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Abstract

This thesis focuses mainly on the derivation of mathematical model of contact thermo-

dynamics, which can be apply on numerical algorithm. We consider problem, where the

thermal expansion affects displacement and vice versa where the displacement of solid in-

fluences temperature of the material. This happens especially on the contact boundary

of each body, where we consider Coulomb friction, which depends on pressure on contact

boundary. Firstly from physical equations we derive weak formulations and discretize them

in space and time. We transform this equations into dual problem in Lagrange multipliers,

which are more sutiable for numerical computation. In last part we describe the process

of finding the numerical solution. At the end reader can see solution of problem based on

process derived in this text.

Keywords: contact dynamics problems, minimization problem, Coulomb friction, thermo-

mechanical problems, elasticity, heat transfer

Abstrakt

Hlavním cílem této diplomové práce je odvození matematického modelu termo-dynamického

kontaktního problému, který by byl jednoduše aplikovatelný na numerický výpočet. Uvažu-

jeme úlohu ve které je deformace těles ovlivněna vznikem tepla a jeho šířením, a opačně

také vliv deformace těles na teplotu materiálu. K tomu dochází především v místě kon-

taktu, kde uvažujeme Coulombovský model tření závislý na tlaku na kontaktní hranici.

Nejprve z fyzikálního modelu odvozujeme slabé formulace, které diskretizujeme v prostoru

a čase. Tyto tvary převádíme na duální problém v Lagrangeovských multiplikátorech, které

jsou vhodnější pro numerický výpočet. V poslední části popisujeme postup numerického

řešení. Na závěr čtenář nalezne řešení úlohy pomocí postupu představeného v tomto textu.

Klíčová slova: dynamické kontaktní problémy, úlohy minimalizace, Coulombovské tření,

deformace, šíření tepla



Notation

d dimmension d ∈ {2, 3}

Ω ⊂ R
d domain

el. element in discretized domain

dof degree of freedom

f scalar values or unknowns (i.e. f : Ω→ R)

v vector values or unknowns (i.e. v : Ω→ R
d)

T tensor values or unknowns (i.e. T : Ω→ R
d×d
sym)

v algebraic vector values or unknowns (i.e. v ∈ R
n)

M algebraic matrices values or unknowns (i.e. M ∈ R
n×m)

SVoi
(
Msym

)
vectorized values of symmetric matrix or tensor in symmetric Voigt notation:

SVoi
(
Msym

)
= SVoi



m11 · · · m1d

. . .
...

sym. mdd




=
[
m11 · · · mdd

1√
2
md(d−1) · · · 1√

2
m1d · · · 1√

2
m12 · · ·

]⊤

Differential operations

∂if partial derivative

∇(f) = ∇f gradient of scalar function: ∇(f) = [∂1f, . . . , ∂df ]
⊤

div(v) divergence of vector field: div(v) = ∇ · v = ∂ivi = ∂1v1 + · · ·+ ∂dvd

div(T ) divergence of tensor field:

div(T ) = T ∇ = [∂kT1k, . . . , ∂kTdk]
⊤ =



∂1T11 + · · ·+ ∂dT1d
...

. . .
...

∂1Td1 + · · ·+ ∂dTdd


 .
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Specially we have

div(fId) = [∂kfId1k, . . . , ∂kfIddk]
⊤ = [∂1f, . . . , ∂df ]

⊤ = ∇(f)

∇(v) gradient of vector function:

∇(v) =



(∇(v1))

⊤

...

(∇(vd))
⊤


 =



∂1v1 · · · ∂dv1

...
. . .

...

∂1vd · · · ∂dvd




∇sym(v) symmetrized gradient of vector function:

∇sym(v) = sym(∇(v)) = sym






(∇(v1))

⊤

...

(∇(∇vd))
⊤





 =



∂1v1 · · · 1

2(∂dv1 + ∂1vd)
. . .

...

sym. ∂dvd




∆(f) Laplace operator of scalar

∆(f) = ∇ · ∇(f) = ∂iif = ∂11f + · · ·+ ∂ddf

Binary operations

v w = viwi ∈ R scalar product

T U = TikUkj ∈ R
d×d matrix product

T : U = TijUij ∈ R Frobenius inner product (T : U = tr(T⊤U) = tr(T U⊤))
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Introduction

The research of solid bodies moves from engineering into computational mechanics. Be-

cause of continuing development of computational systems, we are able to easily simulate

behavior of body. That can be cheaper and faster in computer, than manufacture thing

from the examined material and test it. This is also true in field of contact mechanics.

Contact mechanics is discipline that deals with the analysis of system of deformable bodies.

This bodies are exposed to the influences of the real world, for example surface force and

heat flux (like in our case), but others e.g. volume forces. To the describtion of the model

is needed not only balance equation from continuum mechanics, like in one-body case, but

also conditions for describtion of more bodies. Here belongs nonpenetrability condition

and friction condition. There are several friction conditions, we are taking into account

Coulomb friction, which depends not only on material structure on contact part, but also

on the pressure between bodies. This influences formation of heat and motion of body.

Usually these types of problems take into account just one variable heat or elasticity,

but not both. This makes these types of problems more complex for analysis. In this

thesis we study contact dynamics problem with frictional heating and we are interested

in displacement and heat distribution of two bodies in time. We are taking into account

heating formed due to deformation and especially from friction on contact part. On the

other hand, heating can affect deformations. This work mainly draws from S. Hüeber and

B.I. Wohlmuth’s paper [1] and monography by Peter Wriggers [2].

In first sections we are introducing balance equations for the linear thermo-elasticity. We

have local momentum of balance, given by equation, where beyond common terms is

couple-term (i.e. temperature affect deformation and vice versa). In the second part
we derive weak formulations of this balance equations. Then apply space discretization
and choosing general base functions show, how to assemble mass-, stiffness- and contact
boundary matrices, vectors of load forces and contact conditions vector. Next, we discretize
this equations in time, using Newmark discretization scheme [7] and backward scheme.
In final part of derivation we show, how to get equivalent formulation of problem using
minimization of the energy functional.

Practical part of work is especially about extension of the Matlab MatSol library, which
is developed by the team of IT4Innovations. About MatSol see [5, 6]. We implemented
MatSol example in 3D for dynamics contact problem of two bodies. In algorithm are
procedures using FETI method, Lumped preconditoning and Mortar technique already
included in MatSol, so we don’t deal with clarification of these methods. We use one type
of geometry, and we are curious about heat transfer between bodies and about formation
of heat due to friction between solids. This is demonstrated in different tasks. Solutions
obtained in this process is presented at the end of this thesis.
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1 Model problem

In this thesis we study two bodies and their deformation and heat transfer. We consider
two deformable bodies in their reference configuration Ωi ⊂ R

d, i ∈ {m, s}, where d = 2, 3

is dimension of problem, m stands for the master body and s for the slave body. We are
interested in displacement field ui(x, t) and the temperature θi(x, t), for (x, t) ∈ Ωi×(0, T ),

where (0, T ) is the given time interval. The boundery ∂Ωi is Lipschitz and is divided in this
way. For elasticity holds

Γi = Γ
i
uD ∪ Γ

i
uN ∪ Γ

i
C ,

∅ = Γi
uD ∩ Γ

i
uN = Γi

uN ∩ Γ
i
C = Γi

uD ∩ Γ
i
C ,

and for heat transfer holds

Γi = Γ
i
θD ∪ Γ

i
θN ∪ Γ

i
C ,

∅ = Γi
θD ∩ Γ

i
θN = Γi

θN ∩ Γ
i
C = Γi

θD ∩ Γ
i
C .

Moreover Γi
θD ∪ Γ

i
θN = Γ

i
uD ∪ Γ

i
uN . The portion Γ

i
·D represents the part of the boundary

where displacement or temperature are prescribed. Γi
·N is the part, where tractions or heat

flow are prescribed. Finally Γi
C is the part of possible contact between master and slave

bodies which is equal for elasticity and heat problem. Inside area Ωi can be prescribed
body force for elastictiy or heat source for heat transfer problem.

