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ABSTRACT 

Commercially available phase change materials were studied experimentally in the 

present work. Experiments were carried out using a heat flux differential scanning 

calorimeter (hf-DSC). The selected phase change materials were RT 20, RT 27, SP 

22 A17 and SP 25 A8 from the company Rubitherm GmbH. These materials were 

selected because the aim of the work was to analyze and compare thermal properties 

of two different types of phase change materials using differential scanning 

calorimetry. The samples were analyzed using dynamic and isostep methods to 

compare the effect of both methods on the final results. Three sub-samples of each 

sample were analyzed for the dynamic mode operation and each sub-sample was 

cycled three times. As a result nine sample cycles were obtained and the overall 

behaviour was concluded. The experimental results of the RT 20 and RT 27 

presented good agreement with the commercial values. Moreover these samples 

presented good thermal recyclability and repeatability with similar values. Finally it 

was concluded that the step method is more reliable method compared to the 

dynamic method due to continuous heating and cooling and thus the effect of thermal 

equilibrium. On the other hand the salt hydrate samples SP 22 A17 and SP 25 A8 did 

not show the phase change. Hence, it was concluded that DSC is a suitable method 

for the analysis of paraffin based phase change materials. Whereas, it was concluded 

that DSC is not a proper method for salt hydrate samples. 

Key-words: Thermal energy storage, PCM, paraffins, salt hydrates, DSC analysis, 

dynamic mode, isostep mode, repeatability. 
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OVERVIEW 

 

In the present work, different techniques for the thermal energy storage are discussed 

using different materials.  

Chapter 1 covers the background for the need of alternative energy sources with 

some statistical reports in the research area. 

Chapter 2 includes the objectives of the present study.  

In chapter 3, different thermal energy storage techniques are incorporated as a 

state of the art. Later the latent heat storage technique is discussed in details due to 

favourable advantages of this technique. Some examples of different materials under the 

mentioned methods are given.  

Chapter 4 focuses on phase change materials (PCM) which are the heart of the 

work. Content of the chapter is the focused work of the thesis, including requirements 

and classification of PCM. 

Chapter 5 discloses some of the published applications of PCM.  

Chapter 6 introduces the context of available techniques for the thermal analysis 

of phase change materials with advantages and disadvantages. 

Chapter 7 is based on the experimental work. The context includes the properties 

of the selected PCM, their results and discussion. 

Chapter 8 points out the conclusions of the present work. 

And finally chapter 9 shows the references of the master thesis. 
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1.1 Energy requirements 

Energy demand and its consumption are essential parts in routine life for every human 

being. It is consumed through one or the other way and in more or less quantity for 

almost all basic requirements and applications. It is estimated that the demand of energy 

in the world has increased dramatically during the last two decades. There are some 

major factors which are responsible for the increased energy demand such as, 

continuously increasing population, development of new technologies including human 

comfort, transportation, etc. 

 

Figure 1 shows a comparison of the energy consumed by various sectors worldwide. It 

shows that a big fraction of energy (32%) is consumed by industry (such as, agriculture, 

mining, manufacturing, construction, etc.) followed by transportation purposes (28%), 

thermal comfort applications for households (22%), and finally in less amount by the 

commercial sector (19%). In the category of household energy consumption, the 

dominant energy fraction (almost 50%) is due to domestic building heating, ventilation 

and air-conditioning (i.e., thermal comfort) and in a smaller ratio to lighting appliances 

and electrical equipment. Ortiz et al. [3] mentioned that 40-50% of energy is consumed 

by buildings for thermal conditioning. That can also be seen in  

Figure 1 (b). Cold countries need more energy for space heating and hot countries need 

energy for the air-conditioning. Therefore household energy demand also strongly 

depends upon the geographical location of the user. 

 

   
(a)       (b) 

Figure 1. (a) Primary energy use by end-use sector, 2008 1] and (b) Household Energy Usage 

Breakdown [2] 

Heating and 

cooling 49% 
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1.2 Energy sources  

There are two types of energy sources: (1) Non-renewable energy sources and (2) 

Renewable energy sources. 

Non-renewable energy sources are natural resources which cannot be produced, grown, 

generated, or used on a scale which can sustain its consumption rate, once used there is 

no more remaining. Most of these sources are in limited amount and are consumed 

much faster than nature can create them again. The non-renewable energy sources 

include fossil fuels such as coal, petroleum and natural gas, and nuclear power such as 

uranium [4].  

The renewable energy derives from natural processes which are furnished constantly. 

The renewable energy sources are the natural resources such as sunlight, wind, rain, 

tides, biomass, hydroelectricity, biofules and geothermal heat which can naturally be 

replenished [5]. 

 

Table 1 shows world energy consumption by power source. It shows that prime source 

for production of electrical energy is conventional fossil fuels which are non-renewable 

energy sources. Table 1 shows that most electrical energy is produced by combusting 

fossil fuels and thus increasing carbon dioxide levels in the atmosphere. Thus it results 

in continuously increasing greenhouse gas emissions. The sectorwise greenhouse gas 

emissions breakdown can be seen in the Figure 2. Moreover, excessive use of these 

energy sources produce harmful gases such as carbon dioxide (CO2), which leads to the 

cause of global warming, and many other harmful gases responsible for climate change 

and atmospheric pollution [7], and consequently unexpected thermal changes. 

 

Table 1. World energy consumption [6] 

Energy by power source 2008 Average power in TW 

 TWh % 1980 2004 2006 

Oil 48,204 33,5 4.38 5.58 5.74 

Coal 38,497 26,8 2.34 3.87 4.27 

Gas 30,134 20,9 1.8 3.45 3.61 

Nuclear 8,283 5,8 0.25 0.91 0.93 

Hydro 3,208 2,2 0.6 0.93 1 

Other renewable energy 

soruces 
15,284 10.6 0.02 0.13 0.16 

Others 241 0,2    

Total 1,43,851 100 9.48 15 15.8 
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Figure 2. Greenhouse gas emissions by sector, 2008 8] 

 

Due to the limited sources of non-renewable energy, it is in great demand to search 

other sources of energy using renewable energy sources. Attentively, the scientists all 

over the world are efficiently searching for renewable energy sources.  
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Solid-liquid phase change materials have high energy storage density, smaller volume 

change during the phase change and constant melting-freezing temperatures 

independent of pressure change. Hence, the objective of the present work was analysis 

and comparison of two different types of the solid-liquid phase change materials. The 

aims of the work were: 

 To analyze commercially available phase change materials such as paraffins (RT 

20 and RT 27) and salt hydrates (SP 22 A17 and SP 25 A8) with DSC, using 

dynamic and isostep methods, and to show the accuracy of each method for 

these samples.  

 To indicate which DSC method is proper for the analysis of such materials.  

 To check the repeatability of the thermal properties of these samples. 
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3.1 Thermal energy storage 

Increasing use of non-renewable energy sources for producing electrical energy is the 

main cause for reduced quantity of non-renewable energy sources which causes 

increased fuel prices. This is one of the main factors leading to search for more 

effectively utilize various sources of renewable energy [9]. One of the possible ways is 

the thermal energy storage technique. It could be accomplished by some physical media 

that can store the thermal (heat and cold) energy at a time and the stored energy could 

be extracted at later time. Thermal energy storage (TES) can be achieved by three 

different methods, such as: (i) sensible heat storage (SHS), (ii) latent heat storage (LHS) 

and (iii) heat of thermochemical reactions [10], which can be seen in Figure 3. Thermal 

energy storage in general, and phase change materials (latent heat storage) in particular, 

have been a main topic in research for the last 20 years [11]. TES allows balancing the 

supply and demand of energy, shifting the peak-load for reducing the dependency on 

peak price electricity during the time when the atmospheric temperature is at its 

extreme, improving performance of energy systems, plays a crucial role in conserving 

the energy and thus contributing to a more efficient and nature friendly energy use [7, 

10]. 

 

 
Figure 3. Classification of the available thermal energy storage methods 10] 

 

3.2 Sensible heat storage (SHS)  

3.2.1 Definition 

The general definition of sensible heat is given as “Sensible heat energy is the amount 

of stored energy measured by sensor when the temperature of the storage material is 
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subjected to increase” [10]. In SHS, energy is stored or extracted by heating or cooling a 

storage media (liquid or solid), which does not change its phase during this process 

[12]. Figure 4 shows mechanism of the heat storage in the sensible heat storage media. 

From Figure 4, it could be understood that when heat is absorbed by a substance, it 

causes a rise in temperature. In terms of energy it is a potential energy in the form of 

thermal energy (heat). The amount of the stored heat during the temperature increment 

is the heat capacity “cp” of the storage medium and it can be calculated using the 

following equation [10]: 

 

ΔQ = m·cp·ΔT     (1) 

 

Where,  

ΔQ = amount of stored heat 

cp = specific heat capacity 

ΔT = temperature increament 

m = mass of the storage medium 

 

 
Figure 4. Heat storage as sensible heat leads to a tempeature increase when heat is stored 10] 

 

Usually the heat capacity is given with respect to the amount of the material, the volume 

or the mass. In such case it is called as molar, volumetric or mass specific heat capacity. 

Equation (1) indicates mass specific heat capacity [10]. 

It is desirable for the sensible heat storage materials to have high specific heat capacity, 

long term stability under thermal cycling, and compatibility with the container materials 
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and to be available at low cost [7]. The storage of sensible heat uses movements of 

atoms and molecules and it requires high amount of storage materials [10]. Liquid 

storage media and solid storage media are described in details in the next sections. 

 

3.2.2 Liquid storage media 

Many heat storage liquid media are available for heat storage. For the purpose some 

liquid media such as (a) water, (b) salt water solutions, (c) oil and oil based fluids, and 

(d) molten salts are used [13]. 

 

Water could be selected for the low temperature applications (below the boiling point) 

over a wide range of temperature that is 5-90 º C. Because it has higher specific heat 

capacity (being 4.2 kJ/kg) than other materials and it is cheap and widely available. It 

can be used as storage and transport medium for solar based warm water (i.e., solar 

domestic hot water tanks (SDHW)) and space heating applications. And large scale 

storage applications, underground natural aquifers have been considered. 

The main drawback of water as heat storage media is its high vapour pressure hence it 

requires pressure tolerable container for high temperature applications [13]. 

 

Salt water solutions are also easily available at low cost. For example, solar ponds 

propose a simple and low cost method for collection and storage of large amount of 

solar energy for low temperature applications (5-95 ºC). They can be utilized in space 

heating and cooling applications, in industrial process heat and in electrical power 

generation. Salts such as sodium chloride (NaCl) and magnesium chloride (MgCl2) are 

most commonly used for the purpose [13]. 

 

Other storage fluids consist of petroleum based oils and molten salts. Compared to the 

water, heat capacities of such fluids are merely 25-40% (on a weight basis) 

nevertheless, these fluids have lower vapour pressure than water and could be used as 

heat transfer media for high temperature applications with the  temperatures higher than 

300 ºC. For instance, therminol and caloria-HT oils. Some molten salts of inorganic 

salts have been considered for the high temperature applications (300 ºC and more) such 

as sodium hydroxide (NaOH). The main drawbacks of the oils are that their usage are 

limited to less than 350 ºC considering the stability and safety reasons and also it could 
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be fairly expensive. Focusing on the molten salts, they might be highly corrosive (ex. 

NaOH) and there may be inconvenience in storing energy at high temperatures [13]. 

 

Liquid metals are also probable sensible heat storage media. Most of their properties are 

similar to water but they have low specific heat capacities. However they have higher 

thermal conductivity. Some other liquid storage mediums are presented in Table 2 and  

Table 3 [13 - 15]. 

 

3.2.3  Solid storage media 

For the low as well as high temperature applications many storage medias such as, 

rocks, metals, concrete, sand, bricks, pebble beds, rock piles and many more could be 

used. They do not have limitations for using in the low or high temperature applications 

such as liquid media [14, 15]. 

 

Rocks are used in pebble beds and rock piles. Such systems are frequently used for 

temperatures up to 100 ºC in combination with solar air heaters. Such systems can also 

be used for higher temperature applications up to 1000 ºC [14, 15]. 

 

Ceramic bricks are widely used as storage material in building fabrics including 

combination systems with air and water. Floor warming is the most common technique 

for the thermal storage along with building inertia and hollow core construction under 

the building mass storage sources [14, 15]. 

 

Metals (and inorganic salts) are useful for high temperature energy storage applications. 

They possess high thermal conductivity. For instance, aluminium, magnesium, zinc and 

industrial wastes like copper slag, iron slag, cast iron slag, aluminium slag and copper 

chips could be used as the energy storage media [13]. Cast iron is one of the sensible 

heat storage materials that have higher energy density than water. However, it is more 

expensive than stone or brick [14, 15].  

