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Abstract: In this paper we prove the convergence of an algorithm synthesising continuous
piecewise-polynomial Lyapunov functions for polynomial vector fields defined on simplices. We
subsequently modify the algorithm to sub-divide locally by utilizing information from infeasible
linear problems. We prove that this modification does not destroy the convergence of the
algorithm. Both methods are accompanied by examples.
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1. INTRODUCTION

Lyapunov stability has been the go to technique for assert-
ing stability properties of dynamical systems for decades.
The theory offers a way of proving the stability of equi-
libria of non-linear systems by means of the existence
of a particular function. The theory is non-constructive
in obtaining this function, and this non-constructiveness
has been, and still is, the focus of significant research ef-
fort (Giesl and Hafstein, 2015). For general non-linearities
some physical insight is often utilized to guide the search
for Lyapunov functions, where they represent a generalized
notion of energy (van der Schaft and Jeltsema, 2014).
Sometimes no such insight is available and a more sys-
tematic approach is necessary.

A notable contribution to systematic Lyapunov function
synthesis for polynomial systems came in 2000 when
Pablo A. Parrilo published his PhD thesis on Semi-definite
Programs (Parrilo, 2000). By formulating the Lyapunov
stability criteria using sum-of-squares polynomials, the
synthesis can be cast as linear matrix inequalities and
solved by semi-definite programming. For more than a
decade the toolbox SOSTOOLS (Prajna et al., 2005) has
been the state of the art when it comes to Lyapunov
function synthesis.

So far, no method has efficiently escaped the so-called
curse of dimensionality. One technique to address this is
to restrict the relaxation even further and require (scaled)
diagonally dominant sum-of-squares polynomials (Ahmadi
and Hall, 2015). This results in linear and second order
cone programs, and approximates the solution to the semi-
definite program. Linear and second order cone programs
scale better than semi-definite programs, but at the same
time the technique restricts the class of polynomials.

� This work is supported by the Danish Council for Independent
Research under grant number DFF - 4005-00452 in the project
CodeMe.

One way to obtain linear programs without restricting the
class of polynomials, is to formulate the synthesis using
either the Handelman basis for general convex polytopes or
the Bernstein basis for box or simplex polytopes. Using the
Handelman basis, Kamyar et al. (2014) relaxes the Lya-
punov criteria into inequalities on the coefficients resulting
in a linear program. Whenever they encounter infeasibility
they increase the degree of the Lyapunov function which
they search for, while maintaining fixed polytopes. In Sassi
and Sankaranarayanan (2015) properties of the Bernstein
basis polynomials are utilized to obtain a hierarchy of
linear program relaxations. They use box polytopes and
a fixed sub-division method to handle infeasibility.

The work presented in this paper differs from Kamyar
et al. (2014) and Sassi and Sankaranarayanan (2015)
by using the positivity of coefficients together with an
adaptive sub-division method and piecewise polynomials.
We build on the work presented in Leth et al. (2016)
and expand the techniques presented therein. Polynomials
are defined in the simplicial Bernstein basis, and often
the initial triangulation will result in an infeasible linear
program. By the use of Farkas’ lemma, information from
an infeasible linear program is used to target the reason for
the infeasibility and to sub-divide locally. In the examples
this is shown to reduce the problem size and the linear
programs are solved faster.

The paper is organised as follows: Section 2 offers a short
introduction to the computations presented in Leth et al.
(2016) and covers additional notation and definitions.
In Section 3, the convergence of regular sub-division is
proven. After deriving an irregular sub-division method
in Section 4, Section 5 contains the main contribution
which proves the convergence of the method. Section 6
outlines some differences between synthesizing continuous
piecewise-polynomial and continuous differentiable poly-
nomial Lyapunov functions, and a conclusion is given in
Section 7.
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2. PRELIMINARIES

The paper Leth et al. (2016) covers how to derive a linear
programming (LP) problem for synthesizing a continuous
piecewise-polynomial Lyapunov function for polynomial
vector fields. The vector field and Lyapunov function
are described in the simplicial Bernstein basis, which,
together with some additional notation, is introduced in
the following.

A non-degenerate n-simplex (a simplex of dimension n)
σ ≡ [σ0, . . . , σn], with ordering < such that σi < σj if
i < j, is the convex hull of n + 1 affinely independent
vertices σi ∈ Rn, i.e.,

σ =

{
n∑

i=0

λiσi

∣∣∣∣∣
n∑

i=0

λi = 1 ∧ λi ≥ 0, i = 1, . . . , n

}
⊂ Rn,

where λi are the barycentric coordinates for σ.

Denoting N∪{0} by N0, we employ the following shorthand
notation. For α ∈ Nn+1

0 we write

|α| =
n∑

i=0

αi, λα =

n∏
i=0

λαi
i , (2)

and

BD
α =

(
D

α

)
λα,

(
D

α

)
=

D!