Figure 1.1: Master and slave body.
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2 Strong formulation

In this part we show separately elasticity problem with given boundary and initial con-
ditions and similary heat transfer problem with given conditions. How to obtain local
momentum of balance equations can be seen in [3, 4]. For both cases let Ωi ⊂ R

d be
a bounded domain with the Lipschity boundary described in previous section.

2.1 Elasticity

For i ∈ {m, s} we have local momentum of balance equation with Dirichlet and Neumann
boundary conditions and initial conditons for each body. We are looking for
u(x, t) : Ωi × (0, T ) → R

d which is called strong solution of a contact problem and it
satisfies following five equations:

̺iüi − div(P i(ui, θi)) = f i, in Ωi × (0, T ), (2.1)

ui = uiD, on Γi
uD × (0, T ), (2.2)

σi(ui)ni0 = piN , on Γi
uN × (0, T ), (2.3)

u̇i = u̇i0, ui = ui0, in Ωi × {0}, (2.4)

where ρ is density of material, n0 is outward unit normal vector in reference configuration
on Γi, and the first Piola-Kirchhoff stress tensor is

P i(ui, θi) = σi(ui) + dKiαi(θi − θ0)Id,

where σi is the linear stress tensor, Ki is the bulk modulus, αi is the thermal expansion
coefficient and θ0 is the reference temperature at which the bodies are stress free which we
assume to be constant on Ωs ∪ Ωm. From linear elasticity (Hooke’s law) we have fourth
order elasticity tensor c = cijkl, Cauchy’s strain tensor ε = εij and holds

σi(ui) = c : εi(ui) = λitr(εi)Id + 2µiεi, εi(ui) =
1

2

(
∇(ui) +∇⊤(ui)

)
.

Where Lamé parameters λ, µ are equal to

λi =
Eiνi

(1 + νi)(1− 2νi)
, µi =

Ei

2(1 + νi)
, Ki = λi +

2

d
µi,

depending on the Young’s modulus Ei ∈ R
+ and Poisson ratio νi ∈ (0, 0.5).

Moreover we can modify term −div(P i(ui)) in (2.1), so we get

̺iüi − div(σi(ui)) + dKiαi∇θi = f i, in Ωi × (0, T ). (2.5)
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For further use denote

pi(ui) = σi(ui)ni0,

pin(u
i) = σi(ui)ni0 · n

i
0,

piτ (u
i) = pi(ui)− pin(u

i)ni0,

where pin is normal pressure, piτ is tangential pressure. For the definition of linearized
contact conditions we assume a smooth mapping Rt(x

s) : Γs
C → Γm

C such that

• Rt(Γ
s
C) ⊂ Γm

C

• the vector ϕs(xs, t) − ϕm(Rt(x
s), t) is parallel with the actual outer normal n(xs, t)

to Γs
C in ϕs(xs, t)

• actual gap g(xs, t) := [ϕs(xs, t)− ϕm(Rt(x
s), t)]n(xs, t)

Using the above defined mapping we define the jump of the vector function w(x, t) across
Γs
C and its normal and tangential part

[w](xs, t) := ws(xs, t)− wm(Rt(x
s), t) ∀xs ∈ Γs

C

[w]n(x
s, t) := [w](xs, t) · n(xs, t)

[w]τ (x
s, t) := [w](xs, t)− [w]n(x

s, t)n(xs, t)

There are two conditions on Γi
C . In the outward normal direction is prescribed the non-

penetrability, i.e. ∀xs ∈ Γs
C

0 ≥ g(xs, t) = [ϕs(xs, t)− ϕm(Rt(x
s), t)]n(xs, t)

= [u]n(x
s, t) + [xs −Rt(x

s)]n(xs, t) = ([u]n − g0) (x
s, t)

0 ≤ pn(x
s, t) =

(
σ(u)n · n

)
(xs, t) (2.6)

0 = (png) (x
s, t)

and friction condition

‖piτ (u
i)‖ − F|pin(u

i)| ≤ 0

[u̇]τ + β2pτ (u) = 0 (2.7)

[u̇]τ
(
‖piτ (u

i)‖ − F|pin(u
i)|

)
= 0

Problem to solve is given by the equilibrium condition (2.5), the boundary conditions (2.2),
(2.3), the initial conditions (2.4) and the mechanical contact conditions (2.6) and (2.7).
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2.2 Heat transfer

Similarly we are looking for θi(x, t) : Ωi× (0, T )→ R, which is strong solution of the heat
conduction equation. We can get this equation from the first law of thermodynamics, and
add prescribed boundary and initial conditions:

ciθ̇i − div(

−qi
︷ ︸︸ ︷
κi∇θi) +Hi(u̇) = ri, in Ωi × (0, T ), (2.8)

θi = θiD, on Γi
θD × (0, T ), (2.9)

qini0 = qiN , on Γi
θN × (0, T ), (2.10)

qini = qiC , on Γi
θC × (0, T ), (2.11)

θi = θi0, in Ωi × {0}, (2.12)

where κi > 0 is the thermal conductivity, ci is the specific heat capacity of the body Ωi,
qi is the heat flux, ri is the prescribed heat source and the heating term from the Joule
effect is

Hi = dαiKiθ0div(u̇
i).

The condition for heat flux on contact boundary qiC := qini can be written as

qsC = γsCpn(θ
s − θ0), qmC = γmC pn(θ

m − θ0), 0 = qsC + qmC + pτ [u̇]τ , (2.13)

let’s note, that material coefficient γiC(pn), which affects heat transfer depending on presure
is used as a linear model γiC(pn) := γiCpn. From previous equations follows

qsC = βCpn [θ]− δCFpn‖[u̇]τ‖,

qmC = −βCpn [θ]− (1− δC)Fpn‖[u̇]τ‖,

βC =
γsCγ

m
C

γsC + γmC
, δC =

γsC
γsC + γmC

, [θ] = θs − θm,

because
0 = qsC + qmC + pτ [u̇]τ = pn [γ

s
C(θ

s − θ0) + γmC (θ
m − θ0)] + pτ [u̇]τ .
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From that follows

θ0 =
γsCθ

s + γmC θ
m

γsC + γmC
+

pτ [u̇]τ

pn(γsC + γmC )
,

qsC = γsCpn

(
θs −

γsCθ
s + γmC θ

m

γsC + γmC
+

pτ [u̇]τ

pn(γsC + γmC )

)

= pn

(
γsCθ

s

(
1−

γsC
γsC + γmC

)
−
γsCγ

m
C θ

m

γsC + γmC

)
+

γsC
γsC + γmC

pτ [u̇]τ

= pnβC [θ]− δC‖pτ‖‖[u̇]τ‖ = pnβC [θ]− δCFpn‖[u̇]τ‖,

qmC = γmC pn

(
θm −

γsCθ
s + γmC θ

m

γsC + γmC
+

pτ [u̇]τ

pn(γsC + γmC )

)

= pn

(
γmC θ

m

(
1−

γmC
γsC + γmC

)
−
γsCγ

m
C θ

s

γsC + γmC

)
+

γmC
γsC + γmC

pτ [u̇]τ

= −pnβC [θ]− (1− δc)Fpn‖[u̇]τ‖ = −q
s
C − Fpn‖[u̇]τ‖,

which completes the way of derivation of the above formulas. We should stress that in the
previous adjustments we used the relations

pτ [u̇]τ = −‖pτ‖‖[u̇]τ‖ and ‖pτ‖‖[u̇]τ‖ = Fpn‖[u̇]τ‖.