Details of solid media for the thermal energy storage application are presented in Table 

2 and [14, 15]. 
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Table 2. Thermal capacities of some sensible heat storage materials at 20 ºC [14] 

 

Table 3. Characteristics of candidate solid and liquid sensible heat storage materials [15] 

 

3.2.4 Advantages and disadvantages of SHS 

Both liquid and solid SHS materials are generally cheap and widely available. In 

addition, they could be useful for both low and high temperature applications. For low 

temperature (5-95 ºC) applications water and salt water solutions could be used since, 

Material Density 

(kg/m
3
) 

Specific heat 

(J/kg·K) 

Volumetric thermal 

capacity 

(10
6
 J/m

3
·K)

-1
 

Clay 1458 879 1.28 

Brick 1800 837 1.51 

Sandstone 2200 712 1.57 

Wood 700 2390 1.67 

Concrete 2000 880 1.76 

Glass 2710 837 2.27 

Aluminium 2710 896 2.43 

Iron 7900 452 3.57 

Steel 7840 465 3.68 

Gravelly earth 2050 1840 3.77 

Magnetite 5177 752 3.89 

Water (liquid media) 988 4182 4.17 

Storage 

medium 

Temperature 

(ºC) 

Average 

density 

(kg/m
3
) 

Average 

heat 

conductivity 

(W/mK) 

Average 

heat 

capacity 

(kJ/kgK) 

Volume 

specific 

heat 

capacity 

(kWht/m
3
) 

Media 

costs 

per kg 

($/kg) 

Media 

costs 

per 

kWht 
Hot  Cold  

Solid media 
Sand-rock-

mineral oil
a
 

200 300 1,700 1.0 1.30 60 0.15 4.2 

Reinforced 

concrete 

200 400 2,200 1.5 0.85 100 0.05 1.0 

NaCl 

(solid) 

200 500 2,160 7.0 0.85 150 0.15 1.5 

Cast iron 200 400 7,200 37.0 0.56 160 1.00 32.0 

Cast steel 200 700 7,800 40.0 0.60 450 5.00 60.0 

Silica fire 

bricks 

200 700 1,820 1.5 1.00 150 1.00 7.0 

         

Magnesia 

fire bricks 

200 1200 3,000 5.0 1.15 600 2.00 6.0 

Liquid media 

Mineral oil 200 300 770 0.12 2.6 55 0.30 4.2 

Synthetic 

oil 

250 350 900 0.11 2.3 57 3.00 43.0 

Silicone oil 300 400 900 0.10 2.1 52 5.00 80.0 

Nitrite salts 250 450 1,825 0.57 1.5 152 1.00 12.0 

Nitrate salts 265 565 1,870 0.52 1.6 250 0.70 5.2 

Carbonate 

salts 

450 850 2,100 2.0 1.8 430 2.40 11.0 

Liquid 

sodium 

270 530 850 71.0 1.3 80 2.00 21.0 
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water has higher specific heat capacity than other materials. And for high temperature 

applications (more than 300 ºC) petroleum based oils, molten salts and liquid metals 

could be used. Solid storage materials such as rocks, metals, concrete, sand, bricks, 

pebble beds, rock piles, etc., could be used for low as well as high temperature 

applications [14, 15]. 

 

On the other hand, some restrictions are also related with these mateials. For example, 

water has high vapour pressure which limits its use. Oil could be used for high 

temperature applications but safety, stability and cost could be disadvantages for its use. 

And molten salts might be highly corrosive. In addition, SHS needs high amount of 

storage material which makes it inconvenient where the space, storage mass and cost are 

the dominant factors [7]. Some of the examples for the sensible heat storage such as, 

solar power plant and old age buildings made up of heavy stones are presented in Figure 

5. 

 

     
 (a)    (b)    (c) 

Figure 5. Applications of sensible heat storage: (a) Solar power plant - Gila Bend, Arizona, USA, 

(b) the temple complex at Khajuraho at Madhya Pradesh, India, (C) Sagrada familia at Barcelona, 

Spain 

 

3.3 Heat of chemical reactions 

Chemical energy is the potential of a chemical substance to undergo a transformation 

through a chemical reaction or to transform other chemical substances. Breaking or 

making of chemical bonds involve energy. When a chemical reaction takes place there 

is energy difference between the initial chemical substances and the final product at the 

end of the reaction. The chemical reactions may be endothermic process (energy 

consuming) or may be exothermic process (energy producing). Generally chemical 

processes produce large amount of energy exchange. For such systems it is necessary 
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that the chemical reactions involved are completely reversible. Some of the advantages 

of TES using reversible thermochemical reactions include high energy storage densities, 

indefinitely long storage duration at near ambient temperature, and heat-pumping 

capability. There are also some disadvantages such as their cycling stability [10], 

storage due to the volume expansion, and corrosivity in high or less amount with 

different metal containers, complexity, uncertainties in the thermodynamic properties of 

the reaction components and of the reaction‟s kinetics under the wide range of operating 

conditions, high cost, toxicity, and flammability. Due to such disadvantages the 

technique is at a very early stage of development [15]. 

 

3.4 Latent heat storage using phase change materials 

3.4.1 Definition 

Thermal heat storage by latent heat was recognized early as an attractive alternative to 

sensible heat storage in various applications, for example latent heat storage (LHS) in 

building materials [16]. LHS system is proved as a viable option for solar heat energy 

storage compared to SHS [17]. Thermal energy can be stored isothermally in some 

substances as solid-solid crystalline phase transformation, heat of vaporization (liquid 

to vapour transition), and latent heat of phase change, that is as heat of fusion (solid to 

liquid transition) [15]. And the materials which can change their phase are called phase 

change materials (PCM). Classification of the three basic types of PCM can be seen in 

the Figure 3 [10]. In the present work solid to liquid phase change (latent heat storage) 

materials are focused and will be followed. Nevertheless, solid to solid and liquid to 

vapour transition materials are described in short.  

 

3.4.2 Latent heat of liquid-vapour phase change 

The liquid-vapour phase change involves evaporation and condensation of the materials. 

They also possess high phase change enthalpy. But there are some disadvantages in 

using liquid-vapour phase change materials. For instance, in closed system where the 

volume is constant, evaporation leads to a large increase of the vapour pressure leading 

to high phase change Temperature. In the other case where the pressure is kept constant 

in a closed system leads to a large volume change. In contrast to the closed systems 

(that is open system) at ambient pressure, the material is evaporated on heating due to 
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the open system. To extract the stored heat from the storage (in the case of open 

system), the storage material has to be retrieved from the nature and that could be 

possible in the case of water, because it is a natural part of the environment. In some 

liquid-vapour storage media the heat storage and heat release may occur at different 

temperatures. Thus the evaporation strongly depends upon the boundary conditions that 

make limited use of such materials as PCM [10]. 

3.4.3 Solid to liquid phase change materials 

Solid to liquid phase change materials store high amount of heat at nearly constant 

temperature while changing the phase from solid to liquid [10] and release the stored 

heat when solidified. Melting is characterized by a small volume change (less than 

10%). But for this kind of phase transition the container should be large enough and 

made up of suitable material so that pressure does not change significantly and 

consequently the melting and solidification of the material occurs at a constant 

temperature.  

During melting, heat is transferred to the storage material and the material will keep its 

temperature constant at the melting temperature and will store high amount of energy. 

The constant temperature is called as phase change temperature and such materials are 

called phase change materials. Phase change materials (PCM) (solid to liquid) are also 

called latent heat storage materials. Solid-liquid PCM are suitable for heat or cold 

storage. Due to the small volume change, the stored heat is equal to the enthalpy 

difference. This can be calculated using the following formula [10]: 

 

ΔQ = ΔH = m·Δh      (2) 

 

Where, 

ΔQ = stored heat 

ΔH = enthalpy difference between the solid and the liquid phase 

m = mass of the sample 

Δh = heat of fusion 

 

Figure 6 shows two ways of using the stored heat taking advantage of the phase change. 

It shows that PCM can provide temperature control and high energy storage. Such 

advantages favour the PCM compared to sensible heat storage materials. Figure 6 (a) 
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and (b) show the PCM mechanism. Figure 6 (a) shows that as the temperature increases 

and reaches  the melting temperature it remains at the constant temperature and after the 

material has changed its phase the temperature of the material will increase or decrease 

(this is sensible heat storage part of the PCM). Whereas, Figure 6 (b) indicates that 

during the phase change temperature the material stores high amounts of energy and 

while the solidification the material releases the stored energy during the phase change 

temperature [10]. 

 

   

(a) (b) 
Figure 6. (a) Stabilization of temperture and (b) Storage of heat or cold in solid-liquid phase change 

materials 18] 

 

3.4.4 Solid to solid phase change materials 

Some solid-solid PCM have the same characteristics as solid-liquid PCM, and usually 

they have a large phase change enthalpy as the solid-liquid PCM [10]. 
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Latent heat storage materials (PCM) store large amounts of energy during melting and 

release the stored energy during their solidification. There is a number of organic, 

inorganic and eutectic mixtures which are identified by different researchers as potential 

PCM. In this section, some requirements on the PCM and different types of the PCM 

are discussed in details. 

 

4.1 Requirements of phase change materials 

For the selection of a PCM for any application, the material should fulfil some basic 

requirements such as having  

 A suitable phase change temperature for the application (to assure storage and 

release of heat at the desired temperature), 

 A congruent melting temperature, 

 A large melting enthalpy density per unit volume (to achieve high storage 

density), and  

 Reproducible phase change (for long term usage of the PCM for the given 

application) [10]. 

 

Other than these, there are other expected requirements such as,  

 It should not have phase separation (in the case a PCM consists of several 

components). Phase separation is a state where components with the different 

densities of a material settle down in a stratified pattern according to ascending 

density values. The different layers of the material can be seen in the Figure 7 

[10]. 

 

Figure 7. Segregation of a salt hydrate 19] 
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 It should not present subcooling (or little subcooling). Subcooling is the effect 

under which many PCM do not solidify immediately upon cooling below the 

melting temperature, but start crystallization only after a tempeature well below 

the melting temperature is reached. Subcooling of eutectic salt-water solutions 

can be seen in Figure 8 [10]. 

 

 

Figure 8. Subcooling effect of eutectic salt-water solutions 20] 

 

 It should have good thermal conductivity [9, 10] but infact, generally PCM have 

low thermal conductivity. 

 It should have low vapour pressure [10]. 

 It should have small volume change during the phase change [10]. 

It should have chemical stability. The PCM should have long term stability over 

number of cycles. 

 Chemical compatibility of the PCM with other materials (containers). If PCM 

and its container do not have good compatibility corrosion [20, 23] with the 

metal containers may arise and the effect can be seen in Figure 9. PCM in 

contact with plastic containers may cause softening of the plastic materials [21]. 
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Figure 9. Galvanized steel treated with an eutectic salt water mixture. From left: After treatment 

and before treatment[20] 

 

 It should be non-toxic [10].  

 It should be non-flammable [10].  

 It should be available at low price (but generally PCM are costly). 

 It should have good recyclability [10]  

Such requirements should also be considered to correctly design the TES system using 

PCM.  

 

However, except the melting point in the operating range, the majority of PCM do not 

satisfy required criteria mentioned above. But, using different techniques (or 

combination) an improvement could be achieved to develop the properties. For instance, 

the thermal conductivity could be improved by adding graphite in the PCM [10], 

metallic fins can be used to increase the thermal conductivity of PCM, subcooling might 

be overcome by introducing nucleating agents or a “cold finger” in the storage material 

and incongruent melting can be inhibited by using suitable thickening agents [9]. 

 

4.2 Classification of phase change materials 

4.2.1 Classification  

There are plenty of materials that could be used as PCM and many of them have been 

analysed as PCM. PCM are classified into three major classes [9] as, (1) organic PCM, 

(2) inorganic PCM and (3) eutectic mixtures. The available classification of different 

materials that can be used as PCM is presented in the Figure 10 and their melting 

temperature and enthalpy range are presented in Figure 11.  
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Figure 10. Classification of energy storage materials [9] 

 

 
Figure 11. Classes of materials that can be used as PCM with their typical melting temperature and 

enthalpy range [10] 

 

4.2.2 Organic phase change materials  

4.2.2.1 Definition 

Organic materials possess congruent melting and freezing temperatures without phase 

segragation and subcooling. Hence, they do not show consequent degradation of the 

latent heat of fusion. They are self-nucleating (means they solidify with little or no 

subcooling without any nucleating agent), generally safe, non-reactive and non-
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corrosive, chemically stable and possess high heat of fusion. They are compatible with 

conventional construction material and recyclable. On the other hand they possess low 

thermal conductivity, low volumetric latent heat storage capacity, they are flammable 

(depending on the compostion), and they show problems with plastics [9, 25]. They are 

further classified as, (i) paraffins and (ii) non-paraffins. 

 

4.2.2.2 Paraffins 

The word paraffin comes from Latin and it means little reactive. The most commonly 

used organic PCM are paraffins and it is a technical name of an alcane (it is also called 

saturated hydrocarbon). Most paraffin, PCM is straight chain n-alcanes with the general 

formula CnH2n+2 [CH3-(CH2)n-CH3] [10] and they have similar properties to each other. 

As the chain length increases the melting point and the latent heat also increases [9]. 

They have almost all advantages as mentioned in section 4.1. 

 

On the other hand, paraffins also have some disadvantages, such as: 

 They have low thermal conductivity, but metallic fins can be used to increase 

the thermal conductivity of PCM [9]. 

 They might be combustible (there is a controversy regarding this point). 

