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Abstract 

This paper presents a configuration framework for assisting shop floor operators in selecting a suitable hardware configuration 
from commercially available components. The primary focus of this work is the modeling of process, product, and equipment 
knowledge, and the design of a configurator tool implementing this knowledge. The configurator takes process and product 
information as input and derives a list of suitable components for the operator to choose from. The approach is verified through a 
preliminary study indicating the feasibility of the approach.   
 
© 2017 The Authors. Published by Elsevier B.V. 
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1. Introduction 

Traditional, dedicated, and fully automated manufacturing systems require large batch sizes to be economically 
feasible. They are typically not well-suited for small and medium enterprises (SMEs) and companies with high mix, 
low volume production. Consequently, there is a strong need for automated manufacturing equipment suitable for 
smaller batch sizes with frequent changeovers [1,2]. Such equipment need to be responsive and agile with the ability 
to be efficiently reconfigured and reused [3].   

This is not least relevant in the field of robotics. In traditional manufacturing systems, the robot is often fixed to a 
dedicated, fenced-in workstation doing a single repetitive task. Contrary to traditional industrial robots, collaborative 
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robots are intended to operate in the more dynamic production environment of the human operators with greater 
variety, diverse tasks, and more frequent changeovers.  

There are two main objectives in transitioning a robot to a new task; 1) configuring the hardware of the robot, and 
2) programming the robot to the new task. In the industry, the variation in tasks is often of such magnitude that they 
cannot be solved by a single hardware configuration [1]. Thus, the need for hardware reconfiguration is inevitable. 
This reconfiguration should not be an engineering task, but should be handled by the production staff working 
alongside the robot. However, this requires new approaches to hardware configuration and operating the 
collaborative robot as compared to a traditional industrial robot [3].  

According to [4], the objective of hardware configuration consists of two sub objectives; 1) selecting a set of 
suitable modules for the given task, and 2) adding, removing and exchanging hardware modules to obtain the 
selected configuration. In this paper, we focus on the first of these objectives. Selecting suitable modules for a given 
task is not trivial as it requires knowledge on both the process, the product to be manufactured (and its components), 
and the equipment to be reconfigured [5]. Although shop floor operators often possess detailed knowledge on the 
process and the product, they seldom possess detailed knowledge on the robot equipment domain. Our ongoing 
research consider a configuration framework assisting the user in selecting a feasible set of modules for a given task. 
In this paper, we focus on the task of modeling knowledge to support the configuration and how this knowledge can 
be used in the design of a configurator.     

2. Related Work 

A key aspect towards a systematic design of reconfigurable robotic systems is that knowledge regarding the 
capabilities and structure of the system can be captured and utilized to support the process of making design 
decisions. In recent decades, ontologies have been frequently used as a knowledge modeling method [6]. A recent 
review of research focusing on ontologies for manufacturing purposes is presented in [6]. With offset in the 
reviewed literature, [6] classify current research on the topic into the following three categories: 1) development of 
specific applications, 2) development of domain ontologies, and 3) proposal of core ontologies. Category one 
represents research in which ontologies are used as a supporting technology. The second category contains research 
within the knowledge modeling itself, proposing ontologies with knowledge for a particular domain. The third 
category contains research proposing general, core ontologies applicable to a wide range of domains. In conclusion 
of the review, [6] emphasizes several shortcomings of the OWL format when it comes to modeling complex 
products or reasoning over procedural knowledge. Despite these shortcomings, [6] notes that since the OWL format 
has become a commonly used format in both research and practical applications of manufacturing knowledge it is 
desirable to adhere to this standard in future research. The shortcomings could be attended by coexistence with other 
logic languages. 

A configurator approach using product requirement inputs given in natural language and configuration 
knowledge in OWL format is presented in [7]. The configuration process is divided into three steps. First, the 
customer requirements are mapped to product functions using function knowledge stored in a function ontology. 
Secondly, the product functions are mapped to product components (or modules) using product knowledge stored in 
a component ontology. Lastly, the obtained product configuration goes through an optimization process conducted 
using a Bayesian network. 

