-

View metadata, citation and similar papers at core.ac.uk brought to you byﬁ CORE

provided by DSpace at VSB Technical University of Ostrava

VSB — Technical University of Ostrava
Faculty of Electrical Engineering and Computer Science
Department of Applied Mathematics

Parallel input data generation in FETI
methods

Paralelizace generovani vstupnich dat ve FETI metodach

2014 Pavla Jirtitkova

https://core.ac.uk/display/94758344?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

V8B - Technické univerzita Ostrava

Fakulta elektrotechniky a informatiky
Katedra aplikované matematiky

Zadani diplomové prace

Student: Bc. Pavla Jiritkova

Studijni program: N2647 Informaéni a komunika&ni technologie

Studijni obor: . 1103T031 V{poletni matematika

Téma: Paralelizace generovani vstupnich dat ve FETI metodach

Parallel input data generation in FETI methods

Lasady pro vypracovéni: :

FETI (Finite Element Tearing and Interconnecting) metody rozloZeni oblasti jsou vysoce (&inné algoritmy
k masivni paralelizaci celé fady dloh vipoéetni mechaniky. Jejich hlavni myilenka spodivd v rozdéleni
ulohy definované na pivodni oblasti na dlohy menii definované na jednotlivich podoblastech, které lze
vyfesit paralelné a vyslednd diléi Feleni slepit pomoci Lagrangeovych multiplikitoni. Jednim z velkych
problémi oviem stile zistiva efektivni paralelni generovini vstupnich dat pro pfipad sloZit§ch geometrii

vypodetnich oblasti.

Soutdsti price bude hlub3i nastudovini metody konenych prvkii a efektivni implementace FETI metod.
Piedpoklida se zapojeni do tymu v rimei IT41 zabyvajicim se vivojem knihovny Skdlovatelnych algoritmi
kvadratického programovani FLLOP a zaméfeni se na knihovnu LibMesh podporujici paralelni generovéni
vstupnich dat. Hlavnim cilem pak bude pfizpisobit knihovnu LibMesh pro import ze zvolenych
komerénich baliki a vytvofit rozhrani ke knihowné FLLOP. Diky t&#mto modifikacim bude mo¥#no poditat
rozsahlé dlohy o 100 milionech aZ miliardéch neznadmych.

Seznam doporuéené odbomné literatury:
Podle doporuteni Zkolitele.

Formalni naleZitosti a rozsah diplomové price stanovi pokyny pro vypracovéani zvefejnéné na webovich
strankdch fakulty.

Vedouci diplomové price: prof. Ing. Tom4$ Kozubek, Ph.D.

Datum zadani: 01.09.2013
Datum odevezdani: 07.05.2014

R o Fr— ol C‘
?.:7 ﬂm e w /\/‘L
¥ i
doc. RNDr. Jifi Bouchala, Ph.D, s prof. RNDr. Véclav Snigel, CSe.

vedouci katedry dékan fakulty

I declare that |1 have worked up this thesis by myself. | have referenced all the sources
and publications | have used.

Ostrava, May 7, 2014 e ———————

I would like to express my thanks to prof. Ing. Tomas Kozubek, Ph.D., the leader of my
diploma thesis, for very interesting and inspiring theme of the thesis and for supervision
of my work.

My thanks also belong to Ing. Oldfich Vlach, Ph.D. for helping me with libMesh library
and for his helpful advice and suggestions. I would also like to thank Ing. Marta JaroSova,
Ph.D. for her worthful suggestions and recommendations about FETI methods and for
helping me with English.

Furthermore, I would like to thank Ing. Vaclav Hapla and Ing. Alexandros Markopou-
los, Ph.D. for their cooperation at the connection of the libMesh and FLLOP library.

This thesis has been elaborated with the support of the project New creative teams in
priorities of scientific research, reg. no. CZ.1.07/2.3.00/30.0055, supported by Operational
Programme Education for Competitiveness and co-financed by the European Social Fund
and the state budget of the Czech Republic.

This thesis was supported by the IT4Innovations Centre of Excellence project (CZ.1.05/
1.1.00/02.0070), funded by the European Regional Development Fund and the national
budget of the Czech Republic via the Research and Development for Innovations Oper-
ational Programme, as well as Czech Ministry of Education, Youth and Sports via the
project Large Research, Development and Innovations Infrastructures (LM2011033).

This thesis is also partially supported by Grant of SGS No. SP2014/204, VSB - Tech-
nical University of Ostrava, Czech Republic.

Abstrakt

V této praci se zabyvame paralelnim generovanim vstupnich dat pro FETI (Finite Ele-
ment Tearing and Interconnecting) metody. Ve FETI metodach je puvodni uloha, defi-
novand na rozsahlé oblasti, rozdélena na rfadu mensich tloh definovanych na jednotlivych
podoblastech, které jsou pak feSeny paralelné. Pro efektivni paralelni generovani vstupnich
dat pouzivame knihovnu 1ibMesh. Tato softwarova knihovna je nastroj vyuzivajici metodu
kone¢nych prvki pro numerické simulace parcidlnich diferencialnich rovnic definovanych na
diskretizované oblasti (siti) a spustitelnych sériové nebo paralelné. NaSe implementace gen-
erovani dat je pripojena ke knihovné FLLOP a numerické experimenty jsou pak pocitany
na superpocita¢i Anselm. Skalovatelnost nagf implementace je testovdna na akademické
tloze linearni elasticity.

Klicova slova: FETI-DP, libMesh, metoda kone¢nych prvki, Newmarkova metoda, par-
alelni implementace, problém elasticity, skalovatelnost, TFETI

Abstract

In this diploma thesis we deal with an effective parallel input data generation for FETI
(Finite Element Tearing and Interconnecting) methods. In FETI methods the original
problem, defined on a large body, is partitioned into a number of smaller problems defined
on the subdomains. These smaller problems are solved in parallel. To generate the input
data effectively in parallel we use the 1ibMesh library. This open-source software library is a
preprocessing tool for the numerical mesh-based simulation of partial differential equations
on serial and parallel platforms, using the finite element method. Our implementation of
data generation is connected to FLLOP library to perform the numerical experiments on
Anselm supercomputer. The scalability of our implementation is tested on the academic
benchmark from the linear elasticity.

Keywords: FETI-DP, libMesh, finite element method, Newmark method, parallel imple-
mentation, elasticity problem, scalability, TFETI

List of Used Abbreviations and Symbols

QP
FETI
()
R
Rd

4° O~

Quadratic Programming

Finite Element Tearing and Interconnecting

Set of all n times continuously differentiable maps on €2
Set of all real numbers

Set of all d-dimensional real vectors

Identity matrix

Null matrix

Null vector

Gradient

Contents
1 Introduction

2 Elasticity problem

2.1 Weak formulation
2.2 Finite element discretization

2.3 Assembling the mass and the stiffness matrix and the load vector

2.4 Discretization in time
2.5 Static elasticity problem

3 FETI methods

31 TFETI (FETI)
32 FETLDP

4 Parallel input data generation by the libMesh library

4.1 LibMesh library
4.2 Key data structures

4.3 Description of the implementation
5 Numerical experiments
6 Conclusion

7 References

17
17
23

27
27
27
30

39

44

45

List of Tables

5.1
5.2
9.3
0.4
9.5

Numerical (weak) scalability for ~ 2500 elements of the subdomain. 40
Numerical (weak) scalability for ~ 10000 elements of the subdomain. 40
Numerical (weak) scalability for ~ 22500 elements of the subdomain. 40
Parallel (strong) scalability for 1000000 elements. 41

Parallel (strong) scalability for 4000000 elements. 42

List of Figures

2.1
2.2
2.3
24

2.5
2.6
2.7
3.1
3.2
3.3
4.1
4.2
4.3
4.4
5.1
5.2
9.3
5.4
9.5

Model problem.
Finite element discretization of the domain in space.
Detail of the domain discretization (zoomed part of the Figure 2.2).
Base function corresponding to the part of the Figure 2.3 and shape function
(dark grey area) corresponding to the marked part of the base function.
Reference triangle element.
Gauss points gp of the triangle of different polynomial degrees p.
The constant average acceleration scheme [9].
Domain decomposition by TFETI [13].
The block structure of matrices and vectors of primal formulation [13], [12].
Domain decomposition by FETI-DP with all types of variables.
The example of mesh and pid mesh for 16 elements and 4 processors.

The Elem class hierarchy.[26]
The System class hierarchy. [27]
Scheme of the implementing flow. 0L
Geometry for the given example. oL
Number of iterations.
Total time and preprocessing time for 1000000 elements.
Total time and preprocessing time for 4000000 elements.
Time of the assemble_elasticity function.

23

1 Introduction

The FETI domain decomposition methods are ranked among an efficient algorithms for a
massively parallelization of many problems of a computational mechanics. These methods
are based on a principle of ,divide and conquer”. It means the original problem solved on a
large body is partitioned into a number of smaller problems defined on the nonoverlapping
subdomains. Thanks to that the original problem can be solved in parallel. The partial
solutions are then glued via Lagrange multipliers. However the one of great problems, an
efficient parallel input data generation for large and complicated geometries of computa-
tional bodies, still remains to solve. The main goals of this thesis is to implement this
input data generation in 1ibMesh library for the elasticity problem on mesh imported from
selected commercial software packages and make an interface to FLLOP library.

Now we look at an organization of sections in the thesis and at contents of these
sections. In Section 2 at first we introduced the dynamic elasticity problem and its weak
formulation. The next part of this section deals with the spatial discretization by the finite
element method, while the time dimension remains continuous. We describe an assembling
the mass and the stiffness matrix and the load vector, whereat we use the concept of the
reference element and the Gaussian quadrature rule. After the spatial discretization we
present the time discretization by Newmark method. The last part describes the static
elasticity problem in brief.

In Section 3 we show two FETI methods - the Total-FETI (FETI) method and the
FETI-DP method. In both cases the domain is decomposed into nonoverlapping subdo-
mains and the continuity of displacement on the intersubdomain interface is enforced via
Lagrange multipliers. In first part we describe the TFETT (FETI) method and its pri-
mal and dual problem. In second part we present FETI-DP method and its differences in
comparision to TFETI (FETI).

The main part of the thesis is the Section 4, where we deal with the 1ibMesh library
and describe our implementation. First we shortly present the open-source software library
libMesh developed in C++. In the next part the description of some key data structures
used in library follows. The last part deals with the description of main functions of our
implementation. There we derive the process of the assembling the stiffness matrix in the
libMesh.

