

Aalborg Universitet

Inferring types for parallel programs

Martins, Francisco; Vasconcelos, Vasco Thudichum; Hüttel, Hans

Published in:
Proceedings Tenth Workshop on Programming Language Approaches to Concurrency- and Communication-
cEntric Software

DOI (link to publication from Publisher):
10.4204/EPTCS.246.6

Creative Commons License
CC BY 4.0

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Martins, F., Vasconcelos, V. T., & Hüttel, H. (2017). Inferring types for parallel programs. In V. T. Vasconcelos ,
& P. Haller (Eds.), Proceedings Tenth Workshop on Programming Language Approaches to Concurrency- and
Communication-cEntric Software (Vol. 246, pp. 28-36). Open Publishing Association. Electronic Proceedings in
Theoretical Computer Science, EPTCS Vol. 246 https://doi.org/10.4204/EPTCS.246.6

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: November 30, 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VBN

https://core.ac.uk/display/94571304?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.4204/EPTCS.246.6
https://vbn.aau.dk/en/publications/4cf586e3-928d-4401-b38b-0a7ddb7bb55e
https://doi.org/10.4204/EPTCS.246.6

V.T. Vasconcelos and P. Haller (Eds.): Workshop on Programming Language
Approaches to Concurrency- and Communication-cEntric Software (PLACES’17)
EPTCS 246, 2017, pp. 28–36, doi:10.4204/EPTCS.246.6

c© Martins, Vasconcelos & Hüttel
This work is licensed under the
Creative Commons Attribution License.

Inferring Types for Parallel Programs

Francisco Martins
LaSIGE, Faculty of Sciences, University of Lisbon

Vasco Thudichum Vasconcelos
LaSIGE, Faculty of Sciences, University of Lisbon

Hans Hüttel
Aalborg Universitet

The Message Passing Interface (MPI) framework is widely used in implementing imperative pro-
grams that exhibit a high degree of parallelism. The PARTYPES approach proposes a behavioural
type discipline for MPI-like programs in which a type describes the communication protocol fol-
lowed by the entire program. Well-typed programs are guaranteed to be exempt from deadlocks. In
this paper we describe a type inference algorithm for a subset of the original system; the algorithm
allows to statically extract a type for an MPI program from its source code.

1 Introduction

Message Passing Interface (MPI) has become generally accepted as the standard for implementing mas-
sively parallel programs. An MPI program is composed of a fixed number of processes running in par-
allel, each of which bears a distinct identifier—a rank—and an independent memory. Process behaviour
may depend on the value of the rank. Processes call MPI primitives in order to communicate. Differ-
ent forms of communication are available to processes, including point-to-point message exchanges and
collective operators such as broadcast.

Parallel programs use the primitives provided by MPI by issuing calls to a dedicated application
program interface. As such the level of verification that can be performed at compile time is limited to
that supported by the host language. Programs that compile flawlessly can easily stumble into different
sorts of errors, that may or not may be caught at runtime. Errors include processes that exchange data
of unexpected types or lengths, and processes that enter deadlocked situations. The state of the art on
the verification of MPI programs can only address this challenge partially: techniques based on runtime
verification are as good as the data the programs are run with; strategies based on model checking are
effective only in verifying programs with a very limited number of processes. We refer the reader to
Gopalakrishnan et al. [2] for a discussion on the existing approaches to the verification of MPI programs.

PARTYPES is a type-based methodology for the analysis of C programs that use MPI primitives [7, 9].
Under this approach, a type describes the protocol to be followed by some program. Types include con-
structors for point-to-point messages, e.g. message from to float[], and constructors for collective
operations, e.g. allreduce min integer. Types can be further composed via sequential composition
and primitive recursion, an example being foreach i: 1..9 message 0 i. Datatypes describe values
exchanged in messages and in collective operations, and include integer and float, as well as support
for arrays float[] and for refinement types that equip types with refinement conditions, an example
being {v:integer|v>0}. Index-dependent types allow for protocols to depend on values exchanged in
messages; an example of this is allreduce min x:{v:integer|1<=v<=9}.message 0 x. Our notion
of refinement types is inspired by Xi and Pfenning [11], where datatypes are restricted by indices drawn
from a decidable domain.

http://dx.doi.org/10.4204/EPTCS.246.6
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

F. Martins, V.T. Vasconcelos & H. Hüttel 29

The idea of describing a protocol by means of a type is inspired by multiparty session types (MPST),
introduced by Honda et al. [5]. MPST feature a notion of global types describing, from a all-inclusive
point of view, the interactions all processes engage upon. A projection operation extracts from a global
type the local type of each individual participant. PARTYPES departs from MPST in that it does not
distinguish between local and global types. Instead the notion of types is equipped with a flexible equiv-
alence relation. Projection can be recovered by type equivalence in the presence of knowledge about
process ranks, e.g., rank:{x:integer|x=2} ` message 0 1 integer ≡ skip, where skip describes
the empty interaction.

