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Single-Channel Online Enhancement of Speech
Corrupted by Reverberation and Noise

Clement S. J. Doire, Student Member, IEEE, Mike Brookes, Member, IEEE, Patrick A. Naylor, Senior Member, IEEE,
Christopher M. Hicks, Dave Betts, Mohammad A. Dmour, Member, IEEE,

and Søren Holdt Jensen, Senior Member, IEEE

Abstract—This paper proposes an online single-channel speech
enhancement method designed to improve the quality of speech
degraded by reverberation and noise. Based on an autoregressive
model for the reverberation power and on a hidden Markov model
for clean speech production, a Bayesian filtering formulation of
the problem is derived and online joint estimation of the acous-
tic parameters and mean speech, reverberation, and noise powers
is obtained in mel-frequency bands. From these estimates, a real-
valued spectral gain is derived and spectral enhancement is applied
in the short-time Fourier transform (STFT) domain. The method
yields state-of-the-art performance and greatly reduces the effects
of reverberation and noise while improving speech quality and pre-
serving speech intelligibility in challenging acoustic environments.

Index Terms—Dereverberation, speech, Bayesian, single-
channel.

I. INTRODUCTION

S PEECH signals captured using a distant microphone within
a confined acoustic space are often corrupted by reverbera-

tion. The detrimental impact of reverberation on the quality and
intelligibility of the speech and on the performance of speech
recognition systems is made worse when it is combined with
acoustic noise [1]–[4]. Combating the damaging effects of rever-
beration has been a key research topic in recent years driven by
an increasing demand for effective methods of speech commu-
nication in challenging environments [5]. While some progress
has been made in both single- and multi-channel processing
[4], [6]–[9], the task of providing a blind single-channel dere-
verberation method robust to noise and suitable for real-time
processing remains a challenge.

Most single-channel speech dereverberation techniques can
be classified into inverse filtering [10], [11], nonlinear mapping
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[12], spectral enhancement [6], [13], [14] and probabilistic
model-based methods [15]–[17]. Inverse filtering methods
typically try to reconstruct the original signal by designing an
inverse filter for the Room Impulse Response (RIR). Based
on the observation that the Linear Prediction (LP) residual of
clean speech has a higher kurtosis (fourth-order moment) than
that of reverberant speech, the inverse filter of the impulse
response is estimated in [10] by maximizing the kurtosis of
the LP residual of the inverse-filtered speech. In [11], a similar
principle is applied, in which the inverse filter is chosen to
maximize the normalized skewness (third-order moment) of the
LP residual. These techniques, however, compensate only for
the coloration effect caused by the early reflections and must be
used in conjunction with other late reverberation suppression
methods in order to achieve good dereverberation performance
[10], [11]. If the RIR is known, or can be estimated, inverse
filtering can also be applied using methods in the time or
frequency domain [18] or using homomorphic approaches
[19], [20].

Nonlinear mapping methods do not assume any explicit
model for the reverberation, and instead use parallel training
data in order to learn a nonlinear mapping function from the
reverberant speech spectrogram to its clean speech equivalent.
This can be done using a fully connected Deep Neural Network
(DNN) as in [12] where the mean squared error between the
output of the DNN and the clean speech log-power spectrum
is minimized. Even though results can be improved by also
considering first and second-order time derivatives of the input
features, speech enhanced by this method can lead to a decrease
in overall speech quality [21].

In spectral enhancement methods, a time-frequency gain is
applied to the noisy reverberant spectral coefficients in order to
estimate those of the clean speech. This gain is based on the
estimated power spectral densities (PSDs) of the noise and late
reverberation [6], [13]. The estimation of the late reverberant
PSD is often based on a simple statistical model of the room im-
pulse response such as [6], [22]. Spectral enhancement methods
are able to reduce both the background noise and reverberation
while being computationally efficient, but usually suffer from
artifacts introduced by the nonlinear filtering operation, though
efforts have been made to alleviate this problem, e.g. by using
temporal cepstrum smoothing [14].

In the probabilistic model-based approaches to blind dere-
verberation, the parameters of the acoustic channel and clean
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speech models are estimated from the observed data and used to
reconstruct the original source signal. The reverberation model
is typically an FIR or IIR filter in the time domain [15], the com-
plex short-time Fourier transform (STFT) domain [23], [24] or
the STFT power domain [16]. In [15], the acoustic channel is
modeled as a time-varying linear combination of entries from
a codebook of all-pole filters, and the speech signal is modeled
using a block-based time-varying autoregressive (AR) model.
Bayesian inference is used to estimate the joint probability den-
sity function (pdf) of the channel and source parameters. The
method has been applied successfully on simulated data within a
limited frequency range, but difficulties arise when the data does
not follow the assumed channel and source models. Bayesian
variational inference is used in [16] where an extension of the
Multi-Channel Linear Prediction (MCLP) model [25] to power
spectrograms in the single-channel case is used. The order of
this non-negative auto-regressive reverberation model is deter-
mined in a data-driven manner using a Dirichlet process [26].
However, the method assumes a noise-free environment, which
is unrealistic in practice. In [17], a Non-negative Convolutive
Transfer Function (N-CTF) model [8] is used for the RIR and
the speech spectrogram is modeled using Non-negative Matrix
Factorization (NMF) so as to capture the spectral structure of
the speech signal. The two models are then combined to form
an optimization problem in which the clean speech spectrogram
and RIR parameters are simultaneously estimated through iter-
ative update rules. In [24], the reverberation model is an FIR
filter in the complex STFT domain. Processing each subband
independently, a recursive expectation-maximization (EM) pro-
cedure is used in which the E step estimates the clean-speech
coefficients with a Kalman filter and the M step updates a pa-
rameter vector comprising the reverberation filter coefficients
and the variances of the speech and noise.

In this paper, we present an online method for enhancing
reverberant and noisy speech recordings using a combination
of spectral enhancement and probabilistic estimation. Enhance-
ment is performed by applying a time-frequency gain to the
degraded speech complex STFT coefficients as in spectral en-
hancement. The estimation of the quantities needed to com-
pute this gain is formulated as a Bayesian filtering problem
in which they are jointly estimated along with the parameters
of the acoustic channel. The latter is modeled using a non-
negative first-order autoregressive moving-average (ARMA)
process parametrized by the reverberation time (T60) and the
Direct-to-Reverberant energy Ratio (DRR). The clean speech is
modeled by a Hidden Markov Model (HMM) in which each state
captures the spectral characteristics of a possible prior distribu-
tion of the multivariate speech log-power. At each time frame,
the possible clean speech prior distributions are tested through a
swarm of nonlinear Kalman filter-like updates. The distribution
leading to the highest likelihood for the observed power is kept,
leading to a-posteriori estimates of the speech, reverberation and
noise mean powers. The performance of the proposed method
is evaluated on simulated data through six different objective
measures and on live recordings through the Word Error Rate
(WER) of a speech recognizer. A listening test was conducted to
assess the subjective reverberation reduction and overall quality

Fig. 1. Enhancement system overview.

improvement. The idea of using an HMM whose states repre-
sent broad speech sound classes with distinct acoustic spectra
has been applied previously to speech enhancement [27]–[30].
In these papers, a state-dependent spectral shape was multiplied
by a time-varying speech gain to obtain prior distributions for
the speech spectral coefficients; these priors were then used
to determine an MMSE or MAP estimate of the clean speech
spectrum in an appropriate domain. In the current work, this ap-
proach is extended to include an explicit model of reverberation
and to track the time-variation of both the reverberation model
parameters and the speech gain.

