Aalborg Universitet

AALBORG UNIVERSITY

Periodically Swapping Modulation (PSM) Strategy for Three-Level (TL) DC/DC Converters With Balanced Switch Currents

Liu, Dong; Deng, Fujin; Zhang, Qi; Chen, Zhe

Published in:
IEEE Transactions on Industrial Electronics

DOI (link to publication from Publisher):
10.1109/TIE.2017.2714125

Publication date:
2018

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Liu, D., Deng, F., Zhang, Q., \& Chen, Z. (2018). Periodically Swapping Modulation (PSM) Strategy for ThreeLevel (TL) DC/DC Converters With Balanced Switch Currents. IEEE Transactions on Industrial Electronics, 65(1), 412-423. [7946257]. https://doi.org/10.1109/TIE.2017.2714125

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
? You may not further distribute the material or use it for any profit-making activity or commercial gain
? You may freely distribute the URL identifying the publication in the public portal ?

Periodically Swapping Modulation (PSM) Strategy for Three-Level (TL) DC/DC Converters with Balanced Switch Currents

Dong Liu, Student Member, IEEE, Fujin Deng, Member, IEEE, Qi Zhang, Member, IEEE and Zhe Chen, Senior Member, IEEE

Abstract

The asymmetrical modulation strategy is widely used in various types of three-level (TL) DC/DC converters, while the current imbalance among the power switches is one of the important issues. In this paper, a novel periodically swapping modulation (PSM) strategy is proposed for balancing the power switches' currents in various types of TL DC/DC converters. In the proposed PSM strategy, the driving signals of the switch pairs are swapped periodically, which guarantees that the currents through the power switches are kept balanced in every two switching periods. Therefore, the proposed PSM strategy can effectively improve the reliability of the converter by balancing the power losses and thermal stresses among the power switches. The operation principle and performances of the proposed PSM strategy are analyzed in detail. Finally, the simulation and experimental results are presented to verify the proposed modulation strategy.

Index Terms- DC/DC converter, periodically swapping modulation (PSM), three-level (TL).

I. INTRODUCTION

The three-level (TL) DC/DC converter is attractive for the high input voltage applications [1-5] because the power switches only need to withstand half of the input voltage in the TL DC/DC converter. In [6], the TL circuit structure was firstly applied into the DC/DC converter. Based on the conventional TL DC/DC converter in [6], many studies about the TL DC/DC converter have been carried out [7-12]. In [7], a zero-voltage and zero-current switching TL DC/DC converter was proposed, in which a flying capacitor in the primary side was added to make the phase-shift control strategy applicable in the TL DC/DC converter. Based on [7], an auxiliary circuit was added in the secondary side to reduce

[^0]the circulating current [8]. A new TL DC/DC converter composed of one TL leg and one two-level leg was proposed in [9] for the high power applications. Reference [10] proposed a zero-voltage switching (ZVS) DC/DC converter with two TL circuits sharing the same power switches, which can reduce the current stresses on the transformer windings and output rectifiers. In [11], a zero-voltage and zero currentswitching TL DC/DC converter combining a TL converter and full-bridge converter was proposed to reduce the output filter inductance. In addition, a hybrid TL DC/DC converter composed of a full-bridge TL converter and a half-bridge TL converter was proposed to extend the ZVS range in [12]. In order to achieve soft switching for the converter's efficiency improvement, the phase-shift control strategy is utilized in the above various types of TL D/DC converters [6-12].

The asymmetrical modulation strategy is another modulation strategy, which is also widely used in various types of TL DC/DC converters [13-16]. In [13], a TL DC/DC converter based on the flying capacitor was proposed, which features with the simple and compact circuit structure. A new TL DC/DC converter with two transformers was proposed in [14] to reduce the current stresses on the transformer windings. Reference [15] proposed a dual half-bridge cascaded TL DC/DC converter, which is composed of two half-bridge cells and two transformers. In addition, a novel four-switch TL DC/DC converter was proposed in [16], which only adds one DC-blocking capacitor but removes two clamped diodes in comparison with the conventional TL DC/DC converter [6]. The asymmetrical modulation strategy realizes the soft switching for the above various types of TL DC/DC converters [13-16]. However, there is one important issue about the conventional asymmetrical modulation strategy that the currents through the primary power switches are imbalanced.

Many studies have been carried recently on the TL DC/DC converters, which mainly focus on the topics of extending the soft switching range [17], [18], reducing the circulating currents [19], and balancing the voltages on the input capacitors [20], [21]. However, until now there are few studies discussing about such current imbalance of the primary power switches in the TL DC/DC converters under the conventional asymmetrical modulation strategy, which would affect the reliability of the converter by causing the power loss
imbalance and thermal stress imbalance among the power switches [22], [23].
In this paper, a novel periodically swapping modulation (PSM) strategy is proposed, which can be used for various types of TL DC/DC converter to balance the currents flowing through the power switches. In the proposed modulation strategy, the driving signals of the switch pairs are swapped periodically, which would keep the power switches' currents balanced in every two switching periods. Consequently, the proposed modulation strategy can balance the power losses and thermal stresses among the power switches in the TL DC/DC converter, which can thus improve the reliability of the TL DC/DC converter. In this paper, the four-switch TL DC/DC converter [16] as shown in Fig. 1(a) is selected as a sample to analyze the operation principle and performances of the proposed PSM strategy. The analysis of other types of TL DC/DC converters [13-16] under the proposed modulation strategy is similar to that of the four-switch TL DC/DC converter.
This paper is organized as follows. Section II analyzes the power switches' current imbalance issue under the conventional modulation strategy. Section III introduces the operation principle of the proposed PSM strategy. Section IV analyzes the characteristics and performances of the fourswitch TL DC/DC converter under the proposed modulation strategy in detail. Section V presents the simulation and experimental results to verify the effectiveness and feasibility of the proposed modulation strategy. Finally, the main contributions are summarized in Section VI.

II. Current Imbalance Analysis under CONVENTIONAL ASYMMETRICAL MODULATION Strategy

Figs. 1(a) and 1(b) show the circuit structure of the fourswitch TL DC/DC converter and conventional asymmetrical modulation strategy with the main operation waveforms, respectively. In Fig. 1(a), two input capacitors C_{1} and C_{2} are used to split the input voltage $V_{i n}$ into two voltages V_{1} and V_{2}; $S_{1}-S_{4}$ and $D_{1}-D_{4}$ are primary power switches and diodes; T_{r} is the high frequency transformer; L_{r} is the leakage inductance of $T_{r} ; C_{s 1}-C_{s 4}$ are the parasitic capacitors of $S_{1}-S_{4} ; C_{b}$ is the DC-blocking capacitor in the primary side. In the secondary side, there are four rectifier diodes $D_{r 1}-D_{r 4}$, one output filter inductor L_{o}, and one output filter capacitor C_{o}. In Fig. 1(a), i_{p} is the primary current of the transformer $T_{r} ; i_{1}, i_{2}, i_{3}$, and i_{4} are the currents through the primary power devices $\left(S_{1}, D_{1}\right)$, $\left(S_{2}\right.$, $\left.D_{2}\right),\left(S_{3}, D_{3}\right)$, and $\left(S_{4}, D_{4}\right) ; i_{i n}$ is the input current; $i_{c 1}$ and $i_{c 2}$ are the currents flowing through the two input capacitors C_{1} and $C_{2} ; i_{L o}$ is the current through $L_{o} ; V_{c b}$ is the voltage on the DCblocking capacitor $C_{b} ; i_{\mathrm{o}}$ and V_{o} are the output current and output voltage; $V_{a b}$ is the voltage between point a and $b ; n$ is the turns ratio of the transformer T_{r}. In Fig. 1(b), $d_{r v 1}-d_{r v 4}$ are four driving signals of the power switches $S_{1}-S_{4}$, where (S_{1}, S_{2}) and (S_{3}, S_{4}) are complementary switch pairs; d_{1} and d_{2} are duty ratios in one switching period and d_{2} is $1-d_{1}$ if neglecting the dead time. From Fig. 1(b), it can be seen that the currents $\left(i_{1}, i_{3}\right)$ and $\left(i_{2}, i_{4}\right)$ are different because d_{2} is larger
than d_{1}, which would result in the power loss imbalance and thermal stress imbalance among the primary power switches.