Now the heat transfer problem is given by heat conduction equation (2.8), the bound-
ary conditions (2.9)-(2.11), the initial condition (2.12) and the thermal flow conditions
on contact interface (2.13).
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3 Weak formulation

In this section we demonstrate how to get weak formulations from strong forms in previous
section. First of all we need to define spaces of test functions for each body in given problem
and sets of admissible displacements.

3.1 Spaces definition

In this part we define space of test functions, define

V i := H1(Ωi), V = V s × V m,

V i
D :=

{
χi ∈ V i

∣∣ T (χi) = θiD on Γi
θD

}
, VD = V s

D × V
m
D ,

V i
0 :=

{
χi ∈ V i

∣∣ T (χi) = 0 on Γi
θD

}
, V0 = V s

0 × V
m
0 ,

V i :=
(
V i

)d
, V = V s × V m,

V i
D :=

{
vi ∈ V i

∣∣ T (vi) = uiD on Γi
uD

}
, V D = V s

D × V
m
D ,

V i
0 :=

{
vi ∈ V i

∣∣ T (vi) = 0 on Γi
uD

}
, V 0 = V s

0 × V
m
0 ,

and convex sets

K(t) := {v ∈ V D| [v]n (x
s, t) ≤ g0(x

s, t)} ,

M(γ) :=
{
µ ∈ V ′

∣∣ µn ≥ 0, ‖µτ‖ ≤ Fγ
}
,

where K(t) is a convex set of functions satisfying the non-penetration condition (2.6), and
M(γ) is convex set of Lagrange multipliers.

Theoretically, we are looking for solution from V D for elasticity and from VD for heat
transfer. In this phase its too difficult, because of continous functions, but that will be

discussed later.

3.2 Elasticity

Multiplying (2.5) by w ∈ V 0, and integrating over Ω
i we get

ˆ

Ωi

̺iüiwi dx−

ˆ

Ωi

div(σi(ui))wi dx+

ˆ

Ωi

dKiαi∇θiwi dx =

ˆ

Ωi

f iwi dx, ∀w ∈ V 0,
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apply Green’s theorem on term with div(·)

−

ˆ

Ωi

div
(
σi

(
ui
))
wi dx =

= −

ˆ

∂Ωi

σi
(
ui
)
wini0

(
xi
)
dS(x) +

ˆ

Ωi

σi
(
ui
)
: ∇

(
wi

)
dx, ∀w ∈ V 0.

Integral over boundary Ωi divide into sum of integrals over ΓD, ΓN and ΓC

ˆ

∂Ωi

σi
(
ui
)
wini0

(
xi
)
dS(x) =

ˆ

ΓD

σi
(
ui
)

=0︷︸︸︷
wi ni0

(
xi
)
dS(x)+

+

ˆ

ΓN

piN︷ ︸︸ ︷
σi

(
ui
)
ni0w

i
(
xi
)
dS(x) +

ˆ

ΓC

λ︷ ︸︸ ︷
σi

(
ui
)
ni0w

i
(
xi
)
dS(x),

where λ ∈ M approximate the contact stress. Because of contact boundary we have
to apply jump between solids and apply (2.6), (2.7). Using above process we get weak
formulation of elasticity problem

mu(ü, w) + au(u,w) + auθ(θ, w) + bu(w, λ) = fu(w), ∀w ∈ V 0

bun(u, µ− λ) + buτ (u̇, µ− λ) ≤ 〈g, µn − λn〉, ∀µ ∈M(λn)

}
Mu(λn)

with the bilinear forms

mu(ü, w) =
∑

i∈{s,m}

ˆ

Ωi

̺iüiwi dxi,

au(u,w) =
∑

i∈{s,m}

ˆ

Ωi

(
c : εi(ui)

)
: εi(wi) dxi,

auθ(θ, w) =
∑

i∈{s,m}

ˆ

Ωi

dKiαi∇θiwi dxi,

bu(w, µ) = bun(w, µ) + buτ (w, µ),

bun(w, µ) =

ˆ

Γs
C

[w]nµn dS(x
s),

buτ (w, µ) =

ˆ

Γs
C

[w]τ · µτ dS(x
s),

and the linear form

fu(w) =
∑

i∈{s,m}

ˆ

Γi
uN

piNw
i dS(xi) +

∑

i∈{s,m}

ˆ

Ωi

f iwi dxi.
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3.3 Heat transfer

Multiplying (2.8) by χ ∈ V0, integrating over Ωi, and using the Green’s theorem we have

mθ(θ̇, χ) + aθ(θ, χ) + aθu(u̇, χ) + 〈λθ, [χ]〉Γs
C

= fθ(χ), ∀χ ∈ V0,

〈λθ, w〉Γs
C
+ dθ,λun

(u̇, w) = bθ,λun
(θ, w), ∀w ∈W,

}
Mθ(λun)

with linear and bilinear forms

mθ(θ̇, χ) =
∑

i∈{s,m}

ˆ

Ωi

ciθ̇iχi dxi,

aθ(θ, χ) =
∑

i∈{s,m}

ˆ

Ωi

κi∇θi · ∇χi dxi,

aθu(u̇, χ) =
∑

i∈{s,m}

ˆ

Ωi

dθ0K
iαidiv(u̇i)χi dxi,

fθ(χ) =
∑

i∈{s,m}

ˆ

Γi
θN

qiNχ
i dS(xi) +

∑

i∈{s,m}

ˆ

Ωi

riχi dxi,

bθ,λun
(ϑ,w) =

ˆ

Γs
C

λunβC [ϑ]w dS(x
s),

dθ,λun
(u̇, w) =

ˆ

Γs
C

δCFλun‖[u̇]τ‖w dS(x
s).

Taking a closer look on aθu(u̇, χ) we see (because of ∇ · (fg) = f(∇ · g) + g · ∇(f) and the
Green formula) that

aθu(u̇, χ) =
∑

i∈{s,m}
dθ0K

iαi

ˆ

Ωi

(∇ · u̇i)χi dxi =

=
∑

i∈{s,m}
dθ0K

iαi

(
ˆ

∂Ωi

χiu̇i · ni dS(xi)−

ˆ

Ωi

u̇i · ∇(χi) dxi
)
=

=
∑

i∈{s,m}
dθ0K

iαi

ˆ

∂Ωi

χiu̇i · ni dS(xi)− θ0auθ(χ, u̇)

In accordance with remark 4.1 in [1], we can substitute w = [χ] into (Mθ(λun))2 and
denote

b̂θ,λun
(ϑ, χ) = bθ,λun

(ϑ, [χ]), d̂θ,λun
(u̇, χ) = dθ,λun

(u̇, [χ]),

now we can substitute 〈λθ, [χ]〉Γs
C
in (Mθ(λun)) and get

mθ(θ̇, χ) + aθ(θ, χ) + aθu(u̇, χ) + b̂θ,λun
(θ, χ)− d̂θ,λun

(u̇, χ) = fθ(χ), ∀χ ∈ V0.
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3.4 Fixed point formulation

We will simplify our problems by defining the auxiliary problem

mu(ü, w) + au(u,w) + auθ(θ, w) + bu(w, λ) = fu(w), ∀w ∈ V 0,

bun(u, µ− λ) + buτ (u̇, µ− λ) ≤ 〈g, µn − λn〉, ∀µ ∈M(γ),

}
Mu(γ)

for the given γ ∈ H1
+(Ω

s), so the solution (u, λ) of (Mu(λn)) is the solution (û, λ̂) of
(Mu(γ)) iff λ̂ is the fixed point of the mapping

γ 7→ λn, where λn is the solution of (Mu(γ)).

Analogously as in the elasticity problem we will use the fixed point approach and define
the auxiliary problem

mθ(θ̇, χ) + aθ(θ, χ) + aθu(u̇, χ) + b̂θ,γ(θ, χ)− d̂θ,γ(u̇, χ) = fθ(χ), ∀χ ∈ V0. Mθ(γ)
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4 Discretization of spaces

In this part we will introduce discretized form of spaces in previous section, and using basis
functions to get algebraic representation of known (bi)linear forms.

