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Abstract
Speech intelligibility prediction methods are popular tools within
the speech processing community for objective evaluation of speech
intelligibility of e.g. enhanced speech. The Short-Time Objective
Intelligibility (STOI) measure has become highly used due to its
simplicity and high prediction accuracy. In this paper we investigate
the use of Band Importance Functions (BIFs) in the STOI measure,
i.e. of unequally weighting the contribution of speech information
from each frequency band. We do so by fitting BIFs to several
datasets of measured intelligibility, and cross evaluating the predic-
tion performance. Our findings indicate that it is possible to improve
prediction performance in specific situations. However, it has not
been possible to find BIFs which systematically improve prediction
performance beyond the data used for fitting. In other words, we
find no evidence that the performance of the STOI measure can
be improved considerably by extending it with a non-uniform BIF.
Index Terms: band importance function, speech intelligibility
prediction, enhanced speech, speech in noise

1. Introduction
Speech Intelligibility Prediction (SIP) methods are increasingly be-
ing used by the speech processing community in lieu of time consum-
ing and expensive listening experiments. Such methods can provide
quick and inexpensive estimates of speech intelligibility in conditions
where speech is subjected to e.g. additive noise, reverberation, distor-
tion or speech enhancement. An early SIP method is the Articulation
Index (AI) [1] which was proposed for the purpose of evaluating the
intelligibility of speech transmitted via telephone. A more recent,
improved and standardized, version of the AI is known as the Speech
Intelligibility Index (SII) [2]. Further modifications of the SII have
been proposed with aims of handling e.g. fluctuating masker sig-
nals [3, 4], non-linearly distorted speech [5], and binaural signals [6,
7]. More recently, the multi-resolution speech-based Envelope
Power Spectrum Model (mr-sEPSM) has received attention for its
physiological basis and its ability to predict intelligibility accurately
across a wide range of conditions including reverberation, fluctuating
maskers, and noise suppression [8]. The Short-Time Objective Intel-
ligibility (STOI) [9] measure has recently gained popularity in the
speech processing community. While the measure is simple and easy
to use, it has also proven to predict intelligibility accurately in many
conditions including e.g. additive noise, speech enhancement [9, 10],
distortion from transmission via telephone [11], and hearing impair-
ment [12]. Several variations of the STOI measure with various pur-
poses and properties have recently been proposed [13, 14, 15, 16].

All of the above mentioned methods are roughly characterized
by the same procedure: 1) split the involved speech signal into
narrow frequency bands with a filterbank, thus mimicking the
frequency selectivity of the basilar membrane, 2) estimate the
amount of speech information conveyed in each frequency band,
and 3) sum the information from all frequency bands, using some

relative weighting that reflects how speech information is distributed
across frequency. The frequency weighting function used in the third
step is often termed a Band Importance Function (BIF). A BIF for
the AI is determined in [1] by use of a graphical procedure, based on
measured intelligibility of Highpass (HP) and Lowpass (LP) filtered
noisy speech. Such BIFs are also used in the more recent SII [2].
The use of these has since spread to other SIP methods which are
based on the SII [5, 3, 4, 6, 7]. The advent of modern computing has
allowed fitting of BIFs, such as to maximize prediction accuracy for
particular datsets of measured intelligibility [17]. Lastly, some au-
thors have proposed SIP methods which use signal dependent BIFs,
which are computed such as to reflect the instantaneous information
distribution of speech across frequency [18, 14].

The STOI measure distances itself from other measures by
being designed with a strong focus on simplicity, and therefore does
not include any BIFs [9]. Instead, the STOI measure uniformly
averages contributions from 15 one-third octave bands. The
designers of the STOI measure [9] made this decision purely with
the aim of simplicity, and do not report the effect of this decision
(with the exception of noting that the resulting measure has a high
performance, in spite of the uniform BIF). However, given the
importance of BIFs assumed by other SIP methods, it appears likely
that the performance of the STOI measure can be improved by
extending it with a suitable BIF.