 Unsufficient compatibility with plastic containers (they can cause softening of 

the plastic materials) [24]. 

 Paraffins are costly if they are pure alkanes (generally less expensive 

commercial paraffins are used) [10]. 

 

Some of the paraffins that have been analyzed as PCM are presented in and some 

commercial paraffins are presented in Table 5. 
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Table 4. Some paraffins that have been analysed as PCM [10] 

Material   Melting 

temperature (°C)  

Heat of fusion 

(kJ/kg)  

Thermal 

conductivity 

(W/m·K)  

Density (kg/m
3
)  

n-Tetradecane 

(C14H30) 

6 230 - 

0.21 (solid) 

760 (liquid, 20 ºC) 

- 

n-Pentadecane 

(C15H32) 

10 212 - 

- 

770 (liquid, 20 ºC) 

- 

n-Hexadecane 

(C16H34) 

18 210, 238 - 

0.21 (solid) 

760 (liquid, 20 ºC) 

- 

n-Heptadecane 

(C17H36) 

19 240 - 

- 

776 (liquid, 20 ºC) 

- 

n-Octadecane 

(C18H38) 

28 200, 245 0.148 (liquid 40 ºC) 

0.358 ( solid 25 ºC) 

774 (liquid, 70 ºC) 

814 (solid, 20 ºC) 

n-Eicosane (C20H42) 38 283 - 

- 

779 

- 

n-Triacontane  

(C30H62) 

66 - - 

- 

775 

- 

n-Tetracontane  

(C40H82) 

82 - - 

- 

- 

- 

n-Pentacontane 

(C50H102) 

95 - - 779 

- 

Polyethylene 

(CnH2n+2, n upto 

100000) 

110-135 200 - 

- 

- 

870-940 (solid, 20 

ºC) 

 

Table 5. Commercial PCM available in the market [19] 

PCM name  Type of 

product  

Melting 

temperature 

(°C)  

Heat of fusion 

(kJ/kg)  

Density 

(kg/L)  

Source  

RT20 Paraffin 22 172 0.88 Rubitherm 

GmbH 

ClimSel C 24 n.a. 24 108 1.48 Climator 

RT26 Paraffin 25 131 0.88 Rubitherm 

GmbH 

STL27 Salt hydrate 27 213 1.09 Mitsubishi 

Chemical 

AC27 Salt hydrate 27 207 1.47 Cristopia 

RT27 Paraffin 28 179 0.87 Rubitherm 

GmbH 

TH29 Salt hydrate 29 188 n.a. TEAP 

STL47 Salt hydrate 47 221 1.34 Mitsubishi 

Chemical 

ClimSel C 48 n.a. 48 227 1.36 Climator 

STL52 Salt hydrate 52 201 1,3 Mitsubishi 

Chemical 

RT54 Paraffin 55 179 0,90 Rubitherm 

GMBH 

STL55 Salt hydrate 55 242 1,29 Mitsubishi 

Chemical 

TH58 n.a. 58 226 n.a. TEAP 

ClimSel C 58 n.a. 58 259 1,46 Climator 

RT65 Paraffin 64 173 0,91 Rubitherm 

GmbH 

ClimSel C 70 n.a. 70 194 1,7 Climator 

n.a.: not available or not known at the time of writing 
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4.2.2.3 Non-paraffins 

The non-paraffin class is further grouped into fatty acids, alcohols and glycols [9, 10]. 

Non-paraffin based organic PCM also have almost similar properties as paraffins. 

Among the non-paraffin organic materials, fatty acids are given more importance as 

PCM. Hence, in this section fatty acids are discussed in detail. 

 

Fatty acids as PCM: 

Fatty acids are carboxylic acids having long unbranched aliphatic chains and are 

formulated as CH3(CH2)2n·COOH [7, 10]. From the thermophysical properties point of 

view, fatty acids also have congruent melting and freezing points, good reproducibility, 

low thermal conductivity, no phase segregation, mild corrosivity and no or little 

subcooling. In contrast to paraffin, generally fatty acids have high heat of fusion and 

they are expensive (2-2.5 times expensive than commercial paraffins) [9, 10, 26]. Some 

of the fatty acids with potential use as PCM are presented in Table 6.  
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Table 6. Fatty acids with potential use as PCM [19] 

Compound Melting 

temperature (°C) 

Heat of fusion 

(kJ/kg) 

Thermal 

conductivity 

(W/m·K) 

Density (kg/m
3
) 

Propyl palmiate 10 

16-19 

186 n.a. n.a. 

Caprylic acid 16 

16.3 

148.5 

149 

0.149 (liquid, 

38.6°C) 

0.145 (liquid, 

67.7°C) 

0.148 (liquid, 20°C) 

901 (liquid, 30°C) 

862 (liquid, 80°C) 

981 (solid, 13°C) 

1033 (solid, 10°C) 

Capric-lauric acid 

(65 mol%-35 mol%) 

18.0 

17-21 

148 

143 

n.a. n.a. 

Butil stearate 19 

18-23 

140 

123-200 

200 

n.a. n.a. 

Capric-lauric acid 

(45%-55%) 

21 143 n.a. n.a. 

Dimethyl sabacate 21 120-135 

135 

n.a. n.a. 

Octadecyl 3-

mencaptopropylate 

21 143 n.a. n.a. 

34% Mistiric acid + 

66% Capric acid 

24 147.7 0.164 (liquid, 

39.1°C) 

0.154 (liquid, 

61.2°C) 

888 (liquid, 25°C) 

1018 (solid, 1°C) 

Octadecyl 

thioglycate 

26] 90 n.a. n.a. 

Vinyl stearate 27-29 

27 

122 n.a. n.a. 

Myristic acid 49-51 

54 

58 

204.5 

187 

186.6 

n.a. 861 (liquid, 55°C) 

844 (liquid, 80°C) 

990 (solid, 24°C) 

Palmitic acid 64 

61 

63 

185.4 

203.4 

187 

0.162 (liquid, 

68.4°C) 

0.159 (liquid, 

80.1°C) 

0.165 (liquid, 80°C) 

850 (liquid, 65°C) 

847 (liquid, 80°C) 

989 (solid, 24°C) 

Stearic acid 69 

60-61 

70 

202.5 

186.5 

203 

0.172 (liquid, 70°C) 

[49] 

848 (liquid, 70°C) 

965 (solid, 24°C) 

% in weight  

n.a.: not available or not known at the time of writing 

 

4.2.3 Inorganic phase change materials  

Generally inorganic materials have higher volumetric latent heat storage capacity than 

the organic materials due to their high density. They show sharp phase change, high 

thermal conductivity and they are non-flammable. Moreover, they are easily available at 

low cost. The main drawback of these materials is incompatibility with metals because 

severe corrosion effect is proven for some PCM-metal combinations [20 - 23]. They 

may show volume expansion on cooling [20], they show subcooling and segregation 
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[25]. These materials are further classified as (1) salt hydrates (2) salts, and (3) metals 

[9, 10]. 

 

Salt hydrates as PCM: 

Salt hydrates are the most important group among the PCM which have been 

extensively studied for their use in latent heat thermal energy storage systems. Salt 

hydrates may be regarded as alloys of discrete ratio of inorganic salts and water forming 

a typical crystalline solid bounded through ion-dipole or hydrogen bonds with the 

general formula AB·nH2O. Salt hydrates are available in wide temperature range from 5 

to 130 ºC. Generally, they have high volumetric energy density due to their high 

density. But they can potentially separate into two different phases since the presence of 

salt and water molecules which have different densities. Actually, the solid-liquid 

transformation of salt hydrates is a process of dehydration of hydration of the salt, 

although this process resembles melting or freezing thermodynamically. When a salt 

hydrate undergoes melting, it gives either salt hydrate with fewer amounts of water 

molecules (lower hydrate) or the anhydrous form of the salt. When the salt hydrate 

solidifies it releases water and the released amount of water is not enough to dissolve all 

the solid phase present and consequently causing the incongruent melting. Since there is 

density difference between water and salt, the lower hydrate (or anhydrous salt) settles 

down at the bottom of the container. Most of salt hydrates melt incongruently which is 

the main disadvantage of using salt hydrates as PCM [9, 10]. Different suggestions to 

overcome phase segregation and subcooling are mentioned by Farid et al. [26]. Table 7 

 shows some examples of salt hydrates with their physico-chemical properties. 
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Table 7. Inorganic substances with potential use as PCM [19] 

n.a.: not available or not known at the time of writing 
 

They have properties such as: 

 Generally having high volumetric energy density due to their high density. 

 They have high thermal conductivity, similar to water (that is 0.58 W/m·K) [24] 

and eutectic water-salt solutions, and almost double than the conductivity of 

paraffins. 

 They show small volume change on melting. 

 They are chemically stable. 

 They are compatible with plastics. 

 They might be slightly toxic. 

 They are available at low cost [9, 10]. 

On the other hand they also show some disadvantages such as: 

Compound  Melting 

temperatur

e (°C)  

Heat of fusion 

(kJ/kg)  

Thermal 

conductivity 

(W/m·K)  

Density (kg/m
3
)  

Na2CrO4·10 H2O 18 n.a. n.a. n.a. 

KF·4 H2O 18.5 231 n.a. 1447 (liquid, 20°C) 

1455 (solid, 18°C) 

1480 

Mn(NO3)2·6 H2O 25.8 125.9 n.a. 1738 (liquid, 20°C) 

1728 (liquid, 40°C) 

1795 (solid, 5°C) 

CaCl2·6 H2O 29 

29.2 

29.6 

29.7 

30 

29-39 

190.8 

171 

174,4 

192 

0.540 (liquid, 

38.7°C) 

0.561 (liquid, 

61.2°C) 

1.088 (solid, 23°C) 

1562 (liquid, 32°C) 

1496 (liquid) 

1802 (solid, 24°C) 

1710 (solid, 25°C) 

1634 

1620 

LiNO3·3 H2O 30 296 n.a. n.a. 

K3PO4·7 H2O 45 n.a. n.a. n.a. 

Zn(NO3)2·4 H2O 45.5 n.a. n.a. n.a. 

Ca(NO3)2·4 H2O 42.7 

47 

n.a. n.a. n.a. 

Na2HPO4·7 H2O 48 n.a. n.a. n.a. 

Na2S2O3·5 H2O 48 [ 

48-49 

201 

209,3 

187 

n.a. 1600 (solid) 

1666 

Zn(NO3)2·2 H2O 54 n.a. n.a. n.a. 

NaOH· H2O 58.0 n.a. n.a. n.a. 

Na(CH3COO)· 3 

H2O 

58 

58.4 

264 

226 

n.a. 1450 

Cd(NO3)2·4 H2O 59.5 n.a. n.a. n.a. 

Fe(NO3)2·6 H2O 60 n.a. n.a. n.a. 

NaOH 64.3 227.6 n.a. 1690 

Na2B4O7·10 H2O 68.1 n.a. n.a. n.a. 

Na3PO4·12 H2O 69 n.a. n.a. n.a. 

Na2P2O7·10 H2O 70 184  n.a. 
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 Incongruent melting [9, 10]. 

 Phase separation is the main problem due to the salt and water components with 

different densities [20]. That can result as a decrease in the heat absorbed on 

melting and released on crystallization, and in the spreading of the enthalpy peak 

over a wide range of temperature [27]. 

 Due to the phase separation they show problem with the cycling stability [9, 10]. 

 Almost all the salt hydrates show subcooling. 

 They have low vapour pressure. 

 Many salt hydrates are potentially corrosive [9, 10]. 

 

But some solutions could be helpful to overcome phase separation, subcooling and 

incongruent melting, such as, 

 Subcooling can be counteracted by rough surfaces [26]. 

 Subcooling can also be prevented by introduction of crystal seeds [26]. 

 Subcooling can also be overcome by violent motion of the PCM [26]. 

 Direct contact heat transfer between hydrated salts and an immiscible fluid for 

the solution to subcooling [26]. 

 Use of nucleating agents is the most fruitful for the PCM application [27, 28] to 

overcome the phase separation. 

 Subcooling can be suppressed by cold finger and  

 Preservation of some crystals (in a small cold region) could also be useful for 

the prevention of subcooling [9, 10]. 

 Addition of another salt could be useful to provide congruent melting to the 

PCM [27] and 

  Addition of thickening agents to make the mixture congruent [9, 10, 26]. 

 

Salts as PCM: 

Different salts which have melting point above 150 ºC can also be used as PCM. The 

heat of fusion roughly rises as the metling temperature increases. A salt always consists 

of more than one component, so theoretically phase separation is a potential problem. 

The thermal conductivity of the salts could be good, data of subcooling are not available 

and they have very low vapour pressure. The volume change could be upto 10% upon 
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melting, many salts are chemically stable, they could be corrosive with metals, their 

safety and price differs for different salt samples [10].  

 

Metals as PCM: 

This class of PCM covers low melting metals and metal eutectics. Because of the 

weight this class is not considered seriously but when the volume is the key point they 

are candidate PCM because of the high heat of fusion per unit volume, high thermal 

conductivity and relatively low vapour pressure. But they have low specific heat [9]. 