The paper is organized as follows. The non-negative ARMA
reverberation model and HMM clean speech model are de-
scribed in Section II and an overview of the overall en-
hancement system is given in Section III. In Section IV,
the Bayesian filtering formulation of the problem is detailed
as well as the computation of the posterior densities and
the online estimation of the reverberation parameters. Re-
sults are presented in Section V and conclusions drawn in
Section VI.

II. SIGNAL MODEL AND NOTATION

In the system block diagram shown in Fig. 1, the enhancement
of the noisy and reverberant speech is performed in the STFT
domain, while the estimation of the system parameters and sig-
nal powers is performed in Mel-spaced subbands. A filterbank
comprising triangular filters [31], [32] is used to transform the
power spectrum of each frame from K̃ STFT bins to a reduced
number, K, of Mel-spaced subbands. The use of these broad
subbands has two benefits: it reduces the dimension of the state
vector, xl , in (14) below and it reduces the number of states
required in the speech model described in Section II-B. This
is because the filterbank removes narrowband features such as
pitch harmonics whose variability would otherwise need to be
included in the model.

A. Reverberation Model

Let y(n) denote the observed reverberant noisy speech sig-
nal at discrete-time n. The additive background noise signal is
denoted by ν(n) and the reverberant speech signal is obtained
by convolving the clean speech source s(n) and the J-tap RIR
between the source and microphone, ρ(n), as

y(n) =
J−1∑

r=0

ρ(r)s(n − r) + ν(n). (1)



574 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 25, NO. 3, MARCH 2017

The complex STFT coefficients of the observed signal are then
computed according to

Y ◦(l, k̃) =
K̃−1∑

n=0

y(n + lT )w(n)e−j 2 π
K̃

nk̃ (2)

where l is the time-frame index, k̃ is the STFT frequency bin,
w(n) a time-domain window, and T the frame increment. A
power-domain filterbank is applied to compute the power in K
Mel-spaced subbands as

Y̆ (l, k) =
K̃−1∑

k̃=0

bk,k̃ |Y ◦(l, k̃)|2 . (3)

where the bk,k̃ implement the triangular filters from [31], [32].

Analogous to (3), N̆(l, k) denotes the subband noise power. For
the speech signal, however, we divide by the band-independent
active speech level [33], Ğ(l), to obtain the level-normalized
subband speech signal

S̆(l, k) =
1

Ğ(l)

K̃−1∑

k̃=0

bk,k̃ |S◦(l, k̃)|2 . (4)

The decomposition of the speech power into the product of a
time-varying active level, Ğ(l), and a level-normalized spectral
shape, S̆(l, k), is similar to that in [28], [30] and allows the
prior distribution of S̆(l, k) to be trained offline using level-
normalized training data.

Based on an approximation of (1) in the STFT domain in
which cross-band filters are neglected, the N-CTF model was
proposed in [8] to approximate the power spectrogram of a re-
verberant signal. In this paper, we assume this model to apply in
each Mel-frequency band, k, and also assume that the reverber-
ant speech and noise are additive in the power domain, resulting
in

Y̆ (l, k) =
Lh −1∑

τ =0

H̆(τ, k)Ğ(l − τ) S̆(l − τ, k) + N̆(l, k) (5)

where Lh is the RIR length in the STFT domain. The errors
introduced by assuming that the signals add in the power domain
are discussed further in Appendix B.

Polack proposed a time-domain statistical model [22] of the
RIR as scaled exponentially-decaying white Gaussian noise
parametrized by the broadband reverberation time T60 . Not-
ing that the latter is normally frequency-dependent [34], this
model was extended in [6] to each subband and split into two
statistical sub-models: one containing the direct path, the other
comprising all later reflections. In this paper, we assume the
exponentially-decaying model is valid in each Mel-frequency
band, model the direct path deterministically and only consider
the energy envelope of the impulse response so that

H̆(l, k) = δ(l) + dk αl−1
k u(l − 1) (6)

where δ(l) is the Kronecker delta function and u(l) is the unit
step function. The decay constant, αk , in Mel-frequency band

k, is related to T60,k through

α
T 6 0 , k

T

k = 10−6 (7)

where T is the STFT frame hop. The drop in energy after the
direct path, dk , is related to the frequency-dependent DRR by
the equation

dk =
1 − αk

DRRk
. (8)

Substituting the drop and decay reverberation model of (6) into
the observed power of (5), we obtain

Y̆ (l, k) = Ğ(l) S̆(l, k) + R̆(l, k) + N̆(l, k). (9)

where the reverberation power in time-frame l and frequency
band k is

R̆(l, k) =
Lh∑

τ =1

dk Ğ(l − τ)S̆(l − τ, k)ατ−1
k . (10)

The model of (10) can be written recursively as

R̆(l, k) = dk Ğ(l − 1)S̆(l − 1, k) + αk R̆(l − 1, k). (11)

Equations (9) and (11) correspond to a first-order ARMA model
for the acoustic channel in the spectral power domain having
the system function z−α+d

z−α . This parsimonious model contrasts
with the higher order moving average or autoregressive models
used by [23] and [24] respectively in the complex STFT domain.
By writing the frequency-dependent quantities in (9) and (11) as
column vectors of length K, we can write the system’s dynamic
equations as

R̆l = αl−1 � R̆l−1 + dl−1 � Ğl−1S̆l−1 (12)

Y̆ l = ĞlS̆l + R̆l + N̆ l (13)

where � is the Hadamard product. In the following, uppercase
letters represent random variables, the corresponding lower case
letters their realizations, and estimates are denoted by .̂ Means
and covariances are denoted by μ, Σ with the random variable as
a suffix. Unadorned signal variables are in the log-power domain
and the corresponding power domain quantities indicated by
a ˘; thus yl = log(y̆l). A sequence of consecutive frames is
represented using a colon; thus y1:l denotes {y1 , . . . ,yl}. We
assume below that the log-power spectra,Sl ,Rl andN l , follow
multivariate Gaussian distributions [35].

B. Clean Speech Model

The log-power, Sl , of the level-normalized clean speech
is modeled by an HMM with N states in which the state at
time frame l is denoted by cl . Associated with each state is a
prior distribution for the multivariate clean speech log-power, so
that p(Sl |cl) ∼ N (μSc l

,ΣSc l
) where the μSc l

and ΣSc l
are

trained offline using the training procedure discussed in Section
V-A1.

We denote by cl the path, {c1 , c2 , . . . , cl} ending in cl . For
each possible state, cl , at time frame l, we consider the N pos-
sible paths {cl−1 , cl} and select the one with highest likelihood
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Fig. 2. Bayesian gain computation system described in Section IV.

as cl (see (25) below). Thus, for each time frame, we end up
with N hypothesized paths, cl , one for each of the N states.

III. SYSTEM OVERVIEW

To perform enhancement, the reverberant noisy speech signal,
y(n), is processed by applying a real-valued magnitude gain to
its complex STFT coefficients in order to obtain the estimated
clean speech signal ŝ(n). This gain is first computed in each
Mel-frequency band at each time-frame and then interpolated
to cover the full STFT frequency range, as illustrated in Fig. 1.

A. Clean Speech HMM

As we want to track the system parameters over time, the
computation of the spectral gain in the Mel-frequency bands,
shown as the upper block in Fig. 1, uses a Bayesian filtering
formulation that is illustrated in Fig. 2. This includes the clean
speech HMM which encapsulates prior speech knowledge in
the form of state transition probabilities and state-dependent
log-power spectral distributions.