α0!α1! · · ·αn!
. (3)

With this, any polynomial p of degree d in n variables can
be described in the Bernstein basis of degree D ≥ d on a
simplex σ as

p =
∑

|α|=D

bα(p,D, σ)BD
α (σ) = b(p,D, σ)BD(σ), (4)

where the vector b(p,D, σ) contains the coefficients which
uniquely describe p on σ, and BD(σ) are the Bernstein
basis polynomials of degree D on σ.

The notion of a simplex is extended to collections of
simplices. Let K = {σ1, · · · , σm} be a finite set of m non-
overlapping (except for faces) n-simplices, and let them be
ordered by <.

Notation 1. Let U ⊂ Rn be a closed polytope with the
origin in its interior. Let the collection of simplices K be
a triangulation of U such that

|K| =
⋃
σ∈K

σ = U, (5)

where |K| is the realisation of K (Basu et al., 2006). We
say that K covers U .

Denote all coefficients in the collection by C (ordered by
<), and let ∆ = [1, . . . , N∆] be a list of the indices of
the coefficients in the collection as seen in Fig. 1, where
N∆ is the number of coefficients. On each simplex σ, each
|α| = D defines one coefficient as in (4). We reference to
the coefficients on σi by Ci = C(∆i) where ∆i denote the
indices related to σi, i.e., ∆1 = [1, 2, 3, 6, 7, 8]. Comparing
to (4) we have b(p,D, σi) = Ci. We employ this shorthand
notation and assume the polynomial p and the degree D
obvious from context. We define polynomials as:

Definition 2. (Continuous Piecewise-Polynomial (CPP) on
Collection of Simplices). Let K be a collection of m sim-
plices, let p be a CPP of degree d in n variables, and let
C be the vector of all coefficients in the collection. Then

x1
-1 -0.5 0 0.5 1

x2

-1

-0.5

0

0.5

1

"1

"2 "3

"4 "5

"6

"7

"8

"9

"10

"11

"12

"13

<1

<2

<3

<4

Fig. 1. Defining polynomials in the Bernstein basis on a
collection of simplices. σ relates to the simplices and
∆ relates to the coefficients.

p(x) = pi(x) ∀x ∈ σi for i = 1, . . . ,m, (6)

where

pi =
∑
|α|=d

Ci
αBd

α(σ
i) = CiBd(σi). (7)

Note that the continuity of p across faces is ensured since
adjacent pi’s have the same coefficients on the shared faces,
thus

pi(x) = pj(x) ∀x ∈ σi ∩ σj . (8)

The classical Lyapunov criteria can be translated to con-
ditions on the coefficients as follows.

Lemma 3. (Sloth and Wisniewski, 2014). Let V be a CPP
of degree d defined as in Definition 2, and denote its
coefficients by CV . For a given polynomial vector field,

let V̇ be the Lie derivative of degree d̂, and denote its
coefficient vector by CL. Let V and V̇ be defined on
a collection of m simplices and assume, without loss of
generality, that the simplices are numbered such that the
origin is a vertex of the first m̄ simplices. Denote by ej the
jth canonical unit vector. If

CV ≥ 0 (9a)

CV i
de0 = 0 ∀i ∈ {1, . . . , m̄} (9b)

CV i
dej > 0 ∀i ∈ {1, . . . , m̄}, ∀j ∈ {1, . . . , n} (9c)

CV i
dej > 0 ∀i ∈ {m̄+ 1, . . . ,m}, ∀j ∈ {0, . . . , n} (9d)

CL ≤ 0 (9e)

CLi
d̂e0

= 0 ∀i ∈ {1, . . . , m̄} (9f)

CLi
d̂ej

< 0 ∀i ∈ {1, . . . , m̄}, ∀j ∈ {1, . . . , n} (9g)

CLi
d̂ej

< 0 ∀i ∈ {m̄+ 1, . . . ,m}, ∀j ∈ {0, . . . , n}, (9h)

then x = 0 is a local asymptotically stable equilibrium
point.

The importance of this reformulation comes from the fact
that the coefficient vector of the Lie derivative is linear
in the unknown coefficients of the Lyapunov function,
specifically

CL = A CV, (10)

where A is a matrix as in (11). For the Lie derivative on
the collection of simplices K, we stack the matrices like

A =

[
A1

· · ·
Am

]
, (11)
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where Ai relates to simplex σi. Thus (9), (10) constitutes
an LP. See Leth et al. (2016) for a derivation of A.

Notation 4. Let f : U → Rn, where U ⊂ Rn is a
closed polytope, be a polynomial vector field defining the
dynamical system Σ : ẋ = f(x). The LP defined by (9) and
(10) for Σ on a collection of simplices K which covers U ,
is written LP (Σ,K). To be read as ”The linear synthesis
problem for Σ, when V and f are defined on K”.

