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Abstract: The paper deals with the application of an artificial neural network in the speed 

control of the DC drive without a speed sensor. The sensorless control structure of the DC 

drive contains the feedforward artificial neural network for speed estimation. The 

sensorless DC drive was simulated in program Matlab with Simulink toolbox. The main 

goal was to find the simplest artificial neural network structure with minimum number of 

neurons, but simultaneously good control characteristics are required. Despite the used 

neural network, which is very simple, it was achieved satisfactory results. The simulation 

results were confirmed by measurement of important quantities on a laboratory stand with 

the DC drive. 
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1 Introduction 

Nowadays, modern digital signal processors enable the development of electrical 

drives with high dynamic performance using new control methods that include 

soft computing methods. The soft computing methods include fuzzy logic, 

artificial neural networks, evolutionary algorithms and their combinations [1]. 

The basic function of a variable speed drive is to control the flow of energy from 

the mains to the process. Energy is supplied to the process through the motor 

shaft. Two physical quantities describe the state of the shaft: torque and speed. To 

control the flow of energy we must control these quantities [2-5]. 

Initially, DC motors were used for variable speed drives because they could easily 

achieve the required speed and torque without sophisticated electronics. The 

conventional DC motor drive continues to take a large share of the variable-speed 

drive market. However, it is expected that this share will very slowly decline, but 

there are some companies that produce DC drives. 
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The artificial neural networks belonging to the area of soft computing methods 

represent a very interesting application possibility also in the field of controlled 

electrical drives. In general, soft computing methods can be used in almost all 

parts of DC controlled drives, especially for identification and estimation of state 

parameters, control and diagnostics. Their usage can lead to the useful 

improvement of the necessary characteristics of the controlled drives with DC 

motors. This modern technology can increase performance and robustness to 

parameter and load variations, and allows significant innovations of the controlled 

drives with the DC motors [6-9]. 

2 Control Structure of DC Drive 

In the DC motor, the magnetic field is created by the current flowing through the 

field winding in the stator. This field is always at right angles to the field created 

by the armature winding. This condition, known as field orientation, is needed to 

generate maximum torque. The commutator-brush assembly ensures this condition 

is maintained regardless of the rotor position. Once field orientation is achieved, 

the DC motor torque is easily controlled by varying the armature current ia and by 

keeping the excitation current ie constant. The advantage of DC drives is that 

speed and torque are controlled directly through armature current ia: that is the 

torque is the inner control loop and the speed is the outer control loop. Block 

scheme of the drive is shown in Fig. 1. 

 

Figure 1 

DC drive block scheme 
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The power part of the DC drive consists of power converter and the DC motor 

(DCM). In the case of AC mains a controlled rectifier is used to obtain a DC 

voltage. When a fixed DC supply is available, the DC to DC converter can be 

used. For the control of the DC motor, the constant DC voltage is transformed into 

an adjustable voltage ua to control the speed of the DC motor. The armature 

current ia and excitation current ie are controlled by current controllers. 

3 Sensorless Control Using Artificial Neural Network 

The speed controller processes the control deviation between the reference speed 

ωmref and the actual speed ωm which is obtained by the speed sensors such as 

tachogenerator or incremental sensor. However, these sensors can cause a variety 

of problems. The main reasons for the development of sensorless drives are: 

reduction of hardware complexity and cost, increasing mechanical robustness, 

reliability. 

In the case that speed or position sensor is not used in the control structure of an 

electrical drive, this drive has an attribute sensorless drive. For the control of 

remaining quantities, other sensors are however necessary which are used for a 

measurement of motor currents and voltages. The speed estimation methods can 

be classified into conventional, based on mathematical model of the electrical 

motor, or based on artificial intelligence [10-14]. 

The essence of the model based methods is the use of a particular algorithm for 

calculation of the speed and rotor position from known or measured variables such 

as motor currents and voltages. The methods based on artificial intelligence use 

mostly different types of artificial neural networks. 