(b)

Fig. 1. (a) Circuit Structure of four-switch TL DC/DC converter. (b) Conventional asymmetrical modulation strategy [16] with main operation waveforms.

In order to simplify the analysis about the currents through the four power switches in the four-switch TL DC/DC converter, several assumptions are made that: 1) the inductance of the output filter inductor L_{o} is large enough to be considered as a current source; 2) the power switches $S_{1}-S_{4}$ and diodes $D_{1}-D_{4}$ are ideal; 3) the two input capacitors and DC-blocking capacitor are large enough to be regarded as the constant voltage sources with the value of $V_{i n} / 2$.

From Fig. 1(b), it can be seen that the current pairs (i_{1}, i_{3}) and $\left(i_{2}, i_{4}\right)$ are the same respectively in every switching period. Therefore, only the expressions of the currents i_{1} and i_{2} in one switching period are given as

$$
i_{1}= \begin{cases}-\frac{i_{o}}{n}+\frac{V_{i n}}{2 \cdot L_{r}} \cdot t & {\left[t_{2}-t_{5}\right]} \tag{1}\\ \frac{i_{o}}{n} & {\left[t_{s}-t_{6}\right]}\end{cases}
$$

$$
i_{2}= \begin{cases}\frac{i_{o}}{n} & {\left[t_{0}-t_{2}\right]} \tag{2}\\ -\frac{i_{o}}{n} & {\left[t_{6}-t_{\mathrm{s}}\right]} \\ -\frac{i_{o}}{n}+\frac{V_{\text {in }}}{2 \cdot L_{r}} \cdot t & {\left[t_{\mathrm{s}}-t_{11}\right]} \\ \frac{i_{o}}{n} & {\left[t_{11}-t_{12}\right]}\end{cases}
$$

According to (1) and (2), the root mean square (RMS) values of the currents i_{1}, i_{2}, i_{3}, and i_{4} under the conventional asymmetrical modulation strategy namely $i_{1_{-} r m s_{-}}, i_{2_{2} r m s_{-}}$, $i_{3_{-} r m s_{-} c}$, and $i_{4_{-} r m s_{-}} c$ can be calculated by

$$
\begin{align*}
& i_{1_{-} m s_{-} c}=i_{3_{-} m s_{-} c}=\sqrt{\frac{i_{o}^{2}}{n^{2}} \cdot d_{1}-\frac{8 \cdot L_{-} \cdot i_{o}^{3}}{3 \cdot n^{3} \cdot V_{i n} \cdot T_{s}}} \tag{3}\\
& i_{2_{-} m s_{-c}}=i_{4_{-} m s_{-c} c}=\sqrt{\frac{i_{o}^{2}}{n^{2}} \cdot d_{2}-\frac{8 \cdot L_{r} \cdot i_{o}^{3}}{3 \cdot n^{3} \cdot V_{i n} \cdot T_{s}}} \tag{4}
\end{align*}
$$

From (3) and (4), it can be observed that the RMS values of $\left(i_{1}, i_{3}\right)$ and $\left(i_{2}, i_{4}\right)$ are different because d_{1} and d_{2} are normally different in the asymmetrical modulation strategy [24-26]. This current imbalance would result in the power loss imbalance and thermal stress imbalance among the primary power switches, which would thus affect the converter's reliability.

III. Proposed Periodically Swapping Modulation Strategy

The PSM strategy is proposed for various types of TL DC/DC converters, where the driving signals of the switch pairs are swapped periodically in order to balance the power switches' currents. Fig. 2 shows the proposed PSM for the four-switch TL DC/DC converter configuration, where the main operation waveforms are presented.

The proposed PSM strategy operates by swapping the driving signals of the switching pairs (S_{1}, S_{4}) and (S_{2}, S_{3}) respectively in every switching period to make the currents flowing through the four power switches balanced in every two switching periods as shown in Fig. 2, which means that 1) in the first switching period, the duty ratios of $d_{r v 1}$ and $d_{r v 3}$ are both 0.5 if neglecting the dead time, the duty ratios of $d_{r v 2}$ and $d_{r v 4}$ are both d_{1}; and 2) in the second switching period, the duty ratios of $d_{r v 2}$ and $d_{r v 4}$ are both 0.5 if neglecting the dead time, the duty ratios of $d_{r v 1}$ and $d_{r v 3}$ are both d_{1}. In the real applications, the output voltage V_{o} is controlled by adjusting the duty ratio d_{1}. In the first switching period, the calculated d_{1} is set for the driving signals of the power switches S_{2} and S_{4} and duty ratio 0.5 minus the dead time is set for the driving signals of the power switches S_{1} and S_{3} in the first switching period; contrarily the calculated d_{1} is set for the driving signals of the power switches S_{1} and S_{3} and duty ratio 0.5 minus the dead time is set for the driving signals of the power switches S_{2} and S_{4} in the second switching period. The duty ratio d_{1} calculated by the control loop would be changed in every two switching periods to adjust the output voltage V_{o} in the steady operations.

Fig. 3 shows the equivalent circuits to explain the operation principle of the proposed PSM strategy presented in Fig. 2.

Stage 1 [before t_{2}] Before t_{2}, the circuit works at a freewheeling mode with the primary current i_{p} flowing through L_{r}, $S_{2}, C_{2}, D_{4}, C_{b}$, and T_{r} as shown in Fig. 3(a). During this stage, the primary current i_{p} is kept at $-i_{o} / n$. The currents on (S_{1}, D_{1}) and $\left(S_{3}, D_{3}\right)$, which are i_{1} and i_{3}, are both 0 A .

Stage $2\left[t_{2}-t_{3}\right]$ At t_{2}, the switch S_{2} is turned off. Then, the capacitor $C_{s 2}$ starts to charge, and the capacitor $C_{s 1}$ begins to discharge. This stage would finish until that the voltage on $C_{s 2}$ increases to $V_{\text {in }} / 2$ and the voltage on $C_{s 1}$ decreases to 0 V . In addition, the primary current i_{p} begins to increase, and there is no enough primary power to provide the output power, so the four output rectifier diodes $D_{r 1}-D_{r 4}$ conduct simultaneously.

Fig. 2. Proposed periodically swapping modulation (PSM) strategy with main operation waveforms.