In this paper we investigate the effect of extending the STOI
measure with fitted BIFs. In Sec. 2 we describe the STOI measure,
including the modification of including BIFs, and following a
similar approach given in [17], we describe how BIFs are fitted
such as to minimize the prediction error for datasets of measured
intelligibility. In Sec. 3 we describe the two datasets of measured
intelligibility which we use for fitting BIFs. These datasets are
further divided into different subsets. In Sec. 4 we investigate
fitted BIFs for the different subsets of measured intelligibility.
Sec. 5 concludes upon our findings.

2. Methods
In this Section we outline the concepts we apply in investigating
the use of BIFs together with the STOI measure.

2.1. The STOI Measure

The STOI measure estimates the intelligibility of a degraded speech
signal, y(t), by comparing it to a clean reference signal, x(t). Both
signals are resampled to 10 kHz and silent regions are removed by
use of an ideal Voice Activity Detector (VAD) [9]. The signals are
Time Frequency (TF) decomposed by use of a short time Discrete
Fourier Transformation (DFT) (see details in [9]). Let the degraded
signal DFT coefficient of the kth frequency bin and the mth frame
be denoted ŷ(k, m), and the corresponding clean signal DFT
coefficient be denoted by x̂(k,m). Envelopes for each of J =15
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one-third octave bands are extracted from the DFT coefficients [9]:

Xj(m)=

√√√√√ k2(j)∑
k=k1(j)

|x̂(k,m)|2, (1)

where k1(j) and k2(j) denotes, respectively, the lower and upper
bounds of the jth one-third octave band. The one-third octave bands
have center frequencies from 150 Hz and upwards in one-third
octave steps. Corresponding envelope samples, Yj(m), are defined
for the degraded signal. The resulting envelope samples are
arranged in vectors of N=30 samples [9]:

xj,m=[Xj(m−N+1),...,Xj(m)]T . (2)

Corresponding vectors,yj,m are defined for the degraded signal. We
define a normalized and clipped version ofyj,m, such as to minimize
the sensitivity of the method to severely degraded TF-units [9]:

ȳj,m(n)=min

( ||xj,m||
||yj,m||yj,m(n),(1+10−β/20dB)xj,m(n)

)
,

(3)

for n=1,...,N , where β=15 dB is a lower bound on signal-to-
distortion-ratio [9]. The resulting short-time envelope vectors, xj,m

and ȳj,m are used to define intermediate correlation coefficients [9]:

dj,m=

(
xj,m−1μxj,m

)T(
ȳj,m−1μȳj,m

)
||xj,m−1μxj,m || ||ȳj,m−1μȳj,m ||

, (4)

where 1 is a vector of ones, and μ(·) denotes the sample mean of
a vector. The STOI measure is then obtained as the average of dj,m
across all values of j and m [9]. This implies a uniform weighting
(BIF) for all one-third octave bands j. In this paper, to allow for
different BIFs, we instead define bandwise average correlations:

d̃j=
1

M

∑
m

dj,m, (5)

where M is the number of time frames. These are averaged
with the BIF w = [w1, ... , wJ ]

T , to obtain the final frequency
weighted STOI score:

s=
J∑

j=1

wjd̃j, (6)

where wj≥0 for j=1,...,J and
∑J

j=1wj=1.
The resulting STOI score is a number in the range from 0

to 1, where a higher STOI score indicates higher intelligibility (e.g.
percentage of words understood correctly). In order to transform
the STOI score into a direct estimate of intelligibility in %, a logistic
mapping is applied [9]:

f(s;a,b)=
100%

1+exp(as+b)
, (7)

where a and b are fitted such as to maximize prediction accuracy
on a well-defined dataset of measured intelligibility.

2.2. Fitting of Band Importance Functions

We now turn to the determination of the BIF, w. We determine this,
such as to minimize the prediction error in terms of Root-Mean-
Square Error (RMSE). This is heavily inspired by the approach taken
in [17] (which fits RMSE optimal weights for the SII). Specifically,

we assume that speech intelligibility has been measured in L con-
ditions (e.g. different types of reverberation, distortion or processing
at different Signal to Noise Ratios (SNRs)), and is given by p(l),
l= 1 ... ,L , where 0%≤ p(l)≤ 100% is the average fraction of
correctly repeated words. We furthermore assume that samples of
clean and degraded speech are available for each condition, such that
we may compute bandwise average correlations, d̃j(1),...,d̃j(L),
with j=1,...,J, for each condition, using (5). For a given BIF, w,
we can compute a weighted STOI score for each condition, by (6).
We can further transform this score into a direct prediction of intel-
ligibility by (7). The RMSE of this prediction can be written as:

RMSE(w,a,b)=

√√√√ 1

L

L∑
l=1

(
p(l)−f

(
J∑

j=1

wjd̃j(l);a,b

))2

. (8)

We jointly determine a, b and w such as to minimize the RMSE,
as given by (8):

minimize
a,b,w

RMSE(w,a,b)

subject to

J∑
j=1

wj=1 and wj>0, j=1,...,J.
(9)

This optimization problem is non-convex and we are not aware of
a method to solve it analytically. Instead, we apply the MATLAB
Optimization Toolbox to numerically find solutions which are
locally optimal.

3. Experimental Data
We use two datasets of measured intelligibility to investigate the
fitting of BIFs according to (9), and to compare the resulting
prediction performance with that of the original STOI measure.

3.1. The ”Kjm” dataset [19]

The first dataset was used in the initial evaluation of the STOI
measure [9] and is described in detail in [19]. For this dataset, in-
telligibility was measured for 15 normal hearing Danish subjects
using the Dantale II corpus [20]. Measurements were carried out
for 1) four noise types: Speech Shaped Noise (SSN), café noise,
bottling factory noise and car noise 2) processing by two types
of binary masks, Ideal Binary Masks (IBMs) and Target Binary
Masks (TBMs), 3) eight different threshold values for binary mask
generation and 4) three different SNRs. Since IBMs and TBMs are
identical for SSN, there are only seven combinations of noise types
and binary masks. The three SNRs were chosen individually for each
noise type. Intelligibility was measured for a total of: 15 subjects×
7 noise/mask combinations × 8 RC values × 3 SNRs ×
2 repetitions×5 words/sentence=25200 words. By averaging per-
formance across subjects, repetitions and words, we obtain measured
intelligibility for 168 conditions. The authors of [19] have kindly
supplied both clean and degraded audio files for the conditions.

For this study, the data is divided into eight subsets such as to
investigate the BIFs arising from fitting to different types of data.
Firstly, the dataset is divided into four subsets depending on noise
type. Secondly, the dataset is divided according to the three SNR
conditions (low, medium and high). Lastly, one subset is defined to
include all the data. We refer to these subsets with the label ”Kjm”.

3.2. The ”S&S” dataset [21]

The second dataset [21] was collected in an effort to derive BIFs for
the AI. Speech intelligibility was measured for 8 normal hearing sub-
jects using a recording of the CID W-22 word lists. Measurements
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Figure 1: Replotted experimental results, as reported in tables 2–3
of [21]. The top plot shows measured intelligibility of HP
filtered noisy speech versus cutoff frequency. Each line represents
measurements at a particular SNR. The bottom plot shows the same
type of results for LP filtering.

were carried out for 1) HP and LP filtered speech masked by SSN,
2) 21 filter cutoff frequencies and 3) 10 different SNRs. SNRs were
uniformly spaced in 2 dB intervals between -10 and +8 dB. In total,
this amounts to 2 filter types (HP/LP)× 21 cutoff frequencies×
10 SNRs=420 conditions. However, some conditions were skipped
because intelligibility was almost zero, and therefore only 308
conditions were measured [21]. The results are shown in Figure 1.

It has not been possible to obtain either clean or degraded
speech for the conditions of this experiment. Nor has it been possible
to obtain recordings of the CID W-22 word lists. We therefore
recreated similar stimuli as accurately as possible, in order to allow
for computing STOI scores. To this end, 150 random sentences were
selected from the TIMIT database [22] and concatenated. Both HP
and LP filtering was carried out using 512th order linear phase Finite
Impulse Response (FIR) filters, designed using the windowing
method. SSN was generated by filtering white noise such as to
have the same long time spectrum as the TIMIT sentences. The
concatenated, non-filtered, TIMIT sentences were used as a clean
reference signal, (x(t)), while filtered speech, mixed with SSN, was
used as degraded speech (y(t)). The SNR is defined to be the energy
ratio of speech and noise before filtering the speech (as in [21]).