In addition we define the following notions.

Notation 5. A vector of coefficients CV is called feasible
if it fulfils (9), and LP (Σ,K) is called solvable if a feasible
CV exists. Otherwise it is called unsolvable.

Since Bernstein’s Theorem (Leroy, 2011) is only valid for
positive polynomials and since we strive to design positive
definite polynomials we introduce the following.

Notation 6. Let p : U → R, with U ⊂ Rn a closed
polytope, be a positive definite polynomial with one point
x∗ ∈ U such that p(x∗) = 0. A collection K covering U is
said to be a Bernstein basis certifying collection for p, if
Ci ≥ 0 for all i ∈ {1, . . . ,m}, when p is described on K.

As a natural consequence, the point x∗ needs to be at
a vertex in K. The notion is extended to Lyapunov
functions.

Notation 7. Let V be a Lyapunov function and V̇ its
Lie derivative for a given polynomial vector field Σ. The
collection K is said to be a Lyapunov Bernstein basis cer-
tifying collection for V , if it is a Bernstein basis certifying
collection for V and −V̇ .

In addition, if the vertices in a collection K are such that

σj
i ∈ Q ∀j ∈ {1, . . . ,m}, i ∈ {0, . . . , n}, (12)

with Q the rational numbers, then K is called a rational
collection. Lastly we need the notion of diameter of sim-
plices.

Notation 8. Let the diameter of a simplex be the maximal
distance between any two points in the simplex, and
denote the diameter of σ by h(σ). For the collection
K = {1, . . . ,m} let

h = max
σ∈K

h(σ) (13)

be the maximal diameter of any simplex in K.

This concludes the needed notation. The following sections
introduce strategies for modifying K when the initial
LP (Σ,K) is unsolvable.

3. CONVERGENCE FOR REGULAR SUB-DIVISION

This section restates the algorithm first presented in Leth
et al. (2016), proves its convergence, and gives an example
of its use. First, define the shrinking factor S ∈ R of a
sub-division routine as

Sh{k} = h{k+1}, (14)

where h{k} is the maximal diameter in the collection at
iteration k. Thus S is a measure of how much the diameters
of the simplices in a collection shrinks by applying the
routine once. We will refer to any sub-division routine with
0 < S < 1 as a regular sub-division routine. Two such
routines are the Standard Triangulation and the Binary
Splitting (Leroy, 2011).

Algorithm 9. (BBAlgorithm)
Input: Dynamical system Σ, closed polytope U , and
degree of the Lyapunov function dV ≥ 1.
Output: Triangulation of U and Lyapunov function V
defined on the resulting simplices.
Procedure:

0) Set iteration counter k = 1 and get initial K{k}.
1) If LP (Σ,K{k}) is solvable, then returnK{k} and CV .

Otherwise, go to 2).
2) Use a regular sub-division routine on all simplices in

K{k} to get K{k+1} and set k = k + 1. Go to 1).

We start with the following Lemma.

Lemma 10. Let a polynomial p of degree d be defined in
the Bernstein basis on a simplex σ̂, and let b(p, d, σ̂) ≥ 0.
Then any sub-division of σ̂ into a collection K with m
simplices, such that

σ̂ = |K| =
⋃
σ∈K

σ, (15)

will preserve b(p, d, σi) ≥ 0, ∀i ∈ {1, . . . ,m}.

Proof. This follows from the fact that b(p, d, σi) are
calculated as convex combinations of b(p, d, σ̂). See Leroy
(2011) for details. �

Proposition 11. Let V ∗ be a polynomial Lyapunov func-
tion of degree dV ∗ ≤ dV (dV is the degree input to the
BBAlgorithm) for the locally asymptotically stable system
Σ. Assume the existence of a rational Lyapunov Bernstein
basis certifying collection K∗ for V ∗. Then the BBAl-
gorithm converges to a collection K ′ making LP (Σ,K ′)
solvable in finitely many steps, and the solution V ′ is a
Lyapunov function for Σ.

Proof. Let K∗ = {σ∗1, . . . , σ∗m∗} be the rational Lya-
punov Bernstein basis certifying collection for V ∗. Because
K∗ is rational, finitely many applications of any regular
sub-division routine will result in a collection K̄ satisfying

σ∗i = |K∗i| =
⋃

σ̄∈K∗i

σ̄ ∀i ∈ {1, . . . ,m∗}, (16)

where K∗i ⊂ K̄. That is, any simplex σ∗i in K∗ can be
expressed as a collection of simplices K∗i taken from the
simplices in K̄. This also results in all vertices of K∗ being
vertices of K̄. Setting K ′ = K̄, it follows from Lemma
10 that the coefficients of V ′ when described on K ′ are
CV ′ ≥ 0, since the coefficients of V ∗ when described on
K∗, by assumption, are CV ∗ ≥ 0.