Fig. 3. Equivalent circuits in the first switching period. (a) [before t2]. (b) [t2-t3]. (c) [t3-t5]. (d) [t5-t6]. (e) [t6-t7]. (f) [t7-t8]. (g) [t8-t9]. (h) [t9$\mathrm{t} 10]$. (i) [t10-t12]. (j) [t12-t13]. (k) [t13-t14]. (l) [t14-t15]. (m) [t15-t16].

Stage $3\left[t_{3}-t_{5}\right]$ At t_{3}, the voltage on $C_{s 1}$ decreases to 0 V , then the diode D_{1} begins to conduct. Therefore, the switches S_{1} and S_{4} can be turned on at zero-voltage at the time t_{4}. The primary current i_{p} would flow through $L_{r}, D_{1}, C_{1}, C_{2}, D_{4}, C_{b}$, and T_{r}.

Stage $4\left[t_{5}-t_{6}\right]$ At t_{5}, the primary current i_{p} increases to 0 A , then the direction of i_{p} begins to change. During this stage, the primary current i_{p} would increase linearly and flow through L_{r}, $T_{r}, C_{b}, S_{4}, C_{1}, C_{2}$, and S_{1} as shown in Fig. 3(d).
Stage $5\left[t_{6}-t_{7}\right]$ At t_{6}, the primary current i_{p} increases to i_{o} / n, then $D_{r 2}$ and $D_{r 3}$ turn off and the input power begins to be transferred to the output through $T_{r}, D_{r 1}$, and $D_{r 4}$. During this stage, the primary current i_{p} would be kept at i_{o} / n; the currents i_{1} and i_{4} are both i_{o} / n; and the currents i_{2} and i_{3} are both 0 A .

Stage $6\left[t_{7}-t_{8}\right]$ At t_{7}, the switch S_{4} is turned off. The capacitor $C_{s 4}$ starts to charge, and the capacitor $C_{s 3}$ begins to discharge. This stage would finish until the voltage on $C_{s 4}$ increases to $V_{\text {in }} / 2$ and the voltage on $C_{s 3}$ decreases to 0 V .

Stage $7\left[t_{8}-t_{9}\right]$ At t_{8}, the voltage on $C_{s 3}$ decreases to 0 V , then the diode D_{3} begins to conduct. During this stage, the circuit operates at a free-wheeling mode with the primary current i_{p} flowing through $L_{r}, T_{r}, C_{b}, D_{3}, C_{1}$, and S_{1} as shown in Fig. 3(g).

Stage $8\left[t_{9}-t_{10}\right]$ At t_{9}, the switch S_{1} is turned off. Then, the capacitor $C_{s 1}$ starts to charge, and the capacitor $C_{s 2}$ begins to discharge. This stage would finish until that the voltage on $C_{s 1}$ increases to $V_{i n} / 2$ and the voltage on $C_{s 2}$ decreases to 0 V . The primary current i_{p} starts to decrease, and there is no enough primary power to provide the output power, so the four output rectifier diodes $D_{r 1}-D_{r 4}$ conduct simultaneously.

Stage $9\left[t_{10}-t_{12}\right]$ At t_{10}, the voltage on $C_{s 2}$ decreases to 0 V , then the diode D_{2} begins to conduct. Therefore, the switches S_{2} and S_{3} are turned on at zero-voltage at t_{11}. The primary current i_{p} flows through $L_{r}, T_{r}, C_{b}, D_{3}$, and D_{2} as shown in Fig. 3(i).

Stage $10\left[t_{12}-t_{13}\right]$ At t_{12}, the primary current i_{p} decreases to 0 A , then the direction of primary current i_{p} begins to change. During this stage, the primary current i_{p} would decrease linearly and flow through $L_{r}, S_{2}, S_{3}, C_{b}$, and T_{r}.

Stage $11\left[t_{13}-t_{14}\right]$ At t_{13}, the primary current i_{p} decreases to $-i_{o} / n$, then $D_{r 1}$ and $D_{r 4}$ turn off and the power from C_{b} is transferred to the output through $T_{r}, D_{r 2}$, and $D_{r 3}$. During this stage, the primary current i_{p} would be kept at $-i_{o} / \mathrm{n}$; the currents i_{2} and i_{3} are both i_{o} / n; and the currents i_{1} and i_{4} are both 0 A .

Stage $12\left[t_{14}-t_{15}\right]$ At t_{14}, the switch S_{2} is turned off. Then, the capacitor $C_{s 2}$ starts to charge, and the capacitor $C_{s 1}$ begins to discharge. This stage would finish until that the voltage on $C_{s 2}$ increases to $V_{i n} / 2$ and the voltage on $C_{s 1}$ decreases to 0 V .

Stage $13\left[t_{15}-t_{16}\right]$ At t_{15}, the voltage on $C_{s 1}$ decreases to 0 V , then the diode D_{1} begins to conduct. During this stage, the circuit operates at a free-wheeling mode with the primary current i_{p} flowing through $L_{r}, D_{1}, C_{1}, S_{3}, C_{b}$, and T_{r} as shown in Fig. 3(m).

At t_{16}, the switch S_{3} is turned off, then the second switching period $\left[t_{16}-t_{30}\right]$ starts. The following work operations are similar to the fist switching period, which is not repeated here.

IV. Characteristic Analysis of Proposed Modulation Strategy

In the proposed PSM strategy shown in Fig. 2, the driving signals of the power switches in the first switching period and driving signals of the power switches in the second switching period can be regarded as two separate modulation modes named mode I and II. These two modes can be used independently to control the converter, which both have the same characteristics and performances including duty cycle loss, output voltage characteristic, primary voltage, and primary current as that under the conventional modulation strategy. The main difference between these two modes is the power switches' currents $i_{1}-i_{4}$, so the PSM strategy is proposed to balance the currents $i_{1}-i_{4}$ by swapping these two modes.

A. Duty Cycle Loss

In Fig. 2, $\left[t_{2}-t_{6}\right],\left[t_{9}-t_{13}\right],\left[t_{16}-t_{20}\right]$ and $\left[t_{23}-t_{27}\right]$ are the time periods of the duty cycle losses in the two switching periods, which can be calculated by

$$
\begin{equation*}
t_{6}-t_{2}=t_{13}-t_{9}=t_{20}-t_{16}=t_{27}-t_{23}=\frac{4 \cdot L_{r} \cdot i_{o}}{n \cdot V_{m 0}} \tag{5}
\end{equation*}
$$

According to (5), the duty cycle loss $d_{\text {loss }}$ in one switching period as shown in Fig. 2 can be obtained by

$$
\begin{equation*}
d_{\text {bas }}=\frac{t_{6}-t_{2}}{T_{s}}=\frac{t_{13}-t_{s}}{T_{s}}=\frac{t_{20}-t_{16}}{T_{s}}=\frac{t_{22}-t_{23}}{T_{s}}=\frac{4 \cdot L_{r} \cdot i_{o}}{n \cdot V_{i n} \cdot T_{s}} \tag{6}
\end{equation*}
$$

