

VŠB - Technical University of Ostrava

Faculty of Electrical Engineering and Computer Science

Department of Computer Science

Boolean Factor Analysis by

Attractor Neural Network

PHD THESIS

Pavel Y. Polyakov

Ostrava, October 2016

i

Thesis supervisor:
Ing. Dušan Húsek, CSc.

Institute of Computer Science

The Czech Academy of Sciences

Pod Vodárenskou věží 271/2

182 07 Praha 8

dusan@cs.cas.cz

Educational institution
Department of Computer Science

Faculty of Electrical Engineering and Computer Science

VŠB – Technical University of Ostrava

17. listopadu 15, 708 33 Ostrava–Poruba

Czech Republic

http://fei.vsb.cz http://www.vsb.cz

Study program

P1807 Computer Science, Communication Technology and Applied Mathematics

Field of study
1801V001 - Informatics

Copyright © 2016 Pavel Y. Polyakov

http://fei.vsb.cz/
http://fei.vsb.cz/

ii

Assignment

Boolean Factor Analysis by Attractor Neural Network
The aim of the dissertation is to create effective methods for nonlinear Boolean factor analysis of

signals of different properties, using the paradigm of neural networks, especially auto-associative

memory. Dissertation will link up to the previous research performed by the supervisor and his

collaborators and their expertise in attractor neural networks. A generative data model of Boolean

factor analysis should be defined by the doctoral student. Proceeding from this, doctoral student

should define a measure that allows for a comparison of this method with those targeted on similar

applications: e.g. a special clustering methods, feed forward neural methods and classical statistical

methods. Research is targeted on the current issues, finding underlying data structure, including

extraction of information from large data files, such as Internet content, for internal data structure

revealing, data dimensionality reduction, data compression, etc.

In Ostrava, 13th September, 2010 (Revised 2016).

Zadání disertace

Booleovská faktorová analýza atraktorovou neuronovou sítí
Cílem disertace je vytvoĜení efektivní metody pro nelineární Booleovskou faktorovou analýzu signálů
různých vlastností s využitím paradigmatu neuronových sítí, speciálně asociativní paměti. Práce
naváže na pĜedchozí výzkum školitele a jeho spolupracovníků v oblasti atraktorových neuronových
sítí. Doktorand by měl definovat generativní model dat pro tuto úlohu. Na jeho základě by měl
doktorand definovat univerzální míru umožňující srovnání s existujícím metodami Ĝešícími podobné
úlohy: napĜ. speciální shlukovací metody, metody založené na dopĜedených neuronových sítích, ale i

klasické statistické metody. Výzkum se zaměĜuje na jeden z aktuálních problémů strojového učení,
speciálně na zkoumání nových metod pro zjištění skryté struktury dat, včetně extrakce informací z
velkých datových souborů, jako je napĜ. internetový obsah, pro kompresi rozsáhlých souborů dat, atd.

V Ostravě 13. záĜí, 2010 (Revised 2016).

iii

Prohlášení studenta

„Prohlašuji, že jsem tuto disertační práci vypracoval samostatně. Uvedl jsem všechny literární
prameny a publikace, ze kterých jsem čerpal.“

V Ostravě …………….. ………….……………….
datum podpis autora

Student statement

“I hereby declare that this PhD Thesis was written by myself. I have quoted all the references I have

drawn upon.”

In Ostrava ………………….. ………………………………….
date signature of the author

iv

Abstrakt
Jednou z nejdůležitějších výzev současnosti, která stojí pĜed komunitou badatelů z oblasti strojového
učení je výzkum metod pro analýzu vysoce-dimenzionálních binárních dat s cílem odhalení jejich

skryté struktury. V literatuĜe můžeme nalézt mnoho pĜístupů, které se snaží tuto doposud poněkud
vágně definovanou úlohu Ĝešit. Booleovská Faktorová Analýza (BFA), jež je pĜedmětem této práce,

pĜedpokládá, že skrytou strukturu binárních dat lze reprezentovat jako booleovskou superpozici

binárních faktorů tak, aby co nejlépe odpovídala generativnímu modelu signálů BFA a danému
kritériu optimálnosti. Za těchto podmínek je BFA dobĜe definovaná úloha zcela analogická lineární
faktorové analýze. Hlavní pĜínosy disertační práce, jsou následující: Za prvé byl vyvinut efektivní
způsob BFA založený na původní atraktorové neuronové síti s rostoucí aktivitou (ANNIA), která byla

následně zlepšena kombinací s metodou expectation–maximization (EM). Dále byly provedeny

analýzy charakteristik ANNIA, které jsou důležité pro fungování metody. Funkčnost obou metod byla

také ověĜena na uměle vytvoĜených souborech dat pokrývajících celou škálu parametrů generativního
modelu. Dále je v práci ukázáno použití metod na reálných datech z různých oblastí vědy s cílem
prokázat jejich pĜínos pro tento typ analýzy. A konečně bylo provedeno i srovnání metod BFA se
podobnými metodami včetně analýzy jejich použitelnosti.

Klíčová slova
Booleovská faktorová analýza, dolování z dat, neuronové sítě, statistika, redukce dimenze, atraktorová
neuronová síť, Hopfieldova neuronová síť, Hebbovo učení, metoda maximální věrohodnosti,
expectation-maximization, informační zisk

Abstract
Methods for the discovery of hidden structures of high-dimensional binary data rank among the most

important challenges facing the community of machine learning researchers at present. There are

many approaches in the literature that try to solve this hitherto rather ill-defined task. The Boolean

factor analysis (BFA) studied in this work represents a hidden structure of binary data as Boolean

superposition of binary factors complied with the BFA generative model of signals, and the criterion

of optimality of BFA solution is given. In these terms, the BFA is a well-defined task completely

analogous to linear factor analysis. The main contributions of the dissertation thesis are as follows:

Firstly, an efficient BFA method, based on the original attractor neural network with increasing

activity (ANNIA), which is subsequently improved through a combination with the expectation-

maximization method, has been developed. Secondly, the characteristics of the ANNIA that are

important for method functioning were analyzed. Then the functioning of both methods was validated

on artificially generated data sets. Next, the method was applied to real-world data from different

areas of science to demonstrate their contribution to this type of analysis. Finally, the BFA method

was compared with related methods, including applicability analysis

Keywords
Boolean factor analysis, data mining, statistics, dimension reduction, attractor neural network,

Hopfield neural network, Hebbian learning rule, information gain, dimension reduction, likelihood-

maximization, expectation-maximization.

v

Acknowledgments

First of all, I would like to express my gratitude to my dissertation thesis supervisor, Ing. Dušan
Húsek, CSc. for his leadership and professional guidance during my research. I would like to express

thanks to Prof Alexander A. Frolov, head of laboratory at IHNA RAS, my supervisor specialist in

Moscow, with whom we three worked shoulder to shoulder on this topic. My thanks are also due to

others who helped me connect my work to other scientific areas, namely to Prof. Ing. Hana

ěezanková, CSc. who is an outstanding statistician. The same applies to the lecturers at the VSB TU
Ostrava, among them mainly Professor Ivo Vondrák, Ph.D, the Rector of the university, and to the

Dean of FEI, Professor Václav Snášel, CSc, who filled us with optimism and energy to persist at this
work. Also to all the laboratory personnel I visited for their valuable comments and help in solving

numerous problems. Special thanks go to the Department of Computer Science management for

giving me the possibility to study in the Czech Republic.

Finally, my greatest thanks go to my wife because of her infinite patience and love, as well to my

parents who have supported me.

Contents

Declaration of Authorship iii

Abstract iv

Acknowledgements v

Contents vi

List of Figures ix

List of Tables xi

1 Introduction 1

2 Formal definition of Boolean factor analysis 4

2.1 Decomposition of signal in linear and Boolean factor analysis 4

2.2 Statistical model of binary signals . 5

2.3 Criterion of solution of Boolean factor analysis . 7

2.4 Bars problem — illustrative example of Boolean factor analysis 9

3 Related works 11

3.1 Boolean matrix factorization methods . 11

3.1.1 BMF using formal concept analysis . 12

3.1.2 Greedy algorithm that maximize coverage of data matrix by factors . . . 13

3.1.3 Greedy algorithm using association rules . 14

3.2 Neural network based methods . 14

3.2.1 Feedforward neural network combining Hebbian and anti-Hebbian learn-
ing . 14

3.2.2 Auto-associator with non-negative synaptic connections 16

3.2.3 Feed-forward neural network with pre-integration lateral inhibition . . . 17

3.3 Expectation-maximization methods . 20

3.3.1 Expectation-maximization method for BFA generative model 20

3.3.2 Expectation-maximization method for maximal causes analysis 22

4 Neural network based method for Boolean factor analysis 25

4.1 Attractor neural network with increasing activity – ANNIA 26

vi

Contents vii

4.2 Likelihood maximization – LM . 31

4.3 Hybrid ANNIA and likelihood maximization method – LANNIA 33

4.4 The version of the method without likelihood maximization – BANNIA 37

5 Properties of attractor neural network with increasing activity 39

5.1 Lyapunov function of true attractors . 40

5.2 Global spurious attractors . 42

5.3 The size of factors attraction basins . 45

5.3.1 Attraction basins around factors in single-step approximation 46

5.3.2 Attraction basins around factors in multi-step recall 51

5.4 Probability of true trials during random searches . 53

5.5 Hebbian unlearning of found factors . 57

6 Application of hybrid ANNIA and likelihood maximization method 60

6.1 Comparison of LANNIA with other methods in solving the bars problem 61

6.1.1 Standard bars problem . 62

6.1.2 Sensitivity to factor overlapping . 62

6.1.3 Sensitivity to noise . 64

6.1.4 Sensitivity to the mean number of bars mixed in images 66

6.1.5 Computational complexity of the BFA methods 67

6.2 Application to text datasets . 68

6.2.1 Analysis of the proceedings of the IJCNN and Neuroinformatics confer-
ences . 69

6.2.2 Analysis of the Reuters R52 dataset of news messages 74

6.3 Application to the Genome dataset analysis . 75

6.4 Boolean factor analysis of Mushrooms dataset in comparison with classical ap-
proaches . 80

6.5 Boolean factor analysis of parliament voting . 86

7 Conclusion 90

7.1 Suggestions for future work . 93

A Estimation of variance of am 94

B Estimation of variance of J′ij 95

C Estimation of variance of Jij 97

D Algorithm of LANNIA 98

Bibliography 106

Author’s publications 113

List of Figures

2.1 Bars problem images . 9

3.1 The architecture of feedforward neural network combining Hebbian and anti-
Hebbian learning . 15

3.2 Three-layer neural network with a small number of neurons in the hidden layer 16

3.3 Models of lateral inhibition . 18

4.1 Lyapunov function λ, activation threshold T, function R = λ/(k − 1) − T/k and
its derivative in dependence on the number of active neurons k 29

4.2 Values of the Lyapunov functions at the point k = n in relation to overlaps with
the closest factors . 30

4.3 Examples of noisy images, factors found by LANNIA when solving BP with
the noisy images, factors found by LM in the absence of noise 35

4.4 Increase of information gain at each cycle of LANNIA in solving the Bars Prob-
lem with noise . 36

4.5 Lyapunov function λ and function R′ in dependence on the number of active
neurons k . 36

5.1 Lyapunov function dependent on the relative network activity when special
inhibitory neuron is excluded from and included in the network 42

5.2 Trajectories of neurodynamics when special inhibitory neuron is excluded from
and included in the network in the plane (m(t), λ(t)) 43

5.3 Trajectories of neurodynamics when special inhibitory neuron is excluded from
and included in the network in the plane (m(t), rank(t)) 44

5.4 The ratio of values of the Lyapunov function for global spurious and true at-
tractors . 46

5.5 The Functions G1(µ) and G2(µ) for the case without and with additional inhi-
bition . 48

5.6 Sizes of attraction basins min in dependence on relative informational loading
α and signals complexity µ . 50

5.7 Transformed probability F of trajectories convergence to factors in dependence
on L/(CM) . 52

5.8 Transformed probabilities F of trajectories convergence to factors in depen-
dence on the network size N and informational loading α 53

5.9 Lyapunov functions of spurious attractors normalized by mean values of this
function over true attractors at the point r = p in dependence on L/N and 1/N . 54

viii

List of Figures ix

5.10 Lyapunov functions of spurious attractors for r = p normalized by mean values
of this function over true attractors at the point r = p 55

5.11 Probability Pspur dependent on r and N . 56

5.12 Probability of transition Ptrans from spurious to true attractor dependent on r
and N . 57

5.13 Normalized Lyapunov function and the portion of found factors dependent on
the number of recall trials . 58

6.1 Information gain G for the six BFA methods in dependence on number of ob-
servations M in dataset . 63

6.2 Double bars problem images . 63

6.3 Information gain G for the six BFA methods in dependence of the level of noise 65

6.4 Noisy bars problem images . 66

6.5 Information gain G for the six BFA methods vs C for 16-by-16 pixel images . . . 67

6.6 The Lyapunov function dependent on the relative network activity r for textual
databases IJCNN and Neuroinformatics . 70

6.7 Distribution of articles over the number of factors being contained in them in
the IJCNN and Neuroinformatics databases . 72

6.8 Lyapunov function λ and function R′ depending on the number of active neu-
rons k at the first cycle of LANNIA during the analysis of the KEGG dataset . . 76

6.9 Increase of the information gain at each cycle of LANNIA during the analysis
of the KEGG dataset. 77

6.10 Distribution of number of proteins constituting factors found by LANNIA . . . 78

6.11 Distribution of factors over types of organisms . 79

6.12 Distribution of mushrooms over Boolean factors. 84

6.13 Distribution of mushrooms over clusters . 84

6.14 Distribution of mushrooms over linear factors . 84

6.15 Shematic diagram of relations between mushrooms features sets. 86

6.16 Lyapunov function for parliament data in dependence on the number of active
neurons k for initial trajectories and after deleting two first factors 87

6.17 Lyapunov function for parliament data in dependence on the number of active
neurons k after deleting three first factors . 88

6.18 Two-dimensional map of parliament members vote 89

List of Tables

6.1 Ten top significant terms for factors found in the IJCNN database 71

6.2 Ten top significant terms for factors found in the Neuroinformatics database . . 73

6.3 Results of cluster analysis of the Mushrooms dataset. 81

6.4 Factor loadings matrix for the first five linear factors of the Mushrooms dataset. 82

6.5 Significant variables for the first four Boolean factors of the Mushrooms dataset. 83

6.6 Intersection between cluster and Boolean factors mushroom sets 85

6.7 Intersection between Boolean and linear factors mushroom sets. 85

6.8 Intersection between cluster and linear factors mushroom sets. 86

6.9 Relation between parliament fractions and factors. 88

6.10 Relation between parliament fractions and clusters 89

D.1 Publications summary . 120

x

Chapter 1

Introduction

Factor analysis is one of the most effective methods of elucidation and removal of information

redundancy of multidimensional signals. The essence of the idea of information redundancy

is intuitively clear: during everyday life human, like all living beings, deals with regular

in space and time information structure. Due to this regularity, some characteristics of the

environment, which are referred to as features, are encountered concurrently, i.e., the prob-

ability of their concurrent observation is considerably higher than the probability of random

observation. The group of concurrent features is called as a factor. Encoding of signals using

factors requires smaller volume of information and this means that the signals that arrive to

the brain carry redundant information.

The idea of Boolean factor analysis (BFA) follows from the studies by Barlow and Marr,

the outstanding neurophysiologists of the last century. Marr believed that detection and

elimination of information redundancy is inherent function of the brain because it gives two

substantial evolutionary advantages. First, re-encoding of signals in terms of factors helps to

save brain resources: “Excessive information may be effectively saved if some composition

of coherent features is extracted from the incoming signal and added to lexicon of the brain

experience as a new ‘word’ (entity). This lexicon is used by the brain for interpretation and

recording of its experience . . . ” [73]. By replacing of several features with one factor, we get a

more compact encoding system and decrease resources spent on the recording of signal into

memory. Second, we get an opportunity to operate not only with directly observed but also

with other (implicit) valuable features. Marr’s fundamental hypothesis was that if certain

combinations of evident characteristics (traits, features) have a trend to be met coherently (at

least, a number of them), it is possible that there are other implicit valuable characteristics

that are associated with this combination [72]. These two statements exactly correspond to

formal definition of factor analysis that has two goals: a decrease in the number of variables

used for description of the data and recognition of latent (implicit) variables.

1

Chapter 1. Introduction 2

According to Barlow [9], as Foldiak [20] said, “objects (and also features, concepts or any-

thing that deserves a name) are collections of highly correlated properties. For instance, the

properties ‘furry’, ‘shorter than a metre’, ‘has a tail’, ‘moves’, ‘animal’, ‘barks’, etc. are highly

correlated, i.e., the combination of these properties is much more frequent than it would be

if they were independent (the probability of the conjunction is higher than the product of

individual probabilities of the component features). It is these non-independent, redundant

features, the ‘suspicious coincidences’ that define objects, features, concepts, categories, and

these are what we should be detecting. While components of objects can be highly correlated,

objects are relatively independent of one another... The goal of the sensory system might be

to detect these redundant features and to form a representation in which these redundancies

are reduced and the independent features and objects are represented explicitly”. Obviously,

objects are factors and the scene observed is incoming signal that is decomposed into factors.

Both objects and scene are presented in binary code, therefore, operations with them may be

performed in the frameworks of Boolean logics, i.e., use not linear but Boolean factor analysis.

Binary presentation of data is quite typical of many fields including sociology, marketing,

zoology, genetics, and medicine [17]. However, in contrast, to linear presentation, Boolean

factor analysis is very weakly developed. Those who need to use factor analysis for binary

data have several possibilities. If data have small dimension, it is possible to find binary

factors using brute force search. It is clear that in this case the problem is NP-complete and its

solution within a reasonable time may be performed only in case of a small number of factors

(< 50). Approximate methods are required for analysis of binary data of greater dimension.

The more widespread approach is linear factor analysis followed by binarization of solution

[10]. Of course, like all methods based on linear algebra, it uses completely different model

of signals, hence, it may be used cautiously and in very narrow range of parameters when

non-linearity of the initial data is small (for example, when one signal has only one factor or

factors do not intersect).

A good alternative to linear approach is method of Boolean matrix factorization [12, 86]. Its

advantage over linear methods is that initial data are decomposed into factors according to

Boolean arithmetics. However, factor analysis could not be reduced to formal decomposition

of data matrix. The most substantial limitation of this approach is that it cannot be used for

analysis of noisy data.

Recently, several methods have been proposed for BFA including neural network based method

of Spratling [87]. Unfortunately, efficacy of these methods for solution of BFA was not ex-

amined on data of large dimension when their use would be really practicable. The above

suggests that, despite importance of task, there no good theoretically based BFA methods that

can work with the data of large dimension.

Chapter 1. Introduction 3

Boolean matrix factorization and Boolean factor analysis are frequently confused although

they are different tasks like linear matrix factorization and linear factor analysis. Presumably,

this confusion appeared because formal definition to Boolean factor analysis is not widely

known yet. In the articles on the BFA, it is formulated using examples of practical tasks that

authors are going to solve [20, 74]. Or they are limited by general equation of decomposition

of initial data into factors which valid for both Boolean factor analysis and Boolean matrix

factorization [12, 86]. To avoid here any ambiguity, in Chapter 2 the formal definition of BFA

based on the information criteria of optimality of solution is given.

Thus, on one hand, there no good methods for BFA; on the other hand, there are strong ar-

guments that the brain have to somehow separate factors. In this situation it is reasonable

to address neurophysiology and look for the brain structures that would be able to have this

function. According to widespread two-stage model of learning, new information that comes

to the brain is initially kept in temporal storage and, then, interpreted, processed, and fil-

tered information is directed to the neocortex for long-term storage. Numerous experimental

results led to conclusion that the hippocampus, a phylogenetically ancient brain structure,

plays a key role in consolidation, processing and storage of information. Due to an exten-

sive system of recurrent collaterals, which provide self-excitation of group of neurons of one

layer, the CA3 field can keep associatively linked patterns of information which allows the

hippocampus to function as temporal storage of incoming information. According to two-

stage model of learning, the desired procedure of separation of factors should be located

somewhere between recording of information into temporal storage and its transfer to the

long-term memory. The first candidate for the structure that is responsible for separation of

factors is CA3 field.

Studies of Hopfield network, whose natural prototype is CA3 field, led to conclusion that

its capacities are beyond the frameworks of autoassociative memory. For example, if a set

of patterns that are close to each other is recorded into the Hopfield network, a pattern-

prototype will appear which is somewhat average of these patterns [26]. It appears that

associative neural network, a Hopfield network with sparse coding, can reveal factors [26].

This work is focused on study of this question.

Chapter 2

Formal definition of Boolean factor

analysis

2.1 Decomposition of signal in linear and Boolean factor analysis

Factor analysis is one of the most efficient methods to reveal the structure underlying the data

(the term factor analysis was first introduced by Thurstone [90]). This analysis presumes that

statistical correlations in the data analyzed are accounted for by some hidden causes that are

referred to as factors. It is necessary to reveal all hidden factors and determine how they are

present in the data. Linear factor analysis implies that each observed signal x = [x1, x2, . . . , xN]
of N real-valued components can be presented as a linear superposition of L factors:

x =
L

∑
i=1

sifi +u, (2.1)

where factor score si gives a contribution of ith factor to the signal, the vector of factor loadings

fi = [fi1, fi2, . . . , fiN] represents the ith factor in the original N-dimensional signal space and

u = [u1, u2, . . . , uN] designates the row vector of residual part of the signal, namely the part of

signal that is not described by factors. In matrix form, the decomposition of the data matrix

X of dimension M ×N (where M is the number of observations) into matrices of factor scores

S of dimension M × L and factor loadings F of dimension L ×N is given by

X = SF +U, (2.2)

where U designates the matrix of residuals. The purpose of factor analysis is finding of

the smallest number of factors that can describe initial data with the maximum accuracy.

The decomposition X ≃ SF may be interpreted as mapping of initial N-dimensional space of

4

Chapter 2. Formal definition of Boolean factor analysis 5

observed features into the space of smaller dimension L where signals are described by matrix

of factor scores S. The matrix of factor loadings F gives a way of transformation of one space

into the other. If L < N, we have more compact representation of signals.

Boolean factor analysis (BFA) is used to find hidden relationships among binary data; the

factor scores and factor loadings are also binary and all arithmetic operations are performed

according to the Boolean logics. Operator OR (∨) is used in BFA instead of summation in

linear factor analysis, operator AND (∧) is used instead of multiplication. The equation of

representation of binary signal x = [x1, x2, . . . , xN] has similar form

x = [L

⋁
i=1

si ∧ fi]∨ u. (2.3)

Here, instead of linear sum ∑, we used Boolean sum ⋁:
L⋁

i=1
xi = x1 ∨ x2 ∨ ⋅ ⋅ ⋅ ∨ xL. In matrix

form, binary matrix X of dimension M ×N decomposes into binary matrix of factor scores S

of dimension M × L and binary matrix of factor loadings F of dimension L ×N:

X = S⊙ F⊕U, (2.4)

where U is binary matrix of residuals, ⊙ denotes Boolean matrix multiplication and ⊕ denotes

Boolean matrix summation. The operations of Boolean matrix multiplication and Boolean ma-

trix summation are similar to matrix multiplication and matrix summation for linear algebra,

except that bitwise AND and bitwise OR are used instead of common componentwise prod-

uct and componentwise sum.

2.2 Statistical model of binary signals

The definition of Boolean factor analysis in the decomposition form 2.3 or 2.4 is too general.

This may result in confusion with other tasks, for example, with Boolean matrix factorization

described in 3.1. On the other hand, the factor analysis is always based on assumption on

statistical model of the data analyzed [10]. On the basis of generative model for linear factor

analysis [47], it is possible to define analogous model for binary signals. According to the

model, every component of signal x takes 1 or 0, depending on the presence or absence

of the related attribute (observed feature). Each factor can be represented by a binary raw

vector of factor loadings fi = [fi1, fi2, . . . , fiN] where one valued entries correspond to highly

correlated attributes of the ith object and zero valued entries correspond to attributes not

constituting the object. Although the probability of the object’s attributes appearing in a

pattern simultaneously with its other attributes is high, it is not necessarily equal to 1. For

example, the attribute “has a tail” does not always appear with the appearance of the object

Chapter 2. Formal definition of Boolean factor analysis 6

“dog”. Let us denote this probability by pij, where j is the index of the attribute and i is the

index of the factor. For attributes constituting the factor, i.e., for attributes with fij = 1, the

probability pij is high, and for the other attributes (with fij = 0), it is zero.

As in linear factor analysis, let us suppose that in addition to common factors fi that influence

more than one attribute, each signal also contains N specific or unique factors that influence

only particular attributes. Specific factors are also called “specific noise.” The contribution

of specific factors is defined by a binary row vector η = [η1, η2, . . . , ηN] of dimension N. Each

specific factor ηj is characterized by the probability qj with which ηj takes on the value 1. In

the same way, each common factor fi is characterized by the probability πi that it appears in

a signal, i.e., factor score si takes 1 with probability πi. The probabilities pij, qj and πi are

parameters of BFA generative model of signals: Θ = (pij, qj, πi, i = 1, . . . , L, j = 1, . . . , N).
As a result, instead of using equation 2.3, any observed signal x can be presented in the form

x = [L

⋁
i=1

si ∧ f′i]∨ η (2.5)

where s = [s1, s2, . . . , sL] is a binary row vector of factor scores of dimension L, L being the total

number of factors, f′i = [f ′i1, f ′i2, . . . , f ′iN] is a distorted version of factor fi and η is a binary row

vector of specific factors. Factor distortion implies that one valued entries of fi can transform

to 0 with probability 1− pij before mixing in the observed pattern but none of the zero valued

entries fi can take 1 in the distorted version of the factor because the probability for them to

transform to 1 is zero (pij = 0).

It is supposed that each component of the common factor is distorted independently of the

presence of other factors in the pattern and independently of specific noise. Thus, the proba-

bility of the jth component of x to take the value xj is

P(xj∣s, Θ) = xj − (2xj − 1)(1− qj) L

∏
i=1

(1− pij)si , (2.6)

where scores si are assumed to be given. Different components of x (attributes) are also

supposed to be statistically independent, and thus

P(x∣s, Θ) = N

∏
j=1

P(xj∣s, Θ). (2.7)

BFA is performed on the set X of patterns xm containing M representatives. Instantiation

of vectors f′i , i = 1, . . . , L and η for some pattern xm is assumed to be independent of other

Chapter 2. Formal definition of Boolean factor analysis 7

patterns, and thus

P(X) = M

∏
m=1

P(xm). (2.8)

In most cases, it is fair to assume that factors appear in patterns independently of each others,

then

P(s∣Θ) = ∏
i=1,L

πsi

i (1−πi)1−si . (2.9)

The aim of Boolean factor analysis is to find the parameters of the generative model Θ and

factor scores sm(m = 1, . . . , M) for all M patterns xm of the observed dataset. However, it is

supposed that the factors found could also be detected in any arbitrary pattern if generated

by the same model. Note that the finding of pij implies the finding of factor loadings fij since

fij = sgn(pij).

2.3 Criterion of solution of Boolean factor analysis

According to the definition of factor analysis, it is necessary to simultaneously minimize

both number of factors L and number of non-zero components in the matrix of residuals

∣U∣ (see equations 2.2 and 2.4). However, in the general case, these aims are opposite: a

decrease in the number of factors results in an increase in ∣U∣ and, vice versa, at a relatively

large number of factors the data matrix could be completely decomposed into factors. Is it

possible to reconcile these two requirements and use a common criterion for evaluation of

quality of factor analysis? Encoding of signals with the use of factors decreases information

redundancy of signals and helps to use smaller volume of information for their storage. It

is easy to show that elimination of information redundancy of signals also occurs during

minimization of the number of factors at fixed ∣U∣ and during minimization of the number of

non-zero components in the residue matrix ∣U∣ at fixed L. This means that the condition of

elimination of information redundancy includes each of the above requirements. Note that

principle of optimal encoding which eliminates information redundancy serves as a basis for

objective strategy of brain neurons [8].

Information gain is a general information theoretic measure that could be used for estimation

of successfulness of information redundancy elimination. Since generative model of binary

signals is specified in Section 2.2, information gain for BFA can be calculated as the difference

of two entropies. The first is the entropy of a dataset when its hidden factor structure is

unknown, and the second is the entropy when it is revealed and taken into account. If the

factor structure of the signal space is unknown, then representing the jth component of vector

Chapter 2. Formal definition of Boolean factor analysis 8

x requires h(pj) bits of information, where h(x) = −x log2 x − (1− x) log2(1− x) is the Shannon

function and pj is the probability of the jth component’s taking 1. Representing the whole

dataset requires

H0 = M
N

∑
j=1

h(pj) (2.10)

bits of information. If the hidden factor structure of the signal space is detected, i.e., the

parameters of the generative model Θ, factor scores sm(m = 1, . . . , M) and factor loadings

fi(i = 1, . . . , L) are found, then representing the whole dataset requires

H = H1 +H2 +H3 (2.11)

bits of information. Here

H1 = M
L

∑
i=1

h(πi) (2.12)

is the information required to represent the factor scores,

H2 = L
N

∑
j=1

h(rj) (2.13)

is the information required to represent the factor loadings,

H3 =

M

∑
m=1

N

∑
j=1

h(P(xmj∣sm, Θ)) (2.14)

is the information required to represent all patterns of the dataset when factor scores and

loadings are given, rj is the probability of the j-th component’s taking 1 in factor loadings,

P(xmj∣sm, Θ) is given by (2.6). The information gain is determined by the difference between

H0 and H. Relative information gain defined as

G = (H0 −H)/H0 (2.15)

is used as criterion of solution of BFA.

The magnitude G may vary in the range from −∞ to 1. The positive G means that the encoding

of signals with the use of factors is more effective as compared to the initial encoding. If G is

close to zero or negative then either the selection of factors was wrong or factor analysis in the

frameworks of the postulated generative model is senseless because this model is inadequate

to the internal structure of the data analyzed.

Chapter 2. Formal definition of Boolean factor analysis 9

Figure 2.1: A Sixteen vertical and horizontal bars in 8-by-8 pixel images. B Examples of
images in the standard bars problem. Each image contains two bars on average.

As shown in [35, 39, 45], the relative information gain reaches maximum when BFA solution

is right, i.e., all scores and generative model parameters used for artificially generated dataset

are found correctly. It decreases when both the difference between the resulting BFA solution

and the right solution increases and noise in data increases. Thus, information gain has

proved to be a reliable measure for detecting the presence of hidden factor structures in a

given dataset and for comparing efficiency of different BFA methods as well.

In many methods appropriate for BFA the probabilities pij and qj are not computed explicitly,

they give only factor scores. In this case, for computing the information gain G, these prob-

abilities can be estimated by maximizing the dataset likelihood for the proposed generative

model that takes the form

Λ =

M

∑
m=1

Λm, (2.16)

where

Λm = log[P(sm∣Θ)P(xm∣sm, Θ)], (2.17)

P(xm∣sm, Θ) and P(sm∣Θ) are given by (2.7) and (2.9), correspondingly.

2.4 Bars problem — illustrative example of Boolean factor analysis

The well-known benchmark for learning of objects from complex patterns is the Bars Problem

(BP) introduced by Foldiak [20]. The BP in various modifications has been considered in

many papers (see Lucke and Sahani [71], for references). In this problem, each pattern of the

dataset is n-by-n binary pixel image containing several of L = 2n possible (one-pixel wide)

horizontal and vertical bars (Fig. 2.1).