OWL is also used to represent configuration knowledge used in a configurator in [8]. To extend the configuration 
knowledge of the OWL ontology, [8] also includes a set of rules in Semantic Web Rule Language (SWRL) to obtain 
a higher degree of expressiveness when modeling constraints. In implementation of their configurator, [8] use the 
JESS (Java Expert System Shell) library. The OWL axioms and SWRL rules of the configuration model is translated 
into facts and rules in JESS (Java Expert System Shell) which are then used in the configurator. An assessment of 
their approach is presented in [8] using a PC hardware configuration example and in [9] using a construction drilling 
machine as an example 

A general domain ontology for assembly is proposed in [10]. The ontology includes sub-ontologies with 
knowledge on the three aspects of product, process, and equipment as originally proposed in [5]. The purpose of the 
modeling activities in [10] is to support reconfiguration activities; hence, the ontologies are specifically tailored for 
reconfigurable manufacturing equipment.  
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In [11] a framework for configuring robot cells in a “plug and produce” manner is presented. By use of an 
interconnector module the high-level task control is separated from the low-level device control. The interconnector 
module makes the task control independent of specific device syntax by providing an abstraction upon the device 
commands in the form of skills. Hereby, each device has a functional description in terms of skills and the behavior 
of each skill is represented by a state-chart. A process can be defined by a set of skills and a behavior sequence for 
each skill is defined by the state-charts. By matching the skills provided by the devices and the skills required by a 
given process, a preliminary set of devices can be chosen. Furthermore, based on the state-charts representing the 
behaviors of skills, discrete process planning can be performed. 

An autonomous reconfiguration approach is presented by [12]. They demonstrate in a laboratory experiment how 
an ontology-based reconfiguration agent can autonomously reconfigure a modular, intelligent manufacturing system 
in response to changing requirements. The knowledge is modeled in OWL format, implemented using JENA, and 
reasoned on using the Pellet reasoner [13]. 

As indicated by the selected work presented above, much research has focused on using ontologies for modeling 
manufacturing knowledge and the use of ontologies for modeling the knowledge used in configuration. Software 
configurator tools have been successfully applied in many diverse markets for product configuration [14]. Despite 
this, the use of configurators for manufacturing systems is limited, with no present research on configurators for 
collaborative robots. Thus, there is a potential in research on how shop floor operators can benefit from a 
configurator in selecting a feasible hardware configuration. 

3. Configuration Framework 

The configuration framework consists of a graphical software configuration tool (from here on referred to as the 
configurator) and the supporting configuration knowledge referred to as the configuration model. The user 
interaction of the framework is done through the configurator where the user provides process and product 
information about the task. Based on these inputs, the configurator suggests suitable equipment modules using 
semantic knowledge stored in the configuration model. The offset for our configuration framework is within 
commercial off-the-shelf equipment. This also defines the granularity on which configuration is possible. To allow 
an easy and efficient exchange of hardware components, the commercial components must be adapted to 
standardized and “common” interfaces; both in terms of mechanic, energy, and control. Although a modular 
hardware architecture is considered a prerequisite for the configuration framework, the adaptation of commercial 
components into modules is out of scope for the work presented in this paper. 

3.1. Configuration Model 

The configuration model denotes the information relevant to the configuration task stored as semantic data. 
Based on the review of related work, see Sec. 2, we use an ontology-based knowledge modeling method in the 
configuration framework.  Following the theory of [5,10], knowledge on manufacturing systems is covered by the 
three domains: Process, product, and equipment. We adopt this segmentation in our modeling of configuration 
knowledge resulting in three ontologies; one for each domain. Additionally, we have created two “common” 
ontologies, a geometry ontology and a material ontology. These ontologies represent knowledge applicable to a wide 
range of technical entities and systems, and they cover general concepts of their respective topics; e.g. 3D-shapes, 
2D-shapes, and units of measure for the geometry ontology, and individual materials and their properties for the 
material ontology. The three domain ontologies will be elaborated in the following sections. 

