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Reliability engineering is relatively new scientific disciplinewhich develops in close connectionwith computers. Rapid development
of computer technology recently requires adequate novelties of source codes and appropriate software. New parallel computing
technology based on HPC (high performance computing) for availability calculation will be demonstrated in this paper. The
technology is particularly effective in context with simulation methods; nevertheless, analytical methods are taken into account
as well. In general, basic algorithms for reliability calculations must be appropriately modified and improved to achieve better
computation efficiency. Parallel processing is executed by two ways, firstly by the use of theMATLAB function parfor and secondly
by the use of the CUDA technology. The computation efficiency was significantly improved which is clearly demonstrated in
numerical experiments performed on selected testing examples as well as on industrial example. Scalability graphs are used to
demonstrate reduction of computation time caused by parallel computing.

1. Introduction

The concept of reliability has become recently a pervasive
attribute worth of both qualitative and quantitative connota-
tions. Quantitative treatment of the reliability of engineering
systems and plants has led to the rise of reliability engineering
as a scientific discipline [1]. Reliability is a fundamental
attribute for the safe operation of any modern technological
system.

System is a set of components that work together and
form a functional unit. Real engineering systems include
technical machines, production lines, computer networks,
and other devices. In practice, it is often necessary to model,
compute, and optimize reliability characteristics of such
systems.

In engineering applications which involve availability
modeling, we frequently face the following subproblem: the
logical structure of the system as well as availability of each
component at a given time 𝑡 ∈ R is known and using
this knowledge availability of the whole system at the time
𝑡 ∈ R must be computed. In some cases, the time evolution
of the availability is required. This problem was solved in
the past by many different algorithms that can be roughly

divided into analytical and simulation ones. In general, the
simulation approach is employed when analytical techniques
have failed to provide a satisfactory mathematical model.
The principle behind the simulation approach is relatively
simple and easy to apply. However, the common simulation
techniques are slow and take a lot of time to provide accurate
results. Nevertheless, this technique is the only practical
method of carrying out reliability or risk studies, particularly
when system is maintained and arbitrary failure and repair
distributions are used or some special repair or maintenance
strategy is prescribed.

The Monte Carlo (MC) method allows complex systems
to be modeled without the need to make unrealistic simplify-
ing assumptions, as is inevitably done when using analytical
methods. With the increasing availability of fast computers,
MC methods become more and more powerful and feasible
[2]. Recent reliability analyses of complex systems based on
the MC method bring very efficient estimators [3]. Finding
of an appropriate estimator must be necessarily connected
with a variance-reduction technique. There exist efficient
techniques that provide significant reduction in variance,
when they are correctly applied [4]. The application of
these techniques gives other potentials for optimization of
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the simulation algorithms solving complex real reliability
problems.The feasibility of application to realistic cases stems
from the possibility of evaluating the model in reasonable
computing times, for example, by biasing techniques [5].

Another problem connected with the application of the
MC method is slow convergence. To mitigate this issue,
several techniques have been developed such as those based
on the importance sampling and other classical methods [6].
Another possibility of improving the convergence is provided
by the so-called conditioningmethods which directly modify
the modeling or the simulation procedure, as, for example, in
the Petri net approach [7, 8]. In spite of all these advanced
techniques, in most practical cases whenever reliability char-
acteristics must be determined exactly and efficiently, the
analyst faces computing problems, that is, slow convergence
and large simulation time. That is because systems are more
andmore complex and demands on reliability are continually
growing. For example, NEC producer [9] has offered system
components for use in supercomputers in order to support
the need for an extremely high performance. The improving
reliability will be an essential feature of the products of the
next generation.

The above mentioned computing problems are solvable
by applying parallel processing of computing algorithms.This
new computing technology is possible to put into practice just
on assumption that an adequate computing infrastructure
exists, which can be used for the HPC (high performance
computing) calculations. In Technical University of Ostrava
such a new supercomputing center is recently developed and
built.

This paper is organized as follows. Section 2 brings simple
method for system representation based on adjacencymatrix.
Basic methods (both analytical and simulation) for avail-
ability quantification derived from system state evaluation
are introduced in Section 3. Section 4 demonstrates basic
approach to the parallel computing of system reliability
characteristics resulting from the MATLAB parfor loop on
the one hand and from CUDA (Compute Unified Device
Architecture) technology on the other hand. Both algorithms
can be further optimized using bitwise operations. Both
analytical and simulationmethods are discussed in Section 5,
which describes numerical experiments in context with com-
puter efficiency related to the parallel computing technology.
Section 6 describes availability quantification applied on
industrial example from references. Section 7 brings conclu-
sion.