Pixels constituting a bar take the value 1 and pixels not constituting it take the value 0. For

each image, each bar could be chosen with the probability C/L, where C is the mean number

Chapter 2. Formal definition of Boolean factor analysis 10

of bars mixed in an image. At the point of intersection of a vertical and a horizontal bar,

the pixel takes the value 1. This Boolean summation of pixels belonging to different bars

simulates the occlusion of objects. The task is to recognize all bars as individual objects,

exploring a dataset containing M images consisting of bar mixtures. In most papers where

the BP was used as benchmark, C was set to 2 and n ≤ 8.

In terms of BFA, bars are factors. Factor loadings fij (j = 1, . . . , N) take value 1 for pixels

constituting the ith bar and value 0 for pixels not constituting it. Each image is a Boolean

superposition of factors, and the factor score takes the value 1 or 0 depending on the presence

or absence of a bar in the image. Thus, the bars problem is a special case of BFA.

Chapter 3

Related works

BFA is NP-hard problem that was shown, for example, for Boolean matrix factorization [14,

75], the special case of BFA. Therefore the precise solution given by brute force search is

unattainable for most real-world problems due to computational reasoning. Although there

are strategies for filtering possible solutions of BFA to reduce computational complexity [65],

they increase applicability of brute force search not cardinally [65].

Other approaches for solving BFA are approximate. They could be classified in the next

groups. The first group contains neural network based methods [20, 46, 88] inspired by

investigations of properties of natural neural networks. These methods propose some neural

network architecture and algorithm that is able to simulate the mechanism of new feature

detection inherent to brain functioning. The second group is matrix factorization methods that

factorize binary matrices into binary or real-valued components under different assumptions

[11, 13, 14, 64, 75]. Methods of the third group are based on some generation model of signal

space [41, 71]. An appropriate likelihood function is defined for postulated generation model

and solution is searched by maximizing likelihood function. BFA is also close to fuzzy and

multi-assignment clusterings [22, 50] when appropriate condition of simultaneous assignment

of object to several clusters is chosen [33]. The detailed description of these methods is

presented below.

3.1 Boolean matrix factorization methods

Boolean matrix factorization implies representation of M × N binary data matrix X as a

Boolean product of two binary factor matrices A of dimension M × L and B of dimension

L × N with L as small as possible. In matrix presentation X = A ⊙ B. In component-wise

11

Chapter 3. Related works 12

presentation

xmn =

L

⋁
l=1

aml ⋅ bln, (3.1)

where ⋁ denotes maximum (truth function of logical disjunction) and ⋅ is the usual product

(truth function of logical conjunction).

When analysing non-artificial data (solving real-world problem), matrix X is usually large and

may be noisy. In this case it is particularly appealing to look for approximate decompositions

of X. That is, given data matrix X and positive integer K, find an M ×K binary matrix A′ and

K ×N binary matrix B′ that minimize

∣X −A′ ⊙B′∣ = N

∑
n=1

M

∑
m=1

∣xmn − (A′ ⊙B′)mn∣.

In BFA interpretation, matrix A′ is considered as matrix of factor scores S in (2.4), and param-

eters of the generative model Θ can be estimated using likelihood maximization procedure:

by the M-step of the likelihood maximization procedure presented in Section 4.2 in which

likelihood Λ defined by (2.16) is gradually increased with respect to parameters of the model

while holding factor scores smi fixed. The discussion about the difference between BFA and

BMF approaches can be found in [25].

In the case of noisy data, the information gain G defined by (2.15) can reach a maximum value

when K < L. The optimal value of parameter K could be found in two ways: by computing

G for all possible K and choosing the value that maximize G, or by increasing K step by step

while G is increasing. The first way is used in this work for estimating the performance of

BMF in solving BFA.

3.1.1 BMF using formal concept analysis

Formal concept analysis (FCA) is based on a traditional understanding of concepts by which

a concept is determined by its extent and its intent. The extent of a concept (e.g., “dog”) is the

collection of all objects covered by the concept (the collection of all dogs), while the intent is

the collection of all attributes (e.g., “to bark”, “to be a mammal”) covered by the concept. The

output of FCA consists of a hierarchically ordered collection formal concepts. Formal concept

is defined as a pair (C, D) of subsets of objects C and attributes D that: 1. every object in C

has every attribute in D; 2. for every object in C that is not in C, there is an attribute in D

that the object does not have; 3. for every attribute in D that is not in D, there is an object in

C that does not have that attribute. Efficient algorithms for computing formal concepts exist

(see [64] for overview).

Chapter 3. Related works 13

The main assumption of the method is that formal concepts are optimal factors, and so re-

quired binary factor matrices A and B are consist of subset of formal concepts [13]. There

are various heuristics for optimal choosing of such subset: filtering concepts with too many

attributes or objects (constraints on factor matrices sparseness) [66], excluding similar objects

or attribute in data matrix X [66], finding mandatory factor concepts at first [12], using greedy

approximation algorithm that step by step selects the concept that covers the largest number

of entries with 1 in X that were not covered by the previously selected concepts [13].

The computational complexity is weak point of the approach. In spite of algorithms for com-

puting formal concepts are rather fast, the number of produced formal concepts is too large

when processing real data. For example, factorization of 8124× 119 data matrix from “Mush-

room” database [7] was performed in 18 min. and required 97 MB memory [11] while com-

petitive greedy algorithm suggested by the same authors (see Section 3.1.2) was performed in

13 sec. and required 2 MB memory.

3.1.2 Greedy algorithm that maximize coverage of data matrix by factors

The algorithm was developed by Belohlavek and Vychodil [11, 14]. It avoids the necessity to

compute all the concepts of X. Instead, it computes the candidate factors, i.e. concepts of X,

on demand by the following greedy procedure. Each time a new factor is needed, one looks

at the columns of X and selects the concept generated by a column which covers most of the

yet uncovered 1s in X. Such a concept corresponds to a narrow but high rectangle in the data.

Then one tries to see if such a rectangle may be extended to a wider rectangle by adding some

attribute and deleting the objects so that one still has a rectangle. If so, one selects the best

such a rectangle, i.e. the rectangle covering most of the yet uncovered 1s in X. One repeats the

process of extension until no such extension yields a better rectangle. This way one obtains

the new factor. The procedure is repeating until data matrix is covered completely or number

of factors reaches the predefined value K for approximate decomposition.

The algorithm imposes constrains on matrices A′ and B′ in the case of approximate decom-

position: the difference xmn − (A′ ⊙B′)mn is not negative for all components of matrices.

Greedy algorithm of computing candidate factors on demand gives slightly less accurate

results in comparison with browsing through all candidates for factors obtained by FCA. For

example, when these methods are applied to “Mushroom” database [7], first 4 factors cover

about 38% of data matrix in the case of greedy algorithm versus about 41% in the case of

browsing through all formal concepts [11]. At the same time, the first method outperforms

the second in both the memory consumption and the time needed to perform factorization:

2 MB RAM versus 97 MB RAM, and about 13 sec. versus about 18 min. [11].

Chapter 3. Related works 14

3.1.3 Greedy algorithm using association rules

The basic idea of the algorithm is to exploit the correlations between the columns of data

matrix X [75]. First, the associations between each two columns are computed. The association

cij is computed as (xi, xj)/(xi, xi) where (⋅, ⋅) is the vector inner product operation and xi and

xj are ith and jth columns of data matrix X (note that cij ≠ cji). Second, the associations are

used to form candidate basis vectors. The association coefficients are binarized and binary

association matrix C′ is formed with components c′ij: c′ij = 1 if c ≥ τ and c′ij = 0 if c < τ where τ

is a parameter of the algorithm. The rows of association matrix C′ are candidate basis vectors.

The result matrix B′ is constructed as a subset of rows of C′ at third stage in a greedy way.

Initially A′ = 0M×K and B′ = 0K×N where K < min(M, N) is a parameter of the algorithm. The

matrices A′ and B′ are updated in the iteration k = 1, . . . , K by setting b′kn = c′in, n = 1, . . . , N,

where row index i and values a′mk, m = 1, . . . , M are chosen maximizing

cover(A′, B′, X, ω+, ω−) = ω+∣{(i, j) ∶ xij = 1, (A′ ⊙B′)ij = 1}∣ (3.2)

− ω−∣{(i, j) ∶ xij = 0, (A′ ⊙B′)ij = 1}∣,
where ω+ and ω− are parameters of the algorithm and are used to reward for covering 1s and

penalize for covering 0s, respectively.

As noted in the comments of the algorithm [75], there exist cases, where the algorithm is able

to find only suboptimal solution. For example, if all 1s in some basis vector occur in some

other basis vectors, then the algorithm is unable to find that basis vector. Parameter sweeping

is another disadvantage of the algorithm, especially for parameter τ.

3.2 Neural network based methods

Neural network based methods that could be applied to BFA are developed for simulation of

the brain activity related to concept detection problem. Visual cortex was the most attractive

object for simulation, and so the most experiments for testing these methods were performed

on images. The Bars Problem (BP) introduced by Foldiak [20] and described in Section 2.4

is a widely-accepted benchmark for learning of objects from complex patterns. Most of the

methods considered in this section are illustrated on BP.

3.2.1 Feedforward neural network combining Hebbian and anti-Hebbian learning

The architecture of the network developed by Foldiak [20] is presented in Fig. 3.1. The net-

work has two layers: input and output, x1, . . . , xm and y1, . . . , yn designate input and output

Chapter 3. Related works 15

qij

wij

Figure 3.1: The architecture of feedforward neural network combining Hebbian and anti-
Hebbian learning

activity of the network, correspondingly. Empty circles are feedforward Hebbian excitatory

connection with weights qij, i = 1, . . . , m, j = 1, . . . , n. Filled circles are feedback anti-Hebbian

inhibitory connections with weights wij, i = 1, . . . , n, j = 1, . . . , m. The patterns of images are

presented to the network as inputs: the number of input neurons m is equal to the number

of pixels in an image. If the network is trained successfully the output activity encodes the

components constituting the image on the input layer (for BP the components are bars): the

number of output neurons n is equal to the number of possible components. For each input

pattern x the following differential equation for each ith output neuron is solving (initially,

y∗i = 0):

dy∗i
dt
= f (m

∑
j=1

qijxj +

n

∑
j=1

wijy
∗

i − ti)− y∗i ,

where ti is activation threshold and f (u) = 1/(1+ exp(−λu)) is nonlinear activation function.

The network is guaranteed to converge into a stable state if the feedback weights are symmet-

ric, i.e., wij = wji. The output activity of the network is calculated by rounding the values of

y∗i in the stable state to 0 or 1: yi = 1 if y∗ > 0.5, yi = 0 otherwise.

After the output activity y has been determined for input pattern x, the feedforward and

feedback connections are calculated by the following equation:

∆qij = βyi(xj − qij)
∆wij = −α(yiyj − p2), wij = wji, wij ≤ 0,

where α and β are small positive constants, and constant p gives a desired level of neural

network activity. Foldiak considered sparse coding as the important property of biological

neural networks [21], and for that, he introduced a variable activation threshold:

∆ti = γ(yi − p),

Chapter 3. Related works 16

where γ is a small positive constant. A neuron that has been inactive for a long time gradually

lowers its threshold, while a frequently active neuron gradually becomes more selective by

raising its threshold, maintaining the probability of activation of neuron at the same prede-

fined level p.

Competition between neurons due to their mutual inhibition results in the state when only

a few neurons are active that receive the largest synaptic excitation from the inputs. If the

neural network is performing properly these active neurons correspond to factors. However,

in order to keep the network working in the right mode, it is important to choose the right

parameters α, β, γ, λ, p. Exceptional problems arise with the selection of value for the desired

level of the network activity that depends on the parameter p. The matter of the fact is

that the selection of the parameter p requires a priory knowledge about a solution of the

problem. Unfortunately, the author does not give any recommendations on the selection of

the parameters. For the bars problem, the following parameters was chosen: α=0.1, β=γ=0.02,

λ=10, p=1/8. In this case the problem was solved after the network was trained with 1200

patterns. More detailed testing of the method performed by Spratling et al. [89] shows that

it is very sensitive to parameters selection: small variation in condition of the problem (and

also in training set) results in drastically decreasing of the method performance, which could

be retrieved by selection of another proper set of parameters.

3.2.2 Auto-associator with non-negative synaptic connections

Auto-associator that is a three-layer neural network with a small number of neurons in the

hidden layer (Fig. 3.2) is suggested to solve the bars problem [46]. Input and output layers

have the same number of neurons equal to the dimension of the signal space, i.e., to the num-

ber of components in a pattern of the learning set.

Figure 3.2: Three-layer neural net-
work with a small number of neu-

rons in the hidden layer

The hidden layer consists of the lower number of neurons,

which is a parameter of the method in dependence of con-

ditions of the problem. The network is trained by the stan-

dard error back-propagation method, but with an impor-

tant limitation on the non-negativity of synaptic weights

wij:

w∗ij(t + 1) = wij(t)+∆wij(t),
wij(t + 1) = ⎧⎪⎪⎨⎪⎪⎩

0, if w∗ij(t + 1) < 0;

w∗ij(t + 1) if w∗ij(t + 1) ≥ 0,

where ∆wij(t) is the weight change at step t required by

back-propagation algorithm. In addition, a limit of unity is

Chapter 3. Related works 17

applied to the connection between neurons of hidden and output layers, and thus the weights

between them are kept within the range [0, 1]. To ensure the activity of neurons in the hidden

layers are in the range [0, 1] their activation function is the conventional logistic function:

f (ai) = 1

1+ exp(−(ai − θi)/ρ) ,
where ai is the sum of all inputs to the ith neuron, θi is a bias, and ρ is a control parameter,

for small values of which the activity of the neurons becomes binary. Neurons in the output

layer are linear and involve no bias, hence their activity can be only positive.

The hidden layer is like a bottleneck that passes to the output layer just the information

required for most accurately reproducing a pattern on the input layer. While training stage,

the synaptic connections are set up in such a way that information passes through the hidden

layer with minimal losses. If each pattern of the training set consists of some combination

of finite number of independent factors, then the best way to pass information with minimal

losses is to learn synaptic weights so that each neuron of the hidden layer corresponds to

one factor and this neuron is activated when corresponding factor occurs in pattern on the

input layer. The non-negativity restriction on synaptic connections means that the activity of

a neuron of the hidden layer could only increase the activity of neurons of the output layer.

Hence, after training, if pattern of activity of neurons on the input layer corresponds to some

image with objects then active neurons of the hidden layer corresponds to these objects and

the activity of neurons on the output layer encodes the image reconstructed as superposition

of the objects.

The developers of the method showed the possibility for applying the method to bars problem

and achieved good results in comparison with non-negative matrix factorization, but they

didn’t specified parameters that were used for testing.

3.2.3 Feed-forward neural network with pre-integration lateral inhibition

One of the best feed-forward neural network based method for solving BFA problem is devel-

oped by Spratling and Johnson [88]. It is based on the similar feed-forward neural network

with lateral inhibition described in Section 3.2.1, but with important modification.

Diagram of a typical, postsynaptic lateral inhibition of the neuron is shown in Fig. 3.3(a):

initially, excitations from the neurons of the input layer x are summed producing some activity

of the neuron of the output layer, and then this activity is reduced due to the influence of

inhibitory activity of other neurons of the same layer y. Such scheme leads to competition

of output activities of the neurons on the principle “winner takes all”, and it is hard to

get the stable state when few neurons of the output layer are active at once because the

Chapter 3. Related works 18

(a) (b) (c)

Figure 3.3: Models of lateral inhibition. Neurons are shown as large circles, excitatory
synapses as small open circles, and inhibitory synapses as small filled circles. (a) The standard
model of lateral inhibition provides competition between outputs. (b) The preintegration lat-
eral inhibition model provides competition for inputs. (c) The preintegration lateral inhibition
model with only one lateral weight shown. This lateral weight has an identical value (w12) to

the afferent weight shown as a solid line.

most active neuron inhibit all others. But in BFA problem the signal could contain several

factors, and then several neurons of the output layer corresponding to these factors must be

active at once. That is why Spratling and Johnson [88] propose the scheme of pre-integration

inhibition, or inhibition of dendritic activity shown in Fig. 3.3(b). In accordance with this

scheme, an excitation from a neuron of the input layer to a neuron of the output layer is

inhibited separately before they are summed. If ith neuron of the input layer has high activity

and excites jth neuron of the output layer then this jth neuron inhibits the excitations of ith

input neuron to other neurons of the output layer. Thus we come to the model of competition

for the inputs on principle “capture a source, keep it away from others”. According to this

model, only those neurons are active that successfully captured at least one active neuron of

the input layer and insulated it from other neurons by dendritic inhibition. Even in the case

of large lateral inhibition, several neurons could be active in the network at the same time

if they successfully divide active inputs among themselves. This peculiarity gives the neural

network a very useful property: contrast response to input activity with activation of several

neurons. At last, for simplification of the network architecture and reduction of number of

parameters the exciting and inhibiting synaptic connections were set to be equal, which is

illustrated in Fig. 3.3(c).

Let’s m to be the number of neurons of the input layer with activities x1, . . . , xm, n – the

number of neurons of the output layer with activities y1, . . . , yn, wij – the weights of synaptic

connections between ith neuron of the input layer and jth neurons of the output layer, then

Chapter 3. Related works 19

the network activity at the (t + 1) step is defined by equation

yj(t + 1) = m

∑
i=1

wijx
′

ij

x′ij = xi

⎛⎜⎝1− α(t) n
max

k=1
k≠j

⎧⎪⎪⎪⎨⎪⎪⎪⎩
wik yk(t)(max

l=1...m
wlk)(max

l=1...n
yl(t))

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⎞⎟⎠
+

where (v)+ is the positive half rectified value of v, α is a scale factor controlling the strength

of lateral inhibition that gradually increases at each iteration step from 0 to some maximum

value αmax. At first step α = 0 and there is no inhibition, as a consequence many neurons are

activated. But as the coefficient α grows, an increasing number of neurons cease to receive

input excitation due to lateral inhibition and stop firing.

Finally, in the proper operating mode, when α is large only few neurons are active, each

of which possesses its own group of input active neurons. However, testing of the network

showed that there are cases when all neurons of the network continue to be active even for

large values of α. Perhaps, it occurs when the value αmax is insufficiently large. Another

problem is the choice of a step with which the value of α is decreasing. If it is insufficiently

small the situation when all neurons of the network become not active during one step is

possible. On the contrary, the smaller it is, the slower the algorithm converges to a stable

point. For bars problem the developers of the algorithm recommend αmax = 6 with step of

increasing 0.25 [87].

Before training, the weight of synaptic connections are initialized by the Gaussian distributed

numbers with mean 1
m and standard deviation 0.001 n

m , provided that wij = wji. The network is

trained using unsupervised learning: pattern of the training set is presented to the input layer

of the network, then, while the strength of lateral inhibition α increases, activities of neurons

of the output layer are changed, and synaptic connections are modified when α amounts up

to αmax by the rule:

∆wij =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(xi − x̄)
∑ xk

(yj − ȳ)+ if wij > 0;

(x′ij − 1
2 xi)−

∑ xk
(yj − ȳ) if wij ≤ 0,

where (v)− is the negative half rectified value of v, x̄ is the mean level of the input activity,

(i.e., x̄ = 1
m ∑ xk), ȳ is the mean activity of the output neurons (i.e., ȳ = 1

n ∑ yk).

As noted in [87], we can consider the case of wij > 0. For this case, the performance of the

method in solving bars problem would be worsen, but not by much. As shown in [87], even

for this case, the performance of the method in solving bars problem surpasses the method of

non-negative matrix factorization (in all modifications). The comparison was comprehensive,

Chapter 3. Related works 20

the only drawback is that testing was performed for standard bars problem, i.e., when the

dimension of signal space is small, the number of factors in a signal is small, and without

noise. The influence of noise was investigated in [88]. As one would expect, increasing the

size of the training set resulted in improvement in the quality of the solution of bars problem,

but even in the case of small noise, not less than 4000 training patterns are required to reach

an accuracy of the order of 100%. The influence of the increasing number of factors mixed in

a signal was investigated in [79]. It was shown that as it grows, the method loses the ability

to solve BFA. At last, as shown in [89], use of pre-integration lateral inhibition provides a

significant gain in the solution of bars problem in comparison with the ordinary mechanism

of lateral inhibition described in Section 3.2.1.

In BFA interpretation, each neuron of the output layer corresponds to a factor. The activity of

neurons of the output layer y1, . . . , yn corresponds to the vector of factor scores s in (2.3) for the

signal x activated at the input layer of the network. Since the values y1, . . . , yn are not binary

they are binarized using a binarization threshold to obtain s. As in Sec. 3.1, the parameters of

the generative model Θ are estimated using M-step of the likelihood maximization procedure

presented in Section 4.2. In the experiments presented in this work, the binarization threshold

was the same for all signals x, and it was chosen for each set of experiments to provide

maximum of the information gain G defined by (2.15).

3.3 Expectation-maximization methods

The expectation-maximization (EM) method [18] allows for finding parameters of the gener-

ative model Θ = {pij, qj, πi} of a given probabilistic generative model to maximize the likeli-

hood of the observed dataset X . The EM method maximizes the likelihood of the observed

data by maximizing the free energy F(Θ, g). The iterations of EM alternatively increase F

with respect to the distribution of factor scores g, while holding Θ fixed (the E-step), and

with respect to parameters of the model Θ, while holding g fixed (the M-step). The proce-

dure stops when F reaches maximum. EM iterative procedure terminates once increasing of

F is small.

3.3.1 Expectation-maximization method for BFA generative model

Expectation-maximization method for BFA generative model (EMBFA) is introduced in [24,

41, 80]. For BFA generative model free energy F(Θ, g) takes the form

F =

M

∑
m=1

{∑
s

gm(s)[log P(xm∣s, Θ)+ log P(s∣Θ)]+H(gm(s))} , (3.3)

Chapter 3. Related works 21

where gm(s) is the expected distribution of factor scores for the mth pattern, H(gm(s)) is

the Shannon entropy of gm(s), P(xm∣s, Θ) is given by (2.7), P(s∣Θ) is given by (2.9), and

Θ = (pij, qj, πi, i = 1, . . . , L, j = 1, . . . , N) are the model parameters.

At the E-step, when Θ is fixed, the distributions gm maximizing F are calculated according

to the following equation

gm(s∣Θ) = P(xm∣s, Θ)P(s∣Θ)
∑
s

P(xm∣s, Θ)P(s∣Θ) . (3.4)

The obtained distributions gm provide the expected likelihood of the observed data over the

factor scores for the given parameters of the generative model [77].

At the M-step, when the distributions gm are fixed, πi are calculated as

πi = (1/M) M

∑
m=1

⟨si⟩gm ,

where ⟨si⟩gm is the expectation of factor score si under the distribution gm(s∣Θ):
⟨si⟩gm =∑

s

gm(s∣Θ)si. (3.5)

Respectively, pij and qj are obtained by steepest ascent maximization of F :

∆pij = γ
∂F

∂pij
, ∆qj = γ

∂F

∂qj
, (3.6)

where γ is a learning rate,

∂F

∂pij
=

M

∑
m=1

∑
s

gm(s∣Θ)P(xmj∣s, Θ)−1 ∂P(xmj∣s, Θ)
∂pij

(3.7)

∂F

∂qj
=

M

∑
m=1

∑
s

gm(s∣Θ)P(xmj∣s, Θ)−1 ∂P(xmj∣s, Θ)
∂qj

and

∂P(xmj∣sm, Θ)
∂pij

= (xmj − P(xmj∣sm, Θ)) ⟨si⟩gm

1− pij
(3.8)

∂P(xmj∣sm, Θ)
∂qj

= (xmj − P(xmj∣sm, Θ)) 1

1− qj
.

The probabilities pij are assumed to be sufficiently high for the components constituting the

ith factor (fij = 1) and equal to zero for the other components (fij = 0), at each iteration cycle

Chapter 3. Related works 22

of step M we put pij = 0 if

pij < 1−∏
l≠i

(1−πl pl j), (3.9)

where the right side of the inequality is the probability that the jth attribute appears in the

pattern due to other factors besides fi.

The obtained values of pij, qj and πi are used as the input for the next E–step. EM iterative

procedure continues while ∑ij ∣∆pij∣/LN > 10−3. After the convergence of the procedure, the

resulting values ⟨si⟩gm are the estimates of the factor scores which are not binary but gradual.

To satisfy the generative model, these values are binarized. The binarization threshold is

chosen so that to maximize the BFA information gain [41].

Due to computational complexity, the developers of the method restricted the EMBFA algo-

rithm to the case of sparse scores, when only a small number of factors (no more than three)

are supposed to be mixed in the observed patterns. In this case, summation over s in the

above formulas (3.3, 3.4, 3.5, 3.7) is reduced to

∑
s

(. . .) = (. . .)s=0 +∑
i

(. . .)s=si
+∑

i<j

(. . .)s=sij
+ ∑

i<j<k

(. . .)s=sijk
, (3.10)

where si is the vector of factor scores with all zeros except si, sij is the vector of factor scores

with all zeros except si and sj, and sijk is the vector of factor scores with all zeros except si, sj

and sk. The EMBFA algorithm was also implemented using a neural network [38].

3.3.2 Expectation-maximization method for maximal causes analysis

Lucke and Sahani [71] have studied the bars problem with the expectation-maximization

method. In the generative model studied by Lucke and Sahani [71], multiple active hidden

causes (factors in terms of BFA) combine to determine the values of an observed variable

through a max function. Each cause results in a set of observations given by a vector of

generative influences (factor loadings in terms of BFA). Free-energy F has the same form

as for Expectation-Maximization method for BFA generative model (3.3) but difference in

generative model results in different formula of derivative of F and consequently formulas

for both E and M steps are also different.

In Maximal Causes Analysis (MCA) generative model a weight of association wij ∈R between

ith factor and jth component of signal is used instead of probability pij in BFA generative

model. The observed variables (components of signals) are not binary but non-negative inte-

ger values, i.e., x ∈ ZN
+

where N is the dimension of signal space. Factor scores (active hidden

causes in terms of MCA) are drawn from a multivariate Bernoulli distribution; and observed

Chapter 3. Related works 23

variables, given the causes, conditionally independent and Poisson-distributed:

P(s∣ß) = L

∏
i=1

P(si∣πi), P(si∣πi) = πsi

i (1−πi)1−si , (3.11)

P(x∣s, W) = N

∏
j=1

P(xj∣W̄j(s, W)), P(xj∣w) = wxj

xj!
e−w, (3.12)

where π is the vector of probabilities of factor scores πi, i = 1, . . . , L, W ∈ RL×N is a matrix of

association weights between components of signals and factors, and W̄j(s, W) = max
i=1...L

{siwij}
is effective weights on xj.

The partial derivative of F with respect to association weights wij requires calculation of

derivative of W̄j, but W̄j is not differentiable, for this reason, the developers of the method

defined a smooth function W̄
ρ
j that converges to W̄j as ρ approaches infinity:

W̄
ρ
j (s, W) = (L

∑
i=1

(siwij)ρ)
1
ρ

⇒ lim
ρ→∞

W̄
ρ
j (s, W) = W̄j(s, W),

and replaced the derivative of W̄j by the limiting value of the derivative of W̄
ρ
j , which was

written as Aij:

Aij(s, W) = lim
ρ→∞
(∂

∂wij
W̄

ρ
j (s, W)) = lim

ρ→∞

si(wij)ρ
L

∑
l=1

sl(wl j)ρ
.

Taking into account these tricks, the parameters of the generative model are estimated at the

M-step by equations:

wij =

M

∑
m=1
(∑

s
gm(s∣Θ)Aij(s, W)) xjm

M

∑
m=1
∑
s

gm(s∣Θ)Aij(s, W)
πi = (1/M) M

∑
m=1

⟨si⟩gm with ⟨si⟩gm =∑
s

gm(s∣Θ)si.

At the E-step the distributions gm are calculated by the same equation (3.4) as for EMBFA, but

the probabilities P(xm∣s, Θ) and P(s∣Θ) are given by (3.12) and (3.11), respectively. In order

to reduce computational complexity, the summation over s in all formulas is restricted to the

case when each pattern of the dataset contains not more than three factors. Note that the

same restriction is applied in EMBFA (3.10). The maximal causes analysis method with this

restriction is called as MCA3.

Chapter 3. Related works 24

If all influences have the same value, then max function is equivalent to the Boolean sum-

mation of the influences and the generative model becomes almost equivalent to the BFA

generative model. The difference is in the types of noise used in two generative models. In

the BFA generative model, noise is supposed to be in the form of factor distortion and spe-

cific factors, while Lucke and Sahani [71] supposed noise in the form of a random choice of

the observed variable according to the Poisson distribution with mean equal to the strongest

influence.

The developers of the method compared it with several non-negative matrix factorization

(NMF) methods and with feed-forward neural network with pre-integration lateral inhibition

described in Section 3.2.3 and showed that for bars problem its performance is better than all

others [71].

Since the generative model of signals in Maximal Causes Analysis is different from BFA

generative model, a post processing is required when the method is used in solving BFA. The

values of ⟨si⟩gm , i = 1, . . . , L, are probabilities that m-th observation of the dataset contain i-th

found factor. These probabilities are transformed to binary factor scores using a binarization

threshold. Then the parameters of the generative model Θ are estimated using M-step of the

likelihood maximization procedure presented in Section 4.2. In the experiments presented

in this work, the binarization threshold was the same for all observations of the dataset, and

it was chosen for each set of experiments to provide maximum of the information gain G

defined by (2.15).

Chapter 4

Neural network based method for

Boolean factor analysis

The idea of using the Hopfield-like neural network for solving the BFA problem is based on

the well known property of Hopfield network to create attractors of the network dynamics

by assemblies of tightly connected neurons. If N-dimensional binary patterns of the signal

space are interpreted as activities of N binary neurons (1 – active, 0 – nonactive) then neurons

representing a factor are activated simultaneously each time when the factor appears in the

patterns of the dataset, and neurons representing different factors are rather seldom activated

simultaneously. Therefore, due to the Hebbian learning rule, the factor neurons become more

tightly connected than the other neurons. So factors can be revealed as attractors of the

network dynamics.

Attractor neural network with increasing activity (ANNIA) presented in Section 4.1 reveals

factors as groups of tightly connected neurons. The results obtained by computer simulations

in Chapter 5 show that ANNIA enhanced with Hebbian unlearning of found factors (5.20) is

able to reveal all factors in the wide range of parameters of input data so long as restrictions

derived in Sections 5.3 and 5.4 are satisfied. Although it provides an accurate estimation of

the factor loadings (as set of active neurons in true attractor), but it provides only approxi-

mate estimation of factor scores, and no estimation of the parameters of the generative model

pij and qj. A way to overcome this drawback is to combine ANNIA with likelihood max-

imization (LM) described in Section 4.2. It is shown in Section 4.3 that the LM procedure

itself is able to provide complete solution of the BFA problem but requires an appropriate

initial approximation. If it starts from the random initial parameters it commonly fails. In the

combination of ANNIA and LM the role of ANNIA is to provide LM with the initial approx-

imation. Another aspect of the ANNIA and LM interaction is a suppression of the dominant

25

Chapter 4. Neural network based method for BFA 26

attractors in ANNIA using the data provided by LM. The resulting hybrid ANNIA and LM

procedure is presented in Section 4.3. The whole algorithm is presented in Appendix D.

