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Abstract 

The purpose of this paper is to analyze the propagation of transverse and longitudinal acoustic 
wave in a composite made of hyperelastic Blatz-Ko material. Composite consists of a homogeneous 
layer of predetermined thickness d separating two infinite homogeneous material areas. In the paper it 
is assumed that the middle layer is filled with a homogeneous rubber (ƒ=1), whereas the external 
areas with foam rubber (ƒ=0). The final effect of paper are graphs of coefficients reflection of 
transverse and longitudinal acoustic wave, propagating in this composite. 
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 1 INTRODUCTION 
In the paper is considered longitudinal and lateral acoustic wave propagated in the layer 

composite. The composite is made from the transition layer of a thickness d filled by a homogeneous 
rubber (ƒ=1) and external homogeneous material areas 0 and 2, filled by foam rubber (ƒ=0). In the 
end of the paper are graphs of coefficients of transmission and reflection of transverse and 
longitudinal acoustic wave dependent on the parameter of initial deformation λ for the selected 
frequency ω. The analysis of discussed harmonic wave are based on the work [1], assuming the 
maximal value in the range of Poisson's ratio according to work [2] ν=0.493. Constant value of 
Poisson's ratio for infinitesimal deformation of foam rubber was assumed as ν=0.25.  

 
Fig. 1: Rubber composite consisting of the transition layer (homogeneous rubber)  

separating the two infinite material areas (foam rubber) 
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 2 BLATZ–KO MATERIAL 
The Blatz-Ko models for rubber have been extensively used to describe the behaviour of 

compressible isotropic hyperelastic materials undergoing finite deformations (see [3,4,5]).  

Composite considered in the paper was composed of hyperelastic material with Blatz-Ko 
potential [6,7]:  
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where: I1, I2, I3 - invariants of the left Cauchy Green deformation tensor [8], µ- shear modulus [MPa], 
ν- Poisson ratio (relating to infinitesimal deformation). The value of the parameter ƒ describing the 
share of pores in material is in the range 0 ≤ ƒ ≤ 1. Special attention was devoted to two models of the 
material, when ƒ=0 (foam rubber) and ƒ=1 (homogeneous rubber) in the literature for which the 
equation (1) reduces to the following form [2]: 

when ƒ=0 (foamed rubber): 
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when ƒ=1 (homogenous rubber): 
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 3 THE BASIC EQUATIONS DESCRIBING THE PROPAGATION OF 
LONGITUDINAL AND TRANSVERSE ACOUSTIC WAVES IN A LAYERED 
COMPOSITE 
It was assumed that the motion associated with the propagation of a plane wave accept the 

form [1]: 
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where: ܺ′ଵ, ܺ′ଶ, ܺ′ଷ	‐	the	coordinates	of	the	material,	upper	index	ሺkሻ	is	a	variable	defined	in	the	
layer k, whereas ߣଵ
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- the main elongations of the static homogeneous initial deformation in 

the area k. Layout of equations of motion is reduced to two non-conjugated wave equations for the 
foamed and homogenous rubber [1]: 
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Where velocity of propagation of longitudinal waves for foamed rubber (ƒ=0) and homogenous 
rubber (ƒ=1) are [1]: 
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For the values of Poisson's ratio ν=0.439 for the area 1 and ν=0.25 for the area 0 and 2 we get: 
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The density of the foamed rubber is less than the density of homogeneous rubber and may 

change. Analysis was based on two values of density for the foam rubber ߩோ
ሺ଴ሻ ൌ ோߩ0.9

ሺଵሻ and ߩோ
ሺ଴ሻ ൌ

ோߩ0.3
ሺଵሻ, wherein the density of the homogeneous rubber: ߩோ

ሺଵሻ ൌ 911kg/m3. 

 
Fig. 2: Graphs of longitudinal propagation velocity of acoustic waves  

in foam rubber (c0) and homogeneous rubber (c1)  

Velocity of propagation of transverse waves for foamed rubber (ƒ=0) and homogenous rubber 
(ƒ=1) is described by following equation [1]: 
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Fig. 3: Graphs of transverse propagation velocity of acoustic waves  

in foam rubber (c’0) and homogeneous rubber (c'1) 
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For the values of Poisson's ratio ν=0.439 for the area 1 and ν=0.25 for the area 0 and 2 we get: 
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It is assumed that the material k-1 in the left side of the plane X0 = X1 is foamed rubber (ƒ=0), 
and k material lying in the right side is homogenous rubber (ƒ=1). For two adjacent layers should be 
considered dependence of extensions of the main deformation ߣଵ

ሺ௞ିଵሻ, ߣଵ
ሺ௞ሻ in the form [1]: 
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At admission the Poisson's ratio for foam rubber ߥ ൌ 0.25 defined for infinitesimal 
deformation [2], and assuming that the layer on the right side of the plane (homogeneous rubber) is 

subjected to uniform dilatation, where ߣଵ
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ሺ௞ሻ ൌ  :equation (16) takes the form [2] ߣ
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After inserting the Poisson's ratio for homogeneous rubber ν1=0.493 into equation (17) we 
obtain component of the gradient of static deformation for extrenal areas equal to:  

 λଵ
ሺ଴ሻ ൌ ቄλଶ ൅

ஜభ
ஜబ
ቂλି

భరఴల
ళ െ λቃቅ

ି
భ
య
 (18) 

 λଵ
ሺଶሻ ൌ ቄλଶ ൅

ஜభ
ஜమ
ቂλି

భరఴల
ళ െ λቃቅ

ି
భ
య
 (19) 

 
Fig. 4: Graphs the relationship between the components of  

the deformation gradient in homogeneous and foamed rubber. 