We define

xl = (Gl,Rl ,N l)
T , (14)

of size 2K + 1, to be the state representation of our system
at frame l. Note that xl includes the reverberation and noise
parameters for all subbands in a single state vector in contrast
to algorithms such as [23], [24] in which each subband is pro-
cessed independently. The inclusion of all subbands in a single
state vector enables our algorithm to take account of inter-band
correlations of the reverberation and noise parameters.

For each of the N best paths, cl−1 , the “Prediction” block
in Fig. 2 estimates the prior distribution of xl from the path-
dependent posterior distributions of xl−1 and Sl−1 . To do so, it
uses the current estimate of the reverberation parameters con-
tained in the vector πl−1 (defined fully in (53) below). For
each of these paths, N new possibilities arise, corresponding to
the possible prior distributions for the clean speech log-power
associated with each HMM state cl . This gives N 2 possible like-
lihood functions for the observed log-power yl , corresponding
to the N 2 possible choices {cl−1 , cl}. The “Likelihood Compu-
tation & Pruning” block then computes the likelihood of each of

the N 2 paths. Only the path arriving at each cl with the highest
likelihood is kept, and new path-dependent posterior distribu-
tions forxl andSl are computed, as described in Section IV-B2.

B. Gain Computation

For each time-frame l, we obtain the Gaussian posterior
densities of the state vector xl and clean speech log-power
Sl conditional on the HMM path, cl as described in Sec-
tion IV-B. From these, an updated estimate for the reverber-
ation parameters πl is computed as described in Section IV-
C. The path probabilities, p(cl |cl−1 ,y1:l), are normally ex-
tremely sparse in practice; in the final block of Fig. 2, we
therefore compute the speech enhancement gain, W̆ l , from
the posterior pdfs of the clean speech, reverberation and noise
log-powers associated with the most probable path. From the
mean and covariance of the distribution in the log-power do-
main, we obtain the mean of the corresponding distribution in
the power domain using the formulae relating the moments of
a normal distribution in the log-power domain to those of a
log-normal distribution in the power domain [36]:

μx̆l
= exp

(
μxl

+
1
2

diag(Σxl
)
)

(15)

where diag(Σxl
) is the vector composed of the diagonal ele-

ments of Σxl
. Similarly, we can obtain μS̆l

from the mean and
covariance matrix of its log-domain distribution. We can then
directly extract the estimated means of R̆l , N̆ l , Ğl and S̆l .

According to (13) we have Y̆ l = ĞlS̆l + R̆l + N̆ l , and we
wish to compute an estimate of the clean speech power ĞlS̆l as

̂ĞlS̆l = W̆
2
l � Y̆ l (16)

where W̆ l is a magnitude gain. This is a form of spectral sub-
traction [37], [38], and a general form for the gain W̆ l is

W̆ l =

(
μĞ l

μS̆l

μĞ l
μS̆l

+ η(μR̆l
+ μN̆ l

)

)β

(17)

where the division and power operations act elementwise on
the vectors. η is the oversubtraction factor, and controls how
aggressively the processing is applied. Depending on the value
of the exponent β, several forms of spectral enhancement can
be obtained. The value of β determines the sharpness of the
transition from W̆ l(k) = 1 to W̆ l(k) = 0 [39], with β = 1
(corresponding to Wiener-Filtering) achieving more aggressive
processing than β = 1

2 .
Since the estimation of the posterior density of S̆l is based

on a discrete choice of priors at each time-frame, the resulting
estimated μS̆l

is highly time varying. Accordingly, we perform
smoothing of the gain in the time domain according to

W̆ l = λsW̆ l−1 + (1 − λs)

(
μĞ l

μS̆l

μĞ l
μS̆l

+ η(μR̆l
+ μN̆ l

)

)β

(18)
where λs is the smoothing constant. Finally, as indicated in
Fig. 1, we use linear interpolation to map the gain, W̆ l , from
K Mel-spaced bands onto the full STFT resolution. The effect
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of this interpolation is to smooth the gain function in frequency,
which helps to reduce artifacts such as musical noise.

IV. BAYESIAN ESTIMATION

In this section, we are concerned with the computation of
the posterior densities of the state vector xl and clean speech
log-power Sl in order to be able to perform the gain com-
putation described in Section III-B. The general structure of
the proposed algorithm is illustrated in Fig. 2 and detailed in
Section IV-A. Section IV-B describes the computation of the
means and covariance matrices of the Gaussian pdfs involved,
while Section IV-C details how to update the reverberation pa-
rameters estimate.

We denote by μxl
and Σxl

the mean and covariance matrix
of the probability density function of xl . Given cl , the HMM
state at time l, we have available from the training data and
as detailed in Section II-B the corresponding mean μSc l

and
covariance matrix ΣSc l

of the prior distribution p(Sl |cl).
We can describe our system dynamics with the following

nonlinear prediction and observation equations:

xl = f(xl−1 ,Sl−1) + εl (19)

yl = h(xl ,Sl) + ν l (20)

in which εl ∼ N (0,Ql) and ν l ∼ N (0,M l). The function f :
R3K +1 → R2K +1 in (19) implements (12) as
⎧
⎪⎨

⎪⎩

Gl = Gl−1

Rl = log (αl−1 � exp (Rl−1) + dl−1 � exp (Gl−1 + Sl−1))

N l = N l−1
(21)

whereαl−1 anddl−1 are assumed to be system parameters, fixed
for time-frame l. From (21), we see that the speech gain, Gl ,
and the noise log-power, N l , follow a Gaussian random walk.
The function h : R3K +1 → RK in (20) implements (13) as
h(xl ,Sl) = log (exp(Gl + Sl) + exp(Rl) + exp(N l)). The
nonlinear functions f and h are both differentiable as required
for implementing the extended Kalman filter update described
in Section IV-B below. The covariance of εl isQl and represents
the variance of the errors in the prediction model, (21). Simi-
larly,M l , the observation noise covariance, represents both the
errors inherent to the statistical properties of the input data and
those introduced by assuming that uncorrelated signals add in
the power domain; expressions for the two components of M l

are derived in Appendices A and B respectively.
From our system equations, we can derive several condi-

tional independencies. Given xl and cl , p(yl |xl , cl ,y1:l−1) =
p(yl |xl , cl). We also have P (cl |cl−1 ,xl−1 ,y1:l−1) =
P (cl |cl−1) using pre-trained transition probabilities.

A. State Sequence Estimation

We want to maximize the joint likelihood of the path through
the HMM and the sequence of observations, marginalizing over
the system state xl . Assume we know p(y1:l−1 , cl−1), the prob-
ability of a path up until time l − 1, as well as the posterior
density functions p(xl−1 |yl−1 , cl−1) and p(Sl−1 |yl−1 , cl−1).

We can compute:

p(y1:l , cl) =

p(yl |cl , cl−1 ,yl−1)P (cl |cl−1)p(y1:l−1 , cl−1) (22)

where

p(yl |cl , cl−1 ,yl−1) =
∫

xl

p(yl |cl ,xl)p(xl |cl−1 ,yl−1)dxl (23)

in which

p(xl |cl−1 ,yl−1) =
∫

xl−1

p(xl−1 ,xl |cl−1 ,yl−1)dxl−1 . (24)

For each of the N possible cl−1 , we use the posterior densi-
ties p(xl−1 |cl−1 ,yl−1) and p(Sl−1 |cl−1 ,yl−1) to compute the
prediction stage (24) as described in Section IV-B1. For each of
these paths, there are N possible clean speech prior distributions
corresponding to each cl , creating N 2 possible paths {cl−1 , cl}
for which the likelihood of the observation (23) is computed.
Only the best path arriving at each cl is kept, so that

∀cl , ĉl = arg max
{c l−1 ,cl }

p (y1:l , {cl−1 , cl}) . (25)

For each of the N retained paths, the posterior densities of xl

and Sl are computed as described in Section IV-B2.

