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Abstrakt

Hlavním tématem této diplomové práce byla predikce časové náročnosti metod Total FETI a
Hybrid Total FETI implementovaných v knihovně ESPRESO. Druhým tématem byl průzkum
energetické náročnosti kninhovny ESPRESO pro plánovaný model spotřeby.

Model časové náročnosti byl vytvořen pomocí zobecněné lineární regrese s použitím jazyku
R pro implementaci softwaru potřebného ke zpracování naměřených dat. Energetická nároč-
nost byla zkoumána pomocí nástrojů MERIC a RADAR implementovaných v rámci projektu
READEX, který patří do programu Horizon2020.

Model, který popisuje časovou náročnost je užitečný pro odhadování optimálních nastavení
i když pro větší hodnoty není predikce v současné verzi příliš přesná. MERIC a RADAR byly
použity pro evaluaci energetické úspory pro několik hardwarových a aplikačních parametrů.

Model, který popisuje časovou náročnost bude implementován do knihovny ESPRESO, aby
bylo možné automaticky odhadovat optimální nastavení pro minimální čas výpočtu bez před-
chozích testů. Podobně, model spotřeby bude sestaven za pomoci výsledků získaných pomocí
nástrojů MERIC a RADAR a později implementován do knihovny ESPRESO také, čímž bude
schopná odhadovat nejen optimální konfiguraci pro minimální čas výpočtu, ale také pro mini-
mální spotřebu energie.

Klíčová slova: diplomová práce, výkon, run-time, model, hybridní paralelizace, energetická
spotřeba, ESPRESO, READEX, Horizon2020, FETI

Abstract

The main objective of this thesis was the performance prediction of Total FETI and Hybrid Total
FETI methods implemented in ESPRESO library. The secondary objective was the investigation
of energy requirements of ESPRESO for a planned consumption model.

The performance model was created by generalized linear regression, using R-language for
implementation of the software needed to process measured data. The energy consumption
was investigated using MERIC and RADAR tools implemented under READEX project in
Horizon2020 programme.

The model describing performance is useful for estimations of optimal settings, although
the fit is not very precise for larger values. MERIC and RADAR were used to evaluate energy
savings for multiple hardware and application parameters.

The performance model will be implemented into the ESPRESO library, so it will be able
to estimate optimal settings for minimal run-time without demanding prior tests. Similarly, the
consumption model will be assembled using results obtained by MERIC and RADAR and later
implemented into the ESPRESO too, making it able to estimate not only optimal settings for
minimal run-time, but for the minimal energy consumption too.

Key Words: master thesis, performance, run-time, model, hybrid parallelization, energy con-
sumption, ESPRESO, READEX, Horizon2020, FETI
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1 Introduction

1.1 Motivation

The motivation behind this thesis was, that there exist several implementations of different
FETI methods, to be introduced in the next section, but it is very difficult for users of these
libraries to use them efficiently. This thesis describes a performance model for one particular
implementation of Total FETI and Hybrid Total FETI in the ESPRESO library.

This performance model allows any inexperienced user to set-up a FETI solver in sense of
(1) domain decomposition and (2) combination of OpenMP and MPI parallelization to minimize
the solver runtime because it takes into account the parallel scalability of the solver.

The model is composed from several partial models each of whom estimates the run-time of
a separate region. This allows not only the easier customization of the model for future versions
of ESPRESO, but also the detailed predictions about how single regions behave for different
application settings. This can help a new user understand, if the preprocessing phase will be
generally more time-demanding than the CG solver for some settings, or to estimate, which
region is the cause of an unexpected delay etc.

Another hot issue nowadays is the energy consumption in supercomputing. Considering
ESPRESO is meant to be an exascale parallel solver which is able to effectively use "tens or
hundreds of thousands of cores", as it is written on its website1, its energy requirements could
become really high while solving large problems.

This led us to the idea of the consumption model, which would estimate the energy require-
ments of significant regions of ESPRESO in a similar way to the performance model. While this
consumption model is out of the scope of this thesis, the progress has been made in the energy
measurement. We have developed tools MERIC and RADAR for this purpose. The former is
used to measure important properties, like the run-time, an arithmetical intensity or the energy
consumption of significant regions in applications and the latter is used to evaluate those data
and to generate report containing information about optimal settings.

This information could be used as a training data for the consumption model, as we are now
able to measure both the run-time and the energy requirements on several different types of
hardware, thanks to those tools.

Both the performance and the consumption model could be also implemented to ESPRESO
in the future, so it would be able to estimate differences among different settings, like problem
decomposition, different parallelization or different preconditioners and choose the estimated
optimal settings automatically.

This thesis introduces the core computational methods of ESPRESO - TFETI and HTFETI
in the first section, where the description focuses on the parts recognized as the significant
regions which are later modeled. In Section 2 and 3 there are briefly explained statistical "tools"

1http://espreso.it4i.cz/
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and methods used for assembling the performance model and some hardware effects related
to the performance, respectively. The model problem used for measurements is described in
the Section 4, together with details about performed measurements. Finally in Section 5 there
is the performance model described in detail. Finally, Section 6 briefly introduces the energy
measurement tools mentioned above.

1.2 FETI Methods

The FETI (Finite Element Tearing and Interconnecting) method was introduced by Farhat
and Roux in [10]. It is the method used to solve linear problem described by elliptic PDEs in
parallel. It decomposes the spatial domain into non-overlapping sub-domains, "glued" together
by Lagrange multipliers. The primal problem is then transferred, or rather reduced, into the
smaller and better conditioned constrained QP problem. This problem is then solved iteratively,
typically using some form of CG method.

The FETI method was modified (described in [9]), when it was observed, that the math-
ematical treatment of floating sub-domains together with the Projected Conjugate Gradients
method (described by the pseudo-code 1 and in [30] in detail) is equivalent to the assembling
and solution of a coarse problem, which accelerates convergence and guarantees, that the FETI
algorithm performance is independent of a number of sub-domains.

For practical purposes there was required some method for automatic identification of kernels
of stiffness matrices of subdomains, because these kernels are used during the elimination of
primal variables and in definition of the coarse grid projectors. The algorithm for identification
was described by Farhat and Gérardin in [8] as the combination of Cholesky factorization and
the singular value decomposition.

The kernel identification problem partially persisted in real-world problems even with this
improvement, because of the rounding errors. This led to the improved version of FETI called
FETI-DP described in [11]. The difference is, that FETI-DP makes all the stiffness matrices
of sub-domain invertible by enforcing the continuity of displacements at the corners on primal
level. This is advantageous for some applications, because FETI-DP is efficiently preconditioned
and so it scales better, than FETI. The main drawback is, that the coarse grid defined by the
corners is less efficient without additional preconditioning than the one defined by the rigid body
motions, as described in [7]. The FETI-DP algorithm is also much more difficult to implement,
because it requires a special treatment of corners.

The new algorithm, which addresses this two drawbacks is called Total FETI (TFETI).

1.2.1 Total FETI (TFETI)

TFETI was introduced by Dostal et al. in [6] as the new variant of the FETI method trying
to eliminate the disadvantages of Total-DP. Its basic idea is the simplified inversion of stiffness

15



matrices of subdomains with both "gluing" the subdomains and enforcing Dirichlet boundary
conditions using Lagrange multipliers.

Figure 1: 2D domain decomposition and discretization in TFETI (source [6])

Let us consider an elastic body comprised by the domain Ω ⊂ R2 ∨ Ω ⊂ R3. Let us further
assume, that the boundary Γ of Ω is divided into to disjoint parts Γu and Γf , as can be seen in
fig. 1, such that Γ = Γu ∪Γf . Dirichlet boundary conditions are prescribed on Γu and Neumann
boundary conditions are prescribed on Γf . Let us finally presume, that the problem will be
well-posed.

According to the description of the FETI domain decomposition described in [9], we will
decompose Ω into n subdomains Ω1, . . . , Ωn as can be seen in fig. 1. The local stiffness matrix,
sub-domain force (i.e. the local load vector), displacement vectors, the "gluing" matrix and the
vector of constraints corresponding with individual sub-domains will be denoted as Ki, fi, ui,
Bi and ci, respectively.

Considering the objects above, we will get the optimization problem

min
u

1
2uT Ku − uT f

s.t. Bu = c,
(1)

where

u =

⎡⎢⎢⎢⎣
u1
...

un

⎤⎥⎥⎥⎦ , K =

⎡⎢⎢⎢⎣
K1

. . .
Kn

⎤⎥⎥⎥⎦ , f =

⎡⎢⎢⎢⎣
f1
...

fn

⎤⎥⎥⎥⎦ , B = [B1, . . . , Bn] (2)

Let us assume in this section, that c = o. The "gluing" matrix B ∈ Rm×n together with
the constraint vector c ∈ Rm enforces both the continuity on the artificial boundary among
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sub-domains and the displacement on the boundary Γu with prescribed Dirichlet boundary
conditions.

The prescribed imposed Dirichlet condition uj = uD(i) on the boundary Γu is enforced by
the row bj in the B matrix, where all the elements equal zero except the one element at the
position i. In the constraints vector cj = uD(i). And because of our earlier assumption, in this
section uD(i) = 0.

The continuity on the artificial boundary between two sub-domains in the individual node
is also enforced with the row bj , where -1 and 1 are located in the corresponding positions to
the node index and cj = 0 as described in [30].

In the original FETI method it is assumed, that the Dirichlet conditions on sub-domains are
inherited from the original problem, so the defect of the stiffness matrices Ki (i.e. the number
of columns of the null-space) possibly vary from 0 at the boundary sub-domains Ki matrices
to the maximum at the inner floating sub-domains Ki matrices. In 3D elasticity problems the
maximum value is 6, corresponding to the number of independent rigid body motions (both
translational and rotational motions in axes X, Y and Z).

TFETI copes with this situation in a different way. All the sub-domain stiffness matrices
are treated like if there were no prescribed displacements and those displacements are instead
enforced by matrix B, as it is described above. The improvement over FETI is, that all the
stiffness matrices now have the same defect, which is known (e.g. 3 for 2D and 6 for 3D elasticity
problems).

The remaining procedure is basically identical with the original FETI. The Lagrange function
corresponding to the optimization problem (1) is

L (u, λ) = 1
2uT Ku − f tu + λT Bu (3)

and it is known from [2], that the Lagrangian is equivalent to the saddle point problem

Find
(
u, λ

)
, so thatL

(
u, λ

)
= sup

λ
inf
u

L (u, λ) . (4)

Now, when we fix λ, the Lagrangian L (·, λ) will be convex in the first variable and the
minimizer u will satisfy

Ku − f + BT λ = 0. (5)

The Eq. (5) has solution if and only if it satisfies

RT
(
f − BT λ

)
= 0. (6)

Kernels Ri corresponding to the local stiffness matrices Ki are known, e.g. considering
2D elasticity problem and the sub-domain Ωi discretized to mi nodes with the coordinates
(xk, yk), k = 1, . . . , mi, Ri will look like this

17



Ri =

⎡⎢⎢⎢⎣
(
R1

i

)T
...

(Rm
i )T

⎤⎥⎥⎥⎦ (7)

Rk
i =

[
1 0 −yk

0 1 xk

]
(8)

Using matrices Ri there can be assembled the block-diagonal basis R of the kernel of K like

R =

⎡⎢⎢⎢⎣
R1

. . .
Rn

⎤⎥⎥⎥⎦ (9)

Let us denote a generalized inversion of the stiffness matrix K† (described by Eq. (10)) and
let us assume, that λ satisfies the Eq. (6).

KK†K = K (10)

If u solves the Eq. (5), then there is a vector α satisfying

u = K†
(
f − BT λ

)
+ Rα (11)

Substituting the Eq. (11) into the Eq. (4) will produce a new optimization problem

min
λ

1
2λT BK†BT λ − λT BK†f

s.t. RT
(
f − BT λ

)
= 0,

(12)

Let us denote

F = BK†BT (13)

G = RT BT (14)

d = BK†f (15)

e = RT f, (16)

so we can rewrite the problem (12) and homogenize it as

min
λ

1
2λT Fλ − λT d

s.t. Gλ = 0.

(17)
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The problem (17) has the same saddle point structure as (4), however, (17) is smaller size
problem and F is better conditioned than K, so this new problem is much easier to solve
numerically.

Let us introduce a new projector

P = I − GT
(
GGT

)−1
G, (18)

I being the identity matrix. Using the projector P we can rewrite the problem (17) to the
equivalent problem (described in [6])

min
λ

1
2λT PFPλ − λT Pd

s.t. Gλ = 0,

(19)

which can be finally solved by Projected Preconditioned Conjugate Gradients method (PPCG),
described in detail in [27], [30]. The PPCG algorithm is given by the pseudo-code

Algorithm 1 PPCG algorithm (source [30])
Require: λ0

Ker = 0
r0 = d

1: for k = 1, 2, . . . until convergence do
2: Project: wk−1 = Prk−1;
3: Precondition: zk−1 = F̄ −1wk−1;
4: Re-project: yk−1 = Pzk−1;
5: βk = (yk−1)T

wk−1/(yk−2)T
wk−2; (β1 = 0)

6: pk = yk−1 + βkpk−1; (p1 = y0)
7: αk = (yk−1)T

wk−1/(pk)T
Fpk;

8: λk
Ker = λk−1

Ker + αkpk;
9: rk

Ker = rk−1 − αkFpk;
10: end for

where F̄ −1 is a preconditioner, described in detail in the Sec. 1.2.3.

1.2.2 Hybrid Total FETI (HTFETI)

In the TFETI method there exist limitations because of the size of the coarse problem, or rather
its memory requirements. In HTFETI the key idea is the aggregation of a small number of
neighboring sub-domains into so called clusters using Lagrange multipliers, which results into a
smaller coarse problem. Using Lagrange multipliers here means, that the TFETI method is used
twice - both on cluster and subdomain levels. This approach is advantageous because it allows
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to extend the parallelization of the local problem, because it reduces the memory requirements.
On the other hand, the negative effect is the worsened convergence rate compared to the TFETI
method. This problem is reduced by the transformation of the basis as stated below.

The model problem for HTFETI is the same as the one for the TFETI, i.e. the elastic body
with prescribed Dirichlet and Neumann boundary conditions. The problem is described in detail
in Sec. 1.2.1 and by the Eq. (1).

Figure 2: HTFETI decomposition of a problem (source [17])

First of all, the body of the problem is teared from the part of the boundary with the
Dirichlet boundary condition as it is done in the TFETI.