Finally in the last Section 5 we present results of the parallel and numerical scalability
of our implementation for the given example of a static linear elasticity problem. For
numerical experiments the Anselm supercomputer is used.

2 Elasticity problem

We will study the dynamic elasticity problem illustrated in Figure 2.1. Let us consider an
elastic body represented (at time ¢t = 0) by a bounded domain Q C R?, d = 2,3 with the
Lipschitz boundary 0f2. This boundary consists of two non-overlapping parts I'p and I'y
such that

o) = fD U fN,

r p N r N = 0.
The I'p represents the Dirichlet boundary, the part of the boundary with prescribed dis-
placements, and the I'y represents the Neumann boundary, the part with prescribed trac-
tions ¢ : 'y — R% The body forces are denoted by f : @ — R? and the unknowns

displacements by u : Q x T — R?. In this section we will follow especially [1] and [2], for
more information see also [3].

\\\\i\\\\

Ly 2

s s

1IN

Figure 2.1: Model problem.

2.1 Weak formulation

In this section we introduce the weak formulation of the elasticity problem. First let us
define for all times ¢ € T := [0, T] the solution set

Ut) == {u e HY(Q) : Tr(u) = up(t) on rD}
and the space of test functions
V= {v e HY(Q)?: Tr(v) = 0 on FD} ,

where H!(f2) denotes the Sobolev space (also denoted as W12(€)), up denotes the pre-
scribed solution on the Dirichlet boundary and Tr : H'(Q)? — L2(0Q)% is trace operator.
The weak formulation of the dynamic elasticity problem can be expressed in the form

Find u: T — H'(Q)¢ such that u(-,t) € U(t) Vt € T and
m(i,v) + a(u,v) = f(v), YoeV VteT, (2.1)
u(x,0) = ug, u(x,0) =1y, Vo e Q,

with the bilinear forms
/ pivde, (2.2)
Q
a(u,v) = / o(u):e(v) dz (2.3)
Q
and the linear form

f(v):/ﬂfvdx—i—/FNgvds. (2.4)

The p > 0 is a material density, the f denotes the body forces, the g denotes the forces on
I'ny and the terms o and ¢ are the second-order tensors. The o denotes the stress tensor
and the € denotes the strain tensor. The linear relationship between them is described by
Hooke’s law of linear elasticity

o(u) =C :e(u), (2.5)

where C is the fourth-order stiffness tensor and e(u) = 3 (Vu+ (Vu)"). By using sum-
mation convention we can write

0ij = Cijki€kis

M=9\ 0z, " 0xp)’

Cijit = Nigort + 1(dirdji + dudj,).-

where

The formula for C holds for homogeneous isotropic material. The constants A and u are
the Lamé coefficients and the d;; is the Kronecker’s delta, i.e., the function with value 1 if
1 = j, and with 0 otherwise.

2.2 Finite element discretization

For numerical computation of dynamic elasticity problem, the weak formulation (2.1) have
to be discretized. First we will make a discretization in space, while the time dimension
remains continuous.

Let us consider the polygonal domain Q C R, d = 2, and split it into finite number of
non-overlapping elements 2., the triangles in this section, see Figure 2.2. The elements
can generally be polygons (in 2D are used only triangles and quadrilaterals), in this section
we will talk only about triangles, but the reader should have in mind that the description

el

here can be generalized. The set of all triangular elements is denoted T = {Q(el)}:’l: L

where n¢ is the number of the elements. The number of the nodes will be denoted by
n"? and the number of the nodes without nodes lying on the Dirichlet boundary will be

R

> Q(el)
L, L,

1IN

Figure 2.2: Finite element discretization of the domain in space.

denoted by nV™4. The local numbering of nodes is 2!, 212!, 23 counterclockwise for every
element and the global numbering is presented by ™M, ..., x("nOd), see Figure 2.3. We will
denote D = {i € {1,...,n%} () € Tp} the set of indices of the nodes lying on the

Dirichlet boundary. The displacement u is approximated by polynomials P on triangles.

Figure 2.3: Detail of the domain discretization (zoomed part of the Figure 2.2).

The solution set U(t) is discretized by set " (t), which contains piecewise linear func-
tions u’kl(a:, t) over T satisfying prescribed Dirichlet boundary conditions and representing
the displacement in direction of the zj, k = 1,2. The discretization of the space H'(£2)

and V is defined by

V?Il(g) = {Uh c C(ﬁ) : VQ(el) S %2 P(Q(el))}v

h
v S
190y

Yh = {vh € V[h{l(m ;" =0on F%}.

Now we can express the finite dimmensional spaces Vﬁrl(m and V" as the sets of all linear
combinations of the basis functions, i.e., the linear spans of the basis functions

VI}-Lp(Q): span {pi},

i=1,...,nmod

Vi = span {gi},
i=1,...,nmod
i¢D
where @; € V}LII(Q) and @;(z9)) = d;; for all 2@ e R2, j=1,...,n"% is the basis function
at the i-th node, see example in Figure 2.4a. Thanks to the u}(z,t) € U"(t) C VI@I(Q) we

can write uf(z,t) in the form

nod

up(a,t) =Y g, (i), (2.6)
i=1

where ug, ;(t) € R are unknowns of the function ul (x,t) at the nodes z(). Let us choose the
basis functions ¢; € V*, i € {1,...,n"}\D, as the test functions v® € V*. Substituting
that and u”(z,t) = (u?(x,t),ul(x,1))7 to the weak formulation of the problem we obtain
the system of linear equations with solution vector

ug(t) = (ugy 1 (), ugy (1), -, Ugy pnoa(?), ug27nmd(t))T. (2.7)

The discrete initial displacement vector is define as

no T .
gy = (UO(gj(l)% RN d))) Lup(z®) € R2.

The assembling of the matrices and vectors we will perform over individual elements. For
each element €2y we have three vertices 2@, 20) 2(*) € R2?, where i, j, k € {1,... nrod},
These vertices we will describe in local numbering (el, v), v € {1,2, 3}, such that z[1 = £(®,
2 = 20 2Bl = 2 Over each element Qe € T we define the local basis functions
Neip as a restriction of the p; over).

In engineering books are these local basis functions called shape functions and holds
Neiw (x[“’]) = Oy, see Figure 2.4b. The form of the basis functions for the one triangular

element €.y with three vertices gl = (a:[lw},xgw}) is following [4]

[w] [w]
Nel,v <x[w]) — ay + bvx;A‘i‘ CyTy , VW= 1’ 2’ 3’ (28)

Figure 2.4: Base function corresponding to the part of the Figure 2.3 and shape function
(dark grey area) corresponding to the marked part of the base function.

wherel
4y = $[1v+1]m[2v+2] + x[1v+2]x[2v+1]7
b, = l'[QU—H] . x[2v+2}7
Cy = :U[IU+2] — x[1v+”
and
1 1 :17[11] ZL'[QI]
A=_11 :17[12] ZL'[;]
1 :L'[13] ZL'[23]

define the element area. Since the element has three nodes, linear approximation of dis-
placement u(z,t) = (uy(x,t), us(z,t)) " over Q(e1) can be define by

(ZL’ t) ~ ’LL |Q(el) Z Nel U Iduel v() (29)

2y

where I is the identity matrix of order d (in this case d = 2). The coefficients @ ,(t) =
(1,e1,0(t), Ti2.e1.0(t)) T represent the displacement of the vertices of the element Qe in
direction of the coordinate axis. It remains to define the approximation of the test functions
v(z,t) = (vi(z,t),va(x, 1)) T over Qery as

CCRT ZNM) gber,o(t). (2.10)

Hkl,keN:[k]=((k—1) mod 3) +1; [v+1] — 2,3,1 and [v+ 2] > 3,1,2

10

2.3 Assembling the mass and the stiffness matrix and the load vector

Let us discretize the terms of the weak formulation, i.e. (2.2), (2.3), (2.4). Note that the
integral over {2 can be split into the sum of integrals over all {2, eT.

choh h, h
oty = dz = } / d, 2.1
m (i, o) /mpu v'dx = /el) |ﬂ(ez> \9(61) T (2.11)

el=1

h ,hy _ —
a(u”,v)—/Qh e(u): C:e()dr = Z/el)e u‘n(el) :C: 5(U|Q(e”)d (2.12)

nel
GO Z () Uh‘f?(ez) dx + Z /face<) g"(x) vﬁl(el) ds|. (2.13)

el=1 Qery faceq CN

Substituing the approximation (2.9) and (2.10) to the (2.11), (2.12) and (2.13) we obtain

m(uhyvh) = Z/ <Z Nelv Iduelv) <Z Nelw Idvelw()) dzx,

el=1" e v=1
nel 3

a(h h) Z/ c (Z Nelv Iduelv) C:¢ (Z Nelw Id”elU)()) d.ﬁlf,
el=17%en \v=1

nel

oM = h Vel,v T

- E (], (o Ewinsn)or
/ (ZNelv Idvelv()) ds
face(ar) v—1

The reader should have in mind that the upper limit of the sum over vertices is different for

different than triangular elements. Now we denote Ngj () := Nejo(2)Ig and Nej () :
Neiw(x)Iq and write

n 3 3 . T _ ~
= 3303 butalt) (daa®) [pNL () Vet =
(el)

el=1v=1w=1

= Z Uel eluel)

el=1

) = 33 S b)) | eFana)) " s e(Waulw))do =

el=1v=1w=1 (el)

- Z Uel eluel)

el=1

faceelCFN

11

n¢

Z Z Uel 1) T fh() el v() dr + Z ({}lf‘weel,l“N (t))T

el=1v=1 Qeny faceel’FNCFN

nel

/ gh(l‘) Nel,’u(x) dS) = Z Fel,[)El (t) + Z Ffa‘ceel,FN@‘facc I,T N (t) ’
faceer “

el=1 faceel,rN c'n

where M, K., F; denote the element (local) mass matrix, the element (local) stiffness
matrix and the element (local) load vector, respectively. The g (t) is the element (local)
vector ey (t) = (ter1(t), ..., ﬁel,g(t))T, the ﬁel(t) and the 0(t) are defined similarly. The
Fface,, is the face (local) vector containing contribution of the prescribed tractions on I'y.
For chosen indices v and w we can write M (4 0)s Kel,(v,0)s Fern and Ffaceez,rN as follows

Mt (w,w) = /Q PN (@) Net () dr, (2.14)
(eD)
/ elv))) C 5(elw())d$, (215)
Qe
elv / elv()Cll‘, (216>
Qe

faceel T el,v(x) ds. (2'17>
N facee FN

As we mention at the beginning of the section 2.2, in 2D the elements can be also quadri-
laterals as well as higher order triangles. In these cases the construction of shape functions
becomes more complicated and with it also the complexity of the integration process that
appear in the My, K., F.; and Ffaceel,FN becomes higher.