2. System and Its Representation Using
Adjacency Matrix

Consider a system consisting of 𝑛 components, 𝑛 ∈ N. At a
given time 𝑡 ∈ R each component is in one of two disjoint
states, operational or failed. To the 𝑖th component a state
indicator 𝑏

𝑖
belongs. If the component is operational, 𝑏

𝑖
= 1;

otherwise, 𝑏
𝑖
= 0. The vector B = (𝑏

1
, 𝑏
2
, . . . , 𝑏

𝑛
) is called the

state vector of the system.The set of all possible state vectors is
called the state space of the system and is denoted by𝑉. Since
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Figure 1: Block diagram and corresponding adjacency matrix.

components with just two possible states are considered, the
state space has 2𝑛 elements [10].

The system state is determined by the states of its
components. The function 𝑆(B) : 𝑉 → {0, 1} defined as

𝑆 (B) = {1 if system is operational,
0 if system is failed

(1)

is called the system function.
The logical structure of systems is often represented using

block diagrams. A block diagram is a directed graph with
two special vertices (in Figure 1 marked IN and OUT); the
remaining vertices symbolize components of the system. A
directed edge connecting two vertices indicates that there is
a direct path between corresponding system elements in the
indicated direction. Le us say that the system is operational
if there exists a path between the IN element and the OUT
element passing only through functional components. For
the system function, the following

𝑆 (B) = {1 if system is operational,
0 otherwise

(2)

holds.
For implementation purposes, it is suitable to represent

the block diagram equivalently using the adjacency matrix
𝑀 of size (n + 2) × (n + 2). The first row and column of
the matrix are used for the IN element; the last row and
column are used for the OUT element. The remaining rows
and columns represent the components of the system. If a
directed edge between elements 𝑖 and 𝑗 exists, (𝑀)

𝑖𝑗
= 1;

otherwise, (𝑀)
𝑖𝑗
= 0.

3. Methods of Availability Quantification

As mentioned above, the following problem is solved in this
paper. “A system with 𝑛 independent components and an
appropriate system function 𝑆(B) is given. Further availabil-
ities of all components are known. It is necessary to quantify
the availability of the system.”

The state space of the given system includes 2𝑛 state
vectors. By substituting each state vector into the system
function, the state space can be divided into two disjoint
subsets 𝑉

0
= {B ∈ 𝑉 | 𝑆(B) = 0} and 𝑉

1
= 𝑉 \ 𝑉

0
. Let

us denote the availability of the 𝑖th component by 𝑝
𝑖
. Further

denote

𝛽
𝑖
= {
𝑝
𝑖

if 𝑏
𝑖
= 1,

1 − 𝑝
𝑖

if 𝑏
𝑖
= 0.

(3)
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Therefore, the probability 𝑃(B) that the system is in state
defined by a specific state vector B = (𝑏

1
, 𝑏
2
, . . . , 𝑏

𝑛
) can be

calculated as

𝑃 (B) =
𝑛

∏

𝑖=1

𝛽
𝑖
. (4)

At this point both solving methods can be presented, the
analytical one and the simulation one.

3.1. Analytical Method. Availability 𝐴 is the probability that
the system is operational at a considered time, that is, that it
is in a state belonging to𝑉

1
in the time.This probability can be

calculated as the sum of probabilities 𝑃(B
𝑗
) that the system is

in stateB
𝑗
∈ 𝑉
1
.Therefore, the availability𝐴 can be expressed

as

𝐴 = 𝑃 (𝑆 (B) = 1) =
2
𝑛

∑

𝑗=1,B
𝑗
∈𝑉
1

𝑃 (B
𝑗
) =

2
𝑛

∑

𝑗=1,B
𝑗
∈𝑉
1

𝑛

∏

𝑖=1

𝛽
𝑗

𝑖
. (5)

Using this formula, the algorithm for the analytical compu-
tation of system availability can be easily constructed. Notice
that each state vector of the system is evaluated, so it can be
expected that the computation time increases exponentially
with respect to the number of components.

3.2. Simulation Method. One of the ways to avoid evaluating
the state of the system for each state vector is to solve the
problem using the Monte Carlo method. The problem is
simulated using appropriate random variable 𝑋. Here the
following random variable is chosen:

𝑋 = {
1 if 𝑆 (B

𝑗
) = 1,

0 if 𝑆 (B
𝑗
) = 0.

