
VŠB – Technical University of Ostrava
Faculty of Electrical Engineering and Computer Science

Department of Computer Science

Multiplatform Mobile Application
Development Methodology

Metodika vývoje multiplatformní
mobilní aplikace

2017 Bc. Ľubomír Sokolovský

I would like to thank RNDr. Jaroslav Žáček, Ph.D., my supervisor, for his valuable advice. I
am also very grateful to SDE Software Solutions for enabling me to use their iMac and iPhone,
evaluating and giving feedback to my methodology. Special thanks goes to Ing. Jana Belešová
for her constant support and lending me her Windows 10 Mobile device and accesss to developer
account.

Abstrakt

Táto práca sa snaží vyriešiť problém vyberania najvhodnejšieho vývojového nástroja pre multi-
platformnú mobilnú aplikáciu. Zameriava sa na frameworky umožňujúce všeobecný vývoj apli-
kácií pre Android, iOS a, voliteľne aj, Windows. Práca analyzuje rozhodujúce faktory pri výbere
vývojových nástrojov z teoretického aj praktického hľadiska. Praktická časť analýzy spočíva v
demonštratívnej implementácii prípadov užitia, ktoré sú kritické pri vývoji mobilných aplikácií.
Všetky prípady užitia sú implementované v 3 rozličných nástrojoch - Apache Cordova, React
Native a Xamarin. Táto analýza vyústila v zostavení série metodických krokov, ktoré spre-
vádzajú svojho používateľa procesom výberu najvhodnejšieho mobilného multi-platformového
vývojového nástroja. Metodika bola úspešne overená na skupine existujúcich alebo plánovaných
mobilných aplikácií. Hlavným prínosom tejto práce je jednoduchý, no zároveň veľmi presný spô-
sob ohodnotenia vhodnosti ľubovoľného mobilného multi-platformového frameworku pre takmer
akýkoľvek projekt.

Klíčová slova: multi-platformný, mobilná aplikácia, mobilný vývoj, Android, iOS, Windows,
Apache Cordova, React Native, Xamarin, metodika

Abstract

This thesis tries to tackle the issue of choosing the most suitable development tool for multi-
platform mobile app. It focuses on frameworks enabling general app development for Android,
iOS and, optionally, Windows. The thesis analyses decisive factors in development framework
selection both theoretically and practically. The practical analysis lies in demonstrative imple-
mentation of use cases crucial in mobile app development. All use cases are implemented in
3 distinct frameworks - Apache Cordova, React Native and Xamarin. The analysis resulted in
composing a series of methodological steps which guide its user through the process of selecting
the most suitable mobile multi-platform development tool. The methodology was succesfully
verified on a set of existing or planned mobile apps. The primary benefit of this thesis is a
simple, yet very precise way of evaluating the suitability of an arbitrary mobile multi-platform
framework for almost any project.

Key Words: cross-platform, mutli-platform, mobile app, mobile development, Android, iOS,
Windows, Apache Cordova, React Native, Xamarin, methodology

Contents

List of symbols and abbreviations 10

List of Figures 12

List of Tables 13

1 Introduction 16
1.1 Thesis goals and overview . 17
1.2 Remarks . 17

2 Relevant mobile operating systems 19
2.1 Current situation . 20
2.2 Supported operating systems . 20
2.3 Smartphone OS usage market share . 21
2.4 Smartphone OS sales market share . 21
2.5 Smartphone app stores revenues . 22
2.6 Operating systems targeted by developers . 25
2.7 Tablets . 26
2.8 Conclusion . 27

3 Mobile multi-platform development tools 28
3.1 Multi-platform development approaches . 28
3.2 MBaaS . 31
3.3 Multi-platform development frameworks and tools 31

4 Development tools evaluation 34
4.1 Development tools chosen for evaluation . 34
4.2 Use case definition . 35
4.3 Hardware and software configuration . 37
4.4 Results . 38

5 Methodology 47
5.1 Necessary preconditions . 47
5.2 Methodologically unsuitable projects . 47
5.3 Recommended way of using the methodology . 49
5.4 Primary questions . 55
5.5 Secondary questions . 60
5.6 Tertiary questions . 63
5.7 Supplementary questions . 66

8

6 Methodology verification 69
6.1 FloLogic . 69
6.2 Project W . 73
6.3 PhoneGap Projects . 77
6.4 Sensus . 79
6.5 Methodology feedback . 81

7 Conclusion 83

References 84

Appendix 88

A Overview of studied frameworks 89
A.1 Alpha Anywhere . 89
A.2 Appcelerator . 91
A.3 Appery.io . 93
A.4 Aquro . 95
A.5 Codename One . 97
A.6 Corona Labs . 99
A.7 Embarcadero . 101
A.8 Fuse . 103
A.9 Instant Developer . 105
A.10 Ionic . 107
A.11 Kivy . 109
A.12 Kony . 111
A.13 Monaca (Onsen UI) . 113
A.14 NativeScript . 115
A.15 NeoMAD . 117
A.16 NS Basic . 119
A.17 PhoneGap . 121
A.18 Qt . 123
A.19 React Native . 125
A.20 RubyMotion . 127
A.21 Smartface . 129
A.22 Tabris.js . 131
A.23 Telerik Platform . 133
A.24 ViziApps . 135
A.25 Xamarin . 137

B CD Contents 139

9

List of symbols and abbreviations

2D – 2-dimensional
3D – 3-dimensional
AI – Artificial Intelligence
API – Application programming interface
BLOB – Binary Large OBject
CI – Continuous Integration
CLI – Command-line Interface
CRM – Customer Relationship Management
CSS – Cascading Style Sheets
DB – Database
DevOps – software DEVelopment and information technology OPerationS
DOM – Document Object Model
ERP – Enterprise Resource Planning
GB – GigaByte
GHz – GigaHertz
GPS – Global Positioning System
GUID – Globally Unique Identifier
HAXM – Hardware Accelerated eXecution Manager
HDD – Harddisk Drive
HTML – HyperText Markup Language
IDE – Integrated Development Environment
IL – Intermediate Language
IoT – Internet of Things
IT – Information technologies
JDK – Java Development Kit
JS – JavaScript
MB – MegaByte
MBaaS – Mobile Backend as a Service
MMS – Multimedia Message Services
MVP – Minimal Viable Product
MVVM – Modelview-View-Model (architecture)
NDK – Native Development Kit
NFC – Near Field Communication
OS – Operating system
OTA – Over-the-air
PC – Personal Computer

10

PCL – Portable Class Library
PDA – Personal Digital Assistant
QR (code) – Quick Response (code)
RIM – Research in Motion - BlackBerry operating system
SD (card) – Secure Digital (card)
SDK – Software Development Kit
SMS – Short Message Services
SQL – Structured Query Language
SSD – Solid State Drive
UI – User Interface
UWP – Universal Windows Platform
UX – User Experience
VoIP – Voice over Internet Protocol
WinRT – Windows Runtime
WIP – Work In Progress
WORA – Write Once Run Anywhere
WYSIWYG – What You See Is What You Get
XML – eXtensible Markup Language

11

List of Figures

1 World-wide smartphone sales [28] . 19
2 Regional market shares [40] . 23
3 Average app revenues from individual app stores, per month 24
4 Estimated number of apps in individual app stores. 24
5 Welcome page of the methodology web app . 48
6 Questions page of the methodology web app . 50
7 Recommended way of using the methodology . 51
8 Evaluation process for primary questions . 56
9 Evaluation process for secondary questions . 60
10 Evaluation process for tertiary questions . 63
11 Tertiary questions page of the methodology web app 65
12 Evaluation page of the methodology web app . 66
13 FloLogic architecture . 69

12

List of Tables

1 Smartphone OS usage market share . 21
2 Smartphone OS sales, various reports from [20] 22
3 Regional smartphone sales in 2016 . 22
4 Portion of developers creating apps for individual operating systems 25
5 Primary platform for individual developers . 25
6 Developers creating apps exclusively for particular OS 26
7 Global market share of tablet operating systems [44] 27
8 Official mobile OS development tools . 28
9 Selected multi-platform development tools . 33
10 Apache Cordova - Persistent storage demonstration apps 36
11 Xamarin - Camera and GPS demonstration apps 37
12 Desktop configuration . 37
13 Mobile configuration . 38
14 Development tools configuration . 38
15 4th use case in individual frameworks . 39
16 React Native - Tablet layout optimization . 42
17 Xamarin - Tablet layout optimization on Windows devices 45
18 Evaluation matrix . 52
19 Sample evaluation - step 1 . 52
20 Sample evaluation - step 2 . 53
21 Sample evaluation - step 3 . 53
22 Sample evaluation - step 4 . 54
23 Sample evaluation - step 5 . 55
24 FloLogic - Primary questions . 71
25 FloLogic - Primary questions results . 71
26 FloLogic - Secondary questions . 72
27 FloLogic - Secondary questions results . 72
28 FloLogic - Tertiary questions . 73
29 FloLogic - Tertiary questions results . 73
30 Project W - Primary questions . 74
31 Project W - Primary questions results . 75
32 Project W - Secondary questions . 75
33 Project W - Secondary questions results . 75
34 Project W - Tertiary questions . 76
35 Project W - Tertiary questions results . 76
36 PhoneGap Projects - Primary questions . 77
37 PhoneGap Projects - Secondary questions . 78

13

38 PhoneGap Projects - Tertiary questions . 78
39 PhoneGap Projects - Questions results . 79
40 Sensus - Primary questions . 79
41 Sensus - Secondary questions . 80
42 Sensus - Tertiary questions . 80
43 Sensus - Questions results . 81
44 Alpha Anywhere . 89
45 Alpha Anywhere ctd . 90
46 Appcelerator . 91
47 Appcelerator ctd . 92
48 Appery.io . 93
49 Appery.io ctd . 94
50 Aquro . 95
51 Aquro ctd . 96
52 Codename One . 97
53 Codename One ctd . 98
54 Corona Labs . 99
55 Corona Labs ctd . 100
56 Embarcadero . 101
57 Embarcadero ctd . 102
58 Fuse . 103
59 Fuse ctd . 104
60 Instant Developer . 105
61 Appcelerator ctd . 106
62 Ionic . 107
63 Ionic ctd . 108
64 Kivy . 109
65 Appcelerator ctd . 110
66 Kony . 111
67 Kony ctd . 112
68 Monaca (Onsen UI) . 113
69 Monaca (Onsen UI) ctd . 114
70 NativeScript . 115
71 NativeScript ctd . 116
72 NeoMAD . 117
73 NeoMAD ctd . 118
74 NS Basic . 119
75 NS Basic ctd . 120
76 PhoneGap . 121

14

77 PhoneGap ctd . 122
78 Qt . 123
79 Qt ctd . 124
80 React Native . 125
81 Reat Native ctd . 126
82 RubyMotion . 127
83 RubyMotion ctd . 128
84 Smartface . 129
85 Smartface ctd . 130
86 Tabris.js . 131
87 Tabris.js ctd . 132
88 Telerik Platform . 133
89 Telerik Platform ctd . 134
90 ViziApps . 135
91 ViziApps ctd . 136
92 Xamarin . 137
93 Xamarin ctd . 138

15

1 Introduction

Competition is a natural trait of any market. It offers customers with the possibility to choose
between multiple variants. At the same time, it forces the producers to innovate and outweigh
disadvantages of their products with bonus features.

Just like any other market, this is true also for smartphones and mobile operating systems.
However, the benefits and variety for customers on one hand represent challenges for mobile
app developers on the other. They stand before a difficult decision - to either implement their
application multiple times for each operating system, or stay exclusive to a single platform and
ignore all the others.

Another problem, besides the fragmentation, are the perpetual changes in operating systems
themselves and their market shares. While only few years ago, Symbian was the dominant
platform, since 2010 Android is the king of the smartphone world. Between years 2009-2016
there have been 12 major version changes and 24 API changes for Android. It is similar for
iOS, currently the second strongest mobile OS, with 10 different versions since 2008. While
Android and iOS changed their versions, they remained faithful to their respective development
technologies. This cannot be said of Windows, which from Windows Phone 7 to Windows 10
Mobile swapped several different technologies (XNA, WinRT, Silverlight and UWP).

Implementing the same app over and over again using different languages and APIs is a
boring and tedious task for developers, and a waste of time and money for IT companies. Soon,
solutions and tools allowing development for multiple platforms, while writing the code just
once, began to emerge. As of September 2016, there can be found more than 100 of these
multi-platform development tools for mobile operating systems. There is a common fear that
multi-platform applications are inferior compared to native development. However, according
to several surveys, 81% developers claim multi-platform applications being as good as native
(or even better), while saving 50+% of development time (compared to developing 2-3 native
apps)[14]. However, the same study reveals that majority of multi-platform projects are planned
for short term (up to 3 months of development).

Some of these tools offer code-free programming. Others provider optimization of web ap-
plications for mobile browsers. There are solutions for truly native apps developed with a single
code base, or hybrid apps that are programmed as web apps, but have access to device hard-
ware. And for game developers, there are multiple frameworks and engines for both 2D and 3D
development.

However, choosing the right development tool can be a difficult task. Often, many products
seem to provide the same functionality. The devil is always in the details, and discovering a
missing framework capability in the middle of development process can result in wasting of
several months of work.

16

1.1 Thesis goals and overview

The purpose of this thesis is to create a methodology, that will guide the developers, architects
or managers and help them to find the most suitable development tools, that will fulfil all their
requirements. This ultimate goal will be achieved by reaching several partial sub-goals.

Because there are so many different multi-platform development solutions and not all of
them can be covered, we will make the target group a little narrower. In the first chapters, this
thesis will try to determine which operating systems are still relevant for the multi-platform
development. We will analyze the global mobile operating systems market, smartphone sales,
application revenues and developers’ focus.

After that we will take the relevant operating systems and focus only on multi-platform
development tools which enable creating apps for the most used mobile operating systems.
Since we want to focus on the possibility of using device hardware and native API, we will
ignore all web-based solutions and game engines. The thesis will omit also all tools which do not
enable general development options (e.g. tools focused only on a single company or activity).

From the products which passed the filter, we will pick a few ones and test their usability
on a couple of pre-defined use cases. The thesis will discuss and compare the implementation
details, strengths, weaknesses and limitations of individual development tools. The results of
these implementations, as well as theoretical research, will be helpful in establishing a set of
factors crucial in the creation of the resulting methodology.

The methodology itself will consist of several parts. The first part will validate projects and
requirements, to which the methodology is relevant. The second part will be the core of the
methodology, helping the user determine the right multi-platform development tool. The last
part will contain suggestions for additional research which can be performed by the user if the
methodological results were indefinite.

As soon as the methodology is designed, it will be subjected to a series of real-world projects.
The results produced by the methodology will be compared with real implementation or expected
results. Finally, feedback to the methodology and its benefits will be assessed.

1.2 Remarks

The reader may be familiar with the term “cross-platform” development. This term is inter-
changeable with “multi-platform” [9], which is used in this thesis. Both cross-platform and
multi-platform software development refer to the process of creating a piece of software that can
be run on multiple platforms.

Considering the Windows operating system, Microsoft had several products for mobile de-
vices. From 2000 to 2010 they delivered several versions of the Windows Mobile product line.
It was succeeded by Windows Phone 7, 8 and 8.1. In 2015, Microsoft introduced their Windows
10 operating system with common core for desktop, tablet, smartphone and IoT development
[48]. The version for smartphones is called Windows 10 Mobile [49], similar to the old product

17

line from the previous decade, although being an iteration of Windows Phone 8.1. To avoid long
and confusing names and distinguish the mobile and desktop versions, we will call the Microsoft
operating system for smartphones simply Windows. In a more narrow context, under Windows
we will understand Windows 10 Mobile and the previous version, Windows Phone 8.1, which
has forward-compatible applications [6]. Regarding tables and charts, if not stated otherwise,
the data are presented for the year 2016.

18

2 Relevant mobile operating systems

In order to create a methodology for choosing the right mobile multi-platform development
tool we first need to specify which platforms will be targeted. Throughout the time there have
been many more or less successful mobile operating systems. The trend shifts in mobile market
are one of the most dynamic compared to other market types. This is caused mainly by two
following factors:

1. The mobile market is very young. Mobile phones became commercially available to the
wide public only about 30 years ago, in the late 1980s and early 1990s.

2. They became increasingly popular, making them an interesting technology for development
and investing, offering high profit.

Figure 1: World-wide smartphone sales [28]

By the end of millennium, mobile phones were almost in every family in the western hemi-
sphere [25]. However, they were still used mainly for telephony and sending SMS, with occasional
MMS in the first years of 2000s. There were only few devices, which tried to combine mobile
phones with PDAs - small personal computers, targeted mainly for business and enterprise en-
vironments. They were running on operating systems such as Palm OS, BlackBerry OS and
Windows CE, which later evolved into smartphone operating systems.

These hybrids of mobile phones and PDAs were the first predecessors of today’s smartphones.
Probably, the most known series are Nokia 9000 Communicator devices. In 2000, Ericsson

19

released E380, which was the first device marketed as “smartphone”. It was also the first device
running Symbian OS, the dominant mobile operating system until 2010.

Several other companies have seen the potential of these hybrid devices, which combined
mobility, telephony, computing power and allowed connection to the ever-growing Internet.
Soon, Symbian, Palm, BlackBerry and Windows Mobile got new rivals. It was iOS in 2007,
Android in 2008 and Bada in 2009. These new players shattered the mobile market - and two
of them even surpassed the old operating systems.

Today, the situation is very different than it was ten years ago. Symbian OS, Palm OS and
Bada are all discontinued projects. BlackBerry OS (known as RIM) is at the brink of existence.
Windows Mobile was replaced by Windows Phone, but has lost a large portion of the market.
The dominant roles are held by iOS and Android.

2.1 Current situation

Specifying, which operating systems are relevant to our methodology is not a trivial task, if
we want the methodology to be accurate also for years to come. Yet, there are several factors,
which may help us determine the trends to come:

1. Is the OS still officially supported?

2. What is the current market share of active users?

3. What are the market shares of the sales?

4. What are the revenues for developing applications for a particular OS?

5. How many developers support the OS?

Answering these questions will help us assign priority to individual smartphone platforms.

2.2 Supported operating systems

As of the August 2016, the following smartphone operating systems are still being developed
and supported:

• Android (with multiple modifications, such as Cyanogen, Fire OS or MIUI)

• BlackBerry 10 (RIM OS)

• Firefox OS

• H5OS

• iOS

• Sailfish OS

20

• Tizen

• Ubuntu Touch OS

• Windows 10 Mobile (previously Windows Phone 8.1)

2.3 Smartphone OS usage market share

Table 1 shows the percentage of smartphone users for each smartphone OS (for the year 2016)
[29].

Table 1: Smartphone OS usage market share

Platform Market share (%) Devices (approximate, in millions)

Android 65.33% 1371.93
iOS 27.8% 583.8
Windows 2.64% 55.44
BlackBerry 1.18% 24.78
Symbian 1.15% 24.15
Other 1.9% 39.9

The approximate number of active devices is based on the figure that there is about 2.1
billion smartphones in use worldwide [33]. With more than a billion active devices, Android
is clearly the most used mobile operating system. iOS is also very strong, having more than
a quarter of the market share. The other platforms are far behind. Windows users are just a
tenth compared to Apple’s iPhone and iPad users. The portion BlackBerry’s RIM users is just
slightly above 1%. Symbian, having a similar share although being discontinued, is still used by
more than 20 million users.

2.4 Smartphone OS sales market share

The smartphone sales market share can help us predict the future growth or decline of a certain
platform. As seen in Figure 1 earlier in this chapter, there was a dramatic shift in 2010 and
2011, when Android surpassed Symbian in the percentage of sold smartphones.

By the end of 2013, Symbian and Bada were pronounced discontinued. Windows Mobile
transformed to Windows Phone in 2010. However, the transformation was not very successful.
Windows Phone’s sales peaked at 3.2% in 2013 and have been decreasing ever since. Compared
to the 12% market share of Windows Mobile in 2007, this situation looks very bleak for Microsoft.

Even worse, however, are the numbers for another former major smartphone OS. Black-
Berry’s RIM had almost 20% market share in 2009. Now, for two years its sales have dropped
below 1%. iOS on the second place has its sales market share fluctuating around 15%, but there
is a large gap between the second and the first place. Android, now with stunning 84.1% of all
smartphone sales is the major force in the industry.

21

Table 2: Smartphone OS sales, various reports from [20]

Year RIM Symbian iOS Android Bada Windows Other

2016 0.19% - 14.78% 84.1% - 0.7% 0.23%
2015 0.37% - 16.26% 80.52% - 2.47% 0.38%
2014 0.6% - 15.4% 80.7% - 2.8% 0.5%
2013 1.9% 0.1% 15.6% 78.4% 0.2% 3.2% 0.6%
2012 5% 4.2% 19.1% 66.4% 2.3% 2.5% 0.5%
2011 10.9% 18.74% 18.92% 46.53% 2.01% 1.65% 1.21%

Table 3: Regional smartphone sales in 2016

% Android BlackBerry iOS Windows Other

USA 58.2 0.1 39.1 2.6 0
Mexico 90.5 0.7 5 2.6 1.2
Brazil 92.4 0 3.3 4.1 0.1
Argentina 83.5 3.4 0.9 9.1 3.2
UK 52.6 0.2 38.6 8.6 0
Germany 74.2 0.6 19.3 5.9 0.1
France 71.8 0.5 19.3 7.8 0.5
Spain 87.8 0 11.4 0.8 0
Italy 78.1 0.2 14.4 7.2 0.1
Russia 71.2 0.6 14.8 10.6 2.7
China 73.9 0 25 0.9 0.3
Japan 48.7 0 50.3 0.5 0.5
Australia 52.6 0.2 41.2 5.4 0.6
World 84.1 0.19 14.87 0.7 0.23

Yet, the raw sales percentages may not necessarily correspond to the change of user base
in absolute numbers. There is the possibility that Android users are buying new devices more
often compared to iOS or Windows users, resulting in higher sales. But it definitely shows the
trends whether a certain platform is experiencing its rise or fall.

For certain businesses, the global data may not be relevant, since regionally the sales per-
centages differ substantially.

2.5 Smartphone app stores revenues

The sheer numbers of mobile platform users or device sales is one thing. But many developers
- and almost all businesses - are motivated by something else entirely. Money may be a very
decisive factor in choosing, which platforms will be targeted and which will be omitted.