 

Eutectics as PCM: 

Eutectic PCM solutions are mixtures of two or more chemical compounds which, when 

mixed in a particular ratio, have a congruent freezing and melting point below or above 

freezing temperature of water. They offer a thermal energy storage facility in negative 

temperature range [20, 26, 29, 30].  

 

They provide some advantages such as:  

 Thermal energy storage in negative temperature range due to presence of the 

salt. 

 They show similar thermal conductivity as water. 

 They show good energy storage density. 

 

Simultaneously, they also have disadvantages such as: 

 They show subcooling [10]. 

 They present phase separation also because of the stratification of the salt and 

the water. 

 

Eutectics had attracted interest until the late 18th century for some applications, 

however due to phase separation and because the life expectancy of these mixtures were 

unpredictable, their wide spread usage was limited [26]. Some examples of inorganic 

and organic eutectics with potential use as PCM are shown in Table 8. 
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Table 8. Inorganic and organic eutectics with potential use as PCM [19] 

Compound  Melting 

temperature 

(°C)  

Heat of fusion 

(kJ/kg)  

Thermal 

conductivity 

(W/m·K)  

Density (kg/m
3
)  

Inorganic eutectics with potential use as PCM 

45-52% 

LiNO3·3H2O + 

48-55% 

Zn(NO3)2·6H2O 

17.2  220  n.a. n.a. 

66.6% CaCl2·6 

H2O + 33.3% 

MgCl2·6 H2O 

25  127  n.a. 1590  

48% CaCl2 + 4.3% 

NaCl + 0.4% KCl 

+ 47.3% H2O 

26,8  188,0  n.a. 1640  

Organic eutectics with potential use as PCM 

37.5% urea + 

63.5% Acetamide 

53  n.a. n.a. n.a. 

67.1% naphthalene 

+ 32.9% benzoic 

acid 

67  123.4  0.136 (liquid, 

78.5°C)  

0.130 (liquid, 

100°C)  

0.282 (solid, 38°C)  

0.257 (SOLID, 

52 ºc)  

% in weight  
n.a.: not available or not known at the time of writing 
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5 Applications of phase change 
materials 
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To fulfil the demand for lowering the electricity consumption, many researches have 

considered use of PCM in different applications. Some of the available applications of 

PCM in the literature are, 

 

 Thermal storage of solar energy [11]. 

 Cooling: use of off-peak rates and reduction of installed power, icebank [11, 25, 

31, 32]. 

 Heating and sanitary hot water: using off-peak rate and adapting unloading 

curves [11, 25, 31, 32].  

 Safety: temperature maintenance in rooms with computers or electrical 

appliances [11].  

 Thermal protection of food: transport, hotel trade, ice-cream, food agroindustry, 

wine, milk products, for pizza-heaters, self-chilling beverage keg, etc [11, 19]. 

 Thermal protection of electronic devices (integrated in the appliance) 

 Medical applications: transportation of blood and its byproducts, other medical 

applications (such as, mattress for operating tables, hot or cold pads to treat local 

pain in the body) [11, 19]. 

 Cooling of engines (electric and combustion) [11].  

 Thermal comfort in vehicles [11]. 

 Softening of exothermic temperature peaks in chemical reactions [11]. 

  For heat exchanging ventilation system using PCM [33]. 

 Applications to reduce the power demand [11, 25, 31, 32] in buildings such as: 

o Passive solar collecting walls  

o Indoor walls 

o Floors and ceilings 

o Green houses.  

 For the containers such as rigid and soft containers, PCM pads, and isothermal 

water bottle [19]. 

 

Some of commercial PCM products are shown in the Figure 12. 
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(a) Rigid container by         (b) PCM pad by TCP RELIABLE, Inc.        (c) Isothermal water bottle  

Sofrigam        by Sofrigram 

 

      
(d) pizza-heater (Merck KGaA)      (e) Hot cushion for medical 

                 purposes, by Rubitherm® 

 

       
(g) All Purpose delivery  (h) Containers for blood   (i) Rubitherm® cold product for 

transporters, by PCM Thermal products transport, by BIO cooling therapy 

Solutions    TRANS  

Figure 12. Different applications of PCM [34] 
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6 Techniques for the thermal 
analysis of PCM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Màster en Ciències Aplicades a l'Enginyeria 

 

 43 

6.1 Available techniques for the thermal analysis of phase change 

materials 

Some techniques are available for the thermal analysis of chemical materials.  Thermal 

analysis is a branch of materials science where the properties of materials are studied as 

they change with temperature. Thermal analysis techniques help to select and to 

determine thermodynamic properties of the materials which are essential for 

understanding the behavior of material under different conditions. Calorimetric methods 

are the methods to determine the change of heat in any kind of process (“calor” comes 

from Latin) [10, 35, 36]. Numerous research groups have been using different 

traditional methods such as, differential scanning calorimetry (DSC) [10, 37–40], 

conventional calorimetry, and differential thermal analysis (DTA), for analyzing PCM 

to reveal the thermal properties of these materials. Recently, T-history method was 

proposed by Zang et al. [41] for the thermal analysis of PCM and later improvements to 

this method was proposed by Marín et al. [42], which in addition facilitate to determine 

enthalpy as function of temperature [9–11, 39, 41–43]. Hong et al. [43] also proposed a 

new method which is a combined method of modified T-history method [44, 45] and 

heat flux meter method proposed by Saito et al. [46] for measuring the latent heat of 

PCM with a melting point lower than room temperature. Another method called “air-

flow chamber” is also proposed by Günther et al. [39]. 

The DTA and DSC methods are used for studying phase transition under different 

atmospheric influences, temperatures and heating/cooling rates in the field of 

metallurgy, material science, pharmacy, and food industry [36]. 

 

Since, the method used for the present experimental studies are based on the differential 

scanning calorimetry (DSC), different DSC types and methods are described in detail in 

the next section. 

 

6.2 Types of differential scanning calorimeter 

Differential Scanning Calorimetry (DSC) is a thermoanalytical technique and it was 

developed by E.S. Watson and M.J. O'Neill in 1960 [47]. DSC measures the change of 

heat flow rate difference which is normally released due to an alteration of the sample 

temperature. In the DSC heat only flows if the temperature difference is present [48] 
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and therefore the samples are subjected to temperature program to produce temperature 

difference for measurement of the heat flow. It measures energy directly and allows 

precise measurements of heat capacity [47] and thermal conductivity [36]. DSC quickly 

allows the measurements of reaction heats and heats of transition (heat flow rates) and 

their changes at characteristic temperatures for small sample masses (in milligrams and 

in grams for classic calorimetry), in wide temperature ranges with high accuracy [48].  

DSC are mainly classified into two different classes [10, 36, 48] such as, 

- Power compensation DSC, and 

- Heat flux DSC 

The primary measurement signal for all three types is a temperature difference; it 

determines the intensity of the exchange of the heat between the furnace and the 

sample-reference part. The resulting heat flow rate (Ф) is proportional to the 

temperature difference [10].  

Since, the experiments were performed using heat flux DSC, this class of DSC is 

discussed in detail in the next section. 

 

6.2.1 Power compensation DSC (PC DSC) 

The power compensation DSC can be seen in Figure 13. The power compensation DSC 

belongs to the heat-compensating calorimeter. In which, the heat to be measured is 

compensated with electric energy, by increasing or decreasing an adjustable Joule‟s 

heat. PC DSC consists of two identical micro-furnaces, one for the sample and the other 

for the reference with individual heater. The sample furnace is heated with a 

temperature – time program, while the reference furnace tries to follow this program. It 

results in increment and decrement of the temperature in the reference furnace following 

a reaction. In this case the compensating heating power is measured which is actually 

the heat flow difference. The very light weight individual furnace is advantage of the 

PC DSC (1 g) over the HF-DSC (up to 200 g). That favors extremely short responding 

time. The heating and cooling rates can be up to 500 °C/min. When an exothermic (heat 

releasing, i.e. solidification) or endothermic (heat absorbing, i.e. solidification) reaction 

appears the energy is accumulated or released to compensate the energy change in both 
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furnaces. The power required to maintain the system in equilibrium is proportional to 

the energy changes occurring in the sample [10, 36, 48]. 

 

 

Figure 13. Sketch of a power compensation dsc 48] 

 

6.2.2 Heat flux DSC (hf-DSC) 

The hf-DSC is also known as a type of Boersma DTA [36]. The heat flux DSC belongs 

to the class of heat-exchanging calorimeters. In which measurement of the heat flow 

rate between sample and surroundings due to the heat is measured. And the exchange of 

the heat with the environment takes place via a well-defined heat conduction path with 

given thermal resistance [48]. 

 

The heat flux DSCs are further classified into three most important fundamental types 

such as [36, 48], 

 Disk type measuring system 

 Turret type measuring system  

 Cylindrical type measuring system 

 

6.2.2.1 Heat flux DSC with Disk type measuring system 

Figure 14 shows the disk type DSC. In this measuring system, sample and reference 

containers are placed symmetrically to the centre and the temperature sensors are 
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integrated in the disk of medium thermal conductivity, which serves as solid samle 

support. When the furnace is heated, the heat flows through disk to the samples. . It has 

a simple and easily realizable design with a high sensitivity for the small sample 

volume. But the heat exchange between furnace and sample is limited which allows 

only meadium heating and cooling rates [36, 48]. If the samples of same kind are 

analyzed in an ideally symmetrical arrangement, the same heat flows into sample and 

reference sample. Then the differential temperature signal ΔT is zero. But in real, 

neither ideal thermal symmetry of the measuring system at all operating temperatures 

nor thermal identity of the samples can be attained in practical application, not even 

outside the transition interval. Hence, there will always be a signal ΔT which depends 

on the temperature and the sample properties. When a sample transition takes place, 

steady state equilibrium is interrupted and a differential signal, proportional to the 

difference between the heat flow rates to the sample and to the reference samples is 

generated. It can be presented as [48], 

     

ФFS – ФFR     TS – TR      (3) 

 

 

Figure 14. Sketch of a furnace of a heat flux DSC of a disk type 40] 

 

The heat flux DSC with disk type measuring systems is available for temperature 

between – 190 ºC and 1600 ºC. The maximum heating rates are about 100 K/min with 

common heating or cooling rate is 10 K/min, typical time constants of the ΔT-sensor 

(empty systems, i.e. without sample) are between 3 and 10 seconds, the noise of the 

measurement signal lies between 0.5 µW and 20 µW (it also depends on the 
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temperature and the heating rate). The total uncertainty of the heat measurement 

amounts to about 5% [36, 48]. 

 

6.2.2.2 Heat flux DSC with turret type measuring system 

The turret type DSC can be seen in Figure 15. In the turret type DSC, the heat exchange 

takes place via small hollow cylinders which also serve as elevated sample support. 

This system is ideal for determining the purity of metals. The design is more 

sophisticated with high sensitivity and fast thermal response which allows large heating 

and cooling rates, the sample volume is small. It is a special type because it has a third 

thermocouple which measures thermal inertia (called Tzero DSC technology) [36, 48]. 

 

 

Figure 15. Sketch of a turret type heat flux DSC 48] 

 

6.2.2.3 Heat flux DSC with cylinder type measuring system 

The cylinder type heat flux DSC can be seen in Figure 16. It works on Calvet principle 

using a cylinder type measuring system. In which two sintered alumina cylinders set 

parallel and symmetrical in the heating furnace. And the heat exchange between the 

cylindrical sample cavities and the furnace takes place via a path with low thermal 

conductivity. It is very sensitive with a large sample volume but with a large time 

constant which allows only low heating rates, and the sensitivity per unit volume is 

however very high [36, 48]. 
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Figure 16. A cylinder-type heat flux DSC 36] 

 

In the present experimental work, the disk type heat flux DSC (hf-DSC822
e
) from the 

company Mettler Toledo is used. 

 

6.3 Principle of heat flux-differential Scanning Calorimetry (hf-DSC) 

Figure 17 shows the photographic view of a DSC which is used for present 

experimental analysis of PCM. Differential Scanning Calorimetry (DSC) is a 

thermoanalytical technique. It is a standard method for thermal analysis. Heat flux DSC 

determines the amount of heat absorbed by a sample upon temperature change. The 

temperatue development of the sample in a furnace is compared with the temperature of 

a reference in a symmetric position. In a hf-DSC a temperature sensor is placed on the 

surface of the furnace (Figure 14). A hf-DSC allows measuring the heat flow with 

accuracy. The temperature development of the sample in the furnace is compared with 

the temperature of a reference in a symmetric position. Thermal effects of the sample 

lead to a deviation in the sample temperature from the reference temperature. This 

temperature difference is detected and used to determine the heat flux between the 

sample and the furnace. From the measured heat flux, the specific heat as a function of 

temperature cp(T) can be obtained. And from the specific heat values, the enthalpy (Δh) 

(the storage capacity) can be derived by integration over temperature (T) using 

following equation [39, 40]:  

 

        =        
 

  
     (4) 
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Figure 17. Photographic view of a hf-DSC of the GREA used for present thermal analysis of PCM 

samples 

 

The start of the integration range T0 can be chosen freely to normalize h(T) curves. 