To decompose the problem let domain Ω be decomposed into nc non-overlapping clusters
with diameter Hc and let each cluster be decomposed into ns sub-domains with diameter Hs,
as can be seen in Fig. 2. So, the total number of sub-domains is given by the formula

n = nc · ns. (20)

Then we have to introduce so called "gluing" conditions to enforce the continuity of displace-
ments and the imposed Dirichlet boundary conditions. Those properties are enforced by the
matrix B ∈ Rm×n and the vector c given by formulas

B =
[
BT

g

BT
D

]
(21)

c =
[
oT

cT
D

]
, (22)

m being the number of Lagrange multipliers, which is significantly smaller than the number
of degrees of freedom. The matrix B is constructed from values -1, 0 and 1, similarly to TFETI.
The values of the solution u associated with more than one domain coincide, when Bgu = o and
the values of the solution u on the boundary with the Dirichlet condition satisfy BDu = cD.
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The problem has the same structure as in the TFETI (see the Eq. (1)), but in HTFETI
there is used a slightly modified form of this problem:

min
u

1
2uT Ku − uT f

s.t. B0u = c0,

B1u = c1

(23)

The first part B0u = c0 of the equality constraints consisting of m0 equalities enforces
the continuity in the sub-domain corner nodes of each cluster and the second part B1u = c1

consisting of m1 equalities enforces the continuity among the rest of the sub-domain interfaces
and the prescribed Dirichlet condition.

The problem (23) can be described with respect to the Karush-Kuhn-Tucker conditions as
⎡⎢⎢⎣

K BT
0 BT

0
B0 O O

B1 O O

⎤⎥⎥⎦
⎡⎢⎢⎣

u

λ0

λ1

⎤⎥⎥⎦ =

⎡⎢⎢⎣
f

c0

c1

⎤⎥⎥⎦ . (24)

This equation can be rewritten further as
[
K̃ B̃T

B̃ O

] [
ũ

λ

]
=
[
f̃

c̃

]
, (25)

where K̃, B̃, ũ, f̃ and c̃ respect the block structure highlighted in the Eq. (24).
The first equation of the system (25) has solution if and only if

R̃
(
f̃ − B̃T λ̃

)
= o (26)

R̃ =

⎡⎢⎢⎢⎢⎢⎣
R1

c

. . .
Rnc

c

O O O

⎤⎥⎥⎥⎥⎥⎦ (27)

Ri
c =

⎡⎢⎢⎢⎣
R1,i

...
Rns,i

⎤⎥⎥⎥⎦ , (28)

where columns of the matrix R̃ span the null space of K̃ and Rp,i, p = 1, . . . , ns means p-th
sub-domain of the i-th cluster.

Kernel bases of the sub-domains are known beforehand, so the blocks Rp,i can be assembled
directly from the segments Rk defined for the k-th mesh node in 2D problem by the Eq. (8).
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To eliminate the primal variables ũ from the singular system described by the first equation
in the problem (25), we will use the generalized inverse matrix K̃† satisfying K̃K̃†K̃ = K̃. If ũ

is a solution to the first equation in the problem (25), then there exists a vector α̃ such that

ũ = K̃†
(
f̃ − B̃T λ̃

)
+ R̃α̃. (29)

After substitution of (29) into the second equation of (25) and the application of (26) we
get the system

[
B̃K̃†B̃T −B̃R̃

−R̃T B̃T O

] [
λ̃

α̃

]
=
[
B̃K̃†f̃ − c̃

−R̃T f̃

]
(30)

Let us denote

F̃ = B̃K̃†B̃T (31)

G̃ = −R̃T B̃T (32)

g̃ = B̃K̃†f̃ − c̃ (33)

ẽ = −R̃T f̃ , (34)

so we can rewrite the system (30) as
[
F̃ G̃T

G̃ O

] [
λ̃

α̃

]
=
[
g̃

ẽ

]
. (35)

After that we introduce the projector

P̃ = I − G̃T
(
G̃G̃T

)−1
G̃ (36)

onto the kernel of G̃. After the application of P̃ to the Eq. (35) we get

P̃ F̃ λ̃ = P̃ g̃

s.t. G̃λ̃ = ẽ
(37)

and after homogenization of the constraints, considering λ̃Ker ∈ KerG̃ we get

P̃ F̃ λ̃Ker = P̃
(
g̃ − F̃ λ̃Im

)
(38)

λ̃Im = G̃T
(
G̃G̃T

)−1
ẽ, (39)

where λ̃ = λ̃Ker + λ̃Im. We know, that P̃ F̃ is a SPD matrix (proof in [17]). Because of that
the problem (39) can be efficiently solved by the PPCG method.
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In every single PPCG iteration we compute x̃ = K̃†b̃, b̃ being a given vector. We compute
it by solving the system

K̃x̃ = b̃ ⇐⇒
[

K BT
0

B0 O

] [
x0

µ0

]
=
[

b0

d0

]
(40)

using the TFETI method again. By a substitution of the variable

x0 = K†
(
b0 − BT

0 µ0
)

+ R0β0 (41)

into the second equation in the problem (40) we get the system
[

F0 GT
0

G0 O

] [
µ0

β0

]
=
[
g0

e0

]
, (42)

where

F0 = B0K†BT
0 (43)

G0 = −RT
0 BT

0 (44)

g0 = B0K†b0 − d0 (45)

e0 = −RT
0 b0 (46)

R0 =

⎡⎢⎢⎢⎣
R1

. . .
Rn

⎤⎥⎥⎥⎦ , (47)

n is described by the Eq. (20) and Rj , j = 1, . . . , n being the same as Rp,i (described above),

with j = (i − 1) ·ns +p. To obtain the vector
[
xT

µT

]
, both systems (40) and (42) are subsequently

solved in following steps

β0 = S†
α

(
G0F −1

0 g0 − e0
)

(48)

µ0 = F −1
0

(
g0 − GT

0 β0
)

(49)

x0 = K†
(
b0 − BT

0 µ0
)

+ R0β0, (50)

wher a singular Schur complement

Sα = GT
0 F −1

0 GT
0 (51)

appears, as described in [28].
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To obtain the full-rank matrix G0 = −R
T
0 BT

0 we have to introduce the matrix R0, which
is obtained from the matrix R0 by deleting the block columns corresponding to the last sub-
domains of all clusters. The matrix F0 is SPD on Rm0 as described by Lemma 2 in [17].

Now let e = −R
T
0 b0. Using the fact, that F0 is SPD and replacing G0 and e0 by G0 and

e0 in (42) gives us the well-defined saddle point problem, which can be solved again by PPCG
(described by the pseudo- code 1), or by some direct solver, because of its small size.

Now the size of the coarse problem is reduced in comparison with TFETI as mentioned
above, but the convergence worsened, which can be improved by the transformation of the basis
described in detail in [17].

1.2.3 Preconditioners

To improve the convergence of the solver there are several preconditioners available in ESPRESO.
Lumped preconditioner and Dirichlet preconditioner are being included in the models in this
thesis, so they are briefly described below. More detailed information can be found in [27].

The local stiffness matrix Ki can be divided into four blocks

Ki =
[
Ki,oo Ki,ob

Ki,bo Ki,bb

]
, (52)

o being the index of ordinary (i.e. internal) DOFs and b being the index of boundary DOFs.

Dirichlet preconditioner

The Dirichlet preconditioner is given by formula

F D−1 =
n∑

i=1
Bi

[
0 0
0 Si,bb

]
(Bi)T , (53)

Si,bb being the Schur complement of the block Ki,oo, considering the sub-domain Ki. It is
described by the formula

Si,bb = Ki,bb − (Ki,ob)T (Ki,oo)−1 Ki,ob. (54)

The Dirichlet preconditioner is is the most numerically efficient preconditioner for FETI, but
is is also the most computationally demanding one.

Lumped preconditioner

The Lumped preconditioner is given by the formula

F L−1 =
n∑

i=1
Bi

[
0 0
0 Ki,bb

]
(Bi)T (55)
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and it is less computationally expensive than the Dirichlet preconditioner, but it is also less
numerically efficient.

Scaling matrix

Redundant constraints are allowed, so the matrix Bi may not have a full column rank. In that
case, the scaling matrix Ai has to be introduced to be able to use preconditioners described
above.

Ai is the symmetric, diagonal matrix and its size equals the number of dual variables. Its
diagonal entries are given by the weight vector w. The value of wi equals 1

2 , when the associated
node was split into two duplicate nodes. Generally, the value of wi = 1

m for every associated
DOF i, m being the number of sub-domains associated with the node.

Using the scaling matrix Ai, the modified Dirichlet preconditioner F D−1
mod and the modified

Lumped preconditioner F L−1
mod are given by formulas

F D−1
mod =

n∑
i=1

AiBi

[
0 0
0 Si,bb

]
(Bi)T Ai (56)

F L−1
mod =

n∑
i=1

AiBi

[
0 0
0 Ki,bb

]
(Bi)T Ai. (57)

The Projected Preconditioned Conjugate Gradient method used with those preconditioners
is described in [27].
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2 Description of statistic tools used for models

2.1 Generalized linear model (GLM)

GLM is the generalization of the general linear model, introduced in [23].
The general linear model is described by the Eq. (58), y being the vector of values of the

response variable, β being the vector of coefficients (so called regression parameters, x being the
vector of predictor variables and ϵ being the residual (i.e. the error term). The model is linear
with respect to coefficients βi, so the predictor variables x1, . . . , xn can be of higher powers,
multiplied with each other etc. and the model is still considered linear.

yi = β0 + β1x1 + · · · + βnxn + ϵi (58)

In general linear models we assume, that errors ϵ1, . . . , ϵn are independent, holding the
property described by the Eq. (59).

ϵi ∼ N
(
0, σ2

)
(59)

While a really useful tool, the general linear model has its limitations. The first one of
them is the case, when the response variable is somehow restricted, because the linear model is
unbounded. The second one is the case, when the variance of the response variable depends on
the mean. GLM addresses both of these cases.

A generalized linear model consists of several parts. The first of them, a random component
is a distribution from the exponential family described by the conditional expected value µi (i.e.
the mean) of the response variable y, given x of the chosen distribution. A random component
is described by the Eq. (60).

E (y|x) = µi (60)

The second one is a linear predictor η, described by the Eq. (61).

ηi = β0 + β1x1 + · · · + βnxn (61)

The third one is the link function g. It describes, how the mean µi = E (yi) depends on the
linear predictor. It is described by the Eq. (62), y being the vector of values of the response
variable.

g (µi) = ηi (62)
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The last of them is the variance function V. It explains, how the variance var depends on
the mean µi. It is described by the Eq. (63), ϕ being the constant parameter.

Var (yi) = ϕV (µi) (63)

Finally, the general linear model given by the Eq. (59) is a special case of GLM. Its properties
are given by equations (64) and (65).

g (µi) = µi (64)

V (µi) = 1 (65)

2.2 Fisher’s scoring algorithm

The numeric method for solving maximum likelihood equations. It was first presented in [20].
Here we can see a brief sketch of its derivation.
At first, let’s define the likelihood function L as the function of the parameters of a model,

while the observations are fixed. Likelihood function is described by the equation (66), where x

are the observations and θ is a vector of parameter values.

L (θ|x) = P (x|θ) (66)

When X is a random variable following continuous probability distribution, then the equation
(66) can be more specific with f (x|θ) being the p.d.f. of the value x ∈ X for the parameter
values θ. This case is described by equation (67).

L (θ|x) = f (x|θ) (67)

When there are multiple independent and identically distributed observations x1, . . . , xn, the
likelihood function is defined by the Eq. (69), N being the number of observations.

L (θ|x1, . . . , xn) = f (x1, . . . , xn|θ) (68)

=
N∏

i=1
f (xi|θ) (69)

The natural logarithm of the likelihood function is called a log-likelihood function. It is
sometimes more convenient to use it, because it allows us to use sum instead of product in the
definition of function, as can be seen from Eq. (70).

ln L (θ|x1, . . . , xn) =
N∑

i=1
ln f (xi|θ) (70)
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Another important term to define is a score function V, which was introduced in [4]. It
describes the sensitivity of the likelihood function L (θ|x) to its parameter θ. Technically, it is
a gradient of the log-likelihood function with respect to θ, as it is described by the Eq. (71).

V (θ|x) = ∂ ln L (θ|x)
∂θ

(71)

Last term we need to define to explain the Fisher’s scoring algorithm is the Maximum
likelihood estimate method (MLE). It is defined as the finding of θ which maximizes the average
likelihood function or its natural logarithm. We will call such vector of parameters the maximum
likelihood estimator θmle.

θmle of the average likelihood function equals θmle of the average log likelihood function ℓ

(defined by Eq. (73)), because the natural logarithm is a monotonically increasing function.

ℓ (θ|x1, . . . , xn) = ln L (θ|x1, . . . , xn)
N

(72)

=
∑N

i=1 ln f (xi|θ)
N

(73)

For some models, the maximum does not exist and so does not θmle, on the contrary, there
can be multiple estimators θmle which maximize the (log-)likelihood function. And for some
other models θmle can not be found as an explicit function of the observed data x1, . . . , xn, so
we must approximate it numerically. The maximum likelihood estimator θ̂mle, i.e. the whole
Maximum likelihood method is defined by the Eq. (74).

{θmle} ⊆
{

arg max
θ∈Rn

ℓ (θ|x1, . . . , xn)
}

(74)

Now when we have MLE method defined, we can proceed with numerical approximation of
θ̂mle.

To start off we can write the score function V down as the first-order Taylor polynomial
about θ0 in Eq. (76), where θ0 is also the starting point of the algorithm.

V (θ) ≈ V (θ0) + ∇θ

⏐⏐⏐
θ=θ0

V (θ|x1, . . . , xn) (75)

≈ V (θ0) + ∇2
θ

⏐⏐⏐
θ=θ0

N∑
i=1

ln f (xi|θ) · (θ − θ0) (76)

Let’s substitute θ = θmle in Eq. (77).

V (θmle) ≈ V (θ0) + ∇2
θ

⏐⏐⏐
θ=θ0

N∑
i=1

ln f (xi|θ) · (θmle − θ0) (77)
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V is the derivative of the log-likelihood function, hence V (θmle) = 0, under the assumption
L (θmle|x1, . . . , xn).

Moreover, we can factor out -1 in Eq. (77), so we get an observed information matrix J (θ)
at θ0, as we can see in Eq. (78).

V (θmle)  
0

≈ V (θ0) −
(

−∇2
θ

⏐⏐⏐
θ=θ0

N∑
i=1

ln f (xi|θ)
)

  
J (θ0)

· (θmle − θ0) (78)

After several steps we get the approximate value for θ0 in Eq. (82).