For some time now, it is common knowledge that Android users are not as willing to pay
for apps as their iOS colleagues [31]. This has been true also in recent years. Although the

22

Figure 2: Regional market shares [40]

number of downloaded apps in Google Play is twice as high compared to Apple’s App Store,
iOS is creating 70% more revenue compared to Android [24].

These data are backed also by a survey performed by InMobi [22]. While on average an
Android developer1 makes $4900 per month, an iOS developer earns $8100. However, there is
a much more interesting discovery made by the survey. Developers targeting Windows earn the
most - on average $11400 per month.

The article explains this by the small amount of apps found on Windows Store. Smaller
market means less competition and this has dual effect on the market. The discoverability
factor of your application is much higher and the chance there will be a free alternative is much
smaller. With no competition, a developer is free to increase the cost of an application [32].

However, some [17] suggest the survey numbers may be skewed due to smaller sample of
Windows developers. Even if the Windows monthly revenue is not accurate, the numbers make
it still a very interesting platform. This cannot be said of other platforms. From the ones not
discontinued, BlackBerry is the strongest one. However, its revenues do not figure in many
recent surveys. In older articles, BlackBerry app development seems to be the least rewarding
[34].

1The survey does not distinguish between individual developers, developer groups or companies - all three are
represented by the term "developer"

23

Figure 3: Average app revenues from individual app stores, per month

Figure 4: Estimated number of apps in individual app stores.

24

Table 4: Portion of developers creating apps for individual operating systems

Q1 2014 Q3 2014 Q1 2015 Q3 2015

Android 71% 70% 71% 71%
BlackBerry 14% 11% 13% unavailable
iOS 55% 51% 54% 51%
Windows 26% 28% 30% 27%

Table 5: Primary platform for individual developers

Q1 2014 Q3 2014 Q1 2015 Q1 2016

Android 35% 40% 40% 41%
BlackBerry 3% 2% 2% 1%
iOS 38% 38% 37% 39%
Windows 4% 7% 8% 9%
Web & others 20% 13% 13% 11%

2.6 Operating systems targeted by developers

There is one more factor that may decide about the future of a mobile operating system, and that
is the number of developers creating new apps. A rich and healthy application store environment
may help to attract new customers.

As we have seen in figure 4, both Google Play and Apple App Store are very rich application
markets. The numbers exceeding 2 million may even be discouraging for some developers, since
they present both low discoverability and high competition. This can be vastly different in
Windows and Amazon Stores, where the numbers are smaller by 2/3. For BlackBerry, the
number is even smaller. And unlike other stores, BlackBerry World does not seem to grow with
a comparable rate [5].

So, how many developers create apps for the individual operating systems? According to
VisionMobile [39] more than two thirds develop for Android. About one half creates applications
for iOS and only one quarter for Windows.

As it seems, part of developers is slowly abandoning the mobile web apps development and
choosing one of the three dominant platforms as their primary. It is interesting that the number
of developers having Windows as their primary platform is almost the same as the number
of developers targeting Windows exclusively. And even though there is much more developers
creating apps for Android compared to iOS, the number of developers claiming both operating
systems as their primary is roughly the same.

When put in relation with the market shares and revenues, we can get some interesting data.
Although Apple App Store is producing 70% more revenue than Google, only 12% developers
create iOS exclusive apps, compared to 28% Android exclusives. Android beats iOS also in
the number of developers picking it as primary platform and overall number of developers. It

25

Table 6: Developers creating apps exclusively for particular OS

Android iOS Windows

28% 12% 8%

does not seem probable that developers and IT companies would favor a larger user base, which
produces smaller profit. However, there might be other factors discouraging developers from
targeting iOS:

• ObjectiveC is more complex and difficult to learn, compared to Java (this might change
with the introduction of Swift)

• iOS can be built only on MacOS devices (Android apps can be developed on MacOS,
Windows and Linux)

• Publishing apps on Apple App Store is more complex and expensive compared to publish-
ing on Google Play

Another interesting pair to compare is BlackBerry and Windows. Both have small user bases
and low sales. But while BlackBerry has small revenues and only 1% of developers targeting
it as primary platform, Windows has the highest revenues and 9% of developers targeting it
as primary platform and 27% developing also Windows apps. This can be seen also on their
app stores - Windows Store has 3-times more applications than BlackBerry World and is still
growing, while the latter stagnates for several years. With Windows 10 unifying the development
for desktop, tablet and mobile, the numbers can grow even faster and eventually, it might be
the developers who will save the Windows mobile platform.

2.7 Tablets

So far the thesis has been concerned mainly by smartphones. Yet, there is another major
group of mobile devices - tablets. In the current market, the lines between individual device
categories is often blurred. Between smartphones and tablets there are phablets and the gray
zone between tablets and notebooks is composed of netbooks, ultrabooks and tablets with
detachable keyboard. Moreover, with the introduction of Continuum for Windows [47], it is
hard to tell whether there is a border at all.

Yet, the development environment for iOS distinguishes between apps for iPhone and iPad
[23] and also Android has special guidelines for adjusting apps for tablets [41]. Therefore, let us
take a look at the OS market shares of tablets as well.

Inferring from smartphone market shares, it is no surprise that Android is the most used
operating system, followed by iOS and Windows respectively. BlackBerry PlayBook does not
figure in the statistics at all. However, very interesting is Windows on tablets compared to

26

Table 7: Global market share of tablet operating systems [44]

2013 2014 2015 2016

Android 62.36% 67.33% 67.4% 66.2%
iOS 33.93% 27.57% 23.9% 22.4%
Windows 3.5% 5.09% 8.6% 11.3%

smartphones. While the Windows smartphone share was below 3% and decreasing, in tablet
world Windows is on the rise. It is estimated, that by 2020 Windows will have almost 20%
of the market share, similar to iPads [51]. Already now, Windows is the dominant operating
system, when it comes to 2in1 devices, like detachable tablets [16]. With the introduction of
the Windows universal platform development paradigm, Windows starts to be supported also
by tools, which had not taken it into consideration before [13].

2.8 Conclusion

Based on the previous factors, we can filter out three mobile operating systems, which will
be relevant to our methodology - Android, iOS and Windows. The support of two of them -
Android and iOS - will be a crucial factor, when selecting suitable development tools.

Android has clearly the largest market share, both for smartphones and tablets. With the
exception of Japan, it has also the highest sales, biggest app store and is targeted by the largest
portion of developers. iOS has less than a half of Android’s smartphone market share, and even
smaller numbers for tablets and future sales. Still, it takes up 1/4 of the market, is targeted by
more than half of the developers and Apple App Store has 70% higher revenues than Google
Play.

Windows is a debatable operating system. In smartphone world, it has low market share
and sales below 1%. However, it has the highest relative revenues, has growing tablet market
share and more than 25% developers create apps for Windows Store as well. Moreover, around
36% of multi-platform tool users wish their tool to support Windows development as well [14].
Therefore, we will not omit development tools that do not support Windows. Yet, for those
that do, we will compare Android and iOS capabilities with Windows as well.

There are two more operating systems - BlackBerry and Symbian - that have around 1%
share of smartphone users. Although these OSs may be interesting for some niche markets,
the thesis will not consider them as primary points of interest. Symbian is a discontinued
project and BlackBerry seems to be transforming into a hardware company, producing Android
devices. Occasionally, these platforms may be referred in relation with individual multi-platform
development tools.

27

3 Mobile multi-platform development tools

For each software platform there exists one or two official tools, languages, APIs and supporting
software making up a development stack. And then there exists a ton of various modifications,
customizations, frameworks and corporate tools to enhance and speed up the development for
a narrow range of implementation problems.

The same is true for mobile development. The official development tools [45] can be found
in table 8.

Table 8: Official mobile OS development tools

Platform IDE Language User interface Desktop devel-
opment

App market

Android Android
Studio

Java XML Linux, macOS,
Windows

Google Play

BlackBerry
(RIM)

Momentics C++ Qt & QML Linux, macOS,
Windows

BlackBerry
World

iOS XCode ObjectiveC ObjectiveC or
Cocoa Pods

macOS Apple iTunes

Windows Visual Stu-
dio

C# XAML Windows Windows
Store

That were the official tools, initially created by the owner companies to enable developers
create apps for their respective platforms. But already now, things start to get complicated.
You can create C++ apps also for Android and Windows. And, although you will need to
implement an Objective C wrapper, you can create C++ libraries for iOS, as well.

It seems, we have found the perfect cross-platform tool. As the reader will learn later, C++
can really be used for cross-platform development, but it is not that straightforward. The C++
support for Android and iOS is limited. And each platform has a different application lifecycle,
different hardware peripheries, different APIs and libraries. In the end, developing in C++
would result in developing 4 different applications - but in a much more difficult way.

In the table 8, there is one more language known for its “multiplatformicity” - Java. However,
its “Write once, run anywhere” is not so true in the mobile world. While BlackBerry was forced
by its declining market share to support Android apps written in Java, iOS and Windows are
not so supportive. Yet, even for Java there are tools which enable it to spread even to those
platforms. So, let us discover those cross-platform development options up close.

3.1 Multi-platform development approaches

As we have seen above, there is no common development tool for all mobile platforms. Even
if we ignored the differences in programming languages, there are still various paradigms in
application lifecycle, access to native APIs, interactions between processes, etc.

28

For many companies - or individual developers - it is too expensive to have an expert for each
platform and each language. They have to struggle, to either omit certain platform, or learn new
skills for each OS. However, certain aspects of every mobile application can be abstracted and
standardized. And this is where multi platform development tools come into play. They take
a single language, single development tools and abstract application aspects across all mobile
operating systems to create a unified code based. The level of abstraction is a crucial factor
which can help us differentiate between individual multiplatform tools. If the level of abstraction
is high, we get a “Write once, run anywhere” approach, but lose the control over the specifics
of individual platforms. If the level of abstraction is lower, we can access the platform specific
features, but we have to implement them individually and the shared code base is smaller.

There exist multiple ways how to divide and categorize multi-platform development tools.
Research2guidance [14] classifies multi-platform tools according to how the app is created into
following classes: Web app toolkits, App factories, Cross-platform integrated development envi-
ronments, Cross-platform integrated development environments for Enterprise, Cross-platform
compilers, Cross-platform services. Silva’s division [42] is a bit different: App factory, Web-to-
native wrapper, Runtime and Domain-specific language.

Probably the best known division is into following 3 categories [10] [26] [45]:

• Native apps - mobile applications that are installed on the device, executed by the OS and
have full access to native APIs and sensors.

• Web apps - HTML, CSS and JavaScript web apps accessed from the mobile browser.
They do not have to be installed, but have no access to native APIs or sensors (with the
exception of camera and file system).

• Hybrid apps - web apps that are bundled within a customized web view container. Through
this web container they are able to access the native APIs and sensors. The app has to be
installed, but provides all benefits of a web app.

However, this categorization does not distinguish between truly native approach and tools
that mimic native behaviour with custom runtimes, virtual machines or cross-compilation [15].
Therefore, this thesis uses following categories: mobile web apps, hybrid apps, interpreted apps
and cross-compiled apps. [11][2][18]. In [12], Nielsen introduces a fifth approach - source trans-
lation, or transpiling. However, this last approach is usually used in combination with one of
the previous approaches.

3.1.1 Mobile web apps

It is often stated by many developers, that the only true multi platform development is possible
only via standard web technologies - HTML, CSS and JavaScript. It is true that all smartphones
have a web browser capable of displaying web pages and apps. Mobile web apps are exactly that
- classic web apps adapted for a mobile browser. However, each browser can render the web app

29

in a different manner, resulting in inconsistent user experience. Moreover, the application can
be slow, depending on the connection speed and browser interpretation capabilities. Plus, there
is very restricted, or no connection to the native APIs and hardware tools.

3.1.2 Hybrid applications

Hybrid apps try to minimize the problems of web apps, while benefiting from their strengths.
They wrap the JavaScript (and HTML + CSS) application in a lightweight native wrapper,
most often a webview stripped of almost all functionality. Unlike mobile web apps, hybrid
applications are available also offline and have much better access to native APIs, interfaces and
peripheries. However, the native functionality may differ for each OS. The application is still in
a web browser, which drastically decreases its performance. Plus, the nature of JavaScript does
not allow to use multiple threads. Also, hybrid applications do not have access to native UI.
A drawback for some may be a benefit to others - the application will look the same on each
operating system.

3.1.3 Interpretation

Interpreted apps utilize a custom runtime environment or virtual machine (like JavaScript en-
gine or Java Virtual Machine), while interfacing with the native platform at the same time.
Interpreted apps are written predominantely in JavaScript, similar to mobile web apps and hy-
brid apps. However, they are not executed in a web browser, so there is no sand-box limitation
and no HTML DOM. As the name suggests, the code is directly interpreted by an included
JavaScript engine. Access to native APIs and sensors is almost unlimited. Various tools provide
various UI rendering techniques - some use native UI elements (like Appcelerator and Native-
Script), others provide a platform-agnostic unified UI (e.g. Codename One and React Native).
Performance-wise, interpreted apps are in between hybrid and cross-compiled apps. However,
they allow faster protoryping process, since updating code does not require a build process.

3.1.4 Cross-compilation

To the developer, creating a cross-compilation or interpreted application may seem very similar.
However, cross-compilation is a much more complicated process. Cross-compilation describes
the practice of developing an app using platform-agnostic API or programming language. The
cross-compiler transforms the code into native platform-specific executable apps (or libraries).
While some tools (e.g. Kivy or Qt) apply this process to all layers - from data layer to UI - re-
sulting in a true WORA approach, others allow more platform-specific access (like RubyMotion
or Xamarin). Cross-compiled apps have performance closest to truly native apps. Due to com-
plicated process of cross-compilation and OS differences, some tools combine cross-compilation
with interpretation (e.g. Mono.Android interprets code from .NET libraries).

30

3.1.5 Source translation

The last approach, source translation is based in translating one high-level programming lan-
guage into another. The app is then run from the platform-specific programming language.
Similar to cross-compilation and Virtual Machines, the advantages of this technique is the na-
tive performance, native UI and almost unlimited access to native API. However, no framework
uses pure source translation approach. Rather, it is combined with other approaches - hybrid,
interpreted or cross-compiled - where only part of code is translated.

3.2 MBaaS

For many businesses the use case of an internal company application is often the same - to collect
inputs, store them, and to perform various analyses, display data and notify employees when
necessary. This requires a database server, or other cloud storage, web api, web server, and
often both a mobile and web application. To implement the complete work flow correctly and
efficiently a whole group of software engineers, developers and coders is needed. Many compa-
nies would need to outsource development of such project, or hire several freelance developers.
Further costs connected with support services and the need to reveal company secrets to 3rd
parties are all risks that many are not willing to undertake.

For these purposes, complex solutions known as Mobile Backend as a Service (MBaaS)
began to emerge. An MBaaS allows the design and development of a database, web api, mobile
and web app in a single tool. These tools often provide visual programming, with occasional
customization of code in JavaScript, or another scripting language.

Depending on the MBaaS provider, some tools allow integration with an existing backend,
creating only a bridge to the client application and adding integration to social networks. The
mobile applications created with an MBaaS are usually mobile web apps or hybrid apps. Most
MBaaS services are commercial, with limited open source support.

3.3 Multi-platform development frameworks and tools

As mentioned in earlier chapters, as of 2016, there exists more than a hundred different tools
and services for mobile multi-platform development. A crucial factor of this thesis, however, is
the focus on native API usage. Thus, a lot of these tools are not relevant for further discussion.
Here is the list of all criteria that a tool must pass in order to be investigated further. Each
criterion contains a short description, why is it important, and a few examples of tools that did
not pass.

1. The tool is not discontinued. For obvious reasons, only frameworks and platforms
that are still supported and developed will be considered. A discontinued project may
be interesting for experimental purposes, but its use in production is highly unlikely, and
questionable. Examples: MoSync, RoboVM, WidgetPad

31

2. At least Android and iOS are supported. Since Android and iOS are the two
dominant players in the smartphone world, any multi-platform tool must support at least
these two operating systems. The support for Windows is advantageous, but optional.
Examples: AML, Appinventor, Java ME, Kallipso

3. The tool is not game-centric. Many game frameworks work seamlessly across multiple
operating systems. However, they neither intend, nor are able to use the native interfaces.
Examples: Marmelade, Unity, Wave

4. General app development is possible. This may be considered an extension of the
previous criterion. The tools must allow development of almost any kind of mobile applica-
tion. All tools bound to a particular business will be rejected. This includes also all MBaaS
solutions which do not allow server-less implementation of mobile application. Examples:
appMobi (mobile security), Appticles (publishing), i-exceed (banking), Pegasystems (cus-
tomer engagement), and rejected MBaaS tools (AnyPresence, AppGyver, Kinvey, Mobile
Frame, MooFWD)

5. The tool must allow access to most used native APIs. Access to the camera, GPS,
accelerometer, gyroscope, media, file system and local database must be granted. This
criterion eliminates all mobile web app frameworks, since their access is limited by the
rendering browser. Examples: AppPress, Dojo, Bootstrap Mobile, jQuery Mobile, Sencha
Touch

The complete table of all mobile multi-platform development tools which passed all criteria
can be found in table 9. Out of more than 100 tools, only 25 fulfilled all necessary criteria. More
information about the rejected tools can be found in [12].

As the reader can see, the table still feature several development tools using the web appli-
cation approach, altough it was said, those tools will be removed. This is due to the fact that
some frameworks allow the developers to create various output applications, e.g. both hybrid
and web apps.

Some MBaaS providers allow creating offline apps - their tools have been added to the table.
They can be easily distinguished by the word "yes" in the MBaaS column. Similarly, all tools
based or supporting Apache Cordova builds and plugins have the word "yes" in the Cordova
column.

Naturally, all tools support app development for Android and iOS. It is worth noting that
more than a half supports also Windows mobile development, with 3 more planning to do so
in the near future [50] [30] [38]. BlackBerry support is much sparses, with only 4 tools fully
supporting RIM builds. 3 others have partial or unofficial BlackBerry support.

It is clear that the most popular programming language is JavaScript. Most tools take either
hybrid or interpreted approach. Only a handful of them are cross-compiled.

32

Ta
bl

e
9:

Se
le

ct
ed

m
ul

ti-
pl

at
fo

rm
de

ve
lo

pm
en

t
to

ol
s

Pr
od

uc
t

La
ng

ua
ge

A
pp

ro
ac

h
M

B
aa

S
A

pa
ch

e
C

or
do

va
W

in
do

w
s

B
la

ck
B

er
ry

A
lp

ha
A

ny
w

he
re

C
od

e-
fr

ee
,J

av
aS

cr
ip

t
H

yb
rid

Ye
s

Ye
s

N
o

N
o

A
pp

ce
le

ra
to

r
Ja

va
Sc

rip
t

In
te

rp
re

te
d

Ye
s

N
o

Ye
s

N
o

A
pp

er
y.

io
C

od
e-

fr
ee

,J
av

aS
cr

ip
t

H
yb

rid
,W

eb
ap

ps
Ye

s
Ye

s
Ye

s
N

o
A

qu
ro

Ja
va

Sc
rip

t
H

yb
rid

Ye
s

Ye
s

N
o

N
o

C
od

en
am

e
O

ne
Ja

va
In

te
rp

re
te

d
N

o
N

o
Ye

s
Ye

s
C

or
on

a
La

bs
Lu

a
C

ro
ss

-c
om

pi
le

d
N

o
N

o
Ye

s
N

o
Em

ba
rc

ad
er

o
C

+
+

,D
el

ph
i

C
ro

ss
-c

om
pi

le
d,

W
eb

ap
ps

N
o

N
o

Ye
s

Pa
rt

ia
lly

Fu
se

Ja
va

Sc
rip

t
In

te
rp

re
te

d
N

o
N

o
N

o
N

o
In

st
an

t
D

ev
el

op
er

C
od

e-
fr

ee
,C

#
,J

av
a

H
yb

rid
Ye

s
N

o
Ye

s
N

o
Io

ni
c

A
ng

ul
ar

JS
,J

av
aS

cr
ip

t
H

yb
rid

N
o

Ye
s

Ye
s

U
no

ffi
ci

al
su

pp
or

t
K

iv
y

Py
th

on
C

ro
ss

-c
om

pi
le

d,
H

yb
rid

N
o

N
o

Ye
s

N
o

K
on

y
C

od
e-

fr
ee

,J
av

aS
cr

ip
t

In
te

rp
re

te
d,

W
eb

ap
ps

Ye
s

N
o

Ye
s

O
nl

y
w

eb
ap

ps
M

on
ac

a
Ja

va
Sc

rip
t

H
yb

rid
Ye

s
Ye

s
Ye

s
N

o
N

at
iv

eS
cr

ip
t

A
ng

ul
ar

JS
,J

av
aS

cr
ip

t
In

te
rp

re
te

d
N

o
N

o
Ea

rly
ac

ce
ss

N
o

N
eo

M
A

D
Ja

va
C

ro
ss

-c
om

pi
le

d
N

o
N

o
Ye

s
Ye

s
N

S
B

as
ic

B
A

SI
C

,J
av

aS
cr

ip
t

H
yb

rid
N

o
Ye

s
O

nl
y

as
w

eb
ap

p
N

o
Ph

on
eG

ap
Ja

va
Sc

rip
t

H
yb

rid
N

o
Ye

s
Ye

s
Ye

s
Q

t
C

+
+

C
ro

ss
-c

om
pi

le
d

N
o

N
o

Ye
s

Ye
s

R
ea

ct
N

at
iv

e
R

ea
ct

JS
,J

av
aS

cr
ip

t
In

te
rp

re
te

d
N

o
N

o
Pl

an
ne

d
N

o
R

ub
yM

ot
io

n
R

ub
y

C
ro

ss
-c

om
pi

le
d

N
o

N
o

N
o

N
o

Sm
ar

tf
ac

e
C

od
e-

fr
ee

,J
av

aS
cr

ip
t

In
te

rp
re

te
d

Pa
rt

ia
lly

N
o

N
o

N
o

Ta
br

is.
js

Ja
va

Sc
rip

t
In

te
rp

re
te

d
N

o
Ye

s
Ye

s
N

o
Te

le
rik

Pl
at

fo
rm

A
ng

ul
ar

JS
,J

av
aS

cr
ip

t
H

yb
rid

,W
eb

ap
ps

N
o

Ye
s

Ye
s

N
o

V
iz

iA
pp

s
C

od
e-

fr
ee

,J
av

aS
cr

ip
t

H
yb

rid
,W

eb
ap

ps
Pa

rt
ia

lly
N

o
N

o
N

o
X

am
ar

in
C

#
C

ro
ss

-c
om

pi
le

d
N

o
N

o
Ye

s
N

o

33

4 Development tools evaluation

Already now we are able to distinguish several decisive criteria to choose a development tool for
multi-platform mobile applications. The supported operating systems, programming languages,
price, licencing, etc. However, to determine also other criteria, not visible on the first sight,
further investigation needs to be done. We will pick a few development tools from previous
chapter for evaluation and implement several use cases in them.