4.1 Discretized spaces definition

The spaces V , V0, V , V 0, the affine sets VD, V D and the convex setM(γ) will be discretized

by

V i
h =

{
vih ∈ C(Ω

i
)
∣∣∣ vih ∈ P̃ (el), ∀el ∈ T i

h

}
, Vh = V s

h × V
m
h ,

V i
0,h =

{
vih ∈ V

i
h

∣∣ vih = 0 on Γi
θD

}
, V0,h = V s

0,h × V
m
0,h,

V i
D,h =

{
vih ∈ V

i
h

∣∣ vih = θiD on Γ
i
θD

}
, VD,h = V s

D,h × V
m
D,h,

V i
h =

(
V i
h

)d
, V h = V s

h × V
m
h ,

V i
0,h =

{
vih ∈ V

i
h

∣∣ vih = 0 on Γi
uD

}
, V 0,h = V s

0,h × V
m
0,h,

V i
D,h =

{
vih ∈ V

i
h

∣∣ vih = uiD on Γ
i
uD

}
, V D,h = V s

D,h × V
m
D,h,

Mh(γ) =



µh ∈ Mh(γ)

∣∣∣∣∣∣
µh =

nΓs
C

nodes∑

k=1

µkψk



 , Mh = (Mh)

d ,

where ψk are basis function of Mh. The discretization of spaces allows us to write each

space as the linear combination of each base function, therefore denote using linear span

V i
h = span

j=1,...,ni
nodes

{ϕi
j}, V i

h = span
j=1,...,ni

nodes

k=1,...,d

{ϕi,k
j },

V i
0,h = span

j=1,...,ni
nodes

xi
j /∈Γi

θD

{ϕi
j}, V i

0,h = span
j=1,...,ni

nodes

xi
j /∈Γi

uD

k=1,...,d

{ϕi,k
j },

Mh = span
j=1,...,nΓs

C
nodes

{ψj}, Mh = span
j=1,...,nΓs

C
nodes

k=1,...,d

{ψk
j },
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and with the above notation we mean e.g. for the case of d = 3

ϕi,1
j (x) =



ϕi
j(x)

0

0


 , ϕi,2

j (x) =




0

ϕi
j(x)

0


 , ϕi,3

j (x) =




0

0

ϕi
j(x)


 ,

ψ1j (x) =



ψj(x)

0

0


 , ψ2j (x) =




0

ψj(x)

0


 , ψ3j (x) =




0

0

ψj(x)


 ,

where ϕi
j are the nodal basis functions.

4.1.1 Algebraic form of solution

The displacement uih for d ∈ {2, 3} and θih can be expresed using basis functions and
summation over nodes as follows

uih =

ni
nodes∑

j=1
xi
j /∈Γi

θD

d∑

k=1

[[ui]]k+d(j−1)ϕ
i,k
j , θih =

ni
nodes∑

j=1
xi
j /∈Γi

θD

[[θi]]jϕ
i
j . (4.1)

Similarly we need discretized form of Lagrange multipliers, which can be written as

λ =

[
λn

λτ

]
, λn ∈ R

nΓs
C

nodes , λτ ∈ R
d·nΓs

C
nodes , in 3D : λτ =

[
λτ1

λτ2

]
, (4.2)

λn,h =

nΓs
C

nodes∑

j=1

[[λn]]jψj , λτl,h =

nΓs
C

nodes∑

j=1

[[λτl]]jψj , l ∈

{
{1}, in 2D,

{1, 2}, in 3D,

λh = λn,h · n+
d∑

l=1

λτl,h · τ l,

where n, τ l are orthogonal unit vectors and nΓs
C

nodes are nodes over contact interface
on slave body.

4.2 Algebraic spaces and sets definition

In section 4.1 we introduced discretized spaces, but for computational resons, we also need
spaces, where are only node-values. Let’s introduce algebraic spaces related to discretized
forms:

Vh ≡ Vθ = R
nnodes , V h ≡ Vu = R

d×nnodes .
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Next, there are subspaces Vθ, Vu, where nodes belonging to Dirichlet dof’s are equal
to zero. Dimensions of that spaces are

V0,h ≡ Vθ0 = R
nnodes , V 0,h ≡ Vu0 = R

d×nnodes .

Finally, we introduce affine sets, where value for nodes on Dirichlet boundary is equal

to value of the prescribed function

VD,h ≡ VθD = R
nnodes , V D,h ≡ VuD = R

d×nnodes .

4.3 Space-discretized form of elasticity problem

Now we show, how to write down algebraic representation of known linear forms, first of all
relable equation (Mu(γ)), so we get weak discretized formulation of elasticity problem

mu(üh, wh) + au(uh, wh) + auθ(θh, wh) + bu(wh, λh) = fu(wh), ∀wh ∈ V 0,h,

bn(uh, µh − λh) + bτ (u̇h, µh − λh) ≤ 〈g, µn,h − λn,h〉, ∀µh ∈Mh(γ),

after that using (4.1) we can write bilinear form in discretized formulation

mu(üh, wh) =
∑

i∈{m,s}
mu(ü

i
h, w

i
h) =

=
∑

i∈{m,s}
mu




ni
nodes∑

j=1
xi
j /∈Γi

θD

d∑

k=1

[üi]k+d(j−1)ϕ
i,k
j ,

ni
nodes∑

j=1
xi
j /∈Γi

θD

d∑

k=1

[wi]k+d(j−1)ϕ
i,k
j


 =

= [ws⊤wm⊤]

[
Ms

u 0

0 Mm
u

][
üs

üm

]
= w⊤Muü,

where Mu is the mass matrix of elasticity problem and the number [[Mi
u]]o,p in the matrix

Mi
u on the position (o, p) is

[[Mu]]
i
o,p =

ni
nodes∑

j1,j2=1
xi
j /∈Γi

θD

d∑

k1,k2=1

δo,k1+d(j1−1)δp,k2+d(j2−1)

ˆ

Ωi

̺iϕi,k1
j1

ϕi,k2
j2

dxi,
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we note here that ϕi,k1
j1

ϕi,k2
j2

is the scalar product in R
d. The bilinear form au can be written

then as

au(uh, wh) =
∑

i∈{m,s}
au(u

i
h, w

i
h) =

=
∑

i∈{m,s}
au




ni
nodes∑

j=1
xi
j /∈Γi

θD

d∑

k=1

[ui]k+d(j−1)ϕ
i,k
j ,

ni
nodes∑

j=1
xi
j /∈Γi

θD

d∑

k=1

[wi]k+d(j−1)ϕ
i,k
j


 =

= [ws⊤wm⊤]

[
Ks 0

0 Km

][
us

um

]
= w⊤Ku,

where Ku is the stiffness matrix of elasticity problem, and holds

[[Ki
u]]o,p =

ni
nodes∑

j1,j2=1
xi
j /∈Γi

θD

d∑

k1,k2=1

δo,k1+d(j1−1)δp,k2+d(j2−1)

ˆ

Ωi

SVoi⊤
(
∇sym

(
ϕi,k1
j1

))
CSVoi

(
∇sym

(
ϕi,k2
j2

))
dxi.