Since the DSC allows measuring the heat of fusion and their changes at characteristic 

temperatures with high accuracy, it could be useful to obtain thermophysical properties 

of PCM. These properties would be, cp solid, cp liquid, melting temperature (Tm) and 

phase change enthalpy (Δh) [10, 37, 40]. 

 

6.4 Different modes of DSC operation 

DSC could be mainly operated using two different modes such as, (1) dynamic mode 

and (2) isostep mode [10, 39, 40]. These modes are discussed in detail in the following 

sections.  

 

6.4.1 DSC dynamic mode  

The most widely used scanning mode is the dynamic mode. It consists of heating and 

cooling segments at constant rates [39, 40]. Since the method involves constant (and 

continuous) heating and cooling rates, the time duration for the method analysis is short. 

A typical dynamic mode temperature program and a signal are shown in Figure 18. 
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Figure 18. Typical heat flow and temperature evolution during a dynamic DSC measurement with 

constant heating rate. The peaks indicate strong thermal effects of the sample at the corresponding 

temperatures [40] 

 

Enthalpy (h) can be determined by executing a dynamic program for three times. Such 

as, 

- First, a reference is compared with the blank crucible (empty crucible): to 

generate the baseline (it is a thermal response of the crucible material). 

- Second, the reference is compared with the standard material (usually sapphire): 

for calibration (for assuring good sensitivity for small signals). 

- And at last, the reference is compared with the sample material: to generate the 

sample line. 

 

Then the resulting specific heat of the sample as function of temperature cp (T) is given 

by [39]: 

 

cp, sample (T) = cp, standard (T) · [
              

                
] (T) · 

       

         
  (5) 

 

Where, 

m = masses of the sample and standard material 

U = voltage signals of empty, sample and standard run 
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Since the method involves continuous heating/cooling there are some related 

uncertainties to the dynamic mode which are discussed next. 

 

6.4.2 Uncertainties related to dynamic mode operation 

The temperature sensors are at the surface of the furnace (Figure 14). Hence, the 

measured temperature at the surface of the furnace is higher than the average sample 

temperature for heating and lower than the average sample temperature for cooling runs. 

Thus, the effect of continuous heating and cooling of the dynamic mode leads to 

temperature gradient in the sample temperature [39, 40]. 

 

Moreover, if the applied heating and cooling rates are very high, then it leads to a 

temperature gradient in the sample and the resulting heat flux signal originates from a 

temperature range. Therefore the resulting enthalpy values from heating and (or) 

cooling are systematically shifted to higher and (or) lower temperatures.  This effect can 

be seen in Figure 19. In the calculation of the thermal effect, the temperature of the 

material is assumed to be the same throughout the whole sample (solid lines). In reality, 

due to heat transfer limitations, the temperature is not uniform (dashed lines) [40]. 

 

 

Figure 19. Temperatures inside the sample during heating (left) and cooling (right) [40] 

 

When doing both heating and cooling measurements, the real temperature of a thermal 

effect can be confined to a value between both extremes. If the thermal effect does not 

occur in thermal equilibrium, a further shift due to kinetic or dynamic reasons can 

increase the thermal shift [40]. Therefore, the heating or cooling rate has to be slow 
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enough to assure thermodynamic equilibrium within the sample. If not, the heat 

supplied at each data recording (dH = dQ) cannot be assigned to the measured 

temperature resulting into significant errors in the data of the heat stored as a function of 

temperature [10]. Due to this reason and because the exact form of the gradient is not 

known, it cannot be assumed that the real value is indeed at the centre. Therefore, the 

distance between heating and cooling curves indicates the uncertainty of the 

measurement [40]. 

 

The sample size also affects the signal of the sample. If a small sample size is selected 

with low heating and cooling rates, the temperature shift inside the sample will be 

reduced. But this is not the solution. Because, both the small sample size and low heting 

and cooling rate lead to a weak signal and hence, decreasing the accuracy in enthalpy. 

Moreover, the small sample could not be a representative of the bulk material to be 

analyzed [40]. 

 

The effect of different heating/cooling rates and the sample size can be clearly seen in 

Figure 20 and Figure 21 [39]. Figure 20 and Figure 21 show the deviation in the 

resulting signal. Figure 20 shows that as the heating rate or sample mass increases the 

peak has shifted to higher temperature values. It can also be seen that as the heating 

rates increse the peaks shift towards higher temperatures and as the cooling rates 

increase the peaks shift towards lower temperatures leading to the thermal gradients in 

the sample. In DSC analysis, initially the sample has to be isothermal at the initial and 

final temperatures. If the sample is not in the isothermal state during this period, these 

states are not well defined and the heat supplied is not determinded correctly hence, 

resulting to wrong values [10]. When the sample undergoes the dynamic method, 

continuous heating (or cooling) is applied to the sample and thus the temperature 

gradient originates. These gradients vary consequently as the heating rate or the sample 

mass varies. As a result, the measured values are not the real values but the 

overestimated values due to the continuous heating or underestimated due to the 

continuous cooling which is responsible for the temperature shift to the high or the low 

temperature values.  As a consequence, the signal of the sample being attributed to too 

high temperatures, the shift of the melting peak increases with increasing gradient, i.e., 

heating rate or sample mass. 

 



Màster en Ciències Aplicades a l'Enginyeria 

 

 53 

 
Figure 20. Effect of different sample mass and different heating rates [39] 

 

 
Figure 21. Effect of different heating rates [49] 

 

Due to the reasons of uncertainties, for pure materials, the onset of the peak is 

commonly used to mark the melting temperature and the integral of the peak denotes the 

melting enthalpy. But this effect is more dominant for the PCM, because when the PCM 

is analyzed using DSC, the heat transfer problem increases because they have a high 

heat capacity and a low thermal conductivity than the other samples. Due to these two 

major factors the effect of internal temperature gradient is higher than the other samples 
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and especially near to the phase change temperature ranges which is of interest for the 

selection of the PCM [39, 40]. 

 

Because of the PCM properties the cp(T) curve is highly nonlinear during this 

temperature range. The consequences of the thermal gradient inside the sample can be 

experimentally quantified by reversing the ramp by means of cooling down the sample 

and comparing the heating and cooling measurements. During the cooling process the 

temperature gradient is reversed and the sample temperature is underestimated. Hence, 

the true sample temperature is thus enclosed by the heating and cooling measurement 

data. If the difference between the results of heating and cooling is within the desired 

uncertainty range, then the gradient is small enough. If it is larger, a variation of the 

heating and respectively cooling rate can show whether the results are dependent on the 

measurement variables. If they are not, the difference can be considered as the material 

property. That can be achieved by thermal hysteresis. By plotting the thermal hysteresis 

with different heating and cooling rate for dynamic method for DSC, a suitable heating 

rate could be found [39]. 

 

The adverse effect of the too high heating/cooling rate is well described above. If the 

too high heating/cooling rate is an adverse effect, then low heating/cooling rate could be 

an option. Nevertheless, lower heating/cooling rate is also not a solution for the 

dynamic method for the DSC. Because the signal-to-noise ratio and the errors in the Δh 

values increase with the very low heating rates [39, 40]. 

 

6.4.3 DSC step mode  

In this method, continuous heating or cooling is not applied to the sample. But small 

ramps of heating and cooling are applied followed by constant temperature period to 

ensure the thermal equilibrium at the beginning and at the end of each heating/cooling 

ramp. These small ramps are called steps, and the final resulting signal is the sum of 

these heating/cooling ramps. Using this method it is possible to increase the temperature 

resolution of the stored heat. Hence, the method is more reliable compared to the 

dynamic method because the uncertainty in the temperature is now precisely known, as 

it is confined to the step size. In this method the resolution of the temperature is 
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proportional to the height of the temperature steps. A typical step method temperature 

program and its resulting signal are shown in Figure 22. 

 

 

Figure 22. Typical heat flow and temperature evolution during a DSC step method for heating 

process [40] 

 

In this mode, the furnace is heated in stepwise intervals in the predetermined 

temperature range. These steps are followed by the predetermined time delay without 

heating (or cooling) such that the signals for the sample and the reference become 

isothermal at the end of each step and return to zero. Thus confirmning that the sample 

(and reference) is isothermal and the area below that period gives the amount of stored 

heat during the corresponding temperature. Hence, there is no temperature gradient. It 

should be taken into account that a reduction of the step size leads to better temperature 

resolution but it should also be considered that the step size should not be too small 

because if the step size is too small then the corresponding temperature signal will not 

be isothermal (not reach zero), the signal will vanish and the precision of the 

measurement will be lost. 

 

The evaluation of the signal considers only peak areas and the exact shape of the 

baseline has no influence on the resulting h(T) relationship. From the sample heat-flux 

signal, the enthalpy h(T) is determined by integration of every peak within the phase 

change range. For checking the accuracty of this method, the heat calibration is 

performed by the comparison of the measured peak areas of phase change of standard 
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materials to literature values of the phase change enthalpies. A sensitivity profile for the 

instrument is created and used to convert the directly measured thermovoltage signal 

into the heat-flux signal. The calibration needs to be repeated time to time, to ensure the 

correct performance of the instrument [10, 39, 40]. 

 

6.5 Temperature-history (T-history) method 

The T-history method was proposed by Zhang et al. [41].  T-history installations are not 

readily available in the market, but can be assembled using standard laboratory 

components. The T-history installation is shown in Figure 23. The method was 

improved by Marín et al. [42] to obtain temperature dependent properties such as 

enthalpy vs. temperature curve and specific heat vs. temperature curves for the larger 

sample size.  

 

The set up of the method consists of [42]: 

 Test tubes haveing Bi (biot number) < 0.1, 

 Insulated cool down chamber, 

 Hot water bath for heating the sample and reference to initial temperature, 

 Temperature sensors, to measure the temperature of the PCM, water and 

ambient, and  

 Data acquision equipment connected to a computer. 

 

In this method, two identical test tubes, one with PCM and the other with a reference 

substance (with known specific heat, i.e. distilled water) are heated in the water bath to 

the required temperature and then these tubes are placed in the cool down chamber to 

cool down the tubes. During this period the temperature-history is recorded [10, 42]. 

Following this method they analyzed paraffin, C16H34 and their obtained temperature-

time curve is presented in Figure 24 [42]. 
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Figure 23. T-history experimental set-up 42] 

 

 

Figure 24. Experimental temperature–time curve obtained for paraffin C16 42] 

 

Günther et al. [39] used a T-history installation with 20 ml of sample size which is 

approximately 1000 times more than the DSC sample size. They studied mixed linear 

alkanes using DSC dynamic mode, DSC isothermal step mode and T-history method. 

Their results obtained by using the three methods are presented in Figure 25. 
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Figure 25. Comparison of heating and cooling enthalpy curves of one sample material with 

different methods 39] 

 

They found that with the step method the uncertainty in temperature was reduced from 2 

K, with the slowest dynamic method (0.5 K/min) the uncertainty was found to about 1 

K and they also found that the T-history method presented similar precision with large 

sample size [39]. 

 

6.6 Problems related with PCM analysis using DSC 

There are some problems in analyzing PCM due to their high enthalpy density per unit 

volume. Such as, 

 

 Sample size: Sample should be representative of the material for being sure 

about the homogeneity of the sample material. Many PCM contain nucleating 

agents, heat transfer enhancing additives, gelling materials, etc. Hence, analysis 

on very small sample size of PCM (typically 20 μL for the DSC analysis) is not 

completely representative of the thermal properties of the PCM bulk material 

and it could not be assumed that the sample composition is same as the bulk 

material. Moreover, if the PCM sample size is very small for the analysis, 

pseudo-subcooling may occur [10, 39]. 
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 Subcooling: Subcooling is often stronger for small sample sizes than in large 

sample sizes.  Therefore the sample size should be large enough to obtain the 

real behaviour of the sample. If the sample present strong subcooling in DSC 

analysis, it deforms the cooling DSC curve. Due to the subcooling, it becomes 

difficult to quantify internal gradients by comparing heating and cooling curves. 

Consequently, the maximum subcooling determined by a DSC is not a 

representative of the PCM nature [10, 39]. Hence, as a solution to the 

subcooling, the large sample size should be analyzed before applying the PCM 

for any real TES system. 

 

 Correct determination of the exchanged heat and temperature of the sample: 

For obtaining the correct results it is necessary to calibrate the DSC time to time 

using standard material. For the PCM used for the heat storage applications, the 

sum of the latent heat and sensible heat is important. For this purpose, good 

sensitivity for small signals is necessary. And it can be achieved using the heat 

flow rate calibration. A calibration of the heat flux is done using the melting 

enthalpies of standard materials („heat calibration‟) or the sensible heat of a 

standard without phase change („heat flow rate calibration‟) [10, 39, 40]. 

  

 Thermal equilibrium: For achieveing thermal equilibrium the sample should be 

isothermal, otherwise the heat flux cannot be attributed to a single temperature 

as indicated by the sensor. To maintain the isothermal condition of the sample, 

the heating or cooling should be slow enough or the sample size should not be 

too large. This is contradictory to the requirement of enough large samples for 

being a representative of the sample as mentioned above [10, 39, 40]. 

