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Abstract

This thesis provides a set of computational methods for analyzing Mil-
ton Babbitt’s (1916–2011) 12-tone serial music and generating novel musical
works in his style. A key component of the proposed methods is their ba-
sis in the actual techniques Babbitt himself used to compose his later works,
supplemented by hypotheses in the form of algorithms regarding the specific
processes that he used to apply these techniques. Two of these techniques,
the all-partition array and time-point system, combine to form the musical sur-
face of many of these works. Considerable attention in this thesis is paid
to the structure found in the all-partition array. The problem of generating
an all-partition array is challenging. However, solving this problem is nec-
essary if one’s aim is to model Babbitt’s compositional process, as it greatly
constrains the many other possible musical parameters in his works. A sig-
nificant contribution of the work presented here is the demonstration that
this problem can be formulated as a special case of the set-covering problem
(SCP), a familiar problem in computer science and operations research. This
thesis presents three methods for generating an all-partition array based on
procedural backtracking with heuristics, integer programming (IP) and con-
straint programing (CP). A solution was found to the smallest instance of this
problem using the proposed CP model. Generating the larger instances of the
all-partition array found in Babbitt’s music remains an unsolved problem. Fi-
nally, a method is proposed for generating from an all-partition array novel
musical works based on the time-point system. This method has been used
to automatically generate a symbolic score representation of a novel work for
flute and string quartet, where the generated parameters of this piece include
pitch, voice, onset, duration, dynamic level and meter. It is precisely because
a computational method has been adopted here that the true difficulty in
understanding Babbitt’s music, his compositional process and the problems
therein have been made clear.
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Resumé

Denne afhandling giver et sæt computerbaserede beregningsmetoder til at
analysere Milton Babbitts (1916–2011) 12-tone seriel musik og generere nye
musikværker i hans stil. Et centralt element ved de givne metoder er deres
basis i de faktiske teknikker Babbitt brugte til at komponere hans senere
musikstykker, suppleret med hypoteser i form af algoritmer vedrørende
de specifikke processer, han brugte, til at anvende disse teknikker. To
af disse teknikker, all-partition array og time-point system, kombineres til at
danne musikken i mange af disse musikstykker. I denne afhandling er der
stort fokus på strukturen, der findes i all-partition arrayet. Problemet med
generering af et all-partition array er udfordrende. Imidlertid er det nød-
vendigt at løse dette problem, hvis målet er at modellere Babbitts komposi-
toriske proces, da det begrænser de mange andre mulige musikalske parame-
tre i hans stykker. Et væsentligt bidrag af arbejdet, der præsenteres her, er
påvisningen af, at dette problem kan formuleres som et specialtilfælde af
set-covering problemet (SCP), et velkendt problem i datalogi og operations-
analyse. Denne afhandling præsenterer tre metoder til generering af et all-
partition array baseret på proceduremæssig backtracking med heuristikker,
integer programmering (IP) og constraint programmering (CP). En løsning
blev fundet til den mindste forekomst af dette problem ved brug af den
foreslåede CP model. Generering af de større forekomster af all-partition
arrays fundet i Babbitts musik er stadig et uløst problem. Endelig foreslås
en metode til at generere nye musikalske stykker fra et all-partition array
baseret på time-point systemet. Denne metode er blevet anvendt til automa-
tisk at generere en symbolsk musikscorerepræsentation af et nyt stykke til
fløjte og strygekvartet. De genererede parametre til dette stykke indeholder
tonehøjde, stemmer, nodestart og -varighed, dynamikker og takt. Det er
netop fordi computerbaserede beregningsmetoder er blevet brugt i denne
afhandling, at den sande sværhedsgrad i at forstå Babbitts musik, hans kom-
positoriske proces og de problemer deri er blevet gjort klar.
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Introduction

This thesis addresses the problem of computational music analysis and gen-
eration of 12-tone music, using the works of the composer Milton Babbitt
(1916–2011) as a case study. Computational music analysis and generation
seeks to understand music, its structure and how it is created through the
use of computers. The field of computer science has produced many power-
ful tools that can assist us in understanding the structure of music. Outside of
this field, however, music-theoretical analysis is the standard method for at-
tempting to understand musical structure. Experimental work in psychology
and neuroscience provides a third approach that sheds light on the cogni-
tive and perceptual processes involved in understanding music. Computer-
generated descriptions of musical structure (i.e., analyses) have the potential
to be both more efficient and more rigorous than those by humans. In tasks
of musical generation, computer models must either learn or be given suf-
ficient knowledge of these descriptions in order to produce output that is
stylistically accurate. In this thesis, the latter strategy will be adopted.

The research presented here draws on methods in music theory, computer
science and music perception to develop methods for analyzing Babbitt’s mu-
sic and generating novel works in his style. A key component of the proposed
methods is their basis in the actual techniques Babbitt himself used to com-
pose his later works, supplemented by hypotheses in the form of algorithms
regarding the specific processes that he used to apply these techniques. It
is precisely because a computational method has been adopted here (and
not, for example, a traditional music-theoretical approach) that the true dif-
ficulty in understanding Babbitt’s music, his compositional process and the
problems therein have been made clear. Section 1 of this thesis introduces
previous work in computational music analysis and generation, including
different approaches and existing algorithms as well as a brief discussion of
how previous approaches have been evaluated. Section 2 provides a short
introduction to work on music perception and cognition. Section 3 provides
an introduction to 12-tone and serial music. Section 4 provides an intro-
duction to Babbitt’s compositional process and two of his techniques—the
all-partition array and time-point system, which are discussed extensively
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throughout this thesis. Section 5 provides a brief overview of what little
computational work has been done previously on Babbitt’s music. Section 6
provides an overview of the papers in Part II which collectively present the
proposed computational methods and main contribution of this thesis.

