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Abstract. In this paper, we consider the application of object-oriented
Bayesian networks to failure diagnostics in manufacturing systems and
continuous model improvement based on operational data. The analysis
is based on an object-oriented Bayesian network developed for failure
diagnostics of a one-dimensional pick-and-place industrial robot devel-
oped by IEF-Werner GmbH. We consider four learning algorithms (batch
Expectation-Maximization (EM), incremental EM, Online EM and frac-
tional updating) for parameter updating in the object-oriented Bayesian
network using a real operational dataset. Also, we evaluate the perfor-
mance of the considered algorithms on a dataset generated from the
model to determine which algorithm is best suited for recovering the un-
derlying generating distribution. The object-oriented Bayesian network
has been integrated into both the control software of the robot as well
as into a software architecture that supports diagnostic and prognostic
capabilities of devices in manufacturing systems. We evaluate the time
performance of the architecture to determine the feasibility of on-line
learning from operational data using each of the four algorithms.

Keywords: Bayesian networks, parameter update, practical application

1 Introduction

The need for diagnostic and health monitoring capabilities in manufacturing
systems is becoming increasingly important as manufacturing organisations con-
tinuously aim to reduce system downtime and unpredicted disturbances to pro-
duction. We have found that Bayesian networks (BNs) [17, 3, 6] and their ex-
tension Object-Oriented Bayesian Networks (OOBNs) [8, 13] are well-suited to
capture and represent uncertainty in root-cause analysis using both component-
level models and wider system-level models integrating component-level models.
The crucial need for diagnostic and health monitoring capabilities is accompa-
nied with the availability of increasing amounts of sensory data and decreasing
costs of computation on the shop-floor level have opened new opportunities for



component suppliers and system integrators to provide more competitive func-
tionalities that go beyond traditional control and process monitoring capabilities.

In this paper, we consider the challenge of parameter learning for contin-
uous model improvement using operational data. In particular, we investigate
the use of four different approaches to improve the diagnostic performance of
an OOBN using operational data. The four algorithms are the batch EM algo-
rithm, incremental EM, Online EM and fractional updating. The investigation is
performed using an OOBN for root-cause analysis of a pick-and-place industrial
robot developed by IEF-Werner GmbH6 (the Linear Axis shown in the center of
Figure 3). An initial OOBN for root-cause analysis has been developed based on
expert knowledge [11]. The OOBN has been integrated into the control software
of the component and is being deployed in a production line where efficient and
effective root-cause analysis is required in case of failure. In order to improve the
diagnostic performance of the OOBN different methods for continuous model
update based on operational data are being investigated. This paper reports on
the results of these investigations.

Inspired by the work of [18], a number of approaches are considered. Notice
that our work differs from the work of [18] in three important ways: (1) we
are considering parameter learning in OOBNs, (2) the objective is to improve
diagnostic performance (not classification), and (3) while [18] compares three
algorithms, we investigate four algorithms. We consider the EM algorithm [9]
for parameter learning from a batch of data (referred to as batch EM). Using
batch EM, the idea is to collect data in batches and learn parameters off-line,
for instance, during maintenance hours as suggested by [18]. We use batch EM
as a reference. Adaptive causal probabilistic networks and fractional updating
are described in [16] who cites [21] while adaptive probabilistic networks are
described in [19] and [1]. A similar gradient descent approach is described in [5].
[10] describes how the approach of [16] referred to as sequential learning has been
implemented in the HUGIN tool. The online EM algorithm [2] is a stochastic
gradient method that is faster than other gradient methods such as [19] which
involves a difficult task of determining the step size between iterations.

2 Preliminaries and Notation

A BN N = (X , G,P) consists of a directed, acyclic graph G specifying de-
pendence and independence relations over a set of variables X and a set of
conditional probability distributions (CPDs) P encoding the strengths of the
dependence relations effectively combining elements of probability and graph
theory. A BN is a representation of a joint probability distribution P (X ) =
P (X1, . . . , Xn) =

∏
Xi∈X P (Xi|πXi

) where πX are the parents of X in G. The
CPD P (X|πX) consists of one probability distribution over the states of X for
each configuration of πX . We only consider discrete variables.

An OOBN is a BN augmented with network classes, class instances and an
associated notion of interface and private variables [8, 13, 6]. A class instance is

6 http://www.ief-werner.de



the instantiation of a network class representing a sub-network within another
network class. The variables X (C) of network class C are divided into disjoint
subsets of input I, output O and hidden H variables such that X (C) = I∪O∪H
where the interface variables I ∪ O are used to link nested class instances, see
Figure 1. Inference in an OOBN is performed by creating a run-time instance of
the model and doing inference in this model. A run-time instance of an OOBN
is created by expanding it into a corresponding flat BN.