0 ≈ V (θ0) − J (θ0) · (θmle − θ0) (79)

V (θ0) ≈ J (θ0) · (θmle − θ0) (80)

J −1 (θ0) · V (θ0) ≈ θmle − θ0 (81)

θmle ≈ θ0 + J −1 (θ0) · V (θ0) (82)

The Eq. (82) can be generalized to "n+1 formula" described in Eq. (83). This equation is
the formula for Newton-Raphson method.

θn+1 = θn + J −1 (θ0) · V (θ0) (83)

The observed information J (θ) converges in probability to its expected value because of the
law of large numbers, hence J (θ) can be replaced with it. The expected value of the observed
information is called Fisher information I (θ). And the method using it instead of the observed
information is called Fisher’s scoring. This substitution is described by the Eq. (85).

θn+1 = θn + E (J (θ0))−1 · V (θ0) (84)

θn+1 = θn + I−1 (θ0) · V (θ0) (85)

2.3 Evaluation of a goodness-of-fit and a predictive capability

Akaike information criterion (AIC)

AIC is a coefficient used for comparison of quality of statistical models. It was first described
in [1].

AIC does not test models in the sense of testing a null hypothesis, so it does not tell us
anything about the absolute g.o.f. or a quality of a model in general. Instead, it estimates the
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quality of each model relative to the others.

AIC = 2k − 2 ln(L∗) (86)

It is described by the Eq. (86), k being the number of parameters in the model and L∗ being
the maximum value of the likelihood function, i.e. L∗ = P (x|θ∗), where x are the observed data
and θ∗ is the vector of parameter values which maximize the likelihood function L.

As can be seen from the Eq. (86), AIC decreases with increasing g.o.f. described by Last

and simultaneously increases with increasing number of parameters k. This property penalizes
models with large number of parameters, which is useful, because they tend to over-fit.

So, the best one of compared statistical models according to AIC is the one with the smallest
coefficient.

Null and residual deviance

Deviance is a quantity describing the g.o.f. of a statistical model (M).
It generalizes the idea of using the residual sum of squares (RSS) in the Ordinary least

squares (OLS) method described by Eq. (87) and (88), where yi is the vector of observed values,
xi is the vector of values of predictor variables and θ is the vector of parameters, based on which
we are minimizing the RSS. Deviance is equal to RSS for linear models.

RSS (θ) =
n∑

i=1

(
yi − xT

i θ
)

(87)

OLS (θ) = arg min
θ∈Rn

RSS (θ) (88)

Deviance is used in cases, where fitting is performed by Maximum likelihood estimation (see
Eq. (74)) and it is described by Eq. (89), where y is a vector of observations, θ̂M is a vector of
fitted parameters of model M and θ̂S is a vector of fitted parameters of a saturated model.

By saturated model we mean the statistical model with a parameter for every observation,
so it fits perfectly, but it has no predictive ability.

D (y) = −2
(
ln p

(
y
⏐⏐⏐θ̂M

)
− ln p

(
y
⏐⏐⏐θ̂S

))
(89)

There are another two important terms for purposes of this thesis - null deviance and residual
deviance. Null deviance is a deviance of the model constituted just from the intercept (i.e. the
constant) = so called null model. Residual deviance is a deviance of the proposed model, i.e.
the model we are examining for the g.o.f.

The proposed model will have more terms than just one (unlike the null model), which implies
bigger flexibility, i.e. better fit of the proposed model. Deviance decreases with increasing g.o.f.,
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same as RSS, so, if the proposed model is well-fitting, the residual deviance will be much smaller,
than the null deviance.

Symmetric mean absolute percentage error (sMAPE)

sMAPE is an accuracy measure providing percentage errors. Similarly to deviance - the lower
value means a better fit. It is based on a Mean absolute percentage error (MAPE), which is
given by the Eq. (90), N being the number of observations, y being the vector of observed values
and ŷ being the vector of predicted values.

MAPE = 100
N

N∑
i=1

|yi − ŷi|
|yi|

[%] (90)

The main disadvantage of MAPE is, that it is asymmetric, i.e. the errors are not treated
equally. When the predicted value is larger than the observed one, MAPE punishes the error
more severely, than the other case - lower predicted value, than the observation.

Because of this problem there were several types of symmetric MAPE developed. The latest
one is was introduced in [32] and it is described by the Eq. (91).

SMAPE =
∑N

i=1 |ŷi − yi|∑N
i=1 (yi + ŷi)

(91)

This version solves the problem of symmetry of errors punishment well, but for all version
of MAPE persists another one - the case, when the observed or predicted value equals zero. In
that case the error reported by MAPE increases rapidly, so it could skew the result significantly.

Because of this sMAPE should be used mostly in combination with other accuracy measures.

Root mean squared error (RMSE)

RMSE is a measure of differences between values predicted by a statistical model and observed
values (so, RMSE is decreasing with better fit). It represents a sample standard deviations of
these differences. It serves as a measure of prediction accuracy and so it can be used to compare
models while using the same data set for training (different data sets can not be compared,
because RMSE is scale-dependent). Its distinctive property is, that RMSE punishes large errors
more aggressive, than MAPE or sMAPE.

RMSE is described by the Eq. (92), where N is the number of observations, y is the vector
of observations and ŷ is the vector of predicted values.

RMSE =

√ 1
N

N∑
i=1

(yi − ŷi)2 (92)
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Cross-validation (CV)

Cross-validation is the method of evaluating the prediction capability of the model. Its basic
principle is pretty simple. A data-set is divided into two groups - a training set and a test set.
The first of them is used for training the model and the latter is used to evaluate the prediction
capability of the model. The g.o.f. on the test set, i.e. the the prediction capability of the model
can be described with variety of measures. For purposes of this thesis we will use MAPE and
RMSE, both of which are described in Sec. 2.3.

There are several strategies, how to divide the full data-set and each of them has its advan-
tages and disadvantages.

The first strategy is called leave-p-out validation (LpO). It decomposes the full data-set into
two subsets such that the test set contains p observations and the rest of them belongs to the
training set. LpO is, so called, exhaustive cross-validation, i.e. the validation process is repeated
on all ways to decompose the full data-set. LpO requires both the training and the testing phase
repeat

(N
p

)
times, N being the number of observation in the full set.

The advantage of this strategy is, that it examines the behavior of the model in detail.
The downside is, that it is really computationally expensive, to the point, where it can become
actually infeasible.

The least computationally demanding version of LpO strategy is a leave-one-out validation
(LoO). It is the special case, when p = 1, so the number of validation steps is

(N
1
)
. When N is

large, than this could make a vast difference - we can see the example for N = 100, p1 = 20 and
p2 = 1 from equations (93) and (94).

(
100
20

)
≈ 5.4 · 1020 (93)(

100
1

)
= 100 (94)

Another two strategies are non-exhaustive, i.e. unlike LpO they do not check all combinations
possible. Instead, they try just some smaller amount of steps with intention to decrease the
computational time consumption. As such, they are approximations of LpO.

The first one of non-exhaustive cross-validation strategies is the k-fold cross validation. It
decomposes the full data-set into k equal-sized subsets. One of these subsets is used as a test
set and the remaining ones are used for the training as can be seen in the Fig. 3. When k = N ,
then k-fold validation "degenerates" to the LoO validation.

The validation process itself is performed k times, so that every subset is used for testing
just once. Finally, those k results are averaged to get the single estimation.

Model validation using, for example, the data-set with 100 observations and k = 10 will
perform only 10 steps, so it is very easy to compute and still all the observations from the full
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data-set are used for the training and the test, which is its main advantage.

Figure 3: 3-fold cross validation (source [26])

One of the disadvantages is, that the subsets can be very different from each other. We can
compensate this difficulty with selecting subsets, so that all of them will have similar mean value
of the response variable. This strategy is called a stratified k-fold validation.

Another two disadvantages of the k-fold cross validation are, that we can not choose the
size of test sets independently and the number of validation steps is fixed, so it can still become
problem when we are working with very large data-sets.

The problem with number of validation steps is addressed by another cross-validation strat-
egy called Repeated random sub-sampling validation. The point of this strategy is, that the
full data-set is decomposed into the training and test set randomly in every step, so that every
observation can be used multiple times, or contrarily, not even once, as can be seen in fig. 4.
Its simplest form, i.e. the case with just one step is called the holdout method. The downside of
this case is, that its evaluations can have a high variance, so that we could not reliably decide
about the model predictive capability.

The main advantage of repeated random sub-sampling is, that the number of steps is not
bounded, so we can perform an arbitrary number of validation steps. With large number of steps
the result converges to the result of leave-p-out validation. On the contrary, its disadvantage is,
that observations are used different number of times or not at all, so, when we do not perform
enough validation steps, the final result could be skewed.

Finally, if response values of the observations differ dramatically, we can use the stratified
form of this strategy as well, i.e. we can select such subsets, that have approximately the same
mean of the response variable values.

Wald test

Wald t. is used to test for a real value of a parameter. In GLM, it is used to find out whether
some term in a statistical model is significant (i.e. we test parameters for the zero value) or it can
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Figure 4: Random sub-sampling validation (source [26])

be omitted without changing predicted values substantially. Its null and alternative hypothesis
are described by equations (95) and (96), respectively, where βi is the i-th coefficient of the GLM
described by the Eq. (62) and µ0 is the value βi coefficient is tested for.

H0 : βi = µ0 (95)

HA : βi ̸= µ0 (96)

For significance testing we are usually interested in µ0 = 0, so that when we do not reject
H0 hypothesis, then we can try to omit the i-th term from the model.

The test statistic is described by the Eq. (97), where se (βi) is the standard error of the i-th
term.

t = βi

se (βi)
(97)

The vector of standard errors is given by the Eq. (99), where X, described by the Eq. (98),
is the random vector whose elements X1, . . . , Xn are random scalars.

X =

⎡⎢⎢⎢⎣
X1
...

Xn

⎤⎥⎥⎥⎦ (98)

se(βi) =
√

Σii (99)

Σ described by the Eq. (100) is the matrix of covariance, where Cov (Xi, Xj) is the covariance
(described by the Eq. (101)).
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Σ =

⎡⎢⎢⎢⎢⎢⎣
Cov (X1, X1) Cov (X1, X2) · · · Cov (X1, Xn)
Cov (X2, X1) Cov (X2, X2) · · · Cov (X2, Xn)

...
... . . . ...

Cov (Xn, X1) Cov (Xn, X2) · · · Cov (Xn, Xn)

⎤⎥⎥⎥⎥⎥⎦ (100)

Cov (Xi, Xj) = E [(Xi − E (Xi)) (Xj − E (Xj))] (101)

The p-value is finally obtained from a χ2-distribution, normal distribution, or, for the pur-
poses of this thesis, t-distribution.
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3 Hardware effects related to performance modeling

Processors with architecture Haswell-EP used in Salomon supercomputer (see description in Sec.
4.2) have 12-core dies. It is designed as it is depicted in Fig. 5, i.e. there are two bi-directional
rings in one die. Eight cores with respective slices of L3 cache, QPI interconnect, a memory
controller and the PCIe controller are connected to the first ring.

The remaining four cores with their respective L3 cache slices and the second memory con-
troller are connected to the second bi-directional ring. The rings are then connected together
by two queues. Threads from every core can access all DDR4 memory units. It is clear that
accessing the local memory, in this case memory on the local ring, is faster, than accessing the
remote one (using the memory controller on remote ring). This, so called, Non-Uniform Memory
Access (NUMA) effect can significantly affect the behavior of parallel applications.

Figure 5: Haswell-EP socket with 12 cores (source [21]

This leads us to two types of a possible delay caused by accessing remote memory units.
Both types of delay are usually called NUMA effect and the first type is caused by reading from
RAM memory connected closely to the other ring, e.g. accessing DDR4 D memory by thread
bounded to the Core 3, considering the Fig. 5. The delay is caused by data transfer through
some of the queues between the two bi-directional rings.

Figure 6: Dual socket Xeon E5 v3 system - one NUMA node per socket (source [21]

36



The second and the more significant type of NUMA effect is caused by accessing memory
attached to another socket (i.e.processor) in a multi CPU/socket system. As can be seen from
the Fig. 6, data have to be transferred through the QPI link which causes much more significant
delay than the first case, as described in [21].

NUMA effect become apparent in the course of modeling TFETI and HTFETI methods
in this thesis. MPI processes - threads decomposition represented by nprocs parameter was
significantly less effective with 1 process and 24 threads than in other cases, so the observations
lied on the hyperbolic curve and the terms containing the number of processes were expressed
like 1

nprocs . This effect can be seen in Fig. 7, where the run-time for 1 process is almost four
times as high as the one for 2 processes and even 2 and 3 processes are significantly slower, than
the other settings.

Figure 7: NUMA effect in action of K in TFETI
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4 Benchmark problems

ESPRESO supports both loading mesh from file as well as generating its own mesh using bench-
mark generator, see Fig. 9. All measurements in this thesis were performed using linear elasticity
benchmark problem generated by the Parallel Problem Generator (described below in this sec-
tion).

The type of a problem affects the sparsity pattern of the stiffness matrices K. It has an
effect on a number of rigid body motions per sub-domain, as described in the Sec. 1.2.1, which
determine the size of the coarse problem GT G. For 3D linear elasticity there are 6 RBMs per
sub-domain.
Both TFETI and HTFETI methods uses PARDISO [24] as the main direct solver. PARDISO
solver was chosen by ESPRESO developers because it is thread safe and also generally one
of the fastest one as it was also observed in [12]). Therefore this solver was also used for all
performance measurements in this thesis. The effect of following settings was examined:

• Different domain decompositions (always hierarchical 2-level decomposition):

– HTFETI - decomposition of problem into clusters and decomposition of clusters into
sub-domains,

– TFETI - decomposition into domain groups mapped to one MPI process (corresponds
to one cluster in HTFETI) and decomposition into domains in one group - again, it
is a hierarchical decomposition, but TFETI algorithm considers it as a 1-level.

• Different sub-domains sizes,

• Different preconditioners (no preconditioner, Lumped prec. and Dirichlet prec.) - details
can be found Section 1.2.3.

Additionally in case of HTFETI an effect of assembling the F0 and Sα matrices (their models
are presented in Sections 5.1.7 and 5.1.13, respectively) is evaluated.

4.1 Parallel Problem Generator (PPG)

PPG is part of the ESPRESO library and it is designed to enable fast evaluation of the solver for
very large problems of linear elasticity (described in [28]). It generates a benchmark problems
in form of the steel cube with following properties:

• Volume V = 9000 mm3

• Elastic modulus E = 2.1 · 105 MP a

• Poisson’s ratio µ = 0.3

• Density ρ = 7850kg m−3
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• Gravity constant g = 9.81m s−1

The cube is loaded with its own weight in the direction of x1 and it is fixed on the plane
x1 = 0 as can be seen in Fig. 8.

