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Microbial biotechnology and circular economy in
wastewater treatment

Per Halkjær Nielsen*
Department of Chemistry and Bioscience, Center for
Microbial Communities, Aalborg University, Fredrik
Bajers Vej 7H, Aalborg, Denmark.

Summary

Microbial biotechnology is essential for the develop-
ment of circular economy in wastewater treatment
by integrating energy production and resource
recovery into the production of clean water. A com-
prehensive knowledge about identity, physiology,
ecology, and population dynamics of process-critical
microorganisms will improve process stability,
reduce CO2 footprints, optimize recovery and bioe-
nergy production, and help finding new approaches
and solutions. Examples of research needs and per-
spectives are provided, demonstrating the great
importance of microbial biotechnology.

Wastewater treatment is becoming part of the circular
sustainability movement by integrating energy production
and resource recovery into the production of clean
water. Microbial biotechnology is essential to this devel-
opment given microbial communities can carry out key
processes and combine these in different ways, i.e.
removal or reuse of carbon (C), nitrogen (N), phosphorus
(P), and micropollutants, and production of bioenergy
and high-value products. The future challenges are to
optimize existing systems, e.g. minimize the footprint,
reduce the requirement for chemical addition, lower
energy inputs, improve process stability, to optimize
recovery and bioenergy production and to find new
approaches and solutions. This will help to reach the
sustainable development goal 6: ‘Ensure availability and
sustainable management of water and sanitation for all’
and, to some extent, also goal 7: ‘Ensure access to
affordable, reliable, sustainable, and modern energy for
all’.

State of the art

Introduction of the circular economy approach in
wastewater treatment is already being initiated in some
countries (Verstraete et al., 2007; van Loosdrecht and
Brdjanovic, 2014). Typically, wastewater is purified by
the activated sludge process, where removal of C, N, P,
micropollutants and pathogens takes place. In addition,
at many wastewater treatment plants (WWTP), a signifi-
cant fraction of the incoming wastewater is presettled
and added to an anaerobic digester along with surplus
sludge from the activated sludge process, all for biogas
production and sludge reduction. This can be quite effi-
cient and, e.g. in Denmark, many WWTPs are now
energy-neutral or even net energy producers, sending
electricity to the common grid. The energy production
can be boosted by adding external waste, e.g. from
households, industries or agriculture (Fig. 1). In addition,
recovery of phosphorus may also take place, either as
struvite from the digester effluent and/or by application
of the nutrient-rich dewatered digester sludge as fertilizer
in agriculture (Yuan et al., 2012).
Most of the present knowledge about identity and

function of specific microbes in wastewater, activated
sludge systems and related digesters is summarized in
the public online database MiDAS (McIlroy et al., 2017).
Some microbes involved in the key processes related to
nitrification, denitrification, anammox, enhanced biologi-
cal P-removal (EBPR) and other processes are now
fairly well understood, but there is still a strong need for
further studies (see below). Also, when more detailed
studies are conducted, processes that were believed to
be well-understood need revision after novel discoveries,
such as the discovery of the comammox organisms that
oxidize ammonium completely to nitrate (Daims et al.,
2015; van Kessel et al., 2015).

Needs and perspectives

Microbial biotechnology will continue to initiate, integrate
and optimize circular economy in wastewater systems
with clear potential for reduced chemical and energy
use, and increased energy production and resource
recovery. Activated sludge is the dominant reactor type
of choice today, but other types, such as biofilms, gran-
ules, membrane bioreactors and others, may in some
cases be superior to these traditional systems (Pronk et
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al., 2015). However, the process critical microorganisms
are often the same, independent of the reactor type, so
comprehensive knowledge about identity, physiology,
ecology and population dynamics of viruses, bacteria,
archaea and higher organisms will be generic and
invaluable. This should include a holistic view on incom-
ing microbes, those growing in the different process
tanks (activated sludge, digester, side-stream anammox
tanks, others), and all the internal streams of biomass
and liquid.
Wastewater, activated sludge and digesters all seem

to have a core community of 100–200 abundant genera
(each >approx. 0.1% relative abundance) that make up
the majority of the biomass and are commonly present
across many plants and in many countries (Saunders
et al., 2016; McIlroy et al., 2017). Interestingly, although
we know the identity and function of many of these
microbes, most are still very poorly characterized and
their function basically unknown, although they must play
important, so far unknown roles that need to be revealed
for a sound understanding of these systems.
In particular, the communities in digesters at WWTPs

are poorly investigated, with a very limited number of
surveys and few species being well described (Kirke-
gaard et al., 2017). Many digesters suffer from low gas
yield, low stability, foaming events and other operational
problems that are likely closely connected to the