Therefore, we will continue with the concept of the reference element ﬁ(el) presented
in [5], see Figure 2.5. We define mapping X,; : Q(el) — Q(ep), 50 that z = Xy(€), £ € Q(el
For the mesh that consists only from one type of finite elements the subscript (el) can be
omitted, i.e., Q. We consider the shape functions ¢, on the (Nl(el) satisfy ¢erp = NepyoXer
For triangle element (illustrated in Figure 2.5) we have

Per1(§) =1 — &1 — o,
ber2(&) = &1,
be1,3(§) = 2.

The Jacobian of the mapping X,;(&) is denoted by J;(€). Last we have to define following
rule

e =(Ju(§) 'ec = &

Using the concept of the reference element we can rewrite (2.14), (2.15) and (2.16) into

12

[3]

é[ﬂ: (031) x[3] — (xl ,XE])

x(9)

O [2] 2] 2]
Q(el) X :(xl s X,)

[
£=(0.0) E=(10) =l

Figure 2.5: Reference triangle element.

the form
Moy = /% 0 Bt ()bet () [Ja(€)] e, (2.18)
Kot (o) = /% Fe(Betn(€)) C s Ee(Butnl©)) 1 Ta(€)] e, (2.19)
Fan = [19 Ganl©) Va1 (2.20)

where Q_Sel,u(f) = ¢e1v(&)1q and Q_Sel,w(é) = Pel,w(§)1q. Note that for the (2.17) is necessary
to use other reference element than triangle, namely the line, because there we integrate
over the face of the element lying on the I'y. Let us denote gzﬁzlaf}e(f) the shape function

over this reference element and Q_Sétla Q) = ¢£l“ &) 1.

As an approximation of the integrals we use the Gaussian quadrature rule [6], so the in-
tegrals over the reference element are approximated by the weighted sum over the quadratic
(Gauss) points gp with the weights wg,. We also need introduced the notation gpyqce for
the Gauss points of the face reference element. We denote n?, nP/ece

n the number of

el acee

quadratic points on the element and the number of quadratic point]; onllﬁrhe face of the ele-
ment lying on the I'y, respectively. For each point gp, gpface is defined the corresponding
weight wgp, wep,,.., respectively. The points and weights for different elements of differ-
ent order are table values |7], some examples of the points of the triangular element are

illustrated in Figure 2.6. The matrices (2.18), (2.19) and vector (2.20) can be written as

nqp

el
Mel,(v,w) ~ Z P ¢el,v(€qp)¢el,w(£qp) ’Jel(&m” Weyp, (2'21)
qp=1
nel
Kel,(v,w) ~ Z gﬁ,ij(ﬁbelm(fqp)) Cijkl g&kl(ﬁbel,w(fqp)) |Jel(§qp)| Wyp, (2.22)

gp=1

13

el
Few ~ Z FM(Xer(€qp)) bet,w(Eqp) 1ot (Eqp)] wap, (2.23)
gp=1
9P face
faceel’FN
Ffaceel,FN ~ Z gh(Xel (fqpface)) ¢£ﬁge(€qpface) Jel (gqpface) wqpface' (224)

qpface:1

Figure 2.6: Gauss points gp of the triangle of different polynomial degrees p.

The global mass and stiffness matrices M and K, respectively, are assembled by summing
the element (local) matrices to appropriate positions in global matrices. The global load
vector F'(t) is assembled similarly by summing the element (local) vector Fy; and Figee,,
to appropriate positions in global vector.

It remains show how the Dirichlet boundary conditions can be enforced. Now we have
following matrix form of the equation system of the weak problem (2.1) after discretization

vy (Kug + Miig) = v, F, Vo, e R*": ie D=y, =0, (2.25)

where v, and i, € R27"*" are defined as well as (2.7). The (2.25) can be block re-arranged

into
(UT o7) Krr Krp Ugr) 4 Mpr Mrpp Ugp _
gF ~9p Kpr Kbpp Ugp Mpr Mpp g,
F T O
- (%1E U9£> (FZ) » Vg € R>"" dﬂ’gD =0, (2.26)

where the subscript D, F' denotes values corresponding to the nodes lying on the Dirichlet
boundary and values corresponding to the nodes not lying on the Dirichlet boundary,
respectively. We consider the homogeneous Dirichlet boundary condition, it means that
Ug) = iig, = 0. There is a number of methods to enforce this Dirichlet boundary condition.

14

We make a modification of matrices K and M to satisfy this condition such that the (2.26)
can be written as

K O u M O u F nod
T FF 9gF FF 9F _ T F Vo € R27™
v <0a1><o>+<0 al)(o) ”g<o>’”9 |
—_—— N———— ———
=K =M =F
where @ € R. Note that the notation of new modified matrices and vector remain the same

as the original ones.
The space discretized form of the problem now arrive at

nod

Find ug(t) : T — R*™™™, vt € T such that
Miig(t) + Kug(t) = F(t), VteT, (2.27)

UQ(O) = Ugy, ﬂg(O) = Z‘LQO'

2.4 Discretization in time

Now we make a discretization of time. Let us split the time interval T into n; non-
overlapping subintervals such that

ne—1

T= U <tk7tk+l> ;

k=0

where tg = 0, ty < tgi1, At := tg11 — tg and t,, = n;At. We denote u” := ug(ty) and
f¥ := F(t}) for the simplicity of notation. We will find the solution in each time step tz,
so the space and time discretized form of the problem is:

Vk €{0,1,...,n;} find ub+! € R4 such that
Mkl 4 Kybtl = e+l (2.28)

0_ 0 _
U = Ugy, U = Ug,.

We will solve this problem by Newmark integration method, we will follow [§].

2.4.1 Newmark integration method

This method proposed in 1959 by Nathan M. Newmark is one of the most popular time
integration method for solving problems in structural dynamics. For the computation of
unknows at time ¢4 is only necessary to know values in the previous time t;. Let us
introduce a new notation for approximations to the velocity and acceleration vectors at
time t:

15

Now we can compute v*t1 and v**1 by
1
Pt = P 4 AR 4 A [<2 — ﬂ) ak + 5ak+1] , 0<26<1, (2.29)

M= oh A1) dt a0y <, (2.30)

where 8 and ~ are real parameters that affects the integration accuracy and the stability
of the method. The scheme is an unconditionally stable for 28 > ~v > 1/2. Setting
26 = v = 1/2 yields the constant average acceleration method (also called trapezoidal
rule, see Figure 2.7).

lz(ak"' ak+1)

t, t,
Figure 2.7: The constant average acceleration scheme [9).

In addition to (2.29) and (2.30) we also consider the equilibrium equation at time tj.;

with the notation v**! and a*+1:
MaFtt 4 Kuktt = L (2.31)
We express the acceleration vector a**! from (2.29) as follows:
1 1 3B
k+1 _ k1 k) k2 k 9 39
“ A28 (“ “) Atg" 5 ¢ (2:32)

Substituting (2.32) into (2.30) we obtain

k+1 Y k+1 K _7—5 k_%_ﬂ k
v _Atﬁ(u u) 3 v 3 Ata

and substituting (2.32) into the equilibrium equation (2.31) we arrive at

1 1 1 15
K M k+1: k+1 Mk’ Mk’ 2
(+At25)u f +At2ﬁ u+7At6 11—1-75

=K =:fk+1

Ma*, (2.33)

where K is so called effective stiffness matrix and]‘"7““ is the effective load vector. For
the choice of parameters 3 = 1/4 and v = 1/2 we have a**! and v**1 of the form

4 4 2
okl — (uk+1 _ uk;) k S (uk—H _ uk) _ Lk

T AR A T At

16

and so the equilibrium equation of the form

4 4 4
(K—l— M) uF = R vk 4+ MR+ M

At? At? At
ﬁ,—/ '
=K ::fk-H

2.5 Static elasticity problem

In previous section we dealt with the formulation of the dynamic problem. For lack of
the time caused by complicated debugging of the code we decided to switch to the static
elasticity problem. The reason was also that there are more experiences with static bench-
marks solved by using FLLOP than with dynamic benchmarks. Contrariwise the assembly
process for the mass matrix is prepared in the code and the implementation of dynamic
problems will be not difficult from the side of 1ibMesh. In this subsection and in further
text we will deal with static elasticity problems, to the dynamic problem we will return
eventually in future work.

We can derive the static elasticity problem from the dynamic elasticity problem (2.1).
In the static problem all terms are independent on time ¢ so the term m will vanish (i = 0).
The weak formulation of the static elasticity problem can be written in the form

{ Find w € U such that (2.30)

a(u,v) = f(U), Vv eV,
where a(u,v), f(v) are the same as (2.3), (2.4), respectively, and
U:={ue HY(Q)?: Tr(u) = up on Ip}.

We can derived the discretized form of the (2.34) in similar way as the space discretized
form of dynamic problems, see Section 2.2 and 2.3. So the discretized form of the static
problem can be expressed as

. Z_nnod
{ Find uy, € R such that (2.35)

Kugy = F,

where ugy, F' and K are the same as in (2.27), only u, and F are not dependent on time
variable ¢ in this case.

17

3 FETI methods

The FETI (Finite Element Tearing and Interconnecting) methods are nonoverlapping do-
main decomposition methods. These methods are based on a principle of ,divide and
conquer”. It means the original large domain, on which the given problem is solved, is par-
titioned into nonoverlapping smaller subdomains on which local Neumann problems are
introduced. Thanks to that the original problem can be solved in parallel. In this section
we show two FETI methods - the Total-FETI method and the FETI-DP method. Let us
point out that we will describe these methods only for the static problem.

3.1 TFETI (FETI)

The TFETI (Total Finite Element Tearing and Interconnecting) method described by
Dostal, Horak and Kucera in [10] is a variant of the FETI method introduced by Farhat and
Roux [11] in the early nineties of the last century. In both cases the domain is decomposed
into nonoverlapping subdomains and the continuity of displacement on the intersubdomain
interface is enforced via Lagrange multipliers. The difference is in approach how to apply
the Dirichlet boundary conditions. In the FETI method the Dirichlet boundary conditions
are included in the stiffness matrix and the load vector and in the TFETI are enforced
by Lagrange multipliers. It causes that all subdomain stiffness matrices are singular and
they have a-priori known kernels. In the FETT method we have some positive definite local
stiffness matrices and so some subdomain stiffness matrices will have not the same kernels
as others. For more information about TFETI, see also [12].