The discretization process consists of two steps. The first step it is generating cubical meshes,
one per each cluster. The second step is the decomposition of cluster meshes into cubical
sub- domains using geometric decomposition. All the discretization is done using 8-node brick
elements. Both steps of discretization can be seen in the Fig. 8.

Figure 8: Decomposition of the elasticity problem (steel cube) generated by PPG (source [28])

The matrix assembler then creates following objects according to the mesh data:

• Stiffness matrix Ki

• RHS fi

• "Gluing" matrix Bi

• Matrix of HTFETI corners B0,i

• Set of fixed nodes used for regularization of Ki in TFETI (described in [3])

Ki and fi are created in parallel, using multiple Cilk++ threads. The matrix Bi is assembled
from 3 parts:

• Dirichlet boundary conditions

• "Gluing" among sub-domains (i.e. inside cluster)

• "Gluing" among clusters
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Figure 9: ESPRESO mesh-data input (source [28])

Dirichlet boundary conditions and "gluing" among sub-domains are independent among clus-
ters and row indices are globally renumbered after they are assembled on all clusters. Renum-
bering is performed by single call of MPI_Scan()[22] function.

Assembling the third part, which arranges "gluing" among clusters employs the nearest-
neighbor strategy - it performs an exchange of global indices of surface DOF among the neigh-
boring clusters. It is performed in parallel among clusters and its most time consuming op-
erations, like binary search in an array for every surface DOF, can be further parallelized by
threads.

4.2 Measurement details

Measurements were performed on Salomon cluster (see 2) using nodes which hold following
properties:

• Operating system CentOS 6.x Linux

• 2 processors per node with 12 cores each (Intel Xeon E5-2680v3 at 2.5 GHz (Haswell
architecture))

• 128GB RAM per node, i.e. 5.3 GB per core, DDR4@2133 MHz

Measurements were performed for different number of nodes nnodes, the number of MPI
processes per node nprocs, the number of domains per MPI process ndoms and the number
of DOF per domain nDOF . All combinations of the settings presented in the listing bellow
were executed and measured:

nnodes := {1, 2, 4, 8, 16}

nprocs := {1, 2, 3, 4, 6, 8, 12, 24}
2https://docs.it4i.cz/salomon/introduction/
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ndoms := {1152, 576, 384, 288}

nDOF := {375, 1029, 2187, 3993, 6591, 10125, 14739}

ESPRESO is configured using a set of parameters in the following format:

mpirun -n N ./espreso -p problem.txt 0 A A A B B B C C C,

where A A A is the number of clusters or MPI processes (N = A ∗ A ∗ A), i.e. nnodes ·
nprocs, B B B is the number of domains per cluster/MPI process and C C C is the size of one
domain, all of them in 3D. The decomposition is done into cubical subdomains as can be seen
in the Fig. 1, 2 and 8.

nDOF = 3 (x + 1) (y + 1) (z + 1) (102)

Clusters
nprocs 1 node 2 nodes 4 nodes 8 nodes 16 nodes

1 1 × 1 × 1 2 × 1 × 1 2 × 2 × 1 2 × 2 × 2 2 × 2 × 4
2 1 × 1 × 2 2 × 1 × 2 2 × 2 × 2 2 × 2 × 4 4 × 2 × 4
3 1 × 1 × 3 2 × 1 × 3 2 × 2 × 3 2 × 3 × 4 4 × 3 × 4
4 1 × 2 × 2 2 × 2 × 2 2 × 2 × 4 4 × 2 × 4 4 × 4 × 4
6 1 × 2 × 3 2 × 2 × 3 2 × 3 × 4 4 × 3 × 4 4 × 6 × 4
8 2 × 2 × 2 4 × 2 × 2 4 × 4 × 2 4 × 4 × 4 4 × 8 × 4

12 2 × 2 × 3 4 × 2 × 3 4 × 4 × 3 4 × 6 × 4 6 × 8 × 4
24 2 × 3 × 4 4 × 3 × 4 4 × 6 × 4 8 × 6 × 4 8 × 6 × 8
Table 1: Arrangement of clusters for different decompositions

For the purposes of this thesis it is sufficient to keep domains cubical (i.e. sizes of domains
in all dimension are identical) and maintain the decomposition into subdomains as regular as
possible (i.e. decompose problem in each dimension into the same number of domains).

The final set of values which define the decompostion into clusters and domains is listed in
Tab. 1 and 2, respectively.

nDOF = 3 (x + 1)3 (103)
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Domains
nprocs 1152 nDOF 576 nDOF 384 nDOF 288 nDOF

1 8 × 12 × 12 8 × 12 × 6 8 × 6 × 8 6 × 8 × 6
2 8 × 12 × 6 6 × 8 × 6 8 × 6 × 4 6 × 4 × 6
3 8 × 12 × 4 8 × 6 × 4 4 × 8 × 4 4 × 6 × 4
4 8 × 6 × 6 6 × 4 × 6 4 × 6 × 4 4 × 6 × 3
6 8 × 6 × 4 4 × 6 × 4 4 × 4 × 4 4 × 3 × 4
8 4 × 6 × 6 4 × 6 × 3 4 × 3 × 4 3 × 4 × 3

12 4 × 6 × 4 4 × 3 × 4 4 × 2 × 4 3 × 4 × 2
24 4 × 3 × 4 3 × 4 × 2 2 × 4 × 2 2 × 3 × 2

Table 2: Arrangement of domains for different decomposition

Number of DOF for 3D linear elasticity problem is computed according to Eq. (102), where
x, y and z is number of DOF per dimensions. In our case where cubical domains are used and
size in all dimensions is the same the nDOF can be calculated by Eq. (103).
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5 Performance models of the FETI solvers

The model estimates (i) the preprocessing time and (ii) the single iteration time. To predict
the total time model therefore needs the estimated number of iterations. Since the number of
iterations is extremely difficult to estimate for real-world problems, it needs to by considered as
another model input.

A simple workflow can be as follows:

1. User guess a number of iterations and uses model to get initial settings from model

2. Run the solver with these settings without preconditioner, with Lumped preconditioner
and with Dirichlet preconditioner to get numbers of CG iterations for these three cases

3. Using number of iteration obtained in Step 2 run the model again to get more precise
settings

Please note that the model does not take into account the numerical properties of the FETI
solver for different decompositions. This is beyond the scope of this master thesis.

Model input:

• Total size of a problem

• FETI method

• Estimated number of CG iterations

The purpose of this model is to predict the computation time for the specific problem. Its
size is given by the total number of DOF. The computational methods are Total FETI or Hybrid
Total FETI, details are in Sec. 1.2.1 and 1.2.2, respectively.

Model output (for one configuration):

• Estimated optimal decomposition and parallelization settings of the solver

• Anticipated time of computation

Thus the model can be used to compare computational times among different configurations
and find the optimal decomposition and preconditioner for the problem of given size.
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Details of the model

Model consists of several sub-models described in details in the Sec. 5.1, which describe the
most significant (i.e. time-consuming) regions of ESPRESO.

This strategy is advantageous compared to the modeling of the whole ESPRESO solver as
one piece, because one can see the behavior of ESPRESO in more details. Moreover, it gives
us the advantage if one want to update the model for newer versions of ESPRESO. It will be
enough to simply re- model the updated region. This will be much simpler formula, than the
"all-consisting" one. Finally, it gives us another advantage, when we are trying to train the
model. It is much easier to train several simple models, than one complex model, where the
numerical optimization can be almost infeasible.

All the observations (i.e. the run-time measurements) are positive values, so the positivity
condition was forced by using generalized linear model with the natural logarithm as the link
function (see Sec. 2.1 for description).

Model training was performed by the Fisher scoring algorithm, i.e. the numerical approxi-
mation of the Maximum likelihood estimation method. Both methods are described in the the
Sec. 2.2.

Every sub-model was evaluated by criteria

• Goodness-of-fit on the full data-set used for the model training

• Significance of single terms in the formula

• Prediction capability

The g.o.f. on the training data were evaluated by comparing null and residual deviances (see
Sec. 2.3) and different version of the same model were compared among each other by Akaike
information criterion (described in Sec. 2.3).

Every model was simplified until all its terms were significant enough using Wald test (de-
scribed in Sec. 2.3) with the level of significance α = 0.05. Those different versions were
compared among each other by AIC, as mentioned above.

And finally, every sub-model is tested by 15 iterations of Random sub- sampling cross-
validation using RMSE and sMAPE (both described in Sec. 2.3) as a measure of a prediction
capability. The example of R-code performing cross-validation can be seen in Lst. 3.

The full model was then evaluated for the optima-predictive capability by comparison with
the measured data (see Tab. 21) and the overall fit using RMSE and sMAPE.

All tools used for the model evaluation as listed above are described in details in the Sec.
2.3.

R syntax

The modeling itself was performed in R language (see [25]), which is a specialized programming
language for statistical computations. Because the R-syntax is capable of containing the infor-
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mation about polynomials and term interaction in a relatively compact format this syntax is
used to describe the models in this thesis.

The input variables such as the number of nodes, number of MPI processes (i.e. number of
clusters) per node, number of domains per cluster and number of DOF per node were denoted
as nnodes, nprocs, ndoms and nDOF, respectively.

Fitting a model was accomplished with the function glm(), which performs the Fisher scoring
algorithm (see Sec. 2.2) to fit the generalized linear model, described in Sec. 2.1. The example
can be seen in Lst. 1.

fit1 <- glm(formula=time ~ (poly(I(1/nprocs), 2) + poly(ndoms, 2) + poly(nDOF, 2))^3,
data=dataFact,
family=gaussian(link="log"))

Listing 1: Fitting the function using generalized linear regression in R

Formula is described by a special syntax whose brief overview follows. Several examples can
be seen in Tab. 3.

∼ denotes "a dependency". If used in GLM, then it describes the response dependent on
a predictor - i.e. we can substitute it with = in a mathematical notation.

(x + y) ˆ n describes main effects and all interaction up to the n-th order of the listed
variables.

I (· · · ) describes the environment with numeric operations, e.g. I (xˆ2) = x2, I (log (x)) =
ln x etc.

poly (x, n) describes an orthogonal polynomial of the variable x up to the n-th order.

poly (x, n, raw = T ) describes an ordinary polynomial of the variable x up to the n-th
order.

An orthogonal polynomial is internally computed as a model matrix of an ordinary poly-
nomial and then its columns are adjusted to be orthogonal to all the previous ones. The first
advantage of the orthogonality is, that coefficients remain the same while adding new ones, i.e.
β0 and β1 in the polynomial β0 + β1x will not change their values after adding β2x2 etc.

We can show it on a simple example, given by the Lst. 2.

m <- lm(dist ~ poly(speed, 1), data = cars, x=T)
m1 <- lm(dist ~ poly(speed, 2), data = cars, x=T)

Listing 2: The effect of adding a new term into the orthogonal polynomial in R
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The coefficients of the model m, obtained by a summary() function look like this:

Estimate

(Intercept) 42.980

poly(speed, 1) 145.552

Estimate

(Intercept) 42.980

poly(speed, 2)1 145.552

poly(speed, 2)2 22.996

And we can see, that after adding another term into the polynomial of the speed variable
(see model m1 in listing 2), the first two coefficients did not change at all.

The second advantage of the orthogonal polynomials is, that while the previous terms keep
their coefficients, the new terms add only new "effects" to the model. So if the new term is not
significantly contributing to the model, it can be easily detected with Wald test (described in
Sec. 2.3).

When using ordinary polynomials, coefficients of the previous terms change with every new
term added to the polynomial. Therefore the contribution of every single new term can not be
detected so easily. This could result in all the terms in the ordinary polynomial being detected
as non-significant by Wald test, despite the fact, that only its last term does not contribute to
the model.

R formula Meaning
y ∼ x + z y = β0 + β1x + β2z
x + z + x:z β0 + β1x + β2z + β3xz
(x + y + z)^3 β0 + β1x + β2y + β3z + β4xy + β5xz + β6yz + β7xyz
poly(x, 2, raw=T) β0 + β1x + β2x2

I(1/x) 1
x

Table 3: Examples of R formula syntax

The main advantage of the ordinary polynomials over the orthogonal ones is their easy
interpretation, as can be seen in the Tab. 3. So, the orthogonal polynomials were mostly used
in this thesis during the process of creating models and when the model was well-fitting and
simple enough, they were replaced with ordinary ones, to make formulas easy to understand and
easy to write down, if needed.

5.1 Partial models

5.1.1 Modeling strategy (Action of K in HTFETI)

This model describes the time-consumption of the action of the F̃ -operator, given by the Eq.
(31), in the HTFETI method.

The first version of the model will be the Eq. (104), containing polynomial of every predictor
variable and all their interactions, so we do not omit anything. The variable nprocs is described
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as a fraction 1
nprocs

, because data dependent on it lies on a hyperbola as described in the Sec.
3.

timeActKH ~ (poly(I(1/nprocs), 2) + poly(ndoms, 2) + poly(nDOF, 2))^3 (104)

The summary of the model (see Tab. 4) shows, that only some of the main effects significantly
contribute to the model. The proposed model fits much better then the null model, as can be
seen from listed deviances (described in Sec. 2.3). Also we can see, that Fisher scoring algorithm,
described in Sec. 2.2, found some optima, because there is the finite number of its iterations.

t value Pr(>|t|)
(Intercept) -85.758 <2e-16 ***
poly(I(1/nprocs), 2)1 1.244 0.21546
poly(I(1/nprocs), 2)2 -0.188 0.85098
poly(ndoms, 2)1 21.908 <2e-16 ***
poly(ndoms, 2)2 -3.227 0.00155 **
poly(nDOF, 2)1 47.715 <2e-16 ***
poly(nDOF, 2)2 -19.592 <2e-16 ***
poly(I(1/nprocs), 2)1:poly(ndoms, 2)1 0.036 0.97125
...

...
...

poly(I(1/nprocs), 2)1:poly(ndoms, 2)1:poly(nDOF, 2)1 -0.045 0.96445
...

...
...

Null deviance 9.766522 (167DOF)
Residual deviance 0.030749 (141DOF)
AIC -913.02
Fisher Scoring it. 6

Table 4: Action of K - HTFETI (1st model)

So, in the next step we will remove all the interactions and the quadratic term of the nprocs

polynomial, because, as we can see in the summary, it is marked as non-significant too. The
linear term of this polynomial has also high p-value, but it is not convenient to remove all the
main effects of some predictor variable just because of Wald test. It is because after removing
some terms the remaining ones can be already detected as significant ones. And even if the
remaining main effects would not be detected as significant by Wald test, the model has usually
better predictive capability with the main effects included for all predictor variables.