4.1 Attractor neural network with increasing activity – ANNIA

The proposed neural network consists of N neurons of the McCulloch-Pitts type (integrate-

and-fire binary neurons) with gradually ranged synaptic connections between them. Only a

fully connected case is considered here. Each pattern of the learning set xm is stored in the

matrix of synaptic connections J′ according to the modified Hebbian rule:

J′ij =
M

∑
m=1

(xmi − am)(xmj − am), i, j = 1, . . . , N, i≠j, J′ii = 0 (4.1)

where M is the number of patterns in the learning set and bias am =
N

∑
i=1

xmi/N is the total

relative activity of the m-th pattern. This form of bias corresponds to the biologically plausible

global inhibition being proportional to overall neuron activity.

Under conditions discussed in Section 5.2, two global spurious attractors dominate in the

network dynamics. To suppress their dominance one special inhibitory neuron is added to

the N principal neurons of the Hopfield network. The neuron is activated during the presen-

tation of every pattern of the learning set and is connected with all the principal neurons by

bidirectional connections. The patterns of the learning set are stored in column vector j′′ of

the connections according to the Hebbian rule:

j′′i =
M

∑
m=1

(xmi − am) = M(bi − b̄), i = 1, . . . , N, (4.2)

where bi =
M

∑
m=1

xmi/M is a mean activity of the i-th neuron in the learning set and b̄ is a

mean activity of all neurons in the learning set (note < am >= ā = b̄). It is also supposed that

the excitability of the inhibitory neuron decreases inversely proportional to the size of the

learning set, being 1/M after all patterns stored. In the recall stage its activity is then:

A(t) = (1/M) N

∑
i=1

j′′i xi(t) = (1/M)j′′Tx(t)
where j′′T is transposed j′′, and x(t) is a column vector of activity of the network on step t.

The inhibition produced in all principal neurons of the network is given by vector j′′A(t) =

Chapter 4. Neural network based method for BFA 27

(1/M)j′′j′′Tx(t). Thus, the inhibition is equivalent to the subtraction of J′′ from J′ where

J′′ij = M(bi − b̄)(bj − b̄), i, j = 1, . . . , N, i≠j, J′′ii = 0. (4.3)

Adding the inhibitory neuron is equivalent to replacing the ordinary connection matrix J′ by

the matrix J:

J = J′ − J′′. (4.4)

The following two-run recall procedure is used to reveal factors. Its initialization starts by

the presentation of a random initial pattern xin with kin = rinN active neurons. Activity kin is

supposed to be smaller than the activity of any factor. On presentation of xin, network activity

x evolves to some attractor. This evolution is determined by the synchronous discrete time

dynamics. At each time step:

xi(t + 1) = Θ(hi(t)− T(t)), i = 1, . . ., N, xi(0) = xin
i (4.5)

where hi are components of the column vector of synaptic excitations

h(t) = Jx(t), (4.6)

Θ is a step function, and T(t) is an activation threshold. At each time step of the recall

process the threshold T(t) is chosen in such a way that the level of the network activity is

kept constant and equal to kin. Thus, on each time step kin “winners” (neurons with the

greatest synaptic excitation) are chosen and only they are active on the next time step. As

shown by Frolov et al. [26], this choice of activation threshold enables the network activity

to stabilize in point or cyclic attractors of length two. The fixed level of activity at this stage

of the recall process could be ensured by biologically plausible non-linear negative feed-back

control accomplished by the inhibitory interneurons.

When activity stabilizes at the initial level of activity kin, kin+1 neurons with maximal synaptic

excitation are chosen for the next iteration step, and network activity evolves to an attractor at

the new level of activity kin + 1. The level of activity then increases to kin + 2, and so on, until

the number of active neurons reaches the final level kfin = rfinN where r = k/N is a relative

network activity. Thus, one trial of the recall procedure contains (rfin − rin)N external steps

and several internal steps (usually 2-3) inside each external step to reach an attractor for a

given level of activity.

Chapter 4. Neural network based method for BFA 28

At the end of each external step, when the network activity stabilizes at the level of k active

neurons, the Lyapunov function is calculated:

λ = xT(t + 1)Jx(t)/k, (4.7)

where xT(t + 1) and x(t) are two network states in a cyclic attractor (for point attractor

xT(t + 1) = x(t)). In this definition, the value of the Lyapunov function gives a mean synaptic

excitation of neurons belonging to an attractor at the end of each external step. The iden-

tification of factors is based on the analysis of the dynamics of the Lyapunov function λ(k)
and the activation threshold T(k) in the recall procedure. Figure 4.1(a) demonstrates changes

of the Lyapunov function along the trials of the recall procedure. The trajectories shown in

Fig. 4.1 were obtained for a 8x8 bars problem dataset containing M = 400 patterns without

noise (p = 1, q = 0), the number of ones in factors n = 8. Trajectories of the network dynamics

in Fig. 4.1(a) form two separated groups. As shown in Fig. 4.2, the trajectories with higher

Lyapunov function values are true and the lower ones are spurious. Each point in the Figure

represents one of the trajectories. Its ordinate is the value of the Lyapunov function at the

point k = n while its abscissa is the maximal overlap of the pattern of network activity at this

point across all factors, i.e., Ov = max
i=1,...,L

m(x, fi) where the overlap between two patterns x1

and x2 with n = Np active neurons was calculated by the formula:

m(x1, x2) = 1

Np(1− p)
N

∑
i=1

(x1i − p)(x2i − p).
According to this formula the overlap between identical patterns is equal to 1 and the mean

overlap between random patterns is equal to 0. Patterns with high Lyapunov function values

have high overlaps with one of the factors, while patterns with low Lyapunov function values

are spurious and distant from all the factors. This shows that true and spurious trajectories

and attractors are separated by the values of their Lyapunov functions.

The trajectories with higher Lyapunov function values are called as true, they pass through

network states coincided with factors. As illustrated in Fig. 4.1(a), at the initial part of the

true recall trajectory, when k < n, stable states are factor fragments and their neurons are

tightly connected. The joining of such neurons results in an increase of the Lyapunov function

approximately proportionate to k. When k > n, the increase of k occurs due to the join of some

random neurons that are connected with neurons of the factor by weak connections. Hence,

the increase of the Lyapunov function for the trajectories sharply breaks at the point k = n.

The second characteristic feature of the trajectories lies in the behavior of their activation

threshold obtained at the end of each external step (Fig. 4.1(b)). In fact, the activation thresh-

old is the maximum synaptic excitation over non-active neurons. Initially, the activation

threshold increases when k increases. This behavior stems from the well known fact that in

Chapter 4. Neural network based method for BFA 29

2 4 6 8 10 12 14 16 18 20

0

50

100

150

200

jump

k

(a)

2 4 6 8 10 12 14 16 18 20

0

50

100

150

200

T

k

(b)

2 4 6 8 10 12 14 16 18 20
-10

0

10

20

30

R

k

(c)

2 4 6 8 10 12 14 16 18 20
-10

0

10

20

30

jump

R'

k

(d)

Figure 4.1: Lyapunov function λ (a), activation threshold T (b), function R = λ/(k − 1) − T/k
(c) and its derivative (d) in dependence on the number of active neurons k. Dashed lines in (a)
are thresholds for separating true and spurious trajectories at the beginning (upper line) and
at the end (lower line) of the recall procedure. The example of a jump from one to another
continuous trajectory is marked in (a) and (c). The results were obtained for the 8x8 bars

problem dataset containing M = 400 patterns without noise (p = 1, q = 0).

Chapter 4. Neural network based method for BFA 30

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

150

gap

λ

Ov

Figure 4.2: Values of the Lyapunov functions at the point k = n in relation to overlaps with the
closest factors for the trajectories in Fig. 4.1(a). It is shown that true and spurious attractors
can be easily separated due to a large gap between the distributions of the Lyapunov function

values.

the Hopfield network during activation of the fragment of a stored pattern, the distribution

of synaptic excitations has two, separate, high and low modes: high - for neurons belonging

to the pattern and low - for neurons not belonging to it (see [27]). The mean of the high mode

increases proportionately to the size of the fragment and the mean of the low mode is close to

zero. When k < n, a fragment of the factor is activated along the trajectory, then the activation

threshold is inside the high mode, and hence, increases with k. However when the stored

factor is activated totally (k = n), the activation threshold has to jump down to the low mode

to activate an additional neuron not belonging to the factor.

To match the two properties of the trajectories we subtract the activation threshold from the

Lyapunov function calculating R(k) = λ(k)/(k − 1) − T(k)/k and its derivative R′(k) = R(k) −
R(k−1). The changes of R and R′ along the trajectories are shown in Figures 4.1(c) and 4.1(d).

The curves for R′ have distinctly exposed peak at the point k = n. Thus, the maximum of R′(k)
was used as an indicator of the factor on each recall trajectory. The state of the neural network

activity at the maximum gives the factor loadings f for the found factor.

As shown in Fig. 4.1(a), sometimes Lyapunov function jumps up from one to another contin-

uous trajectory. In this step, the network activity transits to an attractor far from the attractor

Chapter 4. Neural network based method for BFA 31

at the previous step. As shown in Fig. 4.1(d), such a transition could also produce a peak

of R′. To avoid falsely treating such transition as factors, at each point of each trajectory the

similarity Sim(k) between the patterns of the network activity in the current attractor xattr(k)
and in the previous attractor xattr(k − 1) is calculated as

Sim(k) = c − (k − 1)k/N
(k − 1)(1− k/N) , (4.8)

where c is the number of common Ones in xattr(k) and xattr(k − 1). If xattr(k) contains xattr(k −
1), then Sim(k) = 1. If xattr(k) and xattr(k − 1) are independent, then Sim(k) is equal to zero

on average. It is assumed that the pattern of the network activity changes smoothly along

the trajectory if Sim(k) ≥ Simthr, where Simthr = 0.8. In the opposite case, the transition from

xattr(k − 1) to xattr(k) is treated as a jump. Thus, the point on the trajectory with the largest

peak for R′ could be considered as related to the factor if only there was no jump at this point.

The network dynamics can converge not only to the true attractors corresponding to the

factors, but also to spurious attractors far from all factors. The Lyapunov function for the

spurious attractors is smaller than that for factors (Fig. 4.1(a)), otherwise spurious attractors

become dominant and factors could not be revealed (see Sec. 5.4 for details). The trajectories

with lower Lyapunov function values are called as spurious. To separate the true attractors

from the spurious ones, the following heuristic method is used. For each k a random set of k

neurons is activated and then the maximal synaptic excitation over all neurons of the network

is calculated. After repeating this procedure 100 times, mean m(k) and standard deviation

σ(k) of the maximal excitations are calculated. If the Lyapunov function in the peak of R′

along the trajectory satisfies the following inequality

λ(k) > hmax(k) = m(k)+ 3σ(k), (4.9)

the found point on the trajectory is treated as a factor, in the opposite case — as a spurious

state. The borders hmax separating true and spurious trajectories are shown in Fig. 4.1(a) by

the dashed lines. The upper curve corresponds to the beginning of the recall procedure when

the first factor with the highest Lyapunov function was found. The lower curve corresponds

to the end of the recall procedure when the last factor with the lowest Lyapunov function was

found. Note that the border hmax(k) separating the true and spurious trajectories markedly

decreases as the factor discovering proceeds.

4.2 Likelihood maximization – LM

Since the generative model is defined in terms of probabilities one can set up likelihood func-

tion and find generative model parameters by likelihood maximization. For BFA generative

Chapter 4. Neural network based method for BFA 32

model, the dataset likelihood takes the form (2.16).

To maximize Λ the iterative procedure could be used that is very similar to the classic expec-

tation maximization (EM) procedure [18]. The iterations alternatively increase Λ with respect

to a set of factor scores smi (m = 1, . . . , M, i = 1, . . . , L), while holding Θ fixed (the E-step), and

with respect to parameters of the model Θ, while holding smi fixed (the M-step).

At the M-step, when scores are fixed, pij and qj can be found by maximization of Λ according

to the following iterative procedure:

∆pij = γij
∂Λ

∂pij
, ∆qj = γj

∂Λ

∂qj
, (4.10)

where γij and γj are positive learning rates and according to (2.16), (2.17) and (2.7),

∂Λ

∂pij
=

M

∑
m=1

P(xmj∣sm, Θ)−1 ∂P(xmj∣sm, Θ)
∂pij

∂Λ

∂qj
=

M

∑
m=1

P(xmj∣sm, Θ)−1 ∂P(xmj∣sm, Θ)
∂qj

,

and

∂P(xmj∣sm, Θ)
∂pij

= (xmj − P(xmj∣sm, Θ)) smi

1−pij

∂P(xmj∣sm, Θ)
∂qj

= (xmj − P(xmj∣sm, Θ)) 1

1−qj
.

Since the probabilities pij are assumed to be sufficiently high for the components constituting

the i-th factor (fij = 1) and equal to zero for the other components (fij = 0), at each iteration

cycle of step M, pij = 0 if

pij < 1−∏
l≠i

(1−πl pl j),
where the right side of the inequality is the probability that the j-th attribute appears in

the pattern due to other factors except fi. It is worth noting that without threshold trunca-

tion of pij, the procedure does not converge at all because of uncertainties arising from the

competition between common and specific factors. To eliminate this uncertainty most of the

components of each common factor are put to be zero.

The learning rates in (4.10) are set to be

γij = pij(1− pij)/(Mπi), γj = qj(1− qj)/M. (4.11)

Chapter 4. Neural network based method for BFA 33

The iterative procedure (4.10) at each M-step continues until ∑
i,j
∣∆pij∣/∑

i,j
pij < 10−5.

The generative model parameters pij and qj obtained at the M-step are used as the input

for the next E-step to find factor scores. For each individual signal xm of the dataset, factor

scores sm can be found as those maximizing Λm. The global maximum of Λm can be provided

only by the exhaustive search. However, the number of possible versions of sm is usually

large (equal to 2L), then to use some iterative procedure providing at each iterative step the

increase of likelihood function is more reasonable even if the procedure provides only local

maximum. One of the possible procedures is following.

At each iterative step the values Λm∣smi=1 and Λm∣smi=0 obtained by substituting smi = 1 and

smi = 0 into (2.17) given pij, qj and πi are compared. The value of smi that provides the greater

Λm∣smi
is chosen and the procedure goes to another i until it converges. To compute sm the

following two-run iterative procedure is used. At each external cycle of the procedure all

components of sm are processed to maximize Λm. Then the sequence of their processing

is randomly permuted at each cycle. The procedure is terminated when sm remained the

same at the next cycle. The procedure converges because at each iterative step the likelihood

function does not decrease. The procedure starts with all smi = 0. After computing sm the

procedure is applied to the next signal xm+1 until the dataset is exhausted. The probabilities

πi are estimated at the end of E-step as frequencies of i-th factor appearance in the dataset.

The scores found at the E-step are used as input to the next M-step. If for some factor, all

found loadings or scores are zeros, this factor is excluded from the list of found factors.

The LM-iterative procedure terminates when the increment of the Λ at the next step does not

exceed 10−6MN or the number of steps in the LM procedure reaches 10.

4.3 Hybrid ANNIA and likelihood maximization method – LAN-

NIA

In hybrid method ANNIA and LM procedures are performing successively. It starts from

ANNIA step. Then factors revealed by ANNIA in several trials (usually, 10–50) are used to

initiate LM. The LM procedure is initiated from E-step. The probabilities pij required to start

LM procedure are estimated as

pij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
hij/ max

j′=1...N
{hij′} if hij > 0

0 if hij ≤ 0
, (4.12)

Chapter 4. Neural network based method for BFA 34

where hi = fiJ is a row vector of synaptic excitations of neurons when the i-th found factor is

activated in the network. This estimation seems to be reasonable because hij is proportional

to pij [33].

After the LM convergence, each i-th found factor is unlearned from ANNIA by subtracting

the matrix ∆Ji from the matrix of synaptic connections J where

∆Ji
jk = Mπi(1−πi)pij(1−p0

ij)pik(1−p0
ik), k≠j, ∆Ji

jj=0, (4.13)

where p0
ij is a probability that the j-th component takes One in signals not containing i-th

found factors. Probabilities πi, pij and p0
ij are obtained from the LM procedure. The modified

matrix of synaptic connections is used in next ANNIA step for searching the other factors

with lower Lyapunov function.

The parameters of the generative model and the factor scores obtained by LM are used to

calculate the information gain provided by all found factors. The LANNIA continues until

G stops to increase due to adding new found factors. This is the first criterion to terminate

LANNIA. The border hmax defined in (4.9) separates true and spurious trajectories. The

appearance of only spurious attractors in the recall procedure indicates that all factors are

found. This is the second termination criterion of LANNIA.

On the whole, the main steps of LANNIA are the following:

1. Signals of a dataset are stored in the fully connected neural network according to Hebbian

rule, forming the matrix of synaptic connections between neurons J′ given by (4.1).

2. Two global attractors are excluded from the network dynamics by subtracting the matrix J′′

given by (4.3) from the matrix J′ forming the matrix J according to (4.4).

3. 10 – 50 trajectories sequentially start from random states containing kin active neurons and

continue according to the two-run procedure until the number of active neurons reaches

kfin. The initial activity kin is chosen to be lower and the final activity kfin is chosen to

be higher than the expected number of Ones in the factors. Usually we take kin = 5 and

kfin = 100.

4. Only the trajectories satisfying the two following criteria are chosen from the obtained

trajectories for a further analysis. First, they are smooth, according to the condition Sim(k) ≥
Simthr = 0.8, where Sim(k) is given by (4.8). Second, they are true, according to (4.9). The

patterns of the network activity at peaks of R′ at the chosen trajectories are treated as

revealed factors. If neither trajectory satisfies both these criteria, LANNIA is terminated.

5. The probabilities pij for factors revealed at step 4 are estimated by (4.12). The probabilities

πi for these factors are set to be 0.5. The probabilities pij and πi for factors revealed earlier

and the probabilities qj are taken from the output at the previous LANNIA cycle. At the

Chapter 4. Neural network based method for BFA 35

first cycle of LANNIA only the probabilities pij estimated by (4.12) and πi = 0.5 are used as

the input to the LM procedure, and the seed probabilities qj are taken to be 1/M.

6. The LM procedure alternates steps E and M until converges. The output of the procedure

is a set of the generative model parameters and factor scores.

7. The information gain provided by found factors for this temporary BFA solution is calcu-

lated. If it is not higher than the gain obtained at the previous step, LANNIA is terminated.

In the opposite case the parameters of the generative model obtained at step 6 are used

for unlearning the new found factors from the neural network by the rule (4.13), and the

procedure returns to step 3.

The execution time required for ANNIA is composed of two times. The first time T1 is

required to create connection matrix. In the limit of large M, L and N, T1 ≃ 10−9MN2. The

second time is required to find factors: T2 ≃ 10−8LN⟨n f ⟩2, where n f is the mean number of

ones in factors. For LANNIA additional time T3 ≃ 10−7ML⟨n f ⟩ is required to perform the

procedure of likelihood maximization. Coefficients in these formulas are calculated for PC

Core2 6400, 2.13 GHz.

The LANNIA performance is illustrated when solving the so called bars problem presented

in Section 2.4 in the case of noisy images. The noise is assumed to be distributed uniformly

over observation components and factors so that qj = q for any j, and pij = p fij for any i and

j. This means that pixels constituting a bar can take 0 with the equal probabilities 1 − p and

any pixel can take 1 with the probability q due to related specific factor. The method was

tested using dataset containing M = 800 noisy images (p = 0.7 and q = 0.2). Several examples

of images of the generated dataset are presented in Fig. 4.3(A).

Figure 4.3: A Examples of noisy images (p = 0.7, q = 0.2). B Factors found by LANNIA when
solving BP with the noisy images (p = 0.7, q = 0.2, M = 800). C Factors found by LM in the
absence of noise in the images, M = 800. In B and C, the black pixels correspond to pij = 1, the
white pixels correspond to pij = 0, and the gray pixels correspond to the intermediate values

of pij.

Chapter 4. Neural network based method for BFA 36

1 2 3 4 5 6

-0.02

0.00

0.02

0.04

0.06

0.08

 cycle 1 (11 factors)
 cycle 2 (14 factors)
 cycle 3 (16 factors)

G

Step's number

Figure 4.4: Increase of information gain at each cycle of LANNIA in solving the Bars Problem
with noise (p = 0.7 and q = 0.2).

0 2 4 6 8 10 12 14 16 18 20
-150

-100

-50

0

50

100

150

cycle 4

cycle 3

cycle 2

cycle 1

k

(a)

0 2 4 6 8 10 12 14 16 18 20

-5

0

5

10

15

R'

k

(b)

Figure 4.5: Lyapunov function λ (a) and function R′ (b) in dependence on the number of
active neurons k. Dashed lines in (a) are thresholds for separating true and spurious trajecto-
ries at four cycles of LANNIA. Results were obtained for dataset consisting of M = 800 noisy

patterns (p = 0.7, q = 0.2).

Figure 4.4 demonstrates the dependence of the information gain G obtained in this procedure

on the number of found factors. All factors were revealed for three full cycles. Twenty

trajectories were run in ANNIA at the beginning of each LANNIA cycle. At the first cycle 11

trajectories were identified as true (Fig. 4.5(a)). These trajectories were continuous and had

the values of the Lyapunov function at the peaks of R′ (Fig. 4.5(b)) exceeding the separation

border. The increment of the information gain provided by LM is the largest at the first cycle

and amounted to 0.06.

Chapter 4. Neural network based method for BFA 37

After the factors found were unlearned from ANNIA at the end of the first LANNIA cycle,

ANNIA found three factors at the second cycle. The increment of the gain amounted to 0.015,

that is proportional to the number of the found factors. At the third full LANNIA cycle,

ANNIA found two factors and the gain increased for about 0.01. After unlearning the factors

found at the third cycle, all trajectories at ANNIA happened to be spurious and the procedure

was terminated.

The factors found by LANNIA are shown in Fig. 4.3(B). They almost coincide with bars

shown in Fig. 2.1(A) but contain also pixels with small probabilities pij. Nevertheless, the

gain obtained by LANNIA that amounts to 0.081 was the same as for the information gain

calculated for the precise generative model parameters.

The role of ANNIA in the hybrid procedure is illustrated in Fig. 4.3(C). There are shown

the factors found by LM alone when it started from random initial scores, that is, without

the approximate solution provided by ANNIA. The analyzed dataset contained M = 800 im-

ages without noise similar to that shown in Fig. 2.1(B). For each of 16 factors, the number

of initial unitary scores was the same as in the dataset but they were chosen randomly, i.e.,

independently of the presence of the relating factors in the images. LM found only 8 factors

and consequently the gain amounts to only G = 0.43 that is almost twice smaller than “theo-

retical” gain G = 0.82 for the not noisy data that is calculated for the precise generative model

parameters. The gain achieved by LANNIA is equal to “theoretical” one, that is, it provides

the perfect bars problem solution (it is illustrated in Fig. 6.1(a)).

4.4 The version of the method without likelihood maximization –

BANNIA

In order to illustrate the role of LM procedure in LANNIA, we also tested the version of the

method in which LM procedure is replaced by simple adaptive Bayesian Classifier (BC). This

version is referred to as BANNIA (BC + LANNIA) and was introduced in [33]. BANNIA is

very similar to LANNIA with two distinctions. The first distinction concerns the estimation

of factor scores. In BANNIA it is performed by the adaptive Bayesian Classifier after all

factors have been found by ANNIA. On the contrary, in LANNIA the score estimation is

performed by alternations of LM and ANNIA. BC implemented in BANNIA takes account

of probabilities pα
ij = P(xmj = 1∣smi = α) that j-th component of observation xm takes 1 when

observation contains (α = 1) or does not contain (α = 0) i-th factor. According to the Bayesian

classification approach, the value smi providing the greater value

Λmi∣smi
=

N

∑
j=1

[xmj log pα
ij + (1− xmj) log(1− pα

ij)]+ α log πi + (1− α) log(1−πi),

Chapter 4. Neural network based method for BFA 38

where α = smi is chosen to decide whether observation xm contains or does not contain i-th

factor. Then, the next observation xm+1 is processed. When all observations of the dataset are

classified into two groups, the first one containing and the second one, not containing the i-th

factor; probabilities p1
ij and p0

ij are estimated as frequencies of the j-th attribute appearance

in patterns containing and not containing i-th factor, respectively. Then, the procedure is

repeated with corrected values of p1
ij and p0

ij until convergence. After that the procedure goes

to process the next factor. Thus, in fact, BC in BANNIA, in contrast to LANNIA, provides the

search of factor scores for a given factor ignoring the specific combination of other factors in

each particular observation of the dataset.

The second distinction concerns the suppression of the dominant attractors. In BANNIA it is

performed by subtraction ∆Ji from the matrix of synaptic connections J for each i-th found

factor. Matrix ∆Ji is defined as

∆Ji
jk = 0.5λi[(xi

j(t)−ai
f)(xi

k(t + 1)−ai
f)+ (xi

j(t + 1)−ai
f)(xi

k(t)−ai
f)], ∆Ji

jj = 0, (4.14)

where xi(t) and xi(t + 1) are successive patterns of the network activity in the attractor cor-

responding to i-th factor, ai
f is the portion of active neurons in the factor and λi is the value

of the Lyapunov function in the attractor. In contrast to LANNIA (compare (4.14) and (4.13)),

BANNIA ignores the fact that different factor’s components can have different probabilities

pij to appear in patterns of a dataset containing the factor. Therefore, the factor can be ex-

cluded from the network dynamics only partially, and so it can be found again in the form

of its fragment or duplicate. BC used in BANNIA does not provide the exclusion of such

fragments or duplicates from the list of found factors while LANNIA does. The presence of

false factors of this kind in the list of found factors is the main disadvantage of BANNIA,

compared with LANNIA.

Since BANNIA does not provide an estimate of generative models parameters required for

gain computing, they are estimated by the M-step of the LM procedure applied to factor

scores provided by BANNIA.

Chapter 5

Properties of attractor neural network

with increasing activity

The proposed attractor neural network with increasing activity differs from common Hop-

field network by sparse coding and original two-run network dynamics. The properties of

this network not investigated yet. It is well known for common Hopfield network that net-

work dynamics can converge to true or spurious attractors. True attractors in BFA notation

correspond to one of the factors, spurious attractors are far from all factors. The ability to

distinguish between them and the probability of the convergence to true attractors are key

features of the network. In this chapter, we investigate the influence of the parameters of the

neural network on the ability of revealing all true attractors. A more detailed description of

the investigation presented in this chapter can be found in [28, 29, 43, 44].

In this chapter, each pattern of the training set is supposed to be generated in the form

xm =
L⋁

i=1
smi ∧ fi, where xm, m = 1, . . . , M, is a binary row vector of dimension N, fi∈ BN

n
1,

i = 1, . . . , L, is a binary row vector of factor loadings of dimension N (hereafter, it is also

referred to as factor), and smi ∈ BL
C is a binary factor score of i-th factor in m-th pattern. It

means that in the generative model (2.5) noise is absent (pij = fij and qj = 0), the number of

factors mixed in one pattern is fixed and is equal to parameter C =
L

∑
i=1

smi called as a signal

complexity, the number of attributes constituting the factor (i.e., for attributes with fij = 1) is

fixed and is equal to n = pN =
N

∑
j=1

fij where parameter p specifies the level of sparseness of the

factors encoding (for other attributes not constituting the factor fij = 0).

1BN
n = {x∣xi ∈ {0, 1},

N
∑
i=1

xi = n}

39

Chapter 5. Properties of ANNIA 40

The properties of the network are investigated in dependence on the five parameters: N, M, L, C, p.

The size of the training set M should be large enough so that each factor could be presented

several times in combinations with different other factors, i.e., MC/L ≫ 1, however we put

C/L≪ 1. Additionally we put L≫ 1 and N ≫ 1, p≪ 1.

5.1 Lyapunov function of true attractors

By definition, the Lyapunov function of each attractor can be estimated as a mean synaptic

excitation produced in the neurons of attractor by their proper activity. When r < p true

attractors are created by fragments of factors. Thus to evaluate the Lyapunov function for

true attractors we have to evaluate a synaptic excitation produced in the neurons of factors

by activation of their fragments. Along the trajectories of network dynamics those fragments

create attractors which neurons are the most tightly connected among the neurons of factors.

However, we ignore the specificity of activated fragments and calculate synaptic excitation

produced by the fragment as if its neurons were chosen from factor’s neurons randomly

with equal probabilities. Therefore we obtain slightly underestimated values of the Lyapunov

function of true attractors.

Without any loss of generality, we may assume that a fragment of factor f1 is activated. In

conformity with [16], we call n and N − n neurons of f1 with states One and Zero as “high”

and “low” neurons, respectively. According to (4.1), (4.3), (4.4) and (4.6), when xin is activated

in the network, the neurons synaptic excitations can be presented in the form hi = Σ
1
i +Σ

0
i −Σ

′

i

where

Σ
µ
i = ∑

m∈{m∶sm1=µ}

(xmi − am)∑
j≠i

(xmj − am)xin
j .

Two first sums Σ
1
i +Σ

0
i is a contribution of principal network neurons into synaptic excitations

and the third sum

Σ
′

i = M(bi − b̄)∑
j

(bj − b̄)xin
j

is the inhibition produced by the additional neuron. The sum Σ
1
i contains M1 patterns of

the learning set which include the recalled factor f1 and Σ
0
i contains M0 patterns which do

not include it. Since the variance of am is of the order 1/N (see Appendix A), then standard

deviation of am is small compared to its mean and one can put

am ≃ ⟨am⟩ = ā = 1− (1− p)C ≃ 1− exp(−pC) (5.1)

where ⟨⋅ ⋅ ⋅⟩ means averaging over all factor scores and all factors except f1.

Chapter 5. Properties of ANNIA 41

The activated fragment of f1 contains n1 = rN high neurons and no low neurons of f1. How-

ever, we consider now more general cases when the pattern xin contains additionally n0 low

neurons of f1. The formula for this case will be used later in Section 5.3.1. For high neurons

of f1

⟨Σ1
i ⟩ = ⟨M1⟩[(1− ā)2n1 + (1− ā)(ā′ − ā)n0]

and for low neurons

⟨Σ1
i ⟩ = ⟨M1⟩[(a′ − ā)(1− ā)n1 + (a′ − ā)2n0]

where

a′ = 1− (1− p)C−1
= 1− (1− ā)/(1− p)

is the probability of the neuron to be active in the pattern of the learning set due to the

presence of other factors except f1. Therefore,

⟨Σ1
i ⟩ = ⟨M1⟩(1− ā)2(f 1

i − p)[n1 − p(n1 + n0)]/(1− p)2
for both high and low neurons.

Since xin is independent of all factors except f1, then

⟨Σ0
i ⟩ = ⟨M0⟩(n1 + n0)⟨(xmi − am)(xmj − am)⟩.

By the definition of am, for each pattern of the learning set
N

∑
i=1
(xmi − am) = 0. Hence

⟨(xmi − am)(xmj − am)⟩ = −⟨(xmi − am)2⟩/(N − 1) ≃ −ā(1− ā)/N (5.2)

and ⟨Σ0
i ⟩ = −⟨M0⟩ā(1− ā)[n1 + n0]/N.

Since ⟨(bi − b̄)⟩ is evidently equal to 0, then ⟨Σ′i⟩ = 0 and the mean synaptic excitation amounts

to

⟨hi⟩ = ⟨M1⟩(1− ā)2(f1i − p)[n1 − p(n1 + n0)]/(1− p)2 (5.3)

− ⟨M0⟩ā(1− ā)[n1 + n0]/N.

For activated fragment of f1 n1 = rN and n0 = 0 then its mean Lyapunov function is equal to

λtrue = [⟨M1⟩(1− ā)2 − ⟨M0⟩ā(1− ā)/N]rN.

