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Abstract
Binary gratings with high or low metal filling ratios in a grating region have been demonstrated
as successful candidates in enhancing the emittance of emitters for thermophotovoltaics since
they could support surface plasmons (SPs), the Rayleigh–Wood anomaly (RWA), or cavity
resonance (CR) within their geometries. This work shows that combining a tungsten binary
grating with a low and high filling ratio to form a pyramid grating can significantly increase the
emittance, which is nearly perfect in the wavelength region from 0.6 to 1.72 μm, while being 0.1
at wavelengths longer than 2.5 μm. Moreover, the emittance spectrum of the hybrid tungsten
grating is insensitive to the angle of incidence. The enhancement demonstrated by magnetic field
and Poynting vector patterns is due to the interplay between SPs and RWA modes at short
wavelengths, and CR at long wavelengths. Furthermore, a combined grating made of nickel is
also proposed providing enhanced emittance in a wide angle of incidence.

Keywords: thermal emission, nanostructures, thermophotovoltaics, surface plasmons,
Rayleigh–Wood anomaly, cavity resonance, metals

(Some figures may appear in colour only in the online journal)

1. Introduction

Thermophotovoltaic (TPV) devices used to generate elec-
tricity directly from heat have attracted great attention since
they could solve many problems of conventional energy
resources such as cleanness, portability, or low maintenance
[1]. In principle, a TPV emitter is heated up by burning fossil
fuel or using waste heat, and its thermal radiation is then
absorbed by a TPV cell which converts the photon energy
into electricity. The conversion happens when the incoming
wavelength is shorter than the wavelength corresponding to
the bandgap of the TPV cells. An ideal emitter needs have a
high emittance at the working wavelength of TPV cells and

low emittance at longer wavelengths. In addition, the emitter
should be insensitive to the incident direction in order to
efficiently absorb energy coming from different directions.
Accordingly, researchers have put a lot of effort into finding
efficient emitters to improve the conversion efficiency.

One-dimensional (1D), 2D, and 3D nanostructures have
provided excellent solutions for TPV applications with the
enhancement of emittance based on many physical mechan-
isms [2–32]. For example, 1D deep gratings and 2D micro-
cavities could increase the emission based on cavity
resonance modes [12, 33]. Moreover, the gratings can also
excite surface plasmons or magnetic polaritons (MPs) at their
horizontal and vertical metal boundaries or inside their slits
[8, 13, 14, 34]. Many researchers using different evolutionary
optimizations and design-based physical studies have tried
various grating structures with rectangular, triangular, or
blazed profiles to achieve maximum emittance [2–9, 11–
15, 17–25, 35]. However, very few studies have considered
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investigations of physical origins in enhancing emittance of a
pyramid grating structure combining a low filling ratio grating
layer with a high one, which exhibits nearly perfect emission
for TPV applications.

In this paper, a pyramid grating structure as an emitter
featuring a nearly perfect emittance (close to 1) in the
wavelength region from 0.6 to 1.72 μm and a very low one
(below 0.1) at wavelengths longer than 2.5 μm is demon-
strated. The emittance enhancement due to the interplay of the
Rayleigh–Wood anomaly (RWA) and surface plasmons
(SPs), and cavity resonance (CR) modes is also confirmed
based on analytic solutions and calculations of near-field
magnetic patterns and time-average Poynting vectors.