B. Posterior Densities Computation

1) Model Prediction Step: The “Prediction” block of
Fig. 2 computes the path-dependent Gaussian prior densities
p(xl |cl−1 ,yl−1). We defineF l−1 to be the Jacobian matrix of f
from the prediction equation (19) evaluated at μxl−1 and μSl−1 .
It can be written as

F l−1 =
(
F xl−1 FSl−1

)
(26)

with F xl−1 = ∂f
∂xl−1

∣∣∣
μxl−1

and FSl−1 = ∂f
∂Sl−1

∣∣∣
μSl−1

.

Let us now define the augmented state

x�
l−1 = (xl−1 ,Sl−1)T = μx�

l−1
+ δx�

l−1 (27)

with μx�
l−1

= (μxl−1 ,μSl−1 )
T and δx�

l−1 ∼
N (0 , (

Σxl−1 0
0 ΣSl−1

)).

Keeping only the first two terms from the Taylor series for f
[40] gives the following linear approximation:

f(x�
l−1) � f(xl−1 ,Sl−1) ≈ f(μx�

l−1
) + F l−1δx

�
l−1 (28)

Computing the expected value gives us :

E
[
f(x�

l−1)
] ≈ E

[
f(μx�

l−1
) + F l−1δx

�
l−1

]

= f(μx�
l−1

), (29)
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which in turn gives the following covariance matrix:

E
[(

f(x�
l−1) − E

[
f(x�

l−1)
]) (

f(x�
l−1) − E

[
f(x�

l−1)
])T ]

≈ E

[(
f(x�

l−1) − f(μx�
l−1

)
)(

f(x�
l−1) − f(μx�

l−1
)
)T
]

≈ E
[(
F l−1δx

�
l−1
) (
F l−1δx

�
l−1
)T ]

= F l−1E
[
δx�

l−1δx
�
l−1

T
]
F T

l−1

= F xl−1 Σxl−1F
T
xl−1

+ FSl−1 ΣSl−1F
T
Sl−1

. (30)

If we now introduce f̃(x�
l−1) =

(
xl−1 , f(x�

l−1)
)T

, we have

E
[
f̃(x�

l−1)
]
≈
(

μxl−1

f(μx�
l−1

)

)
(31)

Cov
[
f̃(x�

l−1)
]
≈
(

I2K +1 O(2K +1,K )

F xl−1 FSl−1

)

×
(

Σxl−1 0

0 ΣSl−1

)(
I2K +1 O(2K +1,K )

F xl−1 FSl−1

)T

=

(
Σxl−1 Σxl−1F

T
xl−1

F xl−1 Σxl−1 F xl−1 Σxl−1F
T
xl−1

+ FSl−1 ΣSl−1F
T
Sl−1

)
.

(32)

Therefore, by writing (19) as xl = f(x�
l−1) + εl , we can ap-

proximate the conditional joint probability of xl−1 and xl by a
Gaussian distribution with the following moments:

p(xl−1 ,xl |cl−1 ,yl−1) ∼ N (m , P ) (33)

where

m =

(
μxl−1

f(μxl−1 ,μSl−1 )

)
(34)

P =
(

Σxl−1 Σxl−1F
T
xl−1

F xl−1 Σxl−1 F xl−1 Σxl−1F
T
xl−1

+ FSl−1 ΣSl−1F
T
Sl−1

+Ql

)

(35)

where the means and covariance matrices of xl−1 and Sl−1 are
the moments of the posterior distributions p(xl−1 |cl−1 ,yl−1)
and p(Sl−1 |cl−1 ,yl−1). We therefore have for the marginal
probability density of xl :

p(xl |cl−1 ,yl−1) ∼ N (
μxl |c l−1 , Σxl |c l−1

)
(36)

with

μxl |c l−1 = f(μxl−1 ,μSl−1 ) (37)

Σxl |c l−1 = F xl−1 Σxl−1F
T
xl−1

+ FSl−1 ΣSl−1F
T
Sl−1

+Ql

(38)

giving us the solution to (24).

2) Observation Update Step: This section describes the
“Clean Speech HMM” and “Likelihood Computation” blocks
of Fig. 2. These compute the likelihood of the observa-
tion p(yl |cl , cl−1 ,yl−1) for each of the N 2 possible paths
{cl−1 , cl} as well as the posterior densities of the state vec-
tor and clean speech log-power, p(xl |cl , cl−1 ,yl ,yl−1) and
p(Sl |cl , cl−1 ,yl ,yl−1).

The assumption in (9) that speech, reverberation and noise
powers add to form the observed power imposes a nonlinear
constraint in the log-power domain. Similar to the derivations
in Section IV-B1, we can use a first order Taylor series approxi-
mation of h in the observation equation (20) to obtain mean and
covariance for the approximately Gaussian joint distribution of
yl and xl . We define H l as the Jacobian matrix of h(xl ,Sl)
evaluated at (μxl |c l−1 ,μSc l

) so that

H l =
(
Hxl

HSl

)
. (39)

The mean, μxl |c l−1 , and covariance matrix, Σxl |c l−1 , of the
predicted pdf of xl for the path originating at cl−1 are given in
(37),(38). The mean, μSc l

, and covariance matrix, ΣSc l
, of the

prior pdf associated with state cl are learned during training.
Using similar derivations to (28)-(32), it follows that for the

path defined by {cl−1 , cl} we have:

p(xl ,yl |cl , cl−1 ,yl−1) ∼ N (mxy , Cxy) (40)

where

mxy =
(

μxl |c l−1

h(μxl |c l−1 ,μSc l
)

)
(41)

Cxy =

(
I(K,2K +1) OK

Hxl
HSl

)
×
(

Σxl |c l−1 0

0 ΣSc l

)

×
(

I(K,2K +1) OK

Hxl
HSl

)T

+

(
0 0

0 M l

)

=

(
Σxl |c l−1 Σxl |c l−1H

T
xl

Hxl
Σxl |cl−1 Hxl

Σxl |cl−1H
T
xl

+HSl
ΣSc l

HT
Sl

+M l

)
.

(42)

The observation noise covariance matrix, M l , in (42) repre-
sents the uncertainty between the model of (13) and the actual
observations. It is the sum of a fixed component that is a function
of the filterbank parameters bk,k̃ in (3) and another that depends

on the estimated mean and variance of the observation, Y̆ (l, k).
Detailed expressions for these two components are given in
Appendices A and B respectively.

We therefore have the likelihood of the observation

p(yl |cl , cl−1 ,yl−1) ∼ N (
μyl

,Σyl

)
(43)

with

μyl
= h(μxl |c l−1 ,μSc l

) (44)

Σyl
= Hxl

Σxl |c l−1H
T
xl

+HSl
ΣSc l

HT
Sl

+M l (45)

and the posterior pdf of xl [40], [41]

p(xl |cl , cl−1 ,yl ,yl−1) ∼ N (μxl
,Σxl

) (46)
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with

μxl
= μxl |c l−1 + Σxl |c l−1H

T
xl

Σ−1
yl

[yl − μyl
] (47)

Σxl
= Σxl |c l−1 − Σxl |c l−1H

T
xl

Σ−1
yl
Hxl

Σxl |c l−1 (48)

which uses a similar approach to the implementation of an Ex-
tended Kalman Filter (EKF). Equations (43)-(45) can then be
used to compute the joint likelihood of the observations and
sequence of states in (22).