The new model is described by the Eq. (105).

time ~ I(1/nprocs) + poly(ndoms, 3) + poly(nDOF, 3) (105)

As we can see in the Tab. 5, all the terms in the model are now detected as significant by
Wald test. Akaike information criterion AIC (described in Sec. 2.3) is much lower than previous
-913.02, which denotes the significant improvement of the model. Moreover the residual deviance
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is significantly lower the the null deviance, which means means great improvement over the null
model, i.e. the well-fitting model on the data-set.

So, we can change the model to use ordinary polynomials and perform cross-validation,
as described in Sec. 2.3 to evaluate the predictive capability of the model. The estimated
coefficients are listed in Tab. 5.

Estimate Std. Error t value Pr(>|t|)
(Intercept) -6.693e+00 1.168e-01 -57.284 <2e-16 ***
I(1/nprocs) 5.772e-02 1.081e-02 5.340 3.14e-07 ***
poly(ndoms, 3, raw = T)1 6.047e-03 6.210e-04 9.738 <2e-16 ***
poly(ndoms, 3, raw = T)2 -5.647e-06 1.046e-06 -5.398 2.39e-07 ***
poly(ndoms, 3, raw = T)3 2.126e-09 5.123e-10 4.150 5.38e-05 ***
poly(nDOF, 3, raw = T)1 7.290e-04 1.524e-05 47.847 <2e-16 ***
poly(nDOF, 3, raw = T)2 -5.256e-08 1.759e-09 -29.874 <2e-16 ***
poly(nDOF, 3, raw = T)3 1.473e-12 6.193e-14 23.785 <2e-16 ***
Null deviance 9.7665223 (167 DOF)
Residual deviance 0.0056578 (160 DOF)
AIC -1235.4
Fisher Scoring it. 5

Table 5: Action of K - HTFETI (final model)

As we can see, the coefficients differ dramatically from the previous ones, but all the terms
significantly contribute to the model. Predicted values did not change, as we can see from the
null deviance, residual deviance and AIC being the same. We can see the visualized fit on the
all data-set used for training in Fig. 10. There were performed 15 iterations of repeated random
sub-sampling cross-validation (described in Sec. 2.3). The results are listed in the Tab. 6 and
visualized in Fig. 11. As we can see, expected values of RMSE and MAPE are pretty low and
their standard deviations are low too. Therefore the predictive capability of this model is good
and it does not tend to worsen significantly for some training sets.

Figure 10: Action of K in HTFETI
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Iter RMSE MAPE
1 0.005235 0.141316
2 0.007103 0.138670
3 0.005464 0.220107
4 0.007080 0.184871
5 0.006369 0.220926
6 0.007130 0.234072
7 0.007505 0.222066
8 0.005203 0.179255
9 0.007091 0.277452

10 0.005718 0.165361
11 0.005801 0.160772
12 0.004936 0.154611
13 0.005661 0.142787
14 0.005435 0.102461
15 0.005426 0.091041

mean(RMSE) 0.006077
sd(RMSE) 0.000874
mean(MAPE) 0.175718
sd(MAPE) 0.051386

Figure 11 & Table 6: Action of K in HTFETI - cross-validation
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5.1.2 Action of K in TFETI

This model describes the time-consumption of the action of the stiffness matrix K in the TFETI
method, i.e. the Gaussian Elimination applied on the factorized K matrix occuring during the
application of the F -operator, which is described by the Eq. (13). The model of the Cholesky
factorization itself is described in the Sec. 5.1.8 and the Total-FETI method is covered in the
Sec. 1.2.1.

The model is described by the equation

time ActTT ~ poly(I(1/nprocs), 3, raw=T) + poly(ndoms, 3, raw=T)

+ poly(nDOF, 3, raw=T) + I(1/nprocs):poly(nDOF, 2, raw=T),
(106)

its properties can be seen in the Tab. 7 and the fit is visualized in the Fig. 12.

Figure 12: Action of K in TFETI

Estimate Std. Error t value Pr(>|t|)
(Intercept) -7.278e+00 1.359e-01 -53.535 <2e-16 ***
poly(I(1/nprocs), 3, raw = T)1 1.416e+00 9.398e-02 15.071 <2e-16 ***
poly(I(1/nprocs), 3, raw = T)2 -5.927e-01 2.083e-01 -2.845 0.004869 **
poly(I(1/nprocs), 3, raw = T)3 7.341e-01 1.405e-01 5.226 4.14e-07 ***
poly(ndoms, 3, raw = T)1 6.133e-03 7.002e-04 8.758 6.36e-16 ***
poly(ndoms, 3, raw = T)2 -5.840e-06 1.180e-06 -4.950 1.51e-06 ***
poly(ndoms, 3, raw = T)3 2.217e-09 5.778e-10 3.837 0.000165 ***
poly(nDOF, 3, raw = T)1 8.543e-04 1.849e-05 46.199 <2e-16 ***
poly(nDOF, 3, raw = T)2 -6.220e-08 1.989e-09 -31.273 <2e-16 ***
poly(nDOF, 3, raw = T)3 1.721e-12 6.786e-14 25.359 <2e-16 ***
I(1/nprocs):poly(nDOF, 2, raw = T)1 -2.035e-04 1.099e-05 -18.511 <2e-16 ***
I(1/nprocs):poly(nDOF, 2, raw = T)2 7.663e-09 5.128e-10 14.943 <2e-16 ***

Null deviance 12.390915 (223 DOF)
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Residual deviance 0.012698 (212 DOF)
AIC -1528.6
Fisher Scoring it. 5

Cross-validation
mean(RMSE) 0.008685
sd(RMSE) 0.002105
mean(MAPE) 0.218370
sd(MAPE) 0.040581

Table 7: Action of K in TFETI

5.1.3 Preconditioning with Dirichlet p.

This model describes preconditioning with the Dirichler preconditioner in PPCG algorithm described on line 3 of
the Alg. 1, or rather its time- consumption. The Dirichlet preconditioner itself is described in the Sec. 1.2.3.

The model is described by the equation

timePrecDir ~ I((1/nprocs)^2) + poly(nDOF, 3, raw=T) + poly(ndoms, 3, raw=T), (107)

its properties, like parameter estimates, g.o.f. criteria etc. can be seen in the Tab. 8 and the g.o.f. is
visualized in Fig. 13.

Figure 13: Dirichlet preconditioning

Estimate Std. Error t value Pr(>|t|)
(Intercept) -7.356e+00 1.285e-01 -57.243 <2e-16 ***
I((1/nprocs)^2) 9.985e-02 6.565e-03 15.208 <2e-16 ***
poly(nDOF, 3, raw = T)1 7.851e-04 1.680e-05 46.746 <2e-16 ***
poly(nDOF, 3, raw = T)2 -5.897e-08 1.930e-09 -30.545 <2e-16 ***
poly(nDOF, 3, raw = T)3 1.700e-12 6.811e-14 24.956 <2e-16 ***
poly(ndoms, 3, raw = T)1 6.223e-03 6.799e-04 9.153 <2e-16 ***
poly(ndoms, 3, raw = T)2 -5.513e-06 1.144e-06 -4.820 2.77e-06 ***
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poly(ndoms, 3, raw = T)3 1.968e-09 5.597e-10 3.516 0.000538 ***

Null deviance 2.8865447 (215 DOF)
Residual deviance 0.0049819 (208 DOF)
AIC -1675.3
Fisher Scoring it. 5

Cross-validation
mean(RMSE) 0.004955
sd(RMSE) 0.000791
mean(MAPE) 0.216527
sd(MAPE) 0.040192

Table 8: Dirichlet preconditioning

5.1.4 Preconditioning with Lumped p.

This model describes the time consumption of the preconditioning with the Lumped preconditioner described by
the line 3 in the pseudo-code 1. The preconditioner itself is described in the Sec. 1.2.3.

The model is given by the equation

timePrecLum ~ poly(I(1/nprocs), 3, raw=T) + poly(ndoms, 3, raw=T) + poly(nDOF, 3, raw=T)

+ I(1/nprocs):nDOF
(108)

Its properties are listed in the Tab. 9 and its g.o.f. is visualized in the Fig. 14.

Figure 14: Lumped preconditioning

Estimate Std. Error t value Pr(>|t|)
(Intercept) -8.471e+00 1.667e-01 -50.808 <2e-16 ***
poly(I(1/nprocs), 3, raw = T)1 1.235e+00 1.064e-01 11.615 <2e-16 ***
poly(I(1/nprocs), 3, raw = T)2 -8.448e-01 2.749e-01 -3.074 0.00239 **
poly(I(1/nprocs), 3, raw = T)3 4.779e-01 1.822e-01 2.623 0.00933 **
poly(ndoms, 3, raw = T)1 6.566e-03 9.241e-04 7.105 1.78e-11 ***
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poly(ndoms, 3, raw = T)2 -6.465e-06 1.556e-06 -4.155 4.71e-05 ***
poly(ndoms, 3, raw = T)3 2.507e-09 7.618e-10 3.291 0.00117 **
poly(nDOF, 3, raw = T)1 5.713e-04 1.291e-05 44.263 <2e-16 ***
poly(nDOF, 3, raw = T)2 -4.371e-08 1.608e-09 -27.190 <2e-16 ***
poly(nDOF, 3, raw = T)3 1.316e-12 5.959e-14 22.089 <2e-16 ***
I(1/nprocs):nDOF -2.038e-05 1.757e-06 -11.601 <2e-16 ***

Null deviance 0.11913698 (223 DOF)
Residual deviance 0.00022559 (213 DOF)
AIC -2433.4
Fisher Scoring it. 4

Cross-validation
mean(RMSE) 0.001120
sd(RMSE) 0.000368
mean(MAPE) 0.111473
sd(MAPE) 0.029503

Table 9: Lumped preconditioning

5.1.5 Assembling of the Dirichlet preconditioner

This model describes the time consumed by assembling the Dirichlet preconditioner, given by the Eq. (53). The
Dirichlet p. is described in detail in the sec. 1.2.3.

The model is given by the equation

timeAsmDir ~ poly(I(1/nprocs), 2, raw=T) + poly(nDOF, 4, raw=T) + poly(ndoms, 3, raw=T), (109)

its properties are listed in the Tab. 10 and the g.o.f. is visualized in the Fig. 15.

Figure 15: Assemble Dirichlet prec.

Estimate Std. Error t value Pr(>|t|)
(Intercept) -3.546e+00 1.911e-01 -18.557 <2e-16 ***
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poly(I(1/nprocs), 2, raw = T)1 -4.781e-02 2.399e-02 -1.993 0.0476 *
poly(I(1/nprocs), 2, raw = T)2 3.797e-01 2.144e-02 17.704 <2e-16 ***
poly(nDOF, 4, raw = T)1 1.394e-03 1.058e-04 13.173 <2e-16 ***
poly(nDOF, 4, raw = T)2 -1.690e-07 2.243e-08 -7.538 1.49e-12 ***
poly(nDOF, 4, raw = T)3 1.084e-11 1.914e-12 5.666 4.87e-08 ***
poly(nDOF, 4, raw = T)4 -2.686e-16 5.607e-17 -4.791 3.17e-06 ***
poly(ndoms, 3, raw = T)1 6.483e-03 5.039e-04 12.866 <2e-16 ***
poly(ndoms, 3, raw = T)2 -6.136e-06 8.481e-07 -7.235 9.00e-12 ***
poly(ndoms, 3, raw = T)3 2.311e-09 4.152e-10 5.566 8.05e-08 ***

Null deviance 162589.78 (215 DOF)
Residual deviance 160.46 (206 DOF)
AIC 570.77
Fisher Scoring it. 6

Cross-validation
mean(RMSE) 0.956285
sd(RMSE) 0.258553
mean(MAPE) 0.187039
sd(MAPE) 0.041617

Table 10: Assembling of the Dirichlet preconditioner

5.1.6 Assembling of the stiffness matrix K

This model described the time consumption of the assembling of the distributed global stiffness matrix K. The
model is given by the equation

timeAsmK ~ poly(I(1/nprocs), 2, raw = T) + poly(nDOF, 3, raw = T) + poly(ndoms, 3, raw = T)

+ I(1/nprocs):poly(ndoms, 2, raw = T),
(110)

whose properties are listed in the Tab. 11 and its g.o.f. is visualized in the Fig. 16.

Figure 16: Assemble stiffness matrix K
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Estimate Std. Error t value P(>|t|)
(Intercept) -3.570e+00 1.339e-01 -26.662 <2e-16 ***
poly(I(1/nprocs), 2, raw = T)1 7.868e-01 6.659e-02 11.815 <2e-16 ***
poly(I(1/nprocs), 2, raw = T)2 1.199e-01 2.355e-02 5.093 7.75e-07 ***
poly(nDOF, 3, raw = T)1 6.790e-04 1.340e-05 50.681 <2e-16 ***
poly(nDOF, 3, raw = T)2 -5.341e-08 1.609e-09 -33.197 <2e-16 ***
poly(nDOF, 3, raw = T)3 1.570e-12 5.819e-14 26.979 <2e-16 *** ***
poly(ndoms, 3, raw = T)1 5.545e-03 7.238e-04 7.661 6.40e-13 ***
poly(ndoms, 3, raw = T)2 -4.723e-06 1.213e-06 -3.893 0.000132 ***
poly(ndoms, 3, raw = T)3 1.648e-09 5.936e-10 2.776 0.005985 **
I(1/nprocs):poly(ndoms, 2, raw = T)1 -1.402e-03 1.887e-04 -7.429 2.60e-12 ***
I(1/nprocs):poly(ndoms, 2, raw = T)2 6.675e-07 1.198e-07 5.570 7.65e-08 ***

Null deviance 1916.0464 (223 DOF)
Residual deviance 2.6869 (213 DOF)
AIC -331.13
Fisher Scoring it. 6

Cross-validation
mean(RMSE) 0.116945
sd(RMSE) 0.016700
mean(MAPE) 0.177021
sd(MAPE) 0.032645

Table 11: Assembling stiffness matrix K

5.1.7 Assembling of the F0 matrix

This model described the time consumed by the assembling of F0 operator matrix in the HTFETI method,
described by the Eq. (43). The HTFETI method is described in detail in the sec. 1.2.2.

