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Abstract: Prediction of poly(lactic-co-glycolic acid) (PLGA) micro- and nanoparticles’ 

dissolution rates plays a significant role in pharmaceutical and medical industries. The prediction 

of PLGA dissolution rate is crucial for drug manufacturing. Therefore, a model that predicts 

the PLGA dissolution rate could be beneficial. PLGA dissolution is influenced by numerous 

factors (features), and counting the known features leads to a dataset with 300 features. This 

large number of features and high redundancy within the dataset makes the prediction task 

very difficult and inaccurate. In this study, dimensionality reduction techniques were applied 

in order to simplify the task and eliminate irrelevant and redundant features. A heterogeneous 

pool of several regression algorithms were independently tested and evaluated. In addition, 

several ensemble methods were tested in order to improve the accuracy of prediction. The 

empirical results revealed that the proposed evolutionary weighted ensemble method offered 

the lowest margin of error and significantly outperformed the individual algorithms and the 

other ensemble techniques.
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Introduction
Predicting the poly(lactic-co-glycolic acid) (PLGA) micro- and nanoparticle dissolution 

profiles presents a complex and vital problem. The complexity of the problem can 

be understood from the fact that academic literature1–18 provides 300 potential factors 

that may influence the dissolution of the PLGA protein particles.19 After analyzing the 

collected dataset, the primary approach adopted in most research has been to reduce 

the dimensionality of the dataset. Dimensionality reduction techniques transform 

high-dimensional datasets into low-dimensional datasets, thereby improving the 

model’s computational speed, predictability, and generalization ability. Dimensionality 

reduction techniques are classified into two categories: feature selection, and feature 

extraction. The feature selection technique is useful when the available dataset has 

a large dimension and relatively few cases (samples), whereas the feature extraction 

technique is useful when the dataset has a large dimension and high redundancy.20 

The dataset in the present research had a large dimension, and the features appeared 

to have high redundancy. Therefore, it was not immediately clear to us whether we 

should use feature selection or feature extraction. Hence, we explored both feature 

selection and feature extraction techniques in order to find the best possible solution. 

Several regression models were employed to evaluate the relationship between the 

obtained input variables (features) and output variable.
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In the scope of the present study, our focus was on PLGA 

nano- and microsphere dissolution properties and drug release 

rate. Szlęk et al21 and Fredenberg et al22 described that drug 

release from the PLGA matrix is mainly governed by two 

mechanisms: diffusion, and degradation/erosion. Several 

factors influencing the diffusion and degradation rates of 

PLGA as described by Kang et al, 23,24 Blanco and Alonso,25 

and Mainardes and Evangelista26 include pore diameters, 

matrix active pharmaceutical ingredient (API) interactions, 

API–API interactions, and the composition of the formula-

tion. Szlęk et al21 developed a predictive model to describe 

the underlying relationship between those influencing factors 

on the drug’s release profile, and they focused on feature 

selection, artificial neural network, and genetic programming 

approaches to come up with a suitable prediction model. In the 

past, several mathematical models, including the Monte Carlo 

and cellular automata microscopic models, were proposed by 

Zygourakis and Markenscoff,27 and Gopferich.28 A partial dif-

ferential equations model was proposed by Siepmann et al29 

to address the influence of underlying PLGA properties on 

the drug’s release rate/protein dissolution. 

The highlights of the present article are as follows:

•	 a comprehensive discussion on the drug release problem 

and dataset collection mechanisms;

•	 a comprehensive discussion on various computational 

tools used to reduce dimensionality of dataset;

•	 a concise discussion on the elementary regression models 

available in the literature;

•	 a concise discussion on the ensemble methods used for 

making ensembles of the elementary regression models;

•	 a comprehensive discussion and conclusion on the experi-

mental results mentioned in the present article.

Methodology
A description of the problem
PLGA micro- and nanoparticles could play a significant role 

in the medical application and toxicity evaluation of PLGA-

based multi-particulate dosages.30 PLGA micro-particles 

are important diluents used to produce drugs in their correct 

dosage form. Apart from playing the role as a filler, PLGA 

as an excipient, and alongside pharmaceutical APIs, plays 

other crucial roles in various ways. It helps in the dissolution 

of drugs, thus increasing the absorbability and solubility of 

drugs.31,32 It helps in pharmaceutical manufacturing processes 

by improving API powders’ flow and non-stickiness.

The dataset collected from various academic literature1–18 

contains 300 input features categorized into four groups, 

including protein descriptor, plasticizer, formulation charac-

teristics, and emulsifier. A detailed description of the dataset 

is given in Table 1. For example, the formulation characteris-

tics group contains features such as PLGA-inherent viscosity, 

PLGA molecular weight, lactide-to-glycolide ratio, inner and 

outer phase polyvinyl alcohol (PVA) concentration, PVA 

molecular weight, inner phase volume, encapsulation rate, 

mean particle size, PLGA concentration, and experimental 

conditions (dissolution pH, the number of dissolution addi-

tives, dissolution additive concentration, and production 

method and dissolution time). The protein descriptor, plas-

ticizer, and emulsifier feature groups contain 85, 98, and 101 

features, respectively. The regression model sought to predict 

the dissolution percentage or solubility of PLGA, which is 

dependent on the features mentioned above. In order to avoid 

over-fitting, collected data were preprocessed by adding noise 

to them. The dataset was then normalized, in other words, 

scaled within the range –1.0 and 1.0. 