Prior to obtaining the collection K̄, it may happen at
iteration k that the BBAlgorithm obtains a collection
K{k} which makes LP (Σ,K{k}) solvable without K{k}

fulfilling (16). In this case K ′ = K{k} and the algorithm
has still converged. �

We have two remarks on the existence of Lyapunov func-
tions and the BBAlgorithms ability to find them.

Remark 12. In the case where dV ∗ > dV , the convergence
cannot be proven without additional assumptions on K ′.
Since V ′ is piecewise continuous it can approximate poly-
nomials of higher degree by additional sub-divisions, but it
cannot be guaranteed that a rational Lyapunov Bernstein
basis certifying collection will exists for the approximation.
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where Ai relates to simplex σi. Thus (9), (10) constitutes
an LP. See Leth et al. (2016) for a derivation of A.

Notation 4. Let f : U → Rn, where U ⊂ Rn is a
closed polytope, be a polynomial vector field defining the
dynamical system Σ : ẋ = f(x). The LP defined by (9) and
(10) for Σ on a collection of simplices K which covers U ,
is written LP (Σ,K). To be read as ”The linear synthesis
problem for Σ, when V and f are defined on K”.

In addition we define the following notions.
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Since Bernstein’s Theorem (Leroy, 2011) is only valid for
positive polynomials and since we strive to design positive
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Notation 6. Let p : U → R, with U ⊂ Rn a closed
polytope, be a positive definite polynomial with one point
x∗ ∈ U such that p(x∗) = 0. A collection K covering U is
said to be a Bernstein basis certifying collection for p, if
Ci ≥ 0 for all i ∈ {1, . . . ,m}, when p is described on K.
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collection K is said to be a Lyapunov Bernstein basis cer-
tifying collection for V , if it is a Bernstein basis certifying
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In addition, if the vertices in a collection K are such that

σj
i ∈ Q ∀j ∈ {1, . . . ,m}, i ∈ {0, . . . , n}, (12)

with Q the rational numbers, then K is called a rational
collection. Lastly we need the notion of diameter of sim-
plices.

Notation 8. Let the diameter of a simplex be the maximal
distance between any two points in the simplex, and
denote the diameter of σ by h(σ). For the collection
K = {1, . . . ,m} let

h = max
σ∈K

h(σ) (13)

be the maximal diameter of any simplex in K.

This concludes the needed notation. The following sections
introduce strategies for modifying K when the initial
LP (Σ,K) is unsolvable.

3. CONVERGENCE FOR REGULAR SUB-DIVISION

This section restates the algorithm first presented in Leth
et al. (2016), proves its convergence, and gives an example
of its use. First, define the shrinking factor S ∈ R of a
sub-division routine as

Sh{k} = h{k+1}, (14)

where h{k} is the maximal diameter in the collection at
iteration k. Thus S is a measure of how much the diameters
of the simplices in a collection shrinks by applying the
routine once. We will refer to any sub-division routine with
0 < S < 1 as a regular sub-division routine. Two such
routines are the Standard Triangulation and the Binary
Splitting (Leroy, 2011).

Algorithm 9. (BBAlgorithm)
Input: Dynamical system Σ, closed polytope U , and
degree of the Lyapunov function dV ≥ 1.
Output: Triangulation of U and Lyapunov function V
defined on the resulting simplices.
Procedure:

0) Set iteration counter k = 1 and get initial K{k}.
1) If LP (Σ,K{k}) is solvable, then returnK{k} and CV .

Otherwise, go to 2).
2) Use a regular sub-division routine on all simplices in

K{k} to get K{k+1} and set k = k + 1. Go to 1).

We start with the following Lemma.

Lemma 10. Let a polynomial p of degree d be defined in
the Bernstein basis on a simplex σ̂, and let b(p, d, σ̂) ≥ 0.
Then any sub-division of σ̂ into a collection K with m
simplices, such that

σ̂ = |K| =
⋃
σ∈K

σ, (15)

will preserve b(p, d, σi) ≥ 0, ∀i ∈ {1, . . . ,m}.

Proof. This follows from the fact that b(p, d, σi) are
calculated as convex combinations of b(p, d, σ̂). See Leroy
(2011) for details. �

Proposition 11. Let V ∗ be a polynomial Lyapunov func-
tion of degree dV ∗ ≤ dV (dV is the degree input to the
BBAlgorithm) for the locally asymptotically stable system
Σ. Assume the existence of a rational Lyapunov Bernstein
basis certifying collection K∗ for V ∗. Then the BBAl-
gorithm converges to a collection K ′ making LP (Σ,K ′)
solvable in finitely many steps, and the solution V ′ is a
Lyapunov function for Σ.