4.1 Development tools chosen for evaluation

To test the differences between individual tools, the most popular tool2 from each build approach
was chosen. Xamarin, representing the cross-compiled group, serves as a reference framework,
due to author’s previous experience with it. The largest group, hybrid apps, will be represented
by its most known member - Apache Cordova. From tools using interpretation, React Native is
on the rise.

4.1.1 Xamarin

Xamarin is a software company producing a mobile multi-platform development tool of the same
name. It was established in May 2011 and acquired by Microsoft in February 2016. Xamarin
(the platform) allows developers to code in C# for Android, iOS and Windows. Developers
can use the Visual Studio IDE on Windows or Xamarin Studio on both Windows and MacOS.
However, only Android applications can be built on both operating systems. To create an iOS
application, developer needs a Mac device to perform the build. Likewise, Windows (Phone)
app can be developed only on a Windows (Desktop) machine.

On iOS, Xamarin compiles Ahead-of-Time to native assembly, while on Android there is
an intermediate compilation to IL code [27]. There are in fact two ways an application can
be created. The classical approach allows sharing common business logic in a PCL (Portable
Class Library - a C# library for multiple platforms). However, the individual user interfaces
and platform-specific behaviour has to be implemented for each platform individually.

The second way to develop applications for Xamarin is via Xamarin.Forms. This is a custom-
made UI framework, that removes the need to implement user interfaces for each platform
individually. However, creating platform-specific behaviour is still possible (and in some cases
required). With Xamarin.Forms the amount of code shared across platforms can be up to 100%
[27].

4.1.2 Apache Cordova

One of the most popular multiplatform development tools is definitely PhonGap. PhoneGap is
the original and most popular distribution of Apache Cordova [1], which is an open source devel-

2According to a joint popularity index from Google Trends and G2Crowd

34

opment framework enabling app development using HTML 5, CSS 3 and JavaScript. Cordova
provides a native wrapper with a web view (or equivalent component) and accesses hardware
peripheries with JavaScript API. The application itself is built within the web view wrapper.
This type of app development is called hybrid.

Although the application is installed natively and runs offline, the UI elements are often
different, access to native API is restricted and the application tends to have decreased perfor-
mance. Plus, for hackers and copycats it is very easy to download the installation package and
extract the JavaScript files, since they are generally included as standard web content [7].

Yet, developing using Apache Cordova (and other hybrid tools) is very fast, and some ob-
fuscation tools exist. It is worth noting that PhoneGap is not the only distribution of Apache
Cordova. There are many others, like Ionic, allowing development in Angular, NSBasic, devel-
oped in Basic, or Telerik, which supports JavaScript, Angular and TypeScript.

For the evaluation, the Visual Studio distribution of Apache Cordova was chosen. By default,
it offers development in HTML 5, CSS 3 and JavaScript or TypeScript. However, it contains
also templates for Angular projects and is directly recommended by the Ionic framework [21].

4.1.3 React Native

React Native is a multi-platform development tool created by Facebook. It uses similar tech-
nology as ReactJS and converts it into Android and iOS apps. Support for Universal Windows
Platform is on the way and there already exists a unofficial plugin for Windows development[37].

Although interpreted frameworks may seem similar to hybrid tools due to the use of JavaScript,
there is no WebView container and no HTML DOM. Interpreted tools use alternative approaches
to UI representation: Appcelerator and NativeScript use XML, React Native utilizes JSX. Al-
though some interpreted frameworks provide native look and feel for the UI layer, due to the
nature of JSX, React Native renders a platform-agnostic UI resembling web pages.

JavaScript interpreted approach has been present for a while, thanks to Appcelerator. How-
ever, only in recent years it got more traction with the declining popularity of PhoneGap and
the rise of tools like Fuse, NativeScript, Tabris.js and, most prominently, React Native. The only
interpreted framework tool studied in this thesis, which does not use JavaScript, is Codename
One with its Java implementation.

4.2 Use case definition

This is the list of use case scenarios, that will be implemented by each developer tool:

1. Hello world! - the first scenario is the simplest one. The system will provide an almost
blank application, with a single button. After clicking on the button, a “Hello world” text
will be toggled.

35

Table 10: Apache Cordova - Persistent storage demonstration apps

Android iOS Windows

2. Persistent storage - this scenario will test the ability of the development tool to store
and load data into a persistent storage. The following types will be stored: string, float,
binary data and a more complex object.

3. Camera & GPS - the third scenario describes the most widely used hardware peripherals
- camera and GPS. In this scenario, we will use the camera to take a photo and the GPS
to add the coordinates of current location.

4. Custom UI element and using native code - the next scenario explores the possibility
of using a custom UI element. We will try to implement a circular progress bar. If there
is the possibility to render a native element from the multi-platform framework directly,
we will use that. Otherwise, we will call a native random number generator and then fill
the circular progress bar to generated percentage.

5. Push notifications - in the fifth scenario we will try to take advantage of the notification
API of each platform. We will research the possibility to display push notifications sent
from a web application. Because each platform handles the notifications differently, we
will use only basic notifications without advanced features.

6. Tablet optimization - the sixth use case will test the ability of the development frame-
work or platform to adjust the UI elements for various screen sizes.

36

Note, that the use cases cover only those aspects of multi-platform development, that can
be achieved on all target operating systems (Android, iOS and Windows). Therefore, we will
not test platform-specific features, such as fragments, widgets, life tiles, etc.

Table 11: Xamarin - Camera and GPS demonstration apps

Android iOS Windows

4.3 Hardware and software configuration

The evaluation of development tools is performed on on a Windows machine for Android and
Windows Phone. For iOS, the built (or whole development) is done on an iMac device. The
specifications can be found in tables 12, 13 and 14.

Table 12: Desktop configuration

OS Microsoft Windows 10
Home

macOS Sierra, v 10.12.3

Model Asus N551J iMac 21.5-inch, Mid 2011
Processor Intel Core i7-4720HQ x64,

2.6 GHz
Intel Core i5, 2.5 GHz

Memory 16 GB 16 GB
Storage 120 GB SSD, 950 GB HDD 512 GB HDD

37

Table 13: Mobile configuration

OS Android Marshmal-
low 6.0.1

iOS 10 Windows 10 Mobile

Model Sony Xperia Z5
Compat (E5823)

iPhone 5S Nokia Lumia 735

Processor Qualcomm Snap-
dragon 810, Octa-
core x64, 2 GHz

Apple A7 chipset,
Dual-core x64, 1.3
GHz

Qualcomm Snap-
dragon 400, Quad-
core x64, 1.2 GHz

Memory 2048 MB 1024 MB 1024 MB
Storage 32 GB internal, 32

GB SD card
16 GB internal 16 GB internal, 16

GB SD card

Table 14: Development tools configuration

Xamarin
Microsoft Visual Studio Enterprise 2015, Update 3
Xamarin for Visual Studio 4.2, Xamarin.Android 7.0, Xamarin.iOS 10.0
Tools for Universal Windows Apps 14.0

Apache Cordova
Microsoft Visual Studio Enterprise 2015, Update 3
Tools for Apache Cordova Update 10
Tools for Universal Windows Apps 14.0
Tools for Universal Windows Apps 14.0

React Native
JetBrains WebStorm 2016.3
React Native v 0.41

4.4 Results

This subsection summarizes the results of evaluated apps. Apache Cordova was implemented
via Visual Studio plugin and tested on Android, iOS and Windows. The main development
machine was Windows. No special architectural style or design patterns were used.

On the other hand, React Native was developed almost entirely on macOS in WebStorm.
Although there exists a custom UWP plugin for React Native, running an app on Windows
device was not achieved. Therefor, React Native was evaluated only on Android and iOS. For
more complicated projects, the Redux architecture was used.

Similar to Apache Cordova, Xamarin was also primarily developed on Windows desktop and
tested on Android, iOS and Windows mobile. To get closer to the UI development experience
of the other evaluated frameworks, Xamarin.Forms in combination with MVVM was chosen.

38

Table 15: 4th use case in individual frameworks

Android iOS Windows

Apache Cordova

React Native

Xamarin

39

4.4.1 Setup

Considering Apache Cordova, the initial setup for Android and Windows is rather easy since it
is a plugin within Visual Studio. The built-in installation process automatically downloads and
installs Node.js with Cordova CLI and Git CLI. It also prepares Apache Ant, Oracle Java JDK
and Android SDK to enable Android development. Tools for Windows mobile development are
not installed automatically. However, they can be added by ticking the checkboxes for Universal
Windows Platform tools for Cordova and Windows 10 Mobile Emulator.

Since iOS apps can be built only on a Mac, a separate setup is needed. Visual Studio provides
the possibility to build the application remotely, so only few programs need to be installed -
namely Node.js, Xcode and Xcode command-line tools. After enabling remote agent on Mac,
Visual Studio can connect to it and build the iOS app remotely.

Regarding React Native, the attempt to run a Windows app with the React Native Windows
plugin failed. With no reason to develop on a Windows machine, the development process was
moved to a Mac. Similar to Apache Cordova, React Native required Node.js as well. In addition
to the required React Native CLI, the installation of Watchman was recommended. For Android,
Java Development Kit had to be installed. Next, a custom installation of Android Studio was
performed, adding Android SDK, Android SDK Platform, Intel HAXM and Android Virtual
Device. Since React Native does not support Android Nougat3, Android Marshmallow SDK
had to be downloaded as well (with several required sub-features). At last, the Android setup
was finished by specifying the ANDROID_HOME environment variable.

Compared to Android, iOS installation was incomparably easier. Besides the common tools
for React Native development, only Xcode was required. In addition to that, WebStorm was
installed as well, because of its superior IDE capabilities for JavaScript development.

Xamarin brings us back to Windows. Although Xamarin development is possible on Mac
as well (with Xamarin Studio or Visual Studio for Mac), building a Windows app is possible
only on Windows. Installing Xamarin is, again, easy via a Visual Studio plugin. By default, the
plugin installs Xamarin, Android NDK, Android SDK, Java JDK, Google Android Emulator
and Intel HAXM. In addition to that the user may choose to install Universal Windows Platform
tools for Xamarin and Windows 10 Mobile Emulator.

Again, installation on Mac has to be done separately. Visual Studio on Windows can reach
out to a remote Mac, build there the iOS application and then display it back locally. Alterna-
tively, Visual Studio can be installed on Mac, enabling development for Mac, iOS and Android.
The code can be shared between Windows and Mac instances of Visual Studio via a remote
repository.

3As of early 2017

40

4.4.2 Hello World

There were no issues with the first, very simplistic app. All tested frameworks passed the test
almost flawlessly. The only problem was with jQuery for Windows in Apache Cordova project.
For some reason, jQuery was added twice, thus the application did not work. Therefore, pure
JavaScript was used for all Cordova apps.

4.4.3 Persistent storage

For persistent storage, SQLite database was chosen for Xamarin and Apache Cordova, while
React Native app was integrated with Realm.

Apache Cordova has multiple possibilities of storing data, such as file system storage or the
web-browser-based Local storage and Indexed DB. However, only SQLite plugin provides true
database features and is consistent across all tested platforms. The plugin worked properly
when storing strings, floats and datetimes as well as automatically incrementing the primary
key. However, since JavaScript cannot work with binary data, they had to be converted to
base-64, even though the SQLite database was able to store it like a BLOB. Another issue on
Windows was with toolset version 141, which had do be manually downgraded to 140. After
that everything went smoothly.

Similarly to Cordova, also React Native had to work with base-64 binary objects. Moreover,
the Realm implementation for React Native is not yet able to automatically generate IDs 4, thus
random GUID was used the primary key. Although Realm provides greater abstraction over
SQLite (which forces programmers to use pure SQL), it does have considerably less functionality.
Yet, for small databases that is more than sufficient.

The last tested framework, Xamarin, implemented SQLite as well. The SQLite library for
.NET provides the same amount of abstraction and Realm does for React Native, yet provides
the full potential of SQL statements and functions just as pure SQLite for Apache Cordova. Its
implementation is superior to both alternatives. Moreover, C# has a larger variety of supported
types, thus being able to manipulate with binary objects directly.

4.4.4 Camera and location

For a long time, Apache Cordova was the most popular multi-platform development tool, and
it still belongs into top 3. It is therefore no surprise that it has a vast amount of 3rd party
plugins and extensions, which help other developers achieve almost any desired functionality.
For both camera and geolocation, Cordova offers official plugins, which worked flawlessly on all
three platforms.

React Native offers geolocation functionality by default and it works perfectly both on An-
droid and iOS. However, there is no official support for camera usage. Either a custom binding
into native code (React bridge) has to be created, or a 3rd party library can be used. For our

4as of early 2017

41

Table 16: React Native - Tablet layout optimization

Android iOS

evaluation, custom library [36] was chosen, but unsuccessfully. The camera plugin did not work
on neither of the tested platforms.

Xamarin for Android and Xamarin for iOS allow programmers to access the camera and
geolocation just the way they would do it in a native Java or ObjectiveC application. However,
Xamarin.Forms is an abstraction over platform-specific code and does not provide camera or
geolocation functionality out of the box. Both of them can achieved either by custom imple-
mentation (injecting the platform-specific code into a common interface) or by using a 3rd party
plugin. There are multiple GitHub repositories and NuGet packages offering extensibility to
Xamarin.Forms, one of which was used also in this thesis [35]. On all three tested platforms
both Media and Geolocator plugin worked without any issue.

4.4.5 Custom UI element and native code

For all frameworks, a circular progress bar was chosen as a custom UI element. Since hybrid apps
are just web apps wrapped in a native web view, creating a custom UI element is done via HTML,
CSS and JavaScript, just like in any regular web page. Creating a custom circular progress bar
in Apache Cordova took almost no time at all. The more challenging part was creating a
bridge between the native code and JavaScript, since this required creating a whole new Apache
Cordova plugin - a process requiring several steps for each platform. This was achieved only
on Windows, by creating a simple functionality, which allowed converting lower case text into

42

upper case. However, on Android and iOS only pre-built plugins worked. Therefore, Android
and iOS apps call another plugin providing vibration capabilities.

Also in React Native the custom element was done almost immediately, since a 3rd party
plugin exists. Unlike Apache Cordova, also the bridge between React code and native code
was done rather easily. Since the build process of React Native includes a generated native
infrastructure, it is possible to extend the infrastructure with custom code. A simple React
annotation in ObjectiveC or Java than exposes the native classes and methods inside React
Native.

The most complicated circular progress bar implementation was performed in Xamarin.
Since the circular progress bar does not exist on any platform, it has to be implemented on each
of them. Afterwards, a common element declaration is created in XAML in Xamarin.Forms.
The last step is to tell Xamarin, how to render the common XAML declaration on individual
frameworks - this is done via Custom Renderers. A Custom Renderer binds the common XAML
element and its properties to the native element, its properties and rendering functionality.

Also, the bridge to native code can be done in two ways. The first one is very easy - depen-
dency injection. Since C# code in Xamarin is compiled to native code, platform specific classes
inheriting from a common interface can contain native methods. In the common library, the
interface is then used to instantiate the platform-specific code and invoke a particular method.
The second approach can use real native JAR, AAR, DLL or Objective-C library. These are
then inserted into the solution via a Binding Project, which enables direct method calls into the
native library.

4.4.6 PUSH notifications

To avoid the tedious task of creating a new PUSH notification service for each platform-specific
service provider (Apple Push Notifications Service, Google Firebase, Windows Notification Ser-
vice), a multi-platform abstraction available via Microsoft Azure was leveraged. Its Notification
Hub provides a single point of contact with the server code, so the web service does not have to
contain individual calls to each notification service provider.

However, each service (APNS, Firebase, WNS) had to be configured via the Azure Portal.
Google’s Firebase is the only completely free provider. Both Windows as Apple require a paid
developer certificate. While Windows developer certificate is relatively cheap and valid for
a lifetime, the Apple developer certificate requires expensive annual payments. Due to this
restriction, PUSH notifications on iOS were not tested 5.

5It is true that Google Firebase provides support also for iOS applications. However, this use-case is not
covered in the Azure Notification Hub. Moreover, several authors claim that Firebase on iOS is highly unreliable,
compared to APNS via Azure. Since tutorials for iOS PUSH notification services are available both for Apache
Cordova and Xamarin, at least mock-up PUSH clients were implemented.

43

Considering the development in the mobile frameworks themselves, Microsoft Azure provides
pre-build sample apps for Apache Cordova and Xamarin. Both of these apps were simple To-Do
lists, which responded with a PUSH notification upon successfully adding a new To-Do item.

Since each mobile OS is connected to its own, platform-specific notifications service provider,
parts of code had to be done platform-specifically. In case of Apache Cordova, this was handled
by simply putting an if-else statement, checking the run-time platform. In case of Xamarin, the
PUSH notification receivers had to be implemented for each platform specifically, thus resolving
the client already during compilation. For Android, both a notification client and notification
service receiver had to be implemented. The subscription to individual remote messages was
based on a unique client ID, generated by Firebase. Windows had a much simpler implemen-
tation, with a single method opening an asynchronous channel to handle PUSH notifications.
However, it required association with Microsoft Store via the developer certificate. The untested
iOS implementation consisted of two methods - one for notifications subscription, the other for
receiving remote notifications. The application would require an application-specific certificate,
issued by APNS.

Following the usual convention, React Native comes with a plugin for Azure Notification
Hub. Currently, it contains implementation only for Android and Windows. And since we
were unable to run the Windows plugin, only Android implementation was tested. Just as for
Apache Cordova and Xamarin, the React application had to be registered within Firebase to
get a Sender ID. However, due to the absence of React Native plugins for the remaining Azure
services, the the demonstration app could only receive notifications, when other apps inserted
new items into the To-Do list. Even then, the notifications were highly unreliable in the React
Native app.

4.4.7 Tablet optimization

To demonstrate that the UI optimization for various screen sizes can be achieved by common
techniques used in responsive web design, a simple demonstration web page from W3Schools
was used 6 for Apache Cordova. The responsive app worked well on all three platforms, in
both portrait and landscape modes. Plus, it displayed the expected behaviour on Windows 10
desktop.

The solution for responsiveness in React Native was, once again, a plugin. This plugin used
the experimental EcmaScript 6 annotations. These annotations were then used as run-time
conditions for React Native styles. Eventually, the whole process was not too dissimilar to
media queries used in responsive CSS styles.

In platform-specific Xamarin implementations, responsiveness is handled on each platform
individually. However, Xamarin.Forms provides an abstraction to this - device idiom. The value
of Device.Idiom can be either Phone, Tablet or Desktop. This provides a run-time condition

6Can be found at: https://www.w3schools.com/w3css/tryit.asp?filename=tryw3css_templates_blog&stacked=h

44

checking, similar to React Native. The app can then decide whether to render a XAML page
optimized for phones, or for tablets.

Table 17: Xamarin - Tablet layout optimization on Windows devices

Windows 10 Mobile Windows 10 Desktop

4.4.8 Summary

When summed together, it can be said that Apache Cordova is a very mature framework with
great support and lots of 3rd party libraries, various guides and tutorials. It is very easy to learn
and use it, especially for developers familiar with modern web technologies. Thanks to its rich
set of plugins, almost any desired functionality is achievable. And the use of HTML, CSS and
JavaScript the UI design and development is also straightforward. However, Apache Cordova is
suitable only for small apps, which are not performance-demanding. Because the app runs in a
browser, parts of native functionality is simply unavailable. The resulting applications are often
bloated and rather slow. Last, but not least, the apps do not look native. This can be solved by
using Ionic, which produces native-looking apps from Angular. However, it does not solve the
other issues.

Considering React Native, it takes a little time to learn the way, how it works and how to
implement Redux, the most commonly used React architecture. Yet, the same principles apply
also for web development in ReactJS, so developers can reuse this knowledge. After getting
past this initial hurdles, the development in React Native is extremely fast. Npm is growing
everyday with new React Native packages. However, React Native is still in development and
many of its features are not yet production-ready, e.g.: Windows development, or camera usage.

45

Its speed performance and the resulting app size are also not optimal. Yet, it can be expected
that once React Native is finished, all this issues will be solved, or at least mitigated. For fast
prototyping and small to medium-sized apps, React Native might be the right framework in
the near future. Its closest competitor, NativeScript, uses Angular and provides slightly better
performance, yet at the cost of smaller popularity (thus smaller community and less 3rd party
libraries). It might be possible that React Native and other JavaScript interpreted frameworks
will once render hybrid frameworks obsolete.

The last tested development tool, Xamarin, is the most difficult to learn, but is the most pow-
erful at the same time. Unlike Apache Cordova or React Native, Xamarin provides only partial
abstraction (in case of Xamarin.Forms) or almost no abstraction (in case of Xamarin.Android
and Xamarin.iOS) over the native code. A lot of functionality that is quickly achievable in
the other frameworks require more coding in Xamarin. Therefore, Xamarin is not suitable for
prototyping and small projects. However, it provides the best control over native code, enables
the usage of all native APIs and allows the usage of common design patterns and best prac-
tices. A vast amount of NuGet packages, 3rd party libraries and plugins can quickly enrich
Xamarin with new functionality. Xamarin also produces apps with the smallest overhead and
the best performance (there are benchmarks in which Xamarin surpassed even native Java on
Android). Due to these factors, Xamarin is best suited for medium to large-scale applications,
or applications with demanding and complicated functionality.

46

5 Methodology

There exist multiple texts comparing a couple of multi-platform development tools [12] [11] [45].
Some of them even provide guide or explanation on how the tools were chosen and how to
pick the most suitable one for particular projects [8] [10]. However, there is no comprehensive
methodology, generic enough to cover a wide variety of multi-platform frameworks. From the
theoretical and practical information we have gathered in previous chapters, it is possible to
construct a series of methodological steps that will achieve exactly this goal.