Dimensionality reduction
Feature selection tools
Feature selection techniques enable us to identify the most 

relevant input feature from the available set of input features 

and allows us to avoid expensive (both in time and cost) experi-

mental examination while developing a prediction model.33

Backward feature elimination
Backward feature elimination filtering starts with the 

maximum number of features (in this case, it starts with 

300 features) and eliminates them one-by-one in an itera-

tive manner. At each iteration, the resulting accuracy of 

Table 1 The PLGA dataset description

Sl No Group name No of features Importance

1 Protein descriptors 85 Describes the type of molecules and proteins used
2 Formulation characteristics 17 Describe the molecular properties such as molecular weight, particle size, etc
3 Plasticizer 98 Describe the properties such as fluidity of the material used
4 Emulsifier 99 Describe the properties of stabilizing/increase the pharmaceutical product life
5 Time in days 1 Time taken to dissolve
6 % of molecules dissolved 1 Output
Abbreviations: PLGA, poly(lactic-co-glycolic acid); SI, serial; No, number.

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2015:10 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

1121

Function approximation of PLGA micro and nanoparticle dissolution rate

prediction is evaluated for all combinations of the remaining 

attributes. The subsets of attributes with the high accuracies 

are propagated to the next iteration. Finally, the subset with 

the highest degree of accuracy (the lowest root mean square 

error [RMSE]) is selected as the best subset.

Correlation-based feature selection
Correlation-based feature selection assesses the value of a 

group of attributes that concern the individual predictive abil-

ity of each feature, as well with the possibility of repetition 

among the features.34

Classifier-based feature selection
Classifier-based feature selection evaluates attribute subsets 

on training data and uses a classifier to estimate the merits 

of a set of attributes. A search algorithm is then applied to 

search for a suitable feature from among all the available 

feature sets. 

Wrapper feature selection 
Wrapper-based feature selection evaluates attribute sets 

by using a learning scheme, and then uses cross-validation 

(CV) to estimate the accuracy of the learning scheme for 

a particular set of attributes.35 A search algorithm is then 

applied to search for a suitable feature set from among all 

the available feature sets.

Feature extraction
When it is affordable to easily generate test features, feature 

extraction techniques may be useful for dimensionality 

reduction. A regression model with a reduced input dimen-

sion may perform as well as it can if it has a complete set of 

features.20 Therefore, feature extraction helps in reducing the 

computational overhead that may be incurred when using a 

complete input dimension.

Principle component analysis
Principle component analysis (PCA) is a linear dimension-

ality reduction technique that transforms correlated data 

into uncorrelated data in a reduced dimension by finding a 

linear basis of reduced dimensionality for data with maximal 

variance. More specifically, it transfers correlated variables 

into a set of linearly uncorrelated variables called principle 

components.36,37

Factor analysis
Factor analysis (FA), as opposed to PCA, determines whether 

a number of features of interest are linearly related to a 

smaller/reduced number of newly-defined features called 

factors. In other words, it discovers a reduced number of 

relatively independent features by mapping correlated fea-

tures to a small set of features known as factors.38

Independent component analysis
Independent component analysis (ICA), proposed by 

Hyvärinen and Oja39 and Hyvärinen,40 is a linear dimension 

reduction technique that transforms multidimensional feature 

vectors into components that are statistically as independent 

as possible. More specifically, ICA maps the observed 

variables (features) to a small number of latent variables 

(features) that are non-Gaussian and mutually independent, 

and they are called the independent components of the 

observed data.41

Kernel PCA
Kernel PCA (kPCA) is an extension of PCA that uses kernel 

methods. kPCA computes the principal eigenvectors of the 

kernel matrix, rather than those of the covariance matrix.42 

Reformulating PCA in the kernel space is straightforward, 

since a kernel matrix is similar to the inner product of the data 

points in the high-dimensional space that is constructed using 

the kernel function. Typically, Gaussian, tangent hyperbolic, 

polynomial, and other functions are used for the kernel.

Multidimensional scaling
Multidimensional scaling (MDS) is a non-linear dimen-

sion reduction technique that maps high-dimensional data 

representation into a low-dimensional representation while 

retaining the pairwise distances between the data points as 

much as possible. More specifically, MDS is used to analyze 

similarities or proximities between pairs of data points.43

Function approximation algorithms
A regression/prediction model tries to build the relationship 

between independent variables X (input) and dependent 

variables y (output).44 Moreover, it tries to find unknown 

parameters β such that the error (2) is minimized, given t 

predicted output ŷ as: 

	 ŷ f X= ( , ).β 	 (1)

Let = −ˆ( )
i i i
e y y  be the difference between the dependent 

variable y and the predicted value ŷ. Therefore, the RMSE ξ 

over data samples of size n may be given as: 

	 ξ =
=

1

n
.2

1
e

ii

n∑ 	 (2)
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Regression models such as linear regression (LReg), 

Gaussian process regression (GPReg), multilayer perceptron 

(MLP), and sequential minimal optimization regression 

(SMOReg) are as follows.