Using a similar method to (40)-(42), we can approximate the
joint distribution of the observation and clean speech log-power
as a Gaussian distribution to obtain

p(Sl |cl , cl−1 ,yl ,yl−1) ∼ N (μSl
,ΣSl

) (49)

with

μSl
= μSc l

+ ΣSc l
HT

Sl
Σ−1

yl
[yl − μyl

] (50)

ΣSl
= ΣSc l

− ΣSc l
HT

Sl
Σ−1

yl
HSl

ΣSc l
. (51)

The N -best paths can then be pruned according to (25), and
the associated posterior densities can then be used in order to
update the reverberation parameters estimate πl and compute
the gain W̆ l .

Numerical errors can arise when computing Σyl
using

(45) that may lead to the estimated covariance matrix be-
ing non-positive definite and preventing the computation of
the likelihood of the observation. This can especially hap-
pen when the observation noise is very low. Though not de-
scribed in detail here, this problem can be solved by imple-
menting the Square Root version of the Extended Kalman
Filter-type update (SR-EKF). By factorizing Σxl

and ΣSl

in a UDUT form where U is a unit upper triangular ma-
trix and D is a diagonal matrix, we can carry the up-
dates on both these matrices and ensure that the covari-
ance matrices of p(yl |cl , cl−1 ,yl−1), p(xl |cl , cl−1 ,yl ,yl−1)
and p(Sl |cl , cl−1 ,yl ,yl−1) remain positive-definite. This is
achieved by using the Bierman-Thornton SR-EKF, which is
a combination of the Square-Root implementations proposed in
[42], [43].

3) On the Approximation of Transformed Distributions: In
this section we look at how well the Taylor series approxima-
tion of h allows us to approximate the transformed pdfs. To
do so, for clarity we consider the 2-dimensional case with ran-
dom variables A and B, in which we assume no observation
noise is present. We assume that A and B are jointly Gaus-
sian as in Fig. 3 (a) where the log-probability density values
have been scaled to match the displayed colormap. On the plot,
the mean is marked by a cross and the unit standard deviation
contour by an ellipse. The dotted line indicates the constraint
log (exp(A) + exp(B)) = 0 analogous to (9). We can approxi-
mate the constrained distribution (i.e. the posterior distribution)
by computing the empirical mean and covariance of the points
lying on the contour log (exp(A) + exp(B)) = 0. The Gaussian
distribution with the empirical mean and covariance is shown in
Fig. 3 (b).

The constrained distribution computed using a first order Tay-
lor series approximation of the nonlinear constraint is shown in

Fig. 3. Two-dimensional case : A and B are jointly Gaussian distributed.
Unconstrained prior (a), empirically computed constrained posterior (b) dis-
tributions. Using Taylor series approximation of the nonlinear constraint, the
first-order (c) and second-order (d) approximation of the constrained distribution
are shown.

Fig. 3 (c). There is a large underestimate of the variance in
the direction orthogonal to the tangent of the non-linear con-
straint. This can be explained by the first order linearization of
the constraint, which forces the constrained distribution to lie
on the tangent. If the original unconstrained distribution is very
close to one of the extremes of the constraint, corresponding to
a highly positive or highly negative SNR, this approximation is
accurate. However, the approximated covariance is too small at
the maximum curvature point of the constraint.

Although not used in our implementation, these approxima-
tion inaccuracies can be reduced by using a second-order Taylor
series approximation of our constraint which gives the approxi-
mated constrained distribution shown in Fig. 3 (d). The result is
closer to the empirically computed distribution, suggesting that
better results could be achieved using a second-order Taylor
series approximation in Section IV-B2. This adds an additional
term to the covariance matrix of the marginal distribution of the
observation, of the form

∑

i,j

eie
T
j tr
[
H (i)

xs Σxl
H (j )

xs Σxl

]
(52)

withH (i)
xs the Hessian of h at output dimension i, tr[.] indicating

the trace of the matrix, and ei = [0, 0, . . . , 1, . . . , 0, 0]T where
the 1 is at position i. As this requires substantial additional
computation, we instead use a first-order approximation with an
additional observation noise term compensating for the underes-
timated covariance while remaining computationally efficient.
A detailed derivation of this additional noise term is given in
Appendix B.
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C. Reverberation Parameters Estimation

In Sections IV-A & IV-B, the reverberation parameters α
and d are assumed fixed in order to compute the moments of
the probability distributions in the prediction step. However, as
we do not assume a perfect initialization for these parameters,
and as the DRR can change dynamically due to movement of
the speaker or changes in the acoustic environment, we need to
update our reverberation parameters estimates adaptively.

We define

πl =
(

log
(

αl

1 −αl

)
, log

(
dl

1 − dl

))T

(53)

to be the vector of transformed reverberation parameters, where
we map the range (0, 1) to (−∞,+∞) to avoid the need for
range constraints on the elements of πl . In the following, we
identify global random variables that take into account all paths
in the HMM with an overbar, ¯.

We define the following dynamic equations describing the
evolution of the reverberation parameters:

πl = πl−1 + ωl (54)

μ̄Rl
= g(πl , μ̄Rl−1

, μ̄Sl−1
) +ψl (55)

where μ̄Rl
, the mean of the global posterior density ofRl , acts

as observation, μ̄Rl−1
and μ̄Sl−1

act as fixed system parameters,
ωl ∼ N (0,U l) andψl ∼ N (0,V l).U l controls how much the
reverberation parameters are allowed to change from one frame
to the next, while V l represents errors in the model of (12), of
which g is a direct implementation.

Assuming we have for each of the N paths cl the posterior
pdfs ofxl andSl , we can compute the global posterior densities
as

p(x̄l |cl−1 ,y1:l)

=
∑

cl

p(cl |cl−1 ,y1:l)p(xl |cl , cl−1 ,yl ,yl−1) (56)

with the normalized path probabilities defined as

p(cl |cl−1 ,y1:l) =
p(cl ,yl , cl−1 ,y1:l−1)∑
cl

p(cl ,yl , cl−1 ,y1:l−1)
(57)

and similarly for p(S̄l |cl−1 ,y1:l). The means of these global
pdfs are then directly calculated as the weighted sum of the
means of each individual path mixture. The mean of the global
posterior distribution of the reverberation log-power, μ̃Rl

, is
directly extracted from that of xl .

From (54)-(55) we can therefore obtain the first and second-
order moments of the posterior distribution for πl using:

μπl
= μπl−1 + Σπl |l−1G

TC−1
π eR̄l

(58)

Σπl
= Σπl |l−1 − Σπl |l−1G

TC−1
π GΣπl |l−1 (59)

where eR̄l
= μ̄Rl

− g(μπl−1 , μ̄Rl−1
, μ̄Sl−1

) is the error in the
predicted mean reverberation power, Σπl |l−1 = (Σπl−1 +U l)
is the covariance matrix of the predicted πl of (54),

G = ∂g
∂πl

∣∣∣
μπl−1

is the Jacobian matrix of g and Cπ =

GΣπl |l−1G
T + V l .

The resulting algorithm is therefore a two-stage approach.
First we fix the reverberation parameters in order to compute
the likelihood of each path in the HMM, so as to get the posterior
probability densities of xl and Sl for the best path arriving at
each possible state in the HMM. Then, the means of the global
posterior densities are computed and fixed in order to update the
reverberation parameters using (58)-(59).