All the ontologies have been modeled in OWL DL using the graphical IDE Protégé 5 [15]. The Pellet reasoner 
[13] is used to infer additional knowledge (axioms) based on the asserted knowledge (axioms); e.g. if a gripper uses 
a pneumatic energy source, it is inferred to be a pneumatic gripper by the reasoner. 
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3.1.1. Product Ontology 
 
The product ontology contains knowledge on products manipulated in the process by the robot. The high-level 

concept taxonomy of the product ontology is inspired from the structure proposed by [10]. The core concepts of the 
product ontology and the relations to the material and geometry ontologies are illustrated in Fig. 1. 

The top-most concept of the product ontology is the product which can either be a component or an assembly. 
We define a component as a single entity, not further decomposable into subcomponents. Hence, it cannot be a sub-
assembly. The separation of assembly and component allows an explicit relation between a component and its 
material and geometric properties as exemplified in Fig. 1. A complex or 3rd party entity, like a bearing, can be 
modeled as a direct instance of product.  

3.1.2. Process Ontology 
 
The process ontology contains knowledge related to the task to be accomplished by the robot. Similar to the 

product ontology, the high-level concepts of the process ontology are inspired from [10]. Fig. 2. illustrates the top-
most concepts of the process ontology and their relations. Instances are included in the figure to exemplify the 
extend of the concepts from which they are derived. 
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Fig. 1. The primary concepts and relations of the product ontology. Individuals are included to exemplify the instantiation of the concepts. 

Fig. 2. The primary concepts and relations of the process ontology. Individuals are included to exemplify the instantiation of the concepts. 
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An activity is defined as any physical act, and the activity can be subsumed by either a process or an action. An 
action is an activity in which only the state of the actor is changed, and thus, actions naturally become low-level 
activities. A process is an activity performed on one or more products (component/assembly) resulting in a state 
change for the given products. The concept process is subsumed by either task or operation. A task is defined as a 
process performing a well-defined portion of work to achieve a production related goal. An operation is defined as a 
process changing the state of one or more products. Given that a task consists of one or more operations, the 
simplest task would be a single operation. Several generic operations are defined in the process ontology; e.g. insert 
product into fixture and place product on surface. 

3.1.3. Equipment Ontology 
 
The equipment ontology contains the knowledge on the equipment relevant to an industrial robotics system. This 

includes both conceptual knowledge on various equipment types and their relations, as well as knowledge on 
specific equipment instances. Thus, this ontology also contains the information on each of the specific commercial 
modules available to the robotic system. 

Robotic systems are in industry used for a variety of different process domains; e.g. welding, machining, 
inspection and handling. We will in this work focus on the robot’s ability to manipulate objects in assembly tasks. 
As such, we only model and illustrate the knowledge relevant to these tasks, but an equipment ontology focusing on 
another process domain would follow the same modeling principles. To further constrain the scope, we will in this 
paper focus on the manipulation-centric concepts of a robotic system. That is, the concepts that are part of the robot 
itself; typically including a robot arm, a robot tool, sensors, structural components, and control/computational 
components. The full equipment ontology cannot be visualized properly in this paper, but is made available for 
download1. The hierarchical structure of the primary concepts is shown in Fig. 3., and the primary relations between 
these concepts are shown in Fig. 4.  

 

 
1 The most recent version of the equipment ontology can be downloaded from: http://tinyurl.com/csmanonto  

Fig. 3. The upper, central concepts of the equipment ontology. 
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The concept of a module is subsumed by the active module which is a module containing at least one device. A 
device is defined as a controllable, mechatronic entity providing at least one active function, see Fig. 5. The 
equipment ontology furthermore covers non-physical concepts and relations such as functions and operating 
principles. Fig. 5. presents an example of non-physical knowledge in the equipment ontology. As shown in Fig. 
5.Fig., a gripper is required to have at least one grasp primitive and at least one release primitive, but as given by 
the hierarchical structure a gripper is not restricted to only these two primitives. The subsumption of gripper by 
parallel gripper is shown to exemplify further restrictions on the relations. 