LReg
LReg is the simplest predictive model where independent 

variables ( | X | = n × p), dependent variable ( | y | = p), with 

noise/error ( | ε | = p), may be written as:

	 y x x x p x
i i i p i i

T
i

= + + + = εβ β β β
1 2

1 2 . 	 (3)

GPReg
The GPReg described by Rasmussen and Williams45 and 

Rasmussen and Nickisch46 is easily identified by its mean 

function m(x) and covariance function k(x, x′). This is a natural 

generalization of the Gaussian distribution, whose mean m and 

covariance k are a vector and a matrix, respectively. Gaussian 

distribution is defined over vectors, whereas the Gaussian pro-

cess is defined over functions f. Therefore, we may write:

	 f m k~ ( ).GP , 	 (4)

Considering a zero mean, linear and non-linear covari-

ance functions may be given as:

	 k( , )x x x xT′ ′ + ,= α γ 	 (5)

	 k x x x xT( , ) exp ( ) ) ,(x x′ ′ ′= − − −





α γ
2

	 (6)

where α and γ are the parameters of the basis function.

MLP
MLP is a feed-forward neural network having one or more 

hidden layers in between the input and output layers.47,48 

A neuron in an MLP first computes a linear-weighted com-

bination of real-valued inputs, and then limits its amplitude 

using a non-linear activation function. In the presented 

research, MLP was trained using the backpropagation algo-

rithm49 and the resilient propagator.50

Reduced error pruning tree
Reduced error pruning (REP) tree is a fast decision tree 

learner. It builds a decision tree based on information gain 

or reduction of the variance and prunes it using reduced-error 

pruning with over-fitting.51,52

SMOReg
Sequential minimal optimization (SMO), an algorithm for the 

training of support vector regression proposed by Smola and 

Schölkopf,53,54 and Schölkopf and Burges,55 is an extension of 

the SMO algorithm proposed by Platt56 for the support vector 

machine classifier. The idea of support vector regression is 

based on the computation of a linear regression function in 

a high-dimensional feature space where the input data are 

mapped using a non-linear function; support vector regres-

sion tries to minimize the generalization error in order to 

achieve generalized performance.

The ensemble of function approximators
Getting the best regression algorithm is not a trivial task. 

Apart from having a plethora of options as listed in the 

present section, one has to decide what the optimal sets of 

parameters for each algorithm are. There is generally very 

little guidance available to address the question of how to 

select an algorithm and adjust its parameters for a specific 

problem. In such cases, experimental tests can help the user 

to make decisions. Still, in many cases the obtained results 

are not satisfactory or even not acceptable. In such situations, 

the ensemble approach can be used. Basically, it relies on the 

assumption that the properly-modeled fusion of responses 

of several elementary predictors will produce more accurate 

results and reduce the regression error.57 Formally, let ∏ be 

a set of k predictors given as:

	 Π = { }f f f
k1 2

, , , , 	 (7)

where f
k
 indicates the state of the kth predictor. Each of the 

predictors is trained independently. The ensemble system 

fuses the outputs produced by the predictors in set ∏. In the 

simplest form, the ensemble can take the form of a simple 

average called the mean output regression, given as:

	 F x
k

f x
ii

k
′( ) ,( )=

=∑1
1

	 (8)

where F ′ is an ensemble system. The natural advantage of 

this model is its simplicity, since the output of the ensemble 

can easily be obtained by simple mathematical transformation 

without the necessity of setting any additional parameters. 

On the other hand, the main drawback of this model is that 

it treats all the elementary predictors as equally important, 

regardless of their quality. Weak predictors affect the final 

output to the same degree as strong ones. As a result, the 

quality of the ensemble is close to the average of all its 

constituents. Better results can be obtained when the contri-

bution of a particular predictor depends on its quality. The 

greater the accuracy of the predictor, the greater its weight 
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in the ensemble. The ensemble method is therefore called 

the quality weighted output regression, given as:

	 F x
k

w f x
i ii

k
′( ) ,( )=

=∑1
1

	 (9)

where w
ii

k
= 1

1=∑ . In its simplest form, the weights should 

be counter-proportional to the RMSE of the given predic-

tors. However, in more advanced algorithms, the weights 

can be set over the course of time, eg, be an application of 

evolutionary algorithms.

Diversity of the ensemble
There are several issues that have to be dealt with in order 

to make the application of the ensemble approach effective. 

One of the most essential issues is maintaining diversity 

among the predictors in the ensemble. Collecting a set of 

similar regression algorithms does not allow users to take 

any advantage from their fusion. Diversity can be ensured 

by applying one of the following procedures:

1.	 collecting predictors based on different models;

2.	 differentiating elementary predictor inputs.