2. Model development and numerical method

2.1. Geometry and material

The structure shown in figures 1(a) and (b) comprises a
tungsten (W) grating atop an opaque W substrate, whose
profiles are much preferred compared with those of 2D and
3D structures due to ease of fabrication [36] and its perfor-
mance is acceptable [2–5, 8, 9, 11]. Figures 1(a) and (b)
illustrate a grating layer with a low filling ratio and a grating
with a high one, respectively, while figure 1(c) shows a
combined grating structure as a pyramid grating. The geo-
metric parameters include the grating period Λ, the grating
thickness h, the metal filling ratio in the grating region f, and
the groove width a. W and nickel (Ni) are selected as the
emitter’s materials due to their high melting points and strong
resistivity against corrosion. This is also because various
proposed emitters/absorbers constructed on multilayer, mul-
timaterial, and metal-dielectric composite coating structures
cannot withstand high temperatures less than 2000 K (con-
sidered in this study) due to thermomechanical stresses and

chemical reactions between and within their layers. The
optical constants of W and Ni are simulated with the Drude–
Lorentz model [37]. The emittance or absorptance can be
obtained from Kirchhoff’s law, i.e., A=1 − R, where R is
the reflectance calculated based on the rigorous coupled-wave
analysis (RCWA) [34, 38, 39]. Only the transverse magnetic
(TM) wave is considered here due to its enhancement
attributed to many excitations including SPs, localized SPs,
MPs, RWA, or CR compared with the transverse electric (TE)
wave. It is incident on the grating layer depicted by a
wavevector k and an incidence angle (θ).

2.2. Design guidelines using a numerical method

Figures 2(a) and (b) show the normal emittance spectrum of a
single-layered grating structure with varied grating thick-
nesses h, low and high filling ratios (f=0.1 and 0.9), and a
grating (constant) period of 400 nm. It is observed that the
emittance of all grating structures shown in both figures is
higher than that of the plain W surface. For structures with a
low filling ratio (f=0.1) as shown in figure 2(a), they do not
exhibit a maximum value in a wide wavelength range. On the
other hand, it is seen from figure 2(b) that the structures with a
high filling ratio display higher emittance than those shown in
figure 2(a). Moreover, the grating structure with a thickness of
200 nm and filling ratio of 0.9 provides high emittance in the
wavelength range from 0.6 to 1.72 μm and a low one at
wavelengths longer than 2.5 μm. As previously mentioned,
the conversion of the photon energy to electrical power occurs
when the wavelength of incident light is shorter than the
bandgap wavelength of GaSb. However, the absorption of the
emitted photon at wavelengths (e.g., >2 μm) longer than the
bandgap wavelength cannot produce electron–hole pairs; as a
result, the system cannot generate electricity. Meanwhile, the
emittance at shorter wavelengths (e.g., <0.6 μm) is negligible
because of its very low conversion efficiency according to
Planck’s blackbody spectral distribution.

Accordingly, the grating with the thickness of 200 nm,
the grating period of 400 nm, and the filling ratio of 0.9 is
selected as a reference for designing a nearly perfect ther-
mophotovoltaic emitter for various reasons. First, it provides
high emittance in the wavelength range of interest. Second, it
is feasibly implemented using current fabrication techniques
such as electron-beam lithography, focused ion beam litho-
graphy, and nanoimprint lithography because its aspect ratio,
defined as the ratio of the grating thickness h and the grating
width (w=Λ − a), is comparable. Last, it has been shown
that the spectral emittance of a simple binary W grating
remains unchanged when modifying its geometric dimension
by 5% [9]. On the other hand, a structure with a large
thickness (h=1200 nm) provides maximum emittance out-
side the wavelength range of interest and is challenging for
fabrication due to having a large aspect ratio [40–43].

Figure 3 shows emittance contours for a single-layered
W grating (see figures 1(a) and (b)) for TM waves at normal
incidence as a function of the wavelength λ and the grating
period Λ with a fixed h=200 nm and a varied f=0.1, 0.4,
0.6, and 0.9. It is seen that the emittance from figures 3(b)–(d)

Figure 1. (a) and (b) Schematics of TPV emitters made of a tungsten
grating on tungsten substrate with grating period Λ, grating thickness
h, variable filling ratio f, and groove width a. (c) TPV emitter
constructed from (a) and (b).
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displays a higher value in a large range of the grating periods
compared with that of figure 3(a). However, its spectrum does
not cover the wavelength region of 0.6∼1.72 μm corresp-
onding to the operating wavelength range of typical GaSb-

related TPV cells [44]. Additionally, for a grating period with
a large f (f=0.9), the maximum emittance occurs in a
wavelength range from 1.6 to 2.4 μm, while for the other
periods with a small f, it is maximum in a wavelength range of

Figure 3. Emittance contour for single-layered grating structure with h=200 nm for varying Λ from 200 to 1000 nm: (a) f=0.1, (b)
f=0.4, (c) f=0.6, and (d) f=0.9.