The linear form fu(w) can be written as

fu(wh) =
∑

i∈{m,s}
fu




ni
nodes∑

j=1
xi
j /∈Γi

θD

d∑

k=1

[[wi]]k+d(j−1)ϕ
i,k
j


 = [ws⊤wm⊤]

[
fsu
fmu

]
= w⊤fu,

where fu is vector of the load forces, which contains Neumann boundary conditions and
is equal to

[[fiu]]o =

nnodes∑

j=1
xi
j /∈Γi

θD

d∑

k=1

δo,k+d(j−1)

(

ˆ

Γi
N

piNϕ
i,k
j dxi +

ˆ

Ωi

f̃ iϕi,k
j dxi

)

.
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The bilinear form auθ can be written then as

auθ(θh, wh) =
∑

i∈{m,s}
auθ(θ

i
h, w

i
h) =

=
∑

i∈{m,s}
auθ




ni
nodes∑

j=1
xi
j /∈Γi

θD

[[θi]]jϕ
i
j ,

ni
nodes∑

j=1
xi
j /∈Γi

θD

d∑

k=1

[[wi]]k+d(j−1)ϕ
i,k
j


 =

= [ws⊤wm⊤]

[
Ks

uθ 0

0 Km
uθ

][
θs

θm

]
= w⊤Kuθθ,

where

[[Ki
uθ]]o,p = d

ni
nodes∑

j1,j2=1
xi
j /∈Γi

θD

d∑

k1=1

δo,k1+d(j1−1)δp,k2K
iαi

ˆ

Ωi

ϕi,k1
j1
· ∇ϕi

j2 dx
i =

= d

ni
nodes∑

j1,j2=1
xi
j /∈Γi

θD

d∑

k2=1

δo,k1+d(j1−1)K
iαi

ˆ

Ωi

ϕi,k1
j1
· ∇ϕi

p dx
i.

And

bun(wh, µh) =

ˆ

Γs
C

[wh]nµn,h dS(x
s) =

ˆ

Γs
C

(ws
hn− w

m
h n)µn,h dS(x

s) =

= bun




ni
nodes∑

j=1
xi
j /∈Γi

θD

d∑

k=1

[[wi]]k+d(j−1)ϕ
i,k
j ,

nΓs
C

nodes∑

j=1

[[µn]]jψj


 =

= [ws⊤wm⊤]

[
Bs
n 0

0 Bm
n

][
µn

µτ

]
= w⊤Bnµn,
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where

[[Bs
n]]o,p =

ns
nodes∑

j=1
xi
j /∈Γi

θD

d∑

k=1

nΓs
C

nodes∑

o=1

δp,k+d(j−1)

ˆ

Γs
C

ϕs,k
j · nψo dS(x

s),

[[Bm
n ]]o,p = −

nm
nodes∑

j=1
xi
j /∈Γi

θD

d∑

k=1

nΓs
C

nodes∑

o=1

δp,k+d(j−1)

ˆ

Γs
C

ϕm,k
j · nψo dS(x

s).

The discretization of buτ will be analogous to bun, i.e.

buτ (wh, µh) =
d∑

l=1

µ⊤τlBτlw,

one can also easy see that

B =




Bn

Bτ1(
Bτ2

)


 .

The space-discretized version of (Mu(γ)) is to find u ∈ VD such that

w⊤
(
Muü + Kuu + B⊤λ+Kuθθ

)
= w⊤f, ∀v : V0.(

µ− λ
)⊤
n
Bnu +

(
µ− λ

)⊤
τ
Bτ u̇ ≤

(
µ− λ

)⊤
n
g, ∀µ ∈ M(γ).

}
(M(γ))

4.4 Space-discretized form of heat transfer problem

In a similar way relable (Mθ(γ)), which implies weak discretized formulation of heat trans-
fer problem

mθ(θ̇h, χh) + aθ(θh, χh) + aθu(u̇h, χh) + b̂θ,γ(θh, χh)− d̂θ,γ(u̇h, χh) = fθ(χh), ∀χh ∈ V0,h.
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The mass term can be written as

mθ(θ̇h, χh) =
∑

i∈{m,s}
mθ(θ̇

i
h, χ

i
h) =

=
∑

i∈{m,s}
mθ




ni
nodes∑

j=1
xi
j /∈Γi

θD

[[θ̇i]]jϕ
i
j ,

ni
nodes∑

j=1
xi
j /∈Γi

θD

[[χi]]jϕ
i
j


 =

= [χs⊤,χm⊤]

[
Ms

θ 0

0 Mm
θ

][
θ̇s

θ̇m

]
= χ⊤Mθθ̇,

where the number Mi
θ[o,p] in the matrix Mi

θ on the position [o, p] is

Mi
θ[o,p] =

ni
nodes∑

j1,j2=1
xi
j /∈Γi

θD

δo,j1δp,j2

ˆ

Ωi

ciϕi
j1ϕ

i
j2 dx

i =

ˆ

Ωi

ciϕi
oϕ

i
p dx

i.

The stiffness matrix is assembled from term aθ as follows

aθ(θh, χh) =
∑

i∈{m,s}
aθ(θ

i
h, χ

i
h) =

∑

i∈{m,s}
aθ




ni
nodes∑

j=1
xi
j /∈Γi

θD

[[θi]]jϕ
i
j ,

ni
nodes∑

j=1
xi
j /∈Γi

θD

[[χi]]jϕ
i
j


 =

= [χs⊤ χm⊤]

[
Ks

θ 0

0 Km
θ

][
θs

θm

]
= χ⊤Kθθ,

where the number Ki
θ[o,p] in the matrix Ki

θ on the position [o, p] is

Ki
θ[o,p] =

ni
nodes∑

j1,j2=1
xi
j /∈Γi

θD

δo,j1δp,j2

ˆ

Ωi

κi∇ϕi
j1 · ∇ϕ

i
j2 dx

i =

ˆ

Ωi

κi∇ϕi
o · ∇ϕ

i
p dx

i.

The term

aθu(u̇h, χh) =
∑

i∈{m,s}
aθu(u̇

i
h, χ

i
h) = [χs⊤,χm⊤]

[
Ks

θu 0

0 Km
θu

][
u̇s

u̇m

]
= χ⊤Kθuu̇,
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where

[[Ki
θu]]o,p = dθ0

ni
nodes∑

j1,j2=1
xi
j /∈Γi

θD

d∑

k2=1

δo,j1δp,k2+d(j2−1)K
iαi

ˆ

Ωi

∇ϕi
j1 · ϕ

i,k2
j2

dxi.

The linear form fu(w) can be written as

fθ(χh) =
∑

i∈{m,s}
fu




ni
nodes∑

j=1
xi
j /∈Γi

θD

[[χi]]jϕ
i
j


 = [χs⊤ χm⊤]

[
fsθ
fmθ

]
= χ⊤fθ,

where

[[fiθ]]o =

nnodes∑

j=1
xi
j /∈Γi

θD

(

ˆ

Γi
N

qiNϕ
i,k
j dxi +

ˆ

Ωi

riϕi,k
j dxi

)

.

The discretization of the term b̂θ,γ(θh, χh) is

b̂θ,γ(θh, χh) = βC

ˆ

Γs
C

γ[θh][χh] dS(x) =

= [χs⊤,χm⊤]

[

Lss
θ,γ Lsm

θ,γ

sym. Lmm
θ,γ

][

θs

θm

]

= χ⊤Lθ,γθ,

where

[[Lss
θ,γ ]]ij = βC

ˆ

Γs
C

γϕs
i (x)ϕ

s
j(x) dS(x) = βC

nΓC nodes
∑

k=1

γk

ˆ

Γs
C

ϕs
kϕ

s
iϕ

s
j dS(x),

[[Lmm
θ,γ ]]ij = βC

ˆ

Γs
C

γϕm
i (Rt(x))ϕ

m
j (Rt(x)) dS(x) = βC

nΓC nodes
∑

k=1

γk

ˆ

Γs
C

ϕs
kϕ

m
i ϕ

m
j dS(x),

[[Lsm
θ,γ ]]ij = −βC

ˆ

Γs
C

γϕs
i (x)ϕ

m
j (Rt(x)) dS(x) = −βC

nΓC nodes
∑

k=1

γk

ˆ

Γs
C

ϕs
kϕ

s
iϕ

m
j dS(x).