3.1.1 Domain decomposition

Let us decompose domain 2 into N non-overlapping subdomains €2; (see Figure 3.1):
N
Q=J%, unQ=0ifi#j
i=1
We denote the interface between the subdomains by I':

N
I'= UPZ' = Uaﬂiﬂaﬁj,
i=1 itj

where 0€2;, 9€); are the boundaries of €;, €2;. The Dirichlet boundary is denoted by 9€1p
and the Neumann boundary by 9€2x. We introduce new ,gluing* conditions on the inter-
face I' and on the Dirichlet boundaries to enforce continuity of the displacements.

We consider the globally assembled discretized problem

Kgug = fy- (3.1)

18

»-
> 00, a o
@) r'
>: 1 b
> o0, 00, A E - A
>

2 4
v

0 »-

H h

Figure 3.1: Domain decomposition by TFETT [13].

Now we introduce a restriction operators for a transformation from global problem (3.1)
to the local problem on the subdomains €2; and a prolongation operators for a reverse
transformation. Let n, nj,. denote the total number of degrees of freedom for all nodes
and the number of degrees of freedom for nodes in the €);, respectively. The restriction
operator Re; for the subdomain §2; is sparse matrix n;,., X n with zero entries expect 1’s
at appropriate positions. The local subdomain solution vector u; and the local subdomain
stiffness matrix K; can be written as:

u; = Rejug, K; = ReiKgReiT.

The prolongation operator Pr; for the subdomain €2; is sparse matrix n X 7., with zero
entries expect 1’s at appropriate positions. The vector i, can be assemble as

N
’llg: E P?“Z-ui.
i=1

We obtain the global vector u, by the averaging of values of 7, at the positions corre-
sponding to the nodes on the interface I

3.1.2 Primal problem
After the decomposition of discretizated €2 we obtain the primal formulation of our problem:
Ku = f subject to Bu=c (3.2)

or its equivalent energy formulation

1
min iuTKu — fTu subject to Bu = c. (3.3)
u

19

The matrix K = diag(Ky,...,Ky) is a symmetric positive semidefinite block-diagonal
singular stiffness matrix of order n, f = (f1,..., fx)' is a load vector of order n, u =
(un,. .. un)T
constraint, so that B = (B, ..., By) denotes a full rank sparse constraint matrix m x n

is a solution vector of order n. The condition Bu = ¢ presents a continuity

and ¢ denotes a constraint vector of order m. The structure of these matrices and vectors
is illustrated in Figure 3.2.

Kl fl U,
|| L n
n n n
] ' m B, B,
K, fy u
K f u B

Figure 3.2: The block structure of matrices and vectors of primal formulation [13], [12].

The diagonal blocks of the matrix K are sparse matrices with known kernels, so we can
effectively regularize all of them (see more [14], [15]). The regularized matrices can then
be decompose using a standard Cholesky type factorization for nonsingular matrices.

The matrix B, also called the jump operator, and the vector ¢ enforce the continuity of
the displacements across the interface I' and the prescribed displacements on the Dirichlet
boundary 9Qp. Note that the jump condition across the interface can be written as
u; —uj = o on €; N ;. The matrix B has zero entries except 1 and —1 at appropriate
positions and the vector ¢ has zero entries at all positions expect positions where the
Dirichlet boundary conditions are given. Let us note that in the FETI method the vector
¢ is obviously a zero vector.

We assemble the matrix B directly in the form with the orthonormal rows. There
is a problem with the rows of B corresponding to the nodes shared by more than two
subdomains. These rows are linearly dependent, so we have to remove one of them and
then we orthonormalize them.

3.1.3 Dual problem

The formulation of the problem (3.3) is not suitable for a numerical solution, because the
K is ill-conditioned, singular and very large matrix. These complications may be reduced
by applying the theory of duality of convex programming [16].

20

Let us introduce Lagrange multipliers A enforcing all the constraints and the Dirichlet
boundary conditions, then the Lagrangian associated with (3.3) is

L(u,\) = %uTKu — fTu4+ A" (Bu—c). (3.4)

Derivating of the 3.4 we obtain so called Karush-Kuhn-Tucker (KKT) system or KKT
conditions [16]:
VuL(u,\) = Ku— f+B"A =0,
{ VaL(u,A\) = Bu—c=0.

This is the dual formulation of our problem, which can be written as

Ku+ BT\ =f,
Bu=c¢

and in the matrix form as

K BT U f
(5 o) (3)=(7) 69
The problem (3.5) has unique solution (%, A) € R™ x R™ which is guaranteed by the

following necessary and sufficient conditions [17]:

Ker B" =o, (3.6)
Ker KN Ker B =o. (3.7)

The condition (3.6) mean that matrix BT has full column-rank or that matrix B has full
row-rank. Note that the first equation in (3.5) is satisfied if

f—-B'AelImK
and because of Ker K = Ker K we get
(f—B")\) L Ker K. (3.8)

Let us gather a basis of Ker K in a block-diagonal matrix R € R™ ! (for [= n —
rank(K)) defined as follows

Ry 0
R= . , (3.9)
O Ry
where the columns of the matrices Rq, ..., Ry are created by the basis of the Ker Kj, i.e.,

the subdomain rigid body modes. In 2D each matrix R; € R™e¢:*3 is composed from the

(4)
—x 1 0
. 3.10
(xgj) 0 1 > (3.10)

following blocks

21

associated with the nodes z() € ;. If a local subdomain problem is positive definite,
which happens in the FETI method, the corresponding matrix R; will be empty. Now we
can defined Ker K as

Ker K = {Ra!a € Rl} (3.11)

and from the combination of (3.8) and (3.11) we can write
R'(f-B"A) =0. (3.12)

Let us denote by KT a generalized inverse of K satisfying K K™K = K and note that
definition of Ker K (3.11) implies K Ra = 0. The first equation of (3.5) can be written as

Ku+B'\= f+ KRa
and multiplying this equation by KT we arrive at
u = KY(f-B')\ +Ra. (3.13)

Reducing of the matrix in (3.5) to row echelon form by applying basic row operation
ro — (BK™)r; — ro give us

=0

K BT > (u) —~~
I _ f+KRa . (3.14)
(O BKTB A ¢c— BK*f — BRa

Summarizing the second equation in (3.14) and (3.12) we obtain a system

+RTYy _ _ +F _
{BKB A—BRa =BKTf—c, (3.15)

—RTBT) = —RTf.
Now we introduce new notation
F:=BK*™B', G:=—-R"B'

d:=BK*Ytf—¢, e:=—R'f

and re-write (3.15) into the matrix form

F GT A d
= . 3.16
(e %) (2)=(7) 519
The problem to find the solution (, X) € R" x R™ to the system (3.5) is transformed to
the problem to find the pair (\,@) € R™ x R! satisfying (3.16). Then the solution @ is
obtaining from (3.13). Let us note that (3.16) has formally the same structure as that of

(3.5), however, its size m x [is considerably smaller. Moreover, the first diagonal block
F = BK*BT is much better conditioned than K.

22

Now we need solve the first equation in (3.16), but there are two unknown variables.
We eliminate the variable a by introducing a projection to the subspace orthogonal to the
space spanned by G Ta. This subspace is so-called natural coarse space and we will denote
it by Ker GG. Then the projector onto the Ker G is given by

P=P'=1-GT(Ga"a.
Applying P on the first equation in (3.16) gives us:
PFA+ PG'a = Pd,
where PGTa =G a -G (GGT)"'GGTa = 0. So we obtain
PF)\ = Pd. (3.17)

In order to arrange (3.17) and GA = e (i.e., the second equation of (3.5)) as one equation on
the vector space Ker G we split the variable A into A;,,, o7 € Im G" and Ager € Ker G
as

)\:)\ImGT + AKer G- (3.18)
Now we substitute (3.18) into G\ = e:

G Aot +Akerc) = €
GAr,, aT + GAkerc = ¢,
———

=0

where A, o7 is one particular solution solving G\, o7 = e and Aker ¢ represents all
homogenous solutions solving GAxer ¢ = 0. Then A;,, o7 can be identified easily as

MNmar = GT(GGT) e, (3.19)

One part of A is known and now we show how to get Ager . Substituing (3.18) into (3.17)
we obtain

PF(A\r, T +Akerc) = Pd
PF)‘[mGT+PF)\K6TG == Pd
PFA\kerc = P(d—F\,,or). (3.20)

The equation (3.20) is solved with a conjugate gradient method on the subspace Ker G. If
we know], it remains to compute the second unknown variable a. We obtain a by solving
the first equation in (3.16) as follows

FA+G'a = d /- (GG '@
(GG 'GFA+a = (GG 'Gd
a = (GGT)7'G(d - FN). (3.21)

23

3.2 FETI-DP

We will now talk about the FETI-DP (Dual-primal FETI) method [18]. In this method
all local subdomain stiffness matrices are positive definite thanks to the so called primal
constraints. So the computation of generalized inverse is not neccessary and the matrix R
is empty. For more information, see also [19], [20].

3.2.1 Matrix and vector assembling

Let us describe the index sets of nodes used in FETI-DP method, see Figure 3.3. We have
the finite element set Np splitted into the interior set I with nodes inside the subdomains
and the interface set I' with nodes on the subdomains interface. Note that all remaining
nodes on the Neumann boundary are considered to be interior nodes of the subdomains.
However any nodes on the Dirichlet boundary are not need to be considered, because there
are variables prescribed. The Dirichlet boundary conditions are included in the stiffness
matrix and in the load vector as well as in the FETI method. Now we decompose I into
the primal set II with nodes situated in the corners of the subdomains and the dual set A
with remaining nodes on the subdomains interface, so we obtain

Np=IUT=TUIUA,

where INT =IINA = (). We also introduce a notation of the nonprimal set B = I U A.

>

} Dirichlet b. c.

U,
® u,
® Uy
<> A

VVV VY

>

Figure 3.3: Domain decomposition by FETI-DP with all types of variables.

24

Let us partition the local stiffness matrices, load vectors and solution vectors as follows:

_((Kpp); (Kus); (B, — [(uB)
fi= ((Knp); (Kmm); > 4 ((fn);) ' ((um);)

where components with the subscripts BB and B can be partitioned as follows:

((Kwu); (Kar), _((fr); un). — [(un)i

Now we have the global stiffness matrix and load vector of the form

_(Kss KEE:) :<f3)
K (KHB Kmn - fr)’ (322)

where Kpp = diag((Kpp)1,...,(Kpp)N) is a symmetric positive definite block-diagonal
matrix, Kinq = diag((Kmmn)i, - - ., (Kmomn)y) is a symmetric positive semidefinite block-
diagonal matrix and Kpp = diag((Kup)i,- .., (Kup)n) is a block-diagonal matrix and
fB=((fB)1)---» (fB)N)T, fo=((f)y,---» (fH)N)T are block vectors.