Figure 2. (a) and (b) Normal emittance spectrum of structures shown in figures 1(a) and (b) with different filling ratios (f=0.1 and 0.9) and h
and a constant Λ=400 nm for TM waves.
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0.6∼1.5 μm. Consequently, we propose a grating compris-
ing two single-layered gratings with different metal filling
ratios. It is noted that the grating structure with a small value
of f1 is built on the grating with a larger one, f2.

3. Mechanisms responsible for the emittance
enhancement

Previous studies have shown that grating structures display
extraordinary emission enhancement compared with plain
metal surfaces due to excitations of SPs, RWA, and CR [9].
The resonance frequency that causes a sudden reduction of
the reflectance (an increase of absorptance) can be predicted
via analytical solutions as described below.

For the gratings with narrow grooves (f=0.9) as shown
in figure 1(b), the TM SP mode can be expressed by an

effective medium approximation. The approximation method
is used to calculate a three-layered structure including a
homogeneous anisotropic layer (the grating layer) sand-
wiched between the dielectric (air) and metal layers. In order
to find the SP wavevector of a wave propagating into the
grating structure, one can match the non-zero components of
magnetic and electric fields at the boundary z=0, which can
be found in [45]. After some derivations, the magnitude of the
SP wavevector is thus given by:
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Here kg is the wavevector magnitude of a wave propagating
into the grooves, k0 is the free space wavevector, and εd
and εg are the dielectric functions of the above grating

Figure 4. Emittance spectrum calculated for TM waves at normal incidence of grating structures with h=200 nm, f1=0.4, f2=0.9, and (a)
Λ=400 nm, (b) Λ=600 nm, (c) Λ=800 nm, and (d) Λ=1000 nm. It is noted that the red solid curve with rectangular marks in (c)
shows the emittance spectrum calculated for the TE wave.
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region (air) and grating grooves (air), respectively, with
εd=εg=εair=1.0.

For RWA, the absorptance/emittance spectrum is
abruptly changed because one of the diffraction orders j dis-
appears at the grazing angle θd=±90°. RWA resonance can
be expressed as [9, 46].

l l
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The CR mode occurs due to the interference effects with
grating structures. It is defined as [12]
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Here l, m, and n are integers; Lx and Lz correspond to a and h,
respectively; and Ly is infinite along the y direction.

4. Emittance spectrum of grating structures and
physical and analytical interpretation of grating
response

Figure 4 shows the emittance spectrum for TM waves at
normal incidence of three grating structures with geometric
parameters h=200 nm, f1=0.4, and f2=0.9 for different
grating periods from 400 to 1000 nm. It is noted that the
values of Λ, h, and f are selected based on the above analysis
in order to obtain high emittance in a large range of wave-
lengths of interest. It is seen that the emittance of the grating
structures shown in figures 4(b) and (c) is obtained to be
approximately 0.99 as labeled by E, F, G, and H, compared
with that of figure 4(a). Although the emittance labeled by K
and L of the structures in figure 4(d) is as high as in
figures 4(b) and (c), it lies in a shorter wavelength range (e.g.,

1.5 μm<λ<2.15 μm). Moreover, it is observed from
figure 4(c) that the obtained emittance spectrum for the TE
wave (the solid red curve with triangular marks) is much
smaller than those for the TM waves although it also covers
the wavelength range of interest. Interestingly, most hybrid
grating structures exhibit higher emittance and a broader
bandwidth than the single-layered grating structures. It is
found that the emittance spectrum of the pyramid gratings
superimposes two spectra of single-layered gratings. More-
over, the spectral characteristics of the single-layered gratings
are similar, e.g., peaks D1, D2, I, and J, while those of the
hybrid gratings are different, i.e., the disappearance of these
peaks in figures 4(c) and (d).

