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ABSTRACT This paper is concerned with an event-triggered hybrid control for the energy Internet based
on a multi-agent system approach with which renewable energy resources can be fully utilized to meet
load demand with high security and well dynamical quality. In the design of control, a multi-agent system
framework is first constructed. Then, to describe fully the hybrid behaviors of all distributed energy resources
and logical relationships between them, a differential hybrid Petri-net model is established, which is an
original work. The most important contributions based on this model propose four types of event-triggered
hybrid control strategies whereby the multi-agent system implements the hierarchical hybrid control to
achieve multiple control objectives. Finally, the effectiveness of the proposed control is validated by means
of simulation results.

INDEX TERMS Energy Internet, multi-agent system, hybrid control, event-triggered control, differential
hybrid Petri-net.

I. INTRODUCTION
The energy internet is an emerging information and phys-
ical fusion network, which consists of two main layers:
(i) an upper-layer Internet, and (ii) a lower-layer energy
network [1]. The lower layer integrates various kinds of
distributed renewable energy resources (RERs), distributed
storage devices and loads. It is usually connected to a
main grid through a bi-directional grid-connected con-
verter (GCC), which forms a resource-grid-load-storage
interconnected energy network. In comparison with a micro-
grid, the lower-layer energy network integrates resource-grid-
load-storage in a more loose way. With the support of the
upper-layer Internet, more convenient interactions between
the distributed units can be realized in energy internet,
which can guarantee a realization of frequent access or exit
of those units. The structure of energy internet appears
time-varying performance with multi-mode switching char-
acteristics [2]–[4]. From the whole system point of view,

the energy internet has a typical characteristic of a complex
hybrid system, and thus its control presents even greater
challenge [5], [6].

One of the main envisioned conceptions of the energy
internet is to make full use of RERs to meet the load demand
with high reliability and well dynamic quality. To achieve
these objectives, an effective control mechanism should be
introduced by fully utilizing information from the upper-layer
Internet and taking the hybrid characteristic of the energy
internet into account. Although much attention has been paid
to the construction of the energy internet in recent years, there
are only a few results available in the existing literature on the
study of control of the energy internet. As mentioned above,
the energy network is the main part of the energy internet.
In the past several decades, several control approaches about
the energy network with traditional communication networks
have been investigated. However, the control schemes pro-
posed in most of the existing references are dynamical
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regulation without paying sufficient attention to the treatment
of the switching behavior of the energy network [9]–[11].
In [9], an energy management issue was addressed by means
of the switching control for four kinds of operation modes.
In [10] and [11], MAS based switching control was proposed
for storage devices by using logic judgments and fuzzy-logic-
rules, respectively. From the existing references mentioned
above, it can be seen that the study of control by considering
the switching performance of the energy network is primary
and still in its infancy. Furthermore, the existing control
scheme for the energy network often adopts a hierarchical
control structure [4], [7], [8] due to the limitation of the
traditional communication infrastructure.

In this paper, by making full use of the upper-layer Inter-
net and considering more prominent hybrid characteristic
of the energy internet, we propose a hybrid control scheme
with the following features: (i) mode switching, which can
switch operation modes of the resource-grid-load-storage in
a coordinated way to guarantee power supply with high
security; (ii) dynamical regulation, which can continuously
regulate each unit system to guarantee power supply with
well dynamic quality; and (iii) widely real-time interactions,
which depend on the upper-layer Internet. The main contri-
butions of this paper are summarized as follows: (i) three
levels of the multi-agent system (MAS) is constructed to
carry out the hierarchical hybrid control so as to achieve
multiple control objectives; and (ii) an event-triggered hybrid
control scheme is designed based on a differential hybrid
Petri-net (DHPN) model.