1 Computational Music Analysis and Generation

There exist many computer tools for assisting humans in analyzing and com-
posing music (e.g., Humdrum (Huron, 1997), Max/MSP (Puckette, 2002), Su-
perCollider (McCartney, 2002) OpenMusic (Assayag et al., 1999), and AC
Toolbox (Berg, 2011)). These tools are used by music theorists and composers
in what has been called computer-aided algorithmic composition (CAAC) (Ariza,
2005). However, such tools require human intervention and are generally
not capable of automating the complex processes involved in computing an
analysis of a work or generating a novel piece of music (Fernandez and Vico,
2013). It is important to distinguish these tools from the goals of compu-
tational music analysis and generation and, in particular, the goals of this
thesis, which seek to automate these processes of analyzing and composing
music.

Within computational music analysis and generation, there are a number
of both interesting and difficult computational problems, including composer
recognition (Velarde et al., 2016), pattern finding (Meredith, 2015), automated
expressive performance (Herwaarden et al., 2014), automatic harmonic anal-
ysis (Cambouropoulos et al., 2014) and polyphonic music generation (Cope,
1987; Ebcioğlu, 1987; Herremans and Sörensen, 2013). Many computational
methods have been used to solve these problems, including Markov chains
(Pearce, 2005), Bayesian statistical models (Temperley, 2009), machine learn-
ing methods (Dubnov et al., 2003; Herwaarden et al., 2014), as well as some
constraint and optimization models (Laurson and Kuuskankare, 2001; Tanaka
and Fujii, 2015). This section focuses on some of these methods in compu-
tational musicology as applied specifically to the problem of analyzing and
generating the pitch structures found in music, as these will be of most im-
portance to the work presented in this thesis.

1.1 Algorithms for Tonal Music Analysis and Generation

The constituent characteristics of music—pitch, timbre, key, harmony, dy-
namics, rhythm, meter and tempo—serve as focal points of research by com-
putational musicologists. There are numerous algorithms capable of com-
puting analyses by identifying many of these basic structural components
given an encoding of a work’s musical surface (e.g., Cambouropoulos, 2008;
Chew, 2014; Meredith et al., 2002; Temperley, 2001, 2007). Similarly, there are

4



1. Computational Music Analysis and Generation

a number of proposed algorithms for generating these structures (Conklin,
2013; Pearce, 2005). However, musical structures involving strict or approx-
imate repetition, that can be so generalized to comprise phrases, melodies,
chord progressions, etc., require algorithms capable of broader scope and
application.

Computational approaches to the analysis and generation of musical
structure can be broadly divided into three categories: algorithmic, statis-
tical and mathematical. Naturally, on some level, methods in each of these
three categories rely on algorithms for their implementation. An algorithmic
approach, however, refers to the sole use of algorithms which make no use
of methods from either of the other two categories. Methods used in both
algorithmic and statistical approaches must either learn or be given sufficient
knowledge in order to produce a desired output. When learning from musi-
cal data, algorithmic and statistical approaches typically do so in one of two
ways: unsupervised or supervised learning. In the former, an algorithm is
given no initial assumptions regarding its data and is expected to bootstrap
the desired output—that is, learn the structure of this data directly; while in
the latter, an algorithm is provided with the desired output to its data and is
expected to learn the rule which maps this input to its output. When learning
is not a necessary component of some method, an algorithm is given explicit
knowledge or rules regarding acceptable outputs. Algorithmic or statisti-
cal approaches may make use of explicit knowledge in this way, however, it
is a necessary component of mathematical approaches. Thus, mathematical
approaches are wholly distinct from learning and are non-statistical.1 This
thesis relies on a non-statistical algorithmic approach to music analysis and a
combined algorithmic and mathematical approach to music generation which
is neither learning nor statistical.

1.1.1 Algorithmic approaches

While algorithmic approaches to detecting, for example, tonality and key in
tonal music have been some of the most enduring (Chew, 2014; Longuet-
Higgins and Steedman, 1971), algorithmic approaches to the analysis of
higher-level structures such as melody, pattern and segmentation are equally
as important (Cambouropoulos, 2001; Meredith et al., 2003). In recent
years, pattern-finding algorithms based on unsupervised learning using non-
statistical methods such as COSIATEC (Meredith et al., 2003), SIATECCom-
press (Meredith, 2013) and Forth’s (2012) algorithm, have demonstrated suc-
cess in producing exhaustive analyses of music that agree, to some extent,
with analyses by human experts. All of these algorithms are greedy approxi-

1In a limited sense, the process of mathematical optimization “learns" something of its input
data, however, unlike a machine learning system which must optimize some parameters in order
to learn, this knowledge is not generalizable to new instances of data.
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mation algorithms, based on the earlier SIA and SIATEC algorithms (Mered-
ith et al., 2002), that aim to compute compressed encodings of point-set rep-
resentations of music. These compressed encodings take the form of sets
of translational equivalence classes (TECs) of maximal translatable patterns
(MTPs) that collectively “cover" all or most of the points in the input dataset.
SIATECCompress, COSIATEC and Forth’s algorithm use different strategies
for isolating more meaningful patterns from others through a heuristic that
considers the amount of compression achievable by a TEC, the compactness
of the MTPs in a TEC, and the amount of music accounted for or covered by
the TEC. These criteria have also been perceptually confirmed (Collins et al.,
2011). When the algorithm finds all meaningful MTPs, it generates as output
a graph of these patterns, the analysis.