The type equivalence relation is at the basis of our strategy for type reconstruction:
• We analyse the source code for each individual process, extracting (inferring) for each process a

type that governs that individual process;

• We then gradually merge the thus obtained types, while maintaining type equivalence.
This approach is related to that of Carbone and Montesi [1], where several choreographies are merged
into a single choreography, and to the work of Lange and Scalas [6] where a global type is constructed
from a collection of contracts.

Typable programs are assured to behave as prescribed by the type, exchanging messages and engag-
ing in collective operations as detailed in the type. Moreover, programs that can be typed are assured to
be deadlock free [7]. As such, programs that would otherwise deadlock cannot be typed, implying that
the inference procedure will fail in such cases, rendering the program untypable.

2 The n-body pipeline and its type

We base our presentation on a classical problem on parallel programming. The n-body pipeline computes
the trajectories of n bodies that influence each other through gravitational forces. The algorithm computes
the forces between all pairs of bodies, applying a pipeline technique to distribute and balance the work
on a parallel architecture. It then determines the bodies’ positions [4].

The program in Figure 1 implements this algorithm. Each body (henceforth called particle) is rep-
resented by a quadruple of floats consisting of a 3D position and a mass. The program starts by
connecting to the MPI middleware (line 15), and then obtains the number of available processes and
its own process number, which it stores in variables size and rank (lines 16–17). The overall idea of
the program is as follows: (a) each process starts by obtaining a portion of the total number of parti-
cles, MAX_PARTICLES, and computes the trajectories (line 19). Then, (b) each process enters a loop that
computes NUM_ITER discrete steps. In each iteration (c) the algorithm computes the forces between all
pairs of particles. It accomplishes this in two phases: (c.1) compute the forces among its own particles
(lines 22–23), and (c.2) compute the forces between its particles and those from the neighbour processes
(lines 25–36). Towards this end, each process passes particles to the right process and receives new par-
ticles from the left (lines 26–32). Then it compute the forces against the particles received (line 33–34).
After size-1 steps all processes have visited all particles. Then, (d) each process computes the position
of its particles (line 37), which results in the computation of a local time differential (dt_local), and (e)
updates the simulation time (sim_t).

The simulation time is incremented by the minimum of the local time differentials of all processes. In
order to obtain this value, each process calls an MPI_Allreduce operation (line 38). This collective op-
eration takes the contribution of each individual process (dt_local), computes its minimum (MPI_MIN),
and distributes it to all processes (dt). The minimum is then added to the simulation time (line 39). The
program terminates by disconnecting from the MPI middleware (line 41).

30 Inferring Types for Parallel Programs

1 #define MAX_PARTICLES 10000
2 #define NUM_ITER 5000000
3
4 void InitParticles(float* part, float* vel, int npart);
5 float ComputeForces(float* part, float* other_part, float* vel, int npart);
6 float ComputeNewPos(float* part, float* pv, int npart, float);
7
8 int main(int argc,char** argv) {
9 int rank, size, iter, pipe, i;