In comparison with some existing results [9]–[11],
the advantages of the proposed control scheme are as fol-
lows: (i) the three levels of the MAS can take full use of
information from the upper-layer Internet to intelligently
carry out hierarchical hybrid control in a distributed coor-
dinated way, and thus the multiple control objectives are
achieved simultaneously; (ii) the interaction topology of the
MAS is easy to be dynamically re-constructed when deal-
ing with ‘‘plug and play’’ of units in the system. In this
sense, the proposed control scheme is very flexible and
scalable; (iii) the hybrid control strategies are designed as
event-triggered functions (ETFs) or constraint violation func-
tions (CVFs) fully depending on the logical relationship
between the resources-grid-load- storage, which acts on all
DERs and load demand side. In this sense, the event-triggered
hybrid control scheme has the strong coordinating and regu-
lating ability to cope with the effect of strong disturbances;
and (iv) compared with the result in [12], this paper pays
more attention to the hierarchical switching of RERs and
hierarchical load shedding, and thus the proposed control
scheme can make full use of RERs to meet the load demand
in a more reasonable way.

The rest of this paper is organized as follows. Section II
discusses an MAS based control scheme. A DHPN model
is built in Section III. Section IV focuses on four kinds of
hybrid control strategies. The control performance is verified
in Section V. Section VI concludes this paper.

II. AN MAS BASED CONTROL SCHEME
A group of photovoltaic/wind turbine (PV/WT) combined
RERs, storage devices and loads are firstly respectively
connected to a common DC bus in a loose way, and then
connected with an AC main grid through a GCC, which con-
stitutes a resource-grid-load-storage interconnected energy
network. The energy network combines with the upper-layer
Internet to form the energy internet.

Three levels of the MAS are firstly constructed to carry
out the hierarchical hybrid control so as to achieve multiple
control objectives, whose structure can be seen in Fig. 1. (i)
The GCC between the energy network and the main grid is
associated with the first-level agent, which is mainly respon-
sible for switching control of the GCC to guarantee operative
security of the whole energy network. (ii) According to oper-
ation modes of the GCC, the second-level agent is employed
to implement the switching control among resource-load-
storage in a coordinated way, which is of an advantage of
making full use of RERs to meet the load demand with high
security. (iii) Each RER unit, storage unit or load demand
side is also associated with the third-level unit control agent,
which implements local switching control and distributed
dynamic control to guarantee security and stability of its unit
system.

The three levels of agents interact with each other through
the upper-layer Internet by using the following two modes:
(i) a master-slave interactive mode among different levels of
agents. It means that the first-level agent has a priority over
other agents, and the second-level agent has a priority over
all the third-level unit agents; and (ii) a non master-slave
interactive mode among third-level unit agents. That is, all
third-level unit agents interact with each other in an equal
way.

III. THE MODELING OF THE ENERGY INTERNET
As one of the best modeling methods for a complex hybrid
system [13], [14], a DHPN model is employed to describe
the hybrid behaviors of all DERs and logical relationships
between them. Corresponding to the Fig. 1, the DHPNmodel
consists of five subsystems as shown in Fig. 2, where RERs
are divided into PV and WT units. The DHPN model is
defined by a 7-tuple (PD, TD, PDF, TDF, AN, 0, M0) set,
where the descriptions regarding places (i.e. PD, PDF) and
transitions (i.e. TD, TDF) are given in Tables 3-6

AN ⊆ ((PD×TD)∪ (TD×PD))∪ ((PD×TDF)∪ (TDF×PD))
is a set of arcs;
0 ∈ {dTG1, dTG2, . . . , dTLrn,} is a timing map for all the

discrete transients, which defines the triggered response time
of all the discrete transients;

M0 ∈ {MG0,MB0,MP0,MW0,ML0} is the initial marking,
which defines the initial operation mode of resource- grid-
load-storage.

The initial marking is described as ‘‘discrete place with
a token (black dot)’’ in Fig. 2. When the operation mode
is switched, the token is transmitted into corresponding
posterior place from the initial place. If a unit system is in Pi
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FIGURE 1. MAS based control scheme for the energy internet.

operation mode, then logical function F(Pi) of Pi is defined
as ‘‘1’’; otherwise, F(Pi) is ‘‘0’’. At any instant, in each
subsystem, there is only one logical function being ‘‘1’’, and
others are ‘‘0’’.