Chapter 5. Properties of ANNIA 42

0.01 0.02 0.03
0.0

0.5

1.0

1.5

2.0

2.5

3.0

r

(a)

0.01 0.02 0.03
0.2

0.4

0.6

0.8

1.0

r

(b)

Figure 5.1: Lyapunov function λ dependent on the relative network activity r = k/N, when
special inhibitory neuron is excluded from (a) and included in (b) the network. Lyapunov

function is normalized by its mean value for factors, i.e., at the point r = p = 0.02.

The probability of factor to be mixed in the learning pattern is C/L. Thus ⟨M1⟩ = MC/L and

⟨M0⟩ = M(1 − C/L) ≃ M and the first term in the expression for λtrue is of the order MC/L
and the second - M/N. Usually CN/L≫ 1 and the second term can be neglected. Then in the

range r ≤ p the mean Lyapunov function for true attractor can be estimated as

λtrue = MCrN(1− ā)2/L (5.4)

5.2 Global spurious attractors

In this section we investigate the nature of the global spurious attractors and the performance

of the of the additional inhibitory neuron that ensures the eliminations of the global spurious

attractors from the network dynamics. After that we investigate why the global spurious

attractors were not observed previously for ordinary Hopfield network used, for example,

as associative memory. For this purpose we estimate the Lyapunov function of the global

spurious attractors.

In order to clarify the performance of the additional inhibitory neuron, computer simulations

were made. Figure 5.1 demonstrates trajectories of the network dynamics obtained without

(a) and with (b) the use of additional inhibitory neuron. For the presented example, L = 800,

N = 1100, M = 40000, C = 20, p = 0.02. Fifty trajectories are shown in each figure. Trajectories

started from random states with kin = 5 active neurons and continued to kfin = 33. If the

inhibitory neuron is not included (Fig. 5.1(a)), only two trajectories with a high Lyapunov

function dominate and attract all other trajectories. As demonstrated in Fig. 5.2(a) the trajec-

tories with a high Lyapunov function are spurious. The trajectories in Fig. 5.2 are obtained for

Chapter 5. Properties of ANNIA 43

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2 final states

initial states

m(t)

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2 final states

initial states

m(t)

(b)

Figure 5.2: Trajectories of neurodynamics when special inhibitory neuron is excluded from
(a) and included in (b) the network. Abscissa is an overlap m(t) between the current network

activity and the recalled factor, ordinate is Lyapunov function normalized as in Fig. 5.1.

the case when the number of active neurons is fixed and equal to the number ones in factors,

i.e., k = n = 22. The trajectories are shown in the plane constituted by axes [m(t), λ(t)] where

t is the time step, λ(t) is the Lyapunov function, m(t) is the overlap of the current network

state x(t) with a recalled factor f (nearest factor) defined as

m(t) = m(x(t), f) = 1

Np(1− p)
N

∑
i=1

(xi(t)− p)(fi − p).
According to this formula, the overlap is equal to 1 if x(t) is identical to f and is equal to 0

in average if x(t) is independent of f. The trajectories are started from random states with

m(0) = min = 0.3. When additional inhibitory neuron does not perform (Fig. 5.2(a)), only

small portion of trajectories converge to factors, i.e., to the final states with m = 1. The most

trajectories converge to spurious states with high values of the Lyapunov function and m is

close to 0. Attractors corresponding to these spurious states are called as global spurious

attractors. When additional inhibitory neuron performs (Fig. 5.2(b)), the most trajectories

converge to factors while spurious attractors are characterized by relatively small values of

the Lyapunov function.

The global spurious attractors are two attractors created by neurons contained in the high-

est and in the lowest numbers of factors, respectively. To demonstrate this fact we redrew in

Fig. 5.3 the trajectories in the axes [m(t), rank(t)]where rank(t) indicates whether the neurons

contained in the most or least numbers of factors contribute to the current network activity. To

calculate rank(t), all neurons were ordered by the number of factors that contained them, so

the neurons contained in the smallest number of factors had the lowest rank, and those con-

tained in the largest number of factors had the highest rank. The rank of the current activity

Chapter 5. Properties of ANNIA 44

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

initial statesrank

m(t)

(a)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

initial states

rank

m(t)

(b)

Figure 5.3: The same trajectories as in Fig. 5.2 drawn in the plane (m(t), rank(t)), where rank
is an index showing contribution of neurons most and least often contained in factors set.

(a)– inhibitory neuron is excluded, (b)– included.

was calculated as the sum of the ranks of active neurons. The obtained rank was normalized

so that the patterns created by the neurons contained in the smallest number of factors have

the rank close to zero, whereas those created by the neurons contained in the largest number

of factors have the rank close to one, and those created by random neurons have the rank close

to 0.5. Figure 5.3(a) demonstrates that the patterns created by the global spurious attractors

have ranks close to 0 and 1, while true attractors have ranks around 0.5. When two global

spurious attractors completely suppressed (Fig. 5.3(b)), trajectories that converge to states far

from the factors are attracted by local spurious attractors. These attractors have ranks close

to 0.5 and their Lyapunov function value is smaller than that for global spurious attractors

(Fig. 5.2(b)).

Two global spurious attractors dominate because their Lyapunov function exceeds that of true

attractors. To estimate the value of Lyapunov function for global spurious attractors, we take

into account that they are created by neurons most and least often contained in the whole set

of factors. We also take into account that p≪ 1 and r≪ 1.

Let k be the number of factors containing a given neuron. The mean and variance of k are

both equal to pL. In Gaussian approximation the number of neurons which belong to k > k1

factors can be estimated as NΦ(u1)where u1 = (k1 − pL)/√pL. To choose rN neurons with the

largest k from totally N neurons, one must put k1 = pL + u1

√
pL where u1 satisfies equation

Φ(u1) = r. On average, each of the chosen neurons belongs to k2 = pL+u2

√
pL patterns where

u2 =
1

Φ(u1)√2π
∫
∞

u1

u exp(−u2/2)du.

Chapter 5. Properties of ANNIA 45

The probability of one of these neurons to be active during the presentation of a learning

pattern is a′′ ≃ 1 − exp(−k2C/L) ≃ ā + (1 − ā)Cu2

√
p/L where ā = 1 − (1 − p)C. Then a mean

augmentation of synaptic connection between two of these neurons during the presentation

of input pattern is ∆J = (a′′ − ā)2 = (1 − ā)2C2u2
2 p/L and a mean strength of connection after

presentation of the whole learning set is J = M∆J = M(1 − ā)2C2u2
2 p/L. Hence the Lyapunov

function for this attractor can be estimated as

λ
gl
spur ≃ JrN = MrN(1− ā)2C2u2

2 p/L.

Since r≪ 1 then u2 ≃ u1 ≃ [2 ln(1/r)] 1
2 . Consequently

λ
gl
spur ≃ 2Mr ln(1/r)N(1− ā)2C2 p/L (5.5)

Similarly, it is easy to estimate the Lyapunov function for the attractor created by neurons

belonging to the smallest number of factors. To do this, it is enough to replace k2 in the

formula for ā′′ by k3 = pL − u2

√
pL keeping all other equations. This results in the same

expression for the Lyapunov function as (5.5).

According to (5.4) and (5.5) the Lyapunov function of true attractors increases proportionally

to C while of spurious attractors proportionally to C2. Their ratio amounts to

λ
gl
spur/λtrue ≃ 2Cp ln(1/r). (5.6)

Note that formula (5.5) is valid for the whole range of r while (5.4) is valid only for r ≤ p.

Thus comparison of values of the Lyapunov function for global spurious and true attractors

by (5.6) is valid only for r ≤ p.

Figure 5.4 demonstrates the ratio of Lyapunov functions for global spurious and true attrac-

tors in dependence on C obtained by computer simulation and by (5.6) for r = p = 0.02. It

is shown that (5.6) gives a rather accurate estimation of this ratio. Thus the global spuri-

ous attractors become to dominate if 2Cp ln(1/p) > 1. For example, for p = 0.02 the critical

complexity of their dominance amounts to C ≃ 10. According to (5.6), the critical complexity

increases when sparseness increases (i.e. p decreases). Thus the global spurious attractors

were not observed previously for ordinary Hopfield network used because for this network

C = 1, and λ
gl
spur/λtrue ≪ 1.

5.3 The size of factors attraction basins

The network dynamics converge to one of the factors only when the initial state falls inside its

attraction basin. In other cases it converges to one of the spurious attractors. Since generally

Chapter 5. Properties of ANNIA 46

0 10 20

0

1

2

3

gl
λ

sp

λ
tr

C
Figure 5.4: The ratio of values of the Lyapunov function for global spurious and true attrac-
tors. Estimations by (5.6) are shown by a thick solid line for p = 0.02, and a dashed line for
p = 0.004. Points are experimental data averaged over 50 realizations of L random factors for
p = 0.02, M = 40000, N = 1100: squares – L = 800, circles – L = 1600, open and full points –
attractors created by neurons least and most often contained in factors, respectively. The thin
horizontal line indicates the equality of values of the Lyapunov function for spurious and

true attractors.

there is no a priori information on factors the initial network state can only fall into a factor

attraction basin by chance. Therefore the ability of a Hopfield-like network to perform factor

searches is determined by the probability that network activity converges to one of the factors

starting from a random state. And the estimation of parameters significant for the size of

attraction basins is required.

In this section, the size of attraction basins around factors is estimated for the case of fixed

level of activity of the neural network during network dynamics: the number of active neurons

is supposed to be constant and equal to the number of ones in factor, i.e., k = n =
N

∑
j=1

fij. The

size of attraction basins in the case of variable level of the neural network activity is estimated

in Section 5.4.

5.3.1 Attraction basins around factors in single-step approximation

Single-step (SS) approximation has been proposed by [67] for the densely encoded Hopfield

network. It has been shown by other theoretical approaches [5, 6] and by Monte-Carlo sim-

ulations [6, 49, 68] that SS approximation is very inaccurate for dense coding. However, it

becomes quite accurate when sparseness increases [26]. The principal peculiarity of this ap-

proach is that at each time step one ignores the statistical dependence between the network

activity and the connection matrix and takes into account only two macroparameters of neu-

rodynamics: the overlap m(t) between the current and recalled patterns and the total network

activity. If the analysis is restricted to the case of fixed level of the relative network activity

Chapter 5. Properties of ANNIA 47

r = p, then the recall process is described by the evolution of only one parameter m(t). Omis-

sion of the statistical dependence between the network activity and the connection matrix is

possible only for the first step, when the initial activity is actually stated independently of the

connection matrix. This is why this approximation is called the “single-step” or “first-step”

approximation.

The mean synaptic excitation to high and low neurons of any factor (for example for factor f1)

is given by (5.3) where for the case under consideration n1 = N[m(t)p(1− p)+ p2], n0 = Np−n1.

Thus

⟨hi⟩ = MNCp(1− q)2
L(1− p)m(t) (f 1

i − p)−Mpq(1− q). (5.7)

The mean synaptic excitation for high neurons (for them f1j = 1) is larger than that for low

neurons (for them f1j = 0). Thus the high neurons have higher probability to be activated at

the next step of the recall procedure.

To estimate the probabilities of high and low neurons to be active, let us now estimate the

variance of synaptic excitations. Since M0
≫ M1, for the network without special inhibition

neuron, it is determined by the variance of Σ
0
i . Therefore,

D{hi} = NpD{J′ij}+N2 p2Cov{J′ij, J′ik}, k ≠ j ≠ i (5.8)

where J′ is given by (4.1). As shown in Appendix B

D{J′ij} = M2C2 p2(1− q)4G1(µ)
L(1− p)2 (5.9)

where µ = C2/L is a relative signal complexity,

G1(µ) = [exp(µ(1

(1− p)2 − 1))− 2 exp(µ(1

1− p
− 1))+ 1](1− p)2/(µp2). (5.10)

As shown in Fig. 5.5 in the range 0 < µ < 1 the graph of this function is close to the straight

line and tends to the line G = 1+ µ when sparseness increases.

When the special inhibitory neuron is included to the network, the variance of synaptic exci-

tation is determined by the variance of Σ
0
i −Σ

′

i . Therefore,

D{hi} = NpD{Jij}+N2 p2Cov{Jij, Jik}, k ≠ j ≠ i

where J is given by (4.4). As shown in Appendix C

D{Jij} = M2C2 p2(1− q)4G2(µ)
L(1− p)2 (5.11)

Chapter 5. Properties of ANNIA 48

0.0 0.2 0.4 0.6 0.8 1.0

1.0

1.2

1.4

1.6

1.8

2.0

G1

G2

Figure 5.5: The Functions G1(µ) and G2(µ) for the case without and with additional inhi-
bition, respectively. µ = C2/L is a relative index of signal complexity. p = 0.02 – solid line,

p = 0.004 – dashed line, p → 0 – dashed-dotted line.

where

G2(µ) = [exp(µ(1

(1− p)2 − 1))− exp(2µ(1

1− p
− 1))](1− p)2/(µp2). (5.12)

Function G2(µ) is compared with G1(µ) in Fig. 5.5. It is is shown that due to the inhibition

by the special inhibitory neuron, the variance of synaptic connections becomes only slightly

dependent on µ and G2 tends to the line G2 = 1 when sparseness increases.

To estimate Cov{J′ij, J′ik} one can notice that according to the learning rule (4.1)

N

∑
j=1,j≠i

J′ij = −
M

∑
m=1

(xmi − am)2.

Thus

(N − 1)D{J′ij}+ (N − 1)(N − 2)Cov{J′ij, J′ik} =
−MD{(xmi − am)2}−M(M − 1)Cov{(xmi − am)2, (xli − al)2}.

Both terms on the right side of this equation, which are respectively of order M and M2,

can be neglected when compared with the first term on the left side of this equation that

is of order NM2. Hence Cov{J′ij, J′ik} = −D{J′ij}/N. The same is valid for Cov{Jij, Jik}. Then

according to (5.8), (5.9) and (5.11)

D{hi} = σ2
= Np(1− p)M2C2 p2(1− q)4Gε(µ)

L(1− p)2 (5.13)

Chapter 5. Properties of ANNIA 49

where ε is 1 for the network without inhibition and 2 with inhibition.

In the limit case N → ∞, the distributions of synaptic excitations can be approximated by

normal ones. Then at the first step of the recall process

Prob{xi(1) = 1} = Φ(θi)
where

θi = (T − ⟨hi⟩)/σ,

Φ(x) = 1/(2π)1/2∫ ∞

x
exp(−u2/2)du (5.14)

and T is an activation threshold. According to (5.3) and (5.13) for high and low neurons of f1

θ1
= θ −

m(t)(1− p)√
Lp(1− p)Gε(µ)/N θ0

= θ +
m(t)(1− p)√

Lp(1− p)Gε(µ)/N
where θ = (T +Mpq(1 − q))/σ is a scaled activation threshold. In the model the threshold is

chosen in such a way that a total level of the network activity is the same as in factors, i.e. is

chosen to satisfy condition

pp1 + (1− p)p0 = p

where p1 = Φ(θ1) and p0 = Φ(θ0) are probabilities for high and low neurons to be active. As

a result, the overlap changes to

m(t + 1) = p1 − p0.

These equations together with initial condition m(0) = min completely determine the evolution

of network activity which depends on only parameters p and parameter γ = αGε that is a

combined index of the relative signal complexity µ and of the relative informational loading

α = Lh(p)/N where h(x) is the Shannon function.

The curves which characterize the behavior of the network activity are presented in Fig. 5.6.

The curves are drawn in the plane (min, γ). Each curve corresponds to some fixed p. Let the

initial state of the network activity for a given α be characterized by the point (min, γ). If this

point is under the curve, the overlap between the current pattern and the recalled pattern

moves during the recall process to the right, that is to the final overlap mfin given by the right

branch of the curve. The overlap moves to the left for each point above the curve. Maximum

at the curve γmax defines the critical information loading αcr = γmax/G(µ), when factors cease

to be attractors of the network dynamics. If γ > γmax, then network dynamics moves to some

Chapter 5. Properties of ANNIA 50

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

min

Figure 5.6: Sizes of attraction basins min in dependence on relative informational loading α
and signals complexity µ (γ = αGε(µ)). Lines - Single-step approximation: p = 0.02 - solid
line, p = 0.004 - dashed line, p → 0 - dashed-dotted line. Points - results of multi-step recall
obtained by computer simulation in the case when special inhibitory neuron is included:

○ – p = 0.02, ● – p = 0.004.

spurious state (mfin = 0), even starting from factor (min = 1). If γ < γmax and min = 1, then

network dynamics converges to some attractor in the vicinity of the factor with mfin defined

by right branch of the curve. Thus, the left branch of the curve corresponds to the border

of an attraction basin and the right branch defines the distance between factor and attractor

in its vicinity. In the SS approximation the border of the attraction basin corresponds to the

condition m(1) = min.

Figure 5.6 demonstrates that the size of attraction basin decreases, when γ increases. The

increase of γ can be provided by the increase of the relative informational loading α and by

the increase of the function Gε. Since G2 < G1, the inclusion of the special inhibitory neuron,

in addition to suppression of global spurious attractors, provides an essential increase of

attraction basins around factors due to decreasing of γ. On the other hand, the size of the

attraction basins monotonically decreases when the encoding sparseness increases under the

fixed γ. As shown by [26], the dynamics of the ordinary Hopfield network is determined

by the same equations as described above if Gε = 1. Since G2 ≃ 1 the network dynamics

with special inhibition almost coincides with that of an ordinary Hopfield network under the

Single-Step approximation.

Chapter 5. Properties of ANNIA 51

5.3.2 Attraction basins around factors in multi-step recall

Figures 5.2 and 5.3 demonstrate that as for the ordinary Hopfield network, the borders of

the attraction basins around factors are fuzzy: starting from the states with the same min,

the trajectories may converge to the recalled factor or to some spurious state far from all

factors. Consequently, the distribution of final overlaps has two distinct modes: mfin ≈ 1

(“true”) and mfin ≪ 1 (“spurious”). It is well known for the ordinary Hopfield network that

for small informational loading “true” mode prevails, and as informational loading increases,

the distribution maximum shifts to “false” mode, demonstrating a sharp transition from a

retrieval to a not-retrieval network dynamics at a certain α = αcr. The transition becomes more

sharp when network size increases. Let us consider probability P that starting from some

initial state with a given initial overlap min with a factor, the network activity converges to

it. For the ordinary Hopfield network (i.e., when C = 1) P depends on min, α and N. For the

network performing Boolean factor analysis (i.e., when C > 1) P additionally depends on C

and on the size of the learning set M.

For each set of parameters the probability P was estimated as a portion of true trajectories

at the histogram of mfin distribution. In order to separate true and spurious modes at the

histogram, the border mfin = 0.7 was used. Since the true and spurious modes were always

well separated, an exact choice of the border was not important. The computed values of P

were transformed by the following logistic mapping to variable F:

P =
1

1+ e−F
(5.15)

The advantage of this transformation is that F is unlimited, whereas 0 ≤ P ≤ 1. Thus, to

approximate F by some regression model it is not required to use any constrains to F as it

would be required for direct approximation of P.

As an example, the dependence of F on M is shown in Fig. 5.7 for N = 3000, C = 20 min = 0.3

and different α. Data were obtained with the use of the special inhibitory neuron. As shown

in Fig. 5.7, F can be well fitted by linear dependence on L/CM. Intercepts of the regression

lines that approximate the dependence of F on L/CM were used to estimate the asymptotic

values of F for M →∞.

Figure 5.8 presents the dependence of F on N and α for min = 0.3 and C = 20 and C =

1. The results for C = 1 and C = 20 are close, although the ability to recall stored factors

happened to be even higher for C = 20 than for the ordinary Hopfield network (especially

when informational loading α increases). One of the possible explanations is that storing

complex patterns produces noise in the connection matrix, and this noise suppresses some

local spurious attractors of the ordinary Hopfield network.

Chapter 5. Properties of ANNIA 52

0.000 0.001 0.002 0.003 0.004

-3

-2

-1

0

1

2

=0.32

=0.28

=0.24

=0.2

F

L/(CM)
Figure 5.7: Transformed probability F of trajectories convergence to factors in dependence
on L/(CM) for N = 3000, C = 20 and min = 0.3. Intercepts with ordinate axes were used as

experimental estimations of transformed probability for M →∞.

Since the data happened to be close for C = 20 and C = 1, they were combined in one family

of data for approximation by the regression model

F = a0 + a1α + a2N + a3 ln N + a4αN. (5.16)

The fitted curves that approximate the data for fixed α are shown in Fig. 5.8 by thin lines.

According to this approximation, the lines constitute two groups. The upper lines are concave

and tend to +∞ when N → ∞. The lower line is convex and tends to −∞ when N → ∞.

Transition from one to another group occurs due to the change of α. The value of α which

corresponds to the thick dashed line separating these groups is chosen as critical αcr. For each

α < αcr the probability of trajectories to converge to factors tends to 1, when N increases. And

conversely for α > αcr it tends to zero. Thus αcr corresponds to sharp transition from retrieval

to nonretrieval conditions for N →∞. As mentioned above for Single-step approximation αcr

is found from the condition m(1) = min.

From the regression model, αcr can be found as αcr = −a2/a4. For data combined in a joint

family αcr = 0.307± 0.006. This value is shown in Fig. 5.8 by the thick dashed line. For p = 0.02

it corresponds to L = 2.17N. The regression model, applied to each of three sets of data sepa-

rately, gives αcr = 0.303±0.005 for C = 20, αcr = 0.307±0.008 for the ordinary Hopfield network.

All these values differ insignificantly. However, they significantly exceed the value αcr = 0.22,

predicted by SS (see Fig. 5.6). Thus for sparse encoding (p = 0.02) the SS approximation

underestimates the size of attraction basins. This is confirmed by the computer simulation

performed for p = 0.02 and min = 0.1 and for p = 0.004, min = 0.1 and 0.3 for the ordinary

Chapter 5. Properties of ANNIA 53

3.0 3.2 3.4 3.6 3.8 4.0

-4

-2

0

2

4

6

8

α=0.32

α=0.28

α=0.24

α=0.2

F

Lg N

Figure 5.8: Transformed probabilities F of trajectories convergence to factors in dependence
on the network size N and informational loading α for C = 1 (○) and C = 20 (●), min = 0.3. Thin
lines correspond to regression model (5.16). The thick dash line corresponds to the critical

value of informational loading αcr = 0.303.

Hopfield network. The obtained estimations are also shown in Fig. 5.6. When α is smaller

than αcr predicted by SS, then m(t) increases monotonically according to SS assumption. But

when α is larger than αcr predicted by SS but smaller than αcr obtained experimentally, then

m(t) changes non-monotonically: trajectories move away from the recalled factors at the first

step but then return and terminate in their vicinities.

5.4 Probability of true trials during random searches

The dominance of spurious attractors that prevents activation of true attractors could disturb

the ability of the method to reveal factors. There are two reasons why spurious attractors come

to dominate when L increases: firstly, due to the increase of their Lyapunov function, and

secondly, due to the increase of their number. It is well known (see, for example, [4, 6]) that

the Lyapunov function of spurious attractors increases when relative loading L/N increases,

and the number of spurious attractors increases exponentially when network size N increases.

Thus one can expect the existence of two limits that restrict the network’s ability to search for

factors. One relates to the critical relative loading L/N and the other to the critical network

size N under the fixed relative loading.

To find the first limit the values of the Lyapunov function for spurious attractors λsp depend-

ing on L/N when N → ∞ were estimated. The values of λsp obtained by averaging across

10,000 spurious trials and normalized by mean values of the Lyapunov function over true

Chapter 5. Properties of ANNIA 54

0.0000 0.0002 0.0004
0.4

0.6

0.8

1.0

λ
tr

L=0.7N

L=1.1N

L=1.4N

L=1.8N

L=2.1N

L=0.5N

L=2.5N

L=3.5N

λ
sp

1/N

Figure 5.9: Lyapunov functions of spurious attractors normalized by mean values of this
function over true attractors at the point r = p in dependence on L/N and 1/N for C = 1.
Each point was obtained as the average from over 10,000 trials. Experimental points are

approximated by straight lines.

attractors λtr are shown in Fig. 5.9 for r = p and C = 1. For each L/N ratio, experimental

points were approximated by a linear regression function depending on 1/N. The regression

intercept was treated as estimations of the ratio λsp/λtr for N → ∞ under fixed L/N. The

estimates obtained for C = 1, C = 10 and C = 20 are presented in Fig. 5.10. The Lyapunov

function of spurious attractors reaches the Lyapunov function of true attractors at L ≃ 2.8N.

Thus, the critical loading, L1, when spurious attractors become dominant due to their large

Lyapunov function, is approximately L1 = 2.8N. This value is slightly higher than the critical

number of factors αcrN/h(p) = 2.17N obtained in Section 5.3.2.

To estimate the second limit the probability of transitions from spurious to true trajectories

along the recall process were analyzed. As shown in Fig. 4.1(a), initially, when r = rin most

trajectories start as spurious but many of them transform into true ones. Transitions from

spurious to true trajectories may occur at any point during the recall process and the prob-

ability Pspur that the trajectory is spurious monotonically decreases when r increases. As an

example, probability Pspur dependent on r and N is shown in Fig. 5.11 for L = 0.7N. Each

point in Fig. 5.11 was obtained from 10,000 trials. It quickly drops when network size N is

relatively small and remains high for large N. Thus, when network size is relatively small

most trajectories become true during the recall process and can be used for factor recognition.

However, when network size increases considerably almost all trajectories are spurious and

the recall procedure becomes incapable of factor searches.

Chapter 5. Properties of ANNIA 55

0 1 2 3 4
0.4

0.6

0.8

1.0

1.2

λ
tr

λ
sp

L/N

Figure 5.10: Lyapunov functions of spurious attractors for r = p normalized by mean values
of this function over true attractors at the point r = p. ▽ - an ordinary Hopfield-like network
(C = 1), ⋆ - C = 10, ○ - C = 20. Thin solid line - B-Spline approximation of experimental points.

The horizontal line gives the mean Lyapunov function value for true attractors.

Figure 5.12 demonstrates the probability of transition from spurious to true attractor Ptrans

dependent on r and N. Probability Ptrans was calculated as:

Ptrans = (Pspur(k)− Pspur(k + 1))/Pspur(k)
It has the maximum around r = 0.01. As shown in Fig. 4.1(a), the apex point corresponds ap-

proximately to the point where the values of Lyapunov functions for true trajectories become

markedly higher than those for spurious trajectories and, thus, true attractors become more

attractive. For r > 0.01, ln Ptrans linearly decreases when r increases. The slope of this decrease

appeared to be independent of N. However overall, Ptrans decreases when N increases. This

dependence of Ptrans on r and N can be represented by the following regression model:

ln Ptrans = −aN − br. (5.17)

For the example shown in Fig. 5.12 the parameters of the regression model were estimated as

a = (6.2± 0.1) ⋅ 10−4 and b = 82± 5.

For sufficiently large N when r can be considered as a continuous variable, probability Pspur

has the form:

Pspur(r) = exp(−N∫
r

rin

Ptrans(x)dx).

Chapter 5. Properties of ANNIA 56

0.00 0.01 0.02 0.03

-4

-2

0

N = 7000

N = 5000

N = 4000

N = 3000

N = 2000

lnPspur

r

Figure 5.11: Probability Pspur dependent on r and N for C = 1, L = 0.7N. Pspur(r) is the
probability that a trajectory remains spurious until given r. Each experimental point was
obtained from over 10,000 trials of computer simulation. Solid lines are approximations of

experimental data by the formula (5.18).

Then according to (5.17) Pspur can be estimated as

Pspur(r) = exp[−N

b
exp(−aN)(exp(−brin)− exp(−br)))]. (5.18)

Figure 5.11 demonstrates the accuracy of the used approximation. It is less accurate for

smaller N due to the effect of the discontinuity of r during the trials.

Coefficient a in regression model (5.17) happened to be proportional to L/N and was pre-

sented as: a = c1L/N, while coefficient b could be presented as b = c2 + c3L/N. Thus as a

whole, the dependence of Ptrans on L, N and r could be presented as

ln Ptrans = −c1L − c2r − c3rL/N. (5.19)

Coefficients ci were found as the best fit over the whole set of tested network parameters:

L/N = 0.5, 0.7, 1, 1.4 and N = 2, 000, 3, 000, 4, 000, 5, 000, 7, 000. Each value Ptrans was calculated

over 10,000 trials. Coefficients ci for C = 1 were estimated as c1 = (8.8± 0.1) ⋅ 10−4, c2 = 25.5± 3

and c3 = 80 ± 2 while for C = 20 they are c1 = (9.6 ± 0.6) ⋅ 10−4, c2 = 690 ± 30 and c3 = 254 ± 18

and for C = 10 they are c1 = (9.0 ± 0.4) ⋅ 10−4, c2 = 680 ± 20 and c3 = 367 ± 14. According

to (5.18) the probability that a trial finally happened to be true, i.e. 1 − Pspur(rfin), mainly

depends on the term aN − ln(N/b) = c1L − ln(N/(c2 + c3L/N)). The probability is relatively

high when this term is small. Thus the probability of true trials is relatively high when

Chapter 5. Properties of ANNIA 57

0.00 0.01 0.02 0.03
-8

-6

-4

-2

N = 7000

N = 5000

N = 4000

N = 3000

N = 2000

lnPtrans

r

Figure 5.12: Probability of transition Ptrans from spurious to true attractor dependent on r
and N for C = 1, L = 0.7N. Each experimental point was obtained from over 10,000 trials
of computer simulation. Solid lines are approximations of experimental data by the formula

5.17.

L < ln(N/(c2 + c3L/N))/c1 and it drops to zero when this condition is no longer fulfilled. For

large N this condition is satisfied for small loading L/N. In this case one can ignore the

term c3L/N comparing with c2 and rewrite this condition as L < L2 ≃ ln(N/c2)/c1. Thus for

large N the probability of true trials is relatively high when L < L2 ≃ ln(N/c2)/c1. For C = 1

L2 ≃ 103 ln(0.04 N), for C = 10 and C = 20 L2 ≃ 103 ln(0.0014 N). The random search of factors

is possible when L satisfies both conditions L < L1 and L < L2.

5.5 Hebbian unlearning of found factors

Even in the case when the probability of true trials is rather high, the search of all factors

could be impossible due to the dominance of some of them. Figure 5.13(a) illustrates this

statement: the thin line shows the number of found different factors dependent on the number

of trials for N = 3, 000, L = 1.4N, C = 1. According to (5.18) for these network parameters the

probability of a true trial amounts to around 0.1. Initially the number of new found factors

increases proportionally to the number of trials with a proportionality coefficient equal to the

probability of true trials (i.e., 0.1). However later the search of new factors becomes slower

because all trajectories are attracted by the fraction 0.14 of all factors. The same slowdown of

the search of new factors was observed for C = 20 (Fig. 5.13(b)).

Chapter 5. Properties of ANNIA 58

0 5000 10000
0.0

0.5

1.0

trials

(a)

0 2000 4000 6000 8000 10000 12000 14000 16000
0.0

0.5

1.0

trials

(b)

Figure 5.13: Normalized Lyapunov function (points) and the portion of found factors (lines)
dependent on the number of recall trials for N = 3, 000, L = 1.4N and C = 1 (a) and C = 20 (b).
◇ - true attractors, ○ - spurious attractors. The thick and thin solid lines are rates of found

factors obtained with and without unlearning, respectively.