1.1.2 Statistical approaches

Additional algorithms based on statistical approaches such as Bayesian prob-
ability (Temperley, 2007), Markov models (Pearce, 2005) and multiple view-
points (Conklin, 2013) have similarly shown success in several musical tasks
of analysis and generation. Moreover, many of these approaches are percep-
tually motivated. A Markov model is a stochastic process represented as a
graph where nodes specify possible values of random variables with edges
corresponding to probability distributions where the transition probability of
a given node, Y, is its conditional probability distribution given the current
state or probability distribution of only the current node, X. A single ran-
dom walk through this graph is called a Markov chain. A Markov chain for
music generation works by generating, for example, one new musical pitch
at a time, where given the current pitch, future pitches will be condition-
ally independent of past pitches. A multiple viewpoints approach allows for
such a model to consider more attributes in a piece of music than only pitch,
including onset, pitch interval, pitch contour, etc. In music analysis, both
approaches have been used, for example, in style classification tasks (Con-
klin, 2013) and melodic pattern salience (Collins et al., 2011). In contrast to
a Markov chain, a Bayesian probability network is a graph of random variables
with edges specifying conditional dependencies between nodes where the
posterior probability of a given node, Y, is its conditional probability distribu-
tion with the prior probability of all previously visited nodes. Unlike a Markov
chain, a Bayesian probability network for music analysis works by predict-
ing, for example, a next pitch in a melody which is conditionally dependent
on past pitches. In music analysis, this approach has been used in tasks of
modeling the perception of key and meter (Temperley, 2007).

6



1. Computational Music Analysis and Generation

1.1.3 Mathematical approaches

In some special cases, a task of analysis or generation in music can be mod-
eled as a mathematical optimization or constraint satisfaction problem (Russell
and Norvig, 2010). There are a number of programming paradigms for mod-
eling such problems, for example, Integer Programming (IP) and Constraint
Programming (CP), as well as many efficient algorithms and techniques for
solving them (e.g., the Simplex algorithm and constraint propagation). One
benefit of IP and CP, is that they allow for the separation of the formulation
of a problem by users and the development by specialists of an algorithm
for solving it. Compared to approximate computational strategies, such as
genetic algorithms, IP and CP formulations and their solvers are suitable for
searching for solutions that strictly satisfy necessary constraints.

Optimization Problems Using Integer Programming (IP) In an optimiza-
tion problem, an algorithm selects according to some criteria the best element
from possible valid alternatives, typically in the form of maximizing (or mini-
mizing) a real function called the objective function which takes these elements
as input (Cormen et al., 2009, p. 847). In other words, each valid solution to
this type of problem will have an associated value, and the goal of the algo-
rithm is to determine the solution with the best value. Integer programming
(IP) is one example of a paradigm used in optimization problems wherein
variables must be integers and most often, constraints are expressed as linear
equations and inequalities. A classic optimization problem known in com-
puter science and operations research as the set-covering problem (SCP) can
be expressed in a straight-forward way using IP. The set-covering problem re-
quires finding in a finite set, S = {1, 2, . . . , m}, a family, F, of subsets of S,
F = {F1, F2, . . . , Fn}, such that every element of S belongs to at least one sub-
set in F (Cormen et al., 2009, p. 1117). With IP, this problem can be expressed
by defining an m-row, n-column boolean matrix (ai,j), where a covering of the
rows of this matrix is a vector, x, such that xj = 1 if column j occurs in the
solution and xj = 0, if not. Typically, as an optimization problem, the goal
is to minimize the cardinality of the subset of columns in a solution. This is
expressed in IP as a cost, cj, where the task is to

Minimize
n

∑
j=1

cjxj (1)

subject to
n

∑
j=1

ai,jxj ≥ 1, ∀ i = 1, . . . , m (2)

xj ∈ {0, 1}, ∀ j = 1, . . . , n. (3)

IP models have demonstrated success in some musical tasks from melodic
pattern finding and segmentation (Tanaka and Fujii, 2014) to describing large-
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scale form (Tanaka and Fujii, 2015). However, the use of IP applied to tasks
in music is limited.

Constraint Satisfaction Problems Using Constraint Programming (CP) In
contrast to optimization, in a constraint satisfaction problem, an algorithm
attempts to satisfy the constraints governing the states of a set of objects. A
constraint satisfaction problem is a set of variables, {X1, X2, . . . , Xn} and a set
of constraints, {C1, C2, . . . , Cm} where each variable, Xi, has a non-empty do-
main, Di, of possible values and each constraint, Cj, specifies for some subset
of variables, a relation on the corresponding subset of domains, Dj (Russell
and Norvig, 2010, p. 83). A solution to this problem is an assignment of val-
ues to every variable in which every constraint is satisfied. In a constraint
satisfaction problem, there is typically no objective function and so the goal
of the algorithm is to find any one feasible solution or determine if none ex-
ists (Russell and Norvig, 2010, p. 83). Constraint programming (CP) is one
example of a paradigm for solving such problems where constraints can be
stated as a relation between variables (as just described). Depending on the
type of problem, constraints in CP can be more flexible than in IP, with not
only linear constraints possible (as in IP) but boolean constraints and variable
ranges over non-numeric domains (i.e., symbolic) as well. In recent years, CP
has shown some success in select musical tasks, including orchestration (Car-
pentier et al., 2010) and part writing (Laurson and Kuuskankare, 2001).

How exactly a problem is modeled (i.e., which type of constraints are
used and how many are required, etc.) is one of the most important factors
in either IP or CP in being able to produce a solution using reasonable re-
sources of time and space. A poor model, for example, may contain an order
of magnitude more variables than is required of the problem. With too many
variables, even the most powerful solvers might be unable to solve the prob-
lem. With proper models, both IP and CP offer similarly straightforward
and powerful ways of modeling and solving difficult computational prob-
lems. For this reason, the application of these paradigms to the task of music
generation will be of particular interest in this thesis (see, e.g., Papers D and
E).

