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Key message: Conifer radial growth reductions may be related to unusual snow conditions or a 26 

mismatch between frost hardiness level and minimum temperature, but not typically to low 27 

winter temperature extremes. 28 

Abstract: The aim of the study was to examine if temperature conditions potentially causing 29 

frost damage have an effect on radial growth in Norway spruce and Scots pine. We hypothesized 30 

that frost damage occurs and reduces radial growth after 1) extreme cold winter temperatures, 2) 31 

frost hardiness levels insufficient to minimum temperatures, and 3) the lack of insulating snow 32 

cover during freezing temperatures, resulting in increased frost and decreased temperatures in 33 

soil. Meteorological records were used to define variables describing the conditions of each 34 

hypothesis and a dynamic frost hardiness model was used to find events of insufficient frost 35 

hardiness levels. As frost damage is likely to occur only under exceptional conditions, we used 36 

generalized extreme value distributions (GEV) to describe the frost variables. Our results did not 37 

show strong connections between radial growth and the frost damage events. However, 38 

significant growth reductions were found at some Norway spruce sites after events insufficient 39 

frost hardiness levels and, alternatively, after winters with high frost sum of snowless days. Scots 40 

pine did not show significant growth reductions associated with any of the studied variables. 41 

Thus, radial growth in Norway spruce may be more sensitive to future changes in winter 42 

conditions. Our results demonstrate that considering only temperature is unlikely to be sufficient 43 

in studying winter temperature effects on tree growth. Instead, understanding the effects of 44 
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changing temperature and snow conditions in relation to tree physiology and phenology is 45 

needed. 46 

Keywords: tree growth, tree-rings, frost damage, extreme value distributions, frost hardiness  47 
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1. Introduction 48 

During the last century, winter temperatures in northern Europe have increased more than the 49 

annual average temperatures (IPCC 2014, Mikkonen et al. 2015). The effects of climate change 50 

are not restricted to winter time temperature only. Changes in length of snow season, snow 51 

properties and soil temperatures have also been documented and these trends are likely to 52 

continue in the future (Venäläinen et al. 2001, Helama et al. 2011, Liston and Hiemstra 2011). 53 

In northern Europe, growing season temperature is the main factor affecting annual variations of 54 

tree growth, while the effects of winter temperatures are considered to be minor (e.g., Briffa et 55 

al. 2002). However, contradicting results regarding the effects of winter conditions have been 56 

reported. For example, several studies on Norway spruce (Picea abies (L.) Karst.) have shown 57 

negative correlations between radial growth and winter temperatures, suggesting that years with 58 

cold winter temperatures are associated with higher radial growth (Jonsson 1969, Miina 2000, 59 

Mäkinen et al. 2000, Helama and Sutinen 2016). These patterns appear to be species-specific, as 60 

studies with Scots pine (Pinus sylvestris L.) have found positive or non-significant correlations 61 

between ring-width series and winter temperatures (Jonsson 1969, Miina 2000). 62 

The mechanisms of how low temperatures are related to radial growth are not fully understood. 63 

Connections between frost events and reduced growth have been explained by changes in 64 

resource allocation for replacing the damaged tissues, as well as reduced resource collection 65 

(e.g., reduced photosynthesis due to needle damage), which could reduce growth in the following 66 

summer (Dittmar et al. 2006, Príncipe et al. 2017). However, trees growing in cold environments 67 

are adapted to harsh winters. Therefore, the relationship between low temperatures and tree 68 

growth is not likely to be linear. Instead, growth reductions can only be expected after extreme 69 

events that exceed the conditions trees are acclimated to. This poses a challenge on the research 70 
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methods, as classical statistical methods are not well suited for studying rare events (Katz et al. 71 

2005). Statistical distributions defined by the majority of observations near the center of the 72 

distribution are not likely to describe well the characteristics of the distribution tails (i.e., minima 73 

and maxima). The statistical theory of extreme values resolves this problem, as the generalized 74 

extreme value distributions (GEV) specifically describe the form of distribution tails (Gaines and 75 

Denny 1993, Coles 2001, Katz et al. 2005). 76 

The study of extreme and rarely occurring events is challenging also from the biological point of 77 

view and identifying biologically meaningful extremes is not straightforward (Gutschick and 78 

BassiriRad 2003, Babst et al. 2012, Frank et al. 2015). Gutschick and BassiriRad (2003) 79 

suggested that extreme events should be defined based on the acclimation capacity of the studied 80 

organism. As organism’s ability to tolerate extreme conditions typically changes in time, using 81 

purely environmental variables in defining the extremes is insufficient. For example, the 82 

potential damage caused by cold temperatures depends on the frost hardiness of tree tissues 83 