Proof. Let K∗ = {σ∗1, . . . , σ∗m∗} be the rational Lya-
punov Bernstein basis certifying collection for V ∗. Because
K∗ is rational, finitely many applications of any regular
sub-division routine will result in a collection K̄ satisfying

σ∗i = |K∗i| =
⋃

σ̄∈K∗i

σ̄ ∀i ∈ {1, . . . ,m∗}, (16)

where K∗i ⊂ K̄. That is, any simplex σ∗i in K∗ can be
expressed as a collection of simplices K∗i taken from the
simplices in K̄. This also results in all vertices of K∗ being
vertices of K̄. Setting K ′ = K̄, it follows from Lemma
10 that the coefficients of V ′ when described on K ′ are
CV ′ ≥ 0, since the coefficients of V ∗ when described on
K∗, by assumption, are CV ∗ ≥ 0.

Prior to obtaining the collection K̄, it may happen at
iteration k that the BBAlgorithm obtains a collection
K{k} which makes LP (Σ,K{k}) solvable without K{k}

fulfilling (16). In this case K ′ = K{k} and the algorithm
has still converged. �

We have two remarks on the existence of Lyapunov func-
tions and the BBAlgorithms ability to find them.

Remark 12. In the case where dV ∗ > dV , the convergence
cannot be proven without additional assumptions on K ′.
Since V ′ is piecewise continuous it can approximate poly-
nomials of higher degree by additional sub-divisions, but it
cannot be guaranteed that a rational Lyapunov Bernstein
basis certifying collection will exists for the approximation.
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Assuming this existence makes the BBAlgorithm converge
even for dV ∗ > dV .

Remark 13. For locally exponentially stable systems, Giesl
and Hafstein (2014) proves that the existence of a continu-
ous piecewise affine Lyapunov function is a necessary and
sufficient condition. Their proof relies on a specific triangu-
lation method which results in a rational collection, thus
the assumption on the existence of a rational Lyapunov
Bernstein basis certifying collection is not conservative
when the system is locally exponentially stable.

Consider next an example on the use of the BBAlgorithm.

Example 14. In this example we will apply the BBAlgo-
rithm on a vector field Σ from Ahmadi and Parrilo (2011)
given as

ẋ1 =− x3
1x

2
2 + 2x3

1x2 − x3
1 + 4x2

1x
2
2 − 8x2

1x2 + 4x2
1

− x1x
4
2 + 4x1x

3
2 − 4x1 + 10x2

2

ẋ2 =− 9x2
1x2 + 10x2

1 + 2x1x
3
2 − 8x1x

2
2 − 4x1 − x3

2

+ 4x2
2 − 4x2.

(17)

We wish to investigate the local stability of the origin by
considering the domain U = [−3.5, 3.5]2 with a Lyapunov
function of degree dV = 4. The initial collection, consisting
of 4 simplices, renders LP (Σ,K{1}) unsolvable. We employ
the Binary Splitting to refine the collection in step 2.
During the 7th iteration Binary Splitting has been applied
6 times and the collection consists of 256 simplices. This
leaves LP (Σ,K{7}) solvable and the resulting Lyapunov
function is show in Fig. 2. The solvable LP consists of 2,212
variables and 11,520 constraints. Note that an objective
function minimizing the sum of the Bernstein coefficients
was added to improve the visual presentation. This does
not affect the feasibility of (9).

4. INFEASIBILITY INVESTIGATION

In the attempt of obtaining a solvable LP (Σ,K{k}) with
a low number of variables and constraints, the initial
K{1} will triangulate the domain of interest using as few
simplices as possible, while making the equilibrium point
a vertex in the collection. By Algorithm 9 and Proposition
11 any regular sub-division routine will converge to a
Lyapunov function. However, the algorithm requires the
sub-division of every simplex in the collection at every
iteration. This can potentially result in the sub-division
of simplices which do not need further sub-division. It is
reasonable to expect that the source of the unsolvability
of LP (Σ,K{k}) does not originate from every simplex in
the collection, but rather from a (possibly small) subset of
the simplices.

In the following, using Farkas’ lemma, we show how to
identify the constraints, and thus simplices, responsible
for the infeasibility.

Lemma 15. (Farkas’ Lemma). (Boyd and Vandenberghe,
2004), (Andersen, 2013). Let A ∈ Rl×k and b ∈ Rl define
an LP. Then exactly one of the two propositions is true:

1. ∃x : Ax = b, x ≥ 0,
2. ∃y : AT y ≤ 0, bT y > 0.