The Hellinger distance DH(P,Q) used to compare two probability distribu-
tions P and Q is defined as DH(P,Q) =

√∑
i(
√
pi −

√
qi)2 [18] who cites [7]. It

is similar to the Kullback-Leibler divergence, but defined for zero probabilities.
To compare the results of parameter learning using two different algorithms on
the same OOBN, the distance is computed as a sum of DH(Pi, Qi) for Xi ∈ X .
This is similar to the approach taken by [22] and [18]. For each parent configu-
ration π of each X in each network class C, DH(P1(X|π), P2(X|π)) is computed
where P1 and P2 are CPDs produced by the two learning algorithms. The val-
ues DH(P1(X|π), P2(X|π)) are summed across parent configurations, variables
and classes (ignoring bounded input nodes). In the weighted Hellinger distance
Dw
H(P1(X|π), P2(X|π)), DH(P1(X|π), P2(X|π)) is weighted by P (π) in the ref-

erence model.

Fig. 1. The top level class of the Linear Axis Model.

3 The Linear Axis OOBN Model

The Linear Axis as a self-sustainable handling system that is designed to be a
high performance machine with a demand to work 24h / day seven days a week.
Therefore, there is little or no time for maintenance and repair. This means that
there is a need for system condition monitoring to prevent failures and for system
failure diagnosis. The Linear Axis diagnosis model considered here is used for
root-cause analysis under the assumption that a problem is observed and the five
most likely root causes should be identified. Figure 1 shows the structure of the
top-level class of the Linear Axis OOBN. In the figure, blue nodes denote possible
root causes, orange nodes denote problem defining nodes, and green nodes denote



possible observations such as sensor readings and operator feedback. The model
has 35 variables, 27 failure states, 555 CPD entries, maximum CPD size of 128
and five class instances (two instances of the LimitSwitch class). The Linear Axis
OOBN has been quantified using subject matter expert knowledge. We refer to
this model as the knowledge driven model and its development is described in
more detail in [11].

The diagnostic performance of the knowledge driven model has been assessed
following the approach of [11]. The basic idea, is to iterate through the root
causes where each root causes is instantiated to a failure state and all other root
causes are instantiated to non-failure. For each such configuration, values for the
observations are generated. The values for the observations are propagated in
the model and the probabilities of the root causes recorded. This demonstrates
how well the observations can distinguish the root causes.

Fig. 2. The SelComp internal architecture concept.

4 The SelSus Architecture

The aim of the SelSus System Architecture is to provide an environment for
highly effective, self-healing production resources and systems to maximize their
performance over longer life times through highly targeted and timely repair,
renovation and upgrading [20]. The architecture defines three levels of abstrac-
tion for its constituents: 1) Component Level, which relates directly to machines
or its sub-components and is composed of smart sensory capabilities, methods
for self-diagnostics and predictive maintenance. 2) Station Level, at this level the
developments are constituted by previous capabilities plus human machine in-
terfaces and tools to support the design and maintenance of the factory station.
3) Factory Level, previous levels capabilities are combined to create a semantic
driven maintenance scheduling for large production factory plants.

The Linear Axis typically integrates a production cell, performing operations
in collaboration with other machines (e.g., robotic arms and welding tools). To



make operational and sensory data available to the SelSus System, the SelComp
(SelSus Component) concept was designed. The SelComp (Figure 2), is a self-
aware entity that makes available to the SelSus system its internal state condi-
tions, providing this way operational and structural knowledge. A SelComp also
provides built-in models for state estimation based on sensor data which enables
pro-active and predictive maintenance. These components have the ability to
collect data from sensors that are mounted physically in the same device or in
a near location and fuse this data to extend its models capabilities. The Lin-
ear Axis OOBN has been encapsulated in the Machine SelComp for the Linear
Axis [20, 12], see Figure 3, as it represents a field device, machine or its sub-
components. The goal is to provide diagnostic capabilities at component-level
supporting system-level diagnostics. A Sensor SelComp [14, 15], on the other
hand, is designed to provide essentially smart sensor data to the SelSus sys-
tem and more often to Machine SelComps. The Sensor SelComp component has
plug&play capabilities in terms of physical sensors, data models and algorithms.
The Linear Axis OOBN can also be abstracted as a service to provide outputs
to and subscribe to inputs from the SelSus System and other SelComps.

Fig. 3. The SelSus System Architecture.