In the first approach, it is assumed that different regression 

algorithms naturally make errors that are uncorrelated, even when 

they are trained on the same data. The second group consists of 

algorithms that create an ensemble based on the same regres-

sion model, but diversity is caused by training each of them on 

data partitions (as diversity occurred due to data partition in the 

Bagging algorithm) or using heterogeneous feature sets (the 

techniques used in random subspace [RS] algorithms).

RS algorithms
RS is a method of constructing an ensemble of predictors 

where a pseudorandom procedure is used to select com-

ponents of a feature vector separately for each ensemble 

constituent. The output of the ensemble is then obtained by 

averaging the outputs.58

Bagging algorithms
Breiman59 introduced the bagging method, which is basically 

a combination of multiple predictors. At first, subsets are 

prepared by cutting the original dataset using bootstrapping. 

A  sequence of predictors is then allowed to run over the 

subsets of the dataset. Finally, the results from each of the 

predictors are aggregated using voting in order to get the final 

results. This method is supposed to enhance the performance 

of ensemble systems and reduce variances in order to improve 

predictability.60,61

The evolutionary weighted ensemble
The evolutionary weighted ensemble (EWE) is used to make 

decisions, based on Equation 8. The learning process searches 

for a set of weight that minimizes the RMSE of the ensemble, 

and for that purpose, the learning set is used. Therefore, the 

objective function for the learning procedure or the ensemble 

system can be written as:

RMSEF ′ ( ), , , ( ) ,w w w
N

w f x y
k j j i ij

k

i

N

1 2
2

1
 = −∑∑ 	(10)

where x
i
, and y

i
 denote the ith input–target pair in the learning 

set that consists of a total of N samples.

We used the evolutionary algorithm,62 which processes a 

population of possible solutions encoded as chromosomes. 

An overview of the EWE training procedure is presented 

in Figure 1. The components of the EWE algorithms are 

defined as follows:

Initial population 
The first step in the learning algorithm is generating an initial 

population. This consists of an arbitrarily chosen number of 

individuals with randomly selected weights that are scaled 

in order to ensure that their sum is 1.

Evaluation of the population 
Each individual is evaluated using an objective function. 

Obtained values determine the further behavior of the algo-

rithm, especially selection procedures.

Selection of the elite 
The stability of the learning procedure is maintained by select-

ing two individuals with the smallest RMSE values. Those 

Input: learning set

S – Population size
G – The number of generations
∏ – A set of individual predictors
repeat

Initialize population
for t = 1 to G do

Evaluate population over learning set
Select elite
Select parents
Mutation
Crossover
Create offspring of the population

end for
until the stopping criterion satisfied.

Figure 1 Evolutionary weighted ensemble algorithm.
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individuals, called the elite, are not affected by mutation or 

crossover operators and join the offspring population.

Selection of the parents 
Only selected individuals participate in generating offspring 

for the new generation population. The selection is based 

on their fitness and is done in a probabilistic manner, ie, the 

smaller the RMSE of an individual, the greater the probability 

of its selection.

Mutation 
The mutation operator of an evolutionary algorithm is sup-

posed to ensure some amount of diversity within the popula-

tion. In a classical implementation, it adds random noise to 

the chromosomes of selected individuals.

Crossover 
The crossover operator exchanges data between two selected 

parents and forms two new individuals and for that purpose, 

a standard 1-point crossover procedure can be used in which 

the cutting point is selected randomly.

Offspring generation 
At the end of each generation the merging elite, the mutated 

individuals and children created by the crossover operator 

creates offspring. The new population substitutes the previ-

ous one and the entire process is repeated until a satisfactory 

solution is found, or the maximum iteration reached.

Experiment setup and results
To accomplish dimensionality reduction and identification of 

the corresponding regression model, the experiment was set 

up as follows: the dataset obtained for the PLGA dissolution 

profile had 300 features; therefore, the primary objective was 

to reduce the dimensions of the dataset. Hence, to accomplish 

this, the feature selection and feature extraction techniques 

discussed earlier were used. Subsequently, elementary pre-

diction models were employed and their performances were 

assessed using ten-fold cross validation (10-CV) sets. Selec-

tion of the prediction model was based on the average of the 

RMSE computed over a set of ten results. In the final part of 

our experiment, we explored ensemble methods in order to 

exploit the elementary regression/prediction models.

Feature selection method results
After cleaning and preprocessing the dataset, a feature selec-

tion treatment was used in which we used a backward feature 

elimination technique with the GPReg, LReg, SMOReg 

and REP prediction models. The parameter settings of the 

prediction models are provided in Table 2. The combination 

of attributes that offers the lowest RMSE was considered as 

the optimal feature set. For example, the optimal feature set 

obtained using the GPReg, LReg, MLP, SMOReg and REP 

regression models are 18, 32, 31, 30, and 31 with RMSE values 

of (resulting from a normalized dataset) 0.143, 0.156, 0.121, 

0.153, and 0.126, respectively. The backward feature elimina-

tion results were convening in terms of RMSE. Therefore, for 

each of the predictors, we selected the feature sets with the 

smaller attributes, ie, set with ten, five, and one attribute.