1.2 Algorithms for Post-tonal and 12-tone Music Analysis
and Generation

As noted by Cope (2008), “Milton Babbitt’s work with musical set theory
(see Babbitt, 1955, 1960, 1961, 1965), although not in itself actual computer
music analysis, set the stage for an extraordinary number of later programs
based on his computational approach to analyzing post-tonal music" (Cope,
2008, p. 29). Indeed, many of the earliest algorithms for computational music
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1. Computational Music Analysis and Generation

analysis and generation were written exclusively for post-tonal music, pre-
cisely because of its mathematical nature (Alphonce, 1974, 1980; Forte, 1966,
1973; Gill, 1963; Gross, 1975; Hiller and Isaacson, 1959). Most of these algo-
rithms focused on identifying in a piece of music the set-class membership of
collections of pitches (Forte, 1973) and the relationships between these collec-
tions (Alphonce, 1974, 1980; Forte, 1966; Harris and Brinkman, 1989) as well
as more sophisticated approaches to serial analysis (Harris and Brinkman,
1989) and interval counting and rudimentary pattern finding with collections
of fixed size (Gross, 1975).

The importance of post-tonal music to the development of algorithms for
musical generation is clearly reflected in the first computer-generated musical
composition, Illiac Suite (1957), which contained a post-tonal third movement.
In this movement, a number of musical parameters, including rhythm and
dynamics, were generated through the combination of a set of rules and a sta-
tistical Markov chain process. Shortly following the creation of the Illiac Suite,
Gill (1963) devised a strictly rule-based system for generating post-tonal mu-
sic in the style of Schoenberg. The methods devised by Gill’s (1963) work in
fact influenced one of the more important early contributions to tonal-music
generation, namely Ebcioğlu’s (1987) expert system for harmonizing chorales
in the style of Bach.

Some more recent algorithms for tonal music applied to tasks in post-
tonal analysis have emerged, from the analysis of contour (Morris, 1993) to
segmentation (Chew, 2005), voice-leading (Tymoczko, 2011) and pitch-class
set analysis (Cambouropoulos et al., 2014). Moreover, there are now a num-
ber of tools for assisting composers and music theorists in computing, for
example, the normal form of a given set or generating the set-class of a given
12-tone row (Assayag et al., 1999; Berg, 2011). However, the scope of these
tools in larger tasks of analysis (e.g., segmentation, form, etc.) is limited and
they generally are not capable of automating these tasks directly from the
input of the score.

Despite the early prevalence of algorithms for analyzing and generating
post-tonal and 12-tone serial music, almost none have been applied to Bab-
bitt’s music (the single exception being Sward, 1981, discussed in Section 5)
and their current use has since fallen relatively out of favor. To date, the al-
gorithms and programming paradigms described in Section 1.1, for example,
have only been used to analyze or generate music belonging to the domain
of common-practice or tonal music. There is little reason to believe, however,
that these more modern methods, for example IP or CP, could not be used for
other types of music. Indeed, for some smaller, isolated problems in 12-tone
music, such as generating an all-interval series row, CP has been used effec-
tively (Chemillier and Truchet, 2001; Puget and Régin, 2007).2 In this thesis,

2An all-interval series 12-tone row contains every possible interval (e.g., m2, P4, etc.) between
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both IP and CP as well as a backtracking approach with heuristics (similar to
that used in early methods by Ebcioğlu, 1987; Gill, 1963) are applied to the
task of generating Babbitt’s music.

1.3 Evaluating Computational Models of Music

Evaluating either a machine analysis of a work or a machine-generated piece
of music is problematic and this is especially true of post-tonal and 12-tone
music. Machine analyses of tonal music, for example, have typically been
evaluated by using them for classification tasks and by comparing them quan-
titatively with human analyses (Meredith, 2013, 2015; Temperley, 2007). Clas-
sification tasks generally require extensive encodings of works and currently,
there exist very few such encodings of post-tonal or 12-tone music. Com-
paring machine analyses with those of humans encounters a similar lack
of analyses of 12-tone music when compared to, for example, the number
of analyses that exist of Bach’s works. Furthermore, there is generally no
agreed upon “standard analysis" or consensus as to which of these post-tonal
or 12-tone analyses theorists find best. Similar sorts of issues arise in tasks of
machine-generated music as well.

Like their analogues in the tonal domain, evaluating models of 12-
tone style music generation is particularly challenging. So-called “musi-
cal Turing tests" and subjective listener evaluations are frequently employed
(Agres et al., 2016). At best, musically informed observers should be inca-
pable of discriminating between pieces that are generated by such models
and pieces in the styles that these models are intended to simulate. Assess-
ing whether or not such a machine-generated piece of music could have been
composed by a particular composer, however, is also difficult. Asking expert
listeners, for example, whether or not they thought a given piece was com-
posed by this composer would not suffice. This is because the most qualified
individuals to make a reliable assessment (e.g., music theorists and musicol-
ogists) would likely know all of this composer’s compositions, thereby dis-
qualifying their response. Moreover, this says nothing of the possibility that
different experts might have different ideas about what characteristics define
this composer’s music. It would therefore be necessary to frame the question
differently. For example, by instead asking these same individuals who they
think composed the piece. While this approach has never before been tried
with Babbitt’s music, it might, for instance, provide results indicating that the
generated piece is representative enough of Babbitt’s style, however, it would
not indicate whether or not the piece was “good Babbitt". It is important to
note of any computational model for generating music that merely satisfying
the sufficient conditions for what it means of a generated piece to be “in the
style of", for example, Babbitt, does not mean that the necessary conditions

its adjacent pitch classes.
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2. Music Perception and Cognition

for this piece to be “good Babbitt" have also been satisfied. A “good Babbitt"
piece could mean any number of things and would likely be best evaluated
using a combination of tasks, for example, listener experiments as suggested
by Agres et al. (2016) and score analysis by experts. The research presented
in this thesis, however, adopts a different methodology of evaluation, which
is discussed in further detail in Section 6.