This difficulty can be easily overcome by Hebbian unlearning when attractors which appeared

during the recall process are deleted from the network memory. The deletion was performed

according to the Hebbian unlearning rule by subtracting ∆Jij from synaptic connections Jij

where

∆Jij = J[(xi(t)− r)(xj(t + 1)− r)+ (xi(t + 1)− r)(xj(t)− r)], j ≠ i (5.20)

x(t) and x(t+ 1) are successive patterns of network activity in the attractors, and J = λ/rN is a

mean weight of synaptic connections between neurons of the factor. The unlearning ensures

that both the point attractors when x(t+1) = x(t) and also the cyclic attractors are suppressed.

Figure 5.13 shows the effect of unlearning (thick line). The points are values of Lyapunov

functions obtained for r = p normalized by mean values of this function over true attractors

found without unlearning. Points with high and low values of normalized Lyapunov function

correspond to true and spurious attractors. Values of normalized Lyapunov functions are

shown only for the recall with unlearning. In the recall without unlearning, the distribution

of experimental points does not depend on the number of trials and corresponds to the initial

stage of the recall with unlearning. Initially the rate of true attractors in unlearning cases is

the same as that in cases without unlearning. However soon the rate of the search of new

factors speeds up. This process is accompanied by the decrease of Lyapunov functions for

both true and spurious attractors. For true attractors it decreases because of the elimination of

factors with high Lyapunov function values. For spurious attractors it decreases because the

elimination of factors is equivalent to the network unloading (i.e., the reduction of the number

of factors), and as shown in Fig. 5.10, the Lyapunov function values for spurious attractors

Chapter 5. Properties of ANNIA 59

monotonically decreases when the number of factors L reduces. Since Lyapunov function

values decrease faster for spurious attractors, the rate of true attractors increases and at the

final stage of the recall process the probability of spurious attractors falls to zero and each

trial results in the retrieval of a new factor. Only about 11,000 trials for C = 1 and about 16,000

trials for C = 20 are required to reveal all 4,200 factors. When almost all factors are found the

probability of spurious trials increases again, but with very small Lyapunov function values.

Chapter 6

Application of hybrid ANNIA and

likelihood maximization method

We assume that expression (2.4) defining the BFA generative model provides a rather general

form of binary signal representation. For example, for textual data, a factor is some topic

characterized by keywords related to factor loadings, and each factor score is defined by

whether a given document is dedicated to the topic. Though each topic is represented by a

set of keywords, there are no or few documents containing the whole set. Factor distortion

means the absence of some keywords from a topic keyword list in a given document dedicated

to the topic. Each specific factor relates to each individual word. It is characterized by

the probability of the related word to be present in the document independently of topics.

Another example of a real-world BFA application is the role mining problem [22]. This task

requires to infer a user-role assignment matrix as a matrix of factor loadings F and a role-

permission assignment matrix as a matrix of factor scores S from a Boolean user-permission

assignment matrix X defining an access-control system.

In this chapter we present several examples of application of LANNIA to real world binary

datasets that are supposed to comply with BFA generative model. For all presented examples

this assumption seems to be justified because revealed factors can be interpreted and informa-

tion gain for LANNIA results is rather high. In order to compare LANNIA with state-of-art

methods, in some examples, we applied BFA related methods described in Chapter 3 to the

same datasets.

60

Chapter 6. Application of LANNIA 61

6.1 Comparison of LANNIA with other methods in solving the bars

problem

The Bars Problem (BP) introduced by Foldiak [20] and described in Section 2.4 is a common

benchmark to reveal strengths and weaknesses of BFA methods. In this section, the efficiency

of LANNIA is compared with four other BFA related methods in solving BP. Some of them

were supposed [71, 87] to be the most efficient for BFA, at least for solving the bars problem.

The first method, described in Section 3.2.3, is the Dendritic Inhibition (DI) neural network.

The second one, described in Section 3.3.2, is the Maximal Causes Analysis restricted to

the case when each pattern of the dataset contains not more than three factors (MCA3). The

third method is Expectation-Maximization Binary Factor Analysis (EMBFA), described in Sec-

tion 3.3.1. The fourth method is fast Boolean Matrix Factorization based on Formal Concept

Analysis (BMFCA), described in Section 3.1.2. The last one is the special version of LANNIA

in which LM procedure is replaced by simple bayesian classifier, described in Section 4.4. The

efficiency of LANNIA was also compared with Boolean matrix factorization for noisy datasets

[70] and with other methods in [23, 36, 58–60, 76, 84, 85].

The results of BFA methods are also compared with the right bars problem solution when

all bars are revealed in all tested images. The comparison is performed in terms of informa-

tion gain. In experiments presented below each value of information gain was obtained by

averaging results of analyzes over 50 datasets, each containing M bars problem images.

For EMBFA, DI and MCA3, the number of desired factors has to be set in advance. In the

experiments presented below, as in [41, 71, 87], the predefined number of desired factors was

taken twice higher than the actual number of factors. In the computer experiments involving

DI and MCA3 we used the parameters recommended in the original papers [71, 87]. LANNIA,

BANNIA, BMFCA and EMBFA are free of any parameters.

In addition to testing the methods on the bars problem in its original formulation in Sec-

tion 6.1.1, the following versions of the problem were used for comparison of the methods:

strongly overlapping bars (Section 6.1.2), in the presence of noise that was assumed to be dis-

tributed uniformly over signal components and factors (Section 6.1.2), and with the increased

mean number of bars mixed in images (Section 6.1.4).

As it follows from the experiments described below, only LANNIA provides almost the right

bars problem solution for all analyzed bars problem tasks. It is least sensitive to noise in

data, to the number of factors mixed in each observation and to the insufficient number of

observations (decrease of M) in the dataset. BMFCA is perfect only in the absence of noise

in factors, then it is insensitive to decrease of dataset size and to specific noise. However,

it loses to other methods in the presence of noise in the form of factor distortion. On the

Chapter 6. Application of LANNIA 62

contrary, MCA3 is insensitive to factor distortion but very sensitive to specific noise. MCA3 is

also unable to reveal factors when the number of factors mixed in the pattern of the dataset

C > 3. DI is moderately sensitive to noise of both kinds but very sensitive to signal complexity

C. When C increases, the method becomes unstable in the sense that its operation strongly

depends on the realization of the initial synaptic weights of the basic network. For one

set of initial weights, DI may converge to true factors, while for another, it converges to a

random solution. The EMBFA method exhibits a low sensitivity to noise of both kinds but is

moderately sensitive to signal complexity C. BANNIA is only sensitive to a ratio of number

of observations M in the dataset to the number of attributes N. If M < αN, observations of the

dataset create individual attractors of ANNIA dynamics which can dominate over attractors

created by factors preventing the search of factors. Coefficient α is estimated in Section 5.4.

LANNIA is able to overcome this problem by means of highly-accurate unlearning of factors

revealed first, but BANNIA does not.

6.1.1 Standard bars problem

The bars problem in its original formulation is described in Section 2.4. The dependence

of the information gain G on the number of observations M in a dataset for the standard

bars problem is shown in Fig. 6.1(a). LANNIA and BMFCA provide an exact solution of the

bars problem. When the number of observations of the dataset becomes larger (M ≥ 300),

BANNIA also provides an exact solution. For sufficiently large M, DI and MCA3 precisely

reveal all true factors.In spite of the fact that all true factors were found, the information gains

obtained by both methods are less than the information gain of right solution. The reason

for the decrease in G is the omission of some factor scores. For DI, the fraction of missing

scores was 2.3%, and for MCA3 and EMBFA it was about 10%. Recall that both EMBFA and

MCA3 are restricted to the case that not more than three factors are mixed in an observation.

In the case when each observation contains exactly two randomly chosen bars both methods

provide the right solution [35].

6.1.2 Sensitivity to factor overlapping

The sensitivity of the methods to strong factor overlapping is tested on the version of bars

problem when each of 16 factors is a double bar overlapping with two other factors by half

of its pixels as shown in Fig. 6.2(A). As for the case of single pixel bars, the probability of a

factor’s appearance in the dataset is πi = 1/8 for all factors (Fig. 6.2(B)).

As shown in Fig. 6.1(b), BANNIA is the most sensitive to factor overlapping. The reason is that

after excluding a found factor from the network, ANNIA is unable to find factors strongly

Chapter 6. Application of LANNIA 63

0 200 400 600 800

0.0

0.2

0.4

0.6

0.8

G

M

(a)

0 200 400 600 800

0.0

0.2

0.4

0.6

0.8

G

M

(b)

Figure 6.1: Information gain G for the six BFA methods in dependence on number of obser-
vations M in dataset. Noise is absent (qj = 0, pij = fij), (a) – standard BP problem, (b) – factors

are double bars. ◯ – LANNIA, u – BANNIA, ☆ – BMFCA,△ – EMBFA, ◻ – DI, F – MCA3.
Thick line – right solution.

Figure 6.2: A Sixteen vertical and horizontal double bars. B Examples of images in double
bars problem. Each image contains two bars on average. C Factors found by BMFCA in
double bars problem. D Examples of patterns in double bars problem where DI is unable to

reveal any factors.

overlapping with it. LANNIA partially overcomes this problem because of the modified

unlearning rule. BMFCA loses its high performance because the greedy algorithm identifies

as factors single pixel bars that are actually just fragments of factors (Fig. 6.2(C)). DI loses

to other methods because it misses some factor score. In contrast to the case of single pixel

bars, DI found only 62% of the true scores. Examples of dataset patterns where DI is unable

Chapter 6. Application of LANNIA 64

to reveal any factors are shown in Fig. 6.2(D). All such patterns contain a mixture of three or

more double bars. In this case the high activity at the input layer of the DI network suppresses

activity at the output layer because of the strong competition between its neurons. MCA3 and

EMBFA happened to be not sensitive to factor overlapping.

6.1.3 Sensitivity to noise

Figure 6.3 demonstrates the sensitivity of BFA methods to noise in solving the standard BP.

The noise was assumed to be distributed uniformly over observation components and factors

so that qj = q for any j, and pij = p fij for any i and j. This means that pixels constituting a

bar can take 0 with the equal probabilities 1− p and any pixel can take 1 with the probability

q due to related specific factor. The methods were tested using datasets containing M = 800

observations. As shown in Fig. 6.1, in the absence of noise the information gain G reach

saturation at that particular M. The saturation is reached for M = 800 in the presence of noise

also.

As shown in Fig. 6.3(a), LANNIA, BANNIA and BMFCA provide almost the right BP solu-

tion independent of the noise produced by specific factors. The information gains G obtained

by EMBFA is less than the information gain of right solution due to omission of some factor

scores (see Sec. 6.1.1), but EMBFA is insensitive to specific noise too. MCA3 and DI demon-

strate strong sensitivity to specific factors. For DI, an increase in q results in a decrease in G,

because the number of found true factors decreases. For MCA3, G drops near to zero when q

increases to 0.2. In this case, the solution of the bars problem by MCA3 becomes unstable, that

is, it drastically depends on the peculiarities of the dataset or on the choice of initial parame-

ters for the EM procedure. With one random realization of the dataset, MCA3 may provide a

perfect solution (in our experiments after approximately 300 steps of the EM procedure), but

with another random realization chosen from the same distribution, the procedure converges

to some random images as factors (in just 3–5 steps). For q = 0.2, a successful search for bars

by MCA3 was observed only in two out of 50 trials. Thus, the standard deviation for this

method amounted to 5 ⋅ 10−2.

As shown in Fig. 6.3(b), BMFCA happened to be the most sensitive to noise in the form of

factor distortion. In this case, BMFCA is able to find only fragments of factors. The number

of all factors extracted by BMFCA as a multitude of bar fragments rapidly increases with

decreasing p. This results in a gain drop. DI exhibits similar sensitivity to factor distortion

as to specific noise, while MCA3 is only slightly sensitive to this kind of noise. The reason is

that factor distortion is a part of the MCA3 generative model. The information gain is smaller

than that for right solution only due to missing scores in observations containing mixture of

more than three bars. LANNIA, BANNIA and EMBFA provide almost the right BP solution.

Chapter 6. Application of LANNIA 65

0.0 0.1 0.2 0.3

0.0

0.2

0.4

0.6

0.8

G

q

(a)

0.0 0.1 0.2 0.3 0.4

0.0

0.2

0.4

0.6

0.8

=0q

q=0.2

G

1-p

(b)

Figure 6.3: Information gain G for the six BFA methods in dependence on q for p = 1 (a) and
on p for q = 0 and q = 0.2. ◯ – LANNIA, u – BANNIA, ☆ – BMFCA,△ – EMBFA, ◻ – DI,

F – MCA3. Thick line – right solution.

Fig. 6.3(b) also demonstrates the sensitivity of the BFA methods to both kinds of noise applied

simultaneously (q = 0.2, p < 1). For such noise, MCA3 is not able to reveal any proper

factor (thus, its gain is not depicted in Fig. 6.3(b)). DI provides considerably smaller G than

that provided by the right solution. LANNIA, BANNIA and EMBFA provide much better

solutions and the information gain G obtained by these methods is again close to that for the

right solution.

Some patterns of the dataset for q = 0.2 and p = 0.7 are shown in Fig. 6.4(A) as examples. As

shown in Fig. 6.3(b), for this level of noise information gain provided by the BFA solutions

is close to zero and the factor structure of data is actually invisible. Nevertheless, factors

extracted by LANNIA from this dataset almost coincide with bars. For the found solution

information gain is even higher than for the right solution. This is a frequent case for the

solutions found by LM for dataset, containing a relatively small number of very noisy obser-

vations.

LANNIA is also almost insensitive to not homogeneous noise. For example, when 4 pixels of

each bar are not distorted by noise (pij = 1) and 4 other pixels are flopped to zero due to noise

with probability 0.7 (pij = 0.3), LANNIA provides the solution with G = 0.57, which is close

to the value G = 0.59 provided by the right solution. Such a kind of factor distortion when

different factor’s attributes have different probabilities pij of appearance in observations of

dataset containing the factor is most critical for BANNIA performance because the unlearning

rule (4.14) used in BANNIA, in contrast to the rule (4.13) used in LANNIA, does not take this

possibility into account. Actually, BANNIA provides G = 0.49, which is much smaller than

Chapter 6. Application of LANNIA 66

Figure 6.4: A Examples of noisy images (p = 0.7, q = 0.2). B Factors found by LANNIA
when solving BP with the noisy images (p = 0.7, q = 0.2, M = 800). C and D Factors found
by BMFCA when q = 0.2 and p = 0.9 and p = 0.8, respectively. E Factors found by LANNIA
when pij = 1 for four pixels of each bar and pij = 0.3 for another four pixels. In B and E, the
black pixels correspond to pij = 1, the white pixels correspond to pij = 0, and the gray pixels

correspond to the intermediate values of pij.

that provided by LANNIA. Factors found by LANNIA in one of the trials are shown in

Fig. 6.4(E) as an example. LANNIA found all factors with almost precise pij estimation.

Fig. 6.4(C) and (D) also demonstrate that in the case of noisy factors (p < 1), BMFCA is able to

find only fragments of factors. When p decreases, found factors become increasingly smaller

until they are reduced to individual pixels and information gain drops to zero.

6.1.4 Sensitivity to the mean number of bars mixed in images

To investigate the sensitivity of the BFA methods to the mean number of bars mixed in ob-

servations (encoded by parameter C), the size of the images should be increased in order to

provide sparse coding of signals. The increased image size to a grid of 16× 16 pixels allowed

us to study the effects of increasing C up to C = 10. Only noiseless case is considered here (i.e.,

pij = fij, qj = 0). The methods were tested using datasets containing M = 800 observations.

LANNIA, BANNIA and BMFCA appeared absolutely insensitive to increasing C and pro-

vided almost the right solution of the bars problem even for C = 10 (Fig. 6.5). DI performance

gets worse with increasing C. The reason is the loss of solution stability similar to the case of

MCA3, described above in Sec. 6.1.3. When the number of active neurons at the input of the

DI network becomes relatively large due to large C, DI fails in finding the proper factors.

Chapter 6. Application of LANNIA 67

2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

G

C

Figure 6.5: Information gain G vs C for 16-by-16 pixel images at M = 800. ◯ – LANNIA,

u – BANNIA, ☆ – BMFCA,△ – EMBFA, ◻ – DI,F – MCA3. Thick line – right solution.

Since MCA3 and EMBFA are both restricted to the case of sparse scores (C ≤ 3), one would

expect that those methods are most sensitive to an increase of C. This expectation proved

to be true for MCA3: it failed in finding the proper factors for C ≥ 4. However, EMBFA

amazingly gives reasonable results even for C = 8, although not quite right. The reason is the

EMBFA ability to treat some redundant bars as noise when the number of bars mixed in the

observation exceeds three [35].

6.1.5 Computational complexity of the BFA methods

The computational complexity is estimated in the limit of large M, L, and N. In this limit,

the number of operations for BMF is proportional to ΩBMF = MLN2⟨n f ⟩⟨pj⟩, where ⟨n f ⟩
is the mean number of ones in the factors and ⟨pj⟩ is the mean probability of each signal

component’s being one in the dataset. For a PC Core2 6400, 2.13 GHz, the execution time of

one operation in seconds amounts to about 10−11. For all methods, this time was estimated

by dividing the total execution time by Ω when M, L, and N were sufficiently large so that

their doubling resulted in a 5% change in the estimated value.

The number of operations for DI in one iteration step is approximately proportional to ΩDI =(2L)MN⟨pj⟩ and the execution time for one step amounts to about 10−7
ΩDI . Usually about

15–20 steps are required.

The number of operations required for one iteration step of EMBFA, according to formulas

(3.6) and (3.10), is proportional to ΩEM = MN(2L)3⟨pj⟩ and the execution time for one step

Chapter 6. Application of LANNIA 68

amounts to 5 ⋅ 10−9
ΩEM. For EMBFA the mean number of iteration steps until convergence is

about 100. Thus to evaluate the total execution time one must multiply the execution time for

one step by a factor of 100.

The number of operations required for one iteration step of MCA3 is the same as for EM-

BFA. However, the mean time of one operation is approximately twice as high as that for

EMBFA, and the mean number of iteration steps until convergence is about 300. Thus, the

total execution time for MCA3 is six times higher than for EMBFA.

The execution time required for ANNIA is composed of two times. The first time T1 is

required to create connection matrix. In the limit of large M, L and N, T1 ≃ 10−9MN2. The

second time is required to find factors: T2 ≃ 10−8LN⟨n f ⟩2. For LANNIA additional time

T3 ≃ 10−7ML⟨n f ⟩ is required to perform the procedure of likelihood maximization. Thus, the

execution time for one cycle of LANNIA amounts to about ΩLANNIA = T1 + T2 + T3. Usually

about 2–10 cycles are required for convergence of the whole algorithm.

For the bars problem n f =
√

N, L = 2
√

N, and in the absence of noise ⟨pj⟩ ≃ C/√N. As a whole,

to perform BFA for a dataset of 3200 images of 64 by 64 pixels, containing two undistorted

bars, about 460 sec is required for BMF, 110 sec for DI, 240 hours for MCA3, 40 hours for

EMBFA, and about 300 sec for LANNIA.

6.2 Application to text datasets

Due to the proliferation of information in textual databases, and especially, on the Internet,

the issue of minimization of the search space with the proper selection of a keyword list

becomes more and more important. Unsupervised word clustering (providing a kind of

thesaurus) is a standard approach to perform this task [48]. Based only on the words statistics,

it allows the overcoming of the diversity of synonyms used by authors of different expertise

and background. The challenge is to treat this problem with the Boolean factor analysis.

We supposed that each textual document of the dataset is presented as a binary vector of the

dimension of the used term dictionary. Each component of the vector is 1 or 0 depending

on the presence or absence of the corresponding term in the document. Like many others

since the paper [91], we hypothesize that each topic is characterized by a specific set of terms

(keywords) which appear in an article on the topic. Following [19] we call this set as a concept.

The coherent appearance of the terms of the concept in the article constitutes evidence that

the article is dedicated to the corresponding topic.

In the frame of Boolean factor analysis, each concept represents a factor, factor loading is

1 or 0 depending on whether the term belongs to the concept, and factor score is also 1

Chapter 6. Application of LANNIA 69

or 0 depending on whether the article belongs to the topic. The identification of factors is

equivalent to the automatic extraction of topics keywords. It is supposed that concepts occur

in documents independently of each other. Though each topic is represented by a set of

keywords, there are no or few documents containing the whole set. Factor distortion means

the absence of some keywords in the document dedicated to the topic. Each specific factor

relates to each individual word to be present in the document independent of topics. One

can expect that, first, factors are distorted inhomogeneously, that is pij ≠ p fij, and, second,

that all words are distributed in the documents with different probabilities, that is qj ≠ q. The

examples of application of BFA to text datasets can be found in [1, 31–34, 45, 51, 53, 55, 56, 61,

81].

6.2.1 Analysis of the proceedings of the IJCNN and Neuroinformatics conferences

As a source for textual databases we used the papers published in the proceedings of the

IJCNN conferences held in 2003 and 2004, and in the proceedings of the Russian conference

on Neuroinformatics held in 2004 and 2005. The sizes of the considered databases amounted

to M = 1042 and M = 189 articles, respectively. After stop-words and rare words filtering,

i.e., those that appeared in less than in 3 percent of the articles, the sizes of the dictionaries

were N = 3044 and N = 1716 words. The article length, i.e., the number of different words

used, varied from 14 to 573 (mean 280, mean 847 before filtering) in English articles, and

from 16 to 514 (mean 184, mean 312 before filtering) in Russian articles. The documents were

represented as vectors, see e.g. [15].

Databases of international and Russian conferences were analyzed separately. We are in-

terested in comparing the sets of topics of different conferences and the contents of similar

concepts. In the present case, this task seems to be rather difficult a priori because all the top-

ics of the conferences belong to one narrow domain “Neural Networks” and it is well known

that keyword extraction for topics of a narrow domain is one of most difficult tasks in text

analysis [3].

The changes of the Lyapunov function along 12 trajectories of the network dynamics are

shown in Fig. 6.6(a) for the IJCNN database (further designated as IJCNN). Only these 12

different trajectories were obtained in 200 trials of ANNIA. The recall was performed without

Hebbian unlearning but we believe that the search is exhaustive because a further run of 200

trials did not add new trajectories to those shown in Fig. 6.6(a). The values of hmax in (4.9)

ranged from 45 to 59. Since the values of the Lyapunov function for the shown trajectories

exceeded hmax we suppose that all these trajectories are not spurious.

The twelve factors that correspond to the peaks of R′ along these trajectories are marked

in Fig. 6.6(a) by points. The factor with the highest value of the Lyapunov function (i.e.,

Chapter 6. Application of LANNIA 70

0.004 0.006 0.008 0.010 0.012 0.014

100

200

8

7

2

1

3

4

5 6

9, 10, 11, 12

λ

r

(a)

0.006 0.008 0.010 0.012 0.014

50

100

12

11 10

7

98

6
4

5
3

2

1

λ

r

(b)

Figure 6.6: The Lyapunov function dependent on the relative network activity r for textual
databases IJCNN (a) and Neuroinformatics (b). The points on the curves are factors found by

the peaks of R′.

with the most powerful attractor) contains 33 words. Ten of them are presented in Table 6.1.

By the specificity of words the factor could be easily recognized as corresponding to the

topic “Neurobiology”. The articles belonging to this topic were found by the procedure

presented in Section 4.4. The properties of the other 11 factors are also shown in Table 6.1.

The significance of a given word for a given topic was calculated by Kullback divergence

v = p ln(p/q)+ (1− p) ln((1− p)/(1− q))
which takes into account probabilities p and q that the word appears in articles, respectively,

belonging and not belonging to the topic. We related other factors to the topics: 2) Classifica-

tion, 3) Optimization, 4) Probability, 5) Hardware, 6) Genetic Algorithms, 7) Image processing,

8) Multilayer networks, 9) Dynamic stability, 10) Self-organizing mapping, 11) Source sepa-

ration. The twelfth factor looks strange. It contains abbreviations “Fig.N” printed without

space and “IEEE Trans”. We revealed that this factor was created due to the fact that articles

from 2003 contained the misprint “Fig.N” without space two times more frequently than arti-

cles from 2004. The term “IEEE Trans” was bound with terms “Fig.N” due to the fact that the

PDF-format for articles from 2003, in contrast to 2004, included the printing of “IEEE Trans” at

the end of each page. The appearance of this factor stressed the fact that the method is based

on pure statistics, however, the statistics correspond to the nature of the textual database:

articles on the same topic tend to contain the same set of words. That is why all other topics

are quite reasonable. The last factor was excluded from further consideration because it is

meaningless.

Chapter 6. Application of LANNIA 71

Factor
length

Related
articles

Top words

1 33 203 cortex (3.0), excitatory (1.7), inhibitory (1.7), stimulus (1.3), spike (1.2), synapse (0.9),
brain (0.9), neuronal (0.9), sensory (0.6), cell (0.5)

2 42 299 classifier (1.1), support vector machines (0.7), hyperplane (0.7), svms (0.5), valida-
tion (0.5), database (0.4), label (0.4), repository (0.4), machine learning (0.3), margin
(0.3)

3 21 333 gradient (0.9), descent (0.7), convergence (0.7), approximate (0.5), guarantee (0.4),
derivative (0.4), formulate (0.3), iteration (0.3), cost (0.3), satisfy (0.3)

4 19 183 estimation (0.7), observed (0.7), density (0.6), variance (0.6), gaussian (0.5), mix-
ture (0.4), statistical (0.4), assumption (0.3), likelihood (0.3), probability (0.2)

5 21 100 vlsi (2.6), voltage (1.7), circuit (1.7), gate (1.6), transistor (1.5), cmos (1.1), hard-
ware (1.1), block (0.9), chip (0.8), clock (0.6)

6 22 75 mutation (4.0), crossover (3.5), chromosome (3.1), fitness (2.8), genetic (2.7), popula-
tion (2.2), evolutionary (1.6), generation (1.4), parent (1.1), selection (1.0)

7 14 233 pixel (2.6), image (1.9), camera (0.5), color (0.5), object (0.5), recognize (0.4), extrac-
tion (0.4), eye (0.4), vision (0.3), horizontal (0.2), vertical (0.2)

8 15 450 multilayer (1.0), hidden (1.0), perceptron (0.5), approximation (0.4), testing (0.4),
backpropagation (0.3), estimation (0.3), validation (0.3), epochs (0.3), regression (0.2)

9 12 159 inequality (1.1), guarantee (1.1), proof (1.1), theorem (0.8), stability (0.7), con-
straint (0.7), bound (0.5), convergence (0.4), satisfy (0.4), derivative (0.4)

10 13 199 self-organizing maps (1.3), som (1.0), cluster (0.8), winner (0.7), unsupervised (0.5),
neighborhood (0.5), euclidean (0.4), competitive (0.4), dimension (0.2), group (0.2)

11 12 62 independent component analysis (3.7), blind (3.4), mixing (2.3), bss (2.1), sepa-
ration (2.0), source (1.7), mixture (1.6), independent (0.9), signal processing (0.6),
speech (0.3)

12 12 102 fig.4 (3.3), fig.3 (3.0), fig.5 (2.8), fig.6 (2.1), fig.7 (1.9), fig.2 (1.8), fig.1 (1.4), fig.8 (1.2),
fig.9 (1.1), ieee trans (0.2)

Table 6.1: Ten top significant terms for factors found in the IJCNN database. Significance of
the terms for the factors is in brackets.

Table 6.1 demonstrates that the largest portion of the articles is related to the topic “Multi-

layer networks”. However, the Lyapunov function of the corresponding factor is rather small.

Obviously this results from the fact that the specificity of its words was relatively small. One

can compare the significance of the first word of this factor with that of the factor “Neurobi-

ology”, whose attractor dominates in spite of a two times smaller number of articles on this

topic.

On average one article contains 2.2 factors. The distribution of articles over factors they

contained is shown in Fig. 6.7. All possible combinations of factors were not uniformly dis-

tributed over the set of articles. Most of their combinations did not appear at all. There

were only 150 combinations of factors from the total set of 2048 possible ones. The factors’

affinity (in the sense of their joint appearance in articles) could be revealed by the analysis

of transitions between the trajectories of network dynamics in Fig. 6.6(a). For example, most

transitions were observed from the trajectories “Image processing” and “Hardware” to the

trajectory “Neurobiology”. It results from the fact that there were many articles containing

Chapter 6. Application of LANNIA 72

0 1 2 3 4 5 6 7 8 9 10
0

100

200

300

Number of factors in document

Figure 6.7: Distribution of articles over the number of factors being contained in them. Open
bare - IJCNN, full bars - Neuroinformatics.

together the factors “Image processing” and “Neurobiology” or the factors “Hardware” and

“Neurobiology”. We could see that articles containing together the factors “Neurobiology”

and “Image processing”, were devoted to the problem “Image processing by the visual cor-

tex”, and those containing together the factors “Neurobiology” and “Hardware” were devoted

to the problem “Hardware implementation of natural neural networks”.

The change of the Lyapunov function along the 12 trajectories of the network dynamics is

shown in Fig. 6.6(b) for the Neuroinformatics database (further designated as Neuroinfor-

matics). As for the IJCNN, the trajectories were obtained without local unlearning by running

200 trials. This set of testing trials was exhaustive. The values of hmax ranged from 21 to 36.

Thus we can suppose that all trajectories are not spurious.

As for the IJCNN, in the case of the Neuroinformatics, the factor with the highest value of the

Lyapunov function corresponds to the topic “Neurobiology”. The properties of the other 11

factors are shown in Table 6.2. The words corresponding to the factors are translated in En-

glish. We related the other factors to the topics: 2) Multilayer networks, 3) Image processing,

4) Classification, 5) Optimization, 6) Intellectual systems, 7) Genetic Algorithms, 8) Recurrent

networks, 9) Mathematics, 10) Intellectual agents, 11) Time series, 12) Clustering. On average

one article contained 1.9 factors. The distribution of articles over the number of the factors

being contained in them is shown in Fig. 6.7. The portion of articles containing one or no

factors is larger in the Neuroinformatics collection although the number of factors is higher.

It means that articles and factors in this collection are more specific.

Chapter 6. Application of LANNIA 73

Factor
length

Related
articles

Top words

1 16 41 physiology (2.1), nervous (1.5), excitatory (1.5), synaptical (1.5), inhibititory (1.3),
activation (1.3), membrane (1.1), stimulus (1.1), brain (1.1), cortex (1.1)

2 22 39 optimization (2.6), hidden (2.4), iteration (0.8), backpropagation (0.5), layer
(0.4), minimization (0.4), neural network (0.3), perceptron (0.3), sampling (0.3),
weigth (0.2)

3 18 29 brightness (2.1), orientation (1.4), undertone (1.2), two-dimensional (1.2), image
(1.2), radial (1.1), vision (0.9), uniform (0.9), pixel (0.9), area (0.8)

4 14 32 recognition (2.2), multilayer (1.5), classification (1.3), class (1.2), sampling (1.0), per-
ceptron (0.8), practical (0.6), recommendation (0.5), stage (0.5), member (0.3)

5 13 24 iteration (1.5), convergence (1.1), gradient (1.0), perceptron (1.0), multilayer (0.8),
stop (0.7), optimum (0.7), optimization (0.7), testing (0.5), minimization (0.4)

6 13 26 organisation (0.8), apparatus (0.8), objective laws (0.8), hierarchy (0.7), mecha-
nism (0.6), intellectual (0.5), development (0.5), language (0.4), conception (0.4),
understanding (0.3)

7 12 19 selection (1.6), independent (1.2), stop (1.1), genetic (1.0), population (1.0), sam-
pling (0.9), mutation (0.8), optimization (0.7), criterium (0.6), efficiency (0.3)

8 14 46 vector (0.9), zero (0.8), number (0.6), equal (0.6), associative (0.6), iteration (0.4),
cycle (0.3), perceptron (0.3), rule (0.3), change (0.3)

9 15 30 geometry (1.7), discret (1.7), measurment (1.1), plane (0.7), differenciation (0.7),
form (0.7), physical (0.5), mathematical (0.5), boundary (0.4), integral (0.3)

10 13 24 intelligence (1.4), need (0.9), search (0.8), selection (0.8), presence (0.7), opera-
tion (0.6), mapping (0.6), quality (0.6), probability (0.5), adaptation (0.4)

11 11 38 rule (1.3), statistics (1.3), finance (1.3), vector (0.7), knowledge (0.5), prognosis (0.5),
random (0.5), prediction (0.4), probability (0.3), expectation (0.2)

12 11 15 clustering (1.7), Kohonen (1.7), separation (0.8), distribution (0.3), center (0.2),
noise (0.2), statistics (0.2), partitition (0.2), distance (0.1), selection (0.1)

Table 6.2: The same as in Table 1 but for case of Neuroinformatics database.