The model can be described by the equation

timeAsmF0 ~ poly(I(1/nprocs), 3) + poly(ndoms, 3) + poly(nDOF, 3), (111)

its properties like g.o.f. and the predictive capability can be seen in the Tab. 12 and the g.o.f. is visualized
in the fig.
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Figure 17: Assembling of F0 in TFETI

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.80214 0.01443 -55.606 <2e-16 ***
poly(I(1/nprocs), 3)1 1.11721 0.03001 37.223 <2e-16 ***
poly(I(1/nprocs), 3)2 -0.72635 0.03042 -23.874 <2e-16 ***
poly(I(1/nprocs), 3)3 0.39464 0.02976 13.261 <2e-16 ***
poly(ndoms, 3)1 7.09411 0.04153 170.825 <2e-16 ***
poly(ndoms, 3)2 -1.35300 0.05033 -26.883 <2e-16 ***
poly(ndoms, 3)3 0.25416 0.05769 4.406 1.94e-05 ***
poly(nDOF, 3)1 15.31205 0.16739 91.474 <2e-16 ***
poly(nDOF, 3)2 -4.79144 0.12472 -38.418 <2e-16 ***
poly(nDOF, 3)3 1.53099 0.07024 21.795 <2e-16 ***

Null deviance 313.08700 (167 DOF)
Residual deviance 0.38069 (158 DOF)
AIC -524.31
Fisher Scoring it. 5

Cross-validation
mean(RMSE) 0.054819
sd(RMSE) 0.010340
mean(MAPE) 0.162463
sd(MAPE) 0.041088

Table 12: Assembling of the F0 matrix
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5.1.8 Factorization of the stiffness matrix K

This model describes the Cholesky factorization of the stiffness matrices K.
It is given by the equation

timeFactK ~ poly(I(1/nprocs), 2, raw = T) + poly(nDOF, 3, raw = T) + poly(ndoms, 3, raw = T)

+ I(1/nprocs):poly(nDOF, 3, raw = T),
(112)

its properties are shown in the Tab. 13 and its g.o.f. is visualized in the Fig. 18.

Figure 18: Factorization of K

Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.296e+00 7.941e-02 -54.107 <2e-16 ***
poly(I(1/nprocs), 2, raw = T)1 1.200e+00 6.946e-02 17.275 <2e-16 ***
poly(I(1/nprocs), 2, raw = T)2 6.975e-02 1.158e-02 6.022 7.52e-09 ***
poly(nDOF, 3, raw = T)1 8.070e-04 1.568e-05 51.476 <2e-16 ***
poly(nDOF, 3, raw = T)2 -5.716e-08 1.791e-09 -31.915 <2e-16 ***
poly(nDOF, 3, raw = T)3 1.574e-12 6.257e-14 25.161 <2e-16 ***
poly(ndoms, 3, raw = T)1 6.090e-03 3.812e-04 15.976 <2e-16 ***
poly(ndoms, 3, raw = T)2 -5.717e-06 6.422e-07 -8.903 2.48e-16 ***
poly(ndoms, 3, raw = T)3 2.151e-09 3.145e-10 6.840 8.33e-11 ***
poly(nDOF, 3, raw = T)1:I(1/nprocs) -3.316e-04 2.670e-05 -12.417 <2e-16 ***
poly(nDOF, 3, raw = T)2:I(1/nprocs) 3.009e-08 3.173e-09 9.482 <2e-16 ***
poly(nDOF, 3, raw = T)3:I(1/nprocs) -8.989e-13 1.137e-13 -7.902 1.47e-13 ***

Null deviance 3891.8051 (223 DOF)
Residual deviance 1.1254 (212 DOF)
AIC -524.07
Fisher Scoring it. 6

Cross-validation
mean(RMSE) 0.076611
sd(RMSE) 0.014860
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mean(MAPE) 0.142689
sd(MAPE) 0.017324

Table 13: Factorization of the stiffness matrix K

5.1.9 Assembling and inverting the GGT matrix in HTFETI

This model describes the time consumption of the assembling of GGT and its inversion for the HTFETI method,
used in the problem described by the Eq. (37). The assembling itsef is described in [28]. HTFETI method itself
is described in the Sec. 1.2.2.

The model is given by the equation

timeAsmGGTH ~ poly(I(1/nprocs), 3, raw=T) + poly(nnodes, 3, raw=T) + poly(nDOF, 3, raw=T)

+ poly(ndoms, 3, raw=T) + poly(I(1/nprocs), 2, raw=T):ndoms + ndoms:nDOF

+ I(1/nprocs^2):nnodes,

(113)

its properties are then listed in the Tab. 14 nad its g.o.f. is visualized in the Fig. 19.

Figure 19: Assembling and inverting the GGT in HTFETI

Estimate Std. Error t value Pr(>|t|)
(Intercept) -6.531e+00 1.602e-01 -40.768 <2e-16 ***
poly(I(1/nprocs), 3, raw = T)1 -5.279e+00 2.676e-01 -19.724 <2e-16 ***
poly(I(1/nprocs), 3, raw = T)2 1.849e+01 9.526e-01 19.410 <2e-16 ***
poly(I(1/nprocs), 3, raw = T)3 -1.992e+01 1.107e+00 -17.997 <2e-16 ***
poly(nnodes, 3, raw = T)1 7.653e-01 1.503e-02 50.917 <2e-16 ***
poly(nnodes, 3, raw = T)2 -8.395e-02 2.091e-03 -40.144 2e-16 ***
poly(nnodes, 3, raw = T)3 2.883e-03 7.933e-05 36.335 <2e-16 ***
poly(nDOF, 3, raw = T)1 3.777e-04 8.102e-06 46.612 <2e-16 ***
poly(nDOF, 3, raw = T)2 -3.263e-08 1.105e-09 -29.537 2e-16 ***
poly(nDOF, 3, raw = T)3 1.023e-12 4.364e-14 23.433 <2e-16 ***
poly(ndoms, 3, raw = T)1 5.966e-03 8.788e-04 6.789 1.97e-11 ***
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poly(ndoms, 3, raw = T)2 -6.710e-06 1.483e-06 -4.524 6.84e-06 ***
poly(ndoms, 3, raw = T)3 2.759e-09 7.275e-10 3.793 0.000158 ***
poly(I(1/nprocs), 2, raw = T)1:ndoms 1.801e-03 1.992e-04 9.041 <2e-16 ***
poly(I(1/nprocs), 2, raw = T)2:ndoms -2.250e-03 3.624e-04 -6.208 7.98e-10 ***
ndoms:nDOF 6.535e-09 1.672e-09 3.909 9.94e-05 ***
I(1/nprocs^2):nnodes 2.584e-02 5.679e-03 4.550 6.06e-06 ***

Null deviance 24.88119 (979 DOF)
Residual deviance 0.26493 (963 DOF)
AIC -5234.4
Fisher Scoring it. 5

Cross-validation
mean(RMSE) 0.018052
sd(RMSE) 0.001778
mean(MAPE) 0.114571
sd(MAPE) 0.007239

Table 14: Assembling GGT in HTFETI

5.1.10 Assembling and inverting of the GGT matrix in TFETI

This model describes the time consumption of the assembling of the coarse problem matrix GGT and its inversion
in the TFETI method, used in projector, i.e. in the problem given by the Eq. (19). The assembling of GGT is
described in detail in [28]. TFETI metod itself is described in the Sec. 1.2.1.

There was an enormous NUMA effect (described in the Sec. 3) observed in this region during the measure-
ments, when using 1 process, with 24 threads and 2 processes, each with 12 threads. To decrease the impact of
the NUMA effect on the accuracy of the model, we have divided the model into three separate models - for 1
process per node, 2 processes per node and for other number of processes per node.

The model for 1 process with 24 threads per node is described by the equation

timeAsmGGTT ~ nnodes + poly(I(log(2*nnodes)), 3, raw=T) + poly(ndoms, 2, raw=T)

+ poly(nDOF, 3, raw=T) + I(log(2*nnodes)^3):poly(nDOF, 2, raw=T),
(114)

with properties described in the Tab. 15 and its fit visualized in the Fig. 20.
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Figure 20: Assembling of the GGT matrix in TFETI - 1 process per node

Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.696e+01 2.180e+00 -7.776 2.15e-12 ***
poly(I(log(2 * nnodes)), 3, raw = T)1 3.218e+01 4.454e+00 7.225 4.00e-11 ***
poly(I(log(2 * nnodes)), 3, raw = T)2 -1.636e+01 2.270e+00 -7.206 4.40e-11 ***
poly(I(log(2 * nnodes)), 3, raw = T)3 3.925e+00 5.472e-01 7.173 5.24e-11 ***
poly(ndoms, 2, raw = T)1 6.866e-03 4.166e-04 16.481 <2e-16 ***
poly(ndoms, 2, raw = T)2 -2.514e-06 2.511e-07 -10.011 <2e-16 ***
poly(nDOF, 3, raw = T)1 3.876e-04 1.423e-05 27.233 <2e-16 ***
poly(nDOF, 3, raw = T)2 -2.965e-08 1.772e-09 -16.734 -16.734 <2e-16 ***
poly(nDOF, 3, raw = T)3 7.959e-13 6.820e-14 11.670 <2e-16 ***
nnodes -3.845e+00 5.491e-01 -7.003 1.27e-10 ***
I(log(2 * nnodes)^3)
:poly(nDOF, 2, raw = T)1

-3.287e-06 2.606e-07 -12.612 <2e-16 ***

I(log(2 * nnodes)^3)
:poly(nDOF, 2, raw = T)2

1.423e-10 1.453e-11 9.796 <2e-16 ***

Null deviance 498544.8 (139 DOF)
Residual deviance 1632.1 (128 DOF)
AIC 767.14
Fisher Scoring it. 4

Cross-validation
mean(RMSE) 5.110199
sd(RMSE) 2.328642
mean(MAPE) 0.169155
sd(MAPE) 0.035732

Table 15: Assembling of the GGT matrix in TFETI - 1 process per node

The model for 2 processes per node, each with 12 threads, is described by the equation

timeAsmGGTT ~ poly(nnodes, 3, raw=T) + poly(ndoms, 2, raw=T) + poly(nDOF, 3, raw=T)

+ poly(nnodes, 2, raw=T):poly(nDOF, 2, raw=T),
(115)

whose properties are listed in the Tab. 16 and its fit can be seen in the figure 21.
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Figure 21: Assembling of the GGT matrix in TFETI - 2 processes per node

Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.843e+00 1.401e-01 -20.286 <2e-16 ***
poly(nnodes, 3, raw = T)1 3.766e-01 2.405e-02 15.662 <2e-16 ***
poly(nnodes, 3, raw = T)2 -3.297e-02 2.847e-03 -11.582 <2e-16 ***
poly(nnodes, 3, raw = T)3 1.154e-03 1.063e-04 10.857 <2e-16 ***
poly(ndoms, 2, raw = T)1 6.668e-03 3.429e-04 19.449 <2e-16 ***
poly(ndoms, 2, raw = T)2 -2.416e-06 2.070e-07 -11.672 <2e-16 ***
poly(nDOF, 3, raw = T)1 3.742e-04 1.807e-05 20.708 <2e-16 ***
poly(nDOF, 3, raw = T)2 -2.632e-08 1.638e-09 -16.069 <2e-16 ***
poly(nDOF, 3, raw = T)3 6.578e-13 5.561e-14 11.829 <2e-16 ***
poly(nnodes, 2, raw = T)1
:poly(nDOF, 2, raw = T)1

-2.407e-05 4.059e-06 -5.931 <2.68e-08 ***

poly(nnodes, 2, raw = T)2
:poly(nDOF, 2, raw = T)1

9.008e-07 2.038e-07 4.420 <2.09e-05 ***

poly(nnodes, 2, raw = T)1
:poly(nDOF, 2, raw = T)2

9.117e-10 2.276e-10 4.007 <0.000104 ***

poly(nnodes, 2, raw = T)2
:poly(nDOF, 2, raw = T)2

-3.219e-11 1.152e-11 -2.794 <0.006007 **

Null deviance 79149.74 (139 DOF)
Residual deviance 189.49 (127 DOF)
AIC 467.68
Fisher Scoring it. 4

Cross-validation
mean(RMSE) 1.562232
sd(RMSE) 0.426681
mean(MAPE) 0.107546
sd(MAPE) 0.029196

Table 16: Assembling of the GGT matrix in TFETI - 2 processes per node

61



And finally, the model for other numbers of processes than 1 or 2 per node is given by the formula

timeAsmGGTT ~ poly(nnodes, 3, raw = T) + poly(ndoms, 2, raw = T) + poly(nDOF, 3, raw = T)

+ poly(I(1/nprocs), 3, raw = T) + nnodes:nDOF + nDOF:I(1/nprocs)

+ nnodes:I(1/nprocs),

(116)

whose properties are listed in the Tab. 17 and its fit is visualized in the fig.

Figure 22: Assembling of the GGT matrix in TFETI - more than 2 processes per node

Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.110e+00 1.118e-01 -36.744 <2e-16 ***
poly(nnodes, 3, raw = T)1 5.939e-01 2.103e-02 28.246 <2e-16 ***
poly(nnodes, 3, raw = T)2 -5.291e-02 2.957e-03 -17.897 <2e-16 ***
poly(nnodes, 3, raw = T)3 1.749e-03 1.127e-04 15.514 <2e-16 ***
poly(ndoms, 2, raw = T)1 6.596e-03 2.772e-04 23.798 <2e-16 ***
poly(ndoms, 2, raw = T)2 -2.328e-06 1.673e-07 -13.917 <2e-16 ***
poly(nDOF, 3, raw = T)1 1.214e-04 6.600e-06 18.395 <2e-16 ***
poly(nDOF, 3, raw = T)2 -7.765e-09 9.794e-10 -7.928 7.21e-15 ***
poly(nDOF, 3, raw = T)3 2.194e-13 4.123e-14 5.323 1.32e-07 ***
poly(I(1/nprocs), 3, raw = T)1 3.522e+00 4.687e-01 7.513 1.50e-13 ***
poly(I(1/nprocs), 3, raw = T)2 -1.231e+01 2.687e+00 -4.581 5.35e-06 ***
poly(I(1/nprocs), 3, raw = T)3 2.477e+01 4.591e+00 5.396 8.90e-08 ***
nnodes:nDOF -2.360e-06 1.210e-07 -19.508 <2e-16 ***
nDOF:I(1/nprocs) 1.161e-04 5.397e-06 21.511 <2e-16 ***
nnodes:I(1/nprocs) -4.442e-02 6.003e-03 -7.399 3.37e-13 ***

Null deviance 192081.2 (839 DOF)
Residual deviance 1649.3 (825 DOF)
AIC 2982.6
Fisher Scoring it. 5

Cross-validation
mean(RMSE) 1.530878
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sd(RMSE) 0.256043
mean(MAPE) 0.145268
sd(MAPE) 0.013867
Table 17: Assembling of the GGT matrix in TFETI - more than 2 processes per node

5.1.11 Action of GGT in HTFETI

The action of GGT in HTFETI is the process occuring during the application of the projector described by the
Eq. (36). HTFETI itself is described in the Sec. 1.2.2.