 



89 

It is assumed, that the harmonic wave motion propagating in the analyzed composite in the 
direction perpendicular to the layers, has the form [1]: 
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where: ω, ω'- the frequency of longitudinal and transverse waves; ck, c’k – velocity of propagation of 
longitudinal and transverse waves, Ak, Bk, A’k, B’k – reciprocally incorporated amplitude of the 
longitudinal and transverse waves in the layer k. The relationship between the complex amplitudes of 
the sinusoidal waves of the longitudinal and transversal in layer k -1 and k is [1]: 
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Parameter of transition matrix of longitudinal wave κk, that describes the jump surface of 
discontinuity in the layers of the composite for X=0 and for X2=d after substitution of velocity 
propagation is: 
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Parameter of transition matrix of transverse wave ߢᇱ௞, that describes the jump surface of 
discontinuity in the layers of the composite for X=0 and for X2=d after substitution of velocity 
propagation is:  
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Assuming the same external infinite material (0 and 2), in the present case the following 
identity holds: ߢଶ ൌ  ଵିଵ. According to the paper [9] in addition to the symmetry of the reflectionߢ
coefficients ݎሺ଴ሻ ൌ ሺ଴ሻݐ ሺଶሻ is introduced the symmetry of the transmission coefficientsݎ ൌ  ሺଶሻ (Thisݐ
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is due to symmetry of the arrangement of materials in the compositions). Coefficients of reflection r(0) 
and transmission t(0) for the transverse wave takes the form [1]: 
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Fig. 5: Graph of the relationship of quotient impedance 

of adjacent layers from initial deformation of λ 

After inserting the two extreme values of quotient of impedance maximum ߢ′௞ ൌ 21.529 and 

minimum ߢ′௞ ൌ 0.226 (Fig. 5) (designated for proportion of density 
ఘೃ
ሺబሻ

ఘೃ
ሺభሻ ൌ0.3 to formula (31) and 

(32) obtained the following graph: 

 
Fig. 6: Graph of coefficients of reflection and transmission 

for the proportion of the density of 
ఘೃ
ሺబሻ

ఘೃ
ሺభሻ ൌ0.3 
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The graph shows coefficients of the reflection and transmission of transverse wave as a 
function dependent from variable parameter ߙ′ଶ ൌ

ఎᇱ

௖ᇱభ
 (η’=ω’d). Similarly, after inserting the two 

extreme values of quotient of impedance ratio maximum ߢ′௞ ൌ 37.289 and minimum ߢ′௞ ൌ 0.391 

(Fig. 5.), designated for proportion of density 
ఘೃ
ሺబሻ

ఘೃ
ሺభሻ ൌ0.9 to formula (30) and (31) we obtained the 

following graph:  

 
Fig. 7: Graph of coefficients of reflection and transmission 

for the proportion of the density of 
ఘೃ
ሺబሻ

ఘೃ
ሺభሻ ൌ0.9 

 4 CONCLUSION 
Analysis of the graphs dependence between components of deformation gradient in rubber 

ଵߣ
ሺ଴ሻ ൌ ଵߣ

ሺଶሻ on the parameter ߣ (Fig. 4) shows, that small changes of value ߣ ൌ ሺ0.95; 1.02ሻ 

accompanied large fluctuations of value of the component ߣଵ
ሺ଴ሻ ൌ ଵߣ

ሺଶሻ
. 

Figure 5 representing the relationship the impedance of adjacent layers shows that in the range 
of examined variation of the parameter λ , initial deformation affects the quotient of impedance of the 
transverse waves more than the longitudinal waves. Graphs (Fig. 6) and (Fig.7), showing coefficients 
of reflection and transmission of the transverse wave as a function dependent from variable parameter 
α′ଶ ൌ

஗ᇱ

ୡᇱభ
 (η’=ω’d). In both cases for the proportion of density 0.3 or 0.9 for ߙ′ଶ ൌ ଶ′ߙ or ߨ ൌ  we ,ߨ2

have ݎ′ሺ଴ሻ ൌ 0 and ݐ′ሺ଴ሻ ൌ 0 according to the formula (31) and (32). In the above formulas show that 
in the general case where acoustic transverse wave (from any physically acceptable frequency) is 
transmitted in shown composite - coefficients of reflection and transmission are periodic functions of 
the frequency of the incident wave. They depend also on the initial deformation. As shown in the 
graph (Fig. 6) and (Fig. 7) the impact of the initial deformation on the values of the coefficients of 
reflection and transmission increases with decreasing density of areas filled by foamed rubber while 
keeping constant values of shear modulus and Poisson's ratio. Calculation of parameters serves 
broader researches and observing behavior of wave propagation in a layered elastic medium made of 
Blatz-Ko materials. 
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