2 Music Perception and Cognition

Much work has been done on how humans perceive and cognize the struc-
tures found in music (see, e.g., Huron, 2006; Temperley, 2001). To a large
extent, this research has focused on tonal music and its inherent hierarchy
of pitch (Krumhansl, 1990), wherein some pitches in a scale are perceived to
be more important than others. This pitch hierarchy helps establish a struc-
ture in tonal music that is perceptually coherent and predictable to listeners.
Post-tonal and 12-tone music, on the other hand, generally lack this pitch
hierarchy (Butler, 1990), despite the presence of a tonal center in the works of
some composers of such music (e.g. Perle and Berg). It is precisely this lack
of hierarchy in 12-tone music and how Babbitt sought to, in turn, establish
other organizing principles that might make his music so interesting from a
perceptual point of view.

2.1 Tonal and Common-practice Music

Both musicologists (e.g., Huron and Parncutt, 1993; Meredith, 2012; Tem-
perley, 2001) and psychologists (Deutsch and Feroe, 1981; Krumhansl, 1983;
Shepard, 1982; Simon and Sumner, 1968) have developed theories for de-
scribing aspects of perceived musical structure precisely and parsimoniously.
These models can be characterized as either statistical/probabilistic (e.g.,
Huron, 2006; Krumhansl, 1990; Temperley, 2007), structural or geometric
(e.g., Chew, 2014; Shepard, 1982) or based on coding theories (Deutsch and
Feroe, 1981; Meredith, 2012; Simon and Sumner, 1968). Some of the prob-
abilistic models that have been proposed (e.g., Temperley, 2007) are in the
tradition of the likelihood principle of perceptual organization (Helmholtz,
1910) while other systems, more in the tradition of generative linguistics and
Gestalt psychology (e.g., Deutsch and Feroe, 1981; Lerdahl and Jackendoff,
1983; Lerdahl, 2001), are based on the “minimum" or “simplicity" principle
which can be considered to derive from Koffka’s (1935) law of Prägnanz. The
majority of experimental research has in fact reinforced much of the approach
to analysis by traditional music theorists.
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2.2 Post-tonal and 12-tone Music

Comparatively less psychological research has been done on post-tonal and
12-tone music (Butler, 1990; Dibben, 1990; Krumhansl et al., 1987; Lerdahl,
1989). Primary reasons for this are a relative lack of hierarchical structure in
12-tone music when compared to tonal music (Butler, 1990; Krumhansl et al.,
1987) and a general difficulty among listeners in perceiving the structures
found in 12-tone music (Dibben, 1990; Lerdahl, 1989). This lack of hierar-
chical structure in 12-tone music is a primary motivation for composers to
seek alternative techniques for organizing their music, such as serialism (dis-
cussed in Section 3). With respect to Babbitt’s music, Bernstein (2014) notes
that Babbitt was interested in the perceptual implications of 12-tone music,
particularly, in light of work by Miller (1956). Miller’s work revealed that
the channel capacity with respect to pitch in humans is approximately 2.5
bits, meaning that the maximum number of distinct categories (e.g., different
pitches) that one can recognize in a single perceptual dimension (e.g., pitch)
corresponds to 7± 2. Given the relative difficulty with which individuals are
able to perceive the structures in 12-tone music, Miller’s (1956) notion and
the apparently innate process of grouping or chunking (Trehub and Hannon,
2006) likely had a significant impact on Babbitt’s compositional process and
the techniques he developed for organizing the structure of his works—in
particular, his use of repetition.

2.3 Perceptual Models of Beat and Meter

An important structural component largely shared by both tonal and post-
tonal music is beat and by extension, meter. Perhaps second to pitch, these
are the most commonly studied features in music by psychologists (Povel
and Essens, 1985), musicologists (Hasty, 1999; London, 2004) and those in
the fields of signal processing, information retrieval and machine learning
(Dubnov et al., 2003). Like perceptual models of pitch, models of beat in-
duction and meter can be rule-based (Desain and Honing, 1999; Lee, 1991),
probabilistic (Temperley, 2009) or based on coding theories (Povel and Es-
sens, 1985). Furthermore, such models have demonstrated success in both
the audio and symbolic (e.g., music notation) domains. Of particular impor-
tance to this thesis, are perceptual models of meter based on coding theories
and Part II describes how one such model is used in the analysis of Babbitt’s
music and in particular, his technique of the time-point system (see Paper B).

3 Twelve-tone Music

Post-tonal and 12-tone music arose from progressive extensions to tonal mu-
sic practice that occurred during the later years of the 19th century. At the

12



3. Twelve-tone Music

turn of the 20th century, the so-called Second Viennese School, comprised
most notably of the composers, Berg, Webern and Schoenberg, developed
practices (e.g., lack of hierarchical pitch structure) which led to post-tonal
and later 12-tone music. The structural components of 12-tone music are not
immediately salient in ways that those found in tonal music (e.g., key, func-
tional harmony, etc.) are to the average listener. It is therefore critical to the
understanding of 12-tone music to know the ways in which it is organized
and how these differ from the structures found in tonal music.