B. Output Characteristic

Considering the duty cycle loss, the average output voltage V_{o} can be calculated by

$$
\begin{equation*}
V_{o}=\frac{V_{i n}}{n} \cdot\left(d_{1}-d_{\text {loss }}\right)=\frac{V_{i n}}{n} \cdot\left(d_{1}-\frac{4 \cdot L_{r} \cdot i_{o}}{n \cdot V_{i n} \cdot T_{s}}\right) \tag{7}
\end{equation*}
$$

According to (7), the duty ratio d_{1} can be given by

$$
\begin{equation*}
d_{1}=\frac{V_{o} \cdot n}{V_{s}}+\frac{4 \cdot L_{r} \cdot i_{o}}{n \cdot V_{t_{n}} \cdot T_{s}} \tag{8}
\end{equation*}
$$

C. Currents through Primary Power Switches

From Fig. 2, it can be seen that the currents i_{1}, i_{2}, i_{3}, and i_{4} are the same in every two switching periods. Therefore, only the expression of the current i_{1} in two switching periods is given as (9). According to (9), the RMS values of the currents i_{1}, i_{2}, i_{3}, and i_{4} under the proposed PSM strategy namely $i_{1_{-} r m s p}, i_{2_{-} r m s, p}, i_{3_{-} r m s p}$, and $i_{4_{-} r m s p}$ can be calculated by (10).

$$
\begin{align*}
& i_{1}= \begin{cases}-\frac{i_{o}}{n}+\frac{V_{i n}}{2 \cdot L_{r}} \cdot t & {\left[t_{2}-t_{6}\right]} \\
\frac{i_{o}}{n} & {\left[t_{6}-t_{9}\right]} \\
-\frac{i_{o}}{n} & {\left[t_{14}-t_{16}\right]} \\
-\frac{i_{o}}{n}+\frac{V_{i n}}{2 \cdot L_{r}} \cdot t & {\left[t_{16}-t_{20}\right]} \\
\frac{i_{o}}{n} & {\left[t_{20}-t_{21}\right]}\end{cases} \tag{9}\\
& i_{1_{1-r m s_{-} p}=i_{2_{-r m s-p}}=i_{3_{-} r m s_{-} p}=i_{4_{-} r m s_{-} p}=\sqrt{\frac{i_{o}^{2}}{2 \cdot n^{2}}-\frac{8 \cdot L_{r} \cdot i_{o}^{3}}{3 \cdot n^{3} \cdot V_{i n} \cdot T_{s}}}} \tag{10}
\end{align*}
$$

Normally, there are mainly two types of widely used power switches in the industrial applications, which are MOSFET and IGBT for the low power and high power applications respectively. The theoretical waveforms of the currents i_{1}, i_{2}, i_{3}, and i_{4} under the conventional and proposed modulation strategy shown in Fig. 1(b) and Fig. 2 would be the same whether MOSFET or IGBT is used. However, there is one major difference between MOSFET and IGBT that: when the current flow from source to drain and there is a driving voltage, the current would flow through the MOSFET itself instead of the body diode, which have been widely applied in the synchronous rectification; but IGBT do not have this characteristic. Take Fig. 1(b) as an instance, during the time period $\left[t_{1}-t_{2}\right]$, the primary current i_{p} would flow through S_{4} instead of the body diode D_{4} because there is the driving voltage on S_{4} if MOSFET is used for S_{4}; contrarily the primary current i_{p} could only flow through the body diode (or paralleled diode) D_{4} during the time period [$t_{1}-t_{2}$] even there is the driving voltage on S_{4} if IGBT is used for S_{4}. In addition, the RMS and average value of the currents on the power switches $S_{1}, S_{2}, S_{3}, S_{4}$ and average values of the currents on the body diodes (or paralleled diodes) $D_{1}, D_{2}, D_{3}, D_{4}$ are imbalanced under the conventional modulation strategy but balanced under the proposed modulation strategy, and they are different between using MOSFET and IGBT, whose related calculation equations are listed in Tables III and IV in the Appendix.

D. Currents and Voltages on Two Input Capacitors

In order to simplify the following analysis, one assumption is made that the input current $i_{\text {in }}$ is constant due to the effect
from the output inductance of the input power supplier and inductance of the input line. According to Fig. 2, if neglecting the duty cycle loss, the RMS values of the currents through the two input capacitors under the proposed modulation strategy namely $i_{c 1_{-r m s} p}$ and $i_{c 2_{2} r m s _p}$ can be obtained by

$$
\begin{equation*}
i_{c 1_{-} r m s_{-} p}=i_{c 2_{-} m s_{-} p}=\sqrt{i_{i n}{ }^{2}+\frac{i_{o}{ }^{2}}{2 \cdot n^{2}}-\frac{2 \cdot i_{i n} \cdot i_{o} \cdot d_{1}}{n}} \tag{11}
\end{equation*}
$$

According to Fig. 1(b), the RMS values of the currents through the two input capacitors under the conventional modulation strategy namely $i_{c 1_{\text {_rms }} c}$ and $i_{c 2_{\text {_rms }}}$ can be obtained by (12) and (13) if neglecting the duty cycle loss.

$$
\begin{align*}
& i_{c 1_{-} r m s_{-} c}=\sqrt{i_{i n}{ }^{2}+\frac{i_{o}{ }^{2} \cdot d_{1}}{n^{2}}-\frac{2 \cdot i_{i n} \cdot i_{o} \cdot d_{1}}{n}} \tag{12}\\
& i_{c 2_{-} m s_{-} c}=\sqrt{i_{i n}{ }^{2}+\frac{i_{o}{ }^{2} \cdot d_{2}}{n^{2}}-\frac{2 \cdot i_{i n} \cdot i_{o} \cdot d_{1}}{n}} \tag{13}
\end{align*}
$$

From (11) - (13), it can observed that the currents on the two input capacitor are difference because d_{1} and d_{2} are different under the conventional asymmetrical modulation strategy, but the currents on the two input capacitors would be balanced under the proposed PSM strategy.
If the driving signals of the primary power switches in second switching period (modulation mode II) shown in Fig. 2 is used independently to control the converter, the currents on the power devices ($i_{1}-i_{4}$) and two input capacitors ($i_{c 1}, i_{c 2}$), and the ripple voltages on the two input capacitors (V_{1}, V_{2}) would be the same as that under the conventional asymmetrical modulation strategy. Therefore, the maximum voltage ripples on the two input capacitor $\left(V_{1}, V_{2}\right)$ in the steady operations are the same under the conventional and proposed modulation strategy because the proposed PSM strategy operates by swapping the modulation mode I (first switching period) and II (second switching period).