(Leinonen 1996, Hänninen 2016). Late frost events in spring, when the frost hardiness of trees 84 

has already decreased, are typical causes of frost damage, and have been linked to abrupt growth 85 

declines prior to tree death (Vanoni et al. 2016). Even though the occurrences of low 86 

temperatures are expected to decrease (IPCC 2014), some studies suggest that frost damage in 87 

trees may increase with warmer springs and larger temperature fluctuations (Cannell and Smith 88 

1986, Hänninen 1991, Augspurger 2013). 89 

The effects of winter temperatures on boreal trees are mediated by the characteristics of the 90 

snowpack. As snow forms an insulating layer, lack of snow cover combined with freezing 91 

temperatures leads to low soil temperatures and deep soil frost (Groffman et al. 2001, Hardy et 92 

al. 2001). In both Scots pine and Norway spruce, severe soil frost conditions have been 93 
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connected to needle loss and reduced growth (Tikkanen and Raitio 1990, Kullman 1991, Solantie 94 

2003, Tuovinen et al. 2005). Helama et al. (2013) showed that low soil temperatures as well as 95 

deep snowpack in spring were associated with lower radial growth of Scots pine. Furthermore, 96 

artificially increased soil frost, especially if soil thawing in spring is delayed, has been found to 97 

be related to higher fine-root mortality (Gaul et al. 2008, Repo et al. 2014), reduced starch 98 

content in needles (Repo et al. 2011) and delayed growth onset (Jyske et al. 2012) in Norway 99 

spruce, as well as defoliation in Scots pine (Jalkanen 1993). 100 

Our aim was to examine if exceptional temperature conditions, potentially causing frost damage 101 

to trees, have an effect on the radial growth of Norway spruce and Scots pine. In our analysis, we 102 

took into account both biological and statistical challenges in studying extreme events. We tested 103 

three hypotheses, suggesting that frost damage occurs and reduces radial growth after (1) 104 

extreme cold winter temperatures (TMIN), (2) insufficient level of frost hardiness compared to 105 

minimum temperatures (REL_TMIN), and (3) lack of insulating snow cover during freezing 106 

temperatures, resulting in low soil temperatures (FROSTSUM). The first hypothesis represents a 107 

simple extreme in temperature, whereas the two latter hypotheses also consider physiological 108 

state of a tree and the processes of the studied system. We expect the results to differ for Norway 109 

spruce and Scots pine as previous results have shown different patterns for the two species. 110 

2. Material and methods 111 

2.1 Data 112 

2.1.1 Tree-ring data 113 

The tree-ring data used in the study was compiled from previously collected Norway spruce and 114 

Scots pine data sets. In all data sets, the sampled sites were located in national parks or other 115 
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unmanaged forests. In the Norway spruce data set, 47 stands were sampled from southern 116 

Finland to the Arctic spruce timberline (Fig. 1). At each site, one to two increment cores were 117 

taken at 1.3 meter height from up to 15 dominant trees. For a detailed description of the Norway 118 

spruce data set see Mäkinen et al. (2000) and Mäkinen et al. (2001). The Scots pine data set 119 

contained 20 sites in southern and northern Finland (Helama et al. 2013). The number of trees 120 

sampled per site ranged from 9 to 120, and one to two cores were taken from each tree. 121 

Annual tree-ring widths were measured from all cores to the nearest 0.01 mm with a light 122 

microscope. Cross-dating of the ring-width series was performed visually and verified 123 

statistically using computer program COFECHA (Holmes 1983) and the dplR package (Bunn 124 

2010, Bunn et al. 2015) of R software (version 3.3.1, R Core Team 2016). The samples that 125 

could not be cross-dated were excluded from the data (see Supplement 1 for the final number of 126 

trees per site). 127 

To remove trends related to tree age and stand dynamics, we standardized the ring-width series 128 

using a spline function with 50% frequency cut-off in 67% of the length of the tree-ring series 129 

(Cook and Peters 1981, Speer 2010). Ring-width indices (RWI) were then formed by dividing 130 

the measured ring-widths with the values of the fitted spline function, and temporal 131 

autocorrelation was removed with first-order autoregressive model. After this, site-wise average 132 

chronologies were formed by calculating annual averages from all trees at a site with Tukey’s 133 

biweight robust mean. Chronologies were cropped to cover years 1922-1997 (common years of 134 

all chronologies). 135 

2.1.2 Weather data 136 

Daily mean and minimum temperatures from four weather stations in Finland and from Karasjok 137 

weather station in Norway (Fig. 1) were used. Years 1927 and 1945 had a lot of missing values 138 
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and were excluded from further analysis using the weather station data (Table 1). If daily mean 139 

temperature was not available, it was calculated from the individual temperature measurements 140 

and daily minimum temperatures using the equations of Finnish Meteorological Institute (FMI 141 