We introduce assembly operator BE for the primal variables which map the local vari-
ables up to the global uyy:

N
U = Blrun =Y _ (Bn){ (un)i. (3.23)
i=1
The matrix
(Bm)1
B =
(Br)n

is a sparse boolean block matrix with ones entries at positions of primal nodes (for the
example of By, see [21]). Because of BBy, = I we can write a maping from the global
variables up to the local ur as

ur = BH’EH.

The continuity of the dual variables ua is enforced via Lagrange multipliers A. We intro-
duce a jump operator Bg = (O Ba) such that

Bpup = Baua = o, (3.24)

where Ba is matrix with zero entries except 1 and —1 at appropriate positions so that the
continuity (ua); — (ua); = o on €; N QY is satisfied.
We can now define the partial assembled global stiffness matrix as

~ Kpp Kpp Iz O Kpp Kip Ig O
k= B Bup | _ a . (3.25)
Knp K O By Knp Kmn O Bn

25

where I?EB = KJBBH, kHB = BgKHB and I?HH = BgKHHBH. The corresponding
global load vector is defined as

H(5)-(5 50 e

and the global solution vector as

()-8) e

The matrix Ip is the identity operator on up and the tilde indicates that the continuity
in the primal variables is enforced. For a sufficient number of primal variables we obtain a
symmetric positive definite matrix K , where Kun is a symmetric positive definite matrix.
The structure of K is

~ T
(KBB); 0 (Kus),
~ Kpp K[- :
K = (IN{BB IN{HB > - U (3.28)
ne A 0 (KBB)y | (KuB)y
(KHB)l (KHB)N KHH
3.2.2 Dual problem
The FETI-DP saddle-point problem can be written in matrix form as
Kpp [:{EB BL up fB
Kop Kmn O un | =1 fu |- (3.29)
Bp 0] 0] A 0

Let us eliminate the primal variables uy; and non-primal variables up from (3.29). First
we express the up from the first equation as:

up = K5k < fo— BEA— f{ﬁBaH) (3.30)
and then the ur; from the second equation as:
i = Sy (fn — KupKpp(fs - BEA)) : (3.31)

where
St = Knn — KupKppKiip (3.32)

represents the coarse problem of FETI-DP method.

26

It remains to show how to get A. If we look at (3.29) as at TFETI problem (3.5), we
can make an elimination of the vector @ in the same way as in the previous section and
then we multiply it by (Bp O):

N _ o\ ! .
() o (o &) () (Ko) (55,
Uty Kup K fr Knp Kmm @ ’

Let us introduce a new notation

~ -1
. Kpp K Bj,
F:=(Bp 0)<I~(HB f{iﬁ) <59> (3.33)
~ -1
— Kpp Ky fB
d:=(Bg O) (e [?Eﬁ) < i) (3.34)

so we obtain the symmetric positive definite linear system:
FX=d. (3.35)

For computing F' and d we need to know the inverse matrix K

=~ -1 —1 17T -1 —1 -1 7T a-1
(IEBB IEEB) _ KBB +KBBKTTIBSHHKHBKBB _KBBKEBSHH (3.36)

Knp K —SghKupKgh St

We know that this inverse matrix exists, because Kgp and IN(HH are symmetric positive
definite matrices. Note that the (3.36) and the inverse of (3.32) are never computed
explicitly. We only need them in terms of matrix vector multiplications.

Now we multiply the first component (IN(111 by Bp and B}, and we obtain the matrix
F', the vector d similarly:

F = BpKpBj + BpK g KiipSun KnpK g B,
d= BpKghfs — BeKgLKnpSak(fii — KupKgs /).

The solution of the system (3.35) is computing by the conjugate gradient method.

27

4 Parallel input data generation by the libMesh library

4.1 LibMesh library

The 1ibMesh is an open-source software library in C+-+ [22] developed originally at The
University of Texas at Austin in the CFDLab in March 2002. However the contributions
have made elsewhere in the U.S. and abroad. The 1libMesh library is a preprocessing
tool for the numerical mesh-based simulation of partial differential equations (PDEs) on
serial and parallel platforms, using the finite element method. The library supports dis-
cretization of one, two and three dimensional steady and transient problems using various
element types. Note that for a parallel computing is used the MPI standard. A major goal
of the library is to provide a tool in which the users can focus on the specifies of a given
physical problem without considering the complexities of parallel and adaptive computing.
To come true this goal the library hides parallel communication from the user, so basic
MPI calls are not necessary in most applications. The 1ibMesh provides interfaces to high
performance existing software, such as PETSc, LASPack or SLEPc, whenever possible.
A description of the installation process of the library is presented in [23].

4.2 Key data structures

In this section we describe some key data structures used in 1ibMesh. We follow the article
[24] and the presentation [25].

Mesh

The Mesh class is main class in 1ibMesh. The Mesh describes a discrete form of a body
in d-dimensional space, where d = 1,2 or 3. It includes elements and nodes, which are
described in following parts.

The 1ibMesh supports reading and writing a few of mesh formats, for example Exodus II
or GMSH. Unfortunately we have had some problems with input of a mesh from an external
software package. First at all the software packages used by engineers at VSB don’t
support mesh formats included in 1ibMesh. It has been possible to use GMSH software as
a mesh generator. However there has been a problem with correct reading of the input file
in libMesh and mainly a problem of addition the setting of physic to mesh with following
correct reading in 1ibMesh. We spent some time over solving these problems, but the right
solution would require much more time. So we decided for mesh generation by libMesh
(for now).

The Mesh is partitioned into non-overlapping subdomains such that each subdomain
with corresponding elements is assigned to an individual processor. In the library the de-
fault partitioning algorithm is METIS. In the Mesh, each node lying on border between
subdomains is assigned to processor with lower index. The example of partitioned Mesh
is illustrated in Figure 4.1a), where nodes 4,5, 10, 11, 12 are assigned to processor 0, nodes

28

17,22 to processor 1 and nodes 13, 14 to processor 2. To create of a new mesh containing all
the elements which are assigned to a given processor is used a function create_pid_mesh.
So we have one pid_mesh for each processor. Note that the pid_mesh is useful just for the
FETI methods. An example of pid_mesh created from Mesh shown in Figure 4.1a) for 4
processors is illustrated in Figure 4.1b).

7 6 3 7 6 3
21 20 22 23 24
2 3 2 3
12 13 14 15 3 2 S 3 5
16 15 17 18 19
0 1 0 1
8 9 10 11 0 1 4 0 1 4
11 10 12 13 14
7 6 3 7 6 3
4 5 6 7
3 5 7 o 2 3 2 3
3 b 5 3 5
0 1 2 3
0 1 4 6 8 0 1 0 1
0 1 4 0 | 4
a) b)

Figure 4.1: The example of mesh and pid mesh for 16 elements and 4 processors.

The access to the elements and nodes from a Mesh is possible through iterators. An
iterator is a mechanism that enables to traverse a field of objects. We can use iterators to
access all elements/nodes in the mesh or only some subset of them, for example, only the
local nodes in the mesh.

Elements

The Elem base class defines a geometric element. All geometric element types provided in
libMesh are shown in rightmost column of Figure 4.2. Note that an element for 1D, 2D
and 3D is denoted by Edge, Face and Cell, respectively. For finite element analysis the
Elem class includes

e quadraliterals (Quad) and triangles (Tri) for 2D,
e hexahedra (Hex), tetrahedra (Tet), prisms and pyramids for 3D.

Elements store information as a unique identification number (ID), degree of freedom
information and a processor ownership. They also store pointers to their face neighbors
and to their nodes. The face neighbors are neighbor elements shared a side, where a side
is a Node in 1D, an Edge in 2D and a Face in 3D.

29

Pyramid

InfEdge2

[4

l«—— InfCell fe——] InfHex
\

[InfQuad |,\| InfPrism

| NodeEIemN InfQuad4 |

| RemoteElem | | InfQuad6 |

Figure 4.2: The Elem class hierarchy.|26]

Nodes

Nodes are points in arbitrary dimensional space defined by its spatial location. Each
object of the Node class stores its coordinates and additional information such as a global
ID, degree of freedom indices and a processor ownership. To Nodes we can access directly
via iterators, or indirectly through elements.

Systems

For one Mesh object only one EquationSystems object, which represents one or more
systems of equations defined on the Mesh, can be given. The EquationSystems object

30

can include many Systems, each corresponds to a PDE system of one or more equations.
The library provides at least implementation of explicit, implicit, steady, transient, linear,
nonlinear and eigen systems, see Figure 4.3.

RBConstructionBase RESCMConstructi
) onstruction
EigenSystem |<—| CondensedEigenSystem [€ <CondensedEigenSystem>

i i FEMSystem
ExplicitSystem DifferentiableSystem
LinearimplicitSystem FrequencySystem

Nonlinearlmplicit NewmarkSystem

System
RBConstructionBase
<LinearlmplicitSystem>

System

ImplicitSystem

Figure 4.3: The System class hierarchy. [27]

Adding a System to the EquationSystems is performed by function add_system<T_sys>
("name"), where T_sys is System type and name is an arbitrary name of the System. Then
we can use the function get_system("name") to return the reference to the System named
name.

Each System object stores the solution vector of degrees of freedom values and may con-
tain additional information such as a SparseMatrix and a NumericVector. For example,
in our implementation a SparseMatrix is the stiffness matrix K and a NumericVector is
the load vector F', for dynamic elasticity problem a SparseMatrix is the effective stiffness
matrix and a NumericVector is the effective load vector.

4.3 Description of the implementation

In this part we focus on a description of major functions included in our implementation,
especially on the assembling of elasticity stiffness matrix K and load vector F'. We have
to remark that the implementation is prepared only for static elasticity problem without
mass matrix M, see Subsection 2.5. However the assembling of matrix M in libMesh is
not difficult and we are able to do it. The dynamic elasticity problem will be added in
future. Still we can follow a description of the assembling of the matrices and vectors in
the Subsection 2.3, i.e., we consider the dynamic elasticity problem only in one time step t.