The function concept represents abstract capabilities of equipment. The hierarchical structure of the function 
concept includes the concepts task, skill, and primitive, see Fig. 6.  These concepts represent the software functions 
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Fig. 4. The relations of the upper, central concepts of the equipment ontology. 

Fig. 5. Example of non-physical knowledge in the manipulation ontology. The figure illustrates some of the functional aspects related to a
gripper. Further subsumption of the gripper concept is exemplified using the parallel gripper concept which further restricts the relations of the
gripper concept. The classification of gripping principles is based on [17]. 
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used in the task programming following the skill-based programming paradigm described in [16]. The function 
concept and the subsumed concepts are modeled in the equipment ontology because they reflect equipment 
capabilities and not process requirements. However, the task - skill - primitive function structure is remarkable 
similar to the task - operation - action structure of the process ontology as both skills and operations are defined as 
effectuating a state-change to a given product. A key difference is though that the operations represent task-related 
goals from a human perspective, whereas the skills represent task-related goals from a robotic perspective. 
Consequently, the semantics of operations may not explicitly express all the activities needed to accomplish a task. 
That is, part of the activity in an operation can be implicit. For example, the operation move product to bin does not 
explicitly state that the product should be picked up first, but humans naturally infer this. This implicit knowledge is 

needed in the robotic domain in order to successfully complete the task using skill-based programming. Mapping the 
process domain knowledge to the domain of equipment functions is done by asserting which skills are used to 
realize a given operation in the equipment ontology, see Fig. 7. Similarly, relations between product knowledge and 
equipment knowledge is also modeled in the equipment ontology. An example is shown in Fig. 8. where product 
shape is linked to the grasp type of a gripper.   

3.2. Configurator  

The configurator denotes the software tool using the configuration model to derive a feasible configuration based 
on user inputs. Thus, the configurator is designed to query the three domain ontologies along certain knowledge 

Fig. 7. Example of a relation between process and equipment knowledge. The link between operations and skills is modeled through the 
realizedBy relationship asserted in the equipment ontology. 
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propagations depending on the information provided by the user. Based on input of process and product information 
from the user, the configurator determines the required module types (e.g. robot arm or camera) and a set of feasible 
specific modules denoted candidates (e.g. Schunk WSG50 or ASUS Xtion). The final selection within the set of 
candidates is done by the operator.  

At the back-end, the configurator contains mechanisms for querying the three ontologies and a set of instructions 
on how to connect the knowledge to derive the candidates. A few examples of such will be covered in this section. 
The configurator is implemented in C++ and the REDLAND and RASQAL libraries [18] provide the means to read, 

Fig. 9. Screenshot of the final candidate selection menu in the graphical user interface of the configurator. 

Fig. 8. Example of a relation between product and equipment knowledge. For each component one or more grasp regions are asserted in the
product ontology. The link between the shape of a grasp region and a suitable grasp type is modeled through the graspedWellBy relationship 
which is asserted in the equipment ontology. Note that an assembly inherits the grasp regions of the components constituting the assembly. 
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write, and execute queries in the OWL files containing the ontologies.  
At the front-end, the configurator provides the graphical user interface through which the operator interacts with 

the configurator. The user interface of the configurator is designed as a step-through “wizard”. Fig. 9. depicts the 
final candidate selection menu of the user interface, and an overview of the configuration flow is illustrated in Fig. 
10. The first step is input of process information. As the scope of the configurator is to determine a configuration for 
a single task, the user input for the process is given by sequencing operations, see Sec. 3.1.2. Using the relation 

between operations and skills, the configurator maps the operations sequenced by the user into a set of required 
skills and from these into a set of required primitives. Based on the required primitives, the configurator extracts the 
individual modules providing these primitives, resulting in a list of all candidates providing at least one of the 
required primitives. The represented module types are determined by querying the module type for each individual 
candidate.  