According to the switching principle of the DHPN model,
only when one discrete (or differential) transition is triggered,
the corresponding operation mode (or control mode) associ-
ated with the transition may be switched. Therefore, to switch
the operation modes (or control modes) in a reasonable way,
all transitions should be triggered by means of a designed
event-triggered control strategy. In this paper, corresponding
to different control objectives, an even-triggered hybrid con-
trol scheme includes: (i) the switching control strategy in the
first-level agent, which is designed as a set of ETFs to intel-
ligently switch operation mode of GCC, and is described as
‘‘ ’’ in Fig. 2; (ii) the coordinated switching control strat-
egy in the second-level agent, which is also designed by a set
of ETFs to switch operation modes of resources-load-storage
in a coordinated way, and is described as ‘‘ ’’ in Fig. 2; (iii)
the local switching control strategy in each third-level unit
agent, which is designed as a set of event-triggered CVFs to
locally switch the operation mode of respective unit system,
is described as ‘‘ ’’ in Fig. 2; and (iv) the distributed
dynamic control strategy in each third-level unit agent, which
is designed to guarantee dynamic stability of respective unit
system, is described as ‘‘ ’’ in Fig. 2.

IV. AN EVENT-TRIGGERED HYBRID CONTROL SCHEME
A. THE SWITCHING CONTROL STRATEGY
FOR THE GCC UNIT
The switching control strategy ‘‘ ’’ is designed as a set
of ETFs associated with transitions based on the following

triggered principle of DHPN mode: (i) once an ETF is acti-
vated (i.e. becomes logic ‘‘1’’), it will trigger the connected
transition; (ii) at the moment, if predecessor place of the
transition has token, then the token will be transmitted into its
posterior place; (iii) as a result, the corresponding operation
mode is switched.

In the first-level GCC agent, the ETFs associated with
TG1-TG4 are designed as follows:

ETF(TG1) = Sgn[max{(Ig(t)− Ig,max), 0}]

Sgn[max{1 |Ud (t)| − 0.05, 0}]

×[1(t)− 1(t − dTG1)] (1)

ETF(TG2) = Sgn[max{(Ig,max − Ig(t)), 0}]

×[1(t)− 1(t − dTG2)] (2)

ETF(TG3) = F̄(t) [1(t)− 1(t − dTG3)] (3)

ETF(TG4) = F(t)[1(t)− 1(t − dTG4)] (4)

where 1Ud (t) = Uref (t) − Ud (t); 1Ud (t) is defined as the
DC bus voltage deviation; Ud (t) is a real per unit value of
the DC bus voltage; Uref (t) is its reference per unit value;
and 0.05 is defined as its maximum allowable deviation.
In addition, F(t) is a fault logical function (F(t) is ‘‘1’’ if the
main grid occurs fault, otherwise it is ‘‘0’’); F̄(t) is an inverse
function of F(t); Sgn(•) is a sign function; 1(t) is a unit step
function; Ig(t) is the GCC current, and Ig.max is its maximum
limiting value; dTG1 is the triggered time corresponding to
TG1, and dTG2, dTG3 and dTG4 are defined in a similar way.

Taking Eq.(1) as an example, the design process is
explained as follows. When Ig(t) > Ig.max or 1 |Ud(t)| >
0.05, ETF(TG1) is activated (i.e. becomes logic ‘‘1’’), and
then triggers the connected transition TG1 for dTG1 duration.
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FIGURE 2. Event-triggered hybrid control strategies based on the DHPN model.

As a result, the GCC unit is switched from PG1 (i.e. voltage
control mode) to PG2 (i.e. power control mode).

By means of the above switching control strategy, the con-
trol modes of GCC can be intelligently switched to ensure
operative security of the interconnected energy network.

B. THE COORDINATED SWITCHING CONTROL STRATEGY
According to the following logical switching principles,
the coordinated switching control strategy ‘‘ ’’ is also
designed as a set of ETFs associated with transition.

1) HIERARCHICAL LOAD SHEDDING
The events are given as follows:
(a) When a main grid fault occurs, the energy network will

be switched to an islanded mode.
(b) The battery stops operating because of its lower Ssoc (t)

than 0.4S max (i.e. minimum state of charge).
(c) 0.1 ≤ −1Ud (t) ≤ 0.15, and the duration exceeds

1T1 > 0.
(d) 0.1 ≤ −1Ud (t) ≤ 0.2, and the duration exceeds1T2 >

1T1 > 0.