We define three divisions of this dataset: 1) the conditions
with HP filtering, 2) the conditions with LP filtering, and 3) all the
data. We refer to these subsets with the label ”S&S”. We also define
one set of data, ”Kjm+S&S”, which includes all data from both
experiments.

3.3. ANSI SII- and Uniform BIFs

In addition to BIFs fitted with (9), we include two additional BIFs:
1) The BIF specified for use with the SII in Table 3 of [2]. Linear in-
terpolation was used to determine a BIF for the exact center frequen-
cies of the one-third octave bands of the STOI measure. This BIF,
shown in Figure 2, places increased weight on the higher frequency
bands, as compared to the uniform BIF. 2) A uniform BIF, as used
in the original STOI measure [9], i.e. wj=1/J, j=1,...,J.

4. Results and Discussion

BIFs were fitted to the defined subsets of data by finding local
minima for (9), using the fminsearch-solver in the MATLAB
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Figure 2: Fitted BIFs for eight subsets of the ”Kjm’ data, three
subsets of the ”S&S” data, one set including data for both
experiments, as well as two non-fitted standard BIFs. The scaling
of the vertical axes is the same for all BIFs.

Optimization Toolbox1. The resulting BIFs are shown in Figure 2.
Most strikingly, all BIFs fitted to subsets of the ”Kjm”-data place
the majority of the weight on few frequency bands. The heavily
weighted bands are not the same across the BIFs (except for band 7,
which is consistently weighted strongly by all ”Kjm”-BIFs except
the one fitted to the SSN conditions). Such solutions could indicate
some degree of overfitting, and it should be remarked that the
smaller subsets of the ”Kjm”-data involve only 24, 48 or 56 data
points, to which 17 parameters are fitted (i.e. a, b and w∈R15×1).
However, the full set of all 168 data points of the ”Kjm”-data results
in a BIF with similar properties. It should also be noted that while
the BIFs place most weight on a few bands, these few bands are
generally spread out across the entire frequency range. Another
explanation of the sparse BIFs could therefore be that the values
of d̃j are highly correlated for adjacent bands, and thus supply
redundant information. It is possible that smoother BIFs can be
obtained by adding some form of regularization to (9).

The BIFs fitted to the subsets of the ”S&S”-data appear much
smoother than those fitted to the ”Kjm”-data. At the same time,
the ”S&S”-BIFs are similar to one-another. Especially the BIFs
fitted to the ”S&S LP”- and the ”S&S LP+HP”-subsets show some
similarity to the SII BIF, by weighting the higher frequency bands
slightly higher than the lower ones. The joint set of data from both
experiments, ”Kjm+S&S”, leads to a BIF which is quite similar
to the one fitted to the ”S&S HP+LP”-data. This could indicate
that the RMSE of the ”S&S”-data is more sensitive to differences
in BIFs, and that this dataset therefore ends up having the most
influence on the optimal BIF. This is not surprising, as the ”S&S”-
data is designed specifically with the purpose of containing as much
information as possible about which frequency bands are important
to speech intelligibility (i.e. to facilitate the derivation of BIFs).

We evaluate the performance of all 14 BIFs on all 12 subsets
of data, using two different performance metrics: 1) RMSE, and
2) Kendall’s tau. The results are shown in color-coded tables in
Figure 3.

1The default solver was initialized 100 times with random starting values,
and the best solution across these was used.
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Figure 3: Cross evaluation of all the BIFs with the 12 defined sub-
sets of data. Each row shows the performance for one BIF, when
evaluated on the different subsets of data. Each column shows the
performance of the different BIFs when evaluated for one particular
data subset. The top plot shows RMSE in % and the bottom plot
shows Kendall’s tau. Red colors indicate poorer than average perfor-
mance and green colors indicate better than average performance.