For comparison, the emittance of complex grating [11]
(the solid curve with triangular marks) and a magnetic-
polariton-enhanced TPV emitter [8] (the solid curve with
circle marks) is also generated by our codes as shown in
figure 5. It is observed that the proposed emitter exhibits an
average emittance (0.94) in the wavelength range from
0.6 μm to 1.72 μm higher than that of the complex grating
(0.83) and of the emitter-based the magnetic polariton mode
(0.88). Consequently, it is worth mentioning that the results
presented in figures 4 and 5 illustrate efficiently designed
emitters for TPV applications.

The directional emittance at peaks A, B, C, D, E, F, G, H,
K, and L as shown in figure 4 at wavelengths of 0.47 μm,
0.94 μm, 1.84 μm, 0.60 μm, 0.98 μm, 1.72 μm, 1.03 μm,
1.66 μm, 1.10 μm, and 1.63 μm, respectively, is plotted in
figure 6 to compare the angular dependence of the proposed
structures. Figure 6(a) shows that emittance at peaks A, B,
and C increases as the wavelength rises, but also increases
with the emission angle up to a maximum and then reduces to
zero when the angle is 90°. In figure 6(b), the emittance of the
grating structure with Λ=600 nm at peak F displays the
highest value, above 0.85 from θ=0° to 70° while that at
peak E is obtained above 0.6 from θ=0° to 70° and then
drops to zero. At peak D, it is interesting to see a sudden
abrupt change due to SPs or the RWA. In order to confirm its
physical origin, one can use equations (1) and (2). For
example, to obtain good focusing or a high intensity in the
grating structure, k in equation (1) should be large, which
corresponds to tan(kgh)→0, i.e., the grating grooves act as
quarter-wavelength antennas (kg=k0) [45]. Thus, the SP
resonance occurs when h≈λ/4=150 nm, which is not
equal to the calculated grating thickness. In contrast, the
RWA might occur at peak D due to one diffraction order
emerging at the grating angle. For example, from equation (2)
Λ is equal to λ when θ=0° and j=1 and its value agrees
well with the computed grating period (Λ=600 nm).

Figure 6(c) plots the emittance at peak H with its value
being greater than 0.8 from θ=0° to 70°, and it then
decreases to zero when θ reaches 90°, while that at peak G
exhibits a value greater than 0.75 from θ=0° to 70° and then
also drops to zero. Figure 6(d) shows that the emittance
fluctuates greatly when the angle of incidence changes; for
example, at peaks K and L it drops fast to 0.8 and 0.5 from
θ=0° to 60° and to 40°, respectively. In figures 6(c) and (d),
the small peaks disappear or emerge at shorter wavelengths as

Figure 5. Comparison of emittance among the proposed structure
with that of a 1D complex grating in [11] and a magnetic-polariton-
enhanced TPV emitter in [8].
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compared with those shown in figures 4(a) and (b). Moreover,
the emittance peaks show the highest value at a wide wave-
length range of 0.6∼1.72 μm. Overall, the results presented
in figure 6 illustrate that the grating structures with Λ=600
and 800 nm provide very high emittance for TPV emitters.
Further, the excitation (peak D) has been demonstrated ana-
lytically and is known by the RWA, while that at the largest
peak is verified using TM field and Poynting vector dis-
tributions, as illustrated in figure 7.