That is, if the LP 1. is infeasible, then there exists a
y ∈ Rl certifying the infeasibility. And moreover, the non-
zero elements of y correspond to (some of) the constraints

Fig. 2. Lyapunov function synthesised when Binary Split-
ting is applied on all simplices in the collection. The
solid lines are the facets of the simplices.

responsible for the infeasibility (Andersen, 2013). Note
that when solving using either simplex or dual-simplex
methods, the certificate is a so-called basis certificate
(Andersen, 2001). When solving using an interior-point
algorithm the obtained certificate is a linear combination
of all basis certificates, but the basis certificates can be
recovered using the methods described in Andersen (2001).
These methods are not detailed here, and henceforth when
referring to a certificate of infeasibility we assume it to be
a basis certificate.

Using this, we propose the following method for obtaining
a sub-division where simplices are sub-divided by a regular
sub-division routine, but where only some simplices are
sub-divided at each iteration.

Notation 16. (Certificate of Infeasibility Identifying (CII)
Method) When an LP (Σ,K) is unsolvable, use Farkas’
lemma to get a certificate of infeasibility y to identify,
possibly a subset, of the constraints responsible for the
infeasibility. Simplices containing any of these constraints
are sub-divided. We will reference to such simplices as CII
simplices.

5. CONVERGENCE FOR IRREGULAR
SUB-DIVISION

This section covers how to utilize the CII method in the
algorithm and expands the proof to encompass this. First
we introduce the notion of a reduced collection.

Notation 17. Let K = {σ1, . . . , σj−1, σj , σj+1 . . . , σm} be
the entire collection and let

K̂ = {σ1, . . . , σj−1, σj+1, . . . , σm} (18)

denote the collection with the simplex σj removed. We will
reference to K̂ as the reduced collection. The ˆ notation
can in general reference to more than one simplex being
removed, but this will be obvious from context.

The BBAlgorithm is modified such that step 2 becomes:

2) Use a regular sub-division on CII simplices to get
K{k+1} and set k = k + 1. Go to step 1.

Proposition 18. Let V ∗ be a polynomial Lyapunov func-
tion of degree dV ∗ ≤ dV (dV is the degree input to the
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modified BBAlgorithm) for the local asymptotically stable
system Σ. Assume the existence of a rational Lyapunov
Bernstein basis certifying collection K∗ for V ∗. Then the
modified BBAlgorithm converges to a collection K ′ mak-
ing LP (Σ,K ′) solvable in finitely many steps, and the
solution V ′ is a Lyapunov function for Σ.

Proof. It suffices to show that the CII method eventually
will select all simplices with constraints which are respon-
sible for the infeasibility of LP (Σ,K{k}), then the rest
follows from the proof of Proposition 11.

Let I{k} be an index set of all simplices with one
or more constraints contributing to the infeasibility of

LP (Σ,K{k}), and let I
{k}
y be an index set of the CII

simplices at the kth iteration. Then LP (Σ, K̂{k}) is solv-

able, where K̂{k} is the reduced collection with the I{k}

simplices removed. Then I
{k}
y contains at least one element

from I{k}, and the I
{k}
y simplices are sub-divided. Let

I
{k}
σ denote index set of the simplices created by the sub-
division in the kth iteration.

In the (k + 1)th iteration, given that LP (Σ,K{k+1}) is
unsolvable, one of the following two scenarios will happen.

1) No element from I
{k}
σ is in I{k+1} which makes

I{k+1} = I{k}\I{k}y . Thus I
{k+1}
y contains at least

one element from I{k+1}. Continuing in this fashion,
I{k+i} becomes empty after at most imax iterations
where imax is the number of elements in I{k}.

2) At least one element from I
{k}
σ is in I{k+1}. This

makes I
{k+1}
y contain at least one element from

I{k}\I{k}y or at least one element from I
{k}
σ ∩ I{k+1}.

If I
{k+1}
y contains elements from I{k}\I{k}y the sce-

nario is exactly what happens in 1), except, for some

i ∈ {1, . . . , imax}, I
{k+i}
y will contain at least one

element from the set

i⋃
j=1

I{k+j−1}
σ ∩ I{k+j}. (19)

For this reason, it is inevitable that simplices which are
the result of sub-division will eventually become sub-
divided even further. The above argument can be applied
recursively, and (16) will be satisfied. The rest of the proof
follows the proof of Proposition 11. �

Consider next an example utilizing the CII method.

Example 19. This example revisits the vector field Σ from
the previous example with the same domain and Lyapunov
function degree. We employ Binary Splitting only on the
CII simplices in step 2 of the BBAlgorithm. This makes
the BBAlgorithm terminate after 6 iterations, and the
resulting Lyapunov function is shown in Fig. 3. Again the
sum minimizing objective function was added to improve
visual presentation. It is evident that only sub-dividing
the CII simplices results in a customized triangulation.
The final collection K ′ consists of 21 simplices, and the
program has 186 variables and 945 constraints. This is an
improvement of 91 % in the number of variables compared
to applying Binary Splitting on all simplices.