2016). Data from the closest weather station to each tree-ring site was used in the analysis (see 142 

Suppl. 1 for details). 143 

In addition to weather station data, gridded data of snow depth and daily mean temperature were 144 

used (Aalto et al. 2016). This data set has a resolution of 10 × 10 km
2
 and it is available from 145 

year 1961 onwards. 146 

2.2 Defining potential frost damage events 147 

To test the hypotheses we used the weather data to define three variables describing conditions 148 

potentially causing frost damage to trees (referred to as “frost variables” from now on, Table 1). 149 

Minimum winter temperature (TMIN) was calculated as the minimum of daily minimum 150 

temperatures. Relative minimum temperature (REL_TMIN) was calculated as the difference 151 

between the modelled daily frost hardiness and daily minimum temperature. The frost hardiness 152 

value describes the temperature in which 50% of needle area is damaged (Leinonen 1996, see 153 

section 2.3). Frost sum of snowless days (FROSTSUM) was used to describe the variation in soil 154 

frost between years. It was calculated as the sum of daily temperature averages below 0 °C 155 

during the days without snow cover. While TMIN and REL_TMIN variables were calculated for 156 

each site by using the weather data from the closest meteorological station, FROSTSUM was 157 

calculated from the grid data (daily average temperature and snow depth), using the grid cell in 158 

which the site was located. As the grid data was only available from year 1961, the analysis 159 

using the FROSTSUM variable covered a shorter time period (1962 to 1997), whereas TMIN 160 
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and REL_TMIN variables were available for the whole time period covered by the tree-ring 161 

chronologies (1922 to 1997, Table 1). 162 

In all three variables, low values represent potentially damaging conditions to trees. For the 163 

TMIN and FROSTSUM variables, annual values covered a time period from previous year July 164 

to the growth year June, while in the REL_TMIN variable only time period from January to May 165 

was considered (Table 1). 166 

2.3 Frost hardiness model 167 

The daily level of frost hardiness was calculated with a dynamic needle frost hardiness model 168 

developed by Leinonen (1996) for Scots pine. The model output describes the temperature in 169 

which 50% of needle area would be damaged. The model uses daily mean and minimum 170 

temperature and night length as inputs to calculate the stationary frost hardiness, i.e. the target 171 

level of hardiness in the prevailing environmental conditions. The frost hardiness approaches the 172 

stationary level with the delay. Thus, the rate of change in frost hardiness is calculated from the 173 

frost hardiness of the previous day and the stationary level of frost hardiness (Fig. 2). 174 

In order to use the model for Norway spruce, as well as different provenances of Scots pine, we 175 

made some modifications to the model. In Leinonen’s model, the amount at which 176 

environmental conditions affect stationary frost hardiness is controlled by hardening competence 177 

(Fig. 2), which is determined from an annual cycle model with daily mean temperature as input. 178 

Hardening competence varies so that the effect of environmental conditions (i.e., daily minimum 179 

temperature and night length) on frost hardiness is strongest during the rest phase (hardening 180 

competence = 1) and weakest during active growth phase (hardening competence = 0). As 181 

different species and provenances within species have different annual cycles, we could not use 182 

the same annual cycle model for all of our sites. While Leinonen (1996) calculated frost 183 
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hardiness for each day of the year and modelled the full annual cycle dynamically, we decided 184 

only include a time period from January to May. Similar restriction to modelled time-period was 185 

used by Hänninen et al. (2001). We assumed that in the beginning of the year trees were in 186 

quiescence and that hardening competence was 0.9. These assumptions were based on studying 187 

the frost hardiness values calculated using Leinonen’s original method with the full annual cycle 188 

model. By restricting the covered time period we were able to take into account different timing 189 

of spring phenology between species and provenances without reparametrizing the whole annual 190 

cycle model.  191 

To account for the differences in spring phenology between Scots pine and Norway spruce, as 192 

well as different Scots pine provenances, we modified the parameter controlling spring 193 

dehardening based on previous results from provenance tests (Beuker 1994). In quiescent and 194 

active growth phases hardening competence is calculated using a parameter 𝐹𝑈𝑐𝑟𝑖𝑡 that defines 195 

the amount of forcing units (FU) needed to accumulate for bud burst to occur. We defined the 196 

value of 𝐹𝑈𝑐𝑟𝑖𝑡 for different provenances of Scots pine and Norway spruce based on temperature 197 

sums (with 5 °C threshold) required for bud burst reported from provenance tests (Beuker 1994). 198 