3.1 Preliminary Definitions

As is normally done in pitch class set theory, we will denote the 12 musi-
cal pitch classes as integers (mod 12), where C = 0, C# = 1, D = 2, . . .,
B = 11. We use the term aggregate in the sense in which it is usually used
in pitch class set theory to mean the universe of pitch classes—that is, the
set {0, 1, . . . 11}. A tone-row, r = 〈p0, p1, . . . p11〉, is then an ordered set of
pitch classes that contains each element in the universe exactly once—that is,⋃11

i=0{pi} = {0, 1, . . . , 11}. Each tone row belongs to an equivalence class of
rows related by a group of canonical row transformations called prime, in-
version, retrograde (i.e., reversal) and retrograde inversion. Such an equivalence
class is known as a row class and the members of such a row class are called
row forms. Traditionally, a row form is denoted by the transformation that
produces it from the original or prime row form, P0, using the abbreviations
Pn, In, Rn and RIn for transposition, inversion, retrograde and retrograde
inversion, respectively, each with a transposition by n semitones.3 We can
define these canonical row transformations as follows:

Pn(r) =
11⊕

i=0

〈(r[i] + n) mod 12〉 In(r) =
11⊕

i=0

〈(n− r[i]) mod 12〉

Rn(r) =
11⊕

i=0

〈(r[11− i] + n) mod 12〉 RIn(r) =
11⊕

i=0

〈(n− r[11− i]) mod 12〉

where 0 ≤ n ≤ 11 and
⊕

denotes concatenation,
⊕n

i=1〈ai〉 = 〈a1, a2, . . . , an〉.
The universe of tone rows can thus be strictly partitioned into row classes,
each of which is a set of at most 48 distinct row forms that is closed under
the operations {P0, . . . P11, I0, . . . I11, R0, . . . R11, RI0, . . . RI11}.

In Babbitt’s music, additional 12-tone structural components, such as the
array and aggregate partition, figure prominently. An array is a 2d arrangement
of pitch classes—typically formed by concatenations of tone rows (Morris,
1987). When the row forms in such an array are represented using the stan-
dard abbreviations (i.e., Pn, In, Rn and RIn) the array is called a row-form array

3Other transformations exist for defining equivalence classes and include for example, the
M5 and M7 multiplicative transformations.
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Fig. 1: An ordered mosaic (dark grey) in which each of the six ordered sets belongs to a different
tone row in an array.

(Cuciurean, 1997, p. 8). Arrays (and row-form arrays) may be concatenated
with one another from left-to-right and from top-to-bottom.4 An aggregate
partition is an unordered set of disjoint unordered sets whose union is the
aggregate. For example, {{0, 1, 2, 3, 4, 5}, {6, 7, 8, 9, 10, 11}} is one possible ag-
gregate partition. The pitch classes from each set in an aggregate partition
may come from a single tone row or an array. In either a tone row or array,
these sets may appear on the musical surface from left to right (melodically)
or top to bottom (harmonically). In such cases, these sets become ordered.
In order to further distinguish their left-to-right or top-to-bottom order, this
thesis refers to an ordered set of ordered sets containing the aggregate as an
ordered mosaic.5 For example, 〈〈5, 11, 0, 2, 6〉, 〈4, 1, 9, 3〉, 〈7, 8, 10〉〉 is one possi-
ble ordered mosaic. Figure 1 shows an ordered mosaic in which each of the
six ordered sets belongs to a different tone row in an array. Note, in Figure 1,
that the order in which the six ordered sets appear in the ordered mosaic
corresponds to the ordering of the 12-tone rows in which these ordered sets
originate. While various other ways to partition the aggregate appear in the
works of Schoenberg, Berg, Webern, Dallapicolla and others, this represen-
tation (i.e., as an ordered mosaic) is important to the methods proposed in
this thesis. The following sections discuss how the ordered mosaic and other
methods of 12-tone composition were used by Babbitt.

3.2 Serialism and Maximal Diversity

Despite the seemingly strict definitions just given (Section 3.1), the 12-tone
system of composition is largely free. Nonetheless, as Straus attests, its mu-
sic “generally shares two structural features: (1) the aggregate of all twelve
tones as a referential harmonic unit and (2) an ordered succession of tones
as a source of motives, melodies, and harmonies" (Straus, 2009, p. xviii). The
difference between these two features highlights the distinction between tech-

4See Babbitt’s Arie da Capo (1974) and Sheer Pluck (1986) for examples of works in which
concatenated arrays may be found.

5Motivations for adopting the term “ordered mosaic" are provided in Papers B and C in Part
II of this thesis.
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3. Twelve-tone Music

niques of simply composing with twelve tones in (1) and what is known as
serialism in (2).

In serial music, a composer organizes one or more musical parameters
according to some recurring ordered series (Straus, 2009). For example, in
12-tone music this series could be the tone-row permutations found in a row
class. Composers such as Stockhausen, Boulez and Messiaen are all known
for their use of such serial techniques. In many ways, Babbitt’s music is a
continuation of the “composing with twelve tones" (number (1) above) prac-
tices developed by Schoenberg (Straus, 2009, p. 47). However, Babbitt sought
more rigorous ways of organizing his music, developing techniques perhaps
more in line with serialism (number (2) above) for governing the structures
of pitch, rhythm, dynamic level and others.

One important way of characterizing Babbitt’s music is through his use of
what has been called maximal diversity in his application of serial techniques
to all (or nearly all) musical parameters in a piece (Mead, 1994, p. 20). Max-
imal diversity is “an exhaustive completion of a list of possibilities" (Bern-
stein, 2014, p. 13) often manifesting in Babbitt’s works as a presentation of
as many musical parameters in as many different ways as possible. As Bern-
stein (2014) notes, Babbitt was often unable to complete these lists of musical
parameters in his music. Over the years, Babbitt achieved varying degrees
of maximal diversity in his music through a number of techniques of organi-
zation, including the trichordal array, all-partition array and super array (Mead,
1994, pp. 20–38). In many of his works based on, for example, the all-partition
array, Babbitt used this structure in conjunction with additional techniques
such as the duration row or time-point system to further serialize the rhythms
and dynamic levels—often with these rhythmic or dynamic “lists" left in-
complete.6 This thesis argues that this feature of incomplete lists in Babbitt’s
music is a direct result of the consistency with which he adhered to cer-
tain systematic procedures in his compositional process. It is precisely these
constraints then and Babbitt’s refusal to violate them that make his music
and his compositional process particularly suited to computational analysis.
The primary contribution of this thesis—the collection of papers presented
in Part II—focuses on the all-partition array and time-point system, as these
techniques appear in a significant number of Babbitt’s works. A brief intro-
duction to Babbitt’s compositional process and these techniques appears in
the following section (Section 4), with more detailed explanations appearing
in Part II.