We have stochastic feature selection techniques such 

as correlation-based, classifier-based, and wrapper-based 

methods. These feature selection methods were used to 

determine the merits (predictability) of different combina-

tions of features. After assigning the merits of the several sets 

of features, the best first search (BFS) and the greedy search 

(greedy) methods were used to select the desired optimal 

feature set. Interestingly, in the present problem, when we 

used correlation-based feature selection, both the BFS and 

greedy searches produced identical feature sets with five attri-

butes. The classifier-based feature selection was patched with 

GPReg, MLP, and LR eg, respectively, in order to evaluate 

the merits of the feature set. Subsequently, BFS and greedy 

searches were used to determine the optimal feature set. 

Therefore, we had class-GPReg-BFS, class-GPReg-greedy, 

class-MLP-BFS, class-MLP-greedy, class-LReg-BFS, and 

class-LReg-greedy feature selection methods, indicating a 

classifier-based method with GPReg as a feature set merit 

evaluator and BFS as the method to select the optimal 

feature set. Similarly, wrapper-GP-greedy, wrapper-MLP-

greedy, and wrapper-LReg-greedy indicate a combination 

of wrapper-based feature selections, where GPReg, MLP, 

and LReg were used to evaluate the feature set. Interestingly, 

both BFS and greedy searches offered identical feature sets. 

Table 2 Parameters setting of the respective regression 
models used for the feature selection and feature extraction 
experiments

Predictor Parameters

GPReg RBF kernel, gamma value = 1.0
LReg –
MLP Three-layer MLP, hidden layer nodes - 50, learning rate - 

0.3, momentum rate - 0.2
SMOReg Polynomial kernel, epsilon value - 0.001, tolerance level 

- 0.001
REP tree Max depth – no restriction

Abbreviations: GPReg, Gaussian process regression; RBF, radial basis function; 
LReg, linear regression; MLP, multilayer perception; SMOReg, sequential minimal 
optimization regression; REP, reduced error pruning; –, no such parameter.
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A list of feature selection methods and the corresponding 

selected features are illustrated in Table 3.

Results of the feature extraction 
technique
Unlike feature selection, feature extraction finds a new set 

of reduced features by computing linear or non-linear com-

binations of features from the available dataset. A compre-

hensive result is presented in Table 4, which illustrates the 

performance of feature extraction methods and regression 

models.

Dimensionality reduction tools offered by van der Maaten 

et al20 were used for the feature extraction. PCA and FA 

linear dimensionality reduction methods, and non-linear 

dimensionality reduction methods such as kPCA and MDS 

were used to reduce the dimensions of the dataset from 300 to 

50, 30, 20, 10, and 5. ICA was used to reduce the dimension 

of the dataset from 300 to 50. Results obtained using ICA are 

as follows. The mean RMSE and variance corresponding to 

GPReg, LReg, MLP, and SMOReg are 14.83, 17.23, 13.94, 

and 17.92 and 3.61, 2.34, 2.77, and 2.87, respectively. It 

may be observed from Table 4 that lower dimensions offer 

less significant improvement in terms of RMSE. However, 

if we compare the best results (the result of reducing the 

dimension to 50) of PCA (an RMSE of 13.59 correspond-

ing to MLP) and ICA (an RMSE of 13.94 corresponding to 

MLP) with the result using all features (an RMSE of 16.812 

corresponding to GPReg), it is evident that reducing the 

dimension significantly improves the performance of the pre-

diction model. Examining Figure 2, an RMSE and variance 

comparison between chosen regression models applied on 

the dataset reduced it to a dimension of 50 using ICA, PCA, 

FA, kPCA, and MDS feature extraction techniques; we may 

conclude that the feature extraction using PCA performed 

best, both in terms of RMSE and variance, when the MLP 

regression model was used, whereas the feature extraction 

using ICA was second to PCA when MLP was used. When 

it came to GPReg, ICA had an edge over PCA.

The regression model and ensemble 
results
In order to identify a suitable regression model, we chose sev-

eral regression models. The parameter settings corresponding 

to the regression models are given in Table 3. A compre-

hensive feature selection result using 10-CV is presented 

in Table 3. Examining Table 3, we may therefore draw the 

following conclusions. First of all, in Table 3, we arranged 

the feature selection methods according to ascending order 

of the number of features selected by the feature selection 

methods; the first row of Table 3 that indicates no feature 

selection (ie, all 300 features were used), is exceptional. We 

compared the results of the prediction models arranged in the 

columns in Table 3. The feature selection process was able 

to find the most significant features that influenced the drug 

release rate. It may be observed that feature vectors from all 

the mentioned feature selection methods obtained a reduced 

Table 3 Experimental results for 10-CV datasets prepared with distinct random partitions of the complete dataset using feature 
selection technique (Identification of regression model) 