(e) 0.1 ≤ −1Ud (t) ≤ 0.25, and the duration exceeds
1T3 > 1T2 > 0.

The Switching Principle: If the events (a), (b) and (c) occur
simultaneously, then the second-level agent informs the load
agent to execute first-grade load shedding. If the events (a),
(b) and (d) occur simultaneously, then the load agent imple-
ments second-grade load shedding. If the events (a), (b)
and (e) occur simultaneously, then the load agent implements
third-grade load shedding, and so on.

2) THE HIERARCHICAL SWITCHING CONTROL OF RERs
The events are defined as follows:

(a) When a main grid fault occurs, the energy network will
be switched to an islanded mode.

(b) The battery stops operating because of its higher Ssoc(t)
than 0.9 Smax (i.e. maximum state of charge).

(c) The voltage deviation is larger than and equal to 0.1,
hat is 1Ud (t) ≥ 0.1.
The Switching Principle: If the three events occur simul-

taneously, then the second-level agent informs the PV unit

3266 VOLUME 5, 2017
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agent to switch to the voltage control mode. If the three events
still exist, the second-level agent informs theWT unit agent to
switch to the voltage control mode. Finally, if three events still
exist, then the WT unit agent switches its unit to the power
control mode again in order to decrease the output power.

According to the above switching principle and triggered
principle of DHPNmode, the ETFs regarding the coordinated
switching control strategy are designed as follows

ETF(TB2) = [F(PG2)+ F(PG3)]F(PB2)8(TB2) (5)

ETF(TB1) = F(PG1)F(PB1)8(TB1) (6)

ETF(TL1) = F(PG3)F(PB3)F(PL1)

Sgn[max{(−1Ud (t)− 0.1), 0}]

Sgn[max{(0.15+1Ud (t)), 0}]

Sgn[max{(−1Ud (t −1T1)− 0.1), 0}]

Sgn[max{(0.15+1Ud (t −1T1)), 0}]8(TL1)

(7)

ETF(TL2) = F(PG3)F(PB3)F(PL1)

Sgn[max{(−1Ud (t)− 0.1), 0}]

Sgn[max{(0.2+1Ud (t)), 0}]

Sgn[max{(−1Ud (t −1T2)− 0.1), 0}]

Sgn[max{(0.2+1Ud (t −1T2)), 0}]8(TL2)

(8)

ETF(TLn) = F(PG3)F(PB3)F(PL1)

Sgn[max{(−1Ud (t)− 0.1), 0}]

Sgn[max{(0.15+ (n− 1)0.05+1Ud (t)), 0}]

Sgn[max{(0.15+ (n− 1)0.05

+1Ud (t −1Tn)), 0}]8(TLn)

Sgn[max{(−1Ud (t −1Tn)− 0.1), 0}] (9)

ETF(TLr1) = F(PG1)F(PB2)F(PL2)

Sgn[max{(0.05+1Ud (t)), 0}]

Sgn[max{(0.05+1Ud (t −1t1)), 0}]8(TLr1)

(10)

ETF(TLr2) = F(PG1)F(PB2)F(PL3)

Sgn[max{(0.05+1Ud (t)), 0}]

Sgn[max{(0.05+1Ud (t −1t2)), 0}]8(TLr2)

(11)

ETF(TLrn) = F(PG1)F(PB2)F(PL(n+1))

Sgn[max{(0.05+1Ud (t)), 0}]

Sgn[max{(0.05+1Ud (t −1tn)), 0}]

×[1(t)− 1(t − dTLr1)] (12)

ETF(TP2) = F(PG3)F(PB4)F(PP1)

Sgn[max{(1Ud (t)− 0.1), 0}]8(TP2) (13)

ETF(TP1) = {F(PG3)F(PB1)F(PP2)+ F(PG1)F(PB2)F(PP2)}

×8(TP1) (14)

ETF(TW1) = F(PG3)F(PB4)F(PP2)F(PW1)

Sgn[max{(1Ud (t)− 0.1), 0}]8(TW1) (15)

ETF(TW2) = {F(PG3)F(PB1)F(PW2)+F(PG1)F(PB2)F(PW2)}

×8(TW2) (16)

ETF(TW8) = F(PG3)F(PB4)F(PP2)F(PW2)

Sgn[max{(1Ud (t)− 0.1), 0}]8(TW8) (17)

ETF(TW9) = {F(PG3)F(PB1)F(PW5)+F(PG1)F(PB2)F(PW5)}

×8(TW9) (18)

where 8 (TD) = 1(t) − 1(t − dTD) is the triggered
time, and TD ∈ {TG1, . . . ,TG4, TB1, . . . ,TB6, TP1, . . . ,TP5,
TW1, . . . ,TW9, TL1, . . . ,TLn, TLr1, . . . ,TLrn}.