The structure of the implementing flow is illustrated in Figure 4.4. The code can run
in parallel as well as in serial without any changes of the implementation. A switching
between serial and parallel computing is very easy, for serial, parallel computing we set
run command to ./example-dbg, mpirun -np X ./example-dbg, respectively, where X
is a number of processors. Let us note that the number of subdomains, how we defined in
section 3.1.1, is equal to a number of processors and the implementation is a completely
functional for dimension equal 2 (for 1D and 3D will be finished in future).

31

For solving process the package FLLOP (FETI Light Layer On top of PETSc) [28§],
originally developed by Vaclav Hapla and David Horak, is used. The assembling of the
matrix B is implemented by Véclav Hapla, Lubomir Riha and Alexandros Markopoulos.

Input: dimension,
num of processors

A 4

Generation Mesh

Set
variables

v
Define
Equation System

Set
Dirichlet boundary

A 4

Assemble matrix R

neighbor
subdomains

A 4

Create data for
assembling matrix B

local to global
mapping of dofs

dofs on Dirichlet
boundary

A 4

Go to FLLOP Assemble elasticity
- matrix K, vector F

v

A 4

Assemble matrix B

v

Solve problem

A 4

Olpul.' solution FLLOP
vector u

Figure 4.4: Scheme of the implementing flow.

4.3.1 Function assemble R

For assembling the matrix of the rigid body modes R, i.e. (3.9), we implemented the
function assemble_R. This function builds the submatrix R; for each processor ¢ and
supports 1D, 2D and 3D problem. The matrix is stored as a dense matrix. Let us show
the assembling part of code for 2D case that is included inside a for cycle through local

32

nodes appropriate to the i-th processor, see Part of code 1. Note that the dim is equal to
2 and point (j) returns j-th coordinate of the current node.

Part of code 1 Assembling R; in 2D.

1: for (; nod '= end_nod; nod++)

2: {

3: const Node* node = *nod;

4: const Point point = *static_cast<const Point*> (node);

5: switch (dim)

6: {

7

8: case 2:

9: R(dim*node->id () ,0) = point(1); /rotation about x axis

10: R(dim*node->id()+1 ,0) = -point(0); /rotation about y axis

11: R(dim*node->id () ,1) = 1 /displacement in the x-direction
12: R(dim*node->id()+1 ,2) = 1; /displacement in the y-direction
13: break;

14: ..

15: }

16: }

4.3.2 Function create data for B

To assemble the jump matrix B defined in section 3.1.2 we need some information and
these are created in the function create_data_for_B. For each processor the following
information is needed:

e vector of neighbor subdomains (processors)
e mapping vector from local degrees of freedom to global ones
e vector of degrees of freedom corresponding to the Dirichlet boundary.

How we can see in scheme 4.4, the assembling of the B itself is executed inside FLLOP
package. Let us show an example of the creation of data for B. We consider the mesh
illustrated in Figure 4.1. For processors p;, where ¢ = 0,...,3, we obtain the following
vectors of neighbor subdomains

v (2) e () () ()

For 2D elasticity problem we have two degrees of freedom (for each direction in 2D coor-
dinate system) so two indices of dof’s, i.e., 2j and 2j + 1 corresponds to each node j. For
four processors we obtain the following mapping vectors from local degrees of freedom (see

33

pid _mesh in Figure 4.1) to global

0 22 24 8
1 23 25 9
2 20 26 12
3 21 27 13
4 30 36 14
9 31 37 15
6 32 34 10
7 33 35 11
8 24 28 16
bo: 9 y D1t 95 y D2 929 y D3¢ 17
10 34 38 18
11 35 39 19
20 40 46 26
21 41 47 27
22 42 44 24
23 43 45 25
24 44 48 28
25 45 49 29

and the following vectors of degrees of freedom corresponding to the Dirichlet boundary

0 22
1 23
6 32
bo : 7 y D1t 33 y D2 y D3¢)
22 42
23 43

where two empty vectors are appeared.

4.3.3 Function go_to_fllop

In this function we call the assembling function at the beginning, namely assemble_elasti-
city (more about in the next subsection). Then we continue only by PETSc and FLLOP
functions. At first we have to convert 1ibMesh data to the PETSc format and then re-
arrange/set them by FLLOP commands to the form needed for the assembling matrix B
and for solving the QP problem.

The key function for the assembling of jump matrix B is QPFetiSetUp. Inside this
function we call QPFetiAssembleGluing for the assembling of the gluing part of the B and
QPFetiAssembleDirichlet for the assembling of the part of the B enforcing the Dirichlet
boundary conditions. The FETI process preparing the input data for solving process itself

34

is included in the function QPFetiPrepare and the solving of the QP problem is executed
by the QPSSolve.

4.3.4 Function assemble _elasticity

This function implements the parallel assembly process of the stiffness matrix K and the
load vector F' in 2D [29]|. The assembling operates on the (active) elements assigned to
each processor, i.e., (active) local elements. First the local element matrix and vector are
computed and then these are added into the global matrix and vector. Let us remind the
numerical approximation of the K (,), the Fe, and the Ffaceez,rN from the end of the
section 2.3.

T'Lqp

el (v,w) ~ Z E¢ij ¢el v(fqp)) ijkl 55 kl(¢el w(éqp) ‘Jel(gqp)‘ Wep (41)

gp=1

F, R Z f Xel gqp ¢el,v(£qp) |Jel(£qp)| Wep, (4'2>

gp=1

9P face

faceel’l—\N

h _
Ffaceel,r‘N ~ Z g (Xel (fqpface)) ¢£l(?56 (gqpface) ’Jel (quface)
qpface:]-

wqpface7 (43)

where ¢, (Egp) = Gelw(Egp)la and Q_Sfffﬁe(‘fqpfm) = gbfﬁf)e(fqpface)ld, the I is the identity
matrix of order d = 2 in this case. Let us denote nY; (nY) the number of vertices on
element (note that n% = nY). The element matrix K, € R%a*d and the element
vector F,; € R%a*! are created by (4.1) and (4.2), respectively. The values of (4.3) are
then added to the vector Fy; at appropriate positions. This new vector will be denoted by
Fey € R <1 (named Fe,; as extended Fy;). Now we can decompose the matrix K, and
the vector Fe. into the following d x d (d x 1, respectively) overlapping blocks. For d = 2
we have

. K K . Fe
K,; = reindexed (uuwel - Puvel) pe = reindexed wel)
Kvu,el va,el €v,el

where u and v mean displacements in direction of the line coordinates, in the section 2
we denote them wuy and uy. Since the structure of the assembling K. and Feg is quite
similar we focus now only on the assembling of K in detail, because this assembling is
more complicated. The blocks Ky e1, Kupel, Kouel and Ky, o can be written as

nv
eln

Ko — Z ey q sl D oo <[OnlEr) D)

gp=1v=1w=1
(4.4)

35

nv
eln

[el,v] = _ 0
U” el = Z Z Z i < ¢) ()(gqp)) Cijkl o <_ ¢el,w(€qp)

gp=1v=1w=1

qp v
TLPl n

| 0] = [el,w |
Uu el = Z Z Z €¢ij (_ gf)elw(é‘qp)) Cijk;l €.kl <_ ¢ L, O(gqp)

gp=1v=1w=1

qp v
nel n

) | et (Egp)| wp

(4.5)

> | et (Egp)| wp

(4.6)

i EEE [) e ([| e

gp=1v=1 w=1

Note that for different combinations of i, j we have

g&OO(¢el,v(§qp)) = 81E1¢€l,’1}7

[¢el,v(€qp)] > = 1 (8961@%)6171; + 89:20))

E€¢,01 5

Ze10 ([Getw(Eqp)]) — % (02,0 + Oy el) 5

[d’el,v(fqp) _> — 8;1; 0.

€11

Let us look in detail on all non-zero combinations of

B ([¢el,v0(§qp) D Zen <[Qbel,wo(fqp) D

from the equation (4.4). For following choices i, j, k, [we obtain

i,j, k,l =0: 8&:1¢el,v . a1:1¢el,w = A,
.. 1
1,7, k= 0, l=1: 6xl¢el,v . §6x2¢el,w = B,

.. 1
Z)]yl = 07 kE=1: amlqbel,v 5

2a:r2¢el,w = Ca

1
i,k,l=0,j=1: angﬁi)el,v : 8:1:1¢el,w =: D,
. . 1
jakalzou 1=1: §ax2¢el,v'8x1¢el,w = E7
. . 1 1
i,k =0,]al =1: iaxg(ﬁel,v : iaxgqsel,w =: I,

.) 1 1
Z7l = 07 j7k =1: §8$2¢el,v . §a$2¢€l,w = G7

(4.7)

36

. . 1 1
Jk=0,4l=1: 58x2¢el,v : iangz)el,w =
1 1

j:l =0,4,k=1: 7a$2¢el,v : §a$2¢el,w =:1.

2

As we can see some equations are same for different combinations, namely B=C, D = F

and F =G = H = 1. So we have

A=1- (8901 ¢el,v : a:vl ¢el,w) = 8:]01 Cbel,v : 8931 d)elﬂl)’

1
2

2B=2C=2- <ax1 Qbel,”u : 8x2¢el,w> = 81:1 ¢el,v : ax2¢el,wa

1
2D=2E=2- <8x2¢el,v : a:cl(bel,w) - xg‘bel,v : a:mqsel,'wa

2
1 1

AF =4G =4H =41 =14 (amquel,v : 6x2¢el,w> = :Eg(z)el,v ' axzd)el,w-

2 2

(4.9)

(4.10)
(4.11)

(4.12)

To obtain K, ¢ we need all (2¢ = 16) combinations of i, j, k, I € {0, 1} to the sum (Einstein
summation convention) in (4.4). The only 9 combinations (in the previous text denoted

by A-I) of all combinations have non-zero values and thanks to the (4.9)-(4.12) we need

only 4 representatives of these 9. The reader can make sure himself that A, B, D and F

are the representatives with fixed indices ¢ = k = 0 and varying indices j, [.