5.1 Necessary preconditions

If the methodology is supposed to be effective in the process of selecting the right tool, several
preconditions need to be satisfied. The most important factor is specification. Of course, it
is impossible to determine every single part of the resulting application right from the start.
However, the more precise the specification, the more accurate results can be expected.

The architect, business analyst or product owner should be aware also of the long-term vision
for the next iterations. It is very unlikely that a prototype will be done in one tool, which will
have to be switched for another, because of changed requirements. Most customers have neither
enough money nor time.

Another important factor is to collect as much data about the available resources as possible.
Enough information about the size, expertise and maturity of the development team can reduce
both time and costs dramatically. Also, mapping already available software and hardware can
help to keep the budget.

5.2 Methodologically unsuitable projects

Before proceeding with the methodology itself, several eliminating questions should be answered.
If the answer is “yes” to one or multiple questions, given project cannot be correctly assessed
by this methodology.

• Is only one operating system (even with multiple screen sizes) targeted? If
the answer is “yes”, then there is no reason to use multi-platform framework. There is
nothing that beats native development. The world of multi-platform tools is a world
of compromises. Native development allows to use the operating system to its fullest
potential, while not limiting the performance. If Java or ObjectiveC are concerns, there
exist alternatives also for single-platform development, such as Swift or Kotlin.

• Do you want to target operating systems other than Android, BlackBerry,
iOS and Windows? This methodology is aimed strictly on mobile OSs. Although some
tools allow development for desktop computers as well, this possibility is not discussed

47

Figure 5: Welcome page of the methodology web app

in the methodology. From those featured in the methodology, Qt, Embarcadero, Kivy,
RubyMotion or Xamarin target also one or multiple desktop platforms.

The key operating systems for this methodology are Android and iOS. Attention is paid
also to Windows support (namely Windows 10 UWP and Windows 8.1 WinRT). Tools
enabling development for BlackBerry are examined for their full support. However, should
the reader want to focus on different mobile operating systems (like Symbian, Bada or
others), this methodology and the suggested results may not be suitable for that use case.

• Will the app use extensively multiple platform-specific APIs, sensors or wid-
gets? Many platform-specific features (like Android widgets or Windows life tiles) are not
present on other operating systems, thus several multi-platform development tools ignore
them altogether. Since the focus of multi-platform tools is to run a single common code on
multiple platforms, they often use the road of least common denominator and strip away
features, which have no alternatives on other platforms. Some tools provide platform over-
rides, or allow to have platform-specific application and UI layers. Yet, if the design and
functionality for each OS is significantly different7, a multi-platform tool is useless.

Tools with active community may have various 3rd party resources, but these may compli-
cate the licencing, increase the cost, decrease performance and violate the security. Adding
a large quantity of libraries or plugins will increase the size of the application dramatically.

• Do you want to create a game? Although some multi-platform development tools
studied by this methodology allow game development to certain extent, for a fully-fledged

7An example of this may be something as simple as a slider. While on iOS and Windows the native slider
allows arbitrary steps, the Android SeekBar is bound to 1000 steps. As a result, values not divisible by 1000 broke
the application, since the slider could not find the right position. It took several days to determine the cause of
the issue and write a reliable platform-agnostic solution

48

2D or 3D game it may not be appropriate. Discussing the differences between individual
game framework is beyond the scope of this work. Multi-platform frameworks allowing
game development include (but are not limited to) Unity 3D, Unreal Development Kit,
Marmelade, MoSync or Wave. However, should the reader plan creating multiple apps
and wish to utilize the invested learning effort, he/she is advised to use the methodology
and focus on tools supporting game development.

• Do you want to create a new web app for both desktop and mobile, or port
an existing desktop web page to mobile environment? If the project is a web page
or web application that should be available both for mobile and desktop environment and
there is no intention of using native APIs or sensors, mobile web app frameworks should
be considered. They produce a common web page, adjusted for the mobile devices. For
starters, Bootstrap Mobile, AppPress, Sencha Touch, Dojo or jQuery Mobile should be
examined.

• Do you want to create a business-focused enterprise application with connec-
tion to an existing cloud backend? This thesis focuses on frameworks, which allow
general-purpose app creation. However, there is a plethora of tools and services which can
create a single-purpose app (e.g. for monitoring of employees, to provide ERP and CRM
services). Examples of such tools can be Appticles, i-exceed, Pega Systems or Retriever
Communications.

Other group of single-purpose multi-platform tools focus on providing MBaaS services.
They integrate into existing cloud systems (like AWS, Azure, Oracle, IBM, SAP or Sales-
force) and enable data access and management from a mobile app. Providers of these ser-
vices include nypresence, AppGyver, IBM Mobile First, Kinvey, MobileFrame, MooFWD.
There is plenty of others, not covered in this thesis. However, MBaaS providers who allow
creating offline apps and multi-purpose apps have been added to the main methodology.

5.3 Recommended way of using the methodology

If the project has passed all questions from chapter 5.2, it means it is suitable to be subjected to
the methodology. The whole methodology consists of 4 sets of questions. Each set has decreasing
importance. The first set of questions is the most important. Tools not fulfilling requirements
posed in this set violate the project’s specification radically. Such tools should be removed from
further evaluation.

It is possible that for certain projects the most suitable multi-platform development tool will
be clear already after the first set of questions. However, usually the first set of question selects
a small group of frameworks with similar capabilities. To distinguish which of them is the most
appropriate for a certain project, the second set of questions should be taken. This set contains
conditions which are fairly common in mobile app development. Failing one or two requirements

49

Figure 6: Questions page of the methodology web app

in the second set is not as critical as in the first set. Usually, there exists a work-around, but it
may increase the project cost, development time or negatively impact app’s performance.

Projects having unusual or highly specific requirements should be subjected also to the
third set of questions. This set contains conditions which are rare, or there exists an easy
workaround. It also focuses on features that may help to decrease the development time or
increase performance, user experience and stability of an application. Either way, after the
second or third set of questions, the majority of project will get a clear recommendation on
which framework to use.

If there is no clear winner even after the third set of questions, then there is the last set of
questions. These supplementary questions have no clear answer. They rather point out further
criteria which can be researched to discover the most suitable development tool.

If not explicitly said otherwise, each question in the first three sets can be answered in three
different ways: yes, nice to have and no. Yes means the feature or condition mentioned in the
question is necessary in the application and cannot be skipped. Nice to have describes a feature,
which is not crucial for the application or has not been included in the requirements, but could
improve the performance or UX of the project. No means the condition is irrelevant to the
project.

Similarly, each feature or condition can be fulfilled by the framework in one of three ways: yes,
partially and no. Yes means the feature is fully supported by the development tool. Partially
means the feature can be implemented, but it comes with a hiccup. The option "partially"
usually comes with a note further describing the limitation. No means the feature is completely
absent in the framework. Combination of possible answers and requirement implementations
results in an evaluation matrix, as seen in table 18.

Particular way of assigning points is described at the beginning of each set of questions.
Questions, which have a different way of assigning points, describe the process in place. A short

50

Figure 7: Recommended way of using the methodology

51

Table 18: Evaluation matrix

The user wants
it: / The
framework has
it:

Yes Partially No

Yes +7 / +5 / +3
points

0 / 0 / 0 points Excluded from
evaluation / -5 /
-3 points

Nice to have +7 / +5 / +3
points

0 / 0 / 0 points -7 / 0 / 0 points

No 0 / 0 / 0 points 0 / 0 / 0 points 0 / 0 / 0 points

example of assigning points can be found in the following subchapter.

5.3.1 Example score evaluation

For the purpose of brevity, we will compare only four tools - Codename One, Ionic, NeoMAD and
ViziApps. Also the specification will be very simple. The application should run on Android,
iOS and Windows. There should be a separate layout for tablets and phones. The app will work
via WiFi, but occasional Bluetooth capability is a nice-to-have feature.

First, we will prepare a table. The columns will be filled with the names of the development
tools. The rows will be used for adding points.

Table 19: Sample evaluation - step 1

Codename
One

Ionic NeoMAD ViziApps

Total

Then we continue through the methodology and examine all necessary questions. We will
write the answers in the form of points each tool scored.

The first requirement for our sample project is to target Android, iOS and Windows. Since
this question belongs to the first set, we operate with the step of 7 points. Let us apply the
evaluation matrix from table 13. BlackBerry is not relevant to our project, so we choose the "No"
row. As we can see, all frameworks gain 0 points for BlackBerry implementation - regardless
of whether they support it or not. However, for Android, iOS and Windows we apply the
"Yes" row. All frameworks, which support a platform gain +7 points per platform. There is no
framework that would partially support a platform, so none gets 0 points for Android, iOS or
Windows. However, ViziApps does not support development for Windows platform. Failing any

52

Table 20: Sample evaluation - step 2

Codename
One

Ionic NeoMAD ViziApps

Can create
Android
app?

+7 +7 +7 +7

Can create
BlackBerry
app?

0 0 0 0

Can create
iOS app?

+7 +7 +7 +7

Can create
Windows
app?

+7 +7 +7 Excluded

Total

"Yes" question in the first set results in immediate exclusion of a development tool from further
evaluation. Thus we continue only with 3 frameworks in the next step.

Table 21: Sample evaluation - step 3

Codename
One

Ionic NeoMAD ViziApps

Can create
Android
app?

+7 +7 +7 +7

Can create
BlackBerry
app?

0 0 0 0

Can create
iOS app?

+7 +7 +7 +7

Can create
Windows
app?

+7 +7 +7 Excluded

Is it possible
to adjust the
layout for
phone and
tablet?

-5 +5 +5 -

Total

UI responsiveness to various screen sizes is a question from the second set. Once again, we
look at the "Yes" row of the evaluation matrix. Questions from the second set are evaluated by

53

5 points. Immediately, we can see that Codename One does not support various screen layouts.
For the second set of questions, the punishment for failing a condition are not that harsh. We
do not remove Codename One from further evaluation, but we subtract 5 points from its score.
Ionic and NeoMAD, on the other hand, both provide functional layout adjustments, so they
both gain 5 points. We proceed to the last, voluntary feature.

Table 22: Sample evaluation - step 4

Codename
One

Ionic NeoMAD ViziApps

Can create
Android
app?

+7 +7 +7 +7

Can create
BlackBerry
app?

0 0 0 0

Can create
iOS app?

+7 +7 +7 +7

Can create
Windows
app?

+7 +7 +7 Excluded

Is it possible
to adjust the
layout for
phone and
tablet?

-5 +5 +5 -

Is Bluetooth
supported?

0 +3 0 -

Total

Implementing Bluetooth is not a necessary condition, thus we use the "Nice to have" row
from the evaluation matrix. Bluetooth capability belongs to the third set of questions, rated
with 3 points. Neither Codename One, nor NeoMAD provide an out-of-the box support for
Bluetooth. A 3rd party library, or custom implementation has to be used instead. Thus, they
gain 0 points. Ionic, which comes with Bluetooth support directly, gains 3 points. When all
questions have been answered, we can continue to the final evaluation

After counting all the points, we can see that Ionic is the most suitable framework for our
particular project, with NeoMAD being close in second place. Codename One is far behind and
ViziApps did not even make it through the first round. However, for other projects the results
can be totally different. If the reader was not still decided whether to use Ionic or NeoMAD,
he/she can research further facts, such as how good is the documentation, how buggy is the tool
or what other apps have been created using the particular framework.

54

Table 23: Sample evaluation - step 5

Codename
One

Ionic NeoMAD ViziApps

Can create
Android
app?

+7 +7 +7 +7

Can create
BlackBerry
app?

0 0 0 0

Can create
iOS app?

+7 +7 +7 +7

Can create
Windows
app?

+7 +7 +7 Excluded

Is it possible
to adjust the
layout for
phone and
tablet?

-5 +5 +5 -

Is Bluetooth
supported?

0 +3 0 -

Total 19 29 26 -

5.4 Primary questions

This is the first and most important set of questions. Majority of the questions are crucial to
all applications. Questions that are irrelevant to your project should be skipped. All tools that
do not satisfy at least one condition in this first category should be removed. There might be
some tools that have partial or planned support for some of the conditions. It depends on your
particular use case whether this limitation can be accepted or not.

1. Does the tool support all required mobile operating systems? (Evaluation
matrix, 7 points for each required and supported platform) The obvious question
is for which operating systems will the application be developed. All tools mentioned in
this thesis (and almost all multi-platform development tools in general) allow development
for Android and iOS. Development for Windows 10 is also supported by vast majority of
tools, or planned, at least. However, development for BlackBerry is more difficult, since
only 4 tools out of the 23 featured in this thesis fully support development for this OS.

2. Does the tool support development on desktop operating systems you own?
(Evaluation matrix, 7 points for each required and supported platform) Most
tools can be installed both on Mac and Windows desktops, while a bit smaller portion

55

Figure 8: Evaluation process for primary questions

supports Linux as well. Others provide a web-based IDE, which is platform independent
(but available only online). There are a few exceptions that have very strict limitations,
e.g. RubyMotion can be installed and developed only on a Mac.

(a) Does the tool allow iOS builds on Windows/Linux? (Evaluation matrix,
7 points) If you own at least one Mac or do not wish to target iOS, you can skip
this question. While Android applications can be built on any desktop OS, projects
for iPhones and iPads require compilation on a Mac device. Some tools (like Aquro,
Codename One, Smartface and ViziApps) remove this obstacle by providing cloud-
based builds. You do not need to buy a Mac, but you must accept that your project
is being compiled somewhere in the cloud.

(b) Does the tool allow Windows builds on Mac/Linux? (Evaluation matrix,
7 points) If you own at least one Windows PC or do not wish to target Windows
mobile platform, you can skip this question. Similar to iOS, also Windows mobile
requires builds on a Windows desktop machine. Unlike macOS, however, you can
install Windows on a virtual machine, side by side with your Linux or Mac, so this
problem is solved easier. Yet, you still need at least one Windows license. If you
want to avoid buying a Windows PC, or software license, Appery.io, Codename One,
Tabris and Telerik Platform offer cloud builds for Windows mobile.

56

3. How much are you willing to pay? What licensing do you need? What is the
size of your team? (compare with the offered prices, do not assign any points,
but remove tools which fail your requirements) Most licences and subscriptions
are based on the size of the development team. Individuals or small teams can get licences
for free, or a very small cost. However, teams around 25 people and above usually require
an enterprise-grade licence. These high-end licensing options are usually in thousands of
dollars per year per developer.

Some companies charge their tools monthly, others annually. In some you pay for the
tool itself. Others charge you for IDE, MBaaS features or support and updates. Always
examine the possibility to use discounts if you have some sort of subscription. And if the
costs are still too high, look for a free and open source tool - there is plenty of them.

4. Do you want the UI to look the same on all operating systems, or use the
native look and feel? Does the tool support it? (do not assign any points,
but remove tools which fail your requirements) Even with a single shared UI
code, the application may still look native on individual platforms. Many tools offer
the possibility of transforming the platform-agnostic UI code into platform-specific UI
elements. Others take a different approach and give the possibility for the app to look
exactly the same on Android, iOS and Windows. Both approaches have their pros and
cons and it depends on each project what is most suitable for them. Kivy, Kony, Qt and
most of the hybrid frameworks give the opportunity to have the same look and feel across
all operating systems. Appcelerator, Embarcadero, Ionic and Xamarin are examples of
tools that take the native UX approach.

(a) If you chose native look, do you want to code a single UI layer for all
operating systems, or a custom layer for each mobile OS? Does the tool
support it? (do not assign any points, but remove tools which fail your
requirements) While some projects need to do rapid prototyping, others may want
to facilitate the opportunities brought by each platform. If your project needs to
implement different UI for each OS (e.g. to use the Android fragments, which are not
available on iOS), you might want to look at tools like Appcelerator, NativeScript,
React Native, RubyMotion or Xamarin. However, all of the platforms studied by this
thesis provide also the possibility to write a single UI layer for all target platforms.
This allows almost 100% code sharing, but reduces the available UI elements to the
lowest common denominator.

5. Does your project require multithreading and does the development tool sup-
port it? (Evaluation matrix, 7 points) Downloading, uploading, calling remote web
services, image and sound processing or other computation-heavy calculations are all ex-
amples of tasks, which take some time. During this time the app should still be responsive

57

and, perhaps, be able to schedule also further tasks. This requires using multiple threads
- one serving the UI responsiveness and the others doing the tasks in background. If
the project contains a large portion of functionality involving multitasking, you should
avoid all JavaScript-based tools (both hybrid and interpreted). JavaScript does not sup-
port threading on a language level, and while there are workarounds using web workers,
their implementation is inferior, compared to traditional threads. Using C++, C#, Java,
Python or Ruby should handle the situation just fine.

6. Do you want to access the media, use the camera and microphone, play audio
and video? Does the tool provide the API? (Evaluation matrix, 7 points for
each required and supported feature) Capturing photos and videos is one of the most
common hardware interfaces used in mobile applications. While all studied development
tools allow taking photos, not all of them are able to capture video or record sounds (Kivy,
Kony, NativeScript, React Native). For example, there exists a 3rd party library for Kivy,
but it allows recording sounds only for Android. Even the consecutive replay of recorded
sound or video is not warranted in all tools - it is completely absent in Instant Developer,
and a 3rd party library is needed for NativeScript and React Native.

7. Do you want to use geolocation, accelerometer or gyroscope? Does the tool
provide the API? (Evaluation matrix, 7 points for each required and supported
feature) The global and relative positioning of the mobile device is another functionality
often used in an application. Accessing GPS and navigation is offered out-of-the-box in
all tools, except of Kivy and Smartface. However, using accelerometer or gyroscope needs
a 3rd party library or custom implementation in Kivy, NativeScript, React Native and
Smartface.

8. Do you want to access the device state (battery status, network availability,
OS version, etc.)? Does the tool provide necessary APIs? (Evaluation matrix,
7 points) Although this functionality is not usually required, particular applications may
change their behaviour due to low battery power or unstable Internet connection. Yet,
some tools do not provide this information (Corona, Kony, ViziApps) or rely on 3rd party
libraries or custom implementation (Codename One, Kivy, Qt, React Native).

9. Do you want to use a background process? Does the tool support them?
(Evaluation matrix, 7 points) Some applications might find it useful to have a per-
manent background service with no interface. This could be applied for several use cases,
like tracking the position, updating stock markets data, notifying user of an emergency
situation. You should take into consideration, that iOS has very limited support for back-
ground processes, allowing only geolocation updates. All other background functionality
is restricted (with the exception for VoIP applications). The only possible workaround is
using remote push notifications. Android, BlackBerry and Windows allow creating back-

58

ground processes, but their implementation and requirements may differ. In all cases,
you should keep in mind that background processes on any platform are considered low
priority. Therefore they are the first victims when the underlying OS needs to kill running
apps and get more resources.

Because of these obstacles, only a handful of tools provide a way to create background
services (Codename One, Embarcadero, NeoMAD, Qt, Xamarin). Although there exist
3rd party libraries for all tools based on Apache Cordova, their functionality is limited and
inconsistent across individual operating systems.

10. Do you want to use PUSH notifications? Does the tool support them? (Evalu-
ation matrix, 7 points) Unlike local notifications, which are both sent and received by
the application itself, push notifications are one of the few ways how a remote server can
alert your application without prior request. They are important on Android and Win-
dows, since there are still limited ways for push-model communication. However, they are
absolutely essential on iOS, because it is the only way to replace background processes.
It should be noted, that notifications differ a lot on individual platform. On Android,
they are the most customizable, allowing various sorts of interaction, customization and
binding functionality. It is possible to create interactive notifications on Windows as well.
However, iOS are very limited, offer almost no interactivity and - in case the application is
in background - push notifications are handled by the operating system itself, rather than
the hosting application.

Push notifications are well established in tools providing MBaaS services, as it is one of
their core functionalities. Yet, they are such an essential feature nowadays, almost all
multi-platform development tools implement them (with Kivy and Qt supporting only
Android and Windows notifications).

11. Do you need to create custom plugins or invoke native libraries? Does the tool
support it? (Evaluation matrix, 7 points) Even with the richest environment of 3rd
party plugins, there can still be a custom library or UI element that is only available as a
native C#/Java/ObjectiveC/Swift package. You may also want to target a specific device,
which has non-standard API, such as ambient lights. To do so, you need to interact with
the native package either through a wrapper, or directly. Most tools provide one way or
another to achieve this capability. But code-free tools, like Instant Developer, SmartFace
or ViziApps have limited to no support for such behaviour.

12. Is app monitoring and crash analytics required by the project? Are they
supported by the tool? (Evaluation matrix, 7 points) Even when the app is out,
the work is not done. Monitoring usage, performance and application crashes is vital for
providing continual support and improvement. While there are some free libraries and
tools like ACRA, Crashlytics or Xcode Crash Reports, they may not be compatible with

59

Figure 9: Evaluation process for secondary questions

your chosen development tool. You should closely examine, whether integration of the
multi-platform development tool and analytics framework is possible. If not, try to find
out, whether an alternative is provided by the tool (e.g. Telerik Analytics for NativeScript
or HockeyApp for Xamarin).

5.5 Secondary questions

This set of questions contains conditions that are important for some applications, while irrele-
vant to others. Failing a condition in this category may seriously affect the development process,
but a sort of workaround is usually possible.

1. How would you characterize the complexity of your app? (Add +5 if the frame-
work has desired performance. Add 0, if the performance is higher. Subtract
-5 if the performance is lower.) Complexity of the application can help to determine
which tool and programming language to choose. Simple, straight-forward applications
can take advantage of the rapid prototyping provided by hybrid mobile applications and
tools using scripting languages. Larger and more complex projects should be programmed
in a strongly-typed programming language featuring object-oriented programming and
separation of code into modules.

60

2. Is designer or previewer tool available? (Evaluation matrix, 5 points) A design
or preview tool allows to see the changes in UI code immediately on a simulated mobile
device screen. Some allow also WYSIWYG editing. This can highly improve the commu-
nication between a designer, product owner and the developer. It can be also very helpful
in rapid prototyping and agile development.