Selection method Selected features GPReg LReg MLP REP SMOReg

No selection 300 16.81 17.07 18.57 13.05 17.95
BFE 1 27.47 26.61 28.33 24.37 26.97
BFE 5 17.11 23.45 23.11 14.23 23.38
CFS 5 20.80 25.08 22.41 18.31 25.42
Class-MLP-greedy 7 17.96 25.03 22.26 14.96 25.35
BFE 10 15.93 19.98 21.00 13.19 19.53
Class-MLP-BFS 15 15.88 22.90 16.83 13.91 24.23
Wrapper-GPReg-greedy 15 14.88 20.22 15.20 13.34 20.86
Class-GPReg-BFS 16 18.46 23.07 19.71 14.19 23.69
Class-GPReg-greedy 19 15.06 19.05 15.61 14.03 19.68
Wrapper-MLP-greedy 19 16.44 24.01 20.42 14.26 24.85
Wrapper-LReg-greedy 24 15.91 17.46 17.03 13.54 18.02
BFE Optimal* 15.71 17.85 17.82 13.90 17.88
Class-LReg-BFS 31 15.95 16.92 15.63 14.00 17.58
Class-LReg-greedy 37 16.31 17.14 16.27 14.02 17.69

Notes: Values are the average of ten RMSE. *Optimal set of attributes for the GPReg, LReg, MLP, REP and SMOReg regression models are 18, 32, 31, 31, and 30, 
respectively.
Abbreviations: 10-CV, ten-fold cross-validation; GPReg, Gaussian process regression; LReg, linear regression; MLP, multilayer perception; REP, reduced error pruning; 
SMOReg, sequential minimal optimization; No, number; BFE, backward feature elimination; CFS, correlation-based feature selection; BFS, best fit search; wrapper, wrapper 
feature selection; greedy, greedy search; class, classifier-based feature selection.
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set of the most influential features. Therefore, a general 

theory may be drawn about how and which features are the 

most dominant with regard to the PLGA drug release rate.

 It is worth mentioning that the best result presented 

by Szlęk et al21 is an RMSE of 15.4, considering eleven 

selected features using MLP and 17 features with an RMSE 

of 14.3 using MLP. From Table 3, it may be observed that 

when considering all 300 features, the best result we can 

achieve is by using REP, resulting in an RMSE of 13.05 

(the average of the 10-CV result). Therefore, any regression 

Table 4 Experimental results for 10-CV datasets prepared with distinct random partitions of the complete dataset using feature 
extraction techniques 

Feature extraction 
method

Regression 
model

Dimension reduction

5 10 20 30 50

Mean VAR Mean VAR Mean VAR Mean VAR Mean VAR

Linear 
method

PCA GPReg 28.88 1.62 27.22 3.00 24.80 3.85 19.82 2.49 16.08 3.16
LReg 29.55 1.74 29.22 1.70 27.73 2.21 23.93 1.63 17.17 2.79
MLP 30.36 3.36 29.77 6.37 26.58 3.98 19.89 2.27 13.59 1.56
SMOReg 30.14 3.17 29.78 3.62 27.95 2.67 24.31 1.89 17.66 3.09

FA GPReg 29.23 1.77 28.56 2.67 28.31 3.34 28.30 3.42 28.26 3.31
LReg 29.97 1.77 29.97 1.77 29.97 1.77 29.97 1.77 29.98 1.82
MLP 30.64 2.02 30.50 1.91 31.01 1.83 30.93 2.30 30.91 0.77
SMOReg 30.28 3.45 30.28 3.45 30.26 3.37 30.29 3.44 30.28 3.46

Non-linear 
method

Kernel 
PCA

GPReg 28.60 1.68 27.08 2.12 24.96 1.96 24.32 2.17 22.81 4.43
LReg 29.31 1.52 28.05 1.78 25.35 2.05 25.17 2.23 22.98 4.27
MLP 29.81 3.57 29.65 7.94 27.07 4.09 25.97 5.52 25.27 8.49
SMOReg 29.43 1.41 28.68 1.65 25.90 1.70 25.79 2.00 23.24 4.76

MDS GPReg 28.91 2.17 28.73 2.47 28.41 3.16 28.24 3.17 28.16 3.27
LReg 29.56 1.86 29.21 2.08 29.19 2.08 29.11 1.92 29.14 2.04
MLP 30.42 3.71 29.38 4.11 29.93 3.10 30.01 4.53 29.98 4.42
SMOReg 29.98 2.62 29.64 2.55 29.64 2.76 29.66 2.85 29.65 2.89

Note: Mean and variance (VAR) is computed on ten RMSE obtained.
Abbreviations: 10-CV, ten-fold cross-validation; RMSE, root mean square error; PCA, principal component analysis; FA, factor analysis; MDS, multidimensional scaling; 
GPReg, Gaussian process regression; LReg, linear regression; MLP, multilayer perception; SMOReg, sequential minimal optimization regression.

model tested with a reduced feature set must compete with 

this result. In our study, the best result was obtained with the  

feature set using the wrapper-GPReg-greedy method with 

RSME of 14.88, 20.22, 15.20, 13.31, and 20.86 using the 

GPReg, LReg, MLP, REP and SMOReg elementary mod-

els, respectively. Therefore, we may consider the features 

“fused ring count”, “heteroaromatic ring count”, “largest 

ring system size”, “chain atom count”, “chain bond count”, 

and “quaternary structure” from the protein descriptors 

group of features; “PVA concentration inner phase”, “PVA 

Figure 2 Results of the feature extraction experiment for the reduced dimension set of 30 features: a comparison between the regression models. A comparison using 
average RMSE (A); a comparison using variances (B).
Abbreviations: RMSE, root mean square error; ICA, independent component analysis; PCA, principle component analysis; FA, factor analysis; kPCA, kernel PCA; MDS, 
multidimensional scaling; GPReg, Gaussian process regression; LReg, linear regression; MLP, multilayer perception; SMOReg, sequential minimal optimization regression.
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concentration outer phase”, “PVA molecular weight”, and 