As for the IJCNN, the transitions between the trajectories reflect the relations between the

topics. For example, the transitions from trajectories containing factors 8 and 9 to the tra-

jectory containing factor 1 are explained by the wide presence of articles dedicated to the

problems “Computer simulation of biological neural networks” and “Mathematical analysis

of biological neural networks”.

Seven topics in the Neuroinformatics coincide with those in the IJCNN database (namely

Multilayer networks, Image processing, Classification, Optimization, Genetic Algorithms, In-

tellectual agents, Clustering). The topic “Mathematics” is more general than the topic “Prob-

ability” in the IJCNN. The topics “Hardware” and “Dynamic stability” are absent from Neu-

roinformatics, while topics “Intellectual systems”, “Recurrent networks” and “Time series”

are absent from IJCNN. We cannot be sure that the articles on these topics were completely

absent from IJCNN. We only know that their presence was too weak to create the factors. On

the other hand, the presence of the corresponding factors (as attractors of network dynamics)

in Neuroinformatics could be explained by the fact that it contained a much smaller number

Chapter 6. Application of LANNIA 74

of articles and hence factors’ extraction is less reliable. The absence of the topic “Hardware” in

Neuroinformatics could obviously be explained by the bad state of microelectronics in Russia.

Information gain obtained for Neuroinformatics by the method amounted to 0.15, that means

that presentation of these textual data in the BFA model is quite reasonable. It is interesting

that the grouping of the articles across scientific sections produced by Program Committees

provided informational gain of only 0.04.

6.2.2 Analysis of the Reuters R52 dataset of news messages

Dataset R52 (from Reuters 21578) contains 9100 documents, which are labeled as belonging

to 52 topics (classes). Before factor extraction stop words, rare words which appear less than

in 10% of documents, and class labels were removed. As a result, the size of the dictionary

amounted to N = 3340 words.

LANNIA revealed 39 factors within its 4 full cycles alternating ANNIA and LM, providing

information gain G = 0.12. Three factors were found in the first cycle. Two of them had

high intersections with two large classes of R52 labeled “earn” and “acq” containing 43%

and 25% of the whole number of documents. The first factor was completely embedded in

the first of them, with precision and recall amounted to p = 0.94 and r = 0.43. The second

factor intersected with the second class with p = 0.76 and r = 0.62. During the next cycles of

LANNIA these factors were replaced by smaller factors which provide the hidden structure

of the dataset in more details. For example, the combination of particular six of 39 factors

obtained at the last cycle provides intersection with the first class with p = 0.91 and r = 0.92

and the combination of another particular five factors provides intersection with the second

class with p = 0.78 and r = 0.83.

The set of factors obtained at the first and the last LANNIA cycles intersects with all classes

of R52 with micro-averaged F1 score Fmicro
1 = 0.55. If to replace the 6 and 5 factors mentioned

above by their combinations, then Fmicro
1 score increases to Fmicro

1 = 0.72. The mean number

of factors mixed in one text amounts to 2. On average, one factor contains 5.8 words with

pij > 0.3, 1.7 words with pij > 0.5, and only 0.5 words with pij > 0.7. On average qj amounted

to 4.5 ⋅ 10−3. Thus the data are actually rather noisy.

It is interesting that division of R52 into classes made by experts provides smallest information

gain G = 0.09. Note that LANNIA provides multi-assignment clustering of the dataset (for

example, according to LANNIA each document is related to two topics on average) while

experts prescribed each document to a single class. One may expect that multi-assignment

clustering better corresponds to the data hidden structure than division of the dataset by

classes without intersection.

Chapter 6. Application of LANNIA 75

6.3 Application to the Genome dataset analysis

One of the important problems in modern biology is to identify functions of proteins in the

organisms. The extensive experimental studies are required to identify the function of even a

single protein. Therefore, even for well-studied model organisms, the functions of the most

proteins are yet unknown [63]. A fast growing number of organisms with fully sequenced

genomes makes it possible to reveal the protein function by comparing protein phylogenetic

profiles of different organisms. The protein phylogenetic profile is defined as a binary pattern

that encodes by 1 and 0 the presence or the absence of proteins in a given organism with the

fully sequenced genome, respectively [78]. When two proteins show the correlated events

of the presence or absence over the organisms, it is assumed that these proteins are also

functionally correlated. This idea is based on the observation that proteins seldom act as

single isolated species to perform their functions. Usually a set of proteins is involved in each

particular cellular process interacting in performing some function [92]. This leads to the

concept of the modularity which assumes that the genome functionality can be partitioned

into a collection of modules. Each module is a discrete entity of elementary components and

performs an identifiable task, separable from the functions of the other modules [82]. Thus,

revealing sets of proteins which coherently appear in different organisms may facilitate the

search for functional modules in the genome structure. Recently there were many attempts

to reveal the modular structure in Genome datasets by different blind statistical methods

such as cluster analysis, independent component analysis and others (see [63] for review).

Since the concept of the genome functional modularity is completely compatible with the

BFA generative model described here it was a challenge for us to apply LANNIA to reveal

the hidden factor structure in some large Genome dataset [2, 37, 40]. We consider its BFA

analysis only as an example of the LANNIA application to the large real dataset and thus

discuss only formal indexes of its performance such as the number of found factors, their

relation to the protein phylogenetic profiles, and the information gain obtained which shows,

particularly, the relevance of the BFA generative model to the genome data. The analysis of the

factor contents and their relation to the known metabolic pathways is out of our competence

and will not be discussed here.

For the BFA analysis the largest genome database KEGG [62] was used. It contained the

fully sequenced genomes of M = 1368 organisms. The protein phylogenetic profile of each

organism is a binary pattern xm of dimension N = 11451, where N is a whole number of

proteins taken into account (specifically, gene/protein ortholog groups). This number was

obtained after excluding duplicates from the whole set of 14139 gene/protein ortholog groups

of KEGG.

LANNIA revealed 38 factors after four full cycles of the combination of ANNIA and LM

(steps 3–6 of the procedure presented in Section 4.3). Each cycle began by running twenty

Chapter 6. Application of LANNIA 76

0 10 20 30 40 50
0

2000

4000

6000

8000

k

(a)

0 10 20 30 40 50

-20

0

20

40

60

80

R'

k

(b)

Figure 6.8: Lyapunov function λ (a) and function R′ (b) depending on the number of active
neurons k at the first cycle of LANNIA during the analysis of the KEGG dataset. Dashed line

in (a) is a threshold for separating the true and spurious trajectories.

random trajectories in ANNIA. The Lyapunov functions along the eleven true trajectories

at the first cycle of LANNIA are shown in Fig. 6.8(a). The peaks of R′ used for the factor

identification are shown in Fig. 6.8(b). During the first cycle the LM procedure converged

for five steps and excluded two factors of eleven. The information gain provided after each

LM step is shown in Fig. 6.9. At the fifth step it amounts to G = 0.27. At the second full

LANNIA cycle ANNIA revealed fourteen factors. LM converged in four steps, excluding one

factor and providing the gain increase up to G = 0.31 (Fig. 6.9). During the third and fourth

full LANNIA cycles ANNIA revealed thirteen and twelve factors, LM excluded six and three,

respectively. In each of the next cycle of LANNIA the growth of G was lower. During the

fifth cycle the gain decreased and LANNIA was terminated. The maximal gain provided by

LANNIA for the KEGG dataset amounts to 0.32. The relatively high gain obtained shows that,

first, the genome data indeed correspond to the generative BFA model and, second, LANNIA

is the efficient method for finding its parameters. The high information gain is in favor of the

hypothesis of the modular genome structure.

Figure 6.10 demonstrates the distribution of proteins over found factors. We prescribed the

protein j to the factor i if the probability pij exceeded a threshold pth. The distributions are

shown for three thresholds. The factors were ranged according to the decrease of the number

of proteins constituting them for pth = 0.5. On average one factor contains 235 proteins with

pij > 0.9, 407 proteins with pij > 0.7 and 598 proteins with pij > 0.5. The number of proteins

in the factors greatly exceeds the number of proteins in the metabolic pathways described in

KEGG. Thus, it is unlikely that the factors correspond to metabolic pathways. Neither factor

found by ANNIA contains more than 100 proteins. Thus, LM is able to enlarge the set of

Chapter 6. Application of LANNIA 77

1 2 3 4 5 6
0.0

0.1

0.2

0.3

0.4

0.5

 cycle 1 (9 factors)
 cycle 2 (22 factors)
 cycle 3 (29 factors)
 cycle 4 (38 factors)
 cycle 5 (38 factors)

G

Step's number

Figure 6.9: Increase of the information gain at each cycle of LANNIA during the analysis of
the KEGG dataset.

elements constituting a factor comparing with ANNIA significantly. As mentioned above, it

is also able to eliminate some factors found by ANNIA. Thus, the results obtained actually

represent the synergy of both methods.

Figure 6.11 demonstrates the distribution of the factors over the organisms. All the organisms

are grouped in types according to the taxonomy of KEGG from animals to bacteria. The type

of the organisms is depicted by the number on the top of Fig. 6.11. The factors are ranged in

descending order according to the frequencies of their appearance in the dataset. The factor

number one appeared in the most organisms (in 22% of the organisms) and the factor number

38 appeared in the least of them (in 5% of the organisms). For the most factors the frequencies

of their appearance in the organisms are distributed around 0.1. In Fig. 6.11 the appearance of

a given factor in a given organism is marked by the point. Thus, the frequency of appearance

of each factor in the dataset corresponds to the number of points in each horizontal line.

Figure 6.11 demonstrates that each type of the organisms is characterized by the specific set

of factors. For example, animals are characterized by factors 20 and 37, fungi by factor 20,

plants by factors 2, 20 and 37 and so on. Factor 20 was identified only in eukaryotes and

never in prokaryotes. Conversely, factor 1 was identified in all types of prokaryotes but never

in eukaria. Thus, the distribution of factors over the types of organisms seems to reflect some

peculiarities of their functioning. It is interesting that LANNIA revealed only little effect of

specific factors: only 472 proteins over 11451 taken into account have qj exceeding 0.01. Thus,

almost all the organisms are completely described by common factors as predicted by the

modular hypothesis.

Chapter 6. Application of LANNIA 78

0 5 10 15 20 25 30 35
0

500

1000

1500

2000

N
um

be
r o

f f
ac

to
r l

oa
di

ng
s

w
ith

 p
ij >

 p
th

Factor's number

Figure 6.10: Distribution of number of proteins constituting factors found by LANNIA for
three threshold values pth, pth = 0.5 - circles, pth = 0.7 - triangles, pth = 0.9 - crosses. Protein j
was prescribed to factor i if pij > pth. Factors are ranged according to decrease of the number

of proteins for pth = 0.5.

In order to compare LANNIA with other methods, we also applied BANNIA and BMFCA

to KEGG. BANNIA is chosen only to demonstrate the role of LM procedure in LANNIA.

BMFCA is chosen because it was perfect for noiseless data in solving BP (see Fig. 6.1), and the

modular genome structure implies that the level of noise in data is small. Moreover, as shown

in Fig. 6.11, the mean number C of modules mixed in genome of an organism is essentially

larger than two, and BMFCA is happened to be less sensitive to increasing C (see Fig. 6.5).

BANNIA provided the maximal information gain G = 0.35 that was reached for 27 factors.

The obtained gain is much lower than the gain provided by LANNIA. The relatively small

informational gain provided by BANNIA is explained by the fact that it revealed only 7

independent factors and all other found factors happened to be similar to them. This confirms

the result obtained for BP: BANNIA actually fails when the number of observations of the

dataset is relatively small, whereas LANNIA is efficient also in this case.

The maximal information gain G = 0.49 obtained by BMFCA was reached for 84 found fac-

tors. The BMFCA efficiency in KEGG analysis is comparable with the results obtained by

LANNIA.Since, as shown before, BMFCA is very sensitive to factor distortion, in contrast to

LANNIA, one can expect that factors in KEGG dataset are mixed in observations with rela-

tively small distortion. Indeed, according to LANNIA, each factor contains on average 140

proteins with pij = 1 and 235 proteins with pij = 0.9.

Chapter 6. Application of LANNIA 79

0 200 400 600 800 1000 1200
0

5

10

15

20

25

30

35

2924201814121098754321
Fa

ct
or

's
 n

um
be

r

Organism's number

Figure 6.11: Distribution of factors over types of organisms. Eukaryotes: 1 – Animals,
2 – Fungi, 3 – Plants, 4 – Protists; Prokaryotes: 5 – Archaea; Bacteria: 6 – Acidobacteria,
7 – Actinobacteria, 8 – Alphaproteobacteria, 9 – Bacteroidetes, 10 – Betaproteobacteria, 11 –
Chlamydiae, 12 – Cyanobacteria, 13 – Deinococcus-Thermus, 14 – Deltaproteobacteria, 15 –
Elusimicrobia, 16 – Epsilonproteobacteria, 17 – Fibrobacteres, 18 – Firmicutes, 19 – Fusobac-
teria, 20 – Gammaproteobacteria, 21 – Gemmatimonadetes, 22 – Green nonsulfur bacteria,
23 – Green sulfur bacteria, 24 – Hyperthermophilic bacteria, 25 – Other proteobacteria, 26 –
Planctomycetes, 27 – Spirochaetes, 28 – Synergistetes, 29 – Tenericutes, 30 – Verrucomicrobia.

Factors found by all methods happened to be similar. Similarity Sik between factors fi and fk

was estimated by a cosine of an angle between them:

Sik =

N

∑
j=1

pij pkj/(N

∑
j=1

p2
ij

N

∑
j=1

p2
kj)1/2.

Probabilities pij for factors found by BANNIA and BMFCA were estimated, using M-step of

the LM procedure applied to factor scores obtained by these methods. Each factor found by

BANNIA was compared with all the factors found by LANNIA. The highest cosine over all

the LANNIA factors was treated as an index of similarity between this BANNIA factor and

all the LANNIA factors and this index averaged over all the BANNIA factors was treated as

an index of similarity between sets of BANNIA and LANNIA factors. The index amounts to

0.85 and BANNIA factors happened to be similar to the LANNIA factors found in the first

Chapter 6. Application of LANNIA 80

its cycle. Note that if probabilities pij in each LANNIA factor are randomly permuted, then

this index amounts to 0.18. The index of similarity between factors found by LANNIA and

BMFCA amounts to 0.82. The coincidence of the results obtained by all methods is in favor of

the conclusion that the Genome dataset actually has the latent factor structure which can be

revealed by the considered methods, however LANNIA has an advantage because it provides

the highest gain with the smallest number of factors.

To analyze KEGG database, about 4 hours of computational time are required for LANNIA

and BANNIA, an hour for BMFCA.

6.4 Boolean factor analysis of Mushrooms dataset in comparison

with classical approaches

Boolean factor analysis is useful for finding groups of similar binary variables. For example,

as demonstrated in Section 6.2.1, when applied to textual data, it is capable of revealing topics

as groups of coherent terms (keywords). Boolean factor analysis implies that each variable

could be assigned to several factors and signals are composed by Boolean superposition of

factors. In contrast, standard cluster analysis implies that all clusters are disjunctive, i.e.,

each variable belongs to only one cluster while linear factor analysis implies that signals are

linear superpositions of factors. We suppose that for most binary data the first signal space

model is more suitable. In this section, these three approaches are compared on a mushroom

dataset that has been downloaded from the UCI web page (Repository of machine learning

databases – [7]). A more detailed description of the experiment can be found in [42, 57].

The dataset includes descriptions of samples corresponding to 23 species of gilled mushrooms

in the Agaricus and Lepiota Family. However, identification of species is not included. Num-

ber of objects is 8124 and number of variables is 22 (all nominally valued). Each variable

represents a physical characteristic (color, odor, size, shape etc.). The 23-rd variable indicates

if the mushroom is edible or poisonous (this variable was used only for results interpretation).

The numbers of edible and poisonous mushrooms are 4208 and 3916, respectively.

The data of the dataset were transformed into binary variables. Each categorical variable with

K categories was transformed to K binary variables. The names of variables correspond to

the order of attributes on the web source [7]. The individual categories are named by letters

of the alphabet. The final dataset consists of 111 binary variables.

When the objects were clustered by some traditional clustering methods [69, 83], it turns

out that 25 “pure” clusters (only with either edible or poisonous mushrooms) were identified.

Therefore the expected number of clusters of binary variables also amounts to 25. We obtained

the same results by both Jaccard and Dice coefficients. They are in Table 6.3.

Chapter 6. Application of LANNIA 81

Clus. Var. Clus. Var. Clus. Var. Clus. Var. Clus. Var.

1 v01a 4 v01d 5 v22b 10 v03e 17 v15i
1 v05b 4 v02c 6 v01f 11 v03f 17 v17d
1 v21c 4 v03j 7 v02d 11 v05c 18 v09a
1 v22c 4 v04b 7 v03i 12 v03g 18 v12a
2 v01b 4 v05e 7 v07b 12 v19c 18 v13a
2 v02b 4 v09e 7 v09b 13 v03h 18 v21a
3 v01c 4 v10a 7 v14h 13 v05d 19 v09f
3 v02a 4 v12c 7 v15h 13 v14f 19 v20e
3 v03d 4 v13c 7 v20a 13 v15f 20 v09g
3 v04a 4 v14a 7 v21d 14 v09d 20 v17a
3 v05g 4 v15a 7 v22a 14 v14b 20 v20i
3 v06c 4 v19d 8 v03b 14 v15b 21 v09k
3 v07a 4 v20d 8 v09j 15 v09i 21 v18c
3 v08a 4 v22d 8 v14g 15 v14d 22 v20c
3 v09h 5 v01e 8 v15g 15 v15d 23 v20g
3 v12d 5 v03a 8 v21b 16 v06a 24 v05a
3 v13d 5 v05i 8 v22f 16 v09l 24 v13b
3 v17c 5 v08b 9 v03c 16 v14e 25 v05h
3 v18b 5 v09c 9 v05f 16 v15e 25 v22e
3 v19f 5 v10b 9 v14c 16 v17b
3 v20b 5 v19b 9 v15c 16 v20f
3 v21f 5 v20h 9 v18a 17 v12b
3 v22g 5 v21e 9 v19e 17 v14i

Table 6.3: Results of cluster analysis of the Mushrooms dataset.

The variables that are the linear combination of one of several other variables are not suitable

for linear factor analysis. We analyzed both the same dataset as was used for cluster analysis

and dataset with only K – 1 categories instead the variables with K categories. In both cases,

we obtained the significant values (absolute values greater than 0.7) in the factor loading

matrix for the same binary variables. From the reason of the comparison the results of factor

and cluster analyzes, we present the results obtained for the same number of variables (see

Table 6.4). In the table only variables with factor loadings exceeded 0.5 in absolute value are

shown (corresponding values are highlighted).

In the first factor, we can found variables v05e, v12c, v13c, v19d and v20d with significant

negative values of factor loadings. These variables are elements of the fourth cluster, see

Table 6.3. For variables v04a, v12d, v13d and v19f positive values are significant. They are

elements of the third cluster. In the second factor, we can found variables v06a, v09l, v14e,

v15e and v17b with significant negative values of factor loadings. These variables are elements

of the sixteenth cluster. In the third factor, we can found variables v05i, v08b, v09c, v19b, v20h

and v21e with significant negative values of factor loadings. These variables are elements of

the fifth cluster. Variables v07b, v14h, v15h and v22a are significant for fourth factor and

belong to the seventh cluster. In the fifth factor, we can found variables v05f, v14c, v15c, v18a

Chapter 6. Application of LANNIA 82

Var. F1 F2 F3 F4 F5

v04a 0.65 0.18 0.52 -0.27 -0.04
v04b -0.65 -0.18 -0.52 0.27 0.04
v05d -0.01 0.03 -0.52 -0.1 0.03
v05e -0.77 0.08 0.04 -0.15 0.08
v05f -0.02 -0.02 -0.01 -0.08 -0.84
v05g 0.52 -0.15 0.31 0.11 0.02
v05i -0.01 0.03 -0.52 -0.1 0.03
v06a 0.03 -0.96 0.04 -0.03 -0.14
v06c -0.03 0.96 -0.04 0.03 0.14
v07a -0.09 -0.07 0 -0.76 -0.1
v07b 0.09 0.07 0 0.76 0.1
v08a -0.05 -0.07 0.81 0.08 -0.07
v08b 0.05 0.07 -0.81 -0.08 0.07
v09c -0.06 0.05 -0.93 -0.19 0.05
v09g 0.02 -0.60 0.02 -0.01 0.04
v09l 0 -0.52 0.01 -0.03 -0.3
v12c -0.80 0.07 -0.17 -0.15 -0.1
v12d 0.75 -0.09 0.15 -0.1 0.03
v13c -0.80 0.07 -0.16 -0.14 0.03
v13d 0.72 -0.1 0.1 -0.1 0.05
v14c -0.02 -0.02 -0.01 -0.08 -0.84
v14e 0.03 -0.99 0.04 -0.02 0.04
v14h 0.39 0.19 -0.04 0.59 0.05
v15b -0.51 0.03 0.19 -0.09 0.02
v15c -0.02 -0.02 -0.01 -0.08 -0.84
v15e 0.03 -0.99 0.04 -0.02 0.04
15h 0.4 0.19 -0.03 0.58 0.06
v17a 0.02 -0.69 0.03 -0.01 0.03
v17b 0.02 -0.69 0.03 -0.01 0.03
v17c -0.03 0.98 -0.03 0.01 -0.02
v18a -0.02 -0.02 -0.01 -0.08 -0.84
v18b -0.08 -0.03 -0.07 -0.36 0.59
v19b 0.02 0.08 -0.84 0.28 0.02
v19d -0.89 0.05 0.32 -0.17 0.04
v19e -0.02 -0.02 -0.01 -0.08 -0.84
v19f 0.64 -0.11 0.56 -0.13 0.06
v20d -0.81 0.07 0.33 -0.1 0.07
v20h -0.03 0.06 -0.83 0.05 -0.3
v21b 0.1 -0.39 0 0.09 -0.61
v21e -0.09 -0.01 -0.53 -0.38 0.13
v22a -0.13 0.1 0.24 0.67 0.08
v22b -0.01 -0.52 -0.45 -0.05 0.03
v22g 0.24 0.16 0.12 -0.61 0.03

Table 6.4: Factor loadings matrix for the first five linear factors of the Mushrooms dataset.

Chapter 6. Application of LANNIA 83

B1 v09c v20h v08b v19b v04b v21e ∼ F3−, C5
B2 v13c v12c v05e v19d v20d v04b ∼ F1−, C4
B3 v19f v04a v12d v13d v05g v20b ∼ F1+, C3
B4 v15h v14h v22a v07b v21d v03i v02d ∼ F4+, C7

Table 6.5: Significant variables for the first four Boolean factors of the Mushrooms dataset.

and v19e with significant negative values of factor loadings. These variables are elements of

the ninth cluster (only one element of this cluster – variable v03c is missing).

Four factors B1–B4 were identified by ANNIA. The variables composed these factors are

shown in Table 6.5. In the right side of the table clusters and linear factors are given that

are most overlapping with the binary factors. It is interesting to mention that variable v04b

belonging to cluster C4 is included to two Boolean factors (B3 and B2) and to two linear factors

(F1 and F3). So in contrast to the clustering, both methods of factor analysis do not exclude

the possibility of one element to belong to several factors.

The first factor corresponds to five variables from the fifth cluster, the exception is the variable

v04b which is included also in the second factor that is close to the fourth cluster. That is

the fourth cluster pulls this variable out of the fifth cluster. All variables of the second factor

correspond to six variables from the fourth cluster, all variables of the third factor corresponds

to six variables from the third cluster and all variables of the fourth factor correspond to seven

variables from the seventh cluster.

To find the distribution of factors among mushrooms we calculate overlaps between all factors

and all mushrooms. By our definition the overlap between l-th factor and m-th mushroom

is the scalar production (bl , am) of vectors bl and am where bl is the binary vector of factor

loadings and am is the binary vector presenting the mushroom features. The distributions

of overlaps are shown in Fig. 6.12. All four histograms have two modes. The right mode

corresponds to mushrooms which contain all or nearly all features of the given factor. The left

mode corresponds to mushrooms only weakly intersected with the given factor. The vertical

line is the separation border between two modes. We postulate that mushroom contains the

given factor if its overlap with the factor exceeds the border.

The most contrast bimodal distribution is seen for factors B1 and B2. The m-th mushroom is

assumed to contain one of these factors if it contains all factor’s features, i.e., (bl , am) > 5, l =

1, 2. The sets of mushrooms containing these factors are disjunctive that is each mushroom

of these sets contains only one factor. It is interesting to note that these two sets contain

only poisonous mushrooms. The first one consists of 1728 poisonous mushrooms, the second

one consists of 1296 poisonous mushrooms (the whole collection contains 3916 poisonous

mushrooms).

Chapter 6. Application of LANNIA 84

0 1 2 3 4 5 6
0

1000

2000

3000

B1

0 1 2 3 4 5 6
0

1000

2000

3000

B2

0 1 2 3 4 5 6
0

1000

B3

0 1 2 3 4 5 6 7
0

1000

2000

B4

Figure 6.12: Distribution of mushrooms over Boolean factors.

0 2 4 6 8 10 12 14 16
0

500

1000

C3

0 2 4 6 8 10 12 14
0

1000

2000

C4

0 2 4 6 8 10
0

1000

2000

C5

0 2 4 6 8
0

1000

2000

C7

Figure 6.13: Distribution of mushrooms over clusters

-8 -6 -4 -2 0 2 4
0

500

F1

-8 -6 -4 -2 0 2
0

1000

2000

3000

4000

F2

-8 -6 -4 -2 0 2 4
0

500

1000

F3

-4 -2 0 2 4
0

500

1000

F4

Figure 6.14: Distribution of mushrooms over linear factors

These same results was obtained with other methods. Fig. 6.13 demonstrates the distribu-

tions of the scalar productions (cl , am) where cl is a vector with components equal to one or

zero depending on whether the corresponding feature belongs or does not belong to the l-th

cluster. We plot the distributions only for clusters 3, 4, 5, 7 because other clusters contain only

few variables. The distributions obtained for clusters C4 and C5 corresponding to factors B2

and B1, respectively, are most contrast. To distinguish mushrooms related and not related to

C4 we put the separation border between two modes to 7. Respectively, for C5 the separation

border was 5. Table 6.6 demonstrates the intersections between the sets of mushrooms corre-

sponding to binary factors and clusters. The last row and the last column of the table contains

the total number of mushrooms corresponding to factors and clusters, respectively. The sets

of mushrooms corresponding to B2 and C4 (respectively to B1 and C5) almost coincide. As for

binary factors B1 and B2, only poisonous mushrooms are contained in the sets for clusters C4

and C5.

Figure 6.14 demonstrates the distributions of the scalar productions (fl , am) where fl is the

Chapter 6. Application of LANNIA 85

B1 B2 B3 B4
C5 1728 0 0 0 1764
C4 0 1264 0 0 1264
C3 0 0 1424 0 1424
C7 0 0 708 1683 1730
C8 0 0 174 0 174
C9 0 0 0 0 36

1728 1296 3616 2102 8124

Table 6.6: Intersection between C and B mushroom sets.

B1 B2 B3 B4
F3− 1725 0 0 0 1725
F1− 0 1296 0 0 1296
F1+ 0 0 2827 714 2875
F4+ 0 0 175 1066 1066
F2− 0 0 192 0 192
F5− 0 0 0 0 36

1728 1296 3616 2102 8124

Table 6.7: Intersection between Boolean and linear factors mushroom sets.

vector of factor loadings obtained by the linear factor analysis. In contrast to Boolean factor

analysis, the components of fl are positive and negative. Consequently, histograms of (fl , am)
have positive and negative modes. The separation borders used to distinguish mushrooms

related to positive and negative modes are shown in Fig. 6.14. Intersections between the sets

of mushrooms corresponding to linear factors and binary factors are shown in Tab. 6.7. The

sets of mushrooms corresponding to F−3 and F−1 almost coincide with B1 and B2, respectively,

and these sets contain only poisonous mushrooms, too.

The sets of mushrooms related to factors B3 and B4 are constructed in more complicated way.

For the separation borders shown in Fig. 6.14 they contain 3616 (86% edible) and 2102 (73%

edible) mushrooms respectively. These sets have large intersection of 950 mushrooms which

contain both B3 and B4. The ratios of edible mushrooms increase and intersection between two

sets decreases when separation borders moves to the right. Thus as for poisonous mushrooms

which split into two sets corresponding to factors B1 and B2, edible mushrooms separates into

two sets, too. But in contrast, the sets of edible mushrooms have strong intersection: many

of them contain both factors B3 and B4. Totally, these sets contain 4024 edible mushrooms of

4208 in the collection.

All the used methods discover four large mushrooms sets: two for poisonous and two for ed-

ible mushrooms. Two sets of poisonous mushrooms revealed by all methods are very similar.

Chapter 6. Application of LANNIA 86

F3− F1− F1+ F4+ F2− F5−

C5 1725 0 0 0 0 0 1764
C4 0 1264 0 0 0 0 1264
C3 0 0 1413 0 0 0 1424
C7 0 0 569 982 0 0 1730
C8 0 0 111 0 0 0 174
C9 0 0 0 0 0 36 36

1725 1296 2875 1066 192 36 8124

Table 6.8: Intersection between cluster and linear factors mushroom sets.

Figure 6.15: Shematic diagram of relations between mushrooms features sets.

This is resulted from the fact that these sets are not intersected. As for edible mushrooms,

Tab. 6.6, 6.7, 6.8 show more complex interrelations between the sets of mushrooms obtained

by different methods: C3 ⊂ B3, F+1 ⊂ B3, C7 ⊂ B4, F+4 ⊂ B4, C3 ⊂ F+1 , F+4 ⊂ C7. If to take into ac-

count that F+1 ∩ F+4 = ∅ and also C3 ∩C7 = ∅, the possible interpretation of these interrelations

is schematically shown in Fig. 6.15. There exists two partially overlapping classes between

edible mushrooms which were revealed by Boolean factor analysis. Linear factor analysis or

clustering split edible mushrooms into two disjunctive sets joining the intersection to the set

corresponding to B3 in the case of linear factor analysis and to the set corresponding to B4

in the case of clustering. These peculiarities results from foundations of these methods. In

the case of clustering, the feature can belong only to one of clusters. In the case of linear

factor analysis, the vectors of factor loadings should be orthogonal. Thus the advantage of

BFA approach is that it provides the separation of edible mushrooms into two overlapping

sets while traditional methods split them into different disjunctive groups joining intersection

to one or another set.