3. Do you want to have different UI for phone and tablet? Does the tool support
multiple or responsive layouts? (Evaluation matrix, 5 points) There are apps
that look good on all screen sizes. And then there are apps that need radical layout
changes to ensure good user experience both on smartphones and tablets. Most tools
offer the possibility to create different layout for smaller and larger screens, or use the
CSS responsive design in case of web technologies. Corona, for example, uses conditional
compilation to render the right layout on a device. However, there is a number of tools
(Aquro, Codename One, Instant Developer, Kivy, Qt, Tabris, ViziApps) that have no
support for different UI layouts. The only way, to create a tablet-specific design is to
create a separate application.

4. Does the design include any platform-specific overrides? Does the tool support
them? (Evaluation matrix, 5 points) Even if most parts of the application will be the
same on all operating systems, there might be one or two things that will differ in order to
maintain the native UX. While almost all tools achieve this either by replacing code files,
conditional compilation or dependency injection, there are a few exceptions which do not
support platform-specific overrides, namely Instant Developer, Smartface and ViziApps.

5. Will the application work with the file system? Is the tool able to access and
manage it? (Evaluation matrix, 5 points) All studied development tools provide
access to the file system, although there might be some restrictions for Qt and hybrid
apps. It is worth mentioning, that the file system structure differs a lot on Android, iOS
and Windows.

6. Will the application require persistent storage? Can the tool work with app
properties or mobile database? (Evaluation matrix, 5 points for each required
and supported database) Excluding file system, Android, iOS and Windows offer 2
different approaches to data persistence. Simple key-value data pairs, such as the cur-
rent application state or settings are usually saved in the app properties (SharedPref-
erences/NSUserDefaults/ApplicationDataContainer). More complex data structures are
usually stored in a database. The most common database used in mobile world is SQLite,
which has almost universal support across the studied tools. Couchbase and Realm are
examples of other popular mobile database engines, also supported by several tools. Aquro
and ViziApps are the only two multi-platform development tools not allowing any client-
side data storage, since they rely on all data being stored in the cloud.

61

7. Do you want to use Bluetooth, NFC, fingerprint or barcode scanner? Is their
API available in given tool? (Evaluation matrix, 5 points for each required
and supported feature) Unlike the other sensors, Bluetooth, NFC and fingerprint
scanners are not software-related, but depend on the hardware outfit. This makes their
availability fragmented even within an operating system. Only a small portion of studied
tools provide the functionality out-of-the box. The majority relies on 3rd party libraries,
or custom wrappers invoking native functionality. This is true also for the barcode or QR
scanner - although it is captured by camera, it is processed usually by the native API.

8. Is integration with assistant service (Alexa, Cortana, Google Assistant, Siri)
possible? (Evaluation matrix, 5 points for each required and supported assis-
tant) Although the usage of AI-powered virtual assistance is still limited to several use
cases and language, their possibilities are growing with each new update. Already now,
virtual assistants are able to pick the best suited application for a particular request. If
you want your application to be popular, it should communicate with the virtual assistant.
Not all tools provide necessary support for this behaviour.

9. Does the tool support debugging? (Evaluation matrix, 5 points) Debugging is
one of the earliest tools that can help developers find and fix possible errors. It allows to
closely examine every line of code. For any application that has medium to high complexity,
debugging capability is a must.

10. Does the tool support unit testing? (Evaluation matrix, 5 points) Unit tests
are the first tests done after (or sometimes before) a piece of code is written. While not
examining the system as a whole, they test each method or class individually. This helps to
increase the clarity and readability of code. Unit tests are then the first indicator whether
new or refactored code is functional and satisfies all required standards.

11. Does the tool support automated UI testing? (Evaluation matrix, 5 points)
While new functionality is generally thoroughly tested manually, repeated tasks, such
as smoke tests or regression tests, can be automated. Automated UI tests substantially
increase the volume of tests performed for complex business- and enterprise-ready appli-
cations. They can be also incorporated into the continuous integration process.

12. Does the tool support app profiling? (Evaluation matrix, 5 points) Neither unit
tests, nor manual tests are able to discover low-level or long-running issues, like memory
leaks or taking up too much resources. If high quality and high performance are important
for your project, you should definitely use a tool or IDE that provides app profiling.

62

Figure 10: Evaluation process for tertiary questions

5.6 Tertiary questions

Following questions have either low impact on the application development or relate to a very
small niche of projects and a workaround is possible. Yet, they still may balance the scales
in one way or another. They serve as a finishing touch after the coarse separation in first two
categories.

1. Does the tool allow development in a programming language you already have
experience with? (Evaluation matrix, 3 points for each required and supported
language) Even if the developers have no previous experience with a multi-platform
development tool, high skills in a particular programming language might help them to
learn using it more quickly.

Currently, the most wide-spread programming language for multi-platform development
is JavaScript, or some of its derivatives (Angular, TypeScript). However, there exists at
least one or two tools for each major programming language (BASIC, C++, C#, Delphi,
Java, Lua, Python, Ruby). There are even a few tools which allow code-free visual app
building.

2. Are MBaaS features or cloud connection necessary? Are they available? (Eval-
uation matrix, 3 points) Many project rely on at least some basic cloud connectivity.
Interaction with backend server or social networks is exactly what MBaaS providers of-

63

fer. If the development tool does not feature an out-of-the-box MBaaS support, check the
possibility of custom implementation. Especially code-free and JavaScript-based tools are
prone to inability to add custom functionality.

3. Do you need an embedded web browser? Does the tool allow its use? (Eval-
uation matrix, 3 points) Using an embedded web browser is one of the less common
functionalities. Its use is very peculiar in case of the hybrid apps, since they themselves are
ran from within a web browser - therefore, it is a browser inside a browser. Yet, with the
exception of Instant Developer and Smartface, all tools support this functionality. Ionic,
Kivy and NeoMAD require custom implementation and PhoneGap does not feature web
browser for BlackBerry.

4. Do you want to access the address book and be able to make a call, or send
SMS? Does the tool provide all necessary APIs? (Evaluation matrix, 3 points)
While contemporary smartphones are often more smart than phones, accessing the contacts
list, making calls or texting is still used, from time to time. It is therefore a bit of relief
that all examined development tools support this functionality, although some may require
a 3rd party library.

5. Is a testing environment for multiple devices required? Does the tool feature
any? (Evaluation matrix, 3 points) Even automated tests on an emulator or real
device have one major shortfall - they test only a single screen size. Screen fragmentation
is a long lasting and well known issue on Android devices, but with the support for older
hardware it is relevant also in the iOS and Windows world. Amazon Web Services provide
a service known as Device Farm [3], which allows simultaneous UI testing on hundreds
of physical Android and iOS devices in the cloud. Similar services are offered also by
BitBar [4], Firebase [19] and TestObject [46]. Some of the multi-platform development
tools featured in this thesis provide also a cloud testing service, arguably with better
integration with their product line (e.g. Telerik and Xamarin). If your app has the
potential of being installed by millions of users, testing it on a Device Farm, or similar
service, may be highly beneficial.

6. Does the tool allow continuous integration, if necessary? (Evaluation matrix,
3 points) Continuous integration is a crucial part of DevOps, enabling small but valuable
and rapid updates of an product or service. The whole process consists of various steps, like
from coding, collaboration, versioning, unit and automatic testing to packaging, releasing
and configuration management. A tool that can be easily incorporated into the process
can result in shorter development cycles and higher customer satisfaction.

7. Are closed test groups required and supported? (Evaluation matrix, 3 points)
While all major application stores feature the possibility to share a WIP app to a tester

64

Figure 11: Tertiary questions page of the methodology web app

group (Apple TestFlight, Google Play Testing, Windows Package Flights), some multi-
platform development tools offer incorporated features of app distribution, giving you
even more control. ViziApps, for example, offers the possibility of OTA (Over the Air)
updates of installed apps.

8. Is OpenGL or WebGL required? Is it supported? (Evaluation matrix, 3 points)
There are some applications that may find use in hardware-accelerated 3D graphics. A
model catalogue, design studio or a game are some examples of this kind of apps. Rendering
and managing a 3D object requires the use of OpenGL library specialized for mobile or
web environment. Most tools support the integration of either OpenGL ES or WebGL.
However, Aquro, Instant Developer, Smartface and ViziApps are exceptions to this rule.

9. Does the tool support creating 2D games, if necessary? (Evaluation matrix, 3
points) Although for a full-featured game development a mobile game framework would
be more suitable, some multi-platform development tools are mature enough to host a
simple 2D game. Examples of them can be Corona Labs, Kivy, Qt or Xamarin.

10. Does the tool support augmented or virtual reality, if necessary? (Evaluation
matrix, 3 points) Although augmented and virtual reality applications are dominated
by games, various utility and even business apps are getting still more popular as well.
Implementing one of these technologies might be exactly the thing that will set your app
apart from the competition.

65

Figure 12: Evaluation page of the methodology web app

5.7 Supplementary questions

This last set of questions does not provide simple answers. However, they may help in inves-
tigating the differences between two frameworks that still have similar amount of points, even
after passing the first three sets of questions.

1. Do the developers have experience with a multi-platform development tool?
If the answer to this question is yes, then you should consider consulting your development
team. Their past experience might be very helpful in resolving the questions with no simple
answers, like: What is the learning curve? How long does the development take? What is
the performance of the app? Is the development tool buggy? How busy is the developer
community?

If the tool used by the developers both satisfies all the customer’s requirements and is
advised to be used by the development team itself, it can greatly boost the development
speed. They will be familiar with all the pitfalls. Components and design patterns from
past projects may be reused. You might find out, that the software licences are still valid
and you have enough hardware to test on. All these factors may help to decrease the
development time and costs and still satisfying your customer.

2. Is there a source of 3rd party libraries? How rich is it? Even if a tool does not
implement certain features, it can often be substituted by a 3rd party library. Tools with
rich environment of 3rd party libraries often come also with tools enabling easy plugin
management. Examples of these can be: Hyperloop by Appcelerator, npm for Apache
Cordova and NativeScript plugins, Nuget for Xamarin packages or motion-toolbox for
RubyMotion gems.

66

3. Do you have specialists for individual mobile operating systems? As mentioned
already multiple times in this thesis, each mobile OS has a different way of handling
the app lifecycle. There are differences in communication with the kernel, interactions
between apps and handling navigation. There is inconsistency in available APIs, sensors,
widgets and varying guidelines to UX and UI design. Some development tools shield you
off these differences, focusing on the least common denominator. Others let you leverage
the platform-specific features to the full extent.

Having developers specialized for individual operating systems allows you to use the
platform-specific approach. While most development tools allow platform-specific over-
rides, it is default only for RubyMotion and Xamarin (partially also for Appcelerator, React
Native and NativeScript). The former approach, where platform-specifics are shielded off
(known also as the WORA approach) is used by all other tools, as well as Xamarin.Forms.

4. What is the size of the resulting apps? In the early days of Swift, there were many
reports that the apps are much larger than apps written in Objective-C[43]. This was
due to the fact that Swift was not included in iOS, thus Swift runtine, libraries and API
had to be bundled within the app. This is true also of many multi-platform development
tools. They often bundle their own runtine, custom libraries, UI styles and APIs together
with the application itself, making its installation size bigger. It could be worthwhile to
investigate, how large the resulting apps are for individual frameworks.

5. What is the learning curve? How long does it take to create a simple app?
How long does it take to master the tool? Some programming languages are in-
herently easier to learn, while others require much greater effort. There are tools which
require a lot of initial configuration and settings and then there are frameworks which are
fully functional out-of-the-box. Part of the frameworks mentioned in this thesis lie great
emphasis on architecture of the code base, yet other allow the developer to patch the code
as he/she pleases. Depending on what type of application you wish to achieve, there are
tools which are more or less suitable for your project.

6. How often is the tool updated? How long does it take to react to a new OS
release? As mentioned in the beginning of this thesis, each mobile operating system has
already multiple versions. Each version brings new API, increases performance, while may
cut off part of redundant functionality from the past. If you app should stay competi-
tive and fresh, it should be prepared for those changes. Try to search how long does it
approximately take for a framework to support new OS versions. Some provide 0-day
compatibility, while others may require several months to be fully prepared for the new
version.

7. How comprehensive is the documentation? Are tutorials, courses or books
available? To learn something new, each of us needs a source of knowledge. It is almost

67

impossible to learn a new framework without the knowledge how to use it. Thorough
documentation is crucial, yet there are tools which provide specification only for basic use
cases. However, good courses or books can be even better, quick-starting your project.

8. How buggy is the tool? How are bugs handled? There is no perfect piece of software
- bugs are simply everywhere. However, some tools are more stable than others. Very
important is also the attitude towards bug solving. Open-source rely on the community
support. Some commercial tools are also very open about their bug-solving policy, allowing
to track all reported, confirmed and solved bugs. However, there still can be found a few
shady examples, which believe that pretending no bug exists will solve the problem.

9. What are some prominent apps developed using the tool? If you still are not sure
which tool is most suitable for your case, try to look at some apps that were written in
that tool. If you find multiple similar apps, it probably means the tool is best suited for
your use case.

68

6 Methodology verification

In order to test the methodology out, it has been subjected to several verifications on real
projects.

6.1 FloLogic

The first project is called FloLogic. It consists of a mobile application and cloud backend,
monitoring and controlling a water valve. The project was started more than a year ago.

Figure 13: FloLogic architecture

The original specification required to use Xamarin, because the product owner had an MSDN
subscription. Other requirements included:

69

1. Focus on iOS and Android, with later implementation for Windows Phones

2. Implementation of a Microsoft Azure cloud service, communicating with the mobile app
and the water valve

3. Integration of a highly reliable PUSH notification system

However, during the year several requirements were changed, added or removed. Together
with other complications, this resulted in extending a project, originally estimated for 3 months,
to more than a year. Changes included 3 different UI designs, starting with platform-agnostic
UI to native-like platform-specific and then back to a unified UI.

The project manager of FloLogic wanted to know, whether Xamarin is still a suitable choice,
since the development team was struggling with implementation of individual requirements. He
provided the current requirements and compared them against individual sets of questions in
this methodology. The same questions were then answered by one of FloLogic developers, to
provide a slightly different point of view. The results can be found in table 24.

As the reader can see, the answers of the project manager and developer have differed in a
few points, namely:

• Desktop operating systems - the developer has stated that even though the company does
not currently possess any Linux machines, Ubuntu can be installed on any Windows PC.
He mentioned also the possibility to develop in a web environment, which was refused by
the project manager due to security considerations.

• Multithreading - according to the developer, multithreading is not really necessary, since
the only possible point of its use are calls to the cloud server, which can be handled by
asynchronous callbacks. The UI is rather static, so slight lags should not impact the user
experience. Moreover, the absence of true multithreading can be compensated with web
workers in most JavaScript-based tools, or by Lua’s co-routines.

• Device status information - the developer expressed the need to check network availability,
connection stability, as well as the version of operating system.

• Background process - according to the developer, background processes, although unavail-
able on iOS, are much more reliable on Android, then PUSH notifications. He would
therefore prefer a tool allowing the creation of background services.

Only 5 tools have managed to pass the primary set of questions according to the project
manager’s answers. The developer was more demanding, leaving space only to 4 tools. Table
25 shows the preliminary results.

As the reader can see, Xamarin was eliminated from further consideration already in the first
set of questions. Both Xamarin and Xamarin.Forms target native look and feel of applications.
Although it is possible to bypass this with various workarounds (as the FloLogic development

70

Table 24: FloLogic - Primary questions

Question Project manager’s
answer

Developer’s an-
swer

Which mobile operating systems
do you want to target?

Android, iOS Android, iOS

Which desktop operating sys-
tems do you have available for de-
velopment?

macOS, Windows Linux, macOS, Win-
dows, web environ-
ment

What is the size of your team? Up to 5 developers Up to 5 developers
How much are you willing to pay
for software licences per devel-
oper per year?

$0 $0

Do you want the app to have na-
tive look and feel, or same across
individual platforms?

Same Same

Do you require multithreading? Yes Nice to have
Will you use multimedia sensors
and APIs (camera, microphone,
video and audio player)

No No

Will you use location sensors
(GPS, gyroscope, accelerome-
ter)?

No No

Do you want to get information
about device status?

No Yes

Will you use a background pro-
cess?

No Yes

Will you use PUSH notifications? Yes Yes
Do you need to invoke native li-
braries or create custom plugins?

No No

Would you like to use app moni-
toring and get crash analytics?

Nice to have Nice to have

Table 25: FloLogic - Primary questions results

Tool: Kivy Kony NativeScript
Manager’s score: 28 42 42
Developer’s score: 28 - 49

Tool: PhoneGap React Native
Manager’s score: 35 35
Developer’s score: 42 35

team has proven), it takes more than a month, compared to a couple of days done in other tools.
Let us continue with the second set of questions, which were answered by both the project

71

manager and the developer in table 26.

Table 26: FloLogic - Secondary questions

Question Project manager’s
answer

Developer’s an-
swer

How complex is your applica-
tion?

Business-grade Business-grade

Would you like to use a designer
or preview tool?

Nice to have No

Do you need different layout for
tablet and phone?

No No

Will you use some platform-
specific overrides?

No No

Will you access the file system? No No
Do you need any client-side
database?

No No

Will you use Bluetooth, NFC,
finger- or barcode scanner?

No No

Do you require integration with
virtual assistants?

No No

Do you need debugging tools? Yes Yes
Will you use unit tests? Yes Nice to have
Would you like to use automated
UI tests?

Nice to have No

Would you like to use app profil-
ing?

Nice to have Yes

Even in the second set some answers differ. The developer was confident enough to create
user interfaces purely in code, without the need of a designer tool. Also, the preferences for
individual testing techniques differed from the project manager to the developer. After answering
the secondary questions, the score look like table 27.

Table 27: FloLogic - Secondary questions results

Tool: Kivy Kony NativeScript
Manager’s score: 38 72 62
Developer’s score: 38 - 64

Tool: PhoneGap React Native
Manager’s score: 40 50
Developer’s score: 42 45

Already now, the winner is very distinguishable. Kony leads with 72 points, with Native-
Script being not that far on the second place. The project manager of FloLogic was familiar

72

with React Native, but both Native Script and Kony were new to him. He wanted to take also
tertiary questions in order to see, whether Ract Native comes closer to Kony, or whether the
gap widens. Table 28 displays the answers for the last set of questions.

Table 28: FloLogic - Tertiary questions

Question Project man-
ager’s answer

Which programming languages do you have experience
with?

AngularJS, C#,
JS, Java, Ruby

Do you require MBaaS features or cloud connection? Yes
Do you need embedded web browser? No
Would you like to access the contact list, call or send
SMS?

No

Is a testing environment for multiple devices required? Nice to have
Do you need continuous integration features? Nice to have
Would you like to test in closed groups? No
Do you need OpenGL support? No
Would you like to develop games? No
Is the app targeted for augmented or virtual reality? No

Table 29: FloLogic - Tertiary questions results

Tool: Kivy Kony NativeScript
Manager’s score: 20 69 59

Tool: PhoneGap React Native
Manager’s score: 28 38

The manager was surprised with the results and displayed deep interest in the Kony frame-
work. He expressed himself that he would discuss the results with the product owner. However,
he added he is rather sceptical about changing the framework after more than a year of devel-
opment and starting from scratch.

6.2 Project W

The next project belongs to an indie startup which tries to fill the "App gap" in Windows
market. They realize that Windows is not particularly strong in the mobile field, but thanks
to the concepts of Universal Windows Platform they would like to create an app that runs
on smartphones, tablets and desktops as well. Although this methodology does not focus on
multi-platform desktop development tools, some frameworks mentioned in this thesis allow it as
well.

73

The goal of Project W is to create an app that helps the user to track his/her daily water
intake. Unlike similar apps, this app calculates the required water intake dynamically based
on local weather, user statistics and data from other health-tracking apps the user might have
installed. The answers to the first set of questions can be found in table 30.

Table 30: Project W - Primary questions

Question Answer
Which mobile operating systems do you want to tar-
get?

Android, iOS, Windows

Which desktop operating systems do you have avail-
able for development?

Windows (maybe macOS)

Do you require iOS builds without the need of a Mac? Nice to have
What is the size of your team? Indie
How much are you willing to pay for software licences
per developer per year?

$0

Do you want the app to have native look and feel, or
same across individual platforms?

Native look and feel

Do you want to code a single UI layer for all operating
systems, or a custom layer for each mobile OS?

Single

Do you require multithreading? Nice to have
Will you use multimedia sensors and APIs (camera,
microphone, video and audio player)

No

Will you use location sensors (GPS, gyroscope, ac-
celerometer)?

GPS

Do you want to get information about device status? Yes
Will you use a background process? No
Will you use PUSH notifications? Yes
Do you need to invoke native libraries or create custom
plugins?

No

Would you like to use app monitoring and get crash
analytics?

Nice to have

The startup has quite limited resources. Although they would like to create apps for iOS,
they currently do not own a Mac. They had planned to buy one, but as soon as they heard
some tools allow iOS builds without a Mac, they showed deep interest for this possibility. Even
with this limitation, 7 frameworks have passed the primary questions.

We can see that all selected frameworks have fairly equal score (except of React Native),
with Embarcadero and Tabris.js slightly standing out. It is interesting though that the filtered
tools contain all types of approaches - hybrid, interpreted and even cross-platform. In this case,
passing another set of questions is absolutely necessary.

Although the Project W application will be rather simple considering the UI, it will have
a lot of backend functionality, synchronization with other apps and API calls - thus it was
categorized as a native-like app. The developers also wanted to use a built-in barcode scanner,

74

Table 31: Project W - Primary questions results

Tool: Embarcadero Ionic Monaca
Score: 56 42 42

Tool: NativeScript React Native Tabris.js
Score: 42 28 56

Tool: Xamarin
Score: 49

Table 32: Project W - Secondary questions

Question Answer
How complex is your application? Native-like
Would you like to use a designer or preview
tool?

Nice to have

Do you need different layout for tablet and
phone?

Yes

Will you use some platform-specific over-
rides?

No

Will you access the file system? No
Do you need any client-side database? SQLite or Realm
Will you use Bluetooth, NFC, finger- or bar-
code scanner?

Barcode scanner

Do you require integration with virtual assis-
tants?

No

Do you need debugging tools? Yes
Will you use unit tests? Nice to have
Would you like to use automated UI tests? Nice to have
Would you like to use app profiling? No

so the app could scan bottled waters, juices, etc. With these additional requirements, the score
table has changed considerably.