5 Parameter Learning Algorithms

Let N = (X , G,P) be a BN with parameters Θ = (θijk) such that θijk = P (Xi =
k | πXi = j) for each i, j, k. The task of parameter learning is to estimate the
values of the parameters Θ given a dataset of cases D = {c1, . . . , cN}. The cases
of D are assumed independent and identically distributed (i.i.d.) with values
missing at random or completely at random [4]. The generating probability dis-
tribution is assumed to be stationary. We first present the parameter learning
algorithms for standard BNs followed by a description of how they are applied
to OOBNs.



The EM algorithm [9, 4] is well-suited for calculating maximum likelihood
and maximum a posteriori (MAP) estimates in the case of missing data. The
algorithm iterates the E-Step and M-Step until convergence. Given an initial
value of the parameters Θ, the E-step computes the current expected sufficient
statistics while the subsequent M-step maximizes the log-likelihood function l(Θ |
D) =

∑N
i=1 logP (ci | Θ). The E-step of the EM algorithm computes expected

sufficient statistics for each family fa(Xi) and parent configuration πij of each Xi

under Θ as n(Y ) = EΘ{n(Y ) |D}, where n(·) is counts for either πij or Xi =
k, πij . The M-step computes new estimates of θ∗ijk from the expected counts
under θijk and a virtual count θijkαij specified beforehand (MAP estimate):

θ∗ijk =
n(Xi = k, πij) + θijkαij

n(πij) + αij
, (1)

where αij is the equivalent sample size (ESS) specified for πij .
The principle idea of the incremental EM algorithm, e.g. [18], is to divide

the data D into disjoint subsets D1, . . . ,Dm and iteratively apply EM on Di.
The estimates θijk and αij produced by one iteration of EM are used as virtual
counts in the next iteration of EM. If D is complete, then incremental EM and
batch EM produce the same result. Incremental EM is less space demanding
than EM as it only needs to hold Di in memory at step i.

Online EM [2], which can be considered a gradient ascent algorithm, performs
a parameter update after propagating each case c. It is a stochastic approxima-
tion algorithm that computes the updated parameter θ∗ijk as:

θ∗ijk = (1− γ)mijk + γP (xijk|c), (2)

where mijk is the normalized sufficient statistics computed as mijk = αij ∗
p(xik|πij)/

∑
j αij and p(xijk|c) is computed by propagating case c. Notice that

even for πij with P (πij) = 0 there is a fading of (1 − γ). The learning rate
γ = (1 + n)−ρ controls the weighting of new cases where n is the iteration
number. [2] suggests to use ρ = 0.6 while [18] recommends ρ = 0.501.

The fractional updating algorithm, see e.g., [16] who cites [21], also performs
a parameter update after propagating each case c. In fractional updating the
parameter θijk is adjusted after propagating each case c as follows:

θ∗ijk =
αijk + P (xijk|c)
αij + P (πij |c)

. (3)

Fading of past cases is controlled by a fading factor λ specified for each πij
and a gradual fading is obtained by taking P (πij) into consideration. To improve
performance, fractional updating is only performed for πij when P (πij) > 0 (an
update would leave θ∗ijk and αij unchanged when P (πij) = 0)), see [10].

Both fractional updating and Online EM perform no update when αij = 0.
Also, fractional updating and Online EM are the least space demanding algo-
rithms as they only need to hold the latest case in memory.

In the general case of OOBNs, we compute the average expected counts for
the run-time instances of the node and increase the experience counts by the
number of run-time instances. This applies to all four algorithms.



6 Empirical Evaluation

The empirical evaluation is organised into three different tests (1) we consider
updating the parameters of the knowledge driven model where all distributions
are made uniform using a dataset of 250, 000 cases with 5% missing values gen-
erated completely at random from the knowledge driven model, (2) we consider
updating the parameters of the knowledge driven model using an real operational
dataset, and (3) we consider the time performance of updating the parameters
in the knowledge driven model in a real setting. The evaluations are performed
using different values of the parameters of the learning algorithms.

Figure 4 shows the results (1) where a random sample generated from the
knowledge driven model is used to learn the parameters in the model with uni-
form distributions. Figure 4 (left) shows the weighted Hellinger distance while
(right) shows the time usage of each algorithm.
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Fig. 4. Hellinger Distance (left) and accumulated time is ms. (right).