The model is given by the equation

timeActGGTH ~ I(nDOF^3) + I(ndoms^2) + I(nDOF^2) + (poly(I(1/nprocs), 2, raw = T)

+ poly(nnodes, 2, raw = T))^2 + I(1/nprocs):nDOF + (poly(nnodes, 2, raw = T)

+ ndoms)^2 + nnodes:nDOF + nDOF:ndoms + nDOF,

(117)

whose properties are shown in the Tab. 18 and its fit is visualized in the fig. 23.

Figure 23: Action of GGT in HTFETI

Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.012e+01 6.134e-02 -164.953 <2e-16 ***
I(nDOF^3) 1.281e-12 5.194e-14 24.668 <2e-16 ***
I(ndoms^2) -1.274e-06 6.123e-08 -20.815 <2e-16 ***
I(nDOF^2) -3.934e-08 1.339e-09 -29.368 <2e-16 ***
poly(I(1/nprocs), 2, raw = T)1 5.772e+00 2.404e-01 24.011 <2e-16 ***
poly(I(1/nprocs), 2, raw = T)2 -4.688e+00 3.683e-01 -12.729 <2e-16 ***
poly(nnodes, 2, raw = T)1 1.769e-01 1.185e-02 14.935 <2e-16 ***
poly(nnodes, 2, raw = T)2 -6.391e-03 6.289e-04 -10.161 <2e-16 ***
ndoms 3.455e-03 1.023e-04 33.768 <2e-16 ***
nDOF 4.435e-04 1.027e-05 43.198 <2e-16 ***
poly(I(1/nprocs), 2, raw = T)1
:poly(nnodes, 2, raw = T)1

-4.101e-01 7.045e-02 -5.822 7.94e-09 ***
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poly(I(1/nprocs), 2, raw = T)2
:poly(nnodes, 2, raw = T)1

4.684e-01 1.113e-01 4.207 2.83e-05 ***

poly(I(1/nprocs), 2, raw = T)1
:poly(nnodes, 2, raw = T)2

1.599e-02 3.780e-03 4.230 2.56e-05 ***

poly(I(1/nprocs), 2, raw = T)2
:poly(nnodes, 2, raw = T)2

5.996e-03 -1.782e-02 -2.973 0.003027 **

I(1/nprocs):nDOF -1.761e-05 4.004e-06 -4.398 1.21e-05 ***
poly(nnodes, 2, raw = T)1:ndoms -3.581e-05 7.173e-06 -4.993 7.06e-07 ***
poly(nnodes, 2, raw = T)2:ndoms 1.290e-06 3.857e-07 3.345 0.000853 ***
nDOF:nnodes -3.586e-07 1.070e-07 -3.350 0.000840 ***
nDOF:ndoms 1.845e-08 2.008e-09 9.187 <2e-16 ***

Null deviance 0.01408544 (979 DOF)
Residual deviance 0.00016512 (961 DOF)
AIC -12463
Fisher Scoring it. 4

Cross-validation
mean(RMSE) 0.000416
sd(RMSE) 0.000042
mean(MAPE) 0.127067
sd(MAPE) 0.013751

Table 18: Action of GGT in HTFETI

5.1.12 Action of GGT in TFETI

The action of the coarse problem matrix GGT is occuring during the application of the projector given by the
Eq. (18). The TFETI method itself is described in the Sec. 1.2.1.

The model is given by the formula

timeActGGTT ~ poly(nnodes, 3, raw=T) + poly(I(1/nprocs), 3, raw=T) + poly(ndoms, 3, raw=T)

+ poly(nDOF, 2, raw=T) + poly(nnodes, 3, raw=T):nDOF + nnodes:ndoms,
(118)

its properties are listed in the Tab. 19 and its fit is visualized in the figure
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Figure 24: Action of GGT in TFETI

Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.045e+01 2.082e-01 -50.185 <2e-16 ***
poly(nnodes, 3, raw = T)1 5.687e-01 1.642e-02 34.644 <2e-16 ***
poly(nnodes, 3, raw = T)2 -5.081e-02 2.301e-03 -22.086 <2e-16 ***
poly(nnodes, 3, raw = T)3 1.590e-03 8.749e-05 18.170 <2e-16 ***
poly(I(1/nprocs), 3, raw = T)1 5.084e+00 1.090e-01 46.663 <2e-16 ***
poly(I(1/nprocs), 3, raw = T)2 -4.007e+00 2.544e-01 -15.753 <2e-16 ***
poly(I(1/nprocs), 3, raw = T)3 1.291e+00 1.586e-01 8.143 1.04e-15 ***
poly(ndoms, 3, raw = T)1 9.603e-03 1.140e-03 8.423 <2e-16 ***
poly(ndoms, 3, raw = T)2 -8.807e-06 1.897e-06 -4.642 3.86e-06 ***
poly(ndoms, 3, raw = T)3 3.251e-09 9.222e-10 3.525 0.000441 ***
poly(nDOF, 2, raw = T)1 8.568e-05 3.284e-06 26.092 <2e-16 ***
poly(nDOF, 2, raw = T)2 -5.968e-10 6.159e-11 -9.689 <2e-16 ***
poly(nnodes, 3, raw = T)1:nDOF -1.821e-05 1.713e-06 -10.628 <2e-16 ***
poly(nnodes, 3, raw = T)2:nDOF 1.820e-06 2.450e-07 7.429 2.18e-13 ***
poly(nnodes, 3, raw = T)3:nDOF -5.893e-08 9.394e-09 -6.273 5.07e-10 ***
nnodes:ndoms 1.940e-05 1.347e-06 14.395 <2e-16 ***

Null deviance 3.3758607 (1119 DOF)
Residual deviance 0.0072112 (1104 DOF)
AIC -10175
Fisher Scoring it. 5

Cross-validation
mean(RMSE) 0.002877
sd(RMSE) 0.000350
mean(MAPE) 0.137909
sd(MAPE) 0.007489

Table 19: Action of GGT in TFETI
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5.1.13 Assembling of the Sα matrix

The assembling of the Schur complement matrix Sα in the HTFETI method is described by the Eq. (51). The
HTFETI method itself is described in the Sec. 1.2.2.

The model of the assembling Sα is described by the equation

timeAsmS ~ nDOF + poly(I(1/nprocs), 3, raw=T) + poly(ndoms, 2, raw=T)

+ poly(nDOF, 3):poly(I(1/nprocs), 3),
(119)

its properties are listed in the Tab. 20 and its fit is visualized in the Fig. 25.

Figure 25: Assembling of the Sα matrix

Estimate Std. Error t value Pr(>|t|)
(Intercept) -9.871e+00 1.826e-01 -54.060 <2e-16 ***
poly(I(1/nprocs), 2, raw = T)1 1.550e+01 7.171e-01 21.616 <2e-16 ***
poly(I(1/nprocs), 2, raw = T)2 -1.236e+01 9.286e-01 -13.315 <2e-16 ***
poly(ndoms, 2, raw = T)1 8.727e-03 3.487e-04 25.025 <2e-16 ***
poly(ndoms, 2, raw = T)2 -3.389e-06 2.075e-07 -16.331 <2e-16 ***
nDOF -3.812e-04 3.085e-05 -12.359 <2e-16 ***
poly(nDOF, 3, raw = T)1
:poly(I(1/nprocs), 3, raw = T)1

4.930e-03 5.412e-04 9.110 <2e-16 ***

poly(nDOF, 3, raw = T)2
:poly(I(1/nprocs), 3, raw = T)1

-3.230e-07 9.645e-08 -3.349 0.000986 ***

poly(nDOF, 3, raw = T)3
:poly(I(1/nprocs), 3, raw = T)1

2.042e-11 4.339e-12 4.705 5.02e-06 ***

poly(nDOF, 3, raw = T)1
:poly(I(1/nprocs), 3, raw = T)2

-1.757e-02 2.701e-03 -6.506 7.33e-10 ***

poly(nDOF, 3, raw = T)2
:poly(I(1/nprocs), 3, raw = T)2

1.646e-06 5.030e-07 3.273 0.001275 **

poly(nDOF, 3, raw = T)3
:poly(I(1/nprocs), 3, raw = T)2

-1.033e-10 2.266e-11 -4.558 9.47e-06 ***

66



poly(nDOF, 3, raw = T)1
:poly(I(1/nprocs), 3, raw = T)3

1.841e-02 3.344e-03 5.506 1.24e-07 ***

poly(nDOF, 3, raw = T)2
:poly(I(1/nprocs), 3, raw = T)3

-1.997e-06 6.237e-07 -3.202 0.001615 **

poly(nDOF, 3, raw = T)3
:poly(I(1/nprocs), 3, raw = T)3

1.248e-10 2.810e-11 4.441 1.55e-05 ***

Null deviance 14.675879 (195 DOF)
Residual deviance 0.018029 (181 DOF)
AIC -1233.4
Fisher Scoring it. 8

Cross-validation
mean(RMSE) 0.023546
sd(RMSE) 0.020141
mean(MAPE) 0.416362
sd(MAPE) 0.080325

Table 20: Assembling of the Sα matrix

5.2 Final models and their verification
The final model for the TFETI method without Dirichlet preconditioner (described in the Sec. 1.2.3) is given by
the following formula

time ~ timeAsmK + timeFactK + timeAsmGGTT

+ iterNum*(timeActKT + timeActGGTT + timeActPrec),
(120)

where iterNum is the number of CG iterations (estimated as described in the Sec. 5) and timeActPrec is the
timePrecLum if Lumped preconditioner (described in the Sec. 1.2.3) is used or 0 if there is no preconditioner.

When using Dirichlet preconditioner which requires extra preprocessing time the formula must be modified
to

time ~ timeAsmK + timeFactK + timeAsmGGTT + timeAsmDir

+ iterNum*(timeActKT + timeActGGTT + timePrecDir).
(121)

Figure 26: Total FETI model fit with: no preconditioner (left), Lumped precondition (middle)
and Dirichlet preconditioner (right).
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For HTFETI method both formulas remain very similar, only timeAsmGGTT, timeActGGTT and timeActKT will
be replaced with timeAsmGGTH, timeActGGTH and timeActKH. In the HTFETI method there are also matrices F0

and Sα used, who are described in the Sec. 5.1.7 and 5.1.13, respectively.
So, the model for HTFETI without preconditioner or using Lumped preconditioner will be modified as

time ~ timeAsmF0 + timeAsmS + timeAsmK + timeFactK + timeAsmGGTH

+ iterNum*(timeActKH + timeActGGTH + timeActPrec)
(122)

and the model for HTFETI with Dirichlet preconditioner as

time ~ timeAsmF0 + timeAsmS + timeAsmK + timeFactK + timeAsmGGTH

+ iterNum*(timeActKH + timeActGGTH + timeActPrec + timePrecDir)
(123)

The results of the final tests are presented in the Tab. 21, the visualized fit of TFETI model is shown in the
Fig. 26 and the visualized fit of HTFETI model is in the Fig. 27.

Figure 27: Hybrid Total FETI model fit with: no preconditioner (left), Lumped precondition
(middle) and Dirichlet preconditioner (right).

Predicted settings in the Tab. 21 are the settings for which the estimated ESPRESO run-time Predicted time
is minimal. The predicted time is estimated using the model. Measured time from predicted settings contains the
measured value corresponding with the predicted settings, i.e. the value we would consider optimal if the model
was used for prediction in practice.

Optimal settings are settings, for which the minimal run-time Optimal time was measured during tests.
Prediction error is the difference of measured time from predicted settings and the optimal time.

Finally, RMSE and sMAPE are used to evaluate not only the optima-predictive capability of the model, but
the overall model fit. They are both described in the Sec. 2.3.
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1728000 DOFs
TFETI HTFETI

Preconditioner None Lumped Dirichlet None Lumped Dirichlet
Predicted settings:
# of compute nodes
# of MPI processes per node
# of Cilk threads per MPI p.
# of domains per MPI rank
domain size [DOF]

4
24
1
18

1029

4
24
1
18

1029

4
24
1
18

1029

16
24
1
12
375

16
24
1
12
375

16
24
1
12
375

Predicted time [s] 2.32 1.8 2.43 0.8 0.66 0.79
Measured time from
predicted settings [s] 3.36 2.42 3.72 1.42 1.05 0.81

Optimal settings:
# of compute nodes
# of MPI processes per node
# of Cilk threads per MPI p.
# of domains per MPI rank
domain size [DOF]

4
6
4
70

1029

4
6
4
70

1029

16
4
6
72
375

16
4
6
72
375

16
4
6
72
375

16
4
6
72
375

Optimal time [s] 2.68 2.19 2.31 0.77 0.53 0.54
RMSE 3.22 2.39 2.51 4.02 1.38 1.54
sMAPE 0.24 0.24 0.18 0.43 0.27 0.24
Prediction error [s] 0.69 0.23 1.41 0.65 0.51 0.27

Table 21: Evaluation of the final model prediction quality
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6 Energy consumption evaluation of FETI solver
This thesis is mainly focused on the performance or a run-time model of the ESPRESO FETI solvers. However
the optimal energy consumption is similarly important topic in high performance computing with the upcoming
exascale computing era. The energy consumption of ESPRESO itself is investigated under the EU Horizon
2020 project called READEX. In this project we have implemented tools MERIC and RADAR used for energy
measurements and their evaluation, respectively.

While it is outside of the scope of this thesis, energy measurement results obtained by the two tools mentioned
above can be used to create models of optimal energy consumption in a very similar way as the performance model
described here.

6.1 MERIC
MERIC is a C++ dynamic library that measures energy consumption and runtime of annotated regions inside a
user application. It can also change the tuning parameters during the runtime. By running the code with different
settings of the tuning parameters, we analyze possibilities for energy savings. Afterwards the best configurations
are applied by changing the tuning parameters during the application runtime. MERIC wraps a list of libraries,
that provide access to different hardware knobs and registers, operating system and runtime system variables in
order to read or modify their values.

High Definition Energy Efficiency Monitoring (HDEEM) is a library, which enables energy-
aware performance optimizations of parallel codes[13]. It provides energy consumption measurement in two
different ways, and in MERIC it is possible to choose which one the user wants to use by setting the MERIC
CONTINUAL parameter. In one mode, the energy consumed since HDEEM was started is taken from HDEEM
Stats structure (a data structure used by the HDEEM library to provide measurements information to the user
application). In this mode we read the structure at each region start and end. This solution is straightforward,
however there is a delay of approximately 4 ms associated with every read from HDEEM API. To avoid the delay,
we take advantage of the fact that during the measurement HDEEM stores energy samples in its internal memory.
In this case the MERIC only needs to record timestamps at the beginning and the end of each region instead of
calling the HDEEM API. This results in very small overhead of MERIC instrumentation during the application
runtime because all samples are transferred from HDEEM memory at the end of the application runtime. The
energy is than calculated from the samples based on the recorded timestamps.

