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Abstract

The purpose of this paper is to analyze the propagation of transverse and longitudinal acoustic
wave in a composite made of hyperelastic Blatz-Ko material. Composite consists of a homogeneous
layer of predetermined thickness d separating two infinite homogeneous material areas. In the paper it
is assumed that the middle layer is filled with a homogeneous rubber (f=1), whereas the external
areas with foam rubber (f=0). The final effect of paper are graphs of coefficients reflection of
transverse and longitudinal acoustic wave, propagating in this composite.
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1 INTRODUCTION

In the paper is considered longitudinal and lateral acoustic wave propagated in the layer
composite. The composite is made from the transition layer of a thickness d filled by a homogeneous
rubber (f=1) and external homogeneous material areas 0 and 2, filled by foam rubber (f=0). In the
end of the paper are graphs of coefficients of transmission and reflection of transverse and
longitudinal acoustic wave dependent on the parameter of initial deformation A for the selected
frequency . The analysis of discussed harmonic wave are based on the work [1], assuming the
maximal value in the range of Poisson's ratio according to work [2] v=0.493. Constant value of
Poisson's ratio for infinitesimal deformation of foam rubber was assumed as v=0.25.
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Fig. 1: Rubber composite consisting of the transition layer (homogeneous rubber)
separating the two infinite material areas (foam rubber)
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2 BLATZ-KO MATERIAL

The Blatz-Ko models for rubber have been extensively used to describe the behaviour of
compressible isotropic hyperelastic materials undergoing finite deformations (see [3,4,5]).

Composite considered in the paper was composed of hyperelastic material with Blatz-Ko
potential [6,7]:
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where: 1, I, I5 - invariants of the left Cauchy Green deformatlon tensor [8], u- shear modulus [MPa],
v- Poisson ratio (relating to infinitesimal deformation). The value of the parameter f describing the
share of pores in material is in the range 0 < f < 1. Special attention was devoted to two models of the
material, when f=0 (foam rubber) and f=1 (homogeneous rubber) in the literature for which the
equation (1) reduces to the following form [2]:

when f=0 (foamed rubber):

W (I, I3) = g{z S—L - 1]} ()
when f=1 (homogenous rubber):
Wl I3) = —{ —3 422 [11 v _ 1]} 3)

3 THE BASIC EQUATIONS DESCRIBING THE PROPAGATION OF
LONGITUDINAL AND TRANSVERSE ACOUSTIC WAVES IN A LAYERED
COMPOSITE

It was assumed that the motion associated with the propagation of a plane wave accept the
form [1]:

x = A% + 19X, 6), %, = 29X, x5 = 2Px7, + 0P (x,0) 4)

where: X';,X’,, X'5 - the coordinates of the material, upper index (%) is a variable defined in the
layer k, whereas /15"), Agk), Agk), the main elongations of the static homogeneous initial deformation in
the area k. Layout of equations of motion is reduced to two non-conjugated wave equations for the
foamed and homogenous rubber [1]:
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Where velocity of propagation of longitudinal waves for foamed rubber (f=0) and homogenous
rubber (f=1) are [1]:
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For the values of Poisson's ratio v=0.439 for the area 1 and v=0.25 for the area 0 and 2 we get:
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The density of the foamed rubber is less than the density of homogeneous rubber and may
change. Analysis was based on two values of density for the foam rubber p(o) = 0. 9p(1) and p(o)

0. 3p(1) wherein the density of the homogeneous rubber: p(l) = 911kg/m’.
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Fig. 2: Graphs of longitudinal propagation velocity of acoustic waves
in foam rubber (co) and homogeneous rubber (c1)

Velocity of propagation of transverse waves for foamed rubber (f=0) and homogenous rubber
(f=1) is described by following equation [1]:

, 1
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Fig. 3: Graphs of transverse propagation velocity of acoustic waves
in foam rubber (¢’9) and homogeneous rubber (c'1)
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For the values of Poisson's ratio v=0.439 for the area 1 and v=0.25 for the area 0 and 2 we get:
2
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It is assumed that the material k-1 in the left side of the plane Xy = X, is foamed rubber (f=0),
and & material lying in the right side is homogenous rubber (f=1). For two adjacent layers should be
considered dependence of extensions of the main deformation Agk_l), Agk) in the form [1]:

4vp—1—1 Vi—1 3
ng—l))—l-zvk_la(k—l) (k-1) e (A(k—l)

e (16)
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At admission the Poisson's ratio for foam rubber v = 0.25 defined for infinitesimal
deformation [2], and assuming that the layer on the right side of the plane (homogeneous rubber) is

subjected to uniform dilatation, where Agk), Agk) , A;k) = A equation (16) takes the form [2]:
1