In the test, the values ρ ∈ {0.501, 0.6, 0.99}, n0 = 1,
∑
j αij = 1 for all i

and λ = 1 are used. The value for N = 0 is the distance is between the uniform
distribution and the knowledge driven model. The distances are quickly reduced
in all cases and after a certain point no or little improvement is observed. Dw

H

reduces the impact of large differences in distributions for πij with αij � 1.
In (2) the operational dataset contains two sequences of 13, 429 cases in total

with six observed sensor readings represented in the model, i.e., there is 83%
missing values due to the hidden variables alone. It contains both failure and
non-failure cases. Table 1 shows the diagnostic performance of the five models
considered where µrank refers to the average rank of the true root cause, i.e., the
value 1 means perfect performance and 27 worst possible performance. In the
test, the values ρ = 0.99,

∑
j αij = 13, 429 for all i and n0 = 13, 429 are used.

For all algorithms, there is an increase in the number of true root causes
identified as the cause with highest probability. For Top-5 there is a significant
improvement using fractional updating. The value µrank is not improved for



Table 1. The diagnostic performance of the five models considered.

Algorithm Top-1 Top-5 µrank

Knowledge driven model 8 17 4.6
Batch EM 10 17 5.1
Online EM 9 17 4.5
Fractional update 10 21 3.4

batch EM. This is due to three true root causes obtaining a significantly worse
rank after learning (e.g., rank 2 before compared to rank 16 after learning).

Next (3), we report on a performance analysis of two levels of integration of
the OOBN model into the SelSus architecture using Online EM and fractional
updating for parameter learning. The first and most tight level of integration
has been achieved by integrating the model directly into the component control
software where data is read from file. The second configuration is to deploy a
BBN web service holding the model, a data server holding the data and the
control software inside the SelSus Cloud. The control software retrieves data
from the cloud and requests propagation of and learning from each case in the
data retrieved. We consider retrieving different amounts of data in each request.

Table 2. Average time cost of handling one case across the integration levels.

Algorithm Configuration cases/request Total time (ms) Average time (ms)

Online EM Direct integration 1 1,730 0.067
SelSus Cloud 1000 11,367 0.44
SelSus Cloud 100 44,867 1.74
SelSus Cloud 10 496,199 19.29

Fractional Direct integration 1,533 0.067
Updating SelSus Cloud 1000 10,553 0.41

SelSus Cloud 100 42,111 1.64
SelSus Cloud 10 478,612 18.60

Table 2 shows the total and average time cost for each configuration. The
analysis is performed using an operational data set of 25, 726 cases collected
randomly. Here the focus is only on runtime and not the learning. As expected,
there is a significant difference between direct integration and using a cloud
service wrt. runtime. This means that the learning must be designed taking the
data frequency into consideration.

7 Discussion

We have described the use of batch EM, incremental EM, Online EM and frac-
tional updating on OOBNs for continuous model improvement using operational
data. The objective was to improve the diagnostic performance of an OOBN for
root-cause analysis by adjusting the model parameters using data.



The experimental results show that parameter learning for continuous model
improvement using operation data is both feasible and will lead to better diag-
nostic performance. The Online EM algorithm is sensitive to the value of the ρ
parameter and our results indicate that a value close to 1 is preferred. This is
contrary to the [18] who suggests ρ = 0.501 and [2] who suggests ρ ∈ [0.6; 0.9]
and uses ρ = 0.6. The ρ-value controls the learning rate γ and higher γ-values
(and lower ρ-values) means more emphasis on new cases (i.e., faster learning).

The results of the first experiment demonstrate that all four approaches
quickly produce a model that has a low Dw

H relative to the knowledge driven
models. There is no method that produce a significantly better result that the
other algorithms. This is using a data set with 5% missing values. The running
time of incremental EM with large batches and batch EM makes them infeasible
in practice for this application.

For the Linear Axis OOBN with ||X || = 35 only six are observed in the
operational data. This data set has not been augmented with information on
presence or absence of root causes nor any operator feedback. The data only
includes sensor readings. Despite this fact, the algorithms all improve the diag-
nostic performance of the model compared to the initial knowledge driven model.
It is expected that enriching the operational data with information on absence
or presence of root causes will improve the learning. This will reduce the bias
of the data as much more non-failure than failure data must be expected. Frac-
tional update enables the specification of different αij for different CPDs and
parent configurations in this way controlling the impact of the expert assessed
parameters whereas Online EM uses normalised sufficient statistics and uses ρ
to control the learning rate.

When learning the parameters from operational data using a knowledge
driven model as the starting point, a decision on the relative balance of the
data and the expert elicited values must be made. In the experiments, we have
defined an ESS equal to the size of the operational data. This decision is impor-
tant when the data stream is, in principle, infinite in a real operational setting.
In any case, it is important that the parameters are stable at least until sufficient
data has been processed, which is dependent on the model complexity.
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