“PLGA to placticizer” from the formulation characteris-

tics group of features; and “acetylsalicylic acid”, “Szeged 

index”, and “pH=12 logD” from the plasticizer group of fea-

tures. From the emulsifier group, we have “a(yy)” and “time 

in days” as being the most influential feature sets obtained 

using wrapper-GPReg-greedy experiment. A complete list 

of the feature names can be found in Szlęk et al.2

After we obtained the best features, we resorted to using 

ensemble techniques. A comprehensive comparison of the 

results obtained using the ensemble methods and other 

elementary regression models is given in Table 5. From the 

results presented in Table 5, it is evident that some of the listed 

ensemble methods provides better results than that of the result 

produced by the best elementary predictor ie, reduced error 

pruning tree. The average RMSE obtained by ensemble such 

as RS using REP, RS using MLP, RS using GPReg, Bagging 

using REP, bagging using MLP, mean output regression, 

quality weighted output regression, and EWE are 13.85, 18.20, 

18.72, 11.49, 12.30, 10.43, 10.06, and 7.67, respectively.

Discussion and analysis
In this article, experimental results obtained using both 

feature selection and feature extraction techniques are 

offered. The primary objective of the experiments was to 

find the lowest RMSE. In addition, we took advantage of the 

feature selection methods to obtain the best set of features. 

Our benchmark for the present experiment was the RMSE 

obtained using the complete set of features, ie, 300 features, 

and the results obtained by Szlęk et al.21 The results obtained 

by the feature selection, feature extraction, and ensemble 

experiments are provided in Tables 3–5, respectively. The 

wrapper-based feature selection technique provided us 

the set of the most significant features. On the other hand, 

PCA offered a new set of features with solutions that were 

better than the solutions obtained with the complete data-

set. The ensemble methods were only used for the feature 

selection methods. The ensemble methods enabled us to 

exploit all the evaluated regression models. Therefore, the 

best result (lowest RMSE) out of all the trained regressors 

was obtained using the EWE ensemble method. As men-

tioned above, predicting the PLGA dissolution rate is an 

important problem for the pharmaceutical industry. More 

significantly, identifying the influencing factors (features) 

is crucial for predicting the PLGA dissolution rate.

Conclusion
Analyzing the effectiveness of the ensemble methods should 

be based on a comparison of the results obtained using the best 

elementary predictors. In our case, among the tested simple 

predictors, the lowest RMSE was reached with REP (13.34). 

The ensemble methods should improve regression accuracy 

over the best elementary predictor. The EWE ensemble 

method offered the lowest RMSE, which proves that in 

certain cases, combining the outputs of several predictors 

allows us to improve overall accuracy. It is essential to 

ensure diversity among the ensemble’s constituents. Among 

the tested techniques, an ensemble of five heterogeneous 

regression algorithms provided the best results. Weighting 

their outputs was the most effective when weights were set 

Table 5 A comprehensive conclusion of the results obtained from each regression model, including the ensemble techniques used

Ensemble 
method

RMSE Graphical representation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

EWE 7.67
QWOR 10.06
MOR 10.43
Bagging-REP 11.49
Bagging-MLP 12.30
RS-REP 13.85
RS-MLP 18.20
RS-GPReg 18.72
SMOReg 20.86
REP tree 13.34
MLP 15.20
LReg 20.22
GPReg 14.88

Note: We have selected the feature set that was obtained using  wrapper-GPReg-greedy search.
Abbreviations: RMSE, root mean square error; EWE, evolutionary weighted ensemble; QWOR, quality weighted output regression; MOR, mean output regression; 
bagging, ; MLP, multilayer perception; RS, random subspace; REP, reduced error pruning; SMOReg, sequential minimal optimization regression; LReg, linear regression; 
GPReg, Gaussian process regression.
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using an evolutionary-based algorithm. Perhaps this is not the 

best method for creating a diversified ensemble of regression 

method in general, but it appeared to be the best one for the 

current problem we considered. We suggest that in all cases, 

a broad range of experiments with a variety of elementary 

regression algorithms and ensemble methods be used in order 

to find the best solution. Nonetheless, the obtained results 

prove that the proposed EWE method is an effective option 

for finding a solution to the present problem.

Acknowledgments
This work was supported by the IPROCOM Marie Curie Ini-

tial Training Network, funded through the People Programme 

(Marie Curie Actions) of the European Union’s Seventh 

Framework Programme FP7/2007–2013/, under REA grant 

agreement number 316555. This work was also supported 

by the Polish National Science Center under grant number 

DEC-2013/09/B/ST6/02264.

Disclosure
The authors report no conflicts of interest in this work.