 

 Reaction equilibrium: The sample should be in reaction equilibrium, otherwise 

the enathalpy at the measured temperature has no defined value and 

consequently enthalpy differences are also not well defined. It refers to two 

aspects: first, the dynamic process has to proceed to a stable state and second, 

there should be only one stable state at the same temperature. Some occasions 

such as, very slow reactions, metastable states like amorpohous instead of 

crystalline structures, subcooling and different crystalline structures cause 

problems with regard to reaction equilibrium (This requirement=reaction 
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equlibrium is violated during subcooling of a sample or if cooling crystals form 

slowly. That indicates that the heating/cooling rates should be small.) [10, 39]. 

 

 Hysteresis: Most calorimeters are constructed to provide accurate results for 

sensible heats of ordinary materials. But while analysing the PCM a significant 

offset can be seen in the melting range of the PCM due to their high energy 

storage density. This effect could become worse while cooling down of the 

PCM. Hence, as mentioned previously, for the correct analysis of the PCM, the 

heating and cooling of the PCM should be performed. Due to the high energy 

storage density of the PCM hysteresis could be obtained while presenting the 

values of enthalpy as a function of temperature.  But this hysteresis could be 

apparent or real hysteresis. Some factors might be the reason for the apparent 

hysteresis, such as continuous heating and cooling, and it could be because of 

the analysing equipment. There are several real causes for the hysterisis which 

include: subcooling, or if the latent heat is released too slowly on cooling 

because the crystal lattice forms very slowly, or because diffusion processes are 

necessary to homogenize the sample, or different solid phase after the 

solidification compared the initial solid phase [10, 39]. 
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The objective of the present work is mentioned in chapter 2. In the present work 

commercially available PCM which have melting temperature in the thermal comfort 

range according to Spanish climate were selected for the analysis. 

 

7.1 Sample selection 

In total four commercially available PCM samples were selected for the analysis of the 

thermal properties. Two of them were paraffins and two were salt hydrates. The selected 

paraffins were RT 20 and RT 27, and the selected salt hydrates were SP 22 A17 and SP 

25 A8. The thermal properties of these samples given by the manufacturer are presented 

in Table 9. All the samples were from the company Rubitherm GmbH. 

 

Thermal properties of selected paraffins (RT 20 and RT 27) 

The paraffin samples are based on the mixtures of n-alkanes. They have high thermal 

energy storage density, relatively constant temperatures for storage and extraction of 

heat, no subcooling effect, allow long life utilization with stable performance through 

the phase change cycles, they are ecologically harmless and non-toxic and chemically 

inert [50, 51]. 

 

Thermal properties of latent heat blend SP 22 A17 and SP 25 A8 

The materials are latent heat blend type and composed of salt hydrates and paraffins. 

The materials are preferably processed into sustaining and/or absorptive structure (e. g. 

foams). They have high material densities (as seen in the Table 9). They can be used in 

the construction industry and possibly they could be useful for passive and active 

cooling (e.g. in wall elements and air conditioners). The materials show stable 

performance throughout the phase change cycles, they possess high thermal storage 

capacity, limited subcooling, low flammability and they are non toxic. But, these 

materials have hygroscopic nature. Hence, they should be stored in a completly self 

contained container because these materials may absorb moisture, the original thermal 

properties of the materials could change [50, 51]. 
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Table 9. Thermal properties of selected PCM given by the manufacturer [50] 

Properites RT 20  RT 27 SP 22 A17 SP 25 A8 
Melting point/area 22 ºC 25-28 ºC 

(typically being 27 

ºC) 

22-24 ºC 

(typically being 23 

ºC) 

26 ºC 

Congealing 

point/area 

22 ºC  28-25 ºC 

(typically being 27 

ºC) 

21-19 ºC 

(typically being 20 

ºC) 

25 ºC 

Heat storage 

capacity 

172 kJ/kg  184 kJ/kg 150 kJ/kg (13-28 

ºC) 

180 kJ/kg 

Specific heat 

capacity 

----- ----- ----- 2.5 

Density solid ----- 0.88 kg/l (at 15 

ºC) 

1.49 kg/l (at 15 

ºC) 

1.38 kg/l  

Density liquid ----- 0.76 kg/l (at 40 

ºC) 

1.43 kg/l (at 35 

ºC) 

----- 

Volume expansion ----- 16% 4.03% 0.001 l/K 

Heat conductivity ----- 0.2 W/m·K 0.6 W/m·K 0.6 W/m·K 

Corrosion ----- Chemically inert 

with respect to 

most materials 

Corrosive 

compared to metal 

----- 

 

7.2 Methodology 

The instrument used for thermal analysis was a hf-DSC. The model was DSC822
e
 and it 

was manufactured by Mettler Toledo. A water-bath (OVAN) was used for cooling 

purposes and nitrogen gas was used as a purge atmosphere. The standard aluminum 

crucibles of 100  l volume were used as the sample container. Sapphire was used as a 

standard material was used for heat flow calibration. The calibration of the instrument 

was previously done by the technician from the manufacturing company. To determine 

the sample mass, an analytic balance AG – 135 also from Mettler Toledo was used. The 

calibration of the balance was also previously done by the technician from the 

manufacturing company. It has linearity of ±0.2 mg/±0.03 mg (in the temperature range 

10 … 30°C). 

 

The samples were preheated before sampling in order to facilitate sampling and to 

assure the homogeneity of the samples. Both dynamic and step methods were used to 

find out the suitable method for the thermal analysis of both PCM. The dynamic method 

program applied to all samples is presented in Figure 26. During the dynamic method 

all samples were heated and cooled down during 5 to 50 ºC with the heating rate of 0.5 

ºC. The nitrogen gas flow was constant (80 ml/min) during all the experiments. General 

temperature range of 5 to 50 ºC was applied in order to make sure complete melting and 
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freezing of the samples. The low heating /cooling rate of 0.5 ºC was used considering 

the previously mentioned causes. 

The samples were also analyzed to check repeatability of the results. For that purpose 

three sub-samples of all four samples (RT 20, RT 27, SP 22 A17, and SP 25 A8) were 

analyzed using the same dynamic method and each sub-sample was cycled three times. 

 

 

Figure 26. Dynamic method program applied to all samples from 5 to 50 ºC with heating/cooling 

rate of  0.5º/min 

 

From the dynamic method results, the phase change range of each sample was decided 

and consequently step method for each sample was created, and applied since the step 

method is more accurate method. More delay time during isothermal step was allowed 

during the phase change temperature range in order to assure the thermal equilibrium at 

each corresponding temperature. For the step method, new samples of all the samples 

were prepared in the same manner as for the dynamic method. During the step method 

the applied heating and cooling rate was the same as the dynamic method (that is 0.5 

ºC/min). 

 

The step method for RT 20 is presented in Figure 27. For this sample, the applied 

temperature range was shortend during 5 to 30 ºC. In this method, delay time of 20 min 

was applied during 16 to 24 ºC (for heating) and 22 to 14 ºC (for cooling). 
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Figure 27. Step method program from 5 to 30 ºC with heting/cooling rate of 0.5 ºC/min for RT 20 

 

Figure 28 shows step method for RT 27. For this sample, the applied temperature range 

was shortend during 5 to 35 ºC. In this method, delay time of 20 min was applied during 

21 to 29 ºC (for heating) and 27 to 18 ºC (for cooling).  

 

 

Figure 28. Step method program from 5 to 35 ºC with heating/cooling rate of 0.5 ºC/min for RT 27 

 

The step method for SP 22 A17 is shown in Figure 29. For this sample, the applied 

temperature range was shortend during 5 to 30 ºC. In this method, delay time of 20 min 

was applied during 12 to 22 ºC (for heating) and 22 to 12 ºC (for cooling). 
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Figure 29. Step method program from 5 to 30 ºC with heating/cooling rate of 0.5 ºC/min for SP 22 

A17 

 

Figure 30 shows step method for SP 25 A8. For this sample, the applied temperature 

range was shortend during 5 to 37 ºC. In this method, delay time of 20 min was applied 

during 23 to 32 ºC (for heating) and 32 to 22 ºC (for cooling). 

 

 

Figure 30. Step method program from 5 to 37 ºC with heating/cooling rate of 0.5 ºC/min for SP 25 

A8 
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7.3 Results and discussion  

The three sub-samples of the RT 20, RT 27, SP 22 A17 and SP 25 were named as 

sample A, B and C for the dynamic method experiments and D, E and G for the step 

method experiments. And the number of the each cycle was given as the suffix for the 

name of the sample cycle. 

 

7.3.1 Results of paraffin samples 

7.3.1.1 Results of  RT 20 

7.3.1.1.1 Dynamic method results 

Output results of the dynamic method of RT 20 for all three sub-samples obtained using 

DSC star
e
 software are presented in Figure 31. And the phase change area of each 

sample cycle was integrated and the temperature and enthalpy values were obtained by 

integrating the melting and the solidification peaks. For an example integrated sub-

sample A – 1D (where, D = dynamic method cycle) is presented with melting and 

solidification enthalpy values in Figure 32. Extracted specific heat values as a function 

of temperature are presented in Figure 33. The enthalpy values were derived from the 

specific heat values and are presented in Figure 34. Figure 34 shows the hysteresis due 

to the difference in the peak melting and solidification temperatures, and it can also be 

seen in Figure 33. 
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Figure 31. Heat flow vs. time and temperature of RT 20 for three sub-samples (A, B and C with 

their three cycles) using dynamic method 

 

 
Figure 32. Heat flow vs. time and temperature and enthalpy values (left to right: melting and 

solidification peaks) during phase change temperature range (7.5 to 24.5 ºC for melting and 25.5 to 

5 ºC for solidification) of the sub-sample (A) of RT 20 using dynamic method 

 

!RT 20 - (A) - 1D
RT 20 - (A) - 1D, 15,4100 mg

!RT 20 - (A) - 2D
RT 20 - (A) - 2D, 15,4100 mg

!RT 20 - (A) - 3D
RT 20 - (A) - 3D, 15,4100 mg

!RT 20 - (B) - 1D
RT 20 - (B) - 1D, 15,3800 mg

!RT 20 - (B) - 2D
RT 20 - (B) - 2D, 15,3800 mg

!RT 20 - (B) - 3D
RT 20 - (B) - 3D, 15,3800 mg

!RT 20 - (C) - 1D
RT 20 - (C) - 1D, 15,4100 mg

!RT 20 - (C) - 2D
RT 20 - (C) - 2D, 15,4100 mg

!RT 20 - (C) - 3D
RT 20 - (C) - 3D, 15,4100 mg

Wg^-1

-0,4

-0,3

-0,2

-0,1

0,0

0,1

0,2

0,3

min

°C5 10 20 30 40 50 50 50 40 30 20 10

0 20 40 60 80 100 120 140 160 180 200

^exo

 SW 8.01eRT ASUdL: Grea

? Integral 2521,52 mJ
  normalized 163,63 Jg^-1
Onset 21,52 °C
Peak 21,00 °C

Integral -1976,23 mJ
  normalized -128,24 Jg^-1
Onset 18,56 °C
Peak 21,89 °C

!RT 20 - (A) - 1D
RT 20 - (A) - 1D, 15,4100 mg

Wg^-1

-0,4

-0,3

-0,2

-0,1

0,0

0,1

0,2

0,3

min

°C5 10 20 30 40 50 50 50 40 30 20 10

0 20 40 60 80 100 120 140 160 180 200

^exo

 SW 8.01eRT ASUdL: Grea



Màster en Ciències Aplicades a l'Enginyeria 

 

 69 

 
Figure 33. Specific heat vs. temperature of RT 20 for the three sub-samples (A, B and C) with three 

different cycles (dynamic method) 
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Figure 34. Enthalpy vs. temperature of RT 20 for the three sub-samples (A, B and C) with three 

different cycles (dyanamic method) 
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for all cycles of all sub-samples were integrated within this phase change temperature 

range. The average measured melting enthalpy within above mentioned phase change 

temperature range is approximately 128 kJ/kg which is less (44 kJ/kg) than the 

commercial value (172 kJ/kg). The difference in the experimental enthalpy value and 

the commercial value could be due to the instrument sensitivity or change in the phase 

change range of the commercial values and the experimental values. The average 

measured melting tempeature (obtained by Mettler Toledo DSC822
e
) is 21.90 ºC which 

shows good agreement with the commercial data. And the standard deviation for the 

peak temperatures is less than 0.02 ºC and for the melting enthalpy it is less than 0.70 

kJ/kg. Hence, it can be said that temperature equilibrium was attained during the 

thermal analysis. Finally, from the results obtained during the present analysis it can be 

said that there is a good repeatability of the sample behaviour for all the three sub-

samples. 