First, we calculated the accumulation of FU from the beginning of year to the day that 199 

temperature sum reached the value required for bud burst in years 1950 to 2013. Then, 𝐹𝑈𝑐𝑟𝑖𝑡 200 

was defined as mean of these annual FU values (Supplement 2). 201 

As the frost hardiness value for each day is calculated based on the change from the previous 202 

day, we needed to define the frost hardiness level for January 1
st
. We did this by starting the frost 203 

hardiness modelling from the beginning of December, assuming the frost hardiness to be equal to 204 

the stationary frost hardiness in December 1
st
 (Fig. 3). 205 
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2.4 Defining extreme years – Generalized extreme value distributions 206 

Generalized extreme value distributions (GEVs) were used to define thresholds for identifying 207 

years with exceptional winter conditions to which the trees would not be well acclimated to. We 208 

fitted GEVs to the three frost variables separately in each weather station (or in each site for 209 

FROSTSUM variable), using the R package extRemes (Gilleland and Katz 2011). 210 

For the TMIN and REL_TMIN variables we fitted the GEVs with the block maxima approach, 211 

i.e. the variables represented an extreme within certain time window (Table 1). GEVs have three 212 

parameters, location parameter (µ), scale parameter (σ) and shape parameter (ξ). The shape 213 

parameter defines the shape of the distributions, so that ξ = 0 corresponds to a light tailed 214 

(Gumbel) distribution, ξ > 0 to a heavy tailed (Fréchet) distribution, and ξ < 0 a bounded 215 

(Weibull) distribution (Coles 2001, Katz et al. 2005). 216 

Since the FROSTSUM variable is a sum of conditions within a season, the block maxima 217 

approach was not applicable with it. Therefore, we chose to use a “peaks over threshold” (POT) 218 

approach, where the extreme value distribution is fit to values exceeding a chosen threshold. 219 

These values should have an approximate generalized Pareto (GP) distribution, with two 220 

parameters, scale (σ) and shape (ξ), which have same interpretations as with the GEV 221 

distributions. In this case ξ = 0 corresponds to light-tailed (exponential) distribution, ξ > 0 to a 222 

heavy tailed (Pareto) distribution, and ξ < 0, a bounded (beta) distribution (Katz et al. 2005). 223 

The extreme value distributions typically handle maximum values, and as we were interested in 224 

the minima, all distributions were fitted to the inverse values of the original variables (see Katz 225 

et al. 2005). To account for the warming trend in temperatures, we tested including year as a 226 

covariate for the GEV parameters. In total, we tested three types of GEVs: 1) no covariates, 2) 227 



12 

 

year as a covariate for the location parameter, and 3) year as a covariate for location and scale 228 

parameters. We compared these three with Akaike Information Criteria (AIC, Akaike 1974), and 229 

selected GEVs without any covariates, as they had the lowest AIC values in a majority of 230 

weather stations (sites in FROSTSUM) for all frost variables. 231 

In identifying the extreme years in each frost variables we used a ten year return level, defined 232 

from the extreme value distributions. The ten-year return level means that values lower than this 233 

level can be expected to occur on average once every ten years (Coles 2001). For the three frost 234 

variables, the ten year return level was calculated for each weather station (site in FROSTSUM) 235 

and each year exceeding this threshold was defined as an extreme year in the frost variable in 236 

question. 237 

2.5 Statistical analysis 238 

We fitted two linear regression models separately to all site chronologies. With the first model 239 

(“dummy model”) we tested if RWIs were lower in years with low values of the three frost 240 

variables (i.e., values lower than the 10-year return level), while also taking into account the 241 

effect of summer temperature on radial growth. The first model was formulated as 242 

RWIt = β0 + β1SummerTt + β2 Frost_RL10t + εt ,      (1) 243 

where RWIt is the value of RWI chronology in year t, SummerTt is the mean temperature of 244 

June (Norway spruce) or July (Scots pine) in year t, and Frost_RL10t is a dummy variable (0/1) 245 

describing whether the value of the frost variable (TMIN, REL_TMIN or FROSTSUM) was 246 

lower than the 10-year return level in year t. 247 

In the second model (“slope model”) we also included a continuous frost variable (TMIN, 248 