Fig. 3. Lyapunov function synthesised when Binary Split-
ting is applied on CII simplices in the collection. The
solid lines are the facets of the simplices.

6. CONTINUOUS DIFFERENTIABLE VERSUS
CONTINUOUS PIECEWISE

The analysis has solely focused on continuous piecewise-
polynomials (CPP) as defined in Section 2. With a slight
modification of the above, the class of Lyapunov functions
can be restricted to continuous differentiable polynomials
(CDP) on collections of simplices. In (4) p is defined on a
simplex σ. By a linear change of base, p can be described
on any simplex. Define jBi as the matrix transforming
base from σi to σj , with jBi = I if i = j.

Definition 20. (Continuous Differentiable Polynomial (CD
P) on Collection of Simplices). Let p be defined as in Def.
2, but also require that

Cj = jBiC
i. (20)

This connection between coefficients on different simplices
essentially makes p one polynomial defined on the collec-
tion. This makes the BBAlgorithm search a smaller class of
functions, but the number of design variables is invariant
to the number of simplices. As m grows LP (Σ,K) only
grows in terms of equality constraints (20) and inequal-
ity constraints (9). The vector field Σ from the previous
examples is used to assess the differences between the
two methods. First, note that in order for the BBAlgo-
rithm to terminate in a reasonable manner when searching
for CDP Lyapunov functions, the domain was shrunk to
U = [−2.5, 2.5]2. The vector field was analysed using CPP
and CDP Lyapunov functions of degree dV = 4, and using
both Binary Splitting on all simplices and on CII simplices.
The results are reported in Table 1.

For CDP, note that using the CII method results in
more simplices than sub-dividing all simplices. The reason
for this is that during the first two iterations the CII
method fails to identify all simplices which needs to
be sub-divided. The method only finds a sub-set of the
simplices, and the remaining are then identified during the
following iterations. At this point, however, some of the
smaller simplices are simultaneously identified for further
sub-division even though they do not contribute to the
infeasibility. Seeing as the LPs have the same number of
variables and are sill quite small, most of the computation
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modified BBAlgorithm) for the local asymptotically stable
system Σ. Assume the existence of a rational Lyapunov
Bernstein basis certifying collection K∗ for V ∗. Then the
modified BBAlgorithm converges to a collection K ′ mak-
ing LP (Σ,K ′) solvable in finitely many steps, and the
solution V ′ is a Lyapunov function for Σ.

Proof. It suffices to show that the CII method eventually
will select all simplices with constraints which are respon-
sible for the infeasibility of LP (Σ,K{k}), then the rest
follows from the proof of Proposition 11.

Let I{k} be an index set of all simplices with one
or more constraints contributing to the infeasibility of

LP (Σ,K{k}), and let I
{k}
y be an index set of the CII

simplices at the kth iteration. Then LP (Σ, K̂{k}) is solv-

able, where K̂{k} is the reduced collection with the I{k}

simplices removed. Then I
{k}
y contains at least one element

from I{k}, and the I
{k}
y simplices are sub-divided. Let

I
{k}
σ denote index set of the simplices created by the sub-
division in the kth iteration.

In the (k + 1)th iteration, given that LP (Σ,K{k+1}) is
unsolvable, one of the following two scenarios will happen.

1) No element from I
{k}
σ is in I{k+1} which makes

I{k+1} = I{k}\I{k}y . Thus I
{k+1}
y contains at least

one element from I{k+1}. Continuing in this fashion,
I{k+i} becomes empty after at most imax iterations
where imax is the number of elements in I{k}.

2) At least one element from I
{k}
σ is in I{k+1}. This

makes I
{k+1}
y contain at least one element from

I{k}\I{k}y or at least one element from I
{k}
σ ∩ I{k+1}.

If I
{k+1}
y contains elements from I{k}\I{k}y the sce-

nario is exactly what happens in 1), except, for some

i ∈ {1, . . . , imax}, I
{k+i}
y will contain at least one

element from the set

i⋃
j=1

I{k+j−1}
σ ∩ I{k+j}. (19)

For this reason, it is inevitable that simplices which are
the result of sub-division will eventually become sub-
divided even further. The above argument can be applied
recursively, and (16) will be satisfied. The rest of the proof
follows the proof of Proposition 11. �

Consider next an example utilizing the CII method.

Example 19. This example revisits the vector field Σ from
the previous example with the same domain and Lyapunov
function degree. We employ Binary Splitting only on the
CII simplices in step 2 of the BBAlgorithm. This makes
the BBAlgorithm terminate after 6 iterations, and the
resulting Lyapunov function is shown in Fig. 3. Again the
sum minimizing objective function was added to improve
visual presentation. It is evident that only sub-dividing
the CII simplices results in a customized triangulation.
The final collection K ′ consists of 21 simplices, and the
program has 186 variables and 945 constraints. This is an
improvement of 91 % in the number of variables compared
to applying Binary Splitting on all simplices.