V. PERFORMANCE EVALUATION

The evaluation of the proposed algorithm on actual rever-
berant noisy data is divided into two parts. First, because most
objective metrics for speech quality and intelligibility are in-
trusive, we generate simulated reverberant data by convolving
anechoic speech with measured room impulse responses so that
we can have access to the original clean speech. Second, the
algorithm is tested on real data, i.e. actual reverberant and noisy
recordings for which no target clean signal is available.

We compare our method with the single-channel scheme of
Cauchi et al. [14] as it was the only single-channel method
participating in the REVERB Challenge [5] which managed
to reduce the perceived amount of reverberation appreciably
while significantly improving the overall speech quality [21].
We therefore consider this competing method to be state-of-
the-art. The parameters of this competing method correspond to
those described in [14] and the implementation was generously
provided by the author. A difference between the two algorithms
is that [14], although a spectral enhancement algorithm suitable
for real-time implementation, requires an external estimate of
the broadband T60 which is obtained using the utterance-based
algorithm presented in [44]. The proposed method, in contrast,
does not require prior knowledge of the reverberation param-
eters and is implemented in an online manner computing the
spectral gain at each time frame. On a laptop equipped with an
Intel Core i5 processor, the average real-time factors of the two
methods were measured to be 0.17 for [14] and 3.65 for the
proposed method. An implementation in MATLAB of the pro-
posed method is available as spendred.m in the VOICEBOX
toolbox [32].

A. Implementation Details

1) HMM States Learning: To train the mean and covariance
matrices of each state in the HMM, we use a purely data-driven
technique, which gives us the ability to work with any clean
speech dataset with the minimum amount of adaptation effort.
This can also help to make the set of states less language-
dependent and to provide better generalization. To determine
a representative set of states, we used the k-means [45], [46]
feature-learning technique, as it remains a method of choice in
many practical scenarios thanks to its scalability [47]. Viewing
the k-means algorithm from a Bayesian perspective, minimizing
the Euclidean distance is equivalent to maximizing the likeli-
hood of the clusters according to Gaussian distributions with
identity covariance matrices. This fits well with the assumptions
of our model, and we can perform the clustering directly on
the Mel-frequency log-spectral powers. We used the k-means
implementation available in [32], and computed 15 separate
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Fig. 4. Bayesian Information Criterion (BIC) computed for different values
of N the number of clusters used in the k-means algorithm.

Fig. 5. Means of the log-power clean speech HMM states obtained through
k-means with (a) 4 clusters and (b) 6 clusters.

instances with random initialization for N , the number of
clusters, varying from 2 to 14. Such a low number of states may
seem surprising, as a much higher number of dictionary ele-
ments has been reported to be necessary in speech enhancement
applications using NMF-based techniques [48]. Here, however,
we look at log-power spectral frames on a Mel-frequency scale
having broad frequency bands and the learned states are used
only to provide prior probabilities in a Bayesian inference con-
text rather than used directly in a Wiener filter as in [28], [30].
We used the training set of the TIMIT database [49], normalized
the input speech signals to 0 dB active level [32], [33], obtained
STFT frames of 30 ms with 5 ms frame increment and computed
the log-power in each Mel-frequency band for each frame.

The Bayesian Information Criterion (BIC) [50] was computed
for each value of N according to

BIC = −2 log (L) + log(n)KN (60)

and is plotted in Fig. 4. L is the likelihood of the observed
data and n is the number of data points in the observed data.
From a clustering point of view, the BIC gives an idea of how
well the clusters can explain the whole dataset. It appears from
Fig. 4 that the BIC does not improve significantly for 10 clusters
or more. However, from an inference point of view, the HMM
states are only used as possible prior density functions for the
clean speech, reducing even further the need for a set of states
able to perfectly represent any clean speech signal directly. This
allows us to use a low number of states, and in our experiments
we have chosen N = 4 or N = 6. The state means obtained for
N = 4 are shown in Fig. 5 (a); these states correspond approx-
imately to a silence state, a voiced state, an unvoiced state, and

a voiced/unvoiced combination. The state means obtained for
N = 6 are shown in Fig. 5 (b); the first four are similar to those
of Fig. 5 (a) while the remaining two correspond to additional
voiced spectra. The results for simulated data are presented for
an implementation with 4 states in Section V-C, while both 4 and
6-state implementations are used to evaluate the performance on
live recordings in Section V-D.

2) Algorithm Parameters: In order to obtain better dere-
verberation and denoising performance, we used β = 1, i.e.
a Wiener gain, η = 2 and λs = 0.95 in (18). We have found
that the proposed algorithm is not very sensitive to the initial
values used for the reverberation parameters and the same initial
values were used for all reported experiments. The initial val-
ues for the frequency-dependent α were chosen to correspond
to the subband T60 values averaged over all RIRs in [51] and
[52]. We initialized d to correspond to linearly spaced subband
DRR values ranging from −2 dB in the lowest Mel-frequency
band to 8 dB in the highest band according to (8). The first 100
ms of each recording were assumed to be noise and were used
to initialize the mean and covariance of the noise log-power in
x0 . Reverberation log-power was initialized at 10 dB below the
noise and the clean speech global gain was initialized to −5 dB.
The STFT analysis used 30 ms Hann-windowed frames with a
frame increment of 5 ms. The number of Mel-frequency bands
was set to K = 25.

B. Evaluation Metrics

Six different metrics were used in order to evaluate the al-
gorithms: the Cepstrum Distance (CD) [53], the Frequency-
weighted Segmental SNR (FWSegSNR) [54], the Reverberation
Decay Tail (RDT ) [55], the normalized Speech-to-Reverberation
Modulation energy Ratio (SRMRnorm ) [56] (available at [57]),
the Short-Time Objective Intelligibility score (STOI) [58] (avail-
able at [59]) and the Perceptual Evaluation of Speech Quality
(PESQ) [60]. The STOI scores were mapped to a percentage
of words correctly recognized using the mapping function pro-
vided in [58] in order to make results easier to read and interpret.
The implementations of CD and FWSegSNR were taken from
[5], while we used a direct implementation of [55] for RDT .

CD has been reported to be well correlated with the overall
quality of processed noisy speech as well as the perceived level
of reverberation [21], [61], [62]. However, conflicting results
have been found regarding its correlation with the overall quality
of enhanced reverberant speech [21], [62], and it has been found
to correlate poorly with speech intelligibility [63]. RDT and
SRMRnorm have been found to correlate well with the perceived
level of reverberation [62], [64]. The FWSegSNR and PESQ
measures have generally been reported to correlate well with
overall quality and intelligibility [58], [61]–[63]. Finally, STOI
has been found to be highly correlated with intelligibility for
time-frequency weighted noisy speech [58].

C. Simulated Data

In order to test the performance of our algorithm in challeng-
ing scenarios, we use the Acoustic Characterisation of Environ-
ments (ACE) Challenge Corpus [65], which was developed to
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TABLE I
TABLE DETAILING INFORMATION ABOUT RIRS FROM THE ACE CORPUS USED

TO CREATE THE SIMULATED DATA

Acoustic Condition Room Config. T6 0 (s) DRR (dB)

A Lobby 1 0.81 6.47
B Lobby 2 0.77 3.25
C Lecture 1 1.33 8.94
D Lecture 2 1.29 4.96
E Meeting 1 0.38 5.00
F Meeting 2 0.38 8.38
G Office 1 0.40 2.44
H Office 2 0.40 −2.27

evaluate algorithms for blind estimation of acoustic parameters
in the presence of noise. The corpus provides multi-channel
RIRs as well as noises recorded in-situ for various acoustic
spaces (lecture rooms, offices, meeting rooms, lobby). For the
single channel case, measured impulse responses and corre-
sponding noises are provided for two different source-receiver
positions within each room. There are three noise types: fan
noise, ambient noise and babble noise. All noise types were
recorded in situ using identical microphone configurations and
are therefore consistent with the measured impulse responses.
The babble noise was recorded using actual talkers in each room,
and the RIRs were measured with the talkers still present inside
the room.