REL_TMIN or FROSTSUM) and its interaction with the Frost_RL10 dummy variable to test if 249 
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the severity of the frost conditions was related to the radial growth variation. The second model 250 

was formulated as 251 

RWIt = β0 + β1SummerTt + β2 Frost_RL10t+ β3 Frostt + β4 Frost_RL10t Frostt + εt ,   (2) 252 

where Frostt was the continuous frost variable in year t. Logarithm transformations were tested 253 

for the continuous variables but they did not change the outcomes of the models. In both models 254 

the FROSTSUM variable was scaled to mean of zero and standard deviation of one in order to 255 

have the model coefficients in similar magnitudes as the other two frost variables. Correlations 256 

between explanatory variables in the models were low and in most cases statistically non-257 

significant. 258 

In order to test if the slope model had a better fit to the data compared to the dummy model, the 259 

models were compared with likelihood ratio test within each site (using R function anova). All 260 

analyses were conducted using the statistical software R (R Core Team 2016). 261 

3. Results 262 

3.1 GEVs and extreme year classification 263 

In the GEVs fitted to TMIN and REL_TMIN variables, all shape parameters (ξ) were negative, 264 

corresponding to a Weibull distribution. In FROSTSUM variable, the shape parameter values 265 

ranged from positive to negative, indicating different shapes of distributions at different sites (see 266 

Fig. 4 for examples). 267 

The years classified as extreme years based on the GEVs were not identical at different weather 268 

stations (Fig. 5). However, in the TMIN variable several years were consistently classified as 269 

extreme years in several weather stations, for example 1940 (4 stations), 1956 (3 stations), 1966 270 
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(4 stations) and 1987 (3 stations). In the REL_TMIN variable, there was more variation between 271 

the weather stations, whereas the extreme years for spruce and pine were very similar (Fig. 5). 272 

In the FROSTSUM variable, gridded weather data was used instead of weather station data and, 273 

therefore, the GEVs were fitted for each site separately and the extreme years differed between 274 

sites (Fig. 6a). Per site, two to seven years were classified as extreme years (Fig. 6b). 275 

3.2 Connections between RWI and frost variables 276 

The connections between the frost variables and ring-width indices (RWI) showed different 277 

patterns for Norway spruce and Scots pine. In the Norway spruce dummy models, the extreme 278 

TMIN variable (i.e., Frost_RL10 in Eq. 1 with TMIN as frost variable) showed positive 279 

coefficients in the majority of sites (43 of 47 sites), and it was statistically significant in the 16 of 280 

the total 47 spruce sites (all significant coefficients in northern Finland, Fig. 7). This indicates 281 

that radial growth was in fact higher after winters with exceptionally cold minimum temperature. 282 

For Scots pine, none of the coefficients for extreme TMIN variable were significant in the 283 

dummy models (Fig. 7). 284 

The extreme REL_TMIN variable (i.e., Frost_RL10 in Eq. 1 with REL_TMIN as frost variable) 285 

showed negative coefficients in the Norway spruce dummy models at 43 of the 47 sites (Fig. 5), 286 

suggesting lower radial growth in years in which minimum temperature had been exceptionally 287 

close to the modelled frost hardiness levels. However, the coefficients were statistically 288 

significant only at two sites, located in northern and central Finland. In comparison, in the Scots 289 

pine models the three sites (of total 20 pine sites) where the REL_TMIN coefficient was 290 

significant, but the effect was positive, indicating higher radial growth in those years. 291 
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The extreme FROSTSUM variable (i.e., Frost_RL10 in Eq. 1 with FROSTSUM as frost 292 

variable) showed negative coefficients in the Norway spruce dummy models at 33 of the 47 sites 293 

(i.e., lower growth in the years with exceptionally high frost sum of snowless days), but the 294 

variable was only significant in the models of seven sites (Fig. 5). For Scots pine, the 295 

FROSTSUM variable was not significant in the dummy models at any of the twenty sites. 296 

In the slope models, positive coefficients for the frost variables during extreme years (sum of β3 297 

and β4 in Eq. 2) suggest that radial growth decreased with decreasing values of the frost 298 

variables. However, both positive and negative coefficients were found in sites where the 299 

likelihood ratio test showed a significant improvement compared to the dummy model. For 300 

Norway spruce, positive coefficients in slope models that significantly improved the dummy 301 

model fit were only found in the FROSTSUM model in six sites in northern Finland, and for 302 

Scots pine only at one site both in TMIN and FROSTSUM variables (Fig. 8). Slope models with 303 

negative coefficients (i.e. radial growth increasing with decreasing values of frost variables) were 304 

found at one Scots pine site in REL_TMIN variable and at seven closely located Norway spruce 305 

sites in FROSTSUM variable (Fig. 8). In other cases the likelihood ratio test did not show 306 

significant improvement of model fit from the simpler dummy model. 307 

4. Discussion 308 

Our results did not show very strong connections between radial growth and the potential frost 309 

damage events defined using meteorological data. However, our hypotheses of reduced growth 310 

after events of insufficient level of frost hardiness (REL_TMIN) and after winters with high frost 311 

sum of snowless days (FROSTSUM) were supported by the results from some of the Norway 312 

spruce sites. Reductions in radial growth were related only to those variables that took frost 313 
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hardiness or snow cover into account, whereas year with low minimum winter temperatures 314 

showed statistically significant growth increases at some sites. Therefore, our results highlight 315 

that, when studying winter climate effects on tree growth, physiological and other processes 316 

affecting the studied system need to be carefully considered instead of using purely 317 

environmental variables. 318 

While the results for Norway spruce gave some support for our hypotheses about extreme 319 

relative minimum temperatures and frost sums of snowless days being harmful for growth during 320 

the following growing season, the results for Scots pine were generally statistically non-321 

significant or even opposite to the original hypotheses. This agrees with our original expectation 322 

of between-species differences and is in line with previous studies (Jonsson 1969, Miina 2000). 323 