The terms in the (4.9) up to (4.12) can be written by using a nabla operator. Let us

introduce the nabla operator
Ve = (Ja(€) ™ Ve,

where V¢ = (6%1’ ey 8%2)' By using it we can write

ax1¢el,v = %S,O(Qéel,v)v
axz¢el,v = %E,l(gi)el,v)

and so
Veo(dern) - Veo(Petw)s
Veo(®ern) - Ve (etw),
6f,l(gbelﬂz) : 6f,()(gbel,w)a
Ve (¢ern) - Ve (Perw)

Now we look closer at the Einstein sum in (4.4), where 16 combinations of 4, j, k,1 € {0,1}

are summed, i.e., we sum 9 non-zero values A—-I and additional 7 zero values multiplied

by Cjjr with appropriate combinations of 4,...,l. The values of Cj;1; are the same for the
combinations (B, C), (D, E) and (F,G, H, I) thanks to the symmetries in Cjyjj;. By taking

37

B=C,D=FE, F=G= H =1 into account we obtain

qap v
el

Kuer = 3> Vei(@ero(éap)) Ciir Ve (berw(Eqp)) [er(Eqp)| wep, for i =0,k = 0.

gp=1v=1w=1

w
el

(4.13)

The matrices (4.5), (4.6) and (4.7) can be written in the same way only with different
values of indices 7, k, such that

Kuv,el = Kuu,el for ¢ = O, k= 1,
K’uu,el - Kuu’el fOI‘ 7, = 1’ ,I{j = 0’
K’UU,@[= Kuu7el fOI“ Z = 1, k =]_

Now we can show the assembling of the (4.13) in 1ibMesh, see Part of code 2. There

are vertices v, w denoted by i, j and the indices 1, j, k,[are denoted by C_i, C_j, C_k,
C_1. The terms in the (4.13) are transposed into 1ibMesh notation as follows

Ve (Seto(Eqp)) = dphi [1] [qpl (C_3),

Vet (etuw(€qp)) = dphi [3] [qp] (C_1),
Cijri = eval _elasticity_tensor(C_i,C_j,C_k,C_1),

’Jel (é.qp)‘ Wqp = JxW [qp] .

Part of code 2 Assembling of Kuu
1: for (unsigned int qp=0; gp<qrule.n_points(); gp++)

2: {

3: for (unsigned int i=0; i<n_u_dofs; i++)

4: for (unsigned int j=0; j<n_u_dofs; j++)

5: {

6: unsigned int C_i, C_j, C_k, C_1;

7 C_i=0, C_k=0;

8:

9: C_j=0, C_1=0;

10: Kuu(i,j) += JxW[gpl*(eval_elasticity_tensor(C_i,C_j,C_k,C_1) *
11: dphi[i] [qp] (C_j)*dphi[j] [qp] (C_1));

12:

13: C_j=1, C_1=0;

14: Kuu(i,j) += JxW[gpl*(eval_elasticity_tensor(C_i,C_j,C_k,C_1) *
15: dphi[i] [qp] (C_j)*dphi[j] [qpl (C_1));

16:

17: C_j=0, C_1=1;

18: Kuu(i,j) += JxW[gpl*(eval_elasticity_tensor(C_i,C_j,C_k,C_1) *

19: dphili] [qp] (C_j)*dphi[j] [qpl(C_1));

38

20:

21: C_j=1, C_1=1;

22: Kuu(i,j) += JxW[gpl*(eval_elasticity_tensor(C_i,C_j,C_k,C_1) *
23: dphi[i] [qp] (C_j)*dphi[j] [qp] (C_1));

24: }

25:

Let us remind that Cjjy; is defined as

Cijki = Aijogt + p(0ikdj1 + dudjk),

where
\ = Ev 7
(1+v)(1—2v)
B FE
T

The coefficient E is Young’s modulus and the v is Poisson’s ratio. In the next section we
will choose these coefficients as £ = 1 and v = 0.3. The Lamé coeflicients A and u are
denoted by lambdal and lambda2 in libMesh.

39

5 Numerical experiments

For numerical experiments the Anselm supercomputer, built on the campus of VSB-TU
Ostrava, is used. The Anselm cluster [30]| consists of 209 computational nodes (of which
180 are regular compute nodes), totaling 3344 compute cores with 15TB RAM and giving
over 94 Tflop/s theoretical peak performance. Each node is a powerful x86-64 computer,
equipped with 16 cores (two eight-core Intel Sandy Bridge processors), at least 64GB RAM,
and 500GB hard drive.

We test the numerical (weak) and parallel (strong) scalability of our data generation
implementation. The numerical scalability is the ability of a process to keep the number
of iterations independent (invariable) on a growing amount of unknowns. The parallel
scalability means that run time of a process is inversely proportional to the number of used
processors.

For testing we choose following benchamrk. We model a static linear elasticity problem
for a homogeneous isotropic rectangular body (—2,2) x (—1,1). The left boundary is fixed
and a vertical load g = —1 is applied at the right boundary, see Figure 5.1. We choose
the Young’s modulus as £ = 1 and the Poisson’s ratio as v = 0.3.

2.1 I anlg

Q Iy

2,-1 2,-1
1) T, 2-1)
Figure 5.1: Geometry for the given example.

To demonstrate scalabilities we varied the number of subdomains (N). The number
of elements in the whole body (n®) is invariable for parallel (strong) scalability and vari-
able for numerical (weak) scalability, where the number of elements of the subdomain
is the almost same for all subdomains (for partitioning by METIS is not always exactly
same).

The numerical (weak) scalability result is summarized in Table 5.1, 5.2 and 5.3, the par-
allel (strong) scalability result in Table 5.4 and 5.5. The numbers of iterations for a growing
amount of subdomains is shown in Figure 5.2 and the time results are illustrated in Figure
5.3, 5.4 and 5.5. Note that the Num_dof’s/pid0 and Num __elem/pid0 denotes the number
of degrees of freedom for pid mesh corresponding to process 0 and the number of elements
for pid mesh corresponding to process 0, respectively.

40

Table 5.1: Numerical (weak) scalability for ~ 2500 elements of the subdomain.

| Num_subs (N) | 16 | 32 | 64 | 128] 256 | 512 | 1024
Num_dof’s 80802 | 160178 | 321602 | 640712 | 1283202 | 2562848 | 5126402
Num__dof’s/pid0 5258 | 5204 | 5278 5208 5226 5208 5294
Num_elem (n®!) 40000 | 79524 | 160000 | 319225 | 640000 | 1279161 | 2560000
CG iterations 32 36 41 44 48 49 51
Preproc. time s 1.0300 | 1.8781 | 3.8109 | 11.583 16.355 38.977 78.320
FLLOP time 3] 0.98137 | 0.61717 | 1.016 | 2.5041 | 0.88782 | 2.2805 | 2.1751
- QPSSolve time [s] | 0.0573 | 0.1017 | 0.1349 | 0.2285 | 0.2131 | 0.6067 | 0.1279

[Total time [s] | 1.9940 | 2.4953 [4.8269 [14.0871 | 17.2428 | 41.2575 | 80.4951

Table 5.2: Numerical (weak) scalability for ~ 10000 elements of the subdomain.

| Num_subs (N) | 16 | 32 | 64 | 128 | 256 | 512 |
Num _dof’s 321602 | 640712 | 1283202 | 2562848 | 5126402 | 10242338
Num_ dof’s/pid0 20502 20434 20486 20416 20434 20462
Num__elem (n®) 160000 | 319225 640000 | 1279161 | 2560000 5116644
CG iterations 40 44 51 53 55 56
Preproc. time s 3.6178 | 7.3234 13.574 29.392 58.771 135.36
FLLOP time [s] 1.7109 | 1.5028 2.0642 1.7587 2.6025 2.2453
- QPSSolve time [s] | 0.3073 | 0.2980 0.5192 0.5331 0.7822 0.4972

’ Total time [s] ‘ 5.3287 | 8.8262 | 15.6382 | 31.1507 | 61.3735 | 137.6053

Table 5.3: Numerical (weak) scalability for ~ 22500 elements of the subdomain.

| Num_subs (N) | 16 | 32 | 64 | 128 | 256 |
Num_dof’s 722402 | 1441602 | 2884802 | 5766408 | 11529602
Num_ dof’s/pid0 45750 45780 45640 45752 45728
Num_ elem (n®) 360000 | 719104 | 1440000 | 2879809 | 5760000
CG iterations 45 92 56 61 63
Preproc. time [s] 7.4018 16.719 30.508 64.833 138.52
FLLOP time [s] 3.0786 2.5328 2.8002 2.9233 3.7791
- QPSSolve time [s] 2.0011 1.4514 1.5123 1.7170 2.0350

’ Total time [s] ‘ 10.4804 | 19.2518 | 33.3082 | 67.7563 | 142.2991

41

The maximum of the number of subdomains (cores) in Tables 5.1 - 5.3 is the maxi-
mum of the number of subdomains (cores), for which the implementation runs. For more
subdomains it gets a limit of the store size, which is caused by high memory usage in
libMesh, especially by the mesh generator. Total times are increasing, the growth is linear
(considering to the number of subdomains).

70

60 :
2 8
£s —_——
s
8 40
S
=30 —=2500 el/s
£ ~#—10000 el/s
s 20 —
z 22500 el/s

10

0 ‘ ‘ ‘ ‘

40000 160000 640000 2560000 10240000

Total number of dof's
Figure 5.2: Number of iterations.

The preprocessing time means time of the 1libMesh part of code including all our
assembling functions. How we can see in Figure 5.3 and 5.4 our implementation is not
scalability. The time begins increase very much from 256 subdomains. This is caused
by large amount of time, which is necessary for a building of mesh including creation,
partitioning and communication of the mesh. However this is not surprising, because
the default SerialMesh is used in libMesh. The time results would be better for using
ParallelMesh, but this mesh is currently still in development. The parallel scalability is
achieved for example for the time of the assemble_elasticity function, which assembles
the stiffness matrix and the load vector, see Figure 5.5.

Table 5.4: Parallel (strong) scalability for 1000000 elements.

Num_ subs (N) \ 16 | 32 | 64 | 128 | 256 | 512 1024
Num_ dof’s 2004002 | 2004002 | 2004002 | 2004002 | 2004002 | 2004002 | 2004002
Num__dof’s/pid0 122600 | 63300 | 31770 | 15966 8104 4106 2098
Num__elem/pid0 60677 | 31245 | 15623 7797 3907 1952 977
Preproc. time [s 23.491 | 21.213 | 21.416 | 22.131 | 23.604 | 49.881 | 36.488
- Ass_elast time [s] | 0.9286 | 0.3758 | 0.1893 | 0.0938 | 0.0475 | 0.0243 | 0.0119
FLLOP time |s] 10.147 3.782 2.480 | 1.3262 1.169 | 3.3329 | 5.1302

Total time [s] ‘ 33.638 24.995 23.896 | 23.4572 24.773 | 53.2139 | 41.6182

42

Table 5.5: Parallel (strong) scalability for 4000000 elements.