E. ZVS Achievement Conditions

Before discussing the conditions of the ZVS achievement, one assumption is made that the four power switches $S_{1}-S_{4}$ have the same parasitic capacitors namely C_{s}.

$$
\begin{equation*}
C_{s 1}=C_{s 2}=C_{s 3}=C_{s 4}=C_{s} \tag{14}
\end{equation*}
$$

In the first switching period, in order to ensure S_{3} or S_{4} realizing zero-voltage switch-on, the energy E_{1} is needed to fully discharge the parasitic capacitor of the in-coming switch and charge the parasitic capacitor of the out-going switch, whose expression can be given by (15). The energy to achieve zero-voltage switch-on for S_{3} and S_{4} is provided by both the output filter inductance and leakage inductance of the transformer. Normally, the output filter inductance is large enough to realize the zero-voltage switch-on for S_{3} and S_{4} even at light load.

$$
\begin{equation*}
E_{1}=\frac{1}{2} \cdot C_{s 3} \cdot\left(\frac{V_{i n}}{2}\right)^{2}+\frac{1}{2} \cdot C_{s 4} \cdot\left(\frac{V_{i n}}{2}\right)^{2}=\frac{1}{4} \cdot C_{s} \cdot V_{i n}^{2} \tag{15}
\end{equation*}
$$

The energy E_{2} from the leakage inductance of the transformer is used to achieve zero-voltage switch-on of switches S_{1} and S_{2}. In order to achieve the zero-voltage switch-on of S_{1} or S_{2}, the energy E_{2} should satisfy the requirement (16) to fully discharge the parasitic capacitor of the in-coming switch and charge the parasitic capacitor of the
out-going switch. The switches S_{1} and S_{2} are more difficult to achieve zero-voltage switch-on than the switches S_{3} and S_{4} since the leakage inductance L_{r} is quite smaller than the reflected output filter inductance.

$$
\begin{equation*}
E_{2}=\frac{1}{2} \cdot L_{r} \cdot\left(\frac{i_{o}}{n}\right)^{2} \geq \frac{1}{2} \cdot C_{s 1} \cdot\left(\frac{V_{i n}}{2}\right)^{2}+\frac{1}{2} \cdot C_{s 2} \cdot\left(\frac{V_{i n}}{2}\right)^{2}=\frac{1}{4} \cdot C_{s} \cdot V_{i n}^{2} \tag{16}
\end{equation*}
$$

In the second switching period, the energy from both the output filter inductance and leakage inductance of the transformer is provided for the switches S_{1} and S_{2} to realize the zero-voltage switch-on, and the energy from the leakage inductance of the transformer is provided for the switches S_{3} and S_{4} to achieve the zero-voltage switch-on, which is just contrary to that in the first switching period. The requirements to achieve ZVS in the second switching period is similar to that in the first switching period, which is not repeated here.

F. Duty Cycle Limitation and Dead time Design

In the proposed PSM strategy, the duty ratio d_{1} shown in Fig. 2 should be smaller than 0.5 minus dead time to avoid the short connection of C_{1} and C_{2} via conducting the switch pairs (S_{1}, S_{2}) and (S_{3}, S_{4}) simultaneously. In addition, The dead time $T_{\text {dead }}$ of the switch pairs $\left(S_{1}, S_{2}\right)$ and $\left(S_{3}, S_{4}\right)$ must be also set in the real applications to avoid the short connection of C_{1} and C_{2} via conducting the switch pairs $\left(S_{1}, S_{2}\right)$ and $\left(S_{3}, S_{4}\right)$ simultaneously, whose value can be calculated by (17) if neglecting the parasitic capacitor of the transformer [27].

$$
\begin{equation*}
T_{\text {dead }} \geq \frac{\pi}{2} \cdot \sqrt{2 \cdot L_{r} \cdot C_{o(r r)}} \tag{17}
\end{equation*}
$$

in which $C_{o(t r)}$ is the effective output capacitance of the switch.

V. Simulation and Experimental Verification

A. Simulation Verification

A simulation model is built in PLECS to verify the proposed PSM strategy, whose circuit parameters are listed in Appendix. In the simulation, the input voltage $V_{i n}$ is 4 kV , the output voltage V_{o} is 400 V , and the output current i_{o} is 100 A .

(b)

Fig. 4. Simulation results ($V_{i n}=4 \mathrm{kV}, V_{o}=400 \mathrm{~V}$, and $i_{o}=100 \mathrm{~A}$). (a) Conventional asymmetrical modulation strategy. (b) Proposed modulation strategy.

Fig. 4 shows the simulation results under the conventional and proposed modulation strategy, respectively. The RMS values of the currents i_{1} and i_{3} are 25.7 A , and the RMS values of the currents i_{2} and i_{4} are 49.3 A under the conventional modulation strategy as shown in Fig. 4(a). However, the RMS values of i_{1}, i_{2}, i_{3}, and i_{4} are all 39.3 A under the proposed modulation strategy as shown in Fig. 4(b).

B. Experimental Verification

In order to verify the proposed PSM strategy, a 1 kW experimental prototype is established, which is controlled by dSPACE and whose circuit parameters are listed in the Appendix. Fig. 5 shows the hardware of the established experimental prototype. In the following experimental tests, a single proportional-integral (PI) control loop is used to control the output voltage V_{o} by adjusting the duty ratio d_{1} shown in Fig. 2.

Fig. 5. Hardware of 1 kW established experimental prototype.
Fig. 6 presents the control block, in which $V_{\text {ref }}$ is the reference value of the output voltage V_{o}. Fig. 7 shows the experimental results including $V_{a b}, V_{o}, i_{o}$, and i_{p} when the output power P_{o} is 1 kW , the input voltage $V_{\text {in }}$ is 550 V , and the output voltage V_{o} is 50 V . From Fig. 7, it can be observed that primary voltage $V_{a b}$ and primary current i_{p} are almost the same under the conventional and proposed modulation strategy.

Fig. 6. Control block of the proposed PSM strategy.

Fig. 7. Experimental results including $V_{a b}, V_{o}, i_{o}$, and $i_{p}\left(V_{i n}=550 \mathrm{~V}, V_{o}\right.$ $=50 \mathrm{~V}$, and $P_{o}=1 \mathrm{~kW}$). (a) Conventional asymmetrical modulation strategy. (b) Proposed modulation strategy.

Figs. 8 and 9 show the experimental results about the currents i_{1}, i_{2}, i_{3}, and i_{4} under the conventional and proposed
modulation strategy. When using the conventional modulation strategy, the RMS values of i_{1}, i_{2}, i_{3}, and i_{4} are $2.05 \mathrm{~A}, 3.10 \mathrm{~A}$, 2.08 A , and 3.12 A under 500 W and $3.86 \mathrm{~A}, 5.63 \mathrm{~A}, 3.79 \mathrm{~A}$, and 5.59 A under 1 kW as shown in Figs. 8(a) and 9(a). By utilizing the proposed modulation strategy, the currents flowing through the four power switches are kept balanced in every two switching periods as shown in Figs. 8(b) and 9(b), whose RMS values are $2.57 \mathrm{~A}, 2.61 \mathrm{~A}, 2.58 \mathrm{~A}$, and 2.64 A under 500 W and $4.75 \mathrm{~A}, 4.76 \mathrm{~A}, 4.68 \mathrm{~A}$, and 4.73 A under 1 kW .

Fig. 10 shows the experimentally measured RMS values of i_{1}, i_{2}, i_{3}, and i_{4} under various input voltages when the output voltage V_{o} is 50 V and output power P_{o} is 1 kW . From Fig. 10, it can be seen that 1) the RMS values of i_{1}, i_{2}, i_{3}, and i_{4} are imbalanced under the conventional asymmetrical modulation strategy; 2) with the input voltage increasing, the RMS values of i_{1}, i_{3} decrease and the RMS values of i_{2}, i_{4} increase. Therefore, the current imbalance between the RMS values of $\left(i_{1}, i_{3}\right)$, and (i_{2}, i_{4}) would become larger under the conventional asymmetrical modulation strategy, and the biggest difference reaches 1.84 A when the input voltage increases to 550 V ; 3) under the proposed PSM strategy, the RMS values of i_{1}, i_{2}, i_{3}, and i_{4} have a slight increasing along with the input voltage increasing and range between the RMS values of (i_{1}, i_{3}), and (i_{2}, i_{4}) under the conventional asymmetrical modulation strategy; and 4) the experimental results about the currents i_{1} i_{4} are consistent with the above theoretical analysis. Based on the experimental results shown in Fig. 10, it can be concluded that the current imbalance among the power switches caused by the conventional asymmetrical modulation strategy can be eliminated by utilizing the proposed modulation strategy.