The different patterns found for the two species are likely to be related to differences in winter 324 

time physiology. For example, Beuker et al. (1998) reported weaker frost hardiness of Norway 325 

spruce buds compared to Scots pine, and Linkosalo et al. (2014) showed that Norway spruce 326 

photosynthesis was reactivated during warm winter spells more readily, whereas the cold 327 

inhibition of photosynthetic light reactions was stronger in Scots pine. 328 

The results supporting our hypotheses were statistically significant only in a minority of study 329 

sites. Therefore, conclusions about the results should be made with caution. The differences in 330 

statistical significance between the sites may be at least partly related to the spatial variability of 331 

minimum temperatures and snow cover. Due to a need for long time series the distance between 332 

some study sites and the weather stations was rather large and, therefore, the weather data is 333 

likely to be less representative of the conditions at these sites (Fig. 1, Supplement 1). In addition, 334 

the resolution of the gridded data used for calculating FROSTSUM (10 x 10 km
2
) may hide 335 

local, more fine-scale variation in snow cover. Therefore, the used weather data may not 336 
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accurately describe the local conditions at the study sites, especially since minimum 337 

temperatures vary locally with topographic variation and proximity of water bodies (Jarvis and 338 

Stuart 2001). It is possible that the sites showing a significant effect of the frost variables on 339 

RWI are more sensitive to frost, due to factors that were not taken into account in the statistical 340 

analysis. The different results between sites may also be related to tree age. Tuovinen et al. 341 

(2005) showed that severe soil frosts in northern Finland in winter 1986-1987 did not affect 342 

radial growth in mature Scots pines (approx. 130 years), whereas younger trees (approx. 45 343 

years) showed increase in water stress for two years, as well as suppressed radial growth for 6 to 344 

7 years after the exceptionally harsh winter conditions. 345 

The way our frost variables were defined limits the type of cases included in the analysis. For 346 

example, TMIN and REL_TMIN variables only accounted for the lowest daily values within the 347 

season. However, especially in the case of TMIN it might have been also relevant to consider, 348 

for example, the length of longer time periods with low minimum temperatures. Winter 349 

conditions may also affect the growth of the following growing season in many ways that are not 350 

all included in our hypotheses. For example, warm winters may lead to respiratory losses, 351 

especially in Norway spruce, if trees initiate photosynthetic activity before sufficient availability 352 

of light (Linkosalo et al. 2014). This could be one potential mechanism behind pattern of higher 353 

radial growth after low winter temperatures, which was observed in this study, as well as in 354 

earlier studies (Jonsson 1969, Miina 2000, Mäkinen et al. 2000). However, more research would 355 

be needed to understand if this correlative pattern is related to the winter time conditions or some 356 

other factors. 357 

To refrain from parametrizing the full annual cycle model and to reduce the potential 358 

uncertainties associated with it, we modelled frost hardiness only for a restricted time period 359 
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from January to May (see Hänninen et al. 2001 for similar approach). However, events of 360 

insufficient frost hardiness may occur also if temperatures drop before trees have developed 361 

adequate hardiness levels after the growing season (Sutinen et al. 2001). For example, Mikola 362 

(1952) suggested that autumn frosts were likely a major cause for the considerable growth 363 

reductions of Scots pine in the early 20
th

 century in northern Finland. Therefore, our results do 364 

not cover possible frost damage events occurring outside of the chosen time-frame. Further 365 

development and parametrization of frost hardiness models would demand more studies on the 366 

topic. 367 

The effects of snowpack on trees are more complex than accounted for in the FROSTSUM 368 

variable. Especially the timing of soil thaw may be influential to tree physiology and growth. 369 

Helama et al. (2013) showed that high soil temperature and low snow depth in spring, rather than 370 

in winter, are connected to increased Scots pine radial growth of the following growing season. 371 

Similarly, artificially delayed thawing of soil frost affected the physiology of mature Norway 372 

spruce trees (Repo et al. 2007, Repo et al. 2011) and Scots pine saplings (Repo et al. 2005, Repo 373 

et al. 2008). Physiological changes were more evident when increased soil frost was combined 374 

with delayed thawing than after increased soil frost alone (Repo et al. 2011, Martz et al. 2016). 375 