For a design and implementation of the speed estimator, it is necessary to choose 

the suitable structure of the artificial neural network (ANN) with appropriate input 

quantities, which will realize the views defined as follows: 

         1 1
, , , ,

m k a k a k a k a k
[i i u u ]

 
 f w  (1) 

where f is the activation function and w is a vector of weighting and threshold 

coefficients. 

First it is necessary to design right structure of the artificial neural network and it 

is also important to determine such inputs to ANN, which are available in 

structure of the speed control and from which is able to estimate a rotor speed of 

the DC motor. A recommended method for determination of ANN structure does 

not exist, so the final ANN was designed by means of trial and error. 

The main goal was to find the simplest neural network with good accuracy of 

speed estimation. This is the key for industry use of the artificial neural networks. 
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4 Structure of Artificial Neural Network 

The artificial neural network is a massively parallel, non-linear adaptive system 

containing highly interacting elements called neurons or perceptrons. The artificial 

neural networks are based on crude models of the human brain and contain many 

artificial neurons linked via adaptive interconnections (weights). They are 

adaptive function estimators which are capable of learning the desired mapping 

between the inputs and the output of the system. 

The artificial neural networks usually must learn the connection weights from 

available training patterns. Performance is improved over time by iteratively 

updating the weights in the network. The learning and adapting capability of 

neural networks makes them ideal for control purposes. The ANN can be 

successfully applied even if the motor which is to be controlled and the load 

parameters are unknown. 

For realization of a control system with an ANN speed estimator, the feedforward 

artificial neural network was used which was trained off-line by set of 

corresponding input-output pairs of controlled system. The weights of the ANN 

can be then adjusted via the so-called backpropagation algorithm using 

Levenberg-Marquardt method to minimize the error. 

For the ANN speed estimator, it was tested various structures of the artificial 

neural network for different speed areas, for example 4-22-1, 4-11-1, 4-5-1, 4-2-1, 

4-5-5-1, 4-5-2-1. The simulation results of many structures were not so good, 

especially estimated signal (output of the ANN speed estimator) contained higher 

ripple. Finally, a four layer ANN 4-3-2-1 was used which contains three neurons 

in the first hidden layer with tanh activation function; two neurons in the second 

hidden layer with tanh activation function and one neuron in output layer with 

linear activation function (see Fig. 2). 

 

Figure 2 

Structure of ANN speed estimator 

The ANN has four inputs for quantities ia(k), ia(k-1), ua(k), ua(k-1) (armature current 

and voltage of the DC motor) and output ωm(k) (mechanical speed). It is obvious 

that the structure of the ANN speed estimator is very simple. However, good 

results of important drive quantities are achieved. 
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The simulation was performed in Matlab using Simulink and Neural Network 

toolboxes. The neural network operating as speed estimator was integrated into 

the control structure of the DC drive. In order to create and train the neural 

network the control structure of the DC drive had to be adjusted for the collection 

of training data (see Fig. 3). 

 

 

 

Figure 3 

Normalized input and output training data set (KI = 15 A, KU = 67 V, Kω = 400 rpm) 

For ANN training, 100 000 samples were recorded for each of the input and 

output quantity. It was achieved an error 1 x 10
-4

 during training stage. ANN 

training was performed using Levenberg-Marquardt algorithm [15]. 
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5 Simulation Results 

As it was mentioned above, the sensorless DC drive was simulated in program 

Matlab - Simulink. The parameters of the DC motor are: Pn = 2.9 kW, Uan = 220 

V, Ian = 21.6 A, ωmn = 1400 rpm, J = 0.24 kgm
2
. 

For the control quality evaluation of the sensorless DC drive, it is important to 

assess the speed time course in different situations. The simulation was performed 

for the reference speeds which represent two speed areas: area of low speed (ωmref 

= ±100 rpm), area of very low speed (ωmref = ±10 rpm). The estimated speed ωm_est 

is used as the feedback signal for the speed control. 

The first reference speed is changed from 100 rpm to -100 rpm. During this 

operation the DC drive works without load. Reference, actual and estimated speed 

responses of the DC drive are shown in Fig. 4, 5. 