References 
	 1.	 Kang F, Singh J. Effect of additives on the release of a model protein 

from PLGA microspheres. AAPS Pharm Sci Tech. 2001;2(4):30.
	 2.	 Zhou XL, He JT, Du HJ, et al. Pharmacokinetic and pharmacodynamic 

profiles of recombinant human erythropoietin-loaded poly(lactic-co-
glycolic acid) microspheres in rats. Acta Pharmacol Sin. 2012;33(1): 
137–44.

	 3.	 Fan D, De Rosa E, Murphy MB, et al. Mesoporous silicon-PLGA com-
posite microspheres for the double controlled release of biomolecules for 
orthopedic tissue engineering. Adv Funct Mater. 2012;22(2):282–293.

	 4.	 Kim TH, Lee H, Park TG. Pegylated recombinant human epidermal 
growth factor (rhEGF) for sustained release from biodegradable PLGA 
microspheres. Biomaterials. 2002;23(11):2311–2317.

	 5.	 Blanco D, Alonso MJ. Protein encapsulation and release from poly 
(lactide-co-glycolide) microspheres: effect of the protein and polymer 
properties and of the co-encapsulation of surfactants. Eur J Pharm 
Biopharm. 1998;45(3):285–294.

	 6.	 Mok H, Park TG. Water-free microencapsulation of proteins within 
PLGA microparticles by spray drying using PEG-assisted protein 
solubilization technique in organic solvent. Eur J Pharm Biopharm. 
2008;70(1):137–144.

	 7.	 Buske J, König C, Bassarab S, Lamprecht A, Mühlau S, Wagner KG. 
Influence of PEG in PEG-PLGA microspheres on particle properties 
and protein release. Eur J Pharm Biopharm. 2012;81(1):57–63.

	 8.	 Corrigan OI, Li X. Quantifying drug release from PLGA nanoparticu-
lates. Eur J Pharm Sci. 2009;37(3–4):477–485.

	 9.	 Puras G, Salvador A, Igartua M, Hernández RM, Pedraz JL. Encapsula-
tion of Aβ (1–15) in PLGA microparticles enhances serum antibody 
response in mice immunized by subcutaneous and intranasal routes. 
Eur J Pharm Sci. 2011;44(3):200–206.

	10.	 Kim HK, Park TG. Microencapsulation of dissociable human growth 
hormone aggregates within poly(D,L-lactic-co-glycolic acid) micropar-
ticles for sustained release. Int J Pharm. 2001;229(1–2):107–116.

	11.	 Han Y, Tian H, He P, Chen X, Jing X. Insulin nanoparticle preparation 
and encapsulation into poly(lactic-co-glycolic acid) microspheres by 
using an anhydrous system. Int J Pharm. 2009;378(1–2):159–166.

	12.	 He J, Feng M, Zhou X, et al. Stabilization and encapsulation of recom-
binant human erythropoietin into PLGA microspheres using human 
serum albumin as a stabilizer. Int J Pharm. 2011;416(1):69–76.

	13.	 Gasper MM, Blanco D, Cruz ME, Alonso MJ. Formulation of L-as-
paraginase-loaded poly(lactide-co-glycolide) nanoparticles: influence 
of polymer properties on enzyme loading, activity and in vitro release. 
J Control Release. 1998;52(1–2):53–62.

	14.	 Kawashima Y, Yamamoto H, Takeuchi H, Fujioka S, Hino T. Pulmo-
nary delivery of insulin with nebulized DL-lactide/glycolide copoly-
mer (PLGA) nanospheres to prolong hypoglycemic effect. J Control 
Release. 1999;62(1–2):279–287.

	15.	 Ungaro F, d’Emmanuele di Villa Bianca R, Giovino C, et al. Insulin-
loaded PLGA/cyclodextrin large porous particles with improved 
aerosolization properties: in vivo deposition and hypoglycaemic 
activity after delivery to rat lungs. J Control Release. 2009;135(1): 
25–34.

	16.	 Jiang HL, Jin JF, Hu YQ, Zhu KJ. Improvement of protein loading and 
modulation of protein release from poly(lactide-co-glycolide) micro-
spheres by complexation of proteins with polyanions. J Microencapsul. 
2004;21(6):615–624.

	17.	 Pirooznia N, Hasannia S, Lotfi AS, Ghanei M. Encapsulation of alpha-1 
antitrypsin in PLGA nanoparticles: in vitro characterization as an effec-
tive aerosol formulation in pulmonary diseases. J Nanobiotechnology. 
2012;10:20.

	18.	 Castellanos IJ, Flores G, Griebenow K. Effect of cyclodextrins on 
alpha-chymotrypsin stability and loading in PLGA microspheres upon 
S/O/W encapsulation. J Pharm Sci. 2006;95(4):849–858.

	19.	 Astete CE, Sabliov CM. Synthesis and characterization of PLGA 
nanoparticles. J Biomater Sci Polymer Ed. 2006;17(3):247–289.

	20.	 van der Maaten LJ, Postma EO, van den Herik HJ. Dimensionality reduc-
tion: a comparative review. Technical Report TiCC TR 2009-005.
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