A long-term field experiment: Effect of buffer strips on erosion and nutrient losses in boreal conditions

Jaana Uusi-Kämppä

(E-mail: jaana.uusi-kamppa@luke.fi)

Natural Resources Institute Finland (Luke)

Management and Production of Renewable Resources

Tietotie 4, FI-31600 Jokioinen, FINLAND

Lu WQ 2017 The Hague, The Netherlands 29 May – 1 June 2017

Presentation outline

- Current BS situation in Finland
- Lintupaju experimental site
- Results: surface runoff, erosion, PP, DRP and TN
- Rainfall simulation study in laboratory
- SWOT analysis

Current buffer strip situation in Finland

RDP=Rural Development Programme• for Mainland Finland 2014–2020

- 1 m wide edges must be along main ditches and water courses on every farm (basic regulation)
- 3 m wide filter strips must be along water courses on the farms committed to environment payments
- Over 3 m wide riparian zones under perennial vegetation are targeted to arable land along water courses and main ditches, on arable parcels in *Natura 2000 areas* and groundwater areas, and parcels bordering a wetland that are managed under an environmental contract. Vegetation is moved and removed from the zone annually or managed by grazing. (RDP)

Neither fertilization nor plant protection are allowed.

28.6.2017

Lintupaju Experimental Field

Fig. Jaakko Heikkinen, Luke

A 6-plot field was established on a clay soil in 1989-1990

Buffer strip (BS) experiments started in 1991

- (1) NBS = No buffer strip
- (2) GBS = Grass buffer strip
- (3) VBS = Vegetated buffer strip (scrubs, trees, herbs)

AnaEE (pan-European research infrastructure)?

Experiments 1991–2016

Current situation on VBS and NBS

Mean annual surface runoff

Mean annual load of total solids in surface runoff

Mean annual load of particulate P in surface runoff

Mean annual load of DRP in surface runoff

Mean annual load of total N in surface runoff

P concentrations in simulated surface runoff water

0 = Before Freezing

1 = After 1 freezing abnd thawing event

2 = After 2 freezing and thawing events

Uusi-Kämppä et al., J. Environuke
Qual. 41 1420 1126 it (201120) NATURAL RESOURCES INSTITUTE FINLAND

SWOT analysis for buffer strip results

Strengths

- Effective in retaining soil particles, particle P and TN in surface runoff.
- Protection against erosion on steep slopes
- Use of manure, fertilisers and plant protection products is not allowed on BSs (near watercourses).

Weknesses

- Most runoff exists in winter and spring when BSs are not effective in retaining nutrients.
- In spring high DRP losses from BSs due to frozen broken plant tissues.
- Increased DRP losses due to high P content in soil surface.

Opportunities

- Annual moving of plants and removing swath delays the increase of P content in soil surface.
- Nutrient retaining may be increased for a while on VBSs under trees.
- Narrow BS may be sufficient for pasture and no-till fields.

Threats

- Nutrient losses may increase in drainage water.
- Shading may increase erosion risk due to loss of plant cover under the trees.
- Exceptionally severe weed infestations

Thank you!