10 float sim_t, dt, dt_local, max_f, max_f_seg;
11 float particles[MAX_PARTICLES * 4]; /* Particles on all nodes */
12 float pv[MAX_PARTICLES * 6]; /* Particle velocity */
13 float send_parts[MAX_PARTICLES * 4], recv_parts[MAX_PARTICLES * 4]; /* Particles from other processes */
14
15 MPI_Init(&argc, &argv);
16 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
17 MPI_Comm_size(MPI_COMM_WORLD, &size);
18
19 InitParticles(particles, pv, MAX_PARTICLES / size);
20 sim_t = 0.0f;
21 for (iter = 1; iter <= NUM_ITER; iter++) {
22 max_f_seg = ComputeForces(particles, particles, pv, MAX_PARTICLES / size);
23 memcpy(send_parts, particles, MAX_PARTICLES / size * 4);
24 if (max_f_seg > max_f) max_f = max_f_seg;
25 for (pipe = 0; pipe < size - 1; pipe++) {
26 if (rank == 0) {
27 MPI_Send(send_parts, MAX_PARTICLES / size * 4, MPI_FLOAT, rank == size - 1 ? 0 : rank + 1, ...);
28 MPI_Recv(recv_parts, MAX_PARTICLES / size * 4, MPI_FLOAT, rank == 0 ? size - 1 : rank -1, ...);
29 } else {
30 MPI_Recv(recv_parts, MAX_PARTICLES / size * 4, MPI_FLOAT, rank == 0 ? size - 1 : rank -1, ...);
31 MPI_Send(send_parts, MAX_PARTICLES / size * 4, MPI_FLOAT, rank == size - 1 ? 0 : rank + 1, ...);
32 }
33 max_f_seg = ComputeForces(particles, recv_parts, pv, MAX_PARTICLES / size);
34 if (max_f_seg > max_f) max_f = max_f_seg;
35 memcpy(send_parts, recv_parts, MAX_PARTICLES / size * 4);
36 }
37 dt_local = ComputeNewPos(particles, pv, MAX_PARTICLES / size, max_f);
38 MPI_Allreduce(&dt, &dt_local, 1, MPI_FLOAT, MPI_MIN, ...);
39 sim_t += dt;
40 }
41 MPI_Finalize();
42 return 0;
43 }

Figure 1: Excerpt of an MPI program for the n-body pipeline problem (adapted from [3])

Communication is performed on a ring communication topology. The conditional statement within
the loop (lines 26–32) breaks the communication circularity. Because operations MPI_Send and MPI_Recv

implement synchronous message passing, a completely symmetrical solution would lead to a deadlock
with all processes trying to send messages and no process ready to receive.

From this discussion it should be easy to see that the communication behaviour of 3-body pipeline
can be described by the protocol (or type) in Figure 2. The rest of this abstract describes a method to
infer the type in Figure 2 from the source code in Figure 1.

3 The problem of type inference

Given a parallel program P composed of n processes (or expressions) e0, . . . ,en−1, we would like to find
a common type that types each process ei, or else to decide there is no such type. We assume that size
is the only free variable in processes, so that the typing context only needs an entry for this variable.
We are then interested in a context where size is equal to n, which we write as size : {x : int | x = n} and
abbreviate to Γn. Our type inference problem is then to find a type T such that Γn ` ei : T , or else decide
that there is no such type.

F. Martins, V.T. Vasconcelos & H. Hüttel 31

1 foreach iter: 1..5000000
2 foreach pipe: 1..2
3 message 0 1 float[1000000 / 3 * 4];
4 message 1 2 float[1000000 / 3 * 4];
5 message 2 0 float[1000000 / 3 * 4]
6 allreduce min float

Figure 2: Protocol for the parallel n-body algorithm with three processes

We propose approaching the problem in two steps:

1. From the source code ei of each individual process extract a type Ti such that Γn ` ei : Ti;

2. From types T0, . . . ,Tn−1 look for a type T that is equal to all such types, that is, Γn ` Ti ≡ T .

Then, from these two results, we conclude that Γn ` ei : T , hence that Γn ` P : T , as required.
We approach the first step in a fairly standard way:

• Given an expression ei, collect a system of equations Di over datatypes and a type Ui;

• Solve Di to obtain a substitution σi. We then have Γn ` ei : Uiσi, as required for the first phase. If
there is no such substitution, then ei is not typable.

For this step we introduce variables over datatypes. Then we visit the syntax tree of each process
and, guided by the typing rules [7], collect restrictions (in the form of a set of equations over datatypes)
and a type for the expression. We need rules for expressions, index terms (the arithmetic in types), and
propositions. We omit the rules for extracting a system of equations and a type from a given expression.
Based on the works by Vazou et al. [10] and Rondon et al. [8], we expect the problem of solving a system
of datatype equations to be decidable.

We address the second step in more detail. The goal is to build a type T from types T0, . . . ,Tn−1. We
start by selecting some type Ti and merge it with some other type Tj (for i 6= j) to obtain a new type. The
thus obtained type is then merged with another type Tk (k 6= j, i), and so forth. The result of merging
all the types is the sought type T . The original inference problem has no solution if one of the merge
operations fail.