 

Figure 4 

Sensorless control of the DC drive without load, reference and actual speed response 

 

Figure 5 

Sensorless control of the DC drive without load, reference and estimated speed response 

Figure 6 shows details about speed of 100 rpm. The difference between actual and 

estimated speed is shown in Fig. 7. 
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Figure 6 

Actual and estimated speed response, details about speed of 100 rpm 

 

Figure 7 

Difference between actual and estimated speed response 

The second reference speed is changed from 10 rpm to -10 rpm. During this 

operation the DC drive works again without load. Reference, actual and estimated 

speed responses of the DC drive are shown in Fig. 8, 9. 

 

Figure 8 

Sensorless control of the DC drive without load, reference and actual speed response 
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Figure 9 

Sensorless control of the DC drive without load, reference and estimated speed response 

Figure 10 shows details about speed of 10 rpm. The difference between actual and 

estimated speed is shown in Fig. 11. 

 

Figure 10 

Actual and estimated speed response, details about speed of 10 rpm 

 

Figure 11 

Difference between actual and estimated speed response of the DC drive without the load 
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The third reference speed is changed from 100 rpm to -100 rpm. During this 

operation the DC drive works with load jump TL = 5 Nm in the time interval 0.6-

1.0 s. Reference, actual and estimated speed responses of the DC drive are shown 

in Fig. 12, 13. Figure 14 shows details about speed of 100 rpm. 

 

Figure 12 

Sensorless control of the DC drive with the load, reference and actual speed response 

 

Figure 13 

Sensorless control of the DC drive with the load, reference and estimated speed response 

 

Figure 14 

Actual and estimated speed response, details about speed of 100 rpm 
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The difference between actual and estimated speed is shown in Fig.15. 

 

Figure 15 

Difference between actual and estimated speed response of the DC drive with the load 

6 Laboratory Stand 

To verify the simulation models and principles as well as sensorless control of the 

DC drive using ANN speed estimator, an experimental laboratory stand with the 

DC drive supplied by DC-DC converter was realized (see Fig. 16). 

 

Figure 16 

Laboratory stand with the DC drive and load unit 
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This laboratory stand allows research of new control methods and solution of 

problems of variable speed drives with DC and AC motors that contribute to 

increasing the efficiency of electrical products and reducing energy consumption. 

The active load unit is realized as the vector-controlled induction motor drive 

which allows choosing different load characteristics, for example the load with 

constant torque, fan and lift characteristics. The basic parts are machine set with 

DC motor and AC machine, DC-DC converter, voltage inverter, control systems 

with DSP, personal computer and the necessary measuring instruments. 

The DC motor and induction machine IM with the incremental sensor IS are 

located on a common shaft. Each machine is connected to a separate converter 

with voltage intermediate circuit and control system with DSP. 

To increase the efficiency of the drive at loading, a concept with a common DC-

link was chosen, which allows the use of regenerative energy for the DC drive, 

without having to use a transistor switch and resistor in voltage DC-link. The 

electric machines are connected mechanically by a coupling and assembled to the 

frame. They form a machine set (see Fig. 17). 

 

Figure 17 

Machine set with the DC motor and induction machine 

In the control systems with digital signal processor, control algorithms are 

implemented. An incremental encoder that generates 2048 pulses per revolution 

forms with the IM a compact unit. In the control system, a Texas Instrument 

TMS320F28335 digital signal processor is used. The base board with the DSP 

also contains a transducer of the serial line to USB; therefore, communication and 

data acquisition uses the USB interface. The control set also includes a power 

supply and development software Code Composer StudioTM version 4. 

7 Data Acquisition System 

For implementation of neural speed estimator onto real electrical drive it is 

necessary to obtain such training data, which determine the desired behaviour of 

artificial neural network (see Fig. 18). Data acquisition system (DAQ) was 
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developed for fast transfer of training data from DSP system to PC. Data 

acquisition system is based on measuring card NI-DAQ 6024E by National 

Instruments. 