(b)

Fig. 8. Experimental results about currents i_{1}, i_{2}, i_{3}, and $i_{4}\left(V_{i n}=550 \mathrm{~V}\right.$, $V_{o}=50 \mathrm{~V}$, and $P_{o}=500 \mathrm{~W}$). (a) Conventional asymmetrical modulation strategy. (b) Proposed modulation strategy.

(a)

(b)

Fig. 9. Experimental results currents i_{1}, i_{2}, i_{3}, and $i_{4}\left(V_{i n}=550 \mathrm{~V}, V_{o}=\right.$ 50 V , and $P_{\mathrm{o}}=1 \mathrm{~kW}$). (a) Conventional asymmetrical modulation strategy. (b) Proposed modulation strategy.

Fig. 10. Experimentally measured RMS values of i_{1}, i_{2}, i_{3}, and i_{4} under various input voltages ($P_{o}=1 \mathrm{~kW}$).

Figs. 11 and 12 show the ZVS achievement conditions under the proposed modulation strategy. Fig. 11 shows the primary current i_{p}, driving signal $V_{g s_{-}} S_{1}$, and drain-source voltage $V_{d s-} S_{1}$ of the power switch S_{1} under 500 W and 1 kW , which illustrates that S_{1} realizes ZVS and its voltage stress is about half of the input voltage. In Fig. 11, the energy from the leakage inductance of the transformer is provided for S_{1} to achieve the zero-voltage switch-on at Area 1, the energy from both the output filter inductance and leakage inductance of the transformer is provided for S_{1} to realize the zero-voltage switch-on at Area 2. Fig. 12 shows the primary current i_{p}, driving signal $V_{g s_{-}} S_{3}$, and drain-source voltage $V_{d s_{-}} S_{3}$ of the power switch S_{3} under 500 W and 1 kW , which demonstrates that S_{3} realizes ZVS and its voltage stress is about half of the input voltage. In Fig. 12, the energy from both the output filter inductance and leakage inductance of the transformer is provided for S_{3} to achieve the zero-voltage switch-on at Area 1, the energy from the leakage inductance of the transformer is provided for S_{3} to realize the zero-voltage switch-on at Area 2.

(b)

Fig. 11. Driving signal and drain-source voltage of switch S_{1}, and primary current i_{p}. (a) $V_{i n}=550 \mathrm{~V}, V_{o}=50 \mathrm{~V}$, and $P_{o}=500 \mathrm{~W}$. (b) $V_{i n}=$ $550 \mathrm{~V}, V_{o}=50 \mathrm{~V}$, and $P_{0}=1 \mathrm{~kW}$.

(b)

Fig. 12. Driving signal and drain-source voltage of switch S_{3}, and primary current i_{p}. (a) $V_{i n}=550 \mathrm{~V}, V_{o}=50 \mathrm{~V}$, and $P_{o}=500 \mathrm{~W}$. (b) $V_{\text {in }}=$ $550 \mathrm{~V}, V_{o}=50 \mathrm{~V}$, and $P_{\mathrm{o}}=1 \mathrm{~kW}$.

Figs. 13 and 14 show the dynamic performances, in which the output power changs from 1 kW to 500 W and finally gets back to 1 kW when the input voltage $V_{\text {in }}$ is 550 V and output voltage V_{o} is 50 V . From Fig. 13, it can be seen that the voltages on the two input capacitors V_{1}, V_{2} and the voltage on the DC-blocking capacitor $V_{c b}$ are all constant under the proposed PSM strategy when the load changes. From Fig 14, it can be observed that the dynamic responses of V_{o} (only including AC component) are almost the same with the load changes under the conventional and proposed modulation strategy when using the same PI control loop.

Fig. 13. Dynamic performances under load changes when using proposed modulation strategy ($V_{i n}=550 \mathrm{~V}$ and $V_{o}=50 \mathrm{~V}$).

Fig. 14. Dynamic performances under load changes including V_{o} and $i_{0}\left(V_{i n}=550 \mathrm{~V}\right.$ and $\left.V_{0}=50 \mathrm{~V}\right)$. (a) Conventional asymmetrical modulation strategy. (b) Proposed modulation strategy.

Figs. 15 (a) and 15 (b) show the experimental comparison results about the thermal stresses on the primary power switches between the conventional and proposed modulation strategy in the established experimental prototype. From Fig.

14, it can be observed obviously that 1) the temperatures on the $\left(S_{2}, D_{2}\right)$ and $\left(S_{4}, D_{4}\right)$ are higher than that on the $\left(S_{1}, D_{1}\right)$ and (S_{3}, D_{3}) under the conventional modulation strategy; 2) the temperature on the $\left(S_{1}, D_{1}\right),\left(S_{2}, D_{2}\right),\left(S_{3}, D_{3}\right)$, and $\left(S_{4}, D_{4}\right)$ are almost the same under the proposed PSM strategy; and 3) the maximum temperature on the primary power switches is 34.5 C under the conventional modulation strategy, but the maximum temperature on the primary power switches can be reduced to 29.3 C by utilizing the proposed PSM strategy. In addition, with the output power increasing, the thermal stress imbalance among the primary power devices under the conventional modulation strategy would be more severe.

(a)

(b)

Fig. 15. Experimental comparison results about thermal stresses on the primary power switches ($V_{i n}=550 \mathrm{~V}, V_{o}=50 \mathrm{~V}$, and $P_{o}=1 \mathrm{~kW}$). (a) Conventional asymmetrical modulation strategy. (b) Proposed modulation strategy.

The experimentally measured efficiency curves with various input voltages $(450 \mathrm{~V}, 500 \mathrm{~V}$, and 550 V$)$ are shown in Fig. 16 when the output voltage V_{o} is 50 V . The peak efficiency under the proposed modulation strategy is over 95%. From Fig. 16, it can be observed that the efficiencies under the proposed modulation strategy are slightly lower than that under the conventional modulation strategy, whose reason is that MOSFET is used for the primary power switches in the established experimental prototype. When using MOSFET, the primary current i_{p} flows through the body diodes of the power switches instead of the power switches during the freewheeling time periods under the proposed modulation strategy, which would increase the conduction losses in comparison with the conventional modulation strategy.

Fig. 16. Efficiency curves with various input voltages ($V_{o}=50 \mathrm{~V}$).
According to the circuit parameters of the established experimental prototype and calculation equations (Table IV) in the Appendix, the calculated conduction power losses of the primary power switches are shown in Fig. 17. In Fig. 17, the total conduction power losses of the primary switches under the proposed PSM strategy are 8.44 W , which is slightly higher than that under the conventional modulation strategy (7.67 W) because MOSFET is used for the primary power switches in the established experimental prototype. If IGBT is
used for the power switches when applied in the high voltage and high power applications, the total conduction power losses of the primary power switches and the efficiencies of the converter under the conventional and proposed modulation strategy would be almost the same.