Figure 7 shows magnetic field and the time-average
Poynting vector patterns at peaks D1, D2, and D at the same
wavelength (λ=0.6 μm), E (λ=0.98 μm), F
(λ=1.72 μm), G (λ=1.03 μm), H (λ=1.66 μm), and I
and J at the same wavelength (λ=0.8 μm) within two
grating periods shown in figures 4(b) and (c). The background
of the figures is the y-component intensity of magnetic fields
while vectors indicate the time-average Poynting energy
density. It is seen that magnetic field and Poynting distribu-
tions at peak D1 are different from those at D2 and D. Based
on these plots and equations (1) and (2), one may conclude
that the SPs occur at peak D1 due to the energy, indicated by
Poynting vectors, oscillating at the W horizontal boundaries
(see figure 7 for peak D1) while the RWA is excited at peaks
D2 and D (Λ equal to λ confirmed by equation (2)). However,
magnetic field and Poynting vector patterns of peaks E, F, G,
and H are similar. It is observed that the TM waves are
standing in the groove grating regions which causes an
enhancement of the emittance. In addition, from equation (3)
the maximum resonance λlmn can be obtained by setting

l=n=0, and it results in λlmn=4htotal. As can be seen,
magnetic fields at peaks E, F, G, and H concentrate mostly in
the grating grooves with a thickness of 400 nm, and these
peaks exist at λmax≈1.6 μm. Similarly, peaks I and J are
excited by the SPs (h≈λ/4=200 nm) and the RWA
(Λ=λ=800 nm,) respectively, as clearly demonstrated by
Poynting vector patterns shown in figure 7 and equations (1)
and (2). However, it is interesting that the merging of these
peaks results in an increase of the emittance at λ=800 nm,
as shown in figure 4(c).

Overall, the results presented in figure 7 with the ana-
lytical solutions demonstrated in equations (1)–(3) confirmed
that the enhancement of magnetic fields in the grating struc-
ture with Λ=800 nm at the short wavelength is due to the
interplay of the SPs and the RWA, while the maximum
emittance at longer wavelengths obtained from both opti-
mized gratings is attributed to the CR modes.

5. Emitter-based pyramid grating structure made of
nickel

In order to demonstrate the design feasibility, we introduce
another emitter made of nickel, a material withstanding high
temperatures suitable for TPV applications. Figure 8(a) shows
the emittance spectrum of a hybrid Ni grating structure with
the same geometric parameters as those in figure 4. It is found
that the grating has a similar spectral feature to that of the W
grating structure. The Ni grating structure emits an average

Figure 6. Polar plot of emittance spectra for TM waves at peaks A, B, C, E, F, G, H, K, and L.
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intensity less than the W grating does. However, the grating
structures with Λ=600 nm (the dashed line) nm and 800 nm
(the dotted line) display high emittance in the wavelength
range of interest. Figures 8(b) and (c) show contour plots of
the emittance of these structures as a function of the wave-
length and the angle of incidence. It is observed that the
combined Ni grating with Λ=600 nm emits higher energy in
the wavelength range of interest at angles from θ=0° to
θ=70° than the one with Λ=800 nm. Generally speaking,
the pyramid Ni grating also provides high optical perfor-
mance for TPV applications. Although grating made of Ni is
relatively cost-effective and easier to machine, it absorbs
energy less than the W grating structure as demonstrated in
figures 4(b) and (c).

6. Conclusions

We have proposed a pyramid grating structure made of W and
Ni that has nearly perfect emittance by combining two single-
layered gratings with a low and high metal filling ratio in a
grating region. The results have shown that the enhanced
emittance at the wavelengths of interest from 0.6 μm to

1.72 μm is due to the interplay between the SPs and the RWA
at short wavelengths, and the CR modes at longer wave-
lengths. The physical origin was also validated by analytical
demonstrations of the excited modes. Moreover, it has been
shown that the broad spectrum is insensitive to the angle of
incidence from 0° to 70°. This study may pave the way for
designs of the plasmonic nanostructures for energy harvesting
applications based on extraordinary optical absorption
enhancement.
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