4 Merging types

We give an intuitive overview of the merge operation, discuss its rules and apply them to our running
example. The intuition behind the merge operator is the following:

• messages must be matched exactly once by the sender and the receiver processes (the two end-
points of the communication);

• collective operations (allreduce, for example) establish horizontal synchronisation lines among
all processes, meaning that all processes must perform all communications (collective or not)
before the synchronisation line, carry out the collective operation, and then proceed with the re-
mainder of the protocol.

Having this in mind, the merge rules make sure that collective operations match each other and that
messages are paired together before and after each collective operation.

The merge operation receives a typing context Γ, the type merged so far T , the type to be merged U
and its rank k, to yield a new type V . We write all this as follows Γ ` T ‖k U V . The typing context

32 Inferring Types for Parallel Programs

Γ ` skip ‖k skip skip (skip-skip)

Γ ` i3, i4 6= k true
Γ ` skip ‖k message i3 i4 D skip

(skip-msgS)

Γ ` i1, i2 6= rank∧ i3, i4 6= k true
Γ ` message i1 i2 D1 ‖k message i3 i4 D2 skip

(msgS-msgS)

Γ ` (i1 = rank∨ i2 = rank)∧ i1, i2 6= k true
Γ ` message i1 i2 D1 ‖k skip message i1 i2 D1

(msg-skip)

Γ ` i3, i4 6= rank∧ (i3 = k∨ i4 = k) true
Γ ` skip ‖k message i3 i4 D2 message i3 i4 D2

(skip-msg)

Γ ` (i1 = rank∨ i2 = rank)∧ (i3 = k∨ i4 = k)∧ i1 = i3∧ i2 = i4 true Γ ` D1 ≡ D2 : dtype
Γ ` message i1 i2 D1 ‖k message i3 i4 D2 message i1 i2 D1

(msg-msg-eq)

Γ ` (i1 = rank∨ i2 = rank)∧ (i3 = k∨ i4 = k)∧ i1 6= i4∧ i2 6= i3 true
Γ ` message i1 i2 D1 ‖k message i3 i4 D2 message i3 i4 D2;message i1 i2 D1

(msg-msg-right)

Γ ` D1 ≡ D2 : dtype Γ,x : D1 ` T1 ‖k T2 T3

Γ ` allreduce x : D1. T1 ‖k allreduce x : D2. T2 allreduce x : D1. T3
(allred-allred)

Γ ` i1 = i2∧ i′1 = i′2 true Γ,x : {y : int | i1 ≤ y≤ i′1} ` T1 ‖k T2 T3

Γ ` foreach x : i1..i′1.T1 ‖k foreach x : i2..i′2.T2 foreach x : i1..i′1.T3
(foreach-foreach)

Γ ` T1 ‖k T3 T5 Γ ` T2 ‖k T4 T6

Γ ` T1;T2 ‖k T3;T4 T5;T6
(seq-seq)

Γ ` (i1 = rank∨ i2 = rank)∧ (i3 = k∨ i4 = k)∧ i1 6= i4∧ i2 6= i3 true Γ ` T1 ‖k message i3 i4 D2;T2 T3

Γ ` message i1 i2 D1;T1 ‖k message i3 i4 D2;T2 message i1 i2 D1;T3
(msgT-msgT-left)

Γ ` skip ‖k message i3 i4 D T2 Γ ` skip ‖k T1 T3

Γ ` skip ‖k message i4 i4 D;T1 T2;T3
(skip-msgT)

Figure 3: Rules defining the merge partial function (excerpt)

contains entries for variables size and rank, the latter recording the ranks whose types have been merged.
This context will then be updated with new entries arising from collective (dependently typed) operations,
such as allreduce. An excerpt of rules defining the merge operation is in Figure 3.