Fig. 17. Calculated conduction power losses of primary power switches $\left(V_{i n}=550 \mathrm{~V}, V_{o}=50 \mathrm{~V}\right.$, and $\left.P_{o}=1 \mathrm{~kW}\right)$. Note: in the calculation, the turn-on resistor of MOSFET $R_{d s_{-} \text {on_mos }}$ is $100 \mathrm{~m} \Omega$, the voltage drop on the body diode V_{f} is 1 V according to the datasheet of SPW47N60C3.

VI. Conclusion

In this paper, a novel periodically swapping modulation strategy (PSM) is proposed for various types of TL DC/DC converters to balance the power switches' currents. The current imbalance issue of the power switches under the conventional asymmetrical modulation strategy is analyzed in detail. After utilizing the proposed modulation strategy, the currents flowing through the power switches can be effectively kept balanced by swapping the driving signals of the switch pairs periodically. Therefore, the proposed modulation strategy can improve the converter's reliability in the aspects of balancing the power losses and thermal stresses among the power switches. Finally, the simulation and experimental results verify the effectiveness and feasibility of the proposed modulation strategy.

APPENDIX

TABLE I PARAMETERS OF SIMULATION MODEL

Description	Parameter
Turns Ratio of Transformer T_{r}	$15: 7$
Leakage Inductance $L_{r}(u \mathrm{H})$	300
Output Filter Capacitor $C_{o}(u \mathrm{~F})$	4700
Output Filter Inductor $L_{o}(u \mathrm{H})$	1500
Input Capacitors C_{1} and $C_{2}(u \mathrm{~F})$	4700
DC-blocking Capacitor $C_{b}(u \mathrm{~F})$	100
Switching Frequency (kHz)	5
Dead Time $(u \mathrm{~s})$	1
TABLE II PARAMETERS OF EXPERIMENTAL PROTOTYPE	
Description	Parameter
Power Switches $S_{1}-S_{4}$	SPW47N60C3
Rectifier Diodes $D_{r 1}-D_{r 4}$	MBR40250TG
Turns Ratio of Transformer T_{r}	$25: 8$
Leakage Inductance L_{r} of $T_{r}(u \mathrm{H})$	20.7
Output Filter Capacitor $C_{o}(u \mathrm{~F})$	470
Output Filter Inductor $L_{o}(u \mathrm{H})$	140
Input Capacitors C_{1} and $C_{2}(u \mathrm{~F})$	11
DC-blocking Capacitor $C_{b}(u \mathrm{~F})$	12
Switching Frequency (kHz)	50
Dead Time (ns)	400

According to Fig. 1(b) and Fig. 2, the average values of the currents on $S_{1}, S_{2}, S_{3}, S_{4}$ (or RMS values of the currents on S_{1}, S_{2}, S_{3}, S_{4}) and average values of the currents on $D_{1}, D_{2}, D_{3}, D_{4}$
are shown in Tables III and IV when using IGBT and MOSFET respectively if neglecting the effect of the parasitic capacitors and dead time.

TABLE III THEORETICAL CACULATION EQUATIONS ABOUT AVERAGE VALUES OF CURRENTS ON $S_{1}-S_{4}$ AND $D_{1}-D_{4}$ (USING IGBT)

IGBT	Conventional modulation strategy	Proposed modulation strategy
Average current of S_{1} and S_{3} $i_{\text {S1\&S3 avg IGBT }}$	$\frac{i}{n} \cdot d_{1}-\frac{3 \cdot L_{r} \cdot i_{o}^{2}}{n^{2} \cdot V_{i n} \cdot T_{s}}$	$\frac{i_{o}}{2 \cdot n} \cdot\left(0.5+d_{1}\right)$
Average current of S_{2} and S_{4} $i_{\text {S2\&S4_avg_IGBT }}$	$\frac{i_{o}}{2 \cdot n}-\frac{3 \cdot L_{r} \cdot i_{o}^{2}}{n^{2} \cdot V_{i n} \cdot T_{s}}$	$-\frac{3 \cdot L_{r} \cdot \dot{i}_{o}{ }^{2}}{n^{2} \cdot V_{i n} \cdot T_{s}}$
$\begin{gathered} \text { Average } \\ \text { current of } D_{1} \\ \text { and } D_{3} \\ i_{D 1 \& D 3 _ \text {avg_IGBT }} \\ \hline \end{gathered}$	$\frac{L_{r} \cdot i_{o}^{2}}{n^{2} \cdot V_{i n} \cdot T_{s}}$	$\frac{i_{o}}{2 \cdot n} \cdot\left(0.5-d_{1}\right)$
Average current of D_{2} and D_{4} $i_{D 2 \& D 4 _ \text {_uv_IGBT }}$	$\begin{aligned} & \frac{i_{o}}{2 \cdot n} \cdot\left(d_{2}-d_{1}\right) \\ & +\frac{L_{r} \cdot i_{o}^{2}}{n^{2} \cdot V_{i n} \cdot T_{s}} \end{aligned}$	$+\frac{L_{r} \cdot i_{o}^{2}}{n^{2} \cdot V_{i n} \cdot T_{s}}$

TABLE IV THEORETICAL CACULATION EQUATIONS ABOUT RMS VALUES OF CURRENTS ON $S_{1}-S_{4}$ AND AVERAGE VALUES OF CURRENTS ON $D_{1}-D_{4}$ (USING MOSFET)

MOSFET	Conventional modulation strategy	Proposed modulation strategy
RMS current of S_{1} and S_{3} $i_{S 1 \& S 3_{\text {_rms_Mos }}}$	$\sqrt{\frac{\frac{i_{o}^{2}}{n^{2}} \cdot d_{1}-\frac{8 \cdot L_{r} \cdot i_{o}^{3}}{3 \cdot n^{3} \cdot V_{i n} \cdot T_{s}}}{}}$	$\sqrt{\frac{i_{o}{ }^{2}}{2 \cdot n^{2}} \cdot\left(0.5+d_{1}\right)}$
RMS current of S_{2} and S_{4} $i_{S 2 \& S 4 _ \text {_ms_Mos }}$	$\sqrt{\frac{i_{o}{ }^{2}}{n^{2}} \cdot d_{2}-\frac{8 \cdot L_{r} \cdot i_{o}{ }^{3}}{3 \cdot n^{3} \cdot V_{i n} \cdot T_{s}}}$	$\sqrt{-\frac{8 \cdot L_{r} \cdot i_{o}^{3}}{3 \cdot n^{3} \cdot V_{i n} \cdot T_{s}}}$
$\begin{gathered} \text { Average } \\ \text { current of } D_{1} \\ \text { and } D_{3} \\ i_{D \mid \& D 3 _ \text {avg_Mos }} \end{gathered}$	0	$\frac{i_{o}}{2 \cdot n} \cdot\left(0.5-d_{1}\right)$
Average current of D_{2} and D_{4} $i_{\text {D2\&D4_avg_Mos }}$	0	
Conduction power losses		

Note: $R_{d s _o n _M o s}$ is the turn-on resistor of MOSFET, and V_{f} is the voltage drop on the body diode.