 
Table 10. Comparison bettween the experimental values (dynamic method) and the commercial 

values of RT 20 

Sample 

name 

Mass 

of the 

sample 

(mg) 

Latent heat 

capacity 

given by 

manufacturer 

(kJ/kg) 

(Table 9) 

Enthalpy values 

measured in present 

work using DSC (kJ/kg) 

Melting 

temperature 

given by 

manufacturer 

(ºC)  

(Table 9 

) 

Peak temperature 

values measured in 

present work using 

DSC (ºC) 

Melting 

enthalpy* 

Solidification 

enthalpy** 

Melting 

point 

Solidification 

point 

RT 20-

(A)-1D  
15.41 172 128.24 163.63 22 21.89 21.00 

RT 20-

(A)-2D 
15.41 172 127.54 162.14 22 21.90 21.01 

RT 20-

(A)-3D 
15.41 172 127.08 161.26 22 21.87 21.03 

RT 20-

(B)-1D  
15.38 172 127.89 160.63 22 21.92 20.96 

RT 20-

(B)-2D 
15.38 172 128.43 161.93 22 21.89 20.98 

RT 20-

(B)-3D 
15.38 172 129.06 162.18 22 21.91 21.01 

RT 20-

(C)-1D  
15.41 172 127.27 160.41 22 21.88 21.00 

RT 20-

(C)-2D 
15.41 172 127.23 160.99 22 21.90 20.98 

RT 20-

(C)-3D 
15.41 172 127.22 160.79 22 21.89 21.00 

Average 

values 
----- 172 127.77 161.55 22 21.89 21 

Standard 

deviation  
----- ----- 0.64 0.96 ----- 0.014 0.019 
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*Phase change range = 7.5 to 24.5 ºC  

**Phase change range = 25.5 to 5 ºC  

 

7.3.1.1.2 Step method results 

Output results of the step method of RT 20 (D) for all three cycles obtained using DSC 

star
e
 software are presented in Figure 35. The phase change area of each cycle was 

integrated and the temperature and enthalpy values were obtained by integrating the 

melting and the solidification peaks. For an example integrated first sample cycle D – 

1S (where, S = step method cycle) is presented with melting and solidification enthalpy 

values in Figure 36. Extracted specific heat values as a function of temperature obtained 

with the step method are presented in Figure 37. The enthalpy values were obtained by 

the derivation of the specific heat values and are presented in Figure 38 . It can be seen 

that there is a very small temperature difference between melting and solidification 

temperatures and the melting and solidification temperatures are congruent for the three 

cycles. 

The hysteresis area between the melting and the solidification enthalpy value has been 

decreased during the step method analysis and that can be seen in the comparison 

between the dynamic and step method analysis (Figure 39). Hence, it is proved that the 

step method is more accurate method than the dynamic method.  

 

 
Figure 35. Heat flow vs. time of RT 20 for the three cycles using step method 
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Figure 36. Heat flow vs. time and enthalpy values (left to right: melting and solidification) during 

phase change temperature range (7 to 22 ºC for melting and 22 to 5 ºC for solidification process) for 

the first sample cycle (D-1S) of RT 20 using step method 

 

 
Figure 37. Specific heat as a function of tempeature of RT 20 for three cycles (Step method) 

Integral 2580,30 mJ
  normalized 167,88 Jg^-1
Onset 21,63 °C
Peak 21,14 °C

Integral -2564,76 mJ
  normalized -166,87 Jg^-1
Onset 21,06 °C
Peak 21,88 °C

!RT 20 - (D) - 1S
RT 20 - (D) - 1S, 15,3700 mg

Wg^-1

-0,3

-0,2

-0,1

0,0

0,1

0,2

0,3

min0 50 100 150 200 250 300 350 400 450 500 550 600

^exo

 SW 8.01eRT ASUdL: Grea

0

10

20

30

40

50

60

70

80

5 10 15 20 25 30

Temperature (ºC)

S
p

e
c

if
ic

 h
e

a
t 

(J
/g

·K
) RT20-mel-(D)-1S

RT20-sol-(D)-1S

RT 20-mel-(D)-2S

RT 20-sol-(D)-2S

RT 20-mel-(D)-3S

RT 20-sol-(D)-3S

Specific heat (liquid) 

Specific heat (solid) 



Màster en Ciències Aplicades a l'Enginyeria 

 

 73 

-200

-150

-100

-50

0

50

10 12 14 16 18 20 22 24

E
n

th
a

lp
y
 (

k
J
/k

g
)

Temperature (ºC)

RT20-mel-(D)-1S

RT20-sol-(D)-1S

RT20-mel-(D)-2S

RT20-sol-(D)-2S

RT20-mel-(D)-3S

RT20-sol-(D)-3S

 
Figure 38. Enathalpy vs. temperature of RT 20 for the three cycles (Step method) 
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RT 20 

 

The experimental values for the enthalpy and melting and freezing temperatures 

obtained by the DSC software are presented in Table 11. The melting was started from 

7 ºC and was ended at 22 ºC, hence the melting peaks of all the cycles were integrated 

within this phase change temperature range. While the solidification started from 22 ºC 

and ended at 5 ºC, therefore the solidification peaks for all the cycles were integrated 
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within this phase change temperature range. Table 11shows that the measured peak 

temperature values are identical to each other and these values are similar to the 

commercial data. Moreover, there is not a huge difference (around 5 kJ/kg) for the 

enthalpy values between experimental data (obtained by Mettler Toledo DSC822e) and 

commercial data. The average measured melting enthalpy is around 167 kJ/kg and the 

average measured melting tempeature is 21.88 ºC. The standard deviation obtained was 

nil. Hence, with this method it was possible to get good conformity for the enthalpy 

values and the temperature values with the commercial data. 

 
Table 11. Comparison between the experimental values (step method) and the commercial values of 

RT 20 

Sample 

name 

Mass 

of the 

sample 

(mg) 

Latent heat 

capacity 

given by 

manufacturer 

(kJ/kg) 

(Table 9 

Enthalpy values 

measured in present 

work using DSC (kJ/kg) 

Melting 

temperature 

given by 

manufacturer 

(ºC) 

(Table 9) 

Peak temperature 

values measured in 

present work using 

DSC (ºC) 

Melting 

enthalpy* 

Solidification 

enthalpy** 

Melting 

point 

Solidification 

point 

RT 20-

(D)-1S  
15.37 172 166.87 167.88 22 21.88 21.14 

RT 20-

(D)-2S 
15.37 172 167.79 170.21 22 21.88 21.14 

RT 20-

(D)-3S 
15.37 172 167.80 168.18 22 21.88 21.14 

Average 

values 
15.37 172 167.49 168.75 22 21.88 21.14 

Standard 

deviation  
----- ----- 0.53 1.26 ----- 0 0 

*Phase change range = 7 to 22 ºC 

**Phase change range = 22 to 5 ºC 

 

7.3.1.2 Results of  RT 27 

7.3.1.2.1 Dynamic method results 

Output results of the dynamic method of RT 27 for all sub-samples obtained using DSC 

star
e
 software are presented in Figure 40. The enthalpy values and melting and 

solidification temperature values were obtained by integrating melting and solidification 

peaks and for an example, integrated sub-sample A – 1D (where, D = dynamic method 

cycle) is presented with melting and solidification enthalpy values in Figure 41. The 

experimental results of the specific heat values over temperature for RT 27 using 

dynamic method are presented in Figure 42. Figure 42 shows that there is no major 

difference in the specific heat for liquid phase and solid phase. The difference during 
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the heating and the cooling segments can be seen from the hysteresis (as seen in Figure 

43) in the enthaly-temperature curves of the sample. 

 

 
Figure 40. Heat flow vs. time and temperature of RT 27 for the three sub-samples (A, B and C with 

their three cycles) using dynamic method 

 

 
Figure 41. Heat flow vs. time and temperature and enthalpy values (left to right: melting and 

solidification) during phase change temperature range (15 to 28.65 ºC for melting and 28.5 to 16.5 

ºC for solidification process) of sub-sample (A) of  RT 27 using dynamic method 
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Figure 42. Specific heat vs. temperature of RT 27 for the three sub-samples (A, B and C) with three 

different cycles each (dynamic method) 

 

 
Figure 43. Enthalpy vs. temperature of RT 27 for the three sub-samples (A, B and C) with three 

different cycles each (dynamic method) 
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temperature range. While the solidification started from 28.5 ºC and ended at 16.5 ºC, 

therefore the solidification peaks for all the cycles of all the sub-samples were 

integrated within this phase change temperature range. Table 12 shows that the 

measured melting temperatures for all cycles are slightly higher (around 27.47 ºC) than 

the commercial melting temperature (27 ºC), while the solidification temperature is a 

little lower (26.22 ºC) than the commercial congealing temperature (27 ºC). But that is 

not significant because both measured melting and solidification temperatures are 

within the melting area (25-28 ºC) and congealing area (28-25 ºC) provided by the 

manufacturer and standard deviation of temperature for all cycles was less than 0.02 ºC.  

Thus, the DSC shows good agreement for temperature values. The average measured 

melting enthalpy within above mentioned phase change temperature range is around139 

kJ/kg which is less than (around 45 kJ/kg) the commercial enthalpy value (184 kJ/kg). 

This difference of enthalpy values between the commercial value and the experimental 

value could be because of the used analyzing equipment and its sensitivity, and the 

selected phase change range for the integration of peak area. The standard deviation of 

all cycles for the enthalpy was less than 0.50 kJ/kg. After analyzing three sub-samples 

and their total nine cycles, it could be said that the repeatability of the results is assured. 
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Table 12. Comparison between the experimental values (dynamic method) and the commercial 

values of RT 27 

Sample 

name 

Mass 

of the 

sample 

(mg) 

Latent heat 

capacity 

given by 

manufacturer 

(kJ/kg) 

(Table 9) 

Enthalpy values 

measured in present 

work using DSC (kJ/kg) 

Melting 

temperature 

given by 

manufacturer 

(ºC) 

(Table 9) 

Peak temperature 

values measured in 

present work using 

DSC (ºC) 

Melting 

enthalpy* 

Solidification 

enthalpy** 

Melting 

point 

Solidification 

point 

RT 27-

(A)-1D  
15.61 184 138.60 136.40 27 27.49 26.20 

RT 27-

(A)-2D 
15.61 184 138.94 135.74 27 27.49 26.19 

RT 27-

(A)-3D 
15.61 184 139.16 135.94 27 27.48 26.20 

RT 27-

(B)-1D  
15.50 184 138.59 135.38 27 27.45 26.23 

RT 27-

(B)-2D 
15.50 184 138.89 135.69 27 27.48 26.24 

RT 27-

(B)-3D 
15.50 184 138.79 135.48 27 27.48 26.23 

RT 27-

(C)-1D  
15.41 184 139.71 136.45 27 27.48 26.23 

RT 27-

(C)-2D 
15.41 184 139.73 136.49 27 27.48 26.23 

RT 27-

(C)-3D 
15.41 184 139.79 136.51 27 27.46 26.22 

Average 

values 
----- 184 139.13 136.00 27 27.47 26.22 

Standard 

deviation  
----- ----- 0.46 0.43 ----- 0.012 0.016 

*Phase change range = 15 to 28.65 ºC 

**Phase change range = 28.5 to 16.5 ºC 

   

7.3.1.2.2 Step method results 

Output results of the step method of RT 27 (D) for all three cycles obtained using DSC 

star
e
 software are presented in Figure 44. These outputs were integrated during phase 

change temperature range and for an example, integrated first cycle D – 1S (where, S = 

step method cycle) with melting and solidification enthalpy as well as temperature 

values is presented in Figure 45. The experimental results of the specific heat values 

over temperature for RT 27 using step method are presented in Figure 46. It can be seen 

in Figure 46, that the specific heat values for liquid phase and the solid phase are 

similar. The enthalpy values were obtained by the derivation of the specific heat values, 

and are presented over temperature in Figure 47 which shows the hysteresis. The area of 

the hysterisis loop has been decreased during the step method compared to the dynamic 

mehtod and that can be seen in Figure 48. 
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Figure 44. Heat flow vs. time of RT 27 for three cycles using step method 

 

 
Figure 45. Heat flow vs. time and enthalpy and temperature values (left to right: melting and 

solidification) during phase change temperature range (15 to 28 ºC for melting and 28 to 16 ºC for 

solidification process) of the first cycle of sample D of RT 27 using step method 
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Figure 46. Specific heat vs. temperature of RT 27 for the three different cycles (step method) 

 

 
Figure 47. Enthalpy vs. temperature of RT 27 for the three different cycles (step method) 
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Figure 48. Comparison between dynamic and step method enthalpy vs. temperature curves of  RT 

27 

 

Table 13 shows the comparison of the experimental values and the commercial values 

of RT 27. In this case, the melting was started from 15 ºC and ended at 28 ºC and the 

solidification started from 28 ºC and ended at 16 ºC, hence the melting and 

solidification peaks for all cycles were integrated within this phase change temperature 

range. Table 13 shows that the average measured melting temperature is slightly higher 

(27.77 ºC) than the commercial melting temperature value (27 ºC) while the average 

measured solidification temperature (26.18 ºC) is lower than the commercial congealing 

temperature (27 ºC). But the temperature values are within the temperature ranges 

provided by the manufacturer (Table 9). Using this method it is possible to get enthalpy 

values almost similar to the commercial data. And the standard deviation for the 

temperature values is very low (being 0.005 ºC). It proves that the DSC shows good 

agreement with the commercial data for the thermophysical properties such as specific 

heat values, enthalpy values and the temperature values. These values are almost 

identical for the three cycles; therefore DSC shows good repeatability of the results. 
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Table 13. Comparison between the experimental values (step method) and the commercial values of 

RT 27 

Sample 

name 

Mass of 

the 

sample 

(mg) 

Latent heat 

capacity 

approximate 

(kJ/kg) 

(Table 9) 

Measured DSC enthalpy 

(kJ/kg) 

Typical 

melting 

temperature 

(ºC) 

(Table 9) 

Measured DSC 

temperature peak (ºC) 

Melting 

enthalpy* 

Solidification 

enthalpy** 

Melting 

point 

Solidification 

point 

RT 27-

(D)-1S  
15.50 184 183.70 182.98 27 27.77 26.18 

RT 27-

(D)-2S 
15.50 184 184.81 183.31 27 27.77 26.19 

RT 27-

(D)-3S 
15.50 184 184.59 181.68 27 27.78 26.19 

Average 

values 
----- 184 184.36 182.65 27 27.77 26.18 

Standard 

deviation  
----- ----- 0.58 0.86 ----- 0.005 0.005 

*Phase change range = 15 to 28 ºC 

**Phase change range = 28 to 16 ºC 

 

7.3.1.3 Conclusions  

Temperature values:  

From the above presented paraffin results for the dynamic method (Figure 31, Figure 

33, Figure 40, Figure 42) it could be concluded that the melting and freezing 

temperatures show small variation and the standard deviation is in the range of 0.01-

0.02 ºC (Table 10 and Table 12).  