We first discuss merging skip and message types. There are ten different cases that we group into the
five categories detailed below. Notice that a message i1 i2 D1 appearing as the left operand of a merge
is equivalent to skip when both i1 and i2 are different from all ranks merged so far, which we write as
i1, i2 6= rank. Otherwise, when i1 = rank or i2 = rank, the message is the endpoint of a communication
between ranks i1 and i2 that are already merged. When message i3 i4 D2 appears as the right operand of
a merge at rank k it is equivalent to skip when both i3 or i4 are not k, which we abbreviate as i3, i4 6= k.
Otherwise, when i3 = k or i4 = k, the message is the endpoint of a communication with rank k. Rule
names try to capture these concepts. For instance, rule skip-msgS merges skip (left operand) with a

F. Martins, V.T. Vasconcelos & H. Hüttel 33

message (right operand) that is semantically equivalent to skip, whereas rule skip-msg designates the
merging of skip with a message that is not equivalent to skip. We proceed by analysing each category.

merge yields skip. In this case both operands are semantically equivalent to skip. This category com-
prises rules skip-skip, skip-msgS, msgS-skip (not shown), and msgS-msgS. We include the appro-
priate premises for enforcing that one or both parameters are equivalent to skip, depending on the
message being the left or the right operand. For instance, rule skip-skip has no premises, while
rule msgS-msgS includes two premises to make sure that both messages are equivalent to skip.

merge yields the left operand. In this category the left operand is not equivalent to skip, whereas the
right operand is. It encompasses rules msg-skip and msg-msgS (not shown). Apart from the
condition enforcing that the left message is not equivalent to skip (i1 = rank∨ i2 = rank), rank k
being merged must not be the source or the target of the message. Would this be the case and the
program has a deadlock, since the messages on the left talk about rank k (either as a source or a
target) and the type at rank k is skip (or equivalent to it), meaning that the merged messages will
never be matched.

merge yields the right operand. In this case the left operand is semantically equivalent to skip, and
the right operand is not. The category includes rules skip-msg and msgS-msg (not shown). The
message is from or targeted at rank k (i3 = k∨ i4 = k). We also need to check that the other rank of
the message (the source or target that is different from k) is still to be merged (i3, i4 6= rank). Why?
Because otherwise the type of the other endpoint is already merged and is skip (the left operand),
therefore the message at rank k (the right operand, which is not skip) is never going to be matched,
indicating the program has a deadlock.

messages are the endpoints of the same communication. In this category (rule msg-msg-eq) the mes-
sages correspond to the two endpoints of a communication. The result of the merge is the left
operand, which is semantically equivalent to the right one. No message is semantically equivalent
to skip as witnessed by the premises. Additionally we need to check that the source and the target
ranks, as well as the payload, of the two messages coincide.

messages are the endpoints of different communications. This last category includes messages that
are the endpoints of two different communications. The result of the merge is an interleaving of
the messages. The messages are semantically different from skip and are unrelated. The category
includes rules msg-msg-left (not shown) and msg-msg-right. As in the previous category we check
that no message is semantically equivalent to skip. Additionally, we check that the messages do
not interfere, that is, that their ranks are not related. These two rules can be non-deterministically
applied in an appropriate way to match the types.

There are no rules to merge messages against collective operations, since this is not admissible; the
merging of messages against foreach loops is left for future work. Collective operations can only be
merged against each other (cf. rule allred-allred). We omit the rules for other MPI collective operations
for they follow a similar schema. In this paper we only merge foreach loops against foreach loops. Refer
to the next section for a discussion about the challenges on this subject.

The last three rules apply to the sequential composition of types: rule seq-seq allows for types to
be split at the sequential operator (;) and merged separately; rules msgT-msgT-left and msgT-msgT-right
(not shown) allow for the non-deterministic ordering of unrelated messages, as described for rules msg-
msg-left and msg-msg-right, but here at the level of the sequential composition of types. The last rule
allows for messages after the last collective communication (if any) to be merged. For the sake of brevity,
we also omit rules for the sequential composition of skip types.

34 Inferring Types for Parallel Programs

We now outline how merging works on our running example. Fix size = 3. From the program in
Figure 1 extract size programs, one per rank, in such a way that programs do not mention variable rank.
We leave this to the reader.

Run the first step of our procedure on each program to obtain the three types below, where D is the
datatype float[MAX_PARTICLES / size * 4].

For rank 0:

foreach iter: 1..5000000
foreach pipe: 1..2
message 0 1 D;
message 2 0 D

allreduce min float

For rank 1:

foreach iter: 1..5000000
foreach pipe: 1..2
message 0 1 D;
message 1 2 D

allreduce min float

For rank 2:

foreach iter: 1..5000000
foreach pipe: 1..2
message 1 2 D;
message 2 0 D

allreduce min float

Run the second step as follows. We only show the merging of the various messages; the cases of
foreach and allreduce are of simple application.