Finally, discretization of bilinear form d̂θ,γ(u̇, χ) is

d̂θ,γ(u̇h, χh) =

ˆ

Γs
C

δCFγ‖[u̇]τ,h‖[χh] dS(x
s) =

= [χs⊤,χm⊤]

[

dsθ,γ(u̇)

dmθ,γ(u̇)

]

= χ⊤dθ,γ(u̇),
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where

[[dsθ,γ(u̇)]]i = δCF

ˆ

Γs
C

γ‖[u̇]τ,h‖ϕ
s
i (x

s) dS(xs)

[[dmθ,γ(u̇)]]i = δCF

ˆ

Γs
C

γ‖[u̇]τ,h‖ϕ
m
i (Rt(x

s)) dS(xs).

The space-discretized version of (Mθ(γ)) is then

Mθθ̇+Kθθ+Kθuu̇ + Lθ,γθ = fθ + dθu,γ(u̇). (4.3)
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5 Time discretization

Now we have weak formulation in discretized space, but we also need to discretized time to
timesteps. Due to the fact that in elasticity problem we have second time derivative of dis-
placement, we can use time discretization employ Newmark integration scheme, see [7]. In
heat transfer part of problem we use backward formula approximation, for discretization
scheme.

5.1 Newmark integration scheme

Newmark integration scheme is method for solving differential equations of the second
order, which uses known values in tk to get solution in time interval tk+1. With simple
modification, we can use this method to get time discretized form of displacement problem.

We split the time interval into nt times tk = kτ , τ = T/nt and denote

uk ≈ u(·, tk).

Standard Newmark integration scheme is defined, according to [8], as follows

uk+1 = uk + τ u̇k +
τ2

2

[
(1− 2β) ük + 2βük+1

]
, (5.1)

u̇k+1 = u̇k + τ
[
(1− γ) ük + γük+1

]
, (5.2)

to get acceptable order of convergence and to stabilize this method set constants 1
2 = γ =

2β, this choice provides the energy conserving of algorithm. Now from (5.1) we can express

ük+1 =
4

τ2
(uk+1 − uk)−

4

τ
u̇k − ük,

which we immediately insert into (5.2) and obtain

u̇k+1 =
2

τ
(uk+1 − uk)− u̇k.

Substituting formulas for ük+1 , u̇k+1 into the equilibrium equality (M(γ)) one will obtain
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for tk+1 the problem of finding
(
uk+1, λk+1

)
∈ VuD ×M(γ) such that

∀w ∈ Vu0, ∀µ ∈ M(γ) :

w⊤
[(

Ku +
4

τ2
Mu

)
uk+1 +

(
Bk+1

)⊤
λk+1 +Kuθθ

k+1

]
= w⊤fk+1u (uk, u̇k, ük), (5.3)

(
µ− λk+1

)⊤
[
Bk+1
n

2
τB

k+1
τ

]
uk+1 ≤

(
µ− λk+1

)⊤
[

gk+1

Bk+1
τ

(
2
τ u

k + u̇k
)
]
,

where

fk+1u (uk, u̇k, ük) = f̃k+1u +Mu

(
4

τ2
uk +

4

τ
u̇k + ük

)
.

Let us choose µ⊤ ∈ {[µ⊤n , λ
k+1⊤
τ ], [λk+1⊤n , τ

2µ
⊤
τ ]} and decouple inequality into two inequal-

ities
(
µ− λk+1

)⊤
n
Bk+1
n uk+1 ≤

(
µ− λk+1

)⊤
n
gk+1, ∀µ ∈ M(γ),

2

τ

(
µ− λk+1

)⊤
τ
Bk+1
τ uk+1 ≤

2

τ

(
µ− λk+1

)⊤
τ
Bk+1
τ

(
uk +

τ

2
u̇k

)
, ∀µ ∈ M(γ),

and summed again together as

(
µ− λk+1

)⊤
[
Bk+1
n

Bk+1
τ

]
uk+1 ≤

(
µ− λk+1

)⊤
[

gk+1

Bk+1
τ

(
uk + τ

2 u̇
k
)
]
, ∀µ ∈ M(γ). (5.4)

Equations (5.3) and (5.4) are discretized equations of elasticity part of our problem, note
that in (5.3) still occurs unknown term θk+1.

5.2 Backward formula scheme

As in previous section, we need to discretized time into timesteps also in heat tranfer part
of problem. We split the time interval into nt times tk = kτ , τ = T/nt and denote

θk ≈ θ(·, tk),

Newmark integration scheme can not be used, because the heat constitutive equation lack’s
second time derivative. We simply use backward formula from Backward Euler method

θ̇k+1 =
1

τ

(
θk+1 − θk

)
, (5.5)

and from the Newmark time discretization for displacement we have

u̇k+1 =
2

τ
(uk+1 − uk)− u̇k.
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Now substitue θ̇ and uk+1 into (4.3) and rearangement this equation into
(
1

τ
Mθ +Kθ + Lθ,γ

)
θk+1 +

2

τ
Kθuu

k+1 = fk+1θ (uk, u̇k, θk) + dθu,γ(u̇
k+1), (5.6)

where

fk+1θ (uk, u̇k, θk) = f̃k+1θ +
1

τ
Mθθ

k +Kθu

(
2

τ
uk − u̇k

)
.
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6 Numerical Realization

In this chapter we complete derivation of main problem. Before that we outline, how
assembling of vectors is realized

6.1 Assembly of matrices

In previous text we introduced discretized formulation of problems and assembly of ma-
trices using basis functions. Although in numerical example we solve problem using the
eight node hexahedron (brick) elements with appropriate shape functions, in this chapter
we explain discretization of domains in the 2D with triangulation. Note, that there are
several types of discretization [10, 11].

Each body Ωi is divided into triangular elements, who are non-overlapping. Note that
in our problem we use domains, that can be discretisable without any error. These elements
could be written as T i

h := {T
i
k }

nel.

k=1, where nel. is number of elements in body. The set of all
nodes is P̃ i,h(el.) := {xi}

nnodes

i=1 , where nnodes is number of all nodes. Each node in element
is numbered counter clockwise, its called local numbering. Similarly, the boundary parts
are replaced by their discretized form Γi,h

u· ,Γ
i,h
θ· ,Γ

h
C .

Figure 6.1: Possible discretization of the domains Ωi

We use finite element discretization from section 4.2, be cautious to see different notations
between algebraic vector V and analytics vector V . The solution u(t) ∈ V D is approxi-
mated by uh(t) ∈ VuD, respectively θh(t) ∈ VθD. The set VuD consists of vector functions
ũ(x, t) = (ũ(x, t), ṽ(x, t)) whose components are piecewise linear over each element and
ũ, ṽ : R2 × T → R. Similarly θh(t) consists of θ̃(x, t) = (ũ(x, t), χ̃(x, t)). Choose basis
function with respect to definitons in 4.1, ϕi(xj) = δij , where δij is Kronecker’s delta.
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Now, we approximate solution and test functions

ũ(x, t) =

nnodes∑

i=1

ui(t)ϕi(x), ṽ(x, t) =

nnodes∑

i=1

vi(t)ϕi(x),

θ̃(x, t) =

nnodes∑

i=1

θi(t)ϕi(x), χ̃(x, t) =

nnodes∑

i=1

χi(t)ϕi(x).

where ui, θi are unknowns of the functions ũ, θ̃ at the nodes. Because of easy implemen-
tation, the assembling of matricis and vectors is performed over individual elements. For
more see [9].

6.2 Domain decomposition

Because of possible computationally comprehensive problems, we introduce so-called gluing
condition. It helps in finding solution faster, due to smaller subdomains. After decom-
position of main domains, we need to prescribed neumann condition on new boundary
nodes. It is ensured by new matrix Bgl. ∈ R

nnodes ×nnodes , with [· · · 1 − 1 · · · ] on relevant
positions of boundary nodes and zeros elsewhere.