Taking Eq.(7) as an example, the design process is
explained as follows. (i) the GCC is in PG3 (i.e. the energy
network runs in islanded mode). (ii) the battery unit is
in PB3 (i.e. stopping mode because Ssoc(t) < 0.4Smax).
(iii) 0.1 ≤ −1Ud (t) ≤ 0.15, and the duration exceeds
1T1 > 0.When the above three events (i)-(iii) occur simulta-
neously, ETF(TL1) is activated (i.e. becomes logic ‘‘1’’). Cor-
responding control command is sent to the load agent by the
second-level agent, and then triggers the connected transition
TL1 for dTL1 duration to execute first-grade load shedding.
The explanation for design process of other equations (8)-(18)
is omitted here due to the similarity.

The designed ETFs above can execute hierarchical load
shedding and hierarchical switching control. In accordance
with them, the control modes of resources-grid-load-storage
can be switched in a coordinated way to make full use of
RERs to meet the load demand with high security.

C. THE LOCAL SWITCHING CONTROL STRATEGY
The local switching control strategy ‘‘ ’’ is designed by
a set of event-triggered CVFs with the following principles:
(i) once a constraint is violated, the corresponding CVF is
activated (i.e., becomes logic ‘‘1’’); and (ii) it triggers the
connected transition with the corresponding operation mode
being switched.

In the battery unit, the CVFs associated with TB3-TB6 are
designed as follows:

CVF(TB3) = Sgn[max{(Pb(t)− Pb.max), 0}]

Sgn[max{(0.4Smax − SSOC (t)), 0}]

×8(TB3) (19)

CVF(TB4) = Sgn[max{(SSOC(t)− 0.4Smax), 0}]

Sgn[max{(SSOC(t −1τ1)− 0.4Smax), 0}]

×8(TB4) (20)

CVF(TB5) = Sgn[max{(SSOC(t)− 0.9Smax), 0}]

Sgn[max{(SSOC(t −1τ2)− 0.9Smax), 0}]

×8(TB5) (21)

CVF(TB6) = Sgn[max{(0.9Smax − SSOC (t)), 0}]

Sgn[max{(0.9Smax − SSOC (t −1τ3)), 0}]

×8(TB6) (22)

where Pb(t) is the battery power, and Pb,max is its maximum
limiting value; Ssoc(t) is the state of charge, and 0.4Smax and
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FIGURE 3. Process of implementing MAS based event-triggered hybrid controls.

0.9Smax are defined as its minimum and maximum state of
charge;1τ1 is the duration when Ssoc(t) rises above 0.4Smax,
1τ2 is the duration when Ssoc(t) rises above 0.9Smax, and1τ3
is the duration when Ssoc(t) drops below 0.9Smax.
In the PV unit, the CVFs associated with TP3-TP5 are

designed as follows:

CVF(TP3) = Sgn[max{C− Ging(t)), 0}]8(TP3) (23)

CVF(TP4) = Sgn[max{Ging(t)− C),0}]8(TP4) (24)

CVF(TP5) = Sgn[max{C− Ging(t)), 0}]8(TP5) (25)

where Ging(t) is the incident irradiance with the threshold
value C.

In the WT unit, the CVFs associated with on
TW3- TW7 are designed as follows:

CVF(TW3) = Sgn[max{νci − ν(t)), 0}]8(TW3) (26)

CVF(TW4) = Sgn[max{(ν(t)− νci), 0}]8(TW4) (27)

CVF(TW5) = Sgn[max{(ν(t)− νco), 0}]8(TW5) (28)

CVF(TW6) = Sgn[max{νco − ν(t)), 0}]8(TW6) (29)

CVF(TW7) = Sgn[max{νci − ν(t)), 0}]8(TW7) (30)

where v(t) is the wind speed; vci is the cut-in wind speed; vco
is the cut-off wind speed.