Fig. 3. Lyapunov function synthesised when Binary Split-
ting is applied on CII simplices in the collection. The
solid lines are the facets of the simplices.

6. CONTINUOUS DIFFERENTIABLE VERSUS
CONTINUOUS PIECEWISE

The analysis has solely focused on continuous piecewise-
polynomials (CPP) as defined in Section 2. With a slight
modification of the above, the class of Lyapunov functions
can be restricted to continuous differentiable polynomials
(CDP) on collections of simplices. In (4) p is defined on a
simplex σ. By a linear change of base, p can be described
on any simplex. Define jBi as the matrix transforming
base from σi to σj , with jBi = I if i = j.

Definition 20. (Continuous Differentiable Polynomial (CD
P) on Collection of Simplices). Let p be defined as in Def.
2, but also require that

Cj = jBiC
i. (20)

This connection between coefficients on different simplices
essentially makes p one polynomial defined on the collec-
tion. This makes the BBAlgorithm search a smaller class of
functions, but the number of design variables is invariant
to the number of simplices. As m grows LP (Σ,K) only
grows in terms of equality constraints (20) and inequal-
ity constraints (9). The vector field Σ from the previous
examples is used to assess the differences between the
two methods. First, note that in order for the BBAlgo-
rithm to terminate in a reasonable manner when searching
for CDP Lyapunov functions, the domain was shrunk to
U = [−2.5, 2.5]2. The vector field was analysed using CPP
and CDP Lyapunov functions of degree dV = 4, and using
both Binary Splitting on all simplices and on CII simplices.
The results are reported in Table 1.

For CDP, note that using the CII method results in
more simplices than sub-dividing all simplices. The reason
for this is that during the first two iterations the CII
method fails to identify all simplices which needs to
be sub-divided. The method only finds a sub-set of the
simplices, and the remaining are then identified during the
following iterations. At this point, however, some of the
smaller simplices are simultaneously identified for further
sub-division even though they do not contribute to the
infeasibility. Seeing as the LPs have the same number of
variables and are sill quite small, most of the computation
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Table 1. Comparison between synthesising
CDP and CPP Lyapunov functions.

#Var #Con #σ Runtime Iterations

C
D
P BS all 14 3425 64 5.7 [s] 5 (BS 4 times)

BS CII 14 3480 65 8.1 [s] 8 (BS 7 times)

C
P
P BS all 288 1440 32 3.6 [s] 4 (BS 3 times)

BS CII 112 540 12 3.5 [s] 5 (BS 4 times)

time is spent on overhead setting up the programs. This
shows in the longer runtime for the CII method.

For CPP, first of all notice the advantage by searching
over a larger class of functions. For Binary Splitting on all
simplices there exists a CPP Lyapunov function when V
and f are defined on 32 simplices, whereas 64 simplices are
needed before a CDP Lyapunov function exists. Contrary
to CDP, applying the CII method when searching for
a CPP Lyapunov function does speed up the runtime.
The CII method requires an additional iteration before
obtaining a solvable LP (Σ,K ′), but since the program
is keep small by minimizing the number of simplices the
runtime is shorter than when sub-dividing all simplices.

The tendencies in Tab. 1 have not been investigated on a
comprehensive case study. It is of yet unknown whether
the CII method is advantageous in high dimension.

6.1 Sparsity

When searching for a CDP Lyapunov function the number
of design variables is constant during the iterations of the
BBAlgorithm. As such, the inequality matrix A in (10) will
maintain its width and only become taller throughout the
iterations. For this reason, the linear program for searching
for a CDP Lyapunov function offers no sparsity.

When searching for a CPP Lyapunov function the number
of design variables grows as the number of simplices grows
during the iterations. The coefficients located on facets of
the simplices in the collection will be common to two or
more simplices, and appear multiple times in the inequality
matrix A. The coefficients located in the interior of the
simplices will be unique to a single simplex. Thus the
inequality matrix A can be ordered into a structure known
as dual block angular (Lubin et al., 2013). This structure
offers a high degree of sparsity and can potentially be
exploited to develop a dedicated solver.

7. CONCLUSION

In this paper the convergence of a Lyapunov function
synthesizing algorithm was proven. Whenever infeasibility
occurs, using Farkas’ lemma we were able to target specific
simplices which were responsible for the infeasibility. This
enables a method where the problem size is kept at a
minimum while obtaining a feasible linear program and
synthesizing a Lyapunov function. A comparison between
continuous piecewise-polynomials and continuous differ-
entiable polynomials showed that the proposed method
is best suited when searching for a continuous piecewise-
polynomial Lyapunov function.

Future research will address the gap between positive def-
inite polynomials and polynomials admitting a Bernstein
basis certifying collection.
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