References

[1] M. Saeedifard, M. Graovac, R. F. Dias, and R. Iravani, "DC power systems: challenges and opportunities," in Proc. IEEE Power Energy Soc. Gen. Meet., 2010, pp. 1-7.
[2] Y. Chen, M. Haj-ahmed, and M. S. Illindala, "An MVDC microgrid for a remote area mine site: Protection, operation and control," in Proc. IEEE IAS Annu. Meet., Oct. 2014, pp. 1-9.
[3] X. Ruan, B. Li, Q. Chen, S. C. Tan, and C.K. Tse, "Fundamental considerations of three-level dc-dc converters: Topologies, analyses, and control," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 11, pp. 3733-3743, Dec. 2008.
[4] K. Jin and X. Ruan, "Hybrid full-bridge three-level LLC resonant converter-a novel DC-DC converter suitable for fuel-cell power system," IEEE Trans. Ind. Electron., vol. 53, no. 5, pp. 1492-1503, 2006.
[5] P. J. Grbovic, P. Delarue, P. Le Moigne, and P. Bartholomeus, "A bi-' directional three-level DC-DC converter for the ultra-capacitor applications," IEEE Trans. Ind. Electron., vol. 57, no. 10, pp. 34153430, Oct. 2010.
[6] J. R. Pinheiro and I. Barbi, "The three-level ZVS PWM converter-A new concept in high-voltage DC-to-DC conversion," in Proc. IEEE Int. Conf. Ind. Electron. Control Instrum. Autom., 1992, pp. 173-178.
[7] F. Canales, P. Barbosa, M. Burdio, and F. Lee, "A zero-voltage switching three-level DC/DC converter," in Proc. 22nd Int. Telecommun. Energy Conf., 2000, pp. 512-517.
[8] F. Canales, P. Barbosa, and F. C. Lee, "A zero-voltage and zero-current switching three-level DC/DC converter," IEEE Trans. Power Electron., vol. 17, no. 6, pp. 898-904, Nov. 2002.
[9] X. Ruan, Z. Chen, and W. Chen, "Zero-voltage-switching PWM hybrid full-bridge three-level converter," IEEE Trans. Power Electron., vol. 20, no. 2, pp. 395-404, Mar. 2005.
[10] B. R. Lin and C. H. Liu, "ZVS DC/DC converter based on two threelevel PWM circuits sharing the same power switches," IEEE Trans. Ind. Electron., vol. 60, no. 10, pp. 4191-4200, Oct. 2013.
[11] F. Liu, J. Yan, and X. Ruan, "Zero-voltage and zero-current-switching PWM combined three-level DC/DC converter," IEEE Trans. Ind. Electron., vol. 57, no. 5, pp. 1644-1654, May 2010.
[12] Y. Shi and X. Yang, "Zero-voltage switching PWM three-level fullbridge DC-DC converter with wide ZVS load range," IEEE Trans. Power Electron., vol. 28, no. 10, pp. 4511-4524, Oct. 2013.
[13] J. S. Lai and F. Z. Peng, "Multilevel converters-A new breed of power converters," IEEE Trans. Ind. Appl., vol. 32, no. 3, pp. 509-517, May/ Jun. 1996.
[14] E. Deschamps and I. Barbi, "A flying-capacitor ZVS PWM 1.5 kW DC-to-DC converter with half of the input voltage across the switches," IEEE Trans. Power Electron., vol. 15, no. 5, pp. 855-860, Sep. 2000.
[15] E. Deschamps, and I. Barbi, "A comparison among three-level ZVSPWM isolated DC-to-DC converters," in Proc. IEEE IECON, 1998, pp.1024-1029.
[16] I. Barbi, R. Gules, R. Redl, and N. O. Sokal, "DC/DC converter: Four switches $\mathrm{V}_{\mathrm{pk}}=\mathrm{V}_{\text {in }} / 2$, capacitive turn-off snubbing, ZV turn-on," IEEE Trans. Power Electron., vol. 19, no. 4, pp. 918-927, Jul. 2004.
[17] Y. Shi, and X. Yang, "Wide range soft switching PWM three-level DCDC converters suitable for industrial applications," IEEE Trans. Power Electron., vol. 29, no. 2, pp. 603-616, Feb. 2014.
[18] Y. Shi, and X. Yang, "Wide load range ZVS three-level dc-dc converter: four primary switches, capacitor clamped, two secondary switches, and smaller output filter volume," IEEE Trans. Power Electron., vol. 31, No. 5, pp. 3431-3443, May. 2016.
[19] Z. Guo, K. Sun, and D. Sha, "Improved ZVS three-level DC-DC converter with reduced circulating loss," IEEE Trans. Power Electron., vol. 31, no. 9, pp. 6394-6404, Dec. 2015.
[20] X. Yu, K. Jin, and Z. Liu, "Capacitor voltage control strategy for halfbridge three-level DC/DC converter," IEEE Trans. Power Electron., vol. 29, no. 4, pp. 1557-1561, Apr. 2014.
[21] B. Lin and S. Zhang, "Analysis and implementation of a three-level hybrid DC-DC converter with the balanced capacitor voltages," IET Power Electron., vol. 9, no. 3, pp. 457-465, Mar. 2016.
[22] T. Bruckner, S. Bernet, and H. Guldner, "The active NPC converter and its loss-balancing control," IEEE Trans. Ind. Electron., vol. 52, no. 3, pp. 855-867, Jun. 2005.
[23] H. Wang, M. Liserre, and F. Blaabjerg, "Toward reliable power electronics: Challenges, design tools, and opportunities," IEEE Ind. Electron. Mag., vol. 7, no. 2, pp. 17-26, Jun. 2013.
[24] P. K. Jain, A. Martin, and G. Edwards, "Asymmetrical pulse-width modulated resonant DC/DC converter topologies," IEEE Trans. Power Electron., vol. 11, no. 3, pp. 413-422, May 1996.
[25] B. R. Lin and C. H. Tseng, "Analysis of parallel-connected asymmetrical soft-switching converter," IEEE Trans. Ind. Electron., vol. 54, no. 3, pp. 1642-1653, May 2009.
[26] S. Zong, H. Luo, W. Li, Y. Deng, and X. He, "Asymmetrical duty cycle controlled LLC resonant converter with equivalent switching frequency doubler," IEEE Trans. Power Electron., vol. 31, no. 7, pp. 4963-4973, Jul. 2016.
[27] Sam A. Rahman, "Design of phase shifted full-bridge converter with current doubler rectifier," Infineon Technol., North America, Jan. 2013, Appl. note.

[^0]: Manuscript received December 22, 2016; revised March 06, 2017, April 06, 2017, and April 25, 2017; accepted May 24, 2017.

 Dong Liu, and Zhe Chen are with the Department of Energy Technology, Aalborg University, Aalborg, 9220 Denmark (email: dli@et.aau.dk, zch@et.aau.dk).

 Fujin Deng is with the School of Electrical Engineering, Southeast University, Nanjing, 210000 China (email: dfjqfa@163.com).

 Qi Zhang is with the Department of Electrical Engineering, Xi'an University of Technology, Xi'an, 710000 China (email: zhangqi_hero@163.com).