We start by taking the type for the process at rank 0 and merge it with that of rank 1. The initial
typing context ∆1 says that the type on the left corresponds to rank 0 in a total of 3, which we write
as size : {x : int | x = 3}, rank : {x : int | x = 0}. Using rules seq-seq, msg-msg-eq, and msg-msg-right we
have:

∆1 `
message 0 1 D; || message 0 1 D;
message 2 0 D || message 1 2 D

1

message 0 1 D;
message 1 2 D;
message 2 0 D

Then we merge the resulting type with that of rank 2. This time we need a typing context ∆2 that
records the fact that the type on the left corresponds to ranks 0 and 1. We write it as size : {x : int |
x = 3}, rank : {x : int | x = 0∨ x = 1}. Using rules msgT-msgT-left, seq-seq, msg-msg-eq (x2), we get:

∆2 `
message 0 1 D; || message 1 2 D;
message 1 2 D; || message 2 0 D
message 2 0 D 2

message 0 1 D;
message 1 2 D;
message 2 0 D

The type obtained is that of Figure 2.

5 Discussion

The procedure outlined in this paper is not complete with respect to the PARTYPES type system [7]. We
discuss some of its shortcomings.

Variables in MPI primitives In order to increase legibility, code that sends messages to the left or to
the right process in a ring topology often declares variables for the effect. The original source code [3]
declares a variable right with value rank == size - 1 ? 0 : rank + 1. The MPI_Send operation in
line 27 is then written as follows:

MPI_Send(sendbuf, MAX_PARTICLES / size * 4, MPI_FLOAT, right, ...);

In this particular case the value of right is computed from the two distinguished PARTYPES variables—
size and rank—and it may not be too difficult to replace right by rank == size - 1 ? 0 : rank + 1

in the type. In general, however, the value of variables such as right may be the result of arbitrarily

F. Martins, V.T. Vasconcelos & H. Hüttel 35

complex computations, thus complicating type inference in step one of our approach. In addition, indices
present in types can only rely on variables whose value is guaranteed to be uniform across all processes.
It may not be simple to decide whether an index falls in this category or not.

Parametric types The type in Figure 2 fixes the number of bodies in the simulation (line 1). The
original source code, however, reads this value from the command line using atoi(argv[1]). The
PARTYPES language includes a dependent product constructor val that allows to describe exactly this
sort of behaviour:

val n: natural.
foreach iter: 1..5000000
foreach pipe: 1..2
message 0 1 float[n / 3 * 4]
...

The PARTYPES verification procedure seeks the help of the user in order to link the value of expression
atoi(argv[1]) in the source code to variable n in the type [7, 9]. When we think of type inference, it
may not be obvious how to resolve this connection during the first step of our proposal.

Type inference and type equivalence PARTYPES comes equipped with a rich type theory, allowing
in particular to write the three messages in the protocol (Figure 2, lines 3–5) in a more compact form:

foreach i: 0..2
message i (i == 2 ? 0 : i + 1) float[n / size * 4]

It is not clear how to compute the more common foreach protocol from the three messages, but this
intensional type is not only more compact but also conductive of further generalisations of the procedure,
as outlined in the next example.

The number of processes is in general not fixed A distinctive feature of PARTYPES—one that takes
it apart from all other approaches to verify MPI-like code—is that verification does not depend on the
number of processes. The approach proposed in this paper, however, requires a fixed number of pro-
cesses, each running a different source code (all of which can nevertheless be obtained from a common
source code, such as that in Figure 1). Then, the first step computes one type per process, and the second
step merges all these types into a single type. The PARTYPES verification procedure allows to check the
program in Figure 1 against a protocol for an arbitrary number of processes (greater than 1), where the
internal loop (lines 2–5) can be written as

foreach pipe: 1..size-1
foreach i: 0..size-1
message i (i + 1 < size ? i + 1 : 0) float[n / size * 4]

The merge algorithm outlined in this paper crucially relies on a fixed number of types, one per process,
and is not clear to us how to relieve this constraint.