Table 33: Project W - Secondary questions results

Tool: Embarcadero Ionic Monaca
Score: 86 72 57

Tool: NativeScript React Native Tabris.js
Score: 52 48 66

Tool: Xamarin
Score: 94

75

Embarcadero is still at the forefront, but Xamarin surpassed it together with Tabris.js, which
is now in the 4th place. React Native, Monaca and NativeScript seem to be insufficient for this
app. The developers were curious, whether the last set of questions will have similarly dramatic
effect on the score of individual frameworks.

Table 34: Project W - Tertiary questions

Question Answer
Which programming languages do you have
experience with?

C#, JavaScript

Do you require MBaaS features or cloud con-
nection?

Yes

Do you need embedded web browser? No
Would you like to access the contact list, call
or send SMS?

No

Is a testing environment for multiple devices
required?

No

Do you need continuous integration features? Nice to have
Would you like to test in closed groups? Yes
Do you need OpenGL support? No
Would you like to develop games? No
Is the app targeted for augmented or virtual
reality?

No

Table 35: Project W - Tertiary questions results

Tool: Embarcadero Ionic Monaca
Score: 80 72 60

Tool: NativeScript React Native Tabris.js
Score: 52 48 63

Tool: Xamarin
Score: 100

As we can see, Embarcadero has lost 6 points, while Xamarin has only strengthened its
position at exactly 100 points. It is clear now that Xamarin is the most suitable framework for
Project W. The developers have admitted they heard of Xamarin a lot and considered it even
before passing through this methodology. With Xamarin, they can develop not only for mobile,
but also Windows desktop (with Universal Windows Platform) and Mac (with Xamarin.Mac).
The only platform Xamarin does not target is Linux.

76

6.3 PhoneGap Projects

The next series of projects are a little historic - they were implemented 3 - 5 years ago. Because
the project owner wanted to stay in anonymity and all of them were implemented in PhoneGap,
we will refer to those projects as simply PhoneGap Projects. These projects were various in
nature. One of them served as a funeral checklist, another was used to track products. One
application served as pool learning app and the last one was used for a competition, where
people had to send photos of cars with specific plate numbers. The common requirement for
all of those projects was to target Android and iOS. They also had to be implemented in the
same technology. The project manager recalled that PhoneGap was chosen at the time simply
because it was the most popular one. However, he noted they had serious difficulties with the
car plates app and the pool learning app. He wanted to know, whether PhoneGap would be still
suitable today for the same use-cases.

The project manager went through all three sets of questions, but answered them for all four
projects together. His answers and selected frameworks can be found in tables 36 - 39.

Table 36: PhoneGap Projects - Primary questions

Question Answer
Which mobile operating systems do you want
to target?

Android, iOS

Which desktop operating systems do you
have available for development?

macOS

What is the size of your team? Up to 10 developers
How much are you willing to pay for software
licences per developer per year?

$0

Do you want the app to have native look and
feel, or same across individual platforms?

Same

Do you require multithreading? No
Will you use multimedia sensors and APIs
(camera, microphone, video and audio
player)

Camera, Microphone, Video
and audio player

Will you use location sensors (GPS, gyro-
scope, accelerometer)?

GPS

Do you want to get information about device
status?

Yes

Will you use a background process? No
Will you use PUSH notifications? Yes
Do you need to invoke native libraries or cre-
ate custom plugins?

No

Would you like to use app monitoring and get
crash analytics?

Nice to have

77

Table 37: PhoneGap Projects - Secondary questions

Question Answer
How complex is your application? Simple, prototype-like
Would you like to use a designer or preview
tool?

No

Do you need different layout for tablet and
phone?

Nice to have

Will you use some platform-specific over-
rides?

Yes

Will you access the file system? Yes
Do you need any client-side database? No
Will you use Bluetooth, NFC, finger- or bar-
code scanner?

Barcode scanner

Do you require integration with virtual assis-
tants?

No

Do you need debugging tools? Nice to have
Will you use unit tests? Nice to have
Would you like to use automated UI tests? No
Would you like to use app profiling? No

Table 38: PhoneGap Projects - Tertiary questions

Question Answer
Which programming languages do you have experience
with?

C#, JavaScript,
Java

Do you require MBaaS features or cloud connection? No
Do you need embedded web browser? No
Would you like to access the contact list, call or send
SMS?

Yes

Is a testing environment for multiple devices required? No
Do you need continuous integration features? No
Would you like to test in closed groups? Yes
Do you need OpenGL support? No
Would you like to develop games? No
Is the app targeted for augmented or virtual reality? No

As we can see, the methodology confirmed that PhoneGap would be an ideal choice for given
projects even now. The project manager was very curious, what caused so many frameworks
to be filtered out already after the primary set of questions. After a short investigation, it
was revealed that the main cause was the requirement of having the tool for free. Other tools
were eliminated because of individual reasons - either the need to implement on a Mac, the
requirement of having the same UI across all platforms, or the missing support of individual
sensors and APIs. In the project manager’s opinion, many customers would be willing to pay

78

Table 39: PhoneGap Projects - Questions results

Tool: Kivy NativeScript PhoneGap
Score: 37 81 98

Tool: React Native
Score: 62

certain price for a framework, if it was superior to its competition.

6.4 Sensus

The last tested project is called Sensus. This is again a Xamarin project targeted for Android
and Windows. The project is extension to an existing family of .NET projects for web and
desktop environments. Xamarin was chosen in the hope to re-use some common libraries. In
Sensus, high importanse is put on bluetooth and QR code scanner functionality. Tables 40 - 42
show the scrum master’s answers to all three sets of questions.

Table 40: Sensus - Primary questions

Question Answer
Which mobile operating systems do you want
to target?

Android, Windows

Which desktop operating systems do you
have available for development?

Linux, Windows

What is the size of your team? Up to 10 developers
How much are you willing to pay for software
licences per developer per year?

$500

Do you want the app to have native look and
feel, or same across individual platforms?

Same

Do you require multithreading? Yes
Will you use multimedia sensors and APIs
(camera, microphone, video and audio
player)

Camera

Will you use location sensors (GPS, gyro-
scope, accelerometer)?

GPS

Do you want to get information about device
status?

Nice to have

Will you use a background process? No
Will you use PUSH notifications? No
Do you need to invoke native libraries or cre-
ate custom plugins?

No

Would you like to use app monitoring and get
crash analytics?

No

79

Table 41: Sensus - Secondary questions

Question Answer
How complex is your application? Business-grade
Would you like to use a designer or preview
tool?

No

Do you need different layout for tablet and
phone?

Nice to have

Will you use some platform-specific over-
rides?

Yes

Will you access the file system? No
Do you need any client-side database? SQLite
Will you use Bluetooth, NFC, finger- or bar-
code scanner?

Bluetooth, QR scanner

Do you require integration with virtual assis-
tants?

No

Do you need debugging tools? Yes
Will you use unit tests? Yes
Would you like to use automated UI tests? Yes
Would you like to use app profiling? Nice to have

Table 42: Sensus - Tertiary questions

Question Answer
Which programming languages do you have experience
with?

AngularJS, C#,
JS, Java

Do you require MBaaS features or cloud connection? No
Do you need embedded web browser? No
Would you like to access the contact list, call or send
SMS?

No

Is a testing environment for multiple devices required? Nice to have
Do you need continuous integration features? Nice to have
Would you like to test in closed groups? No
Do you need OpenGL support? No
Would you like to develop games? No
Is the app targeted for augmented or virtual reality? No

As the reader will notice, the same set of frameworks which satisfied the requirements of
FloLogic were selected also for Sensus. This is remarkable, since the answers were substantially
different. However, while Kony was the most suitable framework for FloLogic, NativeScript
leads in case of Sensus, with PhoneGap being second.

The scrum master was very surprised why Xamarin was not even listed among the selected
frameworks. Under closer inspection, we can see it was removed by the requirement of having
the same look and feel on all targeted platforms.

80

Table 43: Sensus - Questions results

Tool: Kivy Kony NativeScript
Score: 45 55 80

Tool: PhoneGap React Native
Score: 68 59

The scrum master confirmed the development team struggled with this issue for a long time.
However, he noted that they eventually managed to achieve this goal. Moreover, the ability to
re-use existing C# libraries outweighted the negatives of implementing custom UI layer. The
scrum master suggested the condition of having the same UI across platforms to be less strict.
He also pointed out the methodology does not take into account existing code libraries, which
might be a decisive factor for some projects. Other than that, he rated the methodology as
comprehensive enough and stated that the resulting frameworks might be more suitable for the
Sensus project, if there were no custom C# libraries.

6.5 Methodology feedback

After passing the methodology questions, each person was asked to give feedback to the method-
ology itself.

The project manager of FloLogic assessed the metholody as very comprehensive, clear and
easy to use. He admitted that Xamarin may not be the optimal framework for FloLogic’s use
case. Both Kony and NativeScript, which scored the highest in his answers, were new to hime.
He suggested adding several more questions, like:

• Do the developers have previous experience with a tool?

• How long does it take to learn and master the framework?

• How reliable is the tool? How many bugs does it have?

• How often is it updated?

After being informed that all of these questions are part of the supplementary questions set,
he expressed himself as being very satisfied with the methodology.

The FloLogic developer was also quick to agree with Xamarin not being suitable for the
project. He has heard of NativeScript never before, but he knew React Native’s Facebook
Messanger application. React Native was the second most suitable framework in his answers.
He expressed his concerns about this framework, being very performance-demanding and thus
slow on older phones. After a short benchmark research, which revealed that NativeScript
should perform better than React Native, but not as good as Xamarin, he suggested increasing

81

the importance of performance factors in the methodology. He also wanted to add a question
about the comprehensivness of documentation. However, this question is already part of the
supplementary set.

The developer of Project W has also complimented the methodology as being very thorough
and well-structured. She has confirmed planning to use Xamarin for their project, which also
came out of the methodology with the highest score. Although she was disappointed a little, that
Xamarin required a Mac to build iOS applications, she expressed that it makes the most sense to
use a C#-based framework, since they want to target Windows Phone primarily, anyway. After
two months of development, the MVP application contained all core functionalities, further
supporting the choice of Xamarin.

The project manager of the PhoneGap Projects was also satisfied with the methodology. He
stated that the descriptions of individual questions are often long, but can help to understand the
field much deeper. From technological point of view, the issues were covered very well. However,
he would change or add several questions from the business point of view. In particular, he would
decrease the impact of the licence prices. As he said, many customers would be willing to pay
a little more for a tool that would deliver their product much earlier, or in a better shape.
Moreover he would add questions regarding the automation of deployment tasks provided by an
IDE, and a questions regarding the framework’s support of individual app business models.

In case of the Sensus project, it’s scrum master confirmed as well that the team was struggling
a lot with providing platform-agnostic UI, while using Xamarin. He assessed the questions as
being very good and the result - NativeScript or PhoneGap - as being fair enough. However,
he stressed the importance of existing libraries re-use, which is not taken into consideration in
the methodology. He suggested that some questions should be less decisive (the possibility of
creating a platform-specific or platform-agnostic UI), while others should be put more into the
forefront (code re-use and integration with existing libraries). He wanted to know, whether there
are no other frameworks using C#. When informed of InstantDeveloper, he pointed out that
this might have been a better choice.

82

7 Conclusion

In this thesis we have successfully designed, created and verified a complex methodology for se-
lecting the most suitable development tool for mobile multi-platform applications. The method-
ology was tested on a series of real-world projects. Gathered feedback has evaluated the method-
ology as comprehensive, well-structured, producing solid and reliable results.

The methodology was created by fulfilling several partial goals. Firstly we have analyzed the
current market, selecting relevant mobile platforms. Those platforms were then further used to
limit the number of frameworks described in this thesis. Studied development tools had to pass
also the criteria of being general-purpose, not being a game engine or a web framework. This
has resulted in a total of 25 multi-platform development tools.

Three most popular representatives of these frameworks, Apache Cordova, React Native
and Xamarin, were then closely tested by implementing 6 common use-case scenarios in each
of them. The findings from said practical implementations were eventually combined with
researched theoretical knowledge, to produce the methodology itself. The resulting methodology
was verified on a series of existing projects, were it confirmed or rejected the used framework to be
the most suitable, as expected. It was also used to determine the right tool for a startup project.
A preliminary application made by the startup supports this decision. The overall feedback on
the methodology was very positive. The web application representing the methodology will be
used by SDE Software Solutions to choose the most suitable framework for upcoming projects.

The main contribution of this thesis, and particularly the methodology, can be seen in its
generality. Because of the large number of studied development tools, the methodology can be
applied to any general-purpose mobile development framework. Unlike similar academic works,
which compare only a handful of frameworks, the methodological steps from this thesis will be
valid also in the near future, with minimal fine tuning.

This fine tuning may include re-assessing the importance of individual questions or adding
new criteria and new frameworks, which may be developed in the future. Frameworks and
requirements that will cease to exist may be removed from the methodology, or made less
important. Additionaly, similar methodologies may be developed, focusing on game engines,
web application frameworks or single-purpose enterprise tools.

83

References

[1] WARGO, John M. Apache Cordova 3 Programming. First release. New Jersey 07458: Pear-
son Education, 2013. ISBN 978-0-321-95736-8.

[2] RAJ, R a SB TOLETY. A study on approaches to build cross-platform mobile applications
and criteria to select appropriate approach. 2012 Annual IEEE India Conference (INDI-
CON). 2012, 625–9.

[3] AWS Device Farm [online]. [cit. 2017-03-11]. Available at: https://aws.amazon.com/device-
farm/

[4] Bitbar. [online]. [cit. 2017-03-11]. Available at: http://bitbar.com/testing/

[5] BlackBerry World. In: Wikipedia: the free encyclopedia [online]. San Fran-
cisco (CA): Wikimedia Foundation, 2001- [cit. 2017-03-10]. Available at:
https://en.wikipedia.org/wiki/BlackBerry_World#Milestones

[6] Bring your Windows Phone Silverlight apps to Windows Runtime XAML; prepare for
universal app development in Windows 10. Windows blogs [online]. [cit. 2017-03-10].
Available at: https://blogs.windows.com/buildingapps/2014/12/17/bring-your-windows-
phone-silverlight-apps-to-windows-runtime-xaml-prepare-for-universal-app-development-
in-windows-10/

[7] COMPARING PHONEGAP/CORDOVA AND CODENAME ONE. Codename One [on-
line]. [cit. 2017-02-26]. Available at: https://www.codenameone.com/blog/comparing-
phonegap-cordova-and-codename-one.html

[8] PALMIERI, Manuel, Inderjeet SINGH a Antonio CINCCHETTI. Comparison of
Cross-Platform Mobile Development Tools [online]. [cit. 2017-03-18]. Available at:
https://pdfs.semanticscholar.org/be08/83eab3d3d6eb10c4ff1189163f6453254da1.pdf

[9] Cross-platform. In: Wikipedia: the free encyclopedia [online]. San Francisco (CA): Wikime-
dia Foundation, 2001- [cit. 2017-03-10]. Available at: https://en.wikipedia.org/wiki/Cross-
platform

[10] DE ANDRADE, Paulo R. M. a Adriano B. ALBUQUERQUE. Cross Platform App: A com-
parative study [online]. Postgraduate program in applied information University of Fortaleza
- UNIFOR Fortaleza - CE, Brazil, 2015 [cit. 2017-02-19].

[11] FURUSKOG, Martin a Stuart WEMYSS. Cross-platform development of smartphone appli-
cations: An evaluation of React Native [online]. Uppsala Universitet, 2016 [cit. 2017-02-19].
In: https://uu.diva-portal.org/smash/get/diva2:948617/FULLTEXT01.pdf

84

[12] NIELSEN, Bobby. Cross Platform Mobile Development [online]. Depart-
ment of Computer Science, University of Aarhus, 2015 [cit. 2017-02-19]. In:
https://pdfs.semanticscholar.org/de11/7b518d31ebcad7a864f9b16d1bcd53365d6a.pdf

[13] CROSS PLATFORM MOBILE STILL BETTER THAN NAIVE IN AGE
OF FLAT DESIGN. Codename One [online]. [cit. 2017-03-10]. Available at:
https://www.codenameone.com/blog/cross-platform-mobile-still-better-than-native-in-
age-of-flat-design.html

[14] Cross-Platform Tool Benchmarking 2014 [online]. [cit. 2017-02-19]. In:
http://www.research2guidance.com/r2g/Cross-Platform-Tool-Benchmarking-Report-
2014.pdf

[15] Defining a New Breed of Cross-Platform Mobile Apps. Telerik [online]. 2015 [cit. 2017-
02-19]. In: http://developer.telerik.com/featured/defining-a-new-breed-of-cross-platform-
mobile-apps/

[16] Detachable Tablets Set To Grow From 8% of the Tablet Market in 2015 to
30% in 2020, According to IDC. IDC [online]. [cit. 2017-03-10]. Available at:
http://www.idc.com/getdoc.jsp?containerId=prUS41072516

[17] Developers earn more on Windows Phone than Android or iOS. Betanews [online]. [cit. 2017-
03-10]. Available at: http://betanews.com/2016/02/29/windows-phone-developer-revenue/

[18] FRIBERG, Joy. Evaluation of cross-platform development for mobile devices [online]. De-
partment of Computer and Information Science , Linköpings universitet, 2014 [cit. 2017-
02-19]. In: https://www.diva-portal.org/smash/get/diva2:691708/FULLTEXT01.pdf

[19] Firebase Test Lab for Android [online]. [cit. 2017-03-11]. Available at:
https://firebase.google.com/docs/test-lab/

[20] Gartner [online]. [cit. 2017-03-11]. Available at: http://www.gartner.com/technology/home.jsp

[21] Get started with Ionic Framework. Ionic [online]. [cit. 2017-02-26]. Available at:
http://ionicframework.com/getting-started/

[22] How Much Do Mobile Developers Make Per App? Lifehacker [online]. [cit. 2017-03-
10]. Available at: http://www.lifehacker.com.au/2016/03/how-much-do-mobile-developers-
make-per-app/

[23] IOS Programming Tutorial: Creating a Universal App. Appcoda [online]. [cit. 2017-03-10].
Available at: http://www.appcoda.com/ios-univeral-app-tutorial/

[24] IOS vs Android Market Share & Revenue: One Win for Each App
Store in 2015. Latin Post [online]. [cit. 2017-03-10]. Available at:

85

http://www.latinpost.com/articles/110519/20160121/ios-vs-android-market-share-
revenue-one-win-for-each-app-store-in-2015.htm

[25] Mobile cellular subscriptions (per 100 people). The
World Bank [online]. [cit. 2017-03-10]. Available at:
http://data.worldbank.org/indicator/IT.CEL.SETS.P2?view=map&year=2000

[26] SMUTNÝ, P. Mobile development tools and cross-platform solutions. 13th International
Carpathian Control Conference (ICCC). 2012, 653–6.

[27] SHACKLES, Greg. Mobile development with C#. Sebastopol, CA: O’Reilly, c2012. ISBN
978-1-449-32023-2.

[28] Mobile operating system. In: Wikipedia: the free encyclopedia [online]. San
Francisco (CA): Wikimedia Foundation, 2001- [cit. 2017-03-11]. Available at:
https://en.wikipedia.org/wiki/Mobile_operating_system#By_operating_system

[29] Mobile/Tablet Operating System Market Share. NetMarketShare [online]. [cit. 2017-
03-10]. Available at: https://www.netmarketshare.com/operating-system-market-
share.aspx?qprid=8&qpcustomd=1

[30] NativeScript Runtime Preview for Windows 10. NativeScript [online]. [cit. 2017-03-
10]. Available at: https://www.nativescript.org/blog/nativescript-runtime-preview-for-
windows-10

[31] New Report Shows iOS Users Spend Money, Like to Check
Weather. The Mac Observer [online]. [cit. 2017-03-10]. Available at:
https://www.macobserver.com/tmo/article/new_report_shows_ios_users_spend_money
_like_to_check_weather

[32] Number of apps available in leading app stores as of June 2016. Statista [online]. [cit.
2017-03-10]. Available at: https://www.statista.com/statistics/276623/number-of-apps-
available-in-leading-app-stores/

[33] Number of smartphone users worldwide from 2014 to 2020 (in billions). Statista [on-
line]. [cit. 2017-03-10]. Available at: http://www.statista.com/statistics/330695/number-
of-smartphone-users-worldwide/

[34] One chart shows why BlackBerry 10 has struggled to attract developers. BGR [online]. [cit.
2017-03-10]. Available at: http://bgr.com/2013/11/26/blackberry-10-developer-revenues/

[35] Plugins for Xamarin and Windows Projects. GitHub [online]. [cit. 2017-03-11]. Available at:
https://github.com/jamesmontemagno/Xamarin.Plugins

86

[36] React-native-camera. GitHub [online]. [cit. 2017-03-11]. Available at:
https://github.com/lwansbrough/react-native-camera

[37] React-native-windows. Npm [online]. [cit. 2017-02-26]. Available at:
https://www.npmjs.com/package/react-native-windows

[38] React Native on the Universal Windows Platform. Windows blogs [online]. [cit. 2017-03-
10]. Available at: https://blogs.windows.com/buildingapps/2016/04/13/react-native-on-
the-universal-windows-platform/#cFzRYQ06Y3lx1Yo8.97

[39] Reports. Developer Economics [online]. [cit. 2017-03-10]. Available at:
https://www.developereconomics.com/reports/

[40] Smartphone OS sales market share. Kantar Worldpanel [online]. [cit. 2017-03-11]. Available
at: https://www.kantarworldpanel.com/global/smartphone-os-market-share/

[41] Supporting Tablets and Handsets. Android Developer [online]. [cit. 2017-03-10]. Available
at: https://developer.android.com/guide/practices/tablets-and-handsets.html

[42] DA SILVA, Ribeiro A. Survey on cross-platforms and languages for mobile apps. 2012 eighth
international conference on the Quality of Information and Communications Technology
(QUATIC). 2012, 255-60.