We first consider performance in terms of RMSE, as given by
the top plot of Figure 3. Each fitted BIF is optimized to minimize
the RMSE on one particular dataset. This is seen in Figure 3 as a di-
agonal with high performance, projecting from the lower left corner.
It can be noted that BIFs fitted on one subset of the ”Kjm”-data often
leads to a low RMSE when used on another subset of the ”Kjm”-
data, with some exceptions. This contradicts the notion of overfitting
being a major problem with the small subsets of the ”Kjm”-data.
A similar observation holds for the ”S&S”-data, where rather good
performance is obtained regardless of which BIF is evaluated for
what subset of data. In general it appears that lower RMSE can be
obtained on the”S&S”-data, which suggests that this dataset contains
either less statistical variation or less varied combinations of noise
and processing. When using BIFs fitted to the ”Kjm”-data for predic-
tions of the ”S&S”-data, and vice versa, performance is mostly low.
This suggests some fundamental difference between the two datasets,
caused e.g. by differences in target speech material. However, the
combined ”Kjm+S&S”-BIF manages to obtain good performance

across all subsets of both sets of data. The uniform- and SII BIFs also
obtain decent performance across most conditions, especially when
considering that these are not fitted to any of the available data. With
the exception of the ”Kjm+S&S”-BIF, the uniform BIF, as used in
the original STOI measure, has the smallest maximum RMSE (i.e.
the highest number of the row: 14.3%). However, RMSE measured
on all the available data combined, as shown in the rightmost col-
umn, is lowest for the ”Kjm+S&S”-BIF, by a considerable margin.
All BIFs fitted on the ”Kjm”-data lead to quite poor performance
when evaluated for the combined data, while the ”S&S”-BIFs lead to
much better performance. This should be viewed in light of the fact
that the ”S&S”-dataset is almost twice as big as the ”Kjm”-dataset
and therefore weighs more in the combined performance evaluation.

One can argue that it is unfair to fit BIFs to data from one
listening experiment and validate it on data from another, because
the speech material may have different degrees of complexity and
the different groups of subjects may not perform equally well. These
factors are, to a large extent, modeled by the parameters a and b,
which control the mapping from STOI measure to predicted intelligi-
bility in percent. The bottom plot in Figure 3 shows performance in
terms of Kendall’s tau. This statistic is interesting because it depends
only on the extent to which predictions are correctly ordered, and is
therefore independent of a and b. Here, we also see that fitting and
testing with the same set of data gives improved performance, but
to a somewhat smaller extent than what is the case with the RMSE
which is directly optimized in (9). It is also seen that poor perfor-
mance results when fitting BIFs on the ”Kjm”-data and evaluating
on the ”S&S”-data, as was also the case when measuring perfor-
mance in terms of RMSE. However, the opposite is not the case:
fitting BIFs on the ”S&S”-data and evaluating on the ”Kjm”-data
leads to performance which is almost as good as what is obtained
when fitting with the ”Kjm All”-set. This contrasts the results seen
when evaluating with RMSE, and may indicate that a and b are
important for fitting details about the specific experiment, and are
not transferable from one experiment to another. On the other hand,
this result also indicates that the BIF, w, fitted on the ”S&S”-data
actually generalizes well to the ”Kjm”-data. Overall, the BIF fitted
to the ”Kjm+S&S”-set performs better than the uniform BIF, in
terms of Kendall’s tau, when evaluated on the ”Kjm+S&S”-set.
However, this difference seems to stem mainly from the ”S&S LP”-
conditions. The other conditions do not indicate that performance
is improved considerably above that of the uniform BIF.

5. Conclusions
We have investigated the use of Band Importance Functions (BIFs)
in the Short-Time Objective Intelligibility (STOI) measure. BIFs
were fitted to several different datasets of measured intelligibility,
such as to minimize the Root-Mean-Square Error (RMSE). This can
decrease prediction RMSE substantially in comparison with the uni-
form weighting of frequency bands normally used in the STOI mea-
sure. However, when cross evaluation was carried out between differ-
ent sets of data, or when performance was measured using Kendall’s
tau, the use of BIFs appeared to result in neither a large or a consis-
tent improvement in performance across the evaluated conditions.
It is therefore not possible to say from this limited study, whether
the improved average performance generalizes to other conditions.
Across most of the evaluated conditions, it appears that the uni-
form BIF, as applied in the original STOI measure, is nearly optimal.
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