Intel Running Average Power Limit (RAPL) is the interface for the energy consumption provided
by contemporary Intel processors[5]. MERIC uses the RAPL counters to allow energy measurements on machines
without the HDEEM infrastructure as well as to compare them with HDEEM measurements. RAPL counters
are read by x86 adapt library.

6.2 RADAR
When the significant regions are annotated with MERIC probes we run the application for all combinations of the
selected tuning parameters. Afterwards we analyze the measurement results with RADAR report generator tool.
The report generator is a Python based tool which visualizes the MERIC measurements in form of the Latex/PDF
document. The goal is to present results in easily readable format compliant with RADAR using aggregated tables,
2D plots and heat-maps. The report generator not only visualizes the measured results, but more importantly it
also evaluates the energy consumption using both HDEEM or RAPL, runtime and arithmetical intensity for each
significant regions. This analysis detects an optimal configuration of tuning parameters for each significant region
and calculates the potential energy savings. The energy savings are calculated for both static and dynamic tuning.
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In case of static tuning we evaluate the energy consumption of the entire application and find the single optimal
configuration. For the dynamic tuning we evaluate each of the significant regions independently and calculate the
additional savings over the static tuning. All the savings are then cumulated to report a single value for static
savings and a single value for dynamic savings, as described in [29]. This software was mostly implemented by
myself.

6.3 Results
There were performed many measurements using MERIC and RADAR, to evaluate effects of the chosen hardware
and application parameters on the energy consumption of ESPRESO (see [29, 14]).

Main hardware parameters were:

• CPU Core frequency

• CPU Uncore frequency

• Number of activeCPU cores (using OpenMP threads)

The application parameter, which was used in the energy consumption evaluation is a preconditioner. In
ESPRESO we have performed measurements for both Lumped and Dirichlet preconditioners, described in the
Sec. 1.2.3. These results have been submitted as a conference paper. Comparison of various preconditioners from
the paper can be seen in the Tab. 22. The paper itself can not be cited now, as it is being peer reviewed now
(i.e. April 2017).

Preconditioner # iterations 1 iteration Solution
none 172 125 ms 31.6 J 21.36 s 5 501.31 J

Weight function 100 130+2 ms 32.3+0.53 J 12.89 s 3 284.07 J
Lumped 45 130+10 ms 32.3+3.86 J 6.32 s 1 636.11 J

Light dirichlet 39 130+10 ms 32.3+3.74 J 5.46 s 1 409.82 J
Dirichlet 30 130+80 ms 32.3+20.62 J 6.34 s 1 594.50 J

Table 22: Comparison of preconditioners

Those reports are out of scope of this thesis, but one example is shown below with following properties:

• Method: Hybrid Total FETI

• Preconditioner: Lumped (sparse)

• Stiffness matrix processing: PARDISO Sparse Direct Solver (sparse)

• Decomposition: 1x1x1 cluster; 8x8x8 subdomains per cluster; 11x11x11 elements per subdomain

• 1 node with 1 MPI process

• 2 to 24 OpenMP threads

Measurement reports are described in detail in [29].
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Overall application evaluation
Default
settings

Default
values

Best static
configuration

Static
Savings

Dynamic
Savings

Energy consumption
[J] ,
Blade summary

24 threads,
3.0 GHz UCF,
2.5 GHz CF

6265.18 J
18 threads,
1.8 GHz UCF,
2.5 GHz CF

771.63 J
(12.32%)

499.2 J of
5493.6 J
(9.09 %)

Runtime of function
[s],
Job info - hdeem

24 threads,
3.0 GHz UCF,
2.5 GHz CF

29.55 s
22 threads,
3.0 GHz UCF,
2.5 GHz CF

0.01 s
(0.04%)

0.82 s of
29.54 s
(2.76 %)

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

5,500

6,000

6,500

7,000

7,500

8,000

8,500

9,000

( 1.8GHz UCF, 2.50GHz CF: 5493.55J )

Core freq [GHz]

En
er

gy
co

ns
um

pt
io

n
[J

]

18 threads

Uncore freq [GHz]
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

Uncore freq [GHz UCF]
Core freq [GHz] 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

1.2 7,774.33 7,577.13 7,620.86 7,712.41 7,638.19 7,887.51 8,017.52 8,224.55 8,457.63 8,713.34
1.4 7,014.96 7,006.61 6,951.7 6,989.9 7,013.88 7,100.78 7,353.77 7,538.7 7,540.17 7,808.45
1.6 6,657.43 6,585.3 6,497.84 6,405.66 6,448.15 6,626.3 6,742.37 6,790.9 6,955.32 7,114.6
1.8 6,387.41 6,286.4 6,195.08 6,068.22 6,093.49 6,158.65 6,244.49 6,354.23 6,412.18 6,693.56
2 6,303.9 6,177.23 5,979.14 5,892.41 5,862.35 5,941.4 6,094.83 6,116.72 6,337.78 6,405.45

2.2 6,130.89 5,908.28 5,771.2 5,729.32 5,695.97 5,732.87 5,822.58 5,901.66 6,020.53 6,124.2
2.4 6,219.49 5,866.82 5,718.77 5,548.09 5,590.74 5,644.12 5,679.25 5,750.53 5,840.8 5,940.3
2.5 6,201.34 5,870.99 5,678.56 5,493.55 5,544.76 5,507.07 5,567.86 5,711.89 5,834.93 5,909.88
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Intra-Phase Dynamism Evaluation
Blade summary, Energy consumption [J]

Region % of 1 phase Stat. conf. Stat. val. Dyn. conf. Dyn. val. Savings

Assembler–
AssembleStiffMat

14.32
18 threads,
1.8 GHz UCF,
2.5 GHz CF

733.73 J
20 threads,
2.0 GHz UCF,
2.5 GHz CF

731.22 J
2.51 J
(0.34%)

Assembler–
Assemble-B1

2.23
18 threads,
1.8 GHz UCF,
2.5 GHz CF

114.30 J
2 threads,
2.2 GHz UCF,
2.5 GHz CF

94.15 J
20.15 J
(17.63%)

Cluster–
CreateF0-
FactF0

0.17
18 threads,
1.8 GHz UCF,
2.5 GHz CF

8.71 J
6 threads,
1.6 GHz UCF,
2.5 GHz CF

6.90 J
1.80 J
(20.73%)

Assembler–
SaveResults

3.10
18 threads,
1.8 GHz UCF,
2.5 GHz CF

158.81 J
2 threads,
1.2 GHz UCF,
2.5 GHz CF

147.66 J
11.16 J
(7.03%)

Assembler-K_-
Regularization

5.43
18 threads,
1.8 GHz UCF,
2.5 GHz CF

278.39 J
2 threads,
1.8 GHz UCF,
2.5 GHz CF

231.38 J
47.01 J
(16.89%)

Cluster–
CreateSa-
SolveF0vG0

2.22
18 threads,
1.8 GHz UCF,
2.5 GHz CF

113.87 J
6 threads,
2.0 GHz UCF,
2.5 GHz CF

97.46 J
16.41 J
(14.41%)

Create_GGT_-
Inv

0.28
18 threads,
1.8 GHz UCF,
2.5 GHz CF

14.23 J
2 threads,
1.2 GHz UCF,
2.5 GHz CF

8.92 J
5.31 J
(37.34%)

Cluster–
Kfactorization

12.84
18 threads,
1.8 GHz UCF,
2.5 GHz CF

658.07 J
24 threads,
2.0 GHz UCF,
2.4 GHz CF

629.62 J
28.45 J
(4.32%)

Assembler–
SaveMeshtoVTK

6.36
18 threads,
1.8 GHz UCF,
2.5 GHz CF

325.69 J
2 threads,
1.2 GHz UCF,
2.5 GHz CF

296.66 J
29.03 J
(8.91%)

Cluster–
CreateSa-
SaFactorization

1.95
18 threads,
1.8 GHz UCF,
2.5 GHz CF

99.93 J
4 threads,
2.2 GHz UCF,
2.5 GHz CF

80.85 J
19.08 J
(19.09%)

Cluster–
SetClusterPC

1.46
18 threads,
1.8 GHz UCF,
2.5 GHz CF

74.70 J
20 threads,
2.0 GHz UCF,
2.5 GHz CF

74.54 J
0.16 J
(0.22%)

Assembler–
PrepareMesh

12.53
18 threads,
1.8 GHz UCF,
2.5 GHz CF

641.88 J
22 threads,
1.8 GHz UCF,
2.5 GHz CF

639.39 J
2.49 J
(0.39%)

Assembler–
SolverSolve

30.79
18 threads,
1.8 GHz UCF,
2.5 GHz CF

1578.06 J
10 threads,
2.2 GHz UCF,
2.5 GHz CF

1289.85 J
288.21 J
(18.26%)

Assembler–
Assemble-B0

0.26
18 threads,
1.8 GHz UCF,
2.5 GHz CF

13.28 J
24 threads,
2.0 GHz UCF,
2.5 GHz CF

12.51 J
0.77 J
(5.81%)
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Cluster–
CreateG1-
perCluster

0.47
18 threads,
1.8 GHz UCF,
2.5 GHz CF

24.20 J
14 threads,
2.2 GHz UCF,
2.5 GHz CF

22.32 J
1.88 J
(7.76%)

Cluster–
CreateF0-
AssembleF0

5.43
18 threads,
1.8 GHz UCF,
2.5 GHz CF

278.22 J
24 threads,
2.2 GHz UCF,
2.2 GHz CF

254.98 J
23.24 J
(8.35%)

Cluster–
CreateSa-SaReg

0.17
18 threads,
1.8 GHz UCF,
2.5 GHz CF

8.59 J
8 threads,
2.0 GHz UCF,
2.5 GHz CF

7.03 J
1.56 J
(18.15%)

Total value for static tuning
for significant regions

733.73 + 114.30 + 8.71 + 158.81 + 278.39 + 113.87 + 14.23 + 658.07
+ 325.69 + 99.93 + 74.70 + 641.88 + 1578.06 + 13.28 + 24.20 +
278.22 + 8.59 = 5124.66 J

Total savings for dynamic
tuning for significant regions

2.51 + 20.15 + 1.80 + 11.16 + 47.01 + 16.41 + 5.31 + 28.45 + 29.03
+ 19.08 + 0.16 + 2.49 + 288.21 + 0.77 + 1.88 + 23.24 + 1.56 =
499.22 J of 5124.66 J (9.74 %)

Dynamic savings for applica-
tion runtime

499.22 J of 5493.55 J (9.09 %)

Total value after savings 4994.33 J (79.72 % of 6265.18 J)
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7 Conclusions
The performance model created in this thesis can be used for estimations of the optimal settings in the means of
minimization computation time. It fits low values quite well, while there are some problems with fitting larger
values, as can be see in Fig. 26 and 27.

The test used for final evaluation of the model was not designed ideally, so the situations occurred, where
the prediction was made with non-cubic number of domains and so the measurement had to be performed with
different number of domain (see Sec. 4.2), which caused some inaccuracy.

Another effect is a disturbance of measured data, as the measurement was performed only once to test model
for "real-life" usage. I expect, that if the test was performed multiple times and the predicted values were compared
with the averaged ones from the measurement, prediction errors would be significantly smaller.

Despite those imperfections, considering, that the optimal value is a minimum, this effect worsen the esti-
mation of the optimal configuration by a small margin, so the estimates are quite close to the real optima. It
is therefore possible to use the model to get an idea about the behavior of the ESPRESO library for problems
arising from linear elasticity and to configure the solver with fairly accurate settings without time consuming
manual effort. Please note that an inexperience user can configure the solver in a way that it can run several
times slower. In these cases the model is very valuable.

As in the future the model will become part of the ESPRESO library, the calibration and testing methodology
will be improved using METIS[19] for problem decomposition. The partial models are going to be also made more
accurate, especially the models of assembling of the coarse problem GGT , described in the Sec. 5.1.10 and 5.1.9 for
TFETI and HTFETI, respectively. An strategy for model improvement could be in decomposing these complex
models into several smaller ones, describing their sub-regions, which would allow better model flexibility.

While the energy consumption model mentioned in the introduction section was not assembled in this thesis,
the infrastructure and tools has been already developed and implemented. Both MERIC and RADAR (which
was mainly implemented by me) tools developed for energy measurements are already successfully used within
the Horizon 2020 project READEX, as described in the Sec. 6. Both tools are described in detail in [29] and the
results obtained with their help were published at international conference and journals [16, 15, 14, 31] and [18].

Both the performance model and tools for the energy measurement will be further used by ESPRESO library.
It will enable self-calibration of the library to estimate the optimal settings for both optimal run-time and energy
requirements automatically. This will remove the need for strenuous testing of different settings, which is now
often performed, i.e. not only the time, but also the energy will be saved.
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A Source codes

rmse=c()
mape=c()
for (i in 1:15) {

# 1) Decompose data into 10 groups (e.i. "folds")
folds <- createFolds(dataFact$time, k=10, list=TRUE, returnTrain=FALSE)
names(folds)[1] <- "test" # First fold will be the test-set

# 2) 90% for training a 10% for test
dataFactTest <- dataFact[ folds$test, ]
dataFactTrain <- dataFact[ c(folds[[2]],

folds[[3]],
folds[[4]],
folds[[5]],
folds[[6]],
folds[[7]],
folds[[8]],
folds[[9]],
folds[[10]]), ]

# 3) Training model
testFit <- glm(formula=formula(currentFit),

data=dataFactTrain,
family=gaussian(link="log"))

# 4) Graphical comparion of fitted and observed values
tmp <- predict(testFit, dataFactTest, se.fit=TRUE, type="response")
X11()
plot(tmp$fit, dataFactTest$time, col="blue", main=sprintf("Cross-validation - iter %d", i),

xlab="Fitted values [s]", ylab="Observed values [s]")
lines(dataFactTest$time, dataFactTest$time,col="black")

mapePerIter = sMAPE(dataFactTest$time, tmp$fit)

printf("%d iter: RMSE=%f, MAPE=%f\n", i, rmse(tmp$fit, dataFactTest$time), mapePerIter)
rmse[i] = rmse(tmp$fit, dataFactTest$time)
mape[i] = mapePerIter

}
printf("mean(RMSE)=%f, sd(RMSE)=%f\n", mean(rmse), sd(rmse))
printf("mean(MAPE)=%f, sd(MAPE)=%f\n", mean(mape), sd(mape))

Listing 3: Cross-validation R code
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