туве, наблюдаемые с искусственных спутников Земли. *Журнал СФУ. Техника* и технологии, 2012, 5(2), 220–228 [Kashkin V.B., Romanov A.A., Grigoriev A.S., Baskova A.A. Troposphere Effects of Tuva Earthquakes Detected with Space Technology. J. Sib. Fed. Univ. Eng. Technol., 2012, 5(2), 220–228 (in Russian)]

[2] Кашкин В.Б. Внутренние гравитационные волны в тропосфере. Оптика атмосферы и океана, 2013, 26(10), 908–916 [Kashkin V.B. Inner gravity waves in the troposphere. Atmospheric and Oceanic Optics, 2013, 26(10), 908–916 (in Russian)]

[3] Имашев С.А., Свердлик Л.Г. Вариации температуры атмосферы в период высокой сейсмической активности в Японии в 2011 г. *Наука, новые технологии и инновации*, 2015, 1, 15–19 [Imashev S.A., Sverdlik L.G. Temperature variations of atmosphere during high seismic activity in Japan in 2011. *Science, new technologies and innovations*, 2015, 1, 15–19 (in Russian)]

[4] Свердлик Л.Г., Имашев С.А. Изменение температурного режима атмосферы под влиянием сейсмической активности. *Наука, новые технологии и инновации*, 2015, 4, 9–14 [Sverdlik L.G., Imashev S.A. Atmospheric temperature regime change influenced by seismic activity. *Science, new technologies and innovations*, 2015, 4, 9–14 (in Russian)]

[5] URL: http://giovanni.gsfc.nasa.gov/

[6] URL: http://www.esrl.noaa.gov/psd/cgi-bin/

[7] Свердлик Л.Г., Имашев С.А. Динамика температуры тропопаузы в период сейсмической активности в Центральном Тянь-Шане. *Наука, новые технологии и инновации*, 2015, 1, 23–27 [Sverdlik L.G., Imashev S.A. Tropopause temperature dynamics during a seismic activity in Central Tien Shan. *Science, new technologies and innovations*, 2015, 1, 23–27 (in Russian)]

[8] Адушкин В.В., Локтев Д.Н., Спивак А.А. Влияние барических возмущений атмосферы на микросейсмические процессы в земной коре. *Физика земли*, 2008, 6, 77–85. [Adushkin V.V., Loktev D.N., Spivak A.A. Influence of barometric atmospheric perturbations on microseismic processes in the Earth's crust. *Izvestiya, Physics of the Solid Earth*, 2008, 6, 77–85 (in Russian)]

[9] Venkatanathan N., Natyaganov V. Outgoing longwave radiations as pre-earthquake signals: preliminary results of 24 September 2013 earthquake (*M* 7.7). *Current Science*, 2014, 106(9), 1291–1297.