6.5 Boolean factor analysis of parliament voting

The analysis was performed for results of roll-call votes in the Russian parliament in 2004.

Each vote is considered as a binary vector with component 1 if the correspondent deputy

voted affirmatively and 0 negatively. The number of votes during the year amounts 3150.

The number of deputies (consequently the dimensionality of signal space and network size)

amounts 430 (20 deputies voted less than 10 times were excluded from the analysis). A more

detailed description of the experiment can be found in [30, 52, 54].

Chapter 6. Application of LANNIA 87

0 20 40 60 80
0

50

100

150

200

number of active neurons
0 20 40 60 80

0

50

100

150

number of active neurons

Figure 6.16: Lyapunov function λ for parliament data in dependence on the number of active
neurons for initial trajectories (a), for trajectories after deleting two first factors (b). The points

on the curves are factors found by the peaks of R′.

Figure 6.16(a) shows the Lyapunov function along trajectories of ANNIA starting from 1500

random initial states. All these states converge to four trajectories. Two of them have breaks

in the points in which R′ has a peak, the values of λ exceed hmax in (4.9), and therefore

these points were identified as two factors. The factor with the highest Lyapunov function

contains 51 deputies and completely coincides with the fraction of the Communist Party

(CPRF). Another factor contains 36 deputies. All of them belong to the fraction of Liberal-

Democratic Party (LDPR) which contains totally 37 deputies. Thus one of the members of this

fraction fell out of the corresponding factor. The pointed sharp breaks at the corresponding

trajectories give evidence that these fractions are most discipline and their members vote

coherently.

Figure 6.16(b) demonstrates trajectories after deleting of the two factors by unlearning the

rule (4.14). Starting from 1500 initial states they converge to only two trajectories. One of

them has a break but it is not so sharp as for CPRF and LDPR factors. The derivative R′ has

a maximum in this point, λ > hmax, and therefore this point was identified as third factor.

The factor contains 37 deputies. All of them belong to the fraction “Motherland” (ML) which

contains totally 41 deputies. Thus 4 of its members fell out of the factor. The fuzziness of

break at the trajectory gives evidence that this fraction is not so homogeneous as the two first

ones and actually the fraction split at two fractions in 2005.

Matching of neurons along the second trajectory in Fig. 6.16(b) with the list of deputies has

shown that it corresponds to the fraction “United Russia” (UR). This fraction is the largest

and contains totally 285 deputies but is less homogeneous. Therefore the Lyapunov function

along the trajectory is low and it has no break at all.

Chapter 6. Application of LANNIA 88

0 20 40 60 80
0

50

100

number of active neurons

Figure 6.17: The same as in Figs. 6.16(a) and 6.16(b) after deleting three first factors.

fractions/factors 1 2 3 4 5

UR 283 0 0 0 2
CPRF 0 51 0 0 0
LDPR 1 0 36 0 0
ML 3 0 0 37 1
Independent 1 0 0 0 15

Table 6.9: Relation between parliament fractions and factors.

Fig. 6.17 shows trajectories of neurodynamics after additional deleting the third factor from

the network. Two remaining trajectories contain members of UR and independent deputies

(ID). The upper trajectory contains only members of UR and lower one – mainly ID but also

members of UR. This is additional evidence of heterogeneity of UR. Factors UR and ID were

identified by minimums of the second derivatives along the corresponding trajectories. The

general relation between the parliament fractions and obtained factors is shown in Table 6.9.

The fit between the fractions and the factors was estimated by F1-measure. Averaged over all

fractions it amounted to 0.98.

Here factors do not overlap so we may interpret them as clusters and compare our results with

those obtained by some traditional methods of clustering. First, we performed clustering of

the parliament members with the direct use of similarity matrix. Similarity between two

deputies was calculated by comparison of vectors of their voting. We used different measures

of similarity: Euclidian distance, cosine, Jaccard and Dice. Both hierarchial and K-means

clustering gave clusters far from parliament fractions: all fractions intersected in clusters

and fraction LDPR could not be separated from ER at all.Second, we performed mapping of

parliament members by the method of multidimensional scaling. The results are shown in

Fig.6.18. This map was clustered. The border of clusters are shown by thin lines. Generally,

Chapter 6. Application of LANNIA 89

Figure 6.18: Two-dimensional map of parliament members vote. Thin lines - borders of
clusters. ♢ - UR, △ - CPRF, ∎ - LDPR, ● - ML, ⋆ - ID.

fractions/clusters 1 2 3 4

UR 285 0 0 0
CPRF 0 49 0 2
LDPR 2 0 35 0
ML 3 0 0 38
Independent 14 0 1 1

Table 6.10: Relation between parliament fractions and clusters from Fig. 6.18.

as factors obtained before, clusters coincide with parliament fractions except for independent

deputies. The results of clustering and factorization are compared in the Table 6.10. The mean

F1-measure amounted to 0.95, that is slightly smaller than that obtained for factors.

Chapter 7

Conclusion

The present work is devoted to Boolean factor analysis (BFA). The BFA problem is formulated

in conjunction with definition of linear factor analysis in Chapter 2. In order to distinguish

BFA from other related problems (like Boolean matrix factorization) the BFA generative model

is suggested in Section 2.2. The information gain that estimates the elimination of information

redundancy is suggested in Section 2.3 as criterion of optimality of BFA solution. This crite-

rion allows to estimate BFA performance even in the case when precise solution is unknown,

i.e., in the case of real-world datasets. It is shown that the information gain reaches maximum

when BFA solution is right.

The main goal of this work was to develop an efficient method for BFA. The method is sug-

gested in Chapter 4. It is based on an original Hopfield-like attractor neural network with

increasing activity (ANNIA) described in Section 4.1. ANNIA is very similar to the tradi-

tional sparsely encoded Hopfield network [26] but has an original two-run recall procedure

and several special techniques for factors identification. The properties of ANNIA are stud-

ied in Chapter 5 both theoretically and by computer simulations. The existence of two global

spurious attractors was revealed in the experiments presented in Section 5.2. These attrac-

tors are created by neurons most and least often contained in the whole set of factors (and

therefore in the dataset) and become dominant only when signal complexity is rather high.

That is why they have never been observed before and pose a completely new phenomenon

of attractor neural networks. When the global spurious attractors dominate in the network

dynamics they prevent factors revealing. To suppress their dominance one special inhibitory

neuron is added to the principal neurons of the network. It is shown that the activity of

special inhibitory neuron completely eliminate the global spurious attractors.

The size of attraction basins around true attractors are estimated in Section 5.3 by computer

simulations and by the single-step approximation proposed by [67] for the densely encoded

Hopfield network. It turns out that for the sparsely encoded network the critical relative

90

Chapter 7. Conclusion 91

informational loading αcr ≈ 0.3. The estimation of the attraction basins is useful only when

the network dynamics starts from the corrupted version of one of the factors. The probability

to find a factor when the network dynamics starts from a random initial state is estimated

in Section 5.4. This probability happened to be high only when the number of factors L is

less than two limits L1 and L2. The first limit L1 corresponds to the number of factors L

which provides equal Lyapunov function values for true and spurious attractors. If L > L1

the spurious attractors dominate in network dynamics. If L < L1 this value is larger for true

attractors but spurious attractors can continue to dominate because of their large number. To

avoid this kind of dominance, L must be smaller than L2. For the level of sparseness of the

factors encoding p = 0.02, these limits are estimated as L1 = 2.8N and L2 ≃ 103 ln(0.0014 N).
Even in the case when the probability of true attractor is high, the search of all factors could

be impossible due to the dominance of some of them. As shown in Section 5.5, this difficulty

can be easily overcome by Hebbian unlearning of found factors. It is shown that ANNIA

with unlearning rule is able to reveal the complete set of factors mixed in the patterns of the

dataset.

Although ANNIA provides an accurate estimation of the factor loadings (as set of active

neurons in true attractor), but it provides only approximate estimation of factor scores, and no

estimation of the parameters of the generative model pij and qj. This drawback is eliminated

by combining ANNIA with likelihood maximization (LM) described in Section 4.2. It is shown

in Section 4.3 that the LM procedure itself is able to provide complete solution of the BFA

problem but requires an appropriate initial approximation: if it starts from the random initial

parameters it commonly fails. In the combination of ANNIA and LM the role of ANNIA is to

provide LM with the initial approximation. Another aspect of the ANNIA and LM interaction

is a suppression of the dominant attractors in ANNIA using the data provided by LM. The

resulting hybrid ANNIA and LM procedure (LANNIA) is presented in Section 4.3. The whole

algorithm is presented in Appendix D.

The developed method LANNIA was tested on real-world binary datasets in Chapter 6. First,

the performance of the method was tested on text datasets in Section 6.2. Each text document

of the dataset was presented as a binary vector of the dimension of the used term dictio-

nary. Each component of the vector was 1 or 0 depending on the presence or absence of the

corresponding term in the document. The revealed factors were interpreted as topics of the

dataset: the values 1 or 0 in factor loadings correspond to whether the related term belongs

to the topic, the values 1 or 0 in factor scores encode whether the text document belongs

to the topic. The method was applied to two types of textual data on Neural Networks in

two different languages (Section 6.2.1). It is demonstrated that the obtained topics and corre-

sponding words are at a good level of agreement despite the lexical specificity of the English

and Russian languages. Each revealed topics was presented as a set of weighted words. These

words turn out to be semantically close, which allows to give an interpretation of each topic.

Chapter 7. Conclusion 92

The information gain calculated for one of the dataset turns out to be rather high (G = 0.15),

while the grouping of the articles across scientific sections produced by Program Committees

provided informational gain of only 0.04. The method was also tested on Reuters R52 dataset

of news messages. As for previous dataset, the obtained information gain was rather high

(G = 0.12), and it was higher than the information gain calculated for division of R52 into

classes made by experts amounted to 0.09. The intersection between classes of R52 made by

experts and topics obtained by LANNIA was evaluated using micro-averaged F1 score. The

obtained value happened to be very high Fmicro
1 = 0.72. Thus, for text datasets we observed

high values of information gain, stability of the results when changing the dataset, strong

intersect with manual classification. All these are in favor of the hypothesis that text data is

appropriate to BFA generative model.

The method was applied to the problem of revealing the modular structure in genome datasets

in Section 6.3. It is assumed that solving this problem would allow to identify the functions

of proteins in organisms. For the BFA analysis the largest genome database KEGG containing

the fully sequenced genomes of organisms was used. LANNIA revealed 38 factors with very

high information gain G = 0.32. The high gain shows that, first, the genome data indeed

correspond to the generative BFA model and, second, LANNIA is the efficient method for

finding its parameters. It is demonstrated that each type of the organisms is characterized

by the specific set of factors. The analysis of information loadings of the revealed factors led

to the conclusion that the influence of specific factors (noise) is minimal, and almost all the

organisms are completely described by common factors as predicted by the modular hypoth-

esis.

The method was also tested on the database of roll-call votes in the Russian parliament in

Section 6.5 and on the mushrooms dataset in Section 6.4. In both cases, a clear interpretation

of the factors revealed by the method was found: for parliament voting, factors correspond

to the fractions of deputes, for mushrooms dataset, factors correspond to groups of edible

and poisonous mushrooms. The BFA was compared with classical approaches: linear factor

analysis and clustering method. It was demonstrated on mushrooms dataset that in the case of

partially overlapping classes, linear factor analysis and clustering split classes into disjunctive

sets joining the intersection to one or another class, while BFA correctly reveals these classes

as overlapping sets.

The performance of LANNIA was compared with other BFA related method in solving the

bars problem in Section 6.1. It was shown that only LANNIA provides almost the right

bars problem solution for all analyzed bars problem tasks. It is least sensitive to noise in

data, to the number of factors mixed in each observation and to the insufficient number of

observations in the dataset. Other methods exhibit good performance only in part of the tasks.

The execution time of LANNIA in solving the bars problem was comparable with the fastest

BFA related method. The computational complexity of the method is only quadratic in the

Chapter 7. Conclusion 93

dimension of signal space and linear in the number of observation. Thus the method could

be applied for analyzing large datasets, for example, to analyze KEGG database containing

1368 observation of dimension 11451, about 4 hours of computational time are required.

7.1 Suggestions for future work

In the future, I would like to apply the LANNIA to role mining problem, market basket anal-

ysis and other actual problems. Although the computational complexity of the method is

only quadratic in the dimension of signal space, the amount of operative memory required

in ANNIA program increases with the square of the dimension of signal space, for example,

when the number of binary variables reaches 105 the program requires 20 GB of RAM. On

the other hand, datasets of such a large dimension are usually sparse, i.e., the frequencies

of most variables are low. In this case the matrix of synaptic connection J containing con-

nection weights between each pair of neurons can be replaced by sparsely encoded matrix

containing for each variable connection weights with only small part of other variables. The

implementation of this idea will be the object of future work.

Next, I would like to implement the method as a program or library for some statistical pack-

ages and in MATLAB. This would give the opportunity to try the new perspective statistical

method to everyone.

The BFA generative model has some assumptions. The most limiting assumption is statistical

independence of appearance of factors in observations stated by (2.9). I would like to extend

this assumption to different types of relationships between factors: hierarchy of factors, causal

relationships, and others.

Appendix A

Estimation of variance of am

By definition (4.1), am = (1/N) N

∑
i=1

xmi. Then

D{am} = 1

N
D{xmi}+ N − 1

N
Cov{xmi, xmj} ,

where D{xmi} = ā(1 − ā). Covariance between xmi and xmj can be presented in the form

Cov{xmi, xmj} = ⟨(1− xmi)(1− xmj)⟩− (1− ā)2. Since factors are statistically independent

⟨(1− xmi)(1− xmj)⟩ = ⟨ ∏
l∈{l∶sml=1}

(1− fli)(1− fl j)⟩ = [(1− p)(1− p∗)]C ,

where 1 − p∗ = ((1 − p)N − 1)/(N − 1) is a probability that the j-th neuron is not active in a

given factor under the condition that the i-th neuron is not active in this factor. Thus

Cov{xmi, xmj} = (1− q)2[(1− p

(1− p)(N − 1))C − 1] ≃ −(1− q)2 pC

(1− p)N ,

that means, that D{am} is of order 1/N.

94

Appendix B

Estimation of variance of J′
ij

D{J′ij} can be presented in the form

D{J′ij} = ME1 +M(M − 1)E2 − (⟨J′ij⟩)2 , (B.1)

where

E1 = ⟨(xmi − am)2(xmj − am)2⟩,
E2 = ⟨(xmi − am)(xmj − am)(xli − al)(xl j − al)⟩, l ≠ m

and according to (5.2) ⟨J′ij⟩ = M⟨(xmi − am)(xmj − am)⟩ = −Mā(1− ā)/(N − 1).
To estimate E1 and E2 we ignore the statistical dependence between xmi and xmj which re-

sults from the fact that the number of active neurons in factors is fixed and equal to n (the

correlation coefficient between these variables is of the order 1/N, see Appendix A). Then

E1 = q2(1− q)2. To estimate E2 one must take into account the statistical dependence between

the activities of the same neurons in different patterns of the learning set. This dependence

results from the fact that different neurons are differently presented in a set of factors. Thus,

the neurons which are contained in more factors have higher probability to be active in both

learning patterns xm and xl . In order to take into account this dependence explicitly, let us

introduce probability

P(C1) = (C

C1
)(L −C

C −C1
)/(L

C
)

that the given pair of signals have C1 common factors. Then

E2 =∑
C1

P(C1)E2(C1) ,

95

Appendix B. Variance of J′ij 96

where

E(C1) = ⟨(xmi − am)(xli − al)⟩∣C1
= ⟨(1− xmi)(1− xli)⟩∣C1

− (1− q)2.

Due to the independence of different factors

⟨(1− xmi)(1− xli)⟩∣C1
= (1− p)C1(1− p)2(C−C1) = (1− ā)2/(1− p)C1 ,

i.e., E(C1) = (1 − q)2[(1 − p)−C1 − 1] and after approximation of P(C1) by Poisson distribution

P(C1) ≃ µC1 exp(−µ)/C1!, where µ = C2/L, and taking into account that for any a

∑
C1

aC1 µC1 exp(−µ)/C1! = exp(µ(a − 1))
one can immediately obtain

E2 = (1− ā)4[exp (µ(1

(1− p)2 − 1))− 2 exp (µ(1

1− p
− 1))+ 1]

= (1− ā)4 p2µG1(µ)/[(1− p)2] ,

where G1(µ) is given by (5.10). Since the first term in (B.1) is of the order M, the second

one is of the order M2 and the third one is of order (M/N)2, the first and third terms can be

neglected when compared with the second one. Hence D{J′ij} is given by (5.9).

It must be noted that the estimation of D{J′ij} by formula (5.9) is valid only when 1− ā is not

extremely small because the first term in (B.1) is of the order (1 − ā)2, the second of (1 − ā)4
and the third of (1− ā)2. Since 1− ā ≈ exp(−pC), we assume that pC is not extremely large to

provide the condition that (1− ā)2 and (1− ā)4 are of the same order.

Appendix C

Estimation of variance of Jij

The estimation is based on the same methodology as variance D{J′ij} in Appendix B. Accord-

ing to (4.1), (4.3) and (4.4)

Jij = J′ij − J′′ij =
M

∑
m=1

(xmi − am)(xmj − am))−M(ri − ā)(rj − ā)
≃

M

∑
m=1

(xmi − ā)(xmj − rj) = M

∑
m=1

(1− xmi)((1− xmj)− (1− rj)) ,

where ri is the probability that neuron i is active in a learning pattern. Then D{Jij} ≃ M2Einh
2 ,

where

Einh
2 = ⟨(1− xmi)((1− xmj)− (1− rj))(1− xli)((1− xl j)− (1− rj))⟩

= ⟨(1− xmi)(1− xmj)(1− xli)(1− xl j)⟩− ⟨(1− xmi)(1− rj)(1− xli)(1− xl j)⟩
− ⟨(1− xmi)(1− xmj)(1− xli)(1− rj)⟩+ ⟨(1− xmi)(1− rj)(1− xli)(1− rj)⟩
≃ ⟨(1− xmi)(1− xmj)(1− xli)(1− xl j)⟩− [⟨(1− xmi)(1− xli)⟩]2
= ⟨(xmi − am)(xmj − am)(xli − al)(xl j − al)⟩− [⟨(xmi − am)(xli − al)⟩]2 ,

where we took into account that ⟨(1 − xmi)(1 − ri)⟩ ≃ ⟨(1 − xmi)(1 − xli)⟩. The terms in the

last equation were obtained in Appendix B, and the substitution of them immediately gives

(5.11).

97

Appendix D

Algorithm of LANNIA

98

Appendix D. Algorithm of LANNIA 99

Algorithm 1: Hybrid algorithm of ANNIA and LM for BFA

input : X is a collection of M row binary vectors xm of dimension N with components xmj,
m = 1, . . . , M, j = 1, . . . , N

output: Θ = (pij, qj, πi, i = 1, . . . , L, j = 1, . . . , N) are parameters of generative model, S is a collection of
row binary vectors of factor scores sm of dimension L with components sml , m = 1, . . . , M,
l = 1, . . . , L

1 begin

2 for m ← 1 to M do am ←
N

∑
j=1

xmj/N
3 for i ← 1 to N do
4 for j ← 1 to N do

5 J̃ij ←
M

∑
m=1
(xmi − am)(xmj − am)− 1

M

M

∑
m=1

(xmi − am) M

∑
m=1

(xmj − am)
6 J̃ii ← 0

7 G ← 0, L ← 0
8 for j ← 1 to N do qj ← 1/M
9 repeat

10 Gold
← G

11 if L = 0 then

12 J ← J̃

13 else
14 for l ← 1 to L do

15 for i ← 1 to N do p0
li ←

M

∑
m=1

xmi(1− sml)/ M

∑
m=1
(1− sml)

16 for i ← 1 to N do
17 for j ← 1 to N do

18 Jij ← J̃ij −Mπl(1−πl)pli(1− p0
li)pl j(1− p0

l j)
19 Jii ← 0

20 F ←FactorsRevealing(J)
21 if F = ∅ then break algorithm
22 foreach f ∈ F do
23 L ← L + 1
24 h ← fJ
25 for j ← 1 to N do
26 if hj > 0 then pij ← 0.99hj/maxi(hi) else pij ← 0

27 [Θ,S]←LikelihoodMaximization(X , Θ)
28 G ←InformationGain(X , Θ,S)
29 until G < Gold

Appendix D. Algorithm of LANNIA 100

Procedure FactorsRevealing(J)

input : J is a matrix of synaptic connections of dimensionality N ×N
output : F is a collection of found factors in the form of row vectors
parameters: nin and n f in are initial and final number of active neurons along each trajectory, Ktrial is

number of trials of factor search, θov is minimal overlap between two network states
subsequently appeared in neurodynamics that are considered to be in the same attractor
basin

1 begin
2 F ← ∅

3 repeat Ktrial times
4 generate perm, a random permutation from 1 to N
5 Initialize x and f as row zero vector of dimension N
6 for i ← 1 to nin do xperm(i) ← 1

7 R′max ← 0
8 for k ← nin to n f in do

9 Initialize x1 and x2 as row zero vector of dimension N

10 while x ≠ x1 and x ≠ x2 do

11 x2
← x1

12 x1
← x

13 h ← xJ // row vector of synaptic excitations

14 x ← 0
15 for i ← 1 to k do
16 j ← argmaxl(hl)
17 xj ← 1, hj ← −∞

18 λ ← x1JxT/k, T ←maxl(hl)
19 R ← λ/(k − 1)− T/k
20 if k > kin and max

i,j=1,2
(Overlap(xi, x

j
prev)) > θov then

21 R′ ← R − Rprev

22 if R′ > R′max then
23 R′max ← R′, f ← x, λ f ← λ, n f ← k

24 Rprev ← R, x1
prev ← x1, x2

prev ← x2

25 xargmax(h) ← 1 // activating non-active neuron with maximal synaptic excitation

26 if f = 0 or f ∈ F then goto line 3
27 hthr ←SpurTrueThreshold(n f , J) // threshold separating true and spurious attractors

28 if λ f > hthr then add f to F

Function Overlap(x, y)

input : x and y are binary vectors of dimensionality N so that ∣x∣ ≤ ∣y∣ where ∣x∣ is the number of
entries in x equal to one

output: Ov is an overlap between x and y
1 begin

2 Ov ←
1

∣x∣(1− ∣y∣/N)
N

∑
i=1

(xi − ∣x∣/N)(yi − ∣y∣/N)

Appendix D. Algorithm of LANNIA 101

Function SpurTrueThreshold(n, J)

input : n is a number of components equal to one in random vectors, J is a synaptic connection
matrix of dimensionality N ×N

output : hthr is a threshold separating true and spurious attractors
parameters: kσ is standard deviation multiplier in calculation of maximal possible value of the

Lyapunov function for spurious attractors
1 begin
2 for k ← 1 to 100 do
3 generate perm, a random permutation from 1 to N
4 for i ← 1 to N do xi ← 0
5 for i ← 1 to n do xperm(i) ← 1

6 h ← xJ
7 hmax

k ←maxi(hi)
8 hthr ← m + kσσ where m and σ are mean and standard deviation of hmax

k

Function InformationGain(X , Θ,S)

input : X is a collection of signals with components xmj, m = 1, . . . , M, j = 1, . . . , N,
Θ = (pij, qj, πi, i = 1, . . . , L, j = 1, . . . , N) are generative model parameters, S is collection of
factor scores with components sml , m = 1, . . . , M, l = 1, . . . , L

output: G is a relative information gain for given X , Θ and S
1 begin
2 define the Shannon function h(x) = −x log2 x − (1− x) log2(1− x)
3 for j ← 1 to N do pj ←

M

∑
m=1

xmj/M
4 H0 ← M

N

∑
j=1

h(pj)
5 H1 ← M

L

∑
i=1

h(πi)
6 for m ← 1 to M do
7 for j ← 1 to N do

8 P(xmj∣sm, Θ)← xmj − (2xmj − 1)(1− qj) L

∏
i=1
(1− pij)smi

9 H2 ←
M

∑
m=1

N

∑
j=1

h(P(xmj∣sm, Θ))
10 G ←

H0 −H1 −H2

H0

Appendix D. Algorithm of LANNIA 102

Procedure LikelihoodMaximization(X , Θ)

input : X is collection of signals with components xmj, m = 1, . . . , M, j = 1, . . . , N,
Θ = (pij, qj, πi, i = 1, . . . , L, j = 1, . . . , N) are generative model parameters

output: Θ are the parameters of generative model, S is a collection of factor scores with components
sml , m = 1, . . . , M, l = 1, . . . , L (number of factors L is less or equal to those at the input of the
algorithm)

1 begin
2 L← −∞

3 repeat
4 Lprev

← L

5 S ←ProcEstep(X , Θ)
6 for i ← 1 to L do

7 πi ←
M

∑
m=1

sm
i /M

8 if πi = 0 or πi = 1 then
9 discard πi, {pij}, {smi} from Θ for all j = 1, . . . , N, m = 1, . . . , M

10 L ← L − 1
11 if L = 0 then break procedure

12 Θ ←ProcMstep(X , Θ,S)
13 for i ← 1 to L do

14 if
N

∑
j=1

sgn(pij) = 0 then

15 discard πi, {pij}, {smi} from Θ for all j = 1, . . . , N, m = 1, . . . , M

16 L ← L − 1
17 if L = 0 then break procedure

18 L←
M

∑
m=1
[N

∑
j=1

log P(xmj∣sm, Θ)+ log P(sm∣Θ)]
19 until L−Lprev

< 10−6MN

Appendix D. Algorithm of LANNIA 103

Procedure ProcEstep(X , Θ)

input : X is collection of row binary vectors xm with components xmj, m = 1, . . . , M, j = 1, . . . , N,
Θ = (pij, qj, πi, i = 1, . . . , L, j = 1, . . . , N) are generative model parameters

output: S is a collection of row vectors sm of factor scores with components sml , m = 1, . . . , M,
l = 1, . . . , L

1 begin
2 S ← ∅

3 for m ← 1 to M do
4 for i ← 1 to L do si ← 0
5 if xm = 0 then goto line 15
6 repeat

7 sold
← s

8 generate perm, a random permutation from 1 to L
9 for l ← 1 to L do

10 i ← perm(l)
11 for j ← 1 to N do Pj ← (1− qj)∏

k≠i
(1− pkj)sk

12 ∆I ←
N

∑
j=1

[xmj log
1− (1− pij)Pj

1− Pj
+ (1− xmj) log(1− pij)]+ log

πi

1−πi

13 if ∆I > 0 then si ← 1 else si ← 0

14 until s = sold

15 add s to S

Appendix D. Algorithm of LANNIA 104

Procedure ProcMstep(X , Θ,S)

input : X is a collection of row binary vectors xm with components xmj, m = 1, . . . , M, j = 1, . . . , N,
Θ = (pij, qj, πi, i = 1, . . . , L, j = 1, . . . , N) are generative model parameters, S is a collection of
row vectors sm of factor scores with components sml , m = 1, . . . , M, l = 1, . . . , L

output: Θ are the optimized parameters of the generative model
1 begin
2 define ξ, a small positive number restricting pij and qj for the sake of avoiding singularities

3 for j ← 1 to N do
4 repeat

5 for i ← 1 to L do p
prev
ij ← pij

6 for m ← 1 to M do Pm ← 1− (1− qj) L

∏
i=1
(1− pij)smi

7 for i ← 1 to L do
8 γp ← pij(1− pij)/(Mπi)
9 pij ← pij +γp

1

1− pij
(M

∑
m=1

smixmj

Pm
−Mπi)

10 constraint pij to belong to [0; 1− ξ]
11 if pij < 1−∏

l≠i
(1−πl pl j) then pij ← 0

12 γq ← qj(1− qj)/M
13 qj ← qj + γq

1

1− qj
(M

∑
m=1

xmj

Pm
−M)

14 constraint qj to belong to [ξ; 1]
15 until

L

∑
i=1
∣pij − p

prev
ij ∣ < 10−3L

Appendix D. Algorithm of LANNIA 105

Algorithm 2: Observation Generation

input : M is a number of observations, N is a dimensionality of the observations, L is a number of
factors, Θ = (pij, qj, πi, i = 1, . . . , L, j = 1, . . . , N) are parameters of generative model

output: X is a collection of M row binary vectors of dimension N, S is a collection of M row binary
vectors of factor scores of dimension L

1 begin
2 for m ← 1 to M do
3 Initialize x as row zero vector of dimension N
4 Initialize s as row zero vector of dimension L
5 for i ← 1 to L do
6 Generate r, a pseudo-random number from [0, 1]
7 if r < πi then
8 si ← 1
9 for j ← 1 to N do

10 Generate r, a pseudo-random number from [0, 1]
11 if r < pij then xj ← xj ∨ 1

12 for j ← 1 to N do
13 Generate r, a pseudo-random number from [0, 1]
14 if r < qj then xj ← xj ∨ 1

15 Add s to S
16 Add x to X

Bibliography

[1] P. Yu. Polyakov A. A. Frolov, D. Gusek. Bulev factorial analysis by means of attractor

neural network and its some appendices. Nejrokomp’jutery: razrabotka, primenenie, (1):25–

46, 2011.

[2] P. Yu. Polyakov A. A. Frolov, D. Husek. Combined algorithm for boolean factor analysis

based on neural network and likelihood maximization approaches. Nejrokomp’jutery:

razrabotka, primenenie, (3):3–11, 2014.

[3] M. Alexandrov, A. Gelbukh, and P. Rosso. An approach to clustering abstracts. In

Applications of Natural Language to Data Base (NLDB’05), LNCS, volume 3513, pages 275–

285, Alicante, Spain, June 2005.

[4] S. Amari. Mathematical fondation of neurocomputing. Proceedings of the IEEE, 78(9):1443–

1463, 1990.

[5] S. Amari and K. Maginu. Statistical neurodynamics of associative memory. Neural Net-

works, 1:63–73, 1988.

[6] D. J. Amit, H. Gutfreund, and H. Sompolinsky. Statistical mechanics of neural networks

near saturation. Annal of Physics, 173:30–67, 1987.

[7] A. Asuncion and D. J. Newman. UCI Machine Learning Repository. University of Cali-

fornia, Irvine, School of Information and Computer Sciences, 2007.

[8] H. Barlow. Redundancy reduction revisited. Network: Computation in Neural Systems,

12(3):241–253, 2001.

[9] H. B. Barlow. Cerebral cortex as model builder. In D. Rose and V. G. Dodson, editors,

Models of the visual cortex, pages 37–46. Wiley, Chichester, 1985.

[10] D. J. Bartholomew. The Analysis and Interpretation of Multivariate Data for Social Scientists.

Chapman & Hall/CRC, 2002.

[11] R. Belohlavek and V. Vychodil. Geometry and heuristics for discovery of optimal factors

in binary data. 2006. Available at http://www.researchgate.net.

106

Bibliography 107

[12] R. Belohlavek and V. Vychodil. On Boolean factor analysis with formal concepts as

factors. In Soft Computing and Intelligent Systems & Int. Symposium on Intelligent Systems

(SCIS&ISIS 2006), pages 20–24, 2006.

[13] R. Belohlavek and V. Vychodil. Formal concepts as optimal factors in boolean factor anal-

ysis: implications and experiments? In Fifth International Conference on Concept Lattices

and Their Applications, 2007.

[14] R. Belohlavek and V. Vychodil. Discovery of optimal factors in binary data via a novel

method of matrix decomposition. Journal of Computer and System Sciences, 76(1):3–20,

2009.

[15] M. W. Berry and M. Browne. Understanding search engines: mathematical modeling and text

retrieval. SIAM, Philadelphia, 1999.