From the ACE challenge clean speech corpus, we selected
sound files from 14 speakers in total (5 females and 9 males),
each uttering a free-speech sentence approximately 10 seconds
long describing where they live. The anechoic speech files were
convolved with one of 8 RIRs corresponding to 4 different rooms
and 2 source-microphone positions within each room. Table I
gives the broadband T60 and DRR values measured from the
impulse responses using [66] and [11].

For each measured impulse response, the corresponding am-
bient, fan and babble noises were used and random portions of
these recordings were added to the reverberant speech at 0, 10
and 20 dB SNR. This makes a total of 1008 noisy and reverber-
ant speech files.

First, in order to assess the dereverberation performance of
our algorithm, we show in Fig. 6 the average score for each
metric in the case of 20 dB SNR only, averaging the results
over the three noise types. An SNR of 20 dB is still a realistic
environment, but the noise has a limited degradation effect and
therefore we expect the results to be dominated by the derever-
beration performance of the methods.

The proposed method leads to the lowest Cepstral Distance
(plot a), highest Frequency-weighted Segmental SNR (plot
b) and lowest reverberation decay tail (plot c) for all acoustic
conditions, suggesting the proposed method achieves better
dereverberation performance than [14]. Both algorithms yield
very similar PESQ (plot f) and STOI (plot e) results, with a slight
improvement of predicted intelligibility in the most reverberant
case (D), and a near-constant PESQ improvement of about 0.2
over unprocessed speech. This seems to suggest the proposed
method improves speech quality as much as the competing

Fig. 6. Results comparing the two speech enhancement methods on simulated
data (a) - Cepstrum Distance (dB), the lower the better (b) Frequency-Weighted
Segmental SNR, the higher the better (c) - Reverberation Decay Tail, the lower
the better (d) - Normalized version of Speech to Reverberation Modulation
Energy Ratio, the higher the better (e) - STOI scores mapped to words correctly
recognized in %, the higher the better (f) - PESQ scores, the higher the better.

one without degrading intelligibility. The proposed method
achieves better results than unprocessed speech with respect to
the SRMRnorm metric, but does less well than [14]. This contra-
dicts the RDT result as it suggests a higher perceived reverber-
ation than [14], however the validity of the SRMRnorm metric
for use with processed speech signals has not been studied.

In order to study the robustness of both methods to noise, we
show box plots of the differential (Δ) scores obtained for each
metric, separated for each SNR and each noise type and averaged
across all acoustic conditions. On the box plots, the interquartile
range is shown by a coloured box, the median of the distribution
is shown by a horizontal line, and the mean of the distribution is
shown by a circle. For each result, a 0 score indicates no change
in the metric compared to unprocessed speech, and a positive
result indicates a higher metric score.

Fig. 7 indicates that, apart from the babble noise case, the
proposed algorithm achieves lower Cepstral Distance than [14],
especially at low SNRs, indicating that it is better able to deal
with heavy noise. Furthermore, as can be seen in Fig. 8, the
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Fig. 7. Differential Cepstral Distance for different noise conditions, averaged
across all acoustic scenarios.

Fig. 8. Differential Frequency-Weighted Segmental SNR for different noise
conditions, averaged across all acoustic scenarios.

higher FWSegSNR scores achieved by the proposed method in
all cases seem to suggest better dereverberation as well as better
noise reduction properties.

Fig. 9 shows that even when the SNR is low, the proposed
algorithm achieves lower RDT scores than [14]. This indicates
that even in the presence of heavy noise, it is able to reduce the
decay tail of the reverberation significantly. Unsurprisingly, both
methods achieve very low RDT scores in babble noise. Indeed,
with the ACE challenge corpus the babble noise was recorded
using talkers in situ, giving much more information about the
acoustic properties of the whole recording. Fig. 10 confirms
the earlier observation that the proposed method achieves lower
SRMRnorm scores compared to [14], although they are almost
always greater than those of the unprocessed speech.

As can be seen in Fig. 11, the predicted intelligibility is
slightly worse with the proposed method than with [14].
However, as was seen in Fig. 6 (e), the predicted intelligibility
of the test signals was well above 90% in all cases so these
small differences will have little effect. The PESQ scores,
shown in Fig. 12, show a consistent improvement for both

Fig. 9. Differential RDT scores obtained for different noise conditions, aver-
aged across all acoustic scenarios.

Fig. 10. Differential SRMRnorm scores for different noise conditions, aver-
aged across all acoustic scenarios.

algorithms relative to unprocessed speech with the proposed
method having marginally higher scores than [14].

Overall, it seems the proposed method achieves better dere-
verberation and denoising performance while improving speech
quality and preserving speech intelligibility. It also seems that
[14] deals with babble noise slightly better, which is unsur-
prising since our clean speech model cannot distinguish babble
noise from wanted speech. Tests using 6 states in the HMM
were also carried out, but the results were almost identical to
those using 4 states and are not presented here.

D. Real Data

We used the real data section of the evaluation set of the RE-
VERB Challenge [21], which corresponds to the Multi-Channel
Wall Street Journal Audio Visual Corpus [67]. The data was
recorded in a room using real talkers and at two different source-
microphone positions, i.e. near and far. Because no reference
signal is available, and in order to gain some insight into how
well the dereverberation methods worked on this dataset, we
used the baseline ASR systems from the REVERB challenge
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Fig. 11. Differential mapped STOI scores for different noise conditions, av-
eraged across all acoustic scenarios.

Fig. 12. Differential PESQ scores for different noise conditions, averaged
across all acoustic scenarios.

to obtain WER scores. The proposed algorithm was evaluated
using both 4 states and 6 states in the HMM.

All methods were tested on two baseline speech recogni-
tion engines from [21]. The baseline systems were both based
on HTK, using a triphone GMM-HMM recognizer that has
been trained on clean speech data only. One version of the en-
gine used Constrained Maximum Likelihood Linear Regression
(CMLLR) speaker adaptation while the other did not. Fig. 13
shows the reduction in WER achieved by [14] and by the pro-
posed method using a 4 or 6-state HMM.

The proposed method achieves lower WER than unpro-
cessed speech, with significantly better results obtained when
using a 6-state HMM for the clean speech model, but still
higher WER than the competing method. Although the au-
dible quality of the recordings has been substantially im-
proved, we believe that our method may introduce more ar-
tifacts detrimental to such ASR systems than [14]. Audio
recordings processed by the 6-state implementation as well as
the listening test results presented below are available from
http://www.commsp.ee.ic.ac.uk/˜sap/sicenspeech/.

Fig. 13. Average WER reduction for the different acoustic conditions of the
REVERB challenge real data.

E. Listening Test

Although objective metrics are a good indication of an al-
gorithm’s performance, it has been hypothesized that no in-
strumental measure can capture the subjective sense of overall
speech quality [21]. Therefore a listening test similar to the
multi-stimuli with hidden reference and anchor (MUSHRA)
[68] test was used in order to assess the overall quality
and amount of perceived reverberation before and after pro-
cessing. The ambient noise level and the headphones used
in the experiment were not controlled and varied between
participants.