(6)

It should be verified that the mean value of 𝑋 equals the
availability 𝐴. For the mean value holds true the following
formula:

𝐸 (𝑋) =

2
𝑛

∑

𝑗=1

𝑋
𝑗
⋅ 𝑃 (B

𝑗
) =

2
𝑛

∑

𝑗=1,B
𝑗
∈𝑉
1

𝑃 (B
𝑗
) = 𝐴. (7)

That is, the random variable𝑋 is selected properly.
The experiment consists of generating a random state

vector and determining the value of 𝑋
𝑗
. The vectors are

generated according to following rule: the probability that
a specific state vector B

𝑗
is generated equals the probability

𝑃(B
𝑗
). After𝑁 repetitions of this experiment a random sam-

ple 𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑁
is obtained. The sample mean 𝑋 of this

random sample estimates the mean value of the variable 𝑋
and therefore the availability 𝐴.

3.3. System State Evaluation. Themost important part of both
approaches from computation point of view is determination
of the system state 𝑆(B). It is an algorithm which for a system
given by an adjacency matrix and for a given state vector B
determines the state of the system, that is, if the system is
operational. The algorithm consists of two primary steps:

(i) removal of failed components,
(ii) deciding if the system is operational,

and is defined as follows.

(1) Remove rows and columns that belong to failed
components from the adjacency matrix.

(2) Create three empty sets ACTUAL, AVAILABLE, and
VISITED. Move system elements that are directly
connected to the IN element to the AVAILABLE set.

(3) Move elements fromAVAILABLE to ACTUAL.Move
elements that are directly connected to some of the
elements in ACTUAL and that are not in VISITED to
AVAILABLE.

(4) If AVAILABLE contains the OUT element, terminate
the algorithm; system is operational.

(5) If AVAILABLE is empty, terminate the algorithm;
system is not operational.

(6) Move elements fromACTUAL toVISITED.Continue
to step (3).

Note. In fact the word “move” in the steps above means relo-
cation of components, that is, deletion from original set and
saving in a new set. If some components already exist in the
target set within the process, they remain there.

Considering the estimation of the computation time,
notice that steps (3) to (6) are executed atmost𝑚 times, where
𝑚 is the number of operational components of the system,
𝑚 ≤ 𝑛. This means that the state of the system is calculated in
𝑛 iterations at most.

4. Parallelization

Both analytical and simulation algorithms described in the
previous section were implemented in the MATLAB lan-
guage, at first as a sequential application and then both algo-
rithms were parallelized. The principle of the parallelization
consists in dividing the task into multiple simultaneous
threads, each of them executing a different part of the calcu-
lation.The aim of the process is to optimize the algorithms on
the one hand and reduce their computing time on the other
hand.

The Monte Carlo method is suitable for parallelization,
because the experiments are independent andmay be realized
in different threads. Assume that 𝑀 ⋅ 𝑟 experiments should
be executed in 𝑟 threads. This means that in the 𝑘th thread
𝑀 random state vectors are generated and for each of them
the system state is evaluated. The output of the thread is the
total number of generated vectors for which the system was
operational, denoted by 𝑆

𝑘
. The estimated availability can be

easily obtained from the intermediate results as follows:

𝑋 =
1

𝑀 ⋅ 𝑟

𝑟

∑

𝑘=1

𝑆
𝑘
. (8)

Similarly, in case of the analytical algorithm, the state
space can be divided into several parts and the state vectors
are evaluated in different threads.
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4.1. The Parfor Loop. MATLAB programming tool allows a
simple parallelization of loops with fixed number of recur-
rences using the “parfor” keyword. In case of theMonte Carlo
method, the loop over all the sample size is parallelized and
in case of the analytical algorithm it is the loop over the state
space. Number of threads inwhich the calculation is executed
equals the number of used processor cores at most.

4.2. The CUDA Technology. These algorithms can be effi-
ciently parallelized using CUDA (Compute Unified Device
Architecture). This technology allows using the NVIDIA
graphics cards for parallel computing. The threads are orga-
nized in blocks and the blocks are organized in a grid (CUDA
C Programming Guide 2013). In case the graphics card is
used in this simulation, there can be at most 1024 threads per
block and 65535 × 65535 blocks per grid. Furthermore, the
maximum amount of available memory cannot be exceeded.

In each thread the so-called “CUDA kernel” is executed.
This special function is written in a file with the “.cu”
extension; syntax is similar to the C++ language. There is
a possibility of working with these files directly within the
MATLAB environment. But first creating a “.ptx” file (Parallel
Thread Execution) using external compiler (NVIDIA CUDA
Compiler) is needed. From these two files the kernel object
can be created in MATLAB.