 

The temperature values are identical during the mentioned three step method cycles for 

RT 20 and the standard deviation is nil (Table 11). Whereas, for RT 27 the resulting 

temperature values with the step method shows negligible variation giving a standard 

deviation of 0.005 ºC (Table 13), which is significantly small. Moreover the overall 

temperature values for both the methods are within the temperature range provided by 

the manufacturer.  

 

Hysteresis in the enthalpy-temperature curve: 

RT 20 and RT 27 samples show the hysteresis also during the step method analysis. But 

the area of the hysteresis during the step method is small compared to the dynamic 

method. That can be seen in Figure 39 and Figure 48. That also proves that the reason 

for the hysteresis is the applied method.  Reasons for the hysteresis could be slow 
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formation of the crystal lattice or the diffusion process (which is necessary to 

homogenize the sample). 

 

Enthalpy values: 

For RT 20, the obtained heating enthalpy during the dynamic method is around 128 

kJ/kg (Table 10). That is significantly less than the commercial value (172 kJ/kg). 

Whereas, the melting enthalpy obtained using the step method is about 168 kJ/kg (Table 

11). That is quite closer to the commercial value (172 kJ/kg). And for RT 27, the 

obtained heating enthalpy is 140 kJ/kg (Table 12) during the dynamic method, which is 

significantly lower than the commercial value (184 kJ/kg). Whereas, the enthalpy value 

obtained using the step method is nearly 184 kJ / kg (Table 13), which is quite closer to 

the commercial value. Thus the enthalpy values obtained by the step method are closer 

to the commercial data. 

 

The difference in the values using different methods for the same sample shows the 

effect of the mechanism of the applied methods. The dynamic method involves 

continuous heating and cooling while the step method incorporates slow heating and 

cooling of the sample followed by the non-reaction (heating/cooling) time period to 

assure the thermal equilibrium and reaction equilibrium before and at the end of each 

heating/cooling segment. Hence, the results obtained using the step method are more 

reliable compared to the dynamic method. Simultaneously the good repeatability is also 

obtained and that can be said from the minor standard deviation values (Table 10-Table 

13). The step method was proved as comparatively more accurate method. 

 

7.3.2 Results of salt hydrate samples 

7.3.2.1 Results of  SP 22 A17 

Dynamic method results 

Output results of dynamic method of SP 22 A17 for all sub-samples (A, B and C) 

obtained using DSC star
e
 software are presented in Figure 49. The stored energy during 

the melting and the solidification was obtained by integrating melting and solidification 

peaks. This is shown in Figure 50, in which, first cycle of sub-sample A is integrated (A 

– 1D, where D = dynamic method cycle) for melting part (during 6.75-21 ºC) and 
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solidification part (during 50-5 ºC). The integration during mentioned phase change 

range gave melting enthalpy of 1.69 kJ/kg and solidification enthalpy of 52.54 kJ/kg. 

Which is significantly lower than the commercial value (150 kJ/kg).  

The experimental results of the specific heat values over temperature and enthalpy 

values (derived from the specific heat values) as a function of the temperature for SP 22 

A17 are presented  in  Figure 51 and Figure 52 using dynamic method. All nine cycles 

of three sub-samples of the SP 22 A17 presented almost similar behaviour.  

 

 

Figure 49. Heat flow vs. time and temperature of SP 22 A17 for three sub-samples (A, B and C with 

their cycles) using dynamic method 
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Figure 50. Heat flow vs. time and temperature and enthalpy and temperature values (left to right: 

melting and solidification) during phase change temperature range (6.75 to 21 ºC for melting and 

50 to 5 ºC for solidification process) of the first cycle of sample A of SP 22 A17 using dynamic 

method 

 

 
Figure 51.Specific heat vs. temperature of  SP 22 A17 for three sub-samples (A, B and C) with three 

different cycles each (dynamic method) 
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Figure 52. Enthalpy vs. temperature of SP 22 A17 for the three sub-samples (A, B and C) with 

three different cycles each (dynamic method) 
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as a function of the temperature for  SP 22 A17 are presented  in Figure 54 and Figure 

55 for the step method. All six cycles of the two sub-samples of the SP 22 A17 

presented almost similar behaviour. The phase change can not be observed in all three 

Figure 53, Figure 54 and Figure 55 during all six cycles of both sub-samples.  
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Figure 53. Heat flow vs. time of SP 22 A17 for two sub-samples (D and E with their cycles) using 

step method 
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Figure 54. Specific heat vs. temperature of SP 22 A17 for the two sub-samples (D and E) with three 

different cycles each (step method) 
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Figure 55. Enthalpy vs. temperature of SP 22 A17 for the two sub-samples (D and E) with three 

different cycles each (step method) 

 

7.3.2.2 Results of sample SP 25 A8 

Dynamic method results 

Output results of dynamic method of SP 25 A8 for all sub-samples (A, B and C) 

obtained using DSC star
e
 software are presented in Figure 56. In Figure 57, first cycle of 

sub-sample A is integrated (A – 1D, where D = dynamic method cycle) for melting part 

(during 7-32 ºC) and solidification part (during 32-6.6 ºC). The integration during 

mentioned phase change range gave melting enthalpy of 12.01 kJ/kg and solidification 

enthalpy of 13.66 kJ/kg. This is significantly lower than the commercial value (180 

kJ/kg).  

 

The experimental results of the specific heat values over temperature and enthalpy 

values (derived from the specific heat values) as a function of the temperature for  SP 25 

A8 are presented in Figure 58 and Figure 59 for the dynamic method. The phase change 

can not be observed from all four figures Figure 56, Figure 57, Figure 58 and Figure 59. 
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Figure 56. Heat flow vs. time and temperature of SP 25 A8 for two sub-samples (D and E with their 

cycles) using dynamic method 

 

 
Figure 57. Heat flow vs. time and temperature and enthalpy and temperature values (left to right: 

melting and solidification) during phase change temperature range (7 to 32 ºC for melting and 32 to 

6.6 ºC for solidification process) of the first cycle of sample A of SP 25 A8 using dynamic method 
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Figure 58. Specific heat vs. temperature of SP 25 A8 for the three sub-samples (A, B and C) with 

three different cycles each (dynamic method) 

 

-60

-50

-40

-30

-20

-10

0

10

20

20 25 30 35

E
n

th
a

lp
y
 (

k
J

/k
g

)

Temperature (ºC)

SP 25-mel-(A)-1D

SP 25-sol-(A)-1D

SP 25-mel-(A)-2D

SP 25-sol-(A)-2D

SP 25-mel-(A)-3D

SP 25-sol-(A)-3D

SP 25-mel-(B)-1D

SP 25-sol-(B)-1D

SP 25-mel-(B)-2D

SP 25-sol-(B)-2D

SP 25-mel-(B)-3D

SP 25-sol-(B)-3D

SP 25-mel-(C)-1D

SP 25-sol-(C)-1D

SP 25-mel-(C)-2D

SP 25-sol-(C)-2D

SP 25-mel-(C)-3D

SP 25-sol-(C)-3D

 
Figure 59. Enthalpy vs. temperature of SP 25 A8 for the three sub-samples (A, B and C) with three 

different cycles each (dynamic method) 

 

Step method results 

After analyzing SP 25 A8 with dynamic method it was again analyzed using the same 

dynamic method to confirm its thermal behaviour. Consequently, step method program 

was created with 20 min of isostep mode to achieve steps during melting and 

solidification. Output results of step method of SP 25 A8 for three cycles obtained using 
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DSC star
e
 software are presented in Figure 60. The experimental results of the specific 

heat values over temperature and enthalpy values (derived from the specific heat values) 

as a function of the temperature for  SP 25 A8 are presented  in Figure 61 and Figure 62 

for the step method. All three cycles of the SP 25 A8 presented almost similar 

behaviour. The phase change can not be observed in all three cycles (Figure 60). 

 

 
Figure 60. Heat flow vs. time of SP 25 A8 for three cycles using step method 
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Figure 61. Specific heat vs. temperature of  SP 25 A8 for the three cycles (step method) 
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Figure 62. Enthalpy vs. temperature of  SP 25 A8 for the three cycles (step method) 

 

7.3.2.3 Discussion 

The salt hydrate samples SP 22 A17 and SP 25 A8 were analyzed using both dynamic 

method (three sub-samples of both samples) and step method (two sub-samples of SP 

22 A17 and one sample of SP 25 A8). But they did not respond during the DSC 

analysis. Because they did not present the phase change, did not give the peak 

temperature of the phase change and hence did not store the high amount of enthalpy as 

shown in the Table 9. After performing number of cycles of dynamic as well as step 

method in the present analysis it can be said that the DSC could not be proven as a 

proper method for analyzing the salt hydrate samples. Probably this could be due to 

phase separation. Because these are the salt hydrates and salt hydrates usually present 

the phase separation due to the density difference of water and salt contents. Therefore, 

for such materials the method involving large sample size could be helpful to detect the 

actual thermal behaviour. 
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8 Conclusions  
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 Paraffin samples (RT 20 and RT 27): 

- Due to the good thermal repeatability of RT 20 and RT 27 (Table 14), they are 

promising materials for the long term use in the associated application and for 

the builiding applications. 

- All the sub-samples and their cycles of RT 20 and RT 27 presented almost 

similar behaviour, good heat storage capacity and similar melting and freezing 

temperatures.  

- The standard deviation obtained for all the cycles of all the sub-samples of both 

RT 20 and RT 27 was lower than 0.02 ºC for the temperature values and it was 

lower than 0.70 kJ/kg for melting enthalpy values. 

- The values for the standard deviation prove that the precision of the results is 

well achieved and subsequently the repeatability of the results is assured. 

- Finally, it could be conclude that the DSC is a proper method to analyze the 

paraffin samples, since the DSC provides high precision of the results. 

- The thermal stability of these paraffin samples is quite good and the materials 

could be used for the long term applications. 

 

 Salt hydrate samples (SP 22 A17 and SP 25 A8): 

- Commercial data of the SP 22 A17 and SP 25 A8 show good thermal properties 

for the material but it has not been achieved by the present DSC analysis. 

- It could be probably due to the very small sample size in the miligram range. 

Because the salt hydrates can present phase separation due to the different 

densities of salt and water components. 

- Due to this reason, these samples should be analyzed using the method that 

allows large sample mass such as T-history method before using for any 

application.  

- In the present analysis, DSC outputs did not present phase change of SP 22 A17 

and SP 25 A8 and as a result they did not store large amount of energy. Finally, 

after performing number of analysis of SP 22 A17 and SP 25 A8 it could be 

concluded that the DSC is not a proper method for analyzing the salt hydrate 

samples (SP 22 A17 and SP 25 A8) due to the limitations for the sample size to 

be analyzed. 
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Table 14. Results of the analysis 

Sample Applied 

method 

Commercial 

melting 

temperature 

(ºC)  

(Table 9) 

Average 

measured 

temperature 

(ºC) 

Standard 

deviation of 

measured 

melting 

temperature 

(ºC) 

Commercial 

melting 

enthalpy 

(kJ/kg) 

(Table 9) 

Average 

measured 

melting 

enthalpy 

(kJ/kg) 

Standard 

deviation 

of 

measured 

melting 

enthalpy 

(kJ/kg) 

RT 20 Dynamic 22 21.89 0.014 172 127.77 0.64 

Step 21.88 0 167.49 0.53 

RT 27 Dynamic 27 (typical) 27.47 0.012 184 139.13 0.46 

Step 27.77 0.005 184.36 0.58 

SP 22 

A17 

Dynamic 23 (typical) No phase 

change 

No phase 

change 

150 No phase 

change 

No phase 

change 

Step As above As above As above As above 

SP 25 

A8 

Dynamic 26 As above As above 180 As above As above 

Step As above As above As above As above 
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