Taking Eq.(20) as an example, the design process is
explained as follows: when the Ssoc(t) of the battery rises
above 0.4Smax for 1τ1 duration, CVF(TB4) is activated (i.e.
becomes logic ‘‘1’’), and then triggers the connected transi-
tion TB4 for dTB4 duration. As a result, the control mode of
the battery is switched from PB3 to PB1. The explanations for
design process of other equations (21)-(30) are omitted here
due to similarity.

According to the designed CVFs, the control mode of each
DER unit can be switched intelligently in accordance with the
constraint conditions to ensure operative security.

D. THE DISTRIBUTED DYNAMICAL CONTROL STRATEGY
For the GCC and all DER units, corresponding to all oper-
ation modes (except for stopping mode), the distributed
dynamical control strategies ‘‘ ’’ are also presented. Sev-
eral advanced design methods regarding the dynamical con-
trol strategies have been proposed in the previous works
of authors [8], [15], [16]. Due to the page limitation,
the detailed design process will not be given in this
paper.

Corresponding to Fig. 1, the process of implementing an
MAS based event-triggered hybrid control scheme is briefly
described in Fig. 3.

V. SIMULATION RESULTS
In this section, we provide simulation results for the following
cases:
Case 1: the energy internet in a grid-connected mode suf-

fers from frequent load variations;
Case 2: the energy internet in an islanded mode suffers

from a fault. At some point, the battery is not able to control
the DC bus voltage because SSOC ≥ 0.9Smax. Thus, the RER
units have to execute hierarchical switching control to main-
tain the voltage; and
Case 3: the energy internet is also in an islanded mode

because of a fault. At some point, the battery is not able
to control the DC bus voltage because SSOC ≤ 0.4Smax.
Thus, the load remand side has to implement hierarchical load
shedding.

3268 VOLUME 5, 2017



C. Dou et al.: Multi-Agent System Based Event-Triggered Hybrid Control Scheme for Energy Internet

To estimate the control performance by using comparative
results, the following control schemes are used: (i) the pro-
posed control scheme in this paper; (ii) the control scheme
in [12]; and (iii) the fuzzy-logic-rule-based control scheme
similar to [11].

A. CASE 1
By using an MAS based hybrid control scheme in this paper,
the active power of the resource-grid-load-storage units is
given in Fig. 4 (a). The main operating events are listed
in Table 1. By using the three different control schemes,
the DC bus voltage performance of the energy internet is
shown in Fig. 4 (b)-(d), respectively.

FIGURE 4. Control performance in case 1 (a) the active powers of
resource-grid-load-storage; (b) the DC bus voltage in control (1); (c) the
DC bus voltage in control (2); (d) the DC bus voltage in control (3).

From Fig. 4 (a) and Table 1, it can be deduced that the
load variations do not result in the GCC current reaching
its limitation value. Thus, the GCC unit always runs in the
voltage control (VC) mode, and the battery unit always in the
power control (PC) mode. In this case, the first-level agent
only dynamically controls the GCC to guarantee the DC bus
voltage performance of the energy internet, without imple-
menting the switching control of GCC. The second-level
agent also does not implement the coordinated switching
control. The storage unit agent frequently regulates charging
and discharging states of the storage device to ensure the
balance between the power supply and the load demand. Only
PV and WT unit agents implement local switching control in
accordance with the incident irradiance and the wind speed.

From Fig. 4 (b)-(d), it can be seen that, at several instants
of load variations, though the different control schemes are

able to control the DC bus voltage into the secure range of
[0.95, 1.05], the voltage under the proposed control scheme
in this paper has the smallest fluctuations than the other two
schemes. The comparative results imply that the proposed
control scheme in this paper can provide the better voltage
performance in the case of suffering from the load variations.

B. CASE 2
At the instant of t = 3h, a three-phase short circuit fault
occurs in the transmission line between the energy network
and the main grid. By means of the proposed control scheme
in this paper, the active power of the resource-grid- load-
storage is given in Fig. 5(a). The main operating events
are listed in Table II. By using the three different control
schemes, the DC bus voltage of the energy internet is given in
Fig. 5 (b)-(d), respectively.