Num_ subs (N) \ 16 | 32 | 64 | 128 | 256 | 512 1024
Num_ dof’s 8008002 | 8008002 | 8008002 | 8008002 | 8008002 | 8008002 | 8008002
Num__ dof’s/pid0 502584 | 251360 | 127600 | 63398 | 31816 16066 8088
Num__elem/pid0 250210 | 124875 | 63211 | 31242 | 15622 7832 3898
Preproc. time [s 93.489 | 85.834 | 84.701 | 85.297 | 86.765 | 100.96 | 113.99
- Ass_elast time [s] | 3.2027 | 1.5033 | 0.7476 | 0.4056 | 0.2252 | 0.0915 | 0.0499
FLLOP time |s] 4.8515 | 17.478 | 10.342 | 4.1835 | 3.1084 | 2.8939 2.121
Total time [s] | 98.3405 | 103.312 | 95.043 [89.4805 | 89.8734 [103.8539 | 116.111
60
For 1 000 000 el.

Time [s]

50

40

30 4\\g
o = “:%

10

0

= Total time

== Preproc. time

16

32

64

128

Number of subdomains

512

1024

Figure 5.3: Total time and preprocessing time for 1000000 elements.

Time [s]

140

120

For 4 000 000 el

.

e

80

60

40

20

—&—Total time

=~ Preproc. time

16

32

64

128

256

Number of subdomains

512

1024

Figure 5.4: Total time and preprocessing time for 4000000 elements.

43

Time [s]

3,5 k
3 \
25 —4— 1000000 el
\ ~4—4000 000 el
2

1,5

1
05 4\ \.\

Number of subdomains

Figure 5.5: Time of the assemble_elasticity function.

44

6 Conclusion

The main aim of this thesis was to implement the input data generation in FETI methods in
libMesh library on mesh imported from selected commercial software packages and make
an interface to FLLOP library. The implementation was done for the static elasticity
problem on the rectangular mesh generated by libMesh. The mesh wasn’t imported from
external software packages because of problems with supporting of mesh formats in 1ibMesh
and with correct reading of the input file in 1ibMesh. The interface to the FLLOP library
was made and so was showed that the FLLOP library can be connected to arbitrary FEM
generic software, which is totally independent on the FLLOP library.

At the beginning of the thesis the dynamic elasticity problem, its weak formulation
and its spatial and time discretization were described. There was also described the static
elasticity problem in brief. The Total-FETI (FETI) and the FETI-DP methods were
presented in the next section. Then a introduction to the 1ibMesh library was made,
some key data structures used in this library were presented and main functions of our
implementation were described. In the last section numerical experiments were made.

The results of numerical experiments showed us that the mesh generator in 1ibMesh
is limited by store size, the library is not scalability for the default SerialMesh and
the ParallelMesh is currently still in development and so is not applicable for massive
parallel computations. The conclusion is that the 1ibMesh library currently is not utiliz-
able for more than hundreds of cores. However there has been a small number of the FEM
generic softwares with the same functionality as 1ibMesh, which support massive paral-
lel computations. More information about massively parallel finite element generation is
presented in [31], [32].

There are many things to finish in the data generic implementation. In future work I
would like to focus on finishing and improvement of this implementation. I would also like
to deal with FETT methods and FEM generic softwares in general.

Pavla Jirutkova

45

7
[1]

2|

3]

4]

[5]

6]

7]

18]

19]
[10]

[11]

[12]

References

M. Merta, Newmarkova metoda pro numerické teseni poédtecnich problémi 2. Fddu.
Diploma thesis, VSB - TU Ostrava, 2009.

R. Blaheta, Matematické modelovdni a metoda konecnijch prvkid. Matematika pro in-
zenyry 21. stoleti (reg. ¢. CZ.1.07/2.2.00/07.0332), 2012; Chap. 6.

Introduction to Finite Element Methods, Department of Aerospace Engineering Sci-
ences, University of Colorado at Boulder [online],
< http://www.colorado.edu/engineering/CAS/courses.d/IFEM.d/ >

J. E. Flaherty, Course Notes - Finite Element Analysis, Finite Element Approzima-
tion, Sec. 4.2. |online],
< http://www.cs.rpi.edu/~flaherje/pdf/fead.pdf >

Introduction to Finite Element Methods, Department of Aerospace Engineering Sci-
ences, University of Colorado at Boulder, Part II: Mathematical Formulation of Finite
FElements, Chap. 16: The Isoparametric Representation. [online],

< http://www.colorado.edu/engineering/cas/courses.d/IFEM.d /IFEM.Ch16.d/ >

Wikipedia - the free encyclopedia, Gaussian quadrature [online],
< http://en.wikipedia.org/wiki/Gaussian _quadrature >

D.A. Dunavant, High degree efficient symmetrical Gaussian quadrature rules for the
triangle. International Journal of Numerical Methods in Engineering, 21:1129-1148,
1985.

(Presented also in Table 6.3.1 in < http://www.cs.rpi.edu/~flaherje/pdf/fea6.pdf >.)

J. G. de Jalén, E. Bayo, Kinematic and Dynamic Simulation of Multibody Systems:
The Real-Time challenge. Springer-Verlag, New-York, ISBN 0-387-94096-0, 1994;
440 pp, Sec. 7.1.5.

K.-J. Bathe, Finite Element Procedures. Cambridge, 2006; p. 780.

7. Dostéal, D. Horak, R. Kucera, Total FETI - an easier implementable variant of the
FETI method for numerical solution of elliptic PDE. Communications in Numerical
Methods in Engineering, 22, 2006.

C. Farhat, F-X. Roux, An Unconventional Domain Decomposition Method for an
Efficient Parallel Solution of Large-Scale Finite Element Systems. SIAM Journal on
Sci. and Stat. Computing 13, 1992; s. 379-396.

T. Kozubek, V. Vondrak, M. Mensik, D. Horak, Z. Dostal, V. Hapla, P. Kabelikova, M.
Cermak, Total FETI domain decomposition method and its massively parallel imple-
mentation. Advances in Engineering Software, DOI: 10.1016 /j.advengsoft.2013.04.001,
2013.

http://www.cs.rpi.edu/~flaherje/pdf/fea4.pdf
http://www.cs.rpi.edu/~flaherje/pdf/fea6.pdf

46

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]

[23]

[24]

[25]

P. Jirutkova, Paralelizace tesent eliptickijch okrajovych wloh pomoci TFETI metody
rozloZent oblasti. Bachelor thesis, VSB - TU Ostrava, 2012.

Z. Dostal, T. Kozubek, A. Markopoulos, M. Mensik, Cholesky decdomposition and a
generalized inverse of the stiffness matriz of a floating structure with known null space.
Applied Mathematics and Computation, 2011; 217:6067-6077.

T. Brzobohaty, Z. Dostal, P. Kovar, T. Kozubek, A. Markopoulos, Cholesky decom-
position with fixing nodes to stable evaluation of a generalized inverse of the stiffness
matriz of a floating structure. IJNME, DOI: 10.1002/nme.3187.

Z. Dostal,Optimal Quadratic Programming Algorithms: With Applications to Varia-
tional Inequalities (1st ed.). Springer Publishing Company, Incorporated, 2009.

J. Haslinger, T. Kozubek, R. Kucera, G. Peichl, Projected Schur complement method
for solving non-symmetric saddle-point systems arising from fictitious domain ap-
proach. Numerical Linear Algebra with Applications 2007; 14(9):713-739.

Ch. Farhat, M. Lesoinne, P. LeTallec, K. Pierson, D. Rixen, FETI-DP: a dual-primal
unified FETI method - part I: A faster alternative to the two-level FETI method.
International Journal for Numerical Methods in Engineering, 2001; 50:1523-1544.

A. Klawonn, O. Rheinbach, Some computational results for robust FETI-DP methods
applied to heterogeneous elasticity problems in 3D. Springer Berlin Heidelberg, 2007;
pp 389-396.

O. Rheinbach, Parallel Iterative Substructuring in Structural Mechanics. Archives of
Computational Methods in Engineering, Springer Netherlands, 2009; pp 425-463.

M. Jarosova, Efektivni implementace nékterijch algoritmai kvadratického programovdni
pro TeSent rozsdhlych wiloh. Doctoral thesis, VSB-TU Ostrava, 2010.

The libMesh library |online],
< http://libmesh.sourceforge.net >

The libMesh library, Download, Installation Instructions [online],
< http://libmesh.sourceforge.net /installation.php >

B. S. Kirk, J. W. Peterson, R. H. Stogner, G. F. Carey, libMesh: A C++ Library for
Parallel Adaptive Mesh Refinement/Coarsening Simulations. Engineering with Com-
puters, 22(3-4):237-254, 2006.

B. S. Kirk, J. W. Peterson, R. H. Stogner, The libMesh Finite Element Library: a
case for Object-Oriented High-Performance Computing. PRACE Training, 2013.
< http://www.training.prace-ri.eu/uploads/tx_pracetmo/libmesh.pdf >

47

[26]

[27]

28]

[29]

[30]

[31]

32|

The libMesh library, Class Docs, Class Elem [online],
< http://libmesh.sourceforge.net /doxygen/classlibMesh 1 1Elem.php >.

The libMesh library, Class Docs, Class System [online],
< http://libmesh.sourceforge.net /doxygen/classlibMesh 1 1System.php >.

IT4Innovations, Supercomputing for Industry, FLLOP [online],
< http://industry.itdi.cz/en/products/fllop/ >.

The libMesh library, Examples, Linear Elastic Cantilever [online],
< http://libmesh.sourceforge.net /systems_of equations ex4.php >.

IT4Innovations, Hardware and Services, Anselm support and documentation |online],
< http://www.itdi.cz/support/?lang=en >

T. Heister, M. Kronbichler, W. Bangerth, Massively Parallel Finite Element Pro-
gramming. Springer-Verlag Berlin Heidelberg, EuroMPI 2010, LNCS 6305, DOI:
10.1007/978-3-642-15646-5 13, 2010; pp. 122-131.

W. Bangerth, C. Burstedde, T. Heister, M. Kronbichler, Algorithms and Data Struc-
tures for Massively Parallel Generic Adaptive Finite Element Codes. ACM Transac-
tions on Mathematical Software, V. 38, Iss. 2, DOI: 10.1145/2049673.2049678, 2011.

	Introduction
	Elasticity problem
	Weak formulation
	Finite element discretization
	Assembling the mass and the stiffness matrix and the load vector
	Discretization in time
	Static elasticity problem

	FETI methods
	TFETI (FETI)
	FETI-DP

	Parallel input data generation by the libMesh library
	LibMesh library
	Key data structures
	Description of the implementation

	Numerical experiments
	Conclusion
	References