[43] Swift Embedded Runtime Library Increases App Size. Doing things the
hard way. . . : But only once [online]. [cit. 2017-03-11]. Available at:
http://blog.diogot.com/blog/2014/09/29/swift-embedded-runtime-library-increases-
app-size/

[44] Tablet operating systems’ market share worldwide from 2013 to 2020. Statista [online].
[cit. 2017-03-10]. Available at: https://www.statista.com/statistics/272446/global-market-
share-held-by-tablet-operating-systems/

[45] EL-KASSAS, Wafaa S., Bassem A. ABDULLAH, Ahmed H. YOUSEF a Ay-
man M. WAHBA. Taxonomy of Cross-Platform Mobile Applications Development
Approaches [online]. Department of Computer and Systems Engineering, Fac-
ulty of Engineering, Ain Shams University, Egypt, 2015 [cit. 2017-02-19]. In:
http://www.sciencedirect.com/science/article/pii/S2090447915001276

[46] TestObject [online]. [cit. 2017-03-11]. Available at: https://testobject.com/

[47] Welcome to Continuum for phone. Microsoft Support [online]. [cit. 2017-03-10]. Available
at: https://support.microsoft.com/en-us/help/17280/windows-10-mobile-continuum

[48] Windows. Windows Dev Center [online]. [cit. 2017-03-10]. Available at:
https://developer.microsoft.com/en-us/windows

87

[49] Windows 10 Mobile. In: Wikipedia: the free encyclopedia [online]. San Fran-
cisco (CA): Wikimedia Foundation, 2001- [cit. 2017-03-10]. Available at:
https://en.wikipedia.org/wiki/Windows_10_Mobile

[50] WINDOWS PHONE 8.1 & UWP SUPPORT. Codename One [online]. [cit. 2017-03-10].
Available at: https://www.codenameone.com/blog/windows-phone-8-1-uwp-support.html

[51] Worldwide Tablet Market Expected to Rebound in 2018 as Windows Opens Doors for
Growth and iPads Come Out of a Slump, According to IDC. IDC [online]. [cit. 2017-03-10].
Available at: https://www.idc.com/getdoc.jsp?containerId=prUS41699516

88

A Overview of studied frameworks

A.1 Alpha Anywhere

Table 44: Alpha Anywhere

Framework Alpha Anywhere https://www.alphasoftware.com/mobile-
app-development/

Approach Hybrid

Most suitable for Small simple apps, prototyping

Popularity Average

Available APIs Audio, video, device status,
push notifications, file system,
app properties

Supported assistants None

Augmented or virtual real-
ity

No

Background services or
processes

No

Databases SQLite

Can be developed in Web environmnet Does not require Mac for iOS
builds.

Game development No

Invoke native libraries No

Programming languages Code-free, JavaScript

Can build apps for Android, iOS

MBaaS Yes

Multithreading Partially Available with script thread pro-
cesses.

OpenGL No

Platform-specific overrides No

Approximate prices (per
developer per year)

Indie or up to 5 developers -
$ 1499. Up to 25 developers -
$2499.

Enterprise prices on demand.

Supported sensors Camera, microphone, geoloca-
tion, accelerometer, gyroscope,
fingerprint and barcode scan-
ners

89

Table 45: Alpha Anywhere ctd

Framework Alpha Anywhere https://www.alphasoftware.com/mobile-
app-development/

Crash analysis Yes Custom Alpha Anywhere crash
analytics.

App profiling No

Continuous integration No

Debugging Yes

Closed group shipping Default Available via native app stores.

Device farm testing No

Automated UI testing No

Unit testing No

Designer or preview tool Yes

Native look and feel No

Adaptive layout for mobile
and tablet

Yes

UI layers Single platform-agnostic UI
code-base.

90

A.2 Appcelerator

Table 46: Appcelerator

Framework Appcelerator https://www.appcelerator.com/

Approach Interpreted

Most suitable for Small to medium apps,
business-grade

Popularity Very high

Available APIs Audio, video, device status,
push notifications, file sys-
tem, app properties, embed-
ded browser, address book, calls
and messages

Supported assistants Alexa, Cortana, Google Assis-
tant, Siri

Augmented or virtual real-
ity

Yes

Background services or
processes

Yes

Databases SQLite, Couchbase

Can be developed in Linux, macOS, Windows

Game development No

Invoke native libraries Yes

Programming languages JavaScript

Can build apps for Android, iOS, Windows

MBaaS Yes

Multithreading Partially Available via web-workers.

OpenGL Yes

Platform-specific overrides Yes

Approximate prices (per
developer per year)

Indie - $432, company up to 25
developers - $1188.

Enterprise prices on demand.

Supported sensors Camera, microphone, geoloca-
tion, accelerometer, gyroscope,
NFC, fingerprint scanner

Barcode scanner available as
3rd-party library. Bluetooth
available for limited use-cases.

91

Table 47: Appcelerator ctd

Framework Appcelerator https://www.appcelerator.com/

Crash analysis Yes Custom Appcelerator Live Stats
analytics.

App profiling Yes

Continuous integration Yes

Debugging Yes

Closed group shipping Default Available via native app stores.

Device farm testing Default Available via common device
farms.

Automated UI testing Yes

Unit testing Yes

Designer or preview tool Yes

Native look and feel Yes

Adaptive layout for mobile
and tablet

Yes

UI layers Multiple platform-specific UI
code-bases.

92

A.3 Appery.io

Table 48: Appery.io

Framework Appery.io https://appery.io/

Approach Hybrid, Web apps

Most suitable for Small simple apps, prototyping

Popularity Average

Available APIs Audio, video, device status,
push notifications, file sys-
tem, app properties, embed-
ded browser, address book, calls
and messages

Supported assistants None

Augmented or virtual real-
ity

No

Background services or
processes

Partial Available via 3rd-party libraries
or custom implementation.

Databases SQLite

Can be developed in Web environment Does not require Mac for iOS
builds or Windows PC for Win-
dows apps builds.

Game development No

Invoke native libraries Yes

Programming languages Code-free, JavaScript

Can build apps for Android, iOS, Windows

MBaaS Yes

Multithreading No

OpenGL Partially WebGL

Platform-specific overrides Yes

Approximate prices (per
developer per year)

Indie - $720, company up to 5
developers - $270.

Prices for companies with more
developers on demand.

Supported sensors Camera, microphone, geoloca-
tion, accelerometer, gyroscope,
bluetooth, NFC, barcode scan-
ner

Fingerprint scanner available
only for Android and iOS.

93

Table 49: Appery.io ctd

Framework Appery.io https://appery.io/

Crash analysis No

App profiling No

Continuous integration Yes

Debugging Yes

Closed group shipping Default Available via native app stores.

Device farm testing No

Automated UI testing No

Unit testing Yes

Designer or preview tool Yes

Native look and feel No

Adaptive layout for mobile
and tablet

Yes

UI layers Single platform-agnostic UI
code-base.

94

A.4 Aquro

Table 50: Aquro

Framework Aquro http://www.aquro.com/

Approach Hybrid

Most suitable for Small simple apps, prototyping

Popularity Very low

Available APIs Audio, video, device status,
push notifications, file sys-
tem, app properties, embed-
ded browser, address book, calls
and messages

Supported assistants None

Augmented or virtual real-
ity

No

Background services or
processes

Partially Available via 3rd-party library or
custom implementation.

Databases None

Can be developed in Windows, Web environment Does not require Mac for iOS
builds.

Game development No

Invoke native libraries Unknown

Programming languages JavaScript

Can build apps for Android, iOS

MBaaS Yes

Multithreading No

OpenGL Partially WebGL

Platform-specific overrides Yes

Approximate prices (per
developer per year)

Indie - free, company up to 25
developers - $108, company up
to 25 developers - $588.

Enterprise prices on demand.

Supported sensors Camera, microphone, geoloca-
tion, accelerometer, bluetooth,
NFC, barcode scanner

Gyroscope available via 3rd-
party libraries or custom imple-
mentation. Fingerprint scanner
supported only on iOS.

95

Table 51: Aquro ctd

Framework Aquro http://www.aquro.com/

Crash analysis No

App profiling No

Continuous integration No

Debugging Yes

Closed group shipping Default Available via native app stores.

Device farm testing No

Automated UI testing No

Unit testing No

Designer or preview tool Yes

Native look and feel No

Adaptive layout for mobile
and tablet

No

UI layers Single platform-agnostic UI
code-base.

96

A.5 Codename One

Table 52: Codename One

Framework Codename One https://www.codenameone.com/

Approach Interpreted

Most suitable for Small to medium apps,
business-grade

Popularity Average

Available APIs Audio, video, push notifica-
tions, file system, app prop-
erties, embedded browser, ad-
dress book, calls and messages

Device status available via 3rd-
party library or custom imple-
mentation.

Supported assistants None

Augmented or virtual real-
ity

No

Background services or
processes

Yes

Databases SQLite

Can be developed in Linux, macOS, Windows Does not require Mac for iOS
builds or Windows PC for Win-
dows builds.

Game development Yes

Invoke native libraries Yes

Programming languages Java

Can build apps for Android, BlackBerry, iOS,
Windows

MBaaS No

Multithreading Yes

OpenGL Yes

Platform-specific overrides Yes

Approximate prices (per
developer per year)

Indie - Free, company up to
5 developers - $228, up to
25 developers - $849. Enter-
prise prices range from $3792 to
$4788.

97

Table 53: Codename One ctd

Framework Codename One https://www.codenameone.com/

Supported sensors Camera, microphone, geoloca-
tion, accelerometer.

Gyroscope, bluetooth, NFC, fin-
gerprint and barcode scanners
are available either as 3rd-party
libraries or by custom implemen-
tation.

Crash analysis Yes Crash reports are sent as an
email.

App profiling Yes

Continuous integration Yes

Debugging Yes

Closed group shipping Default Available via native app stores.

Device farm testing Default Available via common device
farms.

Automated UI testing Yes

Unit testing Yes

Designer or preview tool Yes

Native look and feel No

Adaptive layout for mobile
and tablet

No

UI layers Single platform-agnostic UI
code-base.

98

A.6 Corona Labs

Table 54: Corona Labs

Framework Corona Labs https://coronalabs.com/

Approach Interpreted

Most suitable for Small to medium apps,
business-grade

Popularity High

Available APIs Audio, video, push notifica-
tions, app properties, embed-
ded browser, address book, calls
and messages

File system access and device
status have limited capabilities.

Supported assistants Alexa, Cortana, Siri

Augmented or virtual real-
ity

Yes

Background services or
processes

No

Databases SQLite, Couchbase

Can be developed in macOS, Windows

Game development Yes

Invoke native libraries Yes

Programming languages Lua

Can build apps for Android, iOS, Windows

MBaaS No

Multithreading Partially Can be partially substituted by
Lua co-routines.

OpenGL Yes

Platform-specific overrides Yes

Approximate prices (per
developer per year)

Indie - Free, company up to
10 developers - $948, companies
with more developers and enter-
prise - $2388.

Supported sensors Camera, microphone, geoloca-
tion, accelerometer, gyroscope,
fingerprint scanner

NFC, bluetooth and barcode
scanner available as 3rd-party li-
braries or by custom implemen-
tation.

99

Table 55: Corona Labs ctd

Framework Corona Labs https://coronalabs.com/

Crash analysis Default Provided by native app stores or
specialized 3rd-party tools.

App profiling Yes

Continuous integration Yes

Debugging Yes

Closed group shipping Yes Available via native app stores or
HockeyApp.

Device farm testing No

Automated UI testing No

Unit testing Yes

Designer or preview tool No

Native look and feel No

Adaptive layout for mobile
and tablet

Partially Partially available with runtime
platform detection.

UI layers Single platform-agnostic UI
code-base.

100

A.7 Embarcadero

Table 56: Embarcadero

Framework Embarcadero https://www.embarcadero.com/

Approach Cross-compilation, Web apps

Most suitable for Medium to large apps, complex
and native-like

Popularity Low

Available APIs Audio, video, device status,
push notifications, file sys-
tem, embedded browser, ad-
dress book, calls and messages

App properties access available
via a 3rd-party library or custom
implementation.

Supported assistants None

Augmented or virtual real-
ity

Partially Work-around possible by invok-
ing native libraries.

Background services or
processes

Yes

Databases SQLite, Couchbase

Can be developed in macOS, Windows Linux support is planned.

Game development Yes

Invoke native libraries Yes

Programming languages C++, Delphi

Can build apps for Android, iOS, Windows BlackBerry development avail-
able via mobile web apps.

MBaaS No

Multithreading Yes

OpenGL Yes

Platform-specific overrides Partially Possible with conditional compi-
lation.

Approximate prices (per
developer per year)

Indie - Free, company up to
25 developers - $3155. Enter-
prise prices range from $4947 to
$6984.

Supported sensors Camera, microphone, geoloca-
tion, accelerometer, gyroscope,
bluetooth, NFC, barcode scan-
ner

Fingerprint scanner available via
3rd-party libraries or custom im-
plementation.

101

Table 57: Embarcadero ctd

Framework Embarcadero https://www.embarcadero.com/

Crash analysis Yes Custom Embarcadero AppAna-
lytics service.

App profiling Yes

Continuous integration Yes

Debugging Yes

Closed group shipping Default Available via native app stores.

Device farm testing No

Automated UI testing No

Unit testing Yes

Designer or preview tool Yes

Native look and feel Yes

Adaptive layout for mobile
and tablet

Yes

UI layers Single platform-agnostic UI
code-base.

102

A.8 Fuse

Table 58: Fuse

Framework Fuse https://www.fusetools.com/

Approach Interpreted

Most suitable for Small to medium apps,
business-grade

Popularity Average

Available APIs Video, push notifications, file
system, address book

Supported assistants None

Augmented or virtual real-
ity

No

Background services or
processes

No

Databases SQLite

Can be developed in macOS, Windows

Game development No

Invoke native libraries Yes

Programming languages JavaScript

Can build apps for Android, iOS

MBaaS No

Multithreading Partially Available via web-workers.

OpenGL Partially WebGL

Platform-specific overrides Yes

Approximate prices (per
developer per year)

Indie and companies up to 5 de-
velopers - Free.

Prices for larger companies and
enterprise are not publicly dis-
closed.

Supported sensors Camera, microphone, geoloca-
tion

Accelerometer, gyroscope, blue-
tooth and NFC available as 3rd-
party libraries or by custom im-
plementation.

103

Table 59: Fuse ctd

Framework Fuse https://www.fusetools.com/

Crash analysis Default Provided by native app stores or
specialized 3rd-party tools.

App profiling No

Continuous integration Partially Possible, depending on selected
IDE.

Debugging Partially Possible, depending on selected
IDE.

Closed group shipping Default Available via native app stores.

Device farm testing Default Available via common device
farms.

Automated UI testing Partially Possible, depending on selected
IDE.

Unit testing Yes

Designer or preview tool No

Native look and feel Yes

Adaptive layout for mobile
and tablet

Yes

UI layers Single platform-agnostic UI
code-base.

104

A.9 Instant Developer

Table 60: Instant Developer

Framework Instant Developer http://www.instantdeveloper.com/

Approach Hybrid

Most suitable for Small simple apps, prototyping

Popularity Low

Available APIs Audio, device status, push no-
tifications, file system, address
book, calls and messages

Supported assistants None

Augmented or virtual real-
ity

No

Background services or
processes

No

Databases SQLite

Can be developed in Windows

Game development No

Invoke native libraries No

Programming languages Code-free, C#, Java

Can build apps for Android, iOS, Windows

MBaaS Yes

Multithreading No

OpenGL No

Platform-specific overrides No

Approximate prices (per
developer per year)

Indie - Free, companies up to
5 developers - $3588, compa-
nies up to 25 developers - $4788.
Enterprise prices range from
$5988 to $11880.

Supported sensors Camera, microphone, geoloca-
tion, accelerometer, gyroscope,
barcode scanner

105

Table 61: Appcelerator ctd

Framework Instant Developer http://www.instantdeveloper.com/

Crash analysis No

App profiling No

Continuous integration No

Debugging Yes

Closed group shipping Default Available via native app stores.

Device farm testing Default Available via common device
farms.

Automated UI testing Yes

Unit testing No

Designer or preview tool Yes

Native look and feel No

Adaptive layout for mobile
and tablet

No

UI layers Single platform-agnostic UI
code-base.

106

A.10 Ionic

Table 62: Ionic

Framework Ionic http://ionicframework.com/

Approach Hybrid

Most suitable for Small simple apps, prototyping

Popularity Very high

Available APIs Audio, video, device status,
push notifications, file system,
app properties, address book,
calls and messages

Embedded browser available as
3rd-party libraries or by custom
implementation.

Supported assistants Cortana, Google Assistant, Siri

Augmented or virtual real-
ity

Partially Possible with 3rd-party libraries
or custom implementation.

Background services or
processes

Partially Only custom implementation,
not achievable on all mobile op-
erating systems.

Databases SQLite, Realm, Couchbase

Can be developed in Linux, macOS, Windows

Game development No

Invoke native libraries Yes

Programming languages AngularJS, JavaScript

Can build apps for Android, iOS, Windows Limited unofficial support for
BlackBerry.

MBaaS No

Multithreading Partially Available via web-workers.

OpenGL Partially WebGL

Platform-specific overrides Yes

Approximate prices (per
developer per year)

Free

Supported sensors Camera, microphone, geolo-
cation, accelerometer, gyro-
scope, bluetooth, NFC, finger-
print and barcode scanner

107

Table 63: Ionic ctd

Framework Ionic http://ionicframework.com/

Crash analysis Default Provided by native app stores or
specialized 3rd-party tools.

App profiling Partially Possible, depending on selected
IDE.

Continuous integration Partially Possible, depending on selected
IDE.

Debugging Partially Possible, depending on selected
IDE.

Closed group shipping Yes Available via native app stores
and HockeyApp.

Device farm testing Default Available via common device
farms.

Automated UI testing Yes

Unit testing Yes

Designer or preview tool Yes

Native look and feel Yes

Adaptive layout for mobile
and tablet

Yes

UI layers Single platform-agnostic UI
code-base.

108

A.11 Kivy

Table 64: Kivy

Framework Kivy https://kivy.org/#home

Approach Cross-compiled, Hybrid

Most suitable for Small to medium apps,
business-grade

Popularity Average

Available APIs Video, file system, app proper-
ties

Audio, device status and em-
bedded browser are available as
3rd-party libraries or by custom
implementation. Push notifica-
tions are supported only on An-
droid and Windows, custom im-
plementation is required. Ad-
dress book, calls and messaging
are available only on Android
and iOS, custom implementation
is required.

Supported assistants Alexa

Augmented or virtual real-
ity

No

Background services or
processes

Partially Possible with 3rd-party library
or custom implementation.

Databases SQLite

Can be developed in Linux, macOS, Windows

Game development Yes

Invoke native libraries Yes

Programming languages Python

Can build apps for Android, iOS, Windows

MBaaS No

Multithreading Yes

OpenGL Yes

Platform-specific overrides Yes

Approximate prices (per
developer per year)

Free

109

Table 65: Appcelerator ctd

Framework Kivy https://kivy.org/#home

Supported sensors Camera Bluetooth, NFC and barcode
scanner are available as 3rd-
party libraries or by custom im-
plementation. Geolocation, ac-
celerometer and gyroscope are
available only on Android and
iOS, custom implementation is
required. Microphone is avail-
able only on Android, custom
implementation is required.

Crash analysis No .

App profiling Partially Possible only in code via custom
libraries.

Continuous integration Partially Possible, depending on selected
IDE.

Debugging Partially Possible, depending on selected
IDE.

Closed group shipping Default Available via native app stores.

Device farm testing No

Automated UI testing No

Unit testing Yes

Designer or preview tool Partially 3rd-party solutions available.

Native look and feel No

Adaptive layout for mobile
and tablet

No

UI layers Single platform-agnostic UI
code-base.

110

A.12 Kony

Table 66: Kony

Framework Kony http://www.kony.com/

Approach Interpreted, Web apps

Most suitable for Small to medium apps,
business-grade

Popularity Average

Available APIs Audio, video, push notifica-
tions, file system, embedded
browser, address book, calls
and messages

App properties available as a
3rd-party library or by custom
implementation.

Supported assistants Alexa, Siri

Augmented or virtual real-
ity

Partially Experimental apps exist, full
support not guaranteed.

Background services or
processes

Partially Available only on Windows.

Databases File database

Can be developed in macOS, Windows

Game development No

Invoke native libraries Yes

Programming languages Code-free, JavaScript

Can build apps for Android, iOS, Windows BlackBerry development avail-
able as mobile web apps.

MBaaS Yes

Multithreading Yes

OpenGL Partially Possible with custom implemen-
tation.

Platform-specific overrides Yes

Approximate prices (per
developer per year)

Indie - Free. Only starter prices are publically
disclosed.

Supported sensors Camera, geolocation, ac-
celerometer, gyroscope

Microphone, bluetooth, NFC,
fingerprint and barcode scanner
available as 3rd-party libraries or
by custom implementation.

111

Table 67: Kony ctd

Framework Kony http://www.kony.com/

Crash analysis Default Provided by native app stores or
specialized 3rd-party tools.

App profiling Yes

Continuous integration Yes

Debugging Yes

Closed group shipping Yes Available via native app stores
and HockeyApp.

Device farm testing Default Available via common device
farms.

Automated UI testing Yes

Unit testing Yes

Designer or preview tool Yes

Native look and feel No

Adaptive layout for mobile
and tablet

Yes

UI layers Single platform-agnostic UI
code-base.

112

A.13 Monaca (Onsen UI)

Table 68: Monaca (Onsen UI)

Framework Monaca (Onsen UI) https://monaca.io/

Approach Hybrid

Most suitable for Small simple apps, prototyping

Popularity Average

Available APIs Audio, video, device status,
push notifications, file system

App properties available as 3rd-
party library or by custom im-
plementation.

Supported assistants None

Augmented or virtual real-
ity

No

Background services or
processes

No

Databases SQLite

Can be developed in macOS, Windows CLI tool available for Linux.

Game development No

Invoke native libraries Yes

Programming languages JavaScript, Vue.js

Can build apps for Android, iOS, Windows

MBaaS Yes

Multithreading Partially Available via web-workers.

OpenGL Yes

Platform-specific overrides Yes

Approximate prices (per
developer per year)

Indie and companies up to 5 de-
velopers - Free, up to 10 devel-
opers - $190, companies up to
25 developers - $490. Enterprise
features available from $780.

Supported sensors Camera, geolocation, ac-
celerometer, bluetooth, barcode
scanner

Microphone, gyroscope, NFC
and fingerprint scanner available
as 3rd-party libraries or by cus-
tom implementation.

113

Table 69: Monaca (Onsen UI) ctd

Framework Monaca (Onsen UI) https://monaca.io/

Crash analysis Default Provided by native app stores or
specialized 3rd-party tools.

App profiling Partially Possible, depending on selected
IDE.

Continuous integration Partially Possible, depending on selected
IDE.