In further studies, the characteristics of snowpack need to be considered in more detail. 376 

The frost hardiness model used in the study was originally developed to describe frost hardiness 377 

in Scots pine needles in central Finland, but it has later been used also for other tree species and 378 

locations (e.g., Morin and Chuine 2014). However, the parametrization of the model for new 379 

species and even other provenances is challenging (see Hänninen 2016). In this study, we used 380 

information of temperature sums needed for bud burst in different provenances of Norway 381 

spruce and Scots pine to calibrate the parameter that controls the changes in hardening 382 



19 

 

competence in spring. Despite these modifications, several parameters in the model are based on 383 

Scots pine data. Therefore, the model is likely to be less suitable for Norway spruce and also for 384 

Scots pine in northern Finland. It should also be noted, that the model describes the frost 385 

hardiness of needles, but phenology and frost hardiness differ between tree organs. For example, 386 

frost hardiness in plant roots is typically lower than in shoots (Sakai & Larcher 1987, Delpierre 387 

et al. 2016). In addition, the shape of the relationship between severity of frost damage and the 388 

difference of minimum temperature and frost hardiness is a sigmoidal curve, where the curve’s 389 

slope parameter depends on frost hardiness (Leinonen 1996). Our analysis did not take this into 390 

account, as the REL_TMIN variable only considered the difference between daily minimum 391 

temperature and the level of frost hardiness. 392 

The use of the extreme value distributions enabled us to identify the thresholds for extreme 393 

events so that they would correspond to occurrence of extreme conditions that the trees are 394 

adapted to. However, the choice of the threshold used for classifying extreme years (return level 395 

of ten years) was partly driven by practical necessities. A ten-year reoccurrence rate for an event 396 

is rather high from an evolutionary point of view, and a use of a stricter classification threshold 397 

would have been ecologically justified. Yet, to analyse the existing data we needed to define the 398 

threshold so that the number of years classified as extreme years is sufficient. To overcome this 399 

issue, we fitted the slope model, where a more flexible model behaviour was allowed with the 400 

interaction of a continuous frost variable and the dummy variable describing if a year was 401 

defined as an extreme or not. Thus, the model covered a situation where the defined threshold 402 

was too low to represent a biologically meaningful extreme and, therefore, the reduction in RWI 403 

would increase with decreasing values of the frost variables. However, with the slope model also 404 

the number of years included in the analysis is a challenge, as the study period may not 405 
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necessarily contain years with truly extreme conditions in the studied variables. This is probably 406 

reflected to our results, where the slope model only supported our hypotheses on a few sites, 407 

mainly in the case of FROSTSUM variable in Norway spruce sites in northern Finland.  408 

5. Conclusions 409 

Our results show, that instead of extremely cold winters, Norway spruce growth is potentially 410 

reduced after events of insufficient frost hardiness or after winters with high sum of freezing 411 

temperatures without insulating snow cover. However, Scots pine growth reductions were not 412 

connected to any of the studied variables. Therefore, it seems that radial growth in Norway 413 

spruce may be more sensitive to variable winter temperatures compared to Scots pine. 414 

Our results demonstrated that using purely environmental variables, such as minimum 415 

temperature, is unlikely to be sufficient in studying winter temperature effects on tree growth. 416 

Instead, understanding the effects of changing temperature and snow conditions in relation to 417 

tree physiology and phenology is needed. 418 

The long time series of growth variation provided by tree-ring data is especially beneficial in 419 

studying rarely occurring events, such as frost events leading to tree damage. However, equally 420 

long time series of tree phenology data or frost damage observations are often not available. 421 

Similarly, long meteorological data records exits only for a limited number of weather stations 422 

and, thus, data on local climatic conditions at the study sites is typically lacking. Therefore, to 423 

understand the effects of changing winter conditions on tree growth, tree-ring studies should be 424 

combined with modelling approaches as well as physiological and experimental studies. 425 
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Figures 599 

 600 

Fig. 1 Locations of the Norway spruce (triangles) and Scots pine (circles) study sites and weather 601 

stations (asterisks). Note that some of the site symbols are on top of each other (especially the 602 

spruce sites in southern Finland).  603 
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 604 

Fig. 2 Framework of the frost hardiness model (modified from Hänninen 2016). The model uses 605 

daily minimum and mean temperatures, and night length to calculate daily level of frost 606 

hardiness. A detailed description of the model can be found in Supplement 2.  607 
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 608 

Fig. 3 Daily minimum temperature and modelled frost hardiness level (A) and the difference 609 

between frost hardiness level and minimum temperature (B) in December 1987 to May 1988 at 610 