Figure 6.2: Domain decomposition

6.3 Decoupling

From previous section we have (5.6) as the main equation for heat flux and two equations for
displacement (5.3), (5.4), but there are still “displacement terms” in heat transfer equation
and vice versa. Some might say, that for decoupling, we could express θk+1, substitued
into (5.3), then uk+1 put into (5.4) and find solutions, but this can not be done, because
in that case full non-symetric matricies appears.

Instead, we find solution in each timestep using successive iterations. In this case we want
to find solution (uk+1, θk+1, λk+1) in the time tk+1 as the limit of (uk+1,p, θk+1,p, λk+1,p),
using starting values from previous timestep

(uk+1,0, θk+1,0, λk+1,0) = (uk, θk, λk).
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When we know (uk+1,p, θk+1,p, λk+1,p), we want to compute (uk+1,p+1, θk+1,p+1, λk+1,p+1).
Here we want to stress the fact, that

γk+1,p ≡ (λk+1,p)n,

so in the successive iteration scheme we don’t need to compute γk+1,p, only extract
it from λk+1,p. We decided to solve the heat problem (5.6) at first. So assembling
Lθ,γk+1,p , dθu,γk+1,p and substituing into (5.6) we obtain

χ⊤
(
1

τ
Mθ +Kθ + Lθ,γk+1,p

)
θk+1,p+1 = χ⊤ f̃k+1,pθ , ∀χ ∈ Vθ0, (6.1)

f̃k+1,pθ = fk+1θ (uk, u̇k, θk) + dθu,γk+1,p(uk+1,p)−
2

τ
Kθuu

k+1,p.

Because of the computational reasons we approximate Lθ,γk+1,pθk+1,p+1 by Lθ,γk+1,pθk+1,p

so instead of (6.1) we use

χ⊤
(
1

τ
Mθ +Kθ

)
θk+1,p+1 = χ⊤fk+1,pθ := χ⊤

(
f̃k+1,pθ − Lθ,γk+1,pθ

k+1,p
)
, ∀χ ∈ Vθ0.

(6.2)

and obtain θk+1,p+1. Because the possitive definite matrix 1
τMθ + Kθ is sparse, block

diagonal and does not change during the computation it can be factorized and the action
of it’s inverse can be effectively computed.

After that we will solve the contact problem with known fixed temperature distribution
θk+1,p+1, which will affect the righthand side of (5.3) and obtain the system

w⊤
(
4

τ2
Mu +Ku

)
uk+1,p+1 +w⊤

(
Bk+1

)⊤
λk+1,p+1 = w⊤

fk+1,pu︷ ︸︸ ︷(
fk+1u (uk, u̇k, ük)−Kuθθ

k+1,p+1
)
,

(6.3)
(
µ− λk+1,p+1

)⊤
Bk+1uk+1,p+1 ≤

(
µ− λk+1,p+1

)⊤
[

gk+1

Bk+1
τ

(
uk + τ

2 u̇
k
)
]
, ∀µ ∈ M(γ).

(6.4)

Also here the matrix 4
τ2
Mu + Ku is sparse, block diagonal and constant during the com-

putation.
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6.4 Treating Dirichlet boundary conditions using additional Lagrange

multipliers

In this part, we want to demonstrate in generaly terms how to solve our problems. We use
equivalency of solution of boundary value problem with minimization quadratic functional.
Introducing indicator function and extending sets over we minimize, we can rewrite problem
with homogeneous conditions into nonhomogeneous contact problem.

6.4.1 Deriving of the general procedure

So far we didn’t mention the nonhomogeneous Dirichlet boundary conditions. Taking
closer look at (6.2), after rearanging the Dirichlet dof’s at the end of the vector we have
the abstract problem

[
v⊤F 0⊤D

] [AFF AFD

A⊤FD ADD

][
uF
uD

]
= v⊤Au = v⊤b =

[
v⊤F 0⊤D

] [bF
bD

]
, ∀vF ∈ R

nF ,

for prescribed uD ∈ R
nD , where nD is the count of Dirichlet dof’s and nF is the count

of the rest dof’s. This problem is equivalent to the unconstrain minimization problem

argmin
vF

1

2
v⊤FAFFvF − v⊤F

(
bF −AFDuD

)
. (6.5)

The minimization in (6.5) is over vF ∈ R
nF , but can be equivalently written as the equality

constrained minimization over v ∈ R
nnodes

argmin
v: vD=uD

1

2
v⊤Av − v⊤b.

Indeed, after expanding the multiplication of block matrices we have

argmin
v: vD=uD

1

2
v⊤FAFFvF + v⊤FAFDvD +

const.︷ ︸︸ ︷
1

2
v⊤DADDvD −vFbF −

const.︷ ︸︸ ︷
vDbD,

which is the same as (6.5) except the constants which will not influence the resulting vF
where the minimum occures. Now, we want to get rid of the equality constraint. That
can be enforced by adding indicator function supµD

µ (vD − uD), which is equals to 0 if
vD = uD and equals to ∞ if vD 6= uD, where µ ∈ R

nD :

argmin
v

sup
µD

1

2
v⊤Av − v⊤b + µ⊤D

(
BDv − uD

)
.
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Here we introduce the mapping matrix BD, that maps from v to vD. By the duality
approach we can swap the minimum and supremum

argmax
µD

inf
v

1

2
v⊤Av − v⊤b + µ⊤D

(
BDv − uD

)
.

The infimum is achieved in v = A−1
(
b− BDµD

)
and substituting this into the above

saddle point problem we get

argmax
µD

1

2

(
b− BDµD

)⊤
A−1

(
b− BDµD

)
−

(
b− BDµD

)⊤
A−1

(
b− BDµD

)
− µ⊤DuD.

That can be written as the unconstraint minimization problem

argmin
µD

1

2
µ⊤DBDA

−1B⊤DµD − µ⊤D
(
BDA

−1b− uD
)
, (6.6)

which is equivalent to (
BDA

−1B⊤D
)
λD = BDA

−1b− uD.

Similarly we demonstrate, how to modify (6.3) and (6.4) into minimize problem, where the
nonhomogeneous Dirichlet boundary conditions are taken into account. We use analogous
procedures, therefore explanation is simplified. From (6.3) we get

v⊤Au + v⊤B⊤CλC = v⊤b,

[
v⊤F 0⊤D

] [AFF AFD B⊤CF

A⊤FD ADD 0

]

uF
uD
λC


 =

[
v⊤F 0⊤D

] [bF
bD

]
,

and from (6.4) we have

(
µC − λC

)⊤ [
BCF

0
] [uF
uD

]
=

(
µC − λC

)⊤
BC u ≤

(
µC − λC

)⊤
g̃.

This is equivalent to to the saddle point problem, for all µC ∈ M̃

argmin
vF

sup
µC∈M̃

1

2
v⊤FAFFvF − v⊤F

(
bF −AFDuD

)
+ µ⊤C

(
BCF

vF − g̃
)
.

As in the previous case, we want to rewrite this problem to minimalization over v ∈ R
nnodes ,
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i.e.
argmin
v: vD=uD

sup
µC∈M̃

1

2
v⊤Av − v⊤b + µ⊤C

(
BCv − g̃

)
,

where BC =
[
BCF

0
]
. Applying indicator function we get

argmin
v

sup
µC∈M̃
µD

1

2
v⊤Av − v⊤b + µ⊤C

(
BCv − g̃

)
+ µ⊤D

(
BDv − uD

)
,

argmin
v

sup
µ∈M

1

2
v⊤Av − v⊤b + µ⊤

(
Bv − g

)
,

where µ =
[
µC µD

]
∈ M = M̃ × R

nD , B =
[
BC BD

]
and g⊤ =

[
g̃⊤ u⊤D

]
. After swapping

the minimum and supremum and finding minimum over v ∈ R
nnodes , we obtain

argmin
µ∈M

1

2
µ⊤BA−1B⊤µ− µ⊤

(
BA−1b− g

)
, (6.7)

is the minimization of similar quadratic function that in (6.6) but yet over the convex set
M .