MATLAB also allows allocation of arrays on the graphics
card. These arrays are used as input and output variables of
the kernels. For the realization of random samples in MC
experiments (generation of random state vectors), an array of
length 𝑛 ⋅ 𝑁 of random numbers from 𝑈(0, 1) is preallocated
on the graphics card (𝑛 is the number of components and
𝑁 is the number of experiments). To generate the 𝑖th state
vector, 𝑛 numbers from this array are used (beginning with
the position 𝑖 ⋅ 𝑛 when indexing from 0).

4.3. Bitwise Operation. A further optimization of both algo-
rithms can be achieved using bitwise operations.Their proper
use results in a reduction of computing time aswell as in lower
memory requirements, which is especially important when
using the CUDA technology.

The state indicator of a component is always zero or one.
To save the state indicator, it is thus adequate to use one bit. In
this context, simulation variables of data type “unsigned int”
are used having the length of 32 bits. The binary code of such
variable consists of 32 digits (0/1), and each of them represents
the state of one component.

In the following numerical experiments the bitwise oper-
ations are used in the CUDA kernel code. Their use in the
pure MATLAB implementation is not suitable, because the
bitwise operations are extremely time-consuming.

5. Testing

For testing purposes the following well-scalable problem is
used. “A system of 𝑛 component with a serial structure is
given. Availability of each component equals 0.999. It is
necessary to quantify the availability of the system.”

Table 1: Sequential analytical algorithm test.

𝑛 2 4 8 10 12 16 20 24
Time [s] 0.0013 0.0014 0.021 0.083 0.33 5.3 87.4 1411
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Figure 2: Simulation algorithm using parfor: scalability graph.

The system with serial structure is represented by the
adjacency matrix given by

𝑀 =(

(

0 1 0 ⋅ ⋅ ⋅ 0

0 0 1

.

.

.

0 0 0 d 0
.
.
. 1

0 0 0 ⋅ ⋅ ⋅ 0

)

)

. (9)

The problemwas solved for various values of 𝑛 using both
analytical and simulation methods. All of the implementa-
tions were tested under equal conditions on two processors
Intel Sandy Bridge E5-2665, 8 cores each. The CUDA paral-
lelization was tested on the graphics card NVIDIAGT 555M.
The results of tests are shown in Tables 1–6 and Figures 2 and
3.

The analytical algorithmwas tested on small systems with
24 components at most. Tables 1, 2, and 3 show that the
analytical method is unsuitable for large systems, because
(as expected) the computing time increases approximately
exponentially with respect to 𝑛. However, for small systems,
its use is appropriate since exact results are obtained.

The parallel scalability graph in Figure 2 shows the com-
putation time decreasing when the number of threads grows
from 2 to 16 threads (note the logarithmic scale of both axes).
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Table 2: Analytical algorithm using parfor (time (s)).

𝑛 2 4 8 10 12 16 20 24
2 threads 0.031 0.029 0.038 0.068 0.19 2.73 43.7 698.8
4 threads 0.072 0.037 0.042 0.058 0.12 1.52 24.0 388.5
8 threads 0.047 0.053 0.055 0.061 0.09 0.84 12.9 208.0
16 threads 0.094 0.095 0.100 0.089 0.11 0.55 7.54 122.1

Table 3: Analytical algorithm using CUDA and bitwise operations.

𝑛 2 4 8 10 12 16 20 24
Time [s] 0.038 0.038 0.038 0.037 0.037 0.039 0.062 0.45

Table 4: Sequential simulation algorithm, sample size 105.

𝑛 10 20 40 80 120 160 200
𝐴 0.9900 0.9802 0.9608 0.9231 0.8869 0.8521 0.8186
𝑋 0.9903 0.9802 0.9613 0.9221 0.8862 0.8518 0.8201
PRSD 3.2036 2.2279 1.5761 1.0881 0.8823 0.7582 0.6752
Time [s] 12.26 19.14 34.25 66.89 100.65 135.85 173.35

Table 5: Simulation algorithm using parfor (time (s)).

𝑛 10 20 40 80 120 160 200
2 threads 6.17 10.59 17.62 33.86 51.29 69.54 89.07
4 threads 3.22 5.53 9.01 17.41 26.36 35.71 45.63
8 threads 1.67 3.01 4.64 8.88 13.45 18.27 23.02
16 threads 0.97 1.56 2.54 4.81 6.86 9.36 11.86

Table 6: Simulation algorithm using CUDA and bitwise operations.

𝑛 10 20 40 80 120 160 200
Time [s] 0.2336 0.027 0.0655 0.1803 0.358 0.5784 0.8684
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Figure 3: Simulation algorithm using parfor: scalability graph.