6As Bernstein (2014) notes, complete arrays in the pitch domain are often found in Babbitt’s
works with incomplete arrays in the time domain.
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4 Babbitt’s Compositional Process

Babbitt’s music and theoretical writings have had a profound impact on the
composition of modern academic music. For over half a century, his thoughts
regarding 12-tone music and composition, the techniques he developed, and
his philosophy regarding the role of music theory in analysis have been of
considerable interest to music theorists (see, e.g., Bernstein, 2014; Dubiel,
1997; Lake, 1986; Leong and McNutt, 2005; Martino, 1961; Mead, 1984, 1987,
1997). In recent years, the sketches for many of Babbitt’s works have been
made available.7 Researchers are now able to examine many of Babbitt’s con-
tributions, including most importantly, his compositional process in much
greater detail than before. As it turns out, this process that Babbitt devised
for composing his works is highly constrained and as his sketches reveal,
he was rigorous in his application of methodical procedures for satisfying
these constraints. Part II of this thesis provides detail regarding the proce-
dural and mathematical nature of Babbitt’s compositional process while this
section lays the ground work for understanding this process.

4.1 Philosophy

“I like to believe that a not insignificant consequence of the proper
understanding of a proper theory of music is to assure that a com-
poser who asserts something such as: "I don’t compose by system,
but by ear" thereby convicts himself of, at least, an argumentum ad
populum by equating ignorance with freedom, that is, by equating
ignorance of the constraints under which he creates with freedom
from constraints" (Babbitt and Peles, 2003, p. 191). — Milton Bab-
bitt.

Babbitt’s words shown in the quote above are interesting for a number of
reasons. Foremost, it is clear that a keen awareness of the system by which a
composer creates music and its constraints is important. Moreover, the link
between analysis and composition it would seem is inextricable but it is not
clear what a “proper" theory of music would be. He goes on, however, to
state that such a theory would allow one to make “determinate and testable
statements about musical compositions" (Babbitt and Peles, 2003, p. 191) and
elsewhere, states that “a satisfactory theory is a satisfactory explanation of
aspects of the empirical domain with which the theory is concerned" (Bab-
bitt and Peles, 2003, p. 79). Babbitt’s language here is clear and according
to Schuijer (2008), it aligns closely with a philosophical movement in the

7The sketches for many of Babbitt’s works have recently been made available through the Li-
brary of Congress (LLC), https://lccn.loc.gov/2014565648. Excerpts from some of Babbitt’s
sketches may be found in Bernstein (2014).
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4. Babbitt’s Compositional Process

1920s called Logical Positivism which asserts that meaningful statements about
the world must be either analytical or empirically verifiable (Schuijer, 2008,
p. 251). Perhaps Babbitt’s strongest words in support of a theory which ac-
cords with such a world view are made when he suggests that a theory is
a “deductively interrelated system of laws, statable as a connected set of ax-
ioms, definitions, and theorems, the proofs of which are derived by an appro-
priate logic" and that “a musical theory reduces, or should reduce, to such a
formal theory when uninterpreted predicates and operations are substituted
for the terms and operations designating musical observables" (Babbitt and
Peles, 2003, p. 79). In his seminal articles, Babbitt laid the ground work for
a system of 12-tone analysis and composition that is decidedly as rigorous
as his views above (Babbitt, 1955, 1960, 1961, 1962, 1973). For this reason,
Babbitt’s own music is a perfect candidate for examination by computational
methods. In these papers, Babbitt presents both the all-partition array and
the time-point system, which together form the basis upon which many of
his works are constructed. These foundational concepts in his works will
now be discussed in more depth.

4.2 All-partition Array

In an effort to express maximal diversity in his works, Babbitt devised a
compositional structure known as the all-partition array. Construction of an
all-partition array begins with the construction of an I × J array, A, of pitch-
classes, where each ith horizontal sequence of pitch classes or lyne contains
J/12 12-tone rows. A complete all-partition array is a sequence of K ordered
mosaics in A, each representing one of the K distinct ways in which 12 can be
partitioned into I or fewer non-negative summands (e.g., 6 + 6 or 5 + 4 + 3).8

Figure 2 shows an excerpt from an all-partition array with six lynes and the
first three of its ordered mosaics corresponding to three distinct partitions of
12. Below each ordered mosaic in Figure 2 is a short-hand notation used by
music theorists to denote how an aggregate is partitioned. For example, the
notation, 32 22 12, indicates that its ordered mosaic (shown above) contains
two ordered pitch-class sets of length 3, two sets of length 2 and two sets
of length 1. Note that this notation does not specify the order (i.e., lyne) in
which each of these sets appears in the array. An important feature of every
all-partition array is that the number of pitch classes required for its ordered
mosaics exceeds the number of pitch classes in the array A. For example,
a 6× 98 all-partition array contains 576 pitch classes, but must also consist
of 58 ordered mosaics, as there are 58 ways to partition 12 into 6 parts or
fewer. However, 58× 12 = 696 which is 120 more than the number of pitch
classes in the array. Therefore, these missing pitch classes must be found

8This definition of the all-partition array is one proposed in this thesis and differs from that
commonly given by music theorists.
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Fig. 2: An excerpt from an all-partition array with six parts (i.e., lynes) and three of its or-
dered mosaics corresponding to three distinct partitions, 32 22 12, 34 and 6 4 2. Note, this is
the traditional representation used by music theorists, however, it is constructed from the same
underlying array shown in the preferred representation used in this thesis in Figure 1.