_Avgtl -3
A = {AZ + - [A v — A]} (17)
k-1

After inserting the Poisson's ratio for homogeneous rubber v1=0.493 into equation (17) we
obtain component of the gradient of static deformation for extrenal areas equal to:

A0 = a2 + 1 [7\‘— - )\]}_é (18)

AP = o4t )\_% - A]}_; (19)
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Fig. 4: Graphs the relationship between the components of
the deformation gradient in homogeneous and foamed rubber.
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It is assumed, that the harmonic wave motion propagating in the analyzed composite in the
direction perpendicular to the layers, has the form [1]:

ui") (X, t) = Agexpiw (t - X;—fk) + Brexpiw (

X‘Xk) (20)
k
X":") @1

where: ®, ®'- the frequency of longitudinal and transverse waves; c¢i, ¢’k — velocity of propagation of
longitudinal and transverse waves, 4, By, A’ B’k — reciprocally incorporated amplitude of the
longitudinal and transverse waves in the layer k. The relationship between the complex amplitudes of
the sinusoidal waves of the longitudinal and transversal in layer &k -/ and k is [1]:
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Parameter of transition matrix of longitudinal wave x, that describes the jump surface of
discontinuity in the layers of the composite for X=0 and for X,=d after substitution of velocity
propagation is:
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Parameter of transition matrix of transverse wave k'y, that describes the jump surface of
discontinuity in the layers of the composite for X=0 and for X,=d after substitution of velocity
propagation is:
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Assuming the same external infinite material (0 and 2), in the present case the following
identity holds: x, = k7. According to the paper [9] in addition to the symmetry of the reflection
coefficients (® = @ is introduced the symmetry of the transmission coefficients t(® = t® (This
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is due to symmetry of the arrangement of materials in the compositions). Coefficients of reflection #*
and transmission #? for the transverse wave takes the form [1]:
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Fig. 5: Graph of the relationship of quotient impedance
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After inserting the two extreme values of quotient of impedance maximum k', = 21.529 and

(0)

minimum k', = 0.226 (Fig. 5) (designated for proportion of density % =0.3 to formula (31) and
PR

(32) obtained the following graph:

12

1.0 L’dla&%

| ~ XX

0.8 S—
| D | X
T o V ;@if%fﬁgg// ‘;><H><;‘ /;><U><;

; Kq=2 1.
0.2 (max)
LR T N S T B

o', =n’lc’,

Fig. 6: Graph of coefficients of reflection and transmission
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The graph shows coefficients of the reflection and transmission of transverse wave as a
function dependent from variable parameter a', = :7’ (n’=w’d). Similarly, after inserting the two
1
extreme values of quotient of impedance ratio maximum ', = 37.289 and minimum k', = 0.391
(0)

(Fig. 5.), designated for proportion of density % =0.9 to formula (30) and (31) we obtained the

following graph:
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Fig. 7: Graph of coeftficients of reflection and transmission
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4 CONCLUSION
Analysis of the graphs dependence between components of deformation gradient in rubber
/150) = /152) on the parameter A (Fig. 4) shows, that small changes of value 4 = (0.95;1.02)
accompanied large fluctuations of value of the component /150) = /152)‘

Figure 5 representing the relationship the impedance of adjacent layers shows that in the range
of examined variation of the parameter 4 , initial deformation affects the quotient of impedance of the
transverse waves more than the longitudinal waves. Graphs (Fig. 6) and (Fig.7), showing coefficients
of reflection and transmission of the transverse wave as a function dependent from variable parameter
a', = % (n’=w’d). In both cases for the proportion of density 0.3 or 0.9 for a’, = w or &', = 27, we
have r'(®) = 0 and t'(®) = 0 according to the formula (31) and (32). In the above formulas show that
in the general case where acoustic transverse wave (from any physically acceptable frequency) is
transmitted in shown composite - coefficients of reflection and transmission are periodic functions of
the frequency of the incident wave. They depend also on the initial deformation. As shown in the
graph (Fig. 6) and (Fig. 7) the impact of the initial deformation on the values of the coefficients of
reflection and transmission increases with decreasing density of areas filled by foamed rubber while
keeping constant values of shear modulus and Poisson's ratio. Calculation of parameters serves
broader researches and observing behavior of wave propagation in a layered elastic medium made of
Blatz-Ko materials.
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