FIGURE 5. Control performance in case 2 (a) the active powers of
resource-grid-load-storage; (b) the DC bus voltage in control (1); (c) the
DC bus voltage in control (2); (d) the DC bus voltage in control (3).

In Table 2, there are two important instants: (i) at t = 3h,
the first-level agent switches the GCC unit from the VCmode
to the stopping mode because of the fault, resulting in the
energy internet running in an islanded mode. Almost at the
same time, the storage unit is switched from the PC mode to
the VC mode by the control command from the second-level
agent; (ii) at t = 13.10h, the storage unit is switched to the
stopping mode by its unit agent because SSOC ≥ 0.9Smax.
To control the bus voltage, the PV unit is switched from
the maximum power point tracking (MPPT) control mode
to the VC mode by the control command from the second-
level agent. However, the DC bus voltage is still very high.
Later, the WT is also switched to the VC mode, and again
to the PC mode 1 by the second-level agent. At the above
two important instants, the multi-agent based hybrid control
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TABLE 1. Main Operating Events in case 1.

can implement hierarchical switching among resource-grid-
storages in a coordinated way.

From Fig. 5(b)-(d), it can be seen that even at two important
instants, the proposed control scheme in this paper rapidly
control the DC bus voltage into the secure range of [0.95,
1.05]. Though the second control scheme is also able to
guarantee the voltage in the secure range, the voltage presents
larger fluctuations. However, the third control scheme is ulti-
mately not able to control the DC bus voltage into the secure
range. The comparative results show that the proposed control
scheme in this paper presents the better voltage performance
even when the energy internet suffers from the large distur-
bance.

C. CASE 3
Similarly, at t = 3h, a three-phase short circuit fault is
detected, resulting in the energy internet operating in an
islanded mode. By using the proposed control scheme in this
paper the active power of resource-grid-load-storage is shown
in Fig. 6(a). The main operating events in Case 3 are very
different from the ones in Case 2 because of different loads.
Particularly, at t = 20.20h, the storage unit is switched to the
stopping mode by its unit agent because of SSOC ≤ 0.4Smax.
At the moment, the PV has stopped operating, and the WT
outputs power very small. To ensure the security of the bus
voltage, the second-level agent sends control command to
the load agent to implement the first-level load shedding.
However, after some time, the bus voltage still cannot rise
into the secure range, and thus, the load agent implements the
second-level load shedding. The DC bus voltage of the energy
internet is given in Fig. 6(b)-(d), respectively, corresponding
to three different control schemes.

TABLE 2. Main Operating Events in case 2.

TABLE 3. Description of discrete places.

From Fig. 6 (b)-(d), it can be observed that even at t =
20.20h, the proposed control scheme in this paper rapidly
restores the DC bus voltage. The second control scheme
results in larger voltage fluctuations. The third control scheme
is ultimately not able to control the DC bus voltage into
the secure range of [0.95, 1.05]. The comparative results
show that the proposed control scheme in this paper effec-
tively implements the hierarchical load shedding so that the
energy internet can meet load with high voltage security in an
islanded mode.
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TABLE 4. Description of discrete transitions.

TABLE 5. Description of differential places.

TABLE 6. Description of differential transitions.

VI. CONCLUSION
This paper has developed an MAS based event-triggered
hybrid control scheme, bywhich the energy internet canmake
full use of RERs tomeet load demandwith high security. Four
types of event-triggered hybrid control strategies are firstly
designed as ETFs or CVFs, which are fully dependent on the
logical relationship between the resource-grid-load-storage.
Based on these control strategies, MAS can then be used to
implement hierarchical hybrid control in a coordinated way.

FIGURE 6. Event-triggered switching control performance in case 3 (a)
the active powers of resource-grid-load-storage; (b) the DC bus voltage in
control scheme (i); (c) the DC bus voltage in control scheme (ii); (d) the
DC bus voltage in control scheme (iii).

In comparison with the simulation results of some existing
control schemes, it is shown that the proposed hybrid control
scheme can provide better voltage performance.
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