6.4.2 Notation

Using this procedure we obtain from (6.6) equation of nonhomogeneous boundary value
problem for heat transfer as follows

(

BD

(

1

τ
Mθ +Kθ

)−1
B⊤D

)

λD = BD

(

1

τ
Mθ +Kθ

)−1
fk+1,pθ − uD, (6.8)

θk+1,p+1 =

(

1

τ
Mθ +Kθ

)−1
(

fk+1,pθ − BDλD

)

.

Accoridng to choice of algorithm, this problem can be solved also in the unconstrained
minimization form (6.6). For elasticity from (6.7) we get constrained minimization problem

λk+1,p+1 = argmin
µ∈M(γ)

1

2
µ⊤B

(

4

τ2
Mu +Ku

)−1
B⊤µ− µ⊤

(

B

(

4

τ2
Mu +Ku

)−1
fk+1,pu − g

)

,

(6.9)

uk+1,p+1 =

(

4

τ2
Mu +Ku

)−1
(

fk+1,pu − B λk+1,p+1
)

.

Finally, we obtained two equations, that can be solved with suitable algorithm.
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6.5 Scheme of algorithm

Now we outline process of finding solution with the MatSol library, which is developed by
the team of IT4Innovations at VŠB-TU Ostrava. Complete selection of data to solve can
by found in next chapter.

Because of small problem, we can afford solve system (6.9) with some direct method.
Modified Proportioning with Gradient Projection (MPGP) algorithm for finding solution
of the constrained minimization problem (7.1) is used.

Firstly, all unchanging matrices and vectors are assembled. After that we enter timestep
loop and set initial values of variebles (following section 6.3) and assemble fk+1u (uk, u̇k, ük)

from (5.3) and fk+1θ (uk, u̇k, θk) from (5.6). Matrices B, Lθ,γ and vector dθ,γ are also assem-
bled before entering th successive iteration loop. Now we update (if needed) load vectors,
for simplification we add Lθ,γ and dθ,γ as mentioned in (6.1), (6.2). By now, we can solve
heat transfer part of problem (6.8), and obtain distribution of heat in bodies.

We add obtained solution into right side vector of elasticity problem and solve system
(6.9) using MPRGP algorithm. This si repeated in successive iteration loop in prescribed
number of iterations and whole process in every timestep.

You can se one timestep loop in following scheme of algorithm.

Algorithm 1 One loop of timestep
Choose uk+1,0 = uk; θk+1,0 = θk; λk+1,0 = λk; γk+1,0 =

(
λk+1,0

)
n

for every timestep
assemble fk+1,pu ; fk+1,pθ ; Bp; Lp

θ,γ ; d
p
θ,γ ;

while stopping criterion is not satisfied do

update fk+1,pθ ;
solve (6.8);
return θk+1,p+1;
update fk+1,pu ;
solve (6.9);
return uk+1,p+1;
it = it+ 1;

end while

end for
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7 Numerical example

In this section, we show numerical example in the three dimensional situation. We use one
geometry and looking into different qualities. Firstly heat flux between bodies and then
formation of heat due to fricition between bodies. Our numerical realization uses MatSol
library, which is developed by team from IT4Innovations at the Department of Applied
Mathematics at VŠB-TU Ostrava.

7.1 Initial settings

We consider two bodies in 3D, in following configuration, master body is cuboid of size
and initial position Ωm := [−0.15, 0.15] × [−0.15, 0.85] × [−0.2, 0] and slave body is cube
Ωs := [−0.1, 0.1]× [−0.1, 0.1]× [1 · 10−4, 0.2]. In fig. 7.1 you can see cross-section of bodies
and denotation of boundarise and forces.

Figure 7.1: Front view of example problem

Lower body is clamped at its lower face and prescribed temperature 20°C. Upper body
have prescribed dirichlet conditions for elasticity on upper face, to stay parallell to the
ground. Possible contact boundaries are colored blue. Unwritten boundaries consider as
Neumann boundary with zero conditon in both options (elasticity or heat transfer).

In this dynamic problem with this boundary conditions we will be interested in 100

timesteps of size τ = 0.01, i.e. T = 1 [s], note that motion can continue, but we are
interested in first second of moving. Motion of upper body is as following firstly upper
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body approaches lower body until they are in contact, in the rest of time it shifts on the
master body in direction of axis y. In following table, you can see values of material
parameters (in SI base units):

Master body (Ωm) Slave body (Ωs) Units
Density (ρ) 7874 7859 kg ·m−3

Poisson ratio (ν) 0.3 0.29 Pa

Thermal expansion (α) 1.15 · 10−13 1.2 · 10−13 -
Heat capacity (cθ) 450 466 K−1

Thermal conductivity (κ) 70 40 J · kg−1 ·K−1

Reference temperature (θ0) 20 20 W ·m−1K−1

Table 7.1: Material properties

Furthermore, we use the parameters γmC = 2.5·10−3, γsC = 1, which lead to βC = 1.25·10−3

and δC = 0.5.
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7.2 Solutions

In this part we show obtained solutions of following problems. Due to small geometry
of examples, we solve them without domain decomposition, although implementation in
algorithm is done.

7.2.1 Heat transfer between bodies

In this example, we want to demonstrate transfer of heat between bodies. Its ensured
by prescribtion of heat flux on upper face of upper body. We set space discretization as
follows: upper body 6× 6× 6, lower body 8× 30× 6.

For better visualisation we neglect formation of heat from friction on contact part. In
following figure 7.2, you can see propagation of heat in every 0.09s. Note, that upper body
acquire values out of colorbar range, its for better view of transfer conditions.

Figure 7.2: Heat transfer: Temperature distribution at each 1
12 of 1 second
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7.2.2 Formation of heat between bodies

In this example, we show formation of heat due to Coulomb friction. We are interested
in formation of heat in first second of move. The static friction coefficient is set F = 0.9

and discretization is same as in previous example. In every timestep was three or less

successive iterations, worst number of MPRGP outside iterrations is 17, but usually number

of itterations was below 80. Heat transfer between bodies is neglected, to see more details

in figure 7.3.

Figure 7.3: Formation of the heat: Temperature distribution at each 1
12 of 1 second
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Conclusion

Main goal of this thesis was to transform the mathematical model of thermodynamical
elasticity contact problem to numerically convenient computational procedure. We intro-
duced strong formulation as a balance equations with initial and boundary conditions.
After that we derived weak formulation which was discretized firstly in space and after
that in time using Newmark discretization scheme for elasticity and backward formula for
heat. Finally we used equivalency of discretized weak formulation with minimization of the
energy funcitonal. At that point was the nonhomogeneous Dirichlet conditions enforced by
additional Lagrange multipliers without changing the assembled matrices. Great advan-
tage of this approach is that each equation contains easily distinguishable terms, for heat
transfer between body, formation of the heat, etc. That terms, ans so also the physical
phenomenons, can be easily switched on or off according to what feature we want to focus
on. Although we apply a few aproximations e.g. fix-point or substitution from previous
timestep, in numerical experiment, we obtain acceptable data. We were able to simulate
creation of heat only from the friction between the bodies in contact.

In first chapter, we introduced reference temperature θ0, it is necessary to ensure, that
this coefficient is non-zero. It appears in terms in sense as subtracted value, but also as

a multiplicator and in case θ0 = 0 can vanish some term in whole formula. We are not

sure about the physical model in that point and the only meaningful conclusion here was

to express the temperature numericaly in Kelvins and not Celsius degrees.

From numerical perspective, there is a huge space for optimalization of the formulation

and algorithms. As a continuation of this work it would be appropriate to implement

the parallelization of the whole computation schema. It would open the space for finding

solutions of bigger, better discretized problems, especially for real world benchmarks.
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