In case of the simulation algorithm besides the computa-
tion time also the estimated availability 𝑋 and PRSD (per-
centage relative standard deviation) were recorded, which
is demonstrated in Tables 4, 5, and 6. Random samples of
size 105 were used. The number of system components was
significantly increased as well to 𝑛 = 200.

Also in case of the Monte Carlo method, it has been
shown that the computation can be significantly reduced by
the use of parallel computing. This fact is illustrated in the
scalability graph in Figure 3, for several sizes of the system.
The scale of both axes is logarithmic.

6. Industrial Example

In this section an example of a concrete engineering problem
is presented; for its solution the aforementioned methods are
used. The task is to simulate the availability of a fire detector
system with independent components; for basic motivation
see Rausand and Hoyland [11]. The block diagram is shown
in Figure 4, and according to it, the corresponding adjacency
matrix can be constructed.
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Figure 4: Block diagram of a fire detection system.

Table 7: Failure and repair rates.

𝑖 Description 𝜆
𝑖
[h−1] 𝜇

𝑖
[h−1]

1 DC current source 3 ⋅ 10
−5 0.018

2, . . . , 7 Smoke detector 8.7 ⋅ 10
−4 0.025

8 Voting unit 1.1 ⋅ 10
−4 0.02

9 Manual switch 2 ⋅ 10
−5 0.01

10, . . . , 15 Fuse plug 1.3 ⋅ 10
−3 0.03

16 Pressure switch 2.5 ⋅ 10
−4 0.11

17 Start relay 4.3 ⋅ 10
−4 0.11

Assume that the system is in its useful life period; that
is, the failure rate and the repair rate of each component are
constant.Therefore, the availability𝑝

𝑖
(𝑡) of the 𝑖th component

is given by Dubi [10]:

𝑝
𝑖 (𝑡) =

𝜇
𝑖

𝜆
𝑖
+ 𝜇
𝑖

+
𝜆
𝑖

𝜆
𝑖
+ 𝜇
𝑖

𝑒
−(𝜆
𝑖
+𝜇
𝑖
)𝑡
, (10)

where 𝜆
𝑖
is the failure rate and 𝜇

𝑖
is the repair rate of the 𝑖th

component, exactly specified in Table 7.
Assume that in time 𝑡

0
= 0 (h) all components are opera-

tional.The availability of the system is simulated in time; thus
an appropriate time discretization should be chosen.Here, for
example, the constant step of 6 hours is chosen. At this point,
the simulation of the availability course in time can be com-
puted. For each time step, availability of each component is
first calculated using formula (10); then the availability of
the whole system is calculated using one of the methods
presented in Sections 3 and 4. It is convenient to plot the
results for each time step into a graph; see Figure 5.

Table 8 compares the computation time needed to calcu-
late the availability in 50 time steps (plotted in the graphs in
Figures 5 and 6) by different types of the algorithm.

7. Conclusions

This paper was aimed at two specific computing meth-
ods (analytical versus simulation) which can be used in
applications related to availability quantification of systems
represented by the adjacency matrix. Both methods were
parallelized; that is, their corresponding algorithms (see
Section 3) were implemented in parallel processing, by two
ways:

(i) parallelization using the MATLAB parfor loop,

0 50 100 150 200 250 300
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0.998

1

A
(t
)

t

Figure 5: Dependence of the availability on the time: analytical
method.
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Figure 6: Dependence of the availability on the time, including 95%
confidence interval, Monte Carlo method.

Table 8: Computation time comparison.

Algorithm type Method Time [s]
Sequential

Analytical
543.09

parfor in 16 threads 47.68
CUDA 1.965
Sequential

Monte Carlo (sample size 105)
435.21

parfor in 16 threads 34.27
CUDA 1.034

(ii) parallelization using the CUDA technology together
with the use of the bitwise operations.

Using these two parallelization techniques, the computa-
tion efficiency of both algorithms was successfully enhanced.
More significant reduction of the computing time was
achieved using the second technique. For instance, the
practical example presented in Section 6was computed over a
computing time which is 275 times shorter than the comput-
ing time used for the original sequential implementation.

The parallel scalability was illustrated in the first of these
two techniques (the parfor loop). The scalability graphs in
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Figures 3 and 4 confirm that the use of parallel computing is
always more efficient than the traditional approach using the
sequential implementation.

On testing example we showed that the simulation
methodology is particularly convenient when the number of
system components increases. For instance, if the number of
system components approaches 𝑛 = 200, this method gives
acceptable results, whereas using analytical method is impos-
sible.
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