Debugging Partially Possible, depending on selected
IDE.

Closed group shipping Default Available via native app stores.

Device farm testing Default Available via common device
farms.

Automated UI testing Yes

Unit testing Yes

Designer or preview tool No

Native look and feel Yes

Adaptive layout for mobile
and tablet

Yes

UI layers Single platform-agnostic UI
code-base.

114

A.14 NativeScript

Table 70: NativeScript

Framework NativeScript https://www.nativescript.org/

Approach Interpreted

Most suitable for Small to medium apps,
business-grade

Popularity Very high

Available APIs Audio, device status, push noti-
fications, file system, app prop-
erties, address book, calls and
messages

Video and embedded browser
available as 3rd-party libraries or
by custom implementation

Supported assistants Alexa, Cortana, Google Assis-
tant, Siri

Augmented or virtual real-
ity

Yes

Background services or
processes

Partially Possible with 3rd-party libraries
or custom implementation.

Databases SQLite, Couchbase

Can be developed in Linux, macOS, Windows

Game development No

Invoke native libraries Yes

Programming languages AngularJS, JavaScript

Can build apps for Android, iOS Preview for Windows available.

MBaaS No

Multithreading Partially Available via web-workers.

OpenGL Partially WebGL

Platform-specific overrides Yes

Approximate prices (per
developer per year)

Free

Supported sensors Camera, geolocation Microphone, accelerometer, gy-
roscope, bluetooth, NFC, finger-
print and barcode scanner avail-
able as 3rd-party libraries or by
custom implementation.

115

Table 71: NativeScript ctd

Framework NativeScript https://www.nativescript.org/

Crash analysis Yes Custom Telerik Analytics.

App profiling Yes

Continuous integration Partially Possible, depending on selected
IDE.

Debugging Partially Possible, depending on selected
IDE.

Closed group shipping Yes Available via native app stores
and HockeyApp.

Device farm testing Yes Telerik Test Studio.

Automated UI testing Yes

Unit testing Yes

Designer or preview tool No

Native look and feel Partially Both native and non-native
looks achievable.

Adaptive layout for mobile
and tablet

Yes

PUI layers Both platform-specific and
platform-agnostic UI code-base
available.

116

A.15 NeoMAD

Table 72: NeoMAD

Framework NeoMAD http://neomades.com/

Approach Cross-compiled

Most suitable for Medium to large apps, complex
and native-like

Popularity Very low

Available APIs Audio, video, device status,
push notifications, file system,
app properties

Embedded browser, address
book, calls and messaging avail-
able as 3rd-party libraries or by
custom implementation.

Supported assistants None

Augmented or virtual real-
ity

No

Background services or
processes

Yes

Databases SQLite

Can be developed in macOS, Windows

Game development Yes

Invoke native libraries Yes

Programming languages Java

Can build apps for Android, BlackBerry, iOS,
Windows

MBaaS No

Multithreading Yes

OpenGL Yes

Platform-specific overrides Yes

Approximate prices (per
developer per year)

Indie - Free, companies up to 10
developers - $999, larger com-
panies and enterprise - $4999.

Supported sensors Camera, microphone, geoloca-
tion, accelerometer, gyroscope,
NFC, barcode scanner

Bluetooth and fingerprint scan-
ner available as 3rd-party li-
braries or by custom implemen-
tation.

117

Table 73: NeoMAD ctd

Framework NeoMAD http://neomades.com/

Crash analysis No

App profiling Yes

Continuous integration Yes

Debugging Yes

Closed group shipping Default Available via native app stores.

Device farm testing Default Available via common device
farms.

Automated UI testing Partially Possible with 3rd-party tools.

Unit testing Yes

Designer or preview tool No

Native look and feel No

Adaptive layout for mobile
and tablet

Yes

UI layers Single platform-agnostic UI
code-base.

118

A.16 NS Basic

Table 74: NS Basic

Framework NS Basic https://www.nsbasic.com/

Approach Hybrid, Web apps

Most suitable for Small simple apps, prototyping

Popularity Very low

Available APIs Audio, video, device status,
push notifications, file sys-
tem, app properties, embed-
ded browser, address book, calls
and messages

Supported assistants Google Assistant, Siri

Augmented or virtual real-
ity

No

Background services or
processes

Partially Available only on Android, cus-
tom implementation needed.

Databases SQLite

Can be developed in Linux, macOS, Windows

Game development No

Invoke native libraries No

Programming languages BASIC, JavaScript

Can build apps for Android, iOS Windows development available
as mobile web apps.

MBaaS No

Multithreading No

OpenGL Partially WebGL

Platform-specific overrides Yes

Approximate prices (per
developer per year)

Indie or companies up to 25 de-
velopers - $150. Enterprise fea-
tures available from $900.

Supported sensors Camera, microphone, geolo-
cation, accelerometer, gyro-
scope, bluetooth, NFC, finger-
print and barcode scanners.

119

Table 75: NS Basic ctd

Framework NS Basic https://www.nsbasic.com/

Crash analysis No

App profiling Partially Possible, depending on selected
IDE.

Continuous integration Partially Possible, depending on selected
IDE.

Debugging Partially Possible, depending on selected
IDE.

Closed group shipping Default Available via native app stores.

Device farm testing Default Available via common device
farms.

Automated UI testing Yes

Unit testing Yes

Designer or preview tool Yes

Native look and feel No

Adaptive layout for mobile
and tablet

No

UI layers Single platform-agnostic UI
code-base.

120

A.17 PhoneGap

Table 76: PhoneGap

Framework PhoneGap http://phonegap.com/

Approach Hybrid

Most suitable for Small simple apps, prototyping

Popularity Very high

Available APIs Audio, video, device status,
push notifications, file system,
app properties, address book,
calls and messages

Embedded browser available
only on Android, iOS and
Windows.

Supported assistants Cortana, Google Assistant, Siri

Augmented or virtual real-
ity

Yes

Background services or
processes

Partially Limited availability, custom im-
plementation is needed.

Databases SQLite

Can be developed in Linux, macOS, Windows Does not require Mac for iOS
builds.

Game development No

Invoke native libraries Yes

Programming languages JavaScript

Can build apps for Android, BlackBerry iOS, Win-
dows

MBaaS No

Multithreading Partially Available via web-workers.

OpenGL Partially WebGL

Platform-specific overrides Yes

Approximate prices (per
developer per year)

Free

Supported sensors Camera, microphone, geoloca-
tion, accelerometer, gyroscope,
NFC, barcode scanner.

Bluetooth available only on An-
droid, iOS and Windows. Fin-
gerprint scanner available only
on Android and iOS.

121

Table 77: PhoneGap ctd

Framework PhoneGap http://phonegap.com/

Crash analysis Default Provided by native app stores or
specialized 3rd-party tools.

App profiling Partially Possible, depending on selected
IDE.

Continuous integration Partially Possible, depending on selected
IDE.

Debugging Partially Possible, depending on selected
IDE.

Closed group shipping Yes Available via native app stores
and HockeyApp.

Device farm testing Default Available via common device
farms.

Automated UI testing Yes

Unit testing Yes

Designer or preview tool No

Native look and feel Yes

Adaptive layout for mobile
and tablet

Yes

UI layers Single platform-agnostic UI
code-base.

122

A.18 Qt

Table 78: Qt

Framework Qt https://www.qt.io/

Approach Cross-compiled

Most suitable for Medium to large apps, complex
and native-like

Popularity High

Available APIs Audio, video, embedded
browser, address book, calls
and messages

File system management is re-
stricted for the application sand-
box. Push notifications are avail-
able only on Android and Win-
dows. Devise status is available
as a 3rd party library or via cus-
tom implementation.

Supported assistants None

Augmented or virtual real-
ity

Partially Experimental implementations
exist, full support not guaran-
teed.

Background services or
processes

Yes

Databases SQLite

Can be developed in Linux, macOS, Windows

Game development Yes

Invoke native libraries Yes

Programming languages C++

Can build apps for Android, BlackBerry iOS, Win-
dows

MBaaS No

Multithreading Yes

OpenGL Yes

Platform-specific overrides Yes

Approximate prices (per
developer per year)

Indie - Free, companies up to
5 developers - $948, companies
above 5 developers and enter-
prise prices - $3540.

123

Table 79: Qt ctd

Framework Qt https://www.qt.io/

Supported sensors Camera, microphone, geoloca-
tion, accelerometer, gyroscope,
NFC

Barcode scanner available as
3rd-party library or via custom
implementation. Bluetooth sup-
port varies across mobile operat-
ing systems.

Crash analysis Default Provided by native app stores or
specialized 3rd-party tools.

App profiling Yes

Continuous integration Yes

Debugging Yes

Closed group shipping Default Available via native app stores.

Device farm testing No

Automated UI testing No

Unit testing Yes

Designer or preview tool Yes

Native look and feel No

Adaptive layout for mobile
and tablet

No

UI layers Single platform-agnostic UI
code-base.

124

A.19 React Native

Table 80: React Native

Framework React Native https://facebook.github.io/react-
native/

Approach Interpreted

Most suitable for Small to medium apps,
business-grade

Popularity Very high

Available APIs Audio, push notifications, app
properties, embedded browser

Video, device status, file system,
address book, calls and messag-
ing are available as 3rd party li-
braries or via custom implemen-
tation.

Supported assistants Alexa, Siri

Augmented or virtual real-
ity

Partially Planned.

Background services or
processes

Partially Available as 3rd party libraries
or via custom implementation.

Databases SQLite, Couchbase, Realm,
RocksDB

Can be developed in Linux, macOS, Windows

Game development No

Invoke native libraries Yes

Programming languages JavaScript, ReactJS

Can build apps for Android, iOS Windows apps development is
partially support via special plu-
gin.

MBaaS No

Multithreading Partially Available via web-workers.

OpenGL Partially WebGL.

Platform-specific overrides Yes

Approximate prices (per
developer per year)

Free.

125

Table 81: Reat Native ctd

Framework React Native https://facebook.github.io/react-
native/

Supported sensors Camera, geolocation Microphone, accelerometer, gy-
roscope, bluetooth, NFC, finger-
print and barcode scanners are
available as 3rd party libraries or
via custom implementation.

Crash analysis Default Provided by native app stores or
specialized 3rd-party tools.

App profiling Partially Not yet fully supported.

Continuous integration Partially Possible, depending on selected
IDE.

Debugging Partially Possible, depending on selected
IDE.

Closed group shipping Yes Available via native app stores
and HockeyApp.

Device farm testing Default Available via common device
farms.

Automated UI testing Yes

Unit testing Yes

Designer or preview tool No

Native look and feel Partially Both native and non-native
looks achievable.

Adaptive layout for mobile
and tablet

Yes

UI layers Both platform-specific and
platform-agnostic UI code-base
available.

126

A.20 RubyMotion

Table 82: RubyMotion

Framework RubyMotion http://www.rubymotion.com/

Approach Interpreted

Most suitable for Medium to large apps, complex
and native-like

Popularity High

Available APIs Audio, video, device status,
push notifications, file sys-
tem, app properties, embed-
ded browser, address book, calls
and messages

Supported assistants
Augmented or virtual real-
ity

Yes

Background services or
processes

No

Databases SQLite, Couchbase, Realm

Can be developed in macOS

Game development Yes

Invoke native libraries Yes

Programming languages Ruby

Can build apps for Android, iOS

MBaaS No

Multithreading Yes

OpenGL Yes

Platform-specific overrides Yes

Approximate prices (per
developer per year)

Indie - Free, companies up to
5 developers - $199, companies
above 5 developers and enter-
prise prices - $499.

Not all prices are disclosed.

Supported sensors Camera, microphone, geolo-
cation, accelerometer, gyro-
scope, bluetooth, NFC, finger-
print and barcode scanners.

127

Table 83: RubyMotion ctd

Framework RubyMotion http://www.rubymotion.com/

Crash analysis Yes Custom Appcelerator Live Stats
analytics.

App profiling Yes

Continuous integration Yes

Debugging Yes

Closed group shipping Yes Available via native app stores
and HockeyApp.

Device farm testing Default Available via common device
farms.

Automated UI testing Yes Via Ruby testing suite.

Unit testing No

Designer or preview tool Yes

Native look and feel Yes

Adaptive layout for mobile
and tablet

Yes

UI layers Both platform-specific and
platform-agnostic UI code-base
available.

128

A.21 Smartface

Table 84: Smartface

Framework Smartface https://www.smartface.io/smartface/

Approach Interpreted

Most suitable for Small simple apps, prototyping

Popularity Very low

Available APIs Audio, video, push notifica-
tions, file system, app proper-
ties, address book, calls and
messages

Device status provides only lim-
ited information.

Supported assistants None

Augmented or virtual real-
ity

No

Background services or
processes

No

Databases SQLite

Can be developed in Windows, Web environment

Game development No

Invoke native libraries No

Programming languages Code-free, JavaScript

Can build apps for Android, iOS

MBaaS Partially Enterprise-only feature.

Multithreading No

OpenGL No

Platform-specific overrides No

Approximate prices (per
developer per year)

Indie - $408, companies - $1500. Enterprise prices on demand.

Supported sensors Camera, microphone, finger-
print and barcode scanners

Geolocation, accelerometer, gy-
roscope, bluetooth and NFC
available as 3rd party libraries or
via custom implementation.

129

Table 85: Smartface ctd

Framework Smartface https://www.smartface.io/smartface/

Crash analysis No

App profiling No

Continuous integration No

Debugging Yes

Closed group shipping Default Available via native app stores.

Device farm testing No

Automated UI testing No

Unit testing No

Designer or preview tool Yes

Native look and feel No

Adaptive layout for mobile
and tablet

No

UI layers Single platform-agnostic UI
code-base.

130

A.22 Tabris.js

Table 86: Tabris.js

Framework Tabris.js https://tabrisjs.com/

Approach Interpreted

Most suitable for Small to medium apps,
business-grade

Popularity Very low

Available APIs Audio, video, device status,
push notifications, file sys-
tem, app properties, embed-
ded browser, address book, calls
and messages

Supported assistants None

Augmented or virtual real-
ity

No

Background services or
processes

Partially Possible workarounds, but with
very limited support.

Databases SQLite

Can be developed in macOS, Windows Does not require Mac for iOS
app builds or Windows PC for
Windows app builds.

Game development No

Invoke native libraries Yes

Programming languages JavaScript

Can build apps for Android, iOS, Windows

MBaaS No

Multithreading Partially Available via web-workers.

OpenGL Partially WebGL

Platform-specific overrides Yes

Approximate prices (per
developer per year)

Indie - Free, companies up to
5 developers - $1000, companies
up to 10 developers - $900, com-
pany above 10 developers and
enterprise features - $800.

131

Table 87: Tabris.js ctd

Framework Tabris.js https://tabrisjs.com/

Supported sensors Camera, microphone, geoloca-
tion, accelerometer, gyroscope,
NFC, barcode scanner

Fingerprint scanner available
only on Android and iOS.

Crash analysis Default Provided by native app stores or
specialized 3rd-party tools.

App profiling Partially Possible, depending on selected
IDE.

Continuous integration Partially Possible, depending on selected
IDE.

Debugging Partially Possible, depending on selected
IDE.

Closed group shipping Default Available via native app stores.

Device farm testing Default Available via common device
farms.

Automated UI testing Yes

Unit testing Yes

Designer or preview tool Yes

Native look and feel Yes

Adaptive layout for mobile
and tablet

No

UI layers Single platform-agnostic UI
code-base.

132

A.23 Telerik Platform

Table 88: Telerik Platform

Framework Telerik Platform http://www.telerik.com/platform

Approach Hybrid, Web apps

Most suitable for Small simple apps, prototyping

Popularity High

Available APIs Audio, video, device status,
push notifications, file sys-
tem, app properties, embed-
ded browser, address book, calls
and messages

Supported assistants
Augmented or virtual real-
ity

Yes

Background services or
processes

Partially Limited availability via 3rd
party libraries.

Databases SQLite

Can be developed in Linux, macOS, Windows Does not require Mac for iOS
app builds or Windows PC for
Windows app builds.

Game development No

Invoke native libraries Yes

Programming languages JavaScript, AngularJS

Can build apps for Android, iOS, Windows

MBaaS No

Multithreading No

OpenGL Partially WebGL

Platform-specific overrides Yes

Approximate prices (per
developer per year)

Indie and companies up to 5
developers - $468, companies
above 5 developers - $1788.

Not all enterprise prices are dis-
closed.

Supported sensors Camera, microphone, geoloca-
tion, accelerometer, gyroscope,
bluetooth, NFC, barcode scan-
ner

Fingerprint scanner available
only on Android and iOS.

133

Table 89: Telerik Platform ctd

Framework Telerik Platform http://www.telerik.com/platform

Crash analysis Yes Custom Telerik Analytics.

App profiling Partially Possible, depending on selected
IDE.

Continuous integration Partially Possible, depending on selected
IDE.

Debugging Partially Possible, depending on selected
IDE.

Closed group shipping Default Available via native app stores.

Device farm testing Yes Available via common device
farms and Telerik Test Studio.

Automated UI testing Yes

Unit testing Yes

Designer or preview tool Yes

Native look and feel Yes

Adaptive layout for mobile
and tablet

Yes

UI layers Single platform-agnostic UI
code-base.

134

A.24 ViziApps

Table 90: ViziApps

Framework ViziApps http://www.viziapps.com/

Approach Hybrid, Web apps

Most suitable for Small simple apps, prototyping

Popularity Very low

Available APIs Audio, video, push notifica-
tions, file system, embedded
browser, address book, calls
and messages

Supported assistants None

Augmented or virtual real-
ity

No

Background services or
processes

No

Databases None

Can be developed in Web environment Does not require a Mac for iOS
app builds.

Game development No

Invoke native libraries No

Programming languages Code-free, JavaScript

Can build apps for Android, iOS

MBaaS Partially Provides only a bridge to remote
databases.

Multithreading No

OpenGL No

Platform-specific overrides No

Approximate prices (per
developer per year)

Indie - $468, companies up to
5 developers - $358, companies
up to 10 developers - $179, com-
panies up to 25 developers -
$96, enterprise licences starting
at $64.

Not all prices are disclosed.

Supported sensors Camera, microphone, geoloca-
tion, accelerometer, gyroscope,
bluetooth, barcode scanner

NFC available only on An-
droid. Fingerprint scanner avail-
able only on iOS.

135

Table 91: ViziApps ctd

Framework ViziApps http://www.viziapps.com/

Crash analysis No

App profiling No

Continuous integration No

Debugging Yes

Closed group shipping Yes ViziApps allows OTA updates of
apps.

Device farm testing No

Automated UI testing No

Unit testing No

Designer or preview tool Yes

Native look and feel No

Adaptive layout for mobile
and tablet

No

UI layers Single platform-agnostic UI
code-base.

136

A.25 Xamarin

Table 92: Xamarin

Framework Xamarin https://www.xamarin.com/

Approach Cross-compiled

Most suitable for Medium to large apps, complex
and native-like

Popularity Very high

Available APIs Audio, video, device status,
push notifications, file sys-
tem, app properties, embed-
ded browser, address book, calls
and messages

Supported assistants Alexa, Cortana, Google Assis-
tant, Siri

Augmented or virtual real-
ity

Yes

Background services or
processes

Yes

Databases SQLite, Realm

Can be developed in macOS, Windows

Game development Yes Custom game frameworks
MonoGame and CocosSharp
available. Support of 3rd party
game frameworks (e.g. Wave
Engine).

Invoke native libraries Yes

Programming languages C#

Can build apps for Android, iOS, Windows

MBaaS Partially Supports integration with Mi-
crosoft Azure, but not directly
included.

Multithreading Yes

OpenGL Yes

Platform-specific overrides Yes

137

Table 93: Xamarin ctd

Approximate prices (per
developer per year)

Indie and companies up to 5 de-
velopers - Free, companies up
to 25 developers - $499, enter-
prise prices range from $2999 to
$5999.

The actual payment is for Visual
Studio. Xamarin is a free part of
it.

Framework Xamarin https://www.xamarin.com/

Supported sensors Camera, microphone, geolo-
cation, accelerometer, gyro-
scope, bluetooth, NFC, finger-
print and barcode scanners

Crash analysis Default Provided by native app stores or
specialized 3rd-party tools.

App profiling Yes

Continuous integration Yes

Debugging Yes

Closed group shipping Yes Available via native app stores
and HockeyApp.

Device farm testing Yes Available via common device
farms and Xamarin Test Cloud.

Automated UI testing Yes

Unit testing Yes

Designer or preview tool Yes

Native look and feel Yes

Adaptive layout for mobile
and tablet

Yes

UI layers Both platform-specific and
platform-agnostic UI code-base
available.

138

B CD Contents

1. The methodology as web application (ReactJS)

2. All use case demonstration apps in Apache Cordova

3. All use case demonstration apps in React Native

4. All use case demonstration apps in Xamarin.Forms and web server for PUSH notifications
(ASP.NET Core)

5. This thesis as .PDF file

139

	List of symbols and abbreviations
	List of Figures
	List of Tables
	Introduction
	Thesis goals and overview
	Remarks

	Relevant mobile operating systems
	Current situation
	Supported operating systems
	Smartphone OS usage market share
	Smartphone OS sales market share
	Smartphone app stores revenues
	Operating systems targeted by developers
	Tablets
	Conclusion

	Mobile multi-platform development tools
	Multi-platform development approaches
	MBaaS
	Multi-platform development frameworks and tools

	Development tools evaluation
	Development tools chosen for evaluation
	Use case definition
	Hardware and software configuration
	Results

	Methodology
	Necessary preconditions
	Methodologically unsuitable projects
	Recommended way of using the methodology
	Primary questions
	Secondary questions
	Tertiary questions
	Supplementary questions

	Methodology verification
	FloLogic
	Project W
	PhoneGap Projects
	Sensus
	Methodology feedback

	Conclusion
	References
	Appendix
	Overview of studied frameworks
	Alpha Anywhere
	Appcelerator
	Appery.io
	Aquro
	Codename One
	Corona Labs
	Embarcadero
	Fuse
	Instant Developer
	Ionic
	Kivy
	Kony
	Monaca (Onsen UI)
	NativeScript
	NeoMAD
	NS Basic
	PhoneGap
	Qt
	React Native
	RubyMotion
	Smartface
	Tabris.js
	Telerik Platform
	ViziApps
	Xamarin

	CD Contents