 

Figure 18 

Control structure for the collection of training data 

Training patterns were obtained from the real drive with the DC motor. Armature 

current and voltage values, which were used as the input values of the artificial 

neural network, were measured using current and voltage sensors. Using the 

incremental sensor, which was a part of the drive during the training data 

collection process, the desired neural network outputs (mechanical speed) were 

obtained. In order for the neural network to be able to generalize, i.e. to be able to 

generate the correct estimated speed of the DC motor, even for input samples that 

were never available during the training phase, it is necessary to gather a large 

amount of training data. As far as magnitude is concerned, it represents tens of 

thousands of data, which could not be stored in the signal processor memory. This 

data had to be transferred to a personal computer for neural network training. For 

this reason, a 6024 E National Instruments measuring card was used for the data 

collection process. 

A multifunction DAQ NI – 6024E card is a plug-in measuring card for personal 

computers using a PCI interface. This card is fitted with a 12 bit A/D converter 

working with a sampling frequency up to 200 kHz. The card is further fitted with 

two D/A channels with 12 bit resolution, which may be operated with a frequency 

of 10 kHz. In addition to these D/A and A/D converters, the card offers 8 digital 

I/O pins, 2 counters/timers with 24-bit resolution and 100 kHz/20 MHz speeds. 

The measuring card was used in the LabVIEW program, which was used to create 

measuring software for training data collection. 
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For the purpose of gathering training samples, we also had to create a program for 

DSP, which changes the speed of the DC motor at desired and suitable moments.  

The selection, number and rate of change of the preset values are the key factors 

for achieving a properly functioning neural network. 

A brief summary of the training data collection process and the training phase for 

the application of the speed estimator with neural network is as follows: 

 Creation of a program in DSP to adequately change the desired speed of the 

DC motor.  

 Creation of a program in the LabVIEW environment enabling training data 

collection using NI -DAQ 6024E measuring card. 

 Measurement of the required training patterns. 

 Preparation of measured data for import into Matlab environment. Most 

importantly, modification of previous input values of the neural network, etc. 

 The process of neural network training using the Levenberg - Marquardt 

algorithm, which was performed in Matlab environment using Neural 

Network Toolbox. 

 Export of parameters of the trained neural network from Matlab and 

subsequent implementation into DSP. 

8 Experimental Results 

In this chapter, time courses of important quantities of the electrical drive with the 

DC motor 2.9 kW are presented. Experimental results are obtained when speed 

control loop operates using estimated speed. The real value of mechanical speed 

which is obtained from incremental encoder is used for comparison of the actual 

and estimated speed. 

 

Figure 19 

Time courses of the actual speed (Ch1) and estimated speed (Ch2), run-up to 100 rpm and reversation 

to -100 rpm without load (speed scale 1 d ≈ 75 rpm) 
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The first testing regime is run-up to 100 rpm and reversation to -100 rpm. The 

second testing regime is run-up to 10 rpm and reversation to -10 rpm. During this 

operation the DC drive works without load. 

The reference and actual speed responses of the DC drive are shown in Fig. 19 

and Fig. 20. These speed responses show good correlation of speed magnitudes. 

 

Figure 20 

Time courses of the actual speed (Ch1) and estimated speed (Ch2), run-up to 10 rpm and reversation to 

-10 rpm without load (speed scale 1 d ≈ 12 rpm) 

The third testing regime was aimed on dynamic response to load jump at constant 

speed. Experimental results for the load jump TL = 5 Nm and speed ωm = 100 rpm 

are shown in Fig. 21 and Fig. 22. 

 

Figure 21 

Time courses of the actual speed (Ch1) and estimated speed (Ch2), constant speed ωm = 100 rpm and 

load torque jump TL = 5 Nm (speed scale 1 d ≈ 75 rpm) 
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Figure 22 

Time courses of the armature current (Ch1), constant speed ωm = 100 rpm  

and load torque jump TL = 5 Nm (current scale 1 d ≈ 4 A ≈ 5 Nm) 

Conclusions 

In the paper, the sensorless control structure of the DC drive is presented. The 

speed estimation is carried out by the feedforward neural network. The structure 

of the ANN speed estimator is very simple which is important for the practical 

implementation into DSP control system. The paper contains interesting 

simulation and experimental results. The presented ANN speed estimator has 

expected properties in steady state and also in transient states which were 

confirmed by experimental measurements on the laboratory stand with DC drive. 
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