One-to-all loops The type presented in the paragraph above contains two foreach loops: the former
corresponds to an actual loop in the source code (lines 23–33), the latter to a conditional (lines 26–32).
By expanding the source code in Figure 1 for each different process rank, the first step of our proposal
extracts types of the same “shape” for all processes, as we have seen in Section 4. Now consider the
following code snippet, where process 0 sends a message to all other processes:

36 Inferring Types for Parallel Programs

if (rank == 0)
for(i = 1; i < size; i++)
MPI_Send(sendbuf, n / size * 4, MPI_FLOAT, i, ...);

else
MPI_Recv(recvbuf, n / size * 4, MPI_FLOAT, 0, ...);

Fixing size == 3 as before, the first phase yields the following types:

foreach i: 1..2 message 0 i float[n * 4] for rank 0,
message 0 1 float[n * 4] for rank 1, and
message 0 2 float[n * 4] for rank 2.

leaving for phase two the difficult problem of merging one foreach type against a series of message
types. When the limits of the foreach loop are constant, we can unfold it and merge the thus obtained
sequence of messages as in Section 4, but this is, in general, not the case.

References
[1] Marco Carbone & Fabrizio Montesi (2012): Merging Multiparty Protocols in Multiparty Choreographies.

In: PLACES, EPTCS 109, pp. 21–27, doi:10.4204/EPTCS.109.4.
[2] Ganesh Gopalakrishnan, Robert M. Kirby, Stephen F. Siegel, Rajeev Thakur, William Gropp, Ewing L. Lusk,

Bronis R. de Supinski, Martin Schulz & Greg Bronevetsky (2011): Formal Analysis of MPI-based Parallel
Programs. Communications of the ACM 54(12), pp. 82–91, doi:10.1145/2043174.2043194.

[3] William Gropp, Ewing Lusk & Anthony Skjellum (1999): Using MPI (2nd Ed.): Portable Parallel Program-
ming with the Message-passing Interface. MIT Press.

[4] Per Brinch Hansen (1991): The N-Body Pipeline. Electrical Engineering and Computer Science Technical
Reports Paper 120, College of Engineering and Computer Science, Syracuse University.

[5] Kohei Honda, Nobuko Yoshida & Marco Carbone (2016): Multiparty Asynchronous Session Types. J. ACM
63(1), pp. 9:1–9:67, doi:10.1145/2827695.

[6] Julien Lange & Alceste Scalas (2013): Choreography Synthesis as Contract Agreement. In: ICE, EPTCS
131, pp. 52–67, doi:10.4204/EPTCS.131.6.

[7] Hugo A. López, Eduardo R. B. Marques, Francisco Martins, Nicholas Ng, César Santos, Vasco Thudichum
Vasconcelos & Nobuko Yoshida (2015): Protocol-based Verification of Message-passing Parallel Programs.
In: OOPSLA, ACM, pp. 280–298, doi:10.1145/2814270.2814302.

[8] Patrick Maxim Rondon, Ming Kawaguchi & Ranjit Jhala (2008): Liquid Types. In: POPL, ACM, pp. 159–
169, doi:10.1145/1375581.1375602.

[9] Vasco Thudichum Vasconcelos, Francisco Martins, Eduardo R. B. Marques, Nobuko Yoshida & Nicholas
Ng (2017): Behavioural Types: From Theory to Practice, chapter Deductive Verification of MPI Protocols.
River Publishers.

[10] Niki Vazou, Patrick Maxim Rondon & Ranjit Jhala (2013): Abstract Refinement Types. In: Programming
Languages and Systems - 22nd European Symposium on Programming, ESOP 2013, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24,
2013. Proceedings, LNCS 7792, Springer, pp. 209–228, doi:10.1007/978-3-642-37036-6_13.

[11] Hongwei Xi & Frank Pfenning (1999): Dependent Types in Practical Programming. In: POPL, ACM, pp.
214–227, doi:10.1145/292540.292560.

http://dx.doi.org/10.4204/EPTCS.109.4
http://dx.doi.org/10.1145/2043174.2043194
http://dx.doi.org/10.1145/2827695
http://dx.doi.org/10.4204/EPTCS.131.6
http://dx.doi.org/10.1145/2814270.2814302
http://dx.doi.org/10.1145/1375581.1375602
http://dx.doi.org/10.1007/978-3-642-37036-6_13
http://dx.doi.org/10.1145/292540.292560

	1 Introduction
	2 The n-body pipeline and its type
	3 The problem of type inference
	4 Merging types
	5 Discussion