Jyväskylä weather station. Year 1988 was classified as an extreme year for REL_TMIN variable 611 

in Jyväskylä, due to low value of REL_TMIN (lowest difference in modelled frost hardiness and 612 

minimum temperature in April). Only the time period from January to May (gray box) was used 613 

for finding the REL_TMIN variable, but frost hardiness was also calculated for previous year 614 

December to find a suitable initial value for the beginning of January.  615 
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 616 

Fig. 4 Examples of density functions of the GEV distributions for minimum winter temperature 617 

(TMIN), minimum temperature in relation to modelled frost hardiness (REL_TMIN) and the 618 

frost sum of snowless days (FROSTSUM). For TMIN and REL_TMIN the GEVs of Karasjok 619 

(solid line) and Heinola (dashed line) weather stations are presented. For FROSTSUM, example 620 

sites from northern Finland (solid line, negative shape parameter) and southern Finland (dashed 621 

line, negative shape parameter) are presented. The shaded areas demonstrate the values below 622 

the 10-year return level. The vertical lines in the FROSTSUM subplot represent the thresholds 623 

used in fitting the “peaks over threshold” distributions. Note that sub-figures have different 624 

ranges of y-axis.  625 
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 626 

Fig. 5 Years classified as extreme years (dark vertical bars) in the TMIN (minimum winter 627 

temperature) and REL_TMIN (minimum temperature in relation to modelled frost hardiness) 628 

variables at each weather station. Names and locations of weather stations are shown in Fig. 1. 629 

Extreme years in REL_TMIN (spruce) are not shown for stations Karasjok (KAR) and 630 

Laukansaari (LAU), as they were not used for any spruce sites (no spruce sites close to them, see 631 

Fig. 1). 632 

 633 

Fig. 6 Number of sites in each year where FROSTSUM (i.e., the frost sum of snowless days) 634 

variable was classified as extreme (A), and the distribution of total number of extreme years per 635 

site (B). The FROSTSUM variable was derived from the gridded weather data for each site 636 

separately  637 
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 638 

Fig. 7 Coefficients and statistical significance of the frost variables in the dummy model (Eq. 1). 639 

Small symbols represent statistically non-significant and large symbols significant coefficients (p 640 

< 0.05). The down-facing triangles represent negative and up-facing triangles positive 641 

coefficients. Note that some random variation has been added to the site coordinates so that 642 

symbols of nearby sites would not cover each other. See the exact locations of sites in Fig. 1. The 643 

non-significant symbols are always drawn on top of the significant ones  644 
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 645 

Fig. 8 Results for the “slope model” (Eq. 2): Coefficients for the slope of the frost variables 646 

during extreme years.  The size of the symbol describes whether the slope model was 647 

significantly improved compared with the dummy model (p < 0.05, likelihood ratio test results). 648 

The down-facing triangles represent negative and up-facing triangles positive coefficients.  Note 649 

that some random variation has been added to the site coordinates so that symbols of nearby sites 650 

would not cover each other. See the exact locations of sites in Fig. 1  651 
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Tables 652 

Table 1. Descriptions of frost variables and their range in the whole study area. 653 

  Description 
Covered 
time 
window 

Source 
data 

Years included 
Range 
(whole 
study area) 

TMIN Lowest daily 
minimum 
temperature 

Previous July 
to growth 
year June 

Weather 
stations 

1922 to 1997 
(excl. 1927, 1945) 

-50 to -21.5 

REL_TMIN The smallest 
difference between 
modelled daily frost 
hardiness and daily 
minimum 
temperature 

Growth year 
January to 
May 

Weather 
stations 

1922 to 1997 
(excl. 1927, 1945) 

3.1 to 16.9 

FROSTSUM Sum of 
temperatures 
below 0°C during 
days with no snow 
cover 

Previous July 
to growth 
year June 

FMI grid 1962 to 1997 -216.3 to 0 

 654 

  655 
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Electronic supplementary materials 656 

Supplementary material 1.  657 

Table S1.1 Details about the tree-ring sites, name and distance of weather stations for each site, 658 

the model coefficients for frost variables in dummy and slope models, and the 10-year return 659 

level for FROSTSUM variable in each site (return levels for other two frost variables were 660 

defined for weather stations and can be found below this table).  661 

Table S1.2 10-year return levels for TMIN and REL_TMIN variables for the weather stations. 662 

Although REL_TMIN differed slightly for spruce and pine (different parametrization of frost 663 

hardiness model) the return levels were the same.  664 

Figure S1.1 Scatterplots of p-values for frost variable coefficients (dummy models) against 665 

distance between plot and the nearest weather station. 666 

Supplementary material 2. Detailed description of the frost hardiness model and the 667 

modifications made to it in this study 668 