[16] J. Bucingham and D. Willshaw. On setting unit thresholds in an incompletely connected

associative net. Network, 4:441–459, 1993.

[17] J. de Leeuw. Principal component analysis of binary data: Applications to rollcall-

analysis, 2003.

[18] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete

data via the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological),

39(1):1–38, 1977.

[19] J. Farkas. Documents, concepts and neural networks. Proceedings of the 1993 conference

of the Centre for Advanced Studies on Collaborative research: distributed computing-Volume 2,

pages 1021–1031, 1993.

[20] P. Földiák. Forming sparse representations by local anti-Hebbian learning. Formal Aspects

of Computing, 64(2):165–170, 1990.

[21] P. Földiák and M. P. Young. Sparse coding in the primate cortex. The Handbook of Brain

Theory and Neural Networks, pages 895–898, 1995.

[22] M. Frank, A. P. Streich, D. Basin, and Buchmann J. M. Multi-assignment clustering for

Boolean data. Journal of Machine Learning Research, 13(3):459–489, 2012.

[23] A. Frolov, D. Husek, and P. Yu. Polyakov. Comparison of seven methods for Boolean

factor analysis and their evaluation by information gain. IEEE Transactions on Neural

Networks, 2015. Published online 07 April (2015).

[24] A. Frolov, P. Polyakov, and D. Husek. Boolean factor analysis by the expectation-

maximization algorithm. In International Conference on Computational Statistics (COMP-

STAT’2010), pages 1039–1046, Paris, France, August 2010.

Bibliography 108

[25] A. A. Frolov, D. Husek, A. Abraham, P. Y. Polyakov, and H. Rezankova. Bfa and bmf:

What is the difference. In International conference on intelligent systems design and applica-

tions (ISDA 2012), pages 890–896, Kochi, India, November 2012.

[26] A. A. Frolov, D. Husek, and I. P. Muraviev. Informational capacity and recall quality

in sparsely encoded hopfield-like neural network: Analytical approaches and computer

simulation. Neural Networks, 10:845–855, 1997.

[27] A. A. Frolov, D. Husek, and I. P. Muraviev. Informational efficiency of sparsely encoded

hopfield-like autoassociative memory. Optical Memory Neural Networks, 12(3):177–197,

2003.

[28] A. A. Frolov, D. Husek, I. P. Muraviev, and P. Y. Polyakov. Learning and unlearning in

Hopfield-like neural network performing Boolean factor analysis. In Advances in Machine

Learning I: dedicated to the memory of professor Ryszard S. Michalski, volume 262 of Studies

in Computational Intelligence, pages 501–518. Springer, 2010.

[29] A. A. Frolov, D. Husek, I. P. Muraviev, and P. Yu. Polyakov. Origin and elimination

of two global spurious attractors in Hopfield-like neural network performing Boolean

factor analysis. Neurocomputing, 73(7-9):1394–1404, 2010.

[30] A. A. Frolov, D. Husek, P. Polyakov, and H. Rezankova. New neural network based ap-

proach helps to discover hidden Russian parliament voting patterns. In IEEE International

Joint Conference on Neural Networks (IJCNN 2006), pages 6518–6523, Vancouver, Canada,

July 2006.

[31] A. A. Frolov, D. Husek, P. J. Polyakov, and H. Rezankova. Binary factorization of tex-

tual data by Hopfield-like neural network. In Proc. Computational Statistics (Compstat’06),

pages 1035–1041, Roma, Italy, August 2006.

[32] A. A. Frolov, D. Husek, P. J. Polyakov, H. Rezankova, and V. Snasel. Binary factoriza-

tion of textual data by Hopfield-like neural network. In Proc. Computational Statistics

(Compstat’04), pages 1035–1041, Prague, Czech Republic, August 2004.

[33] A. A. Frolov, D. Husek, and P. Y. Polyakov. Recurrent neural network based Boolean

factor analysis and its application to automatic terms and documents categorization.

IEEE Transactions on Neural Networks, 20(7):1073–1086, 2009.

[34] A. A. Frolov, D. Husek, and P. Y. Polyakov. Atraktornaja nejronnaja set tipa hopfilda

v kachestve metoda bulevskogo faktornogo analiza i nekotoryje ego socialnyje prime-

nenija. In Neurocomputing Paradigm and Society, pages 62–102. Moscow University Press,

2012.

Bibliography 109

[35] A. A. Frolov, D. Husek, and P. Y. Polyakov. Two expectation-maximization algorithms

for Boolean factor analysis. Neurocomputing, 130:83–97, 2014.

[36] A. A. Frolov, D. Husek, P. Y. Polyakov, and H. Rezankova. A comparative study of two

methodologies for binary datasets analysis. Neural Network World, 22(6):565–582, 2012.

[37] A. A. Frolov, D. Husek, P. Y. Polyakov, and V. Snasel. New BFA method based on attractor

neural network and likelihood maximization. Neurocomputing, 132:14–29, 2014.

[38] A. A. Frolov, D. Husek, and P. Yu. Polyakov. Expectation-maximization approach to

Boolean factor analysis. In IEEE International Joint Conference on Neural Networks (IJCNN),

pages 559–566, San Jose, USA, July 2011.

[39] A. A. Frolov, D. Husek, and P. Yu. Polyakov. New measure of Boolean factor analysis

quality. In Adaptive and Natural Computing Algorhitms, part I., volume 6593 of Lecture Notes

in Computer Science, pages 100–109, 2011. 10th International Conference on Adaptive and

Natural Computing Algorithms, Ljubljana, SLOVENIA, APR 14-16, 2011.

[40] A. A. Frolov, D. Husek, and P. Yu. Polyakov. Attractor neural network combined with

likelihood maximization algorithm for Boolean factor analysis. In Advances in Neural

Networks – ISNN 2012, volume 7367 of Lecture Notes in Computer Science, pages 1–10.

Springer, 2012. 9th International Conference on Advances in Neural Networks, Volume

I, Shenyang, China, JUL 11-14, 2012.

[41] A. A. Frolov, D. Husek, and P. Yu Polyakov. Boolean factor analysis by expectation-

maximization method. In Proceedings of the Third International Conference on Intelligent

Human Computer Interaction (IHCI 2011), Prague, Czech Republic, August, 2011, volume 179

of Advances in Intelligent Systems and Computing, pages 243–254. Springer Berlin Heidel-

berg, 2013. 3rd Intelligent Human Computer Interaction (IHCI 2011), Prague, CZECH

REPUBLIC, AUG 29-31, 2011.

[42] A. A. Frolov, D. Husek, H. Rezankova, V. Snasel, and P. Polyakov. Clustering variables

by classical approaches and neural network Boolean factor analysis. In IEEE International

Joint Conference on Neural Networks (IJCNN 2008), pages 3742–3746, Hong Kong, China,

June 2008.

[43] A. A. Frolov, A. M. Sirota, D. Husek, I. P. Muraviev, and P. J. Polyakov. Binary fac-

torization in Hopfield-like neural networks: single-step approximation and computer

simulations. Neural Network Word, 14:139–152, 2004.

[44] A.A. Frolov, D. Husek, I.P. Muraviev, and P.Yu. Polyakov. Boolean factor analysis by

attractor neural network. IEEE Transactions on Neural Networks, 18(3):698–707, 2007.

Bibliography 110

[45] Alexander Frolov, Dusan Husek, and Pavel Polyakov. Estimation of Boolean factor anal-

ysis performance by informational gain. In V. Snasel, P. S. Szczepaniak, A. Abraham,

and J. Kacprzyk, editors, Advances in Intelligent Web Mastering-2, volume 67, pages 83–94.

Springer, 2010. 6th Atlantic Web Intelligence Conference, Prague, Czech Republic, Sep.,

2009.

[46] X. Ge and S. Iwata. Learning the parts of objects by auto-association. Neural Networks,

15(2):285–295, 2002.

[47] R. L. Gorsuch. Factor Analysis. Lawrence Erlbaum Associates, 1983.

[48] V. J. Hodge and J. Austin. Hierarchcal word clustering - automatic thesaurus generation.

Neurocomputing, 48:819–846, 2002.

[49] J. J. Hopfield. Neural network and physical systems with emergent collective computa-

tional abilities. Proceedings of the National Academy of Science USA, 79:2544–2548, 1982.

[50] F. Hoppner, F. Klawonn, R. Kruse, and T. Runkler. Fuzzy cluster analysis. John Wiley &

Sons, New York, 1999.

[51] D. Husek, A. Frolov, P. Polyakov, and H. Rezankova. Neural network fuzzy binary

factorization. In Abstracts of the 3rd IASC World Conference on Computational Statistics and

Data Analysis (CSDA’2005), page 68, Limassol, Cyprus, October 2005.

[52] D. Husek, A. Frolov, P. Polyakov, and V. Snasel. Neural network Boolean factor analysis

and applications. In Proceedings of the 6th WSEAS international conference on Computational

intelligence, man-machine systems and cybernetics (CIMMACS’07), pages 30–35, Puerto de la

Cruz, Spain, December 2007.

[53] D. Husek, A. A. Frolov, P. Polyakov, H. Rezankova, and V. Snasel. Application of neural

network Boolean factor analysis procedure to automatic conference papers categoriza-

tion. In IEEE International Conference on Intelligence and Security Informatics 2007 (ISI 2007),

pages 335–336, New Brunswick, New Jersey, USA, May 2007.

[54] D. Husek, A. A. Frolov, P. Y. Polyakov, and H. Rezankova. Neural network analysis of

Russian parliament voting patterns. In Computer Science and Information Technology (CsIT

2006), pages 328–334, Amman, August 2006.

[55] D. Husek, A. A. Frolov, P. Y. Polyakov, and H. Rezankova. Neural network based Boolean

factor analysis: Efficient tool for automated topic search. In Computer Science and Infor-

mation Technology (CsIT 2006), pages 321–327, Amman, August 2006.

[56] D. Husek, A. A. Frolov, H. Rezankova, V. Snasel, M. Dufosse, and P. Polyakov. Neural

network attempt to nonlinear binary factor analysis of textual data. In Applied Stochastic

Models and Data Analysis (ASMDA 2005), pages 1460–1467, Brest, France, May 2005.

Bibliography 111

[57] D. Husek, A. A. Frolov, H. Rezankova, V. Snasel, and P. Y. Polyakov. Some remarks on

binary data grouping. In DEXA 2008: 19th International Conference on Database and Expert

Systems Application (ETID’08), pages 559–565, Turin, Italy, September 2008.

[58] D. Husek, A. Keprt, H. Rezankova, A. A. Frolov, P. Polyakov, and V. Snasel. Comparison

of different approaches to overlapping clustering of binary variables. In ITAT 2005, Infor-

mation Technologies – Applications and Theory (Ed.: Vojtas P.), pages 55–64, Rackova dolina,

Slovakia, September 2005.

[59] D. Husek, P. Moravec, V. Snasel, A. Frolov, H. Rezankova, and P. Polyakov. Comparison

of neural network Boolean factor analysis method with some other dimension reduction

methods on bars problem. In Pattern Recognition and Machine Intelligence, pages 235–243,

Calcutta, India, December 2007.

[60] D. Husek, P. Moravec, V. Snasel, A. Frolov, H. Rezankova, and P. Polyakov. Testing of

feature extracting methods on bar problem. In Proceedings of the International conference on

Statistics for Data Mining, Learning and Knowledge Extraction Models (IASC’07), pages 1–8,

Aveiro, Portugal, August 2007.

[61] D. Husek, H. Rezankova, V. Snasel, A. Frolov, and P. Polyakov. Neural network nonlinear

factor analysis of high dimensional binary signals. In Signal & Image Technology and

Internet Based Systems (SITIS 2005), pages 86–89, Cameroon, November 2005.

[62] M. Kanehisa, S. Goto, S. Kawashima, and A. Nakaya. The KEGG databases at

GenomeNet. Nucleic acids research, 30(1):42, 2002.

[63] P. R. Kensche, V. Van Noort, B. E. Dutilh, and M. A. Huynen. Practical and theoretical

advances in predicting the function of a protein by its phylogenetic distribution. Journal

of the Royal Society Interface, 5(19):151, 2008.

[64] A. Keprt and V. Snášel. Binary Factor Analysis with Genetic Algorithms. In Proceedings

of 4th IEEE WSTST, pages 1259–1268, 2005.

[65] Aleš Keprt. Algorithms for Binary Factor Analysis. PhD thesis, VŠB – Technical University

of Ostrava, 2006.

[66] Aleš Keprt and Václav Snásel. Binary factor analysis with help of formal concepts. In

International Conference on Concept Lattices and Their Applications, volume 110, pages 90–

101, 2004.

[67] W. Kinzel. Learning and pattern recognition in spin glass models. Zeitschrift für Physik B

Condensed Matter, 60(2):205–213, 1985.

[68] G. A. Kohring. A high-precision study of the hopfield model in the phase of broken

replica symmetry. Journal of Statistical Physics, 59:1077–1086, 1990.

Bibliography 112

[69] P. Kudova, H. Rezankova, D. Husek, and V. Snasel. Categorical data clustering using

statistical methods and neural networks. In Spring Colloquium for Young Researchers in

Databases and Information Sytems, SYRCoDIS’2006, pages 19–23, 2006.

[70] C. Lucchese, S. Orlando, and R. Perego. A unifying framework for mining approximate

top-k binary patterns. IEEE Transactions on Knowledge and Data Engineering, 26(12):2900–

2913, 2014.

[71] J. Lücke and M. Sahani. Maximal causes for non-linear component extraction. The Journal

of Machine Learning Research, 9:1227–1267, 2008.

[72] D. Marr. A Theory for Cerebral Neocortex. Proceedings of the Royal Society of London. Series

B, Biological Sciences (1934-1990), 176(1043):161–234, 1970.

[73] D. Marr. Simple Memory: A Theory for Archicortex. Philosophical Transactions of the Royal

Society of London. Series B, Biological Sciences (1934-1990), 262(841):23–81, 1971.

[74] M R Mickey, P. Mundle, and L. Engelman. Boolean factor analysis. In W.J. Dixon, editor,

BMDP Statistical Software, pages 538–545. University of California Press, Berkeley, CA,

1983.

[75] P. Miettinen, T. Mielikainen, A. Gionis, G. Das, and H. Mannila. The discrete basis

problem. IEEE Transactions on Knowledge and Data Engineering, 20(10):1348–1362, 2008.

[76] P. Moravec, V. Snasel, A. Frolov, D. Husek, H. Rezankova, and P. Polyakov. Image analysis

by methods of dimension reduction. In International Conference on Computer Information

Systems and Industrial Management Applications (CISIM 2007), pages 272–277, Elk, Poland,

June 2007.

[77] R. M. Neal and G. E. Hinton. A view of the EM algorithm that justifies incremental,

sparse, and other variants. Learning in Graphical Models, 89:355–368, 1998.

[78] M. Pellegrini, E. M. Marcotte, M. J. Thompson, D. Eisenberg, and T. O. Yeates. Assigning

protein functions by comparative genome analysis: protein phylogenetic profiles. Pro-

ceedings of the National Academy of Sciences of the United States of America, 96(8):4285–4288,

1999.

[79] P. Polyakov, A. A. Frolov, and D. Husek. Comparison of two neural networks approaches

to Boolean matrix factorization. In Networked Digital Technologies (NDT’09), pages 303–

308, Ostrava, Czech Republic, July 2009.

[80] P. Polyakov, A. A. Frolov, and D. Husek. Expectation-maximization method for boolean

factor analysis. In Workshop of Faculty of Electrical Engineering and Computer Science

(WOFEX 2011), pages 436–441, Ostrava, Czech Republic, September 2011.

Author’s publications 113

[81] P. Y. Polyakov, A. A. Frolov, and D. Husek. Binary factor analysis by Hopfield network

and its application to automatic text classification. In Proc. Neuroinformatics’2006, vol-

ume 3, pages 172–180, Moscow, Russia, January 2006.

[82] E. Ravasz, A.L. Somera, D.A. Mongru, Z.N. Oltvai, and A.L. Barabási. Hierarchical

organization of modularity in metabolic networks. Science, 297(5586):1551, 2002.

[83] H. Rezankova, D. Husek, P. Kudova, and V. Snasel. Comparison of some approaches to

clustering categorical data. In Proc. Computational Statistics (Compstat’06), pages 607–613,

Roma, Italy, August 2006.

[84] V. Snasel, D. Husek, A. Frolov, H. Rezankova, P. Moravec, and P. Polyakov. Bars problem

solving - new neural network method and comparison. In Advances in Artificial Intelligence

(MICAI 2007), pages 671–682, Aguascalientes, Mexico, November 2007.

[85] V. Snasel, P. Moravec, D. Husek, A. Frolov, H. Rezankova, and P. Polyakov. Pattern

discovery for high-dimensional binary datasets. In International Conference on Neural In-

formation Processing (ICONIP 2007), pages 861–872, Kitakyushu, Japan, November 2007.

[86] V. Snasel, J. Platos, P. Kromer, D. Husek, and A. Frolov. On the road to genetic Boolean

matrix factorization. Neural Network World, 17(6):675–688, 2007.

[87] M. W. Spratling. Learning Image Components for Object Recognition. The Journal of

Machine Learning Research, 7:793–815, 2006.

[88] M. W. Spratling and M. H. Johnson. Preintegration Lateral Inhibition Enhances Unsu-

pervisedLearning. Neural Computation, 14(9):2157–2179, 2002.

[89] M. W. Spratling and M. H. Johnson. Exploring the functional significance of dendritic

inhibition in cortical pyramidal cells. Neurocomputing, 52(54):389–395, 2003.

[90] L. L. Thurstone. Multiple factor analysis. Psychological Review, 38:406–427, 1931.

[91] C. J. van Rijsbergen. A theoretical basis for the use of cooccurence data in informatio

retrieval. Journal of Documentation, 33(2):106–119, 1977.

[92] C. Von Mering, R. Krause, B. Snel, M. Cornell, S.G. Oliver, S. Fields, and P. Bork.

Comparative assessment of large-scale data sets of protein–protein interactions. Nature,

417(6887):399–403, 2002.

Author’s publications related to the
topic of the thesis

[1] P. Yu. Polyakov A. A. Frolov, D. Gusek. Bulev factorial analysis by means of attractor

neural network and its some appendices. Nejrokomp’jutery: razrabotka, primenenie, (1):25–

46, 2011.

[2] P. Yu. Polyakov A. A. Frolov, D. Husek. Combined algorithm for boolean factor analysis

based on neural network and likelihood maximization approaches. Nejrokomp’jutery:

razrabotka, primenenie, (3):3–11, 2014.

[3] A. Frolov, D. Husek, and P. Yu. Polyakov. Comparison of seven methods for Boolean

factor analysis and their evaluation by information gain. IEEE Transactions on Neural

Networks, 2015. Published online 07 April (2015).

[4] A. Frolov, P. Polyakov, and D. Husek. Boolean factor analysis by the expectation-

maximization algorithm. In International Conference on Computational Statistics (COMP-

STAT’2010), pages 1039–1046, Paris, France, August 2010.

[5] A. A. Frolov, D. Husek, A. Abraham, P. Y. Polyakov, and H. Rezankova. Bfa and bmf:

What is the difference. In International conference on intelligent systems design and applica-

tions (ISDA 2012), pages 890–896, Kochi, India, November 2012.

[6] A. A. Frolov, D. Husek, I. P. Muraviev, and P. Y. Polyakov. Learning and unlearning in

Hopfield-like neural network performing Boolean factor analysis. In Advances in Machine

Learning I: dedicated to the memory of professor Ryszard S. Michalski, volume 262 of Studies

in Computational Intelligence, pages 501–518. Springer, 2010.

[7] A. A. Frolov, D. Husek, I. P. Muraviev, and P. Yu. Polyakov. Origin and elimination

of two global spurious attractors in Hopfield-like neural network performing Boolean

factor analysis. Neurocomputing, 73(7-9):1394–1404, 2010.

[8] A. A. Frolov, D. Husek, P. Polyakov, and H. Rezankova. New neural network based ap-

proach helps to discover hidden Russian parliament voting patterns. In IEEE International

114

Author’s publications 115

Joint Conference on Neural Networks (IJCNN 2006), pages 6518–6523, Vancouver, Canada,

July 2006.

[9] A. A. Frolov, D. Husek, P. J. Polyakov, and H. Rezankova. Binary factorization of tex-

tual data by Hopfield-like neural network. In Proc. Computational Statistics (Compstat’06),

pages 1035–1041, Roma, Italy, August 2006.

[10] A. A. Frolov, D. Husek, P. J. Polyakov, H. Rezankova, and V. Snasel. Binary factoriza-

tion of textual data by Hopfield-like neural network. In Proc. Computational Statistics

(Compstat’04), pages 1035–1041, Prague, Czech Republic, August 2004.

[11] A. A. Frolov, D. Husek, and P. Y. Polyakov. Recurrent neural network based Boolean

factor analysis and its application to automatic terms and documents categorization.

IEEE Transactions on Neural Networks, 20(7):1073–1086, 2009.

[12] A. A. Frolov, D. Husek, and P. Y. Polyakov. Atraktornaja nejronnaja set tipa hopfilda

v kachestve metoda bulevskogo faktornogo analiza i nekotoryje ego socialnyje prime-

nenija. In Neurocomputing Paradigm and Society, pages 62–102. Moscow University Press,

2012.

[13] A. A. Frolov, D. Husek, and P. Y. Polyakov. Two expectation-maximization algorithms

for Boolean factor analysis. Neurocomputing, 130:83–97, 2014.

[14] A. A. Frolov, D. Husek, P. Y. Polyakov, and H. Rezankova. A comparative study of two

methodologies for binary datasets analysis. Neural Network World, 22(6):565–582, 2012.

[15] A. A. Frolov, D. Husek, P. Y. Polyakov, and V. Snasel. New BFA method based on attractor

neural network and likelihood maximization. Neurocomputing, 132:14–29, 2014.

[16] A. A. Frolov, D. Husek, and P. Yu. Polyakov. Expectation-maximization approach to

Boolean factor analysis. In IEEE International Joint Conference on Neural Networks (IJCNN),

pages 559–566, San Jose, USA, July 2011.

[17] A. A. Frolov, D. Husek, and P. Yu. Polyakov. New measure of Boolean factor analysis

quality. In Adaptive and Natural Computing Algorhitms, part I., volume 6593 of Lecture Notes

in Computer Science, pages 100–109, 2011. 10th International Conference on Adaptive and

Natural Computing Algorithms, Ljubljana, SLOVENIA, APR 14-16, 2011.

[18] A. A. Frolov, D. Husek, and P. Yu. Polyakov. Attractor neural network combined with

likelihood maximization algorithm for Boolean factor analysis. In Advances in Neural

Networks – ISNN 2012, volume 7367 of Lecture Notes in Computer Science, pages 1–10.

Springer, 2012. 9th International Conference on Advances in Neural Networks, Volume

I, Shenyang, China, JUL 11-14, 2012.

Author’s publications 116

[19] A. A. Frolov, D. Husek, and P. Yu Polyakov. Boolean factor analysis by expectation-

maximization method. In Proceedings of the Third International Conference on Intelligent

Human Computer Interaction (IHCI 2011), Prague, Czech Republic, August, 2011, volume 179

of Advances in Intelligent Systems and Computing, pages 243–254. Springer Berlin Heidel-

berg, 2013. 3rd Intelligent Human Computer Interaction (IHCI 2011), Prague, CZECH

REPUBLIC, AUG 29-31, 2011.

[20] A. A. Frolov, D. Husek, H. Rezankova, V. Snasel, and P. Polyakov. Clustering variables

by classical approaches and neural network Boolean factor analysis. In IEEE International

Joint Conference on Neural Networks (IJCNN 2008), pages 3742–3746, Hong Kong, China,

June 2008.

[21] A. A. Frolov, A. M. Sirota, D. Husek, I. P. Muraviev, and P. J. Polyakov. Binary fac-

torization in Hopfield-like neural networks: single-step approximation and computer

simulations. Neural Network Word, 14:139–152, 2004.

[22] A.A. Frolov, D. Husek, I.P. Muraviev, and P.Yu. Polyakov. Boolean factor analysis by

attractor neural network. IEEE Transactions on Neural Networks, 18(3):698–707, 2007.

[23] Alexander Frolov, Dusan Husek, and Pavel Polyakov. Estimation of Boolean factor anal-

ysis performance by informational gain. In V. Snasel, P. S. Szczepaniak, A. Abraham,

and J. Kacprzyk, editors, Advances in Intelligent Web Mastering-2, volume 67, pages 83–94.

Springer, 2010. 6th Atlantic Web Intelligence Conference, Prague, Czech Republic, Sep.,

2009.

[24] D. Husek, A. Frolov, P. Polyakov, and H. Rezankova. Neural network fuzzy binary

factorization. In Abstracts of the 3rd IASC World Conference on Computational Statistics and

Data Analysis (CSDA’2005), page 68, Limassol, Cyprus, October 2005.

[25] D. Husek, A. Frolov, P. Polyakov, and V. Snasel. Neural network Boolean factor analysis

and applications. In Proceedings of the 6th WSEAS international conference on Computational

intelligence, man-machine systems and cybernetics (CIMMACS’07), pages 30–35, Puerto de la

Cruz, Spain, December 2007.

[26] D. Husek, A. A. Frolov, P. Polyakov, H. Rezankova, and V. Snasel. Application of neural

network Boolean factor analysis procedure to automatic conference papers categoriza-

tion. In IEEE International Conference on Intelligence and Security Informatics 2007 (ISI 2007),

pages 335–336, New Brunswick, New Jersey, USA, May 2007.

[27] D. Husek, A. A. Frolov, P. Y. Polyakov, and H. Rezankova. Neural network analysis of

Russian parliament voting patterns. In Computer Science and Information Technology (CsIT

2006), pages 328–334, Amman, August 2006.

Author’s publications 117

[28] D. Husek, A. A. Frolov, P. Y. Polyakov, and H. Rezankova. Neural network based Boolean

factor analysis: Efficient tool for automated topic search. In Computer Science and Infor-

mation Technology (CsIT 2006), pages 321–327, Amman, August 2006.

[29] D. Husek, A. A. Frolov, H. Rezankova, V. Snasel, M. Dufosse, and P. Polyakov. Neural

network attempt to nonlinear binary factor analysis of textual data. In Applied Stochastic

Models and Data Analysis (ASMDA 2005), pages 1460–1467, Brest, France, May 2005.

[30] D. Husek, A. A. Frolov, H. Rezankova, V. Snasel, and P. Y. Polyakov. Some remarks on

binary data grouping. In DEXA 2008: 19th International Conference on Database and Expert

Systems Application (ETID’08), pages 559–565, Turin, Italy, September 2008.

[31] D. Husek, A. Keprt, H. Rezankova, A. A. Frolov, P. Polyakov, and V. Snasel. Comparison

of different approaches to overlapping clustering of binary variables. In ITAT 2005, Infor-

mation Technologies – Applications and Theory (Ed.: Vojtas P.), pages 55–64, Rackova dolina,

Slovakia, September 2005.

[32] D. Husek, P. Moravec, V. Snasel, A. Frolov, H. Rezankova, and P. Polyakov. Comparison

of neural network Boolean factor analysis method with some other dimension reduction

methods on bars problem. In Pattern Recognition and Machine Intelligence, pages 235–243,

Calcutta, India, December 2007.

[33] D. Husek, P. Moravec, V. Snasel, A. Frolov, H. Rezankova, and P. Polyakov. Testing of

feature extracting methods on bar problem. In Proceedings of the International conference on

Statistics for Data Mining, Learning and Knowledge Extraction Models (IASC’07), pages 1–8,

Aveiro, Portugal, August 2007.

[34] D. Husek, H. Rezankova, V. Snasel, A. Frolov, and P. Polyakov. Neural network nonlinear

factor analysis of high dimensional binary signals. In Signal & Image Technology and

Internet Based Systems (SITIS 2005), pages 86–89, Cameroon, November 2005.

[35] P. Moravec, V. Snasel, A. Frolov, D. Husek, H. Rezankova, and P. Polyakov. Image analysis

by methods of dimension reduction. In International Conference on Computer Information

Systems and Industrial Management Applications (CISIM 2007), pages 272–277, Elk, Poland,

June 2007.

[36] P. Polyakov, A. A. Frolov, and D. Husek. Comparison of two neural networks approaches

to Boolean matrix factorization. In Networked Digital Technologies (NDT’09), pages 303–

308, Ostrava, Czech Republic, July 2009.

[37] P. Polyakov, A. A. Frolov, and D. Husek. Expectation-maximization method for boolean

factor analysis. In Workshop of Faculty of Electrical Engineering and Computer Science

(WOFEX 2011), pages 436–441, Ostrava, Czech Republic, September 2011.

Author’s publication 118

[38] P. Y. Polyakov, A. A. Frolov, and D. Husek. Binary factor analysis by Hopfield network

and its application to automatic text classification. In Proc. Neuroinformatics’2006, vol-

ume 3, pages 172–180, Moscow, Russia, January 2006.

[39] V. Snasel, D. Husek, A. Frolov, H. Rezankova, P. Moravec, and P. Polyakov. Bars problem

solving - new neural network method and comparison. In Advances in Artificial Intelligence

(MICAI 2007), pages 671–682, Aguascalientes, Mexico, November 2007.

[40] V. Snasel, P. Moravec, D. Husek, A. Frolov, H. Rezankova, and P. Polyakov. Pattern

discovery for high-dimensional binary datasets. In International Conference on Neural In-

formation Processing (ICONIP 2007), pages 861–872, Kitakyushu, Japan, November 2007.

Author’s publications unrelated to the
topic of the thesis

[1] V. V. Pleshko, A. E. Ermakov, V. P. Golenkov, and P. Yu. Polyakov. Rco at rires 2005. In

Proc. Third Russian information retrieval evaluation seminar (ROMIP’2005), pages 23–39, St.

Petersburg, Russia, September 2005.

[2] V. V. Pleshko and P. Yu. Polyakov. Rco at rires 2008. In Proc. Sixth Russian information

retrieval evaluation seminar (ROMIP’2008), pages 96–107, Dubna, Russia, October 2008.

[3] P. Yu. Polyakov, M. V. Kalinina, and V. V. Pleshko. Research on applicability of thematic

classification methods to the problem of book review classification. In Annual International

Conference “Dialogue” (2012), volume 2, pages 51–59, Naro-Fominsk, Russia, June 2012.

[4] P. Yu. Polyakov, M. V. Kalinina, and V. V. Pleshko. Automatic object-oriented sentiment

analysis by means of semantic templates and sentiment lexicon dictionaries. In Annual

International Conference “Dialogue” (2015), volume 2, pages 44–52, Moscow, Russia, May

2015.

[5] P. Yu. Polyakov and V. V. Pleshko. Rco at rires 2006. In Proc. Fourth Russian information

retrieval evaluation seminar (ROMIP’2006), pages 72–79, Suzdal, Russia, October 2006.

[6] P. Yu. Polyakov, V. V. Pleshko, and A. E. Ermakov. Rco at rires 2009. In Proc. Seventh Russian

information retrieval evaluation seminar (ROMIP’2009), pages 122–134, Petrozavodsk, Russia,

September 2009.

119

Author’s publication 120

Sum
Indexed
by WOS

Indexed
by

SCOPUS

Journal (reviewed) 10 6 7

Book

Chapter in a book 2 1 1

Paper in proceedings 34 14 5

Patent

Research report

Software

by WOS by Google

Citations (including selfcitations) 75 188

H-index 4 7

Table D.1: Publications summary