The next step is the input of product information where the user assigns a product to each operation in the task. 
The product knowledge including individual products is retrieved from the product ontology and displayed to the 
user. The configurator allows the user to create new products if needed which will then be inserted as axioms into 
the product ontology. The product information for each operation is then transferred to the skills realizing the 
operations, and the list of candidates already obtained from the process input is further refined. During this 
refinement, the candidates not suitable for the chosen products are removed from the list. In its current state, the 
configurator supports a maximum cardinality of one for each module type; i.e. maximum one robot arm, one 
gripper, one force/torque sensor, one camera etc. Thus, it does not consider the use of e.g. two grippers or the use of 
tool-changers.  

After the input of process and product information, the configurator generates a summary of the inputs and 
determines the required skills, the required primitives, the required module types, and the possible candidates. The 
final step in the configuration process is the manual selection of specific modules from the list of candidates. As 
candidate list only contains valid modules and the selection is therefore a matter of user preference. The selection 
menu, see Fig. 9., lists the needed module types and the needed primitives. For each module type, the user is shown 
the candidates for that particular type. As modules are chosen, the covered primitives are marked green. The 
selection is finished once all required primitives have been covered by a specific module. The conclusion of the 
configuration process is the generation of a configuration file and a configuration report for use in the subsequent 
physical configuration of the robot. 

Fig. 10. Overview of the configuration flow in the configurator. 
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4. Preliminary Feasibility Study 

A preliminary, qualitative feasibility study of the configuration framework has been conducted. The purpose has 
been to examine the response of the configurator and determine if the candidate list, skill list, and primitive list 
indeed are qualified for a given task. The three industrial assembly tasks have been selected as a benchmark, see Fig. 

11. For all three tasks, the hardware of the robot system has been set up by a robotics experts and subsequently the 
task has been programmed and executed using skill-based programming. The necessary operations, products, and 
equipment modules have been entered in the configuration model prior to the study. The equipment modules include 
six robot arms, nine grippers, and two force/torque sensors. The process and product information for each task has 
been entered in the configurator to obtain a list of suggested candidates.  

The evaluation for each task has been: 1) the previously used configuration is present among the candidates, and 
2) each possible configuration is deemed feasible in the given task by a robotics expert. For all three tasks, the 
configurator did suggest the modules previously used to solve the task. A review of all the proposed candidates for 
each task by an expert generally resulted in only viable configuration. However, one exception was noted. In the 
rotor assembly task, see Fig. 11., the force/torque measurements of the UR5 robot is not sufficiently accurate to 
robustly execute the task, however, this configuration (hence without an external F/T sensor) was possible. This 
indicates the need to model knowledge on sensor accuracy in the equipment ontology. 

5. Conclusion 

We have in this paper presented the knowledge modeling of both product, process and equipment knowledge to 
be used in configuration of a collaborative robot composed of commercial of the shelf components. We have 
described the design and implementation of a proof-of-concept configurator with a graphical user interface aiding 
the user in selecting a feasible configuration based on process and product input. To assess the feasibility of our 
approach, the configuration model obtained, and the configurator itself, a preliminary, qualitative feasibility study 
has been carried out. The results from the feasibility study indicate that the configurator does produce the expected 
output within the defined scope. An analysis of all the proposed candidates did however reveal some candidates 
which would not be physically suitable for the given task. These were included in the candidate list due to the scope 
set for the proof-of-concept implementation of the configurator and configuration model which does not yet assess 
all implications of the various process and product inputs. Further maturation and extension of both configurator 
scope and the underlying knowledge would significantly improve the obtained response from the configurator. 
In conclusion, the approach used in the configuration framework is deemed feasible and further maturation and 
extension of the scope is possible following the same method as demonstrated in this work. In future work, we will 
assess the usability of the proposed configuration framework by conducting a number of user studies with shop floor 
operators from industry.  

Fig. 11. Tasks used in the preliminary assessment of the configuration framework. Left: The assembly of a rotor from 10 metal components. 
Middle: The assembly of a spring-loaded plastic socket from four components. Right: Part assembly of the Cranfield benchmark [19]. 
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