microbial communities (Ganidi et al., 2009), so a better
understanding is needed to carry out informed control or
manipulations of the digester communities. However, as
it is not thousands of different abundant species, it is
feasible to establish the knowledge needed in the near
future of these few hundred relevant species.
There are several specific research needs. The appli-

cability of any microbiological treatment system strongly
depends on the stability of the microbial ecosystem.
Poor functional stability may result in process breakdown
and poor reliability and performance of the system. Such
instability has occasionally been reported in WWTP and
digesters, but it is not always known whether it is due to
variation in the microbial populations or their function.
Besides better understanding about the specific species,
more general principles governing the stability of such
microbial ecosystems should be developed and founded
on proper theories in microbial ecology – thus providing
a more generic and comprehensive approach to estab-
lish and control communities (Curtis et al., 2003). Among
other specific research needs is a better understanding
of the N-removal with respect to emission of the green-
house gas N2O (Kampschreur et al., 2009; Campos
et al., 2016). It is still unclear which organisms are pro-
ducing this gas in different systems and how this can be
controlled. Another concern in relation to wastewater
treatment is the possible dissemination of antibiotic

Fig. 1. The biorefinery concept in Billund, Denmark. The conventional wastewater treatment plant has been remodelled to carry out the pro-
cesses indicated, and many other wastewater treatment plants are following with various modifications. See more at http://www.billundbiorefine
ry.dk/en/.
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resistance genes into the environment from wastewater
treatment plants. The plants are seen as hot spots for
transfer of genes (Singer et al., 2016), but it is debated
how serious a threat this is (Munck et al., 2015).
In addition, as it is essential to carry out EBPR (and

not apply chemicals) for P recovery through struvite for-
mation or via sludge distribution to the farmland, a better
understanding of this process is needed. Several
microbes involved in EBPR are now described, but it is
still uncertain which species are important in full-scale
plants (Stokholm-Bjerregaard et al., 2017), and there
may still be several unrecognized species. Likewise, a
serious problem in the daily operation worldwide, poor
settling, foam formation or membrane fouling, all due to
overgrowth of filamentous microorganisms (Nielsen
et al., 2009), is only partially resolved despite many
years of research. Several filamentous species are now
identified and characterized with effective control mea-
sures known (Seviour and Nielsen, 2010), but many lack
basic characterization, and no control strategies exist.
Newly discovered processes, such as the denitrifying

anaerobic methane oxidation (DAMO) process, in which
methane is oxidized anaerobically (Raghoebarsing et al.,
2006; Haroon et al., 2013; Cai et al., 2015), or novel
combinations of processes, such as the integrated sul-
fate reduction, autotrophic denitrification and nitrification
(SANI) process for saline wastewater treatment (Wang
et al., 2009) also open novel possibilities for developing
more sustainable wastewater treatment processes. Many
more processes unknown today may contribute to an
optimized circular economy in wastewater systems in the
future.
Finding alternatives for biogas production that will yield

higher levels in the value chain is also a priority. Produc-
tion of biogas is presently the method of choice at many
WWTPs, but the increased need for various biochemical
or other high-value products, such as biohydrogen pro-
duction (Kleerebezem and van Loosdrecht, 2007) or
value-added chemicals, such as alcohols, organic acids
and lipids, which are used as building blocks in the
chemical industry or for the synthesis of bioplastics/
biopolymers (Kleerebezem et al., 2015; Fernandez et al.,
2015), should be considered. More fundamental changes
in the perspectives of recovery of nutrients and organics
have also been suggested, including production of pro-
teins (Verstraete et al., 2016).
The recent development in DNA sequencing technolo-

gies, meta-omics and other methods provides exciting
new possibilities. Within a few years, it will be possible
to obtain complete genomes of all important microbes in
the systems, including eukaryotes and learn about their
physiology and ecology, leading to the next level of
ecosystem understanding (Raes and Bork, 2008, Gilbert
and Dupont, 2011). Thus, it will be made possible to find

selective principles for control of certain populations and
management of the communities. Furthermore, ‘online’
surveillance and possibly control of the microbial com-
munities will be possible. Novel DNA sequencing tech-
nologies such as Oxford Nanopore MinION can soon be
used on-site for the identification of the complete com-
munity within minutes or hours. How to apply such data
for surveillance and informed control of the engineered
systems is still uncertain, but with an increased research
effort across the world, a build-up of experience and a
much better understanding of the microbes’ functions will
be gathered and made accessible to the community for
practical use, e.g. through MiDAS (McIlroy et al., 2017)
or other open resources.
In conclusion, wastewater treatment is becoming part

of the circular sustainability development and integrates
energy production and resource recovery into the pro-
duction of clean water. Microbial biotechnology is, along
with other technologies, essential in this development
with exciting perspectives in optimization existing sys-
tems and development of new.
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