The 13 self-reported normal-hearing participants, all experts
in acoustic signal processing, each performed 8 tests: 4 tests
rating the perceived level of reverberation on a scale ranging
from 0 (not reverberant) to 100 (very reverberant), and 4 tests
rating the overall speech quality on a scale going from 0 (bad)
to 100 (excellent). Post-screening was performed after the test
in order to remove results where participants failed to identify
the hidden reference.

For each test, the participants were asked to compare four
randomly-ordered unmarked samples: (i) a hidden reference,
(ii) a noisy reverberant anchor signal, (iii) the anchor signal
processed by [14] and (iv) the anchor signal processed by the
proposed method with a 6-state HMM. The hidden reference
was a clean speech utterance convolved with an RIR from
[52] with very low T60 (0.18 s) and high DRR (5 dB), as in
MUSHRA for reverberant speech or MUSHRAR proposed in
[64]. To form the anchor signals, clean speech utterances from
the ACE challenge corpus [65] were first convolved with RIRs
B, D, E and H from Table I to create reverberant signals with
0.38 s ≤ T60 ≤ 1.29 s and −2.27 dB ≤ DRR ≤ 5 dB. For the
tests that evaluated speech quality, these reverberant signals
were then degraded by adding “ambient noise” from [65] at
0 dB or 10 dB SNR. For the tests that evaluated reverberation
reduction they were degraded by adding “babble noise” from
[65] at 30 dB SNR.
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Fig. 14. Listening test results. MUSHRA differential scores corresponding to
the overall speech quality improvement and perceived reverberation reduction.

The results are shown in Fig. 14 which presents differen-
tial MUSHRA scores between the unprocessed reverberant and
noisy speech and the two processed versions. These differential
scores can be viewed as measuring the overall quality improve-
ment and reverberation reduction provided by each enhance-
ment method. To assess the significance of the observed differ-
ences in mean MUSHRA scores, a two-sample t-test was used
with Satterthwaite’s approximation for unequal variances [69].

The proposed method always has lower perceived reverbera-
tion than the unprocessed speech. It consistently achieves higher
reverberation reduction than [14] and the difference in mean per-
formance was statistically significant (P < 5%). In most cases,
the proposed method also improves on the quality of the un-
processed speech although, in a minority of cases, it appears
that the strong reverberation and noise reduction applied by the
algorithm leads to a small degradation in perceived quality. In
most cases, the proposed method gave higher quality than [14]
although the difference in mean improvement was not statisti-
cally significant at the 5% level.

From these results, the proposed algorithm is especially suited
to situations with high levels of reverberation and/or noise. We
believe that the algorithm is able to achieve large reductions in
both noise and reverberation because it estimates them jointly
rather than independently and also because its use of a speech
model allows it to take advantage of correlations between fre-
quency bands. In applications with lower levels of reverberation
and noise, the method of [14] may be preferred since it has
lower computational requirements and almost never degrades
the perceived quality.

VI. CONCLUSION

In this paper, we have presented a novel blind single-channel
approach to the online dereverberation problem. Using an
ARMA model for the reverberation power and a Hidden Markov
Model for the clean speech log-power, a spectral gain is com-
puted in order to achieve good dereverberation performance.
This real-valued gain is computed for each frame after jointly
estimating posterior distributions of the acoustic parameters
and speech, reverberation, and noise log-powers. The algorithm

achieves very good dereverberation and denoising performance
while improving speech quality and preserving speech intelli-
gibility. Listening tests showed excellent audible quality of the
speech signals processed by the proposed method.

APPENDIX A
OBSERVATION NOISE

The complex STFT coefficients of the degraded speech ob-
servation can be modeled as zero-mean complex Gaussians in
each time-frequency bin using the central limit theorem. Using
Y ◦(l, k̃) to denote the complex STFT coefficient of the ob-
served speech at time frame l and at STFT frequency bin k̃,

Y ◦(l, k̃) ∼ N
(
0, σ(l, k̃)2

)
. We therefore have

|Y ◦(l, k̃)|2 = 
{Y ◦(l, k̃)}2 + �{Y ◦(l, k̃)}2 (61)

where 
{Y ◦(l, k̃)}2 and �{Y ◦(l, k̃)}2 are independent zero-

mean Gaussians with variance σ (l,k̃)2

2 . It follows that |Y ◦(l,k̃)|2
σ ( l , k̃ ) 2

2

∼
χ2(2) or, equivalently,

|Y ◦(l, k̃)|2 ∼ Γ(1, σ(l, k̃)2). (62)

As we formulated the problem in Mel-frequency bands, the
power in STFT frequency bins of each time frame are then
weighted and summed according to our filterbank. We assume
the resulting weighted sum of Gamma distributed random vari-
ables is also approximately Gamma distributed, so that

Y̆ l(k) ∼ Γ
(

1
κk

, κkσ(l, k)2
)

(63)

with mean E[Y̆ l(k)] = σ(l, k)2 and variance Var[Y̆ l(k)] =
κk σ(l, k)4 . The values κk were determined empirically.

As we are assuming normally distributed log-powers, we can
use the formula relating the moments of a normal distribution in
the log-domain to the moments of a log-normal distribution in
the power domain [70], and approximate the variance of yl(k)
as follows:

Var[Y l(k)] ≈ log

(
1 +

Var[Y̆ l(k)]
(E[Y̆ l(k)])2

)
(64)

= log(1 + κk ) (65)

This means we have for the observation noise ν l ∼ N (0,M l)
withM l = diag (log(1 + κ)) in (42).

APPENDIX B
MODEL NOISE

As well as the observation noise that is a consequence of the
statistical properties of the input data, we can model the noise
due to the inaccuracies introduced when we assumed the powers
are exactly additive. The total power in Mel-frequency band k
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is therefore assumed to be

Y̆ l(k) =
∣∣∣∣
√

ĞlS̆l(k) +
√
R̆l(k)ejφk +

√
N̆ l(k)ejθk

∣∣∣∣
2

= ĞlS̆l(k) + R̆l(k) + N̆ l(k)

+ 2
√

ĞlS̆l(k)
√
R̆l(k) cos(φk )

+ 2
√

ĞlS̆l(k)
√
N̆ l(k) cos(θk )

+ 2
√
R̆l(k)

√
N̆ l(k) cos(θk − φk )

(66)

where θk and φk are respectively the phase differences between
clean speech and noise, and clean speech and reverberation. If θk

and φk are uniformly distributed in [0, 2π] then θk − φk is also
uniformly distributed in [0, 2π]. It follows that the expectation
of their cosine is 0, and the expectation of their squared cosine
is 1/2. We can therefore compute the moments of Y̆ l(k), which
gives:

E[Y̆ l(k)] = ĞlS̆l(k) + R̆l(k) + N̆ l(k) (67)

Var(Y̆ l(k)) = E[Y̆ l(k)2 ] − E[Y̆ l(k)]2

= 2ĞlS̆l(k)R̆l(k) + 2ĞlS̆l(k)N̆ l(k)

+ 2R̆l(k)N̆ l(k) (68)

Using (64) we obtain the variance of the total log-power

Var[Y l(k)] ≈

log

(
1 + 2

ĞlS̆l(k)R̆l(k) + ĞlS̆l(k)N̆ l(k) + R̆l(k)N̆ l(k)
ĞlS̆l(k) + R̆l(k) + N̆ l(k)

)

(69)

The observation noise covariance matrixM l in (42) is therefore
augmented by a diagonal matrix T l whose diagonal elements
are defined by (69), so thatM l = diag (log(1 + κ)) + T l . This
extra noise term is small when one of the powers is much greater
than the others and maximum when all signal powers are equal
(i.e. the point of maximum curvature of h).
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