by repeating elements in each lyne from one ordered mosaic to the next,
without violating the order of pitch classes in the 12-tone rows from which
each lyne is constructed (Mead, 1994, p. 34). In the third mosaic, shown
in Figure 2, the first pitch class in each segment is a repetition from one of
the previous ordered mosaics: pitch-classes 2 and 6 from the first ordered
mosaic and another pitch-class 4, this time from the second ordered mosaic.
Ensuring that all I × J pitch classes of A are contained by all K ordered
mosaics represented by K distinct partitions, and that all K × 12 − (I × J)
pitch classes required in addition to those in A are horizontal repetitions, is
a difficult task. An all-partition array which satisfies all of these constraints
has been called self-contained (Mead, 1994, p. 218) and few known examples
in Babbitt’s music exist.9

A significant focus of this thesis will be on the difficult problem of gen-
erating self-contained, all-partition arrays (see Papers C, D and E). Indeed,
Babbitt himself was unable to construct a six-part, self-contained all-partition
array.10 For this reason, all of his six-part arrays prior to the early 1980s
are non-self-contained. In a non-self-contained array, the final ordered mo-
saic/partition can not be made to contain 12 distinct pitch classes without
either (1) violating the constraint of horizontal repetitions (described above)
or (2) failing to cover every pitch class in the array (i.e., there will be more
than K× 12 pitch classes). Examples of non-self-contained arrays in Babbitt’s
music may be found in, for example, Arie da Capo (1974) and About Time
(1982). In the early-to-mid 1980s, a student of Babbitt’s named David Smal-

9Mead (1994, p. 36) notes that there are in fact a number of all-partition arrays having distinct
pitch-class organizations but that nonetheless, these are equivalent to one another by simple
transformations (e.g., transposition, inversion or M5 operations.) The sequences of partitions
in each of these arrays, however, are either the same or differ from one another by only a few
partitions.

10David Smalley, personal email communication, February 25, 2015
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4. Babbitt’s Compositional Process

ley created the first self-contained six-part all-partition array. The importance
to Babbitt of a self-contained array is evidenced by the fact that, with one
presently known exception, he continued to use Smalley’s self-contained ar-
ray in all subsequent works based on a six-part array.11 The first time Babbitt
used a Smalley self-contained array in a piece is not known as not all of his
pieces have been analyzed, however, a strong candidate is in his work for
solo guitar entitled Sheer Pluck (1984), which aligns nicely with when it was
discovered.12 The time period in which the self-contained six-part array ap-
pears in Babbitt’s music is important as these arrays are one indicator of his
third-period later works and mature compositional practice, which are the
focus of this thesis. Part II of this thesis (in particular, in Papers C, D and
E), provides a more formal definition of the self-contained all-partition array
as well as a more detailed discussion regarding the importance of the array
to Babbitt’s works, such as how exactly it forms the basis from which many
other parameters of his music (e.g., dynamics and rhythm) are derived.

4.3 Time-point System

Babbitt’s time-point system sought to derive a correspondence between the
12-tone row and time. By replacing the interval of a half-step in a 12-tone
row with a fixed period of time called a unit (Mead, 1987, p. 183), the time-
point intervals (analogous to directed pitch-class intervals) between adjacent
members become lengths of time measured in units rather than pitch in-
tervals measured in semitones. In Babbitt’s later works, the unit used by
Babbitt in his time-point rows is typically a sixteenth note (Bernstein, 2014).
Figure 3 shows an example of a time-point row using a sixteenth note as
the unit and one possible rhythmic representation. Note, in Figure 3, how
time points in a row denote onsets in time corresponding to new rhythmic
events. In Figure 3(b), these rhythmic events have a duration equal to the
inter-onset intervals of each time point. However, Babbitt often sought less
straight-forward rhythmic interpretations for his time-point rows than that
shown in Figure 3(b). In many of his later works based on the all-partition
array, Babbitt constructed his time-point rows from the ordered mosaics in
its underlying array. This process will now be considered in more detail.

11Following the discovery of a self-contained six-part array, Babbitt used a non-self-contained
six-part array in his work, Play it Again, Sam (1989) (Andrew Mead, personal email communi-
cation, January 24, 2016). It is interesting to note of this title that, in addition to its reference to
Woody Allen’s Broadway play of the same name, it may be a clever allusion to Babbitt’s own
return to the use of the non-self-contained array.

12The title of Sheer Pluck is rich with puns and allusions. There are the clear references to
the guitar, with “sheer" alluding to the fact that a performer can do nothing but “pluck" the
instrument. There is also a more obscure reference to a quote by Horatio Alger (Robert Morris,
personal email communication, October 15, 2015). If this piece is indeed Babbitt’s first to use
Smalley’s self-contained array, then its title might be a clever way of suggesting that Smalley’s
discovery of this array was a matter of “sheer luck".
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(a)

(b)

Fig. 3: Members of a time-point row in (a) set against a grid of sixteenth-note units and one
possible rhythmic interpretation of this row in (b) where duration is equal to inter-onset interval.

4.4 Later Works

Both the all-partition array and the time-point system are characteristic of
Babbitt’s later works and he often used the former to derive material for the
latter (Bernstein, 2014). The musical surface of these works is formed by unit-
ing the pitch information specified by a pitch-class row constructed from an
ordered mosaic in an all-partition array with the timing information spec-
ified by some rhythmic interpretation of a time-point row also constructed
from an ordered mosaic from the same all-partition array.13 Most often, pitch
classes from the parts or lynes in an ordered mosaic are distinguished by
register while time points are distinguished by dynamic level (Mead, 1994,
p. 48). Figure 4 shows a possible pitch-class row, (a), and a possible time-
point row, (b) taken from the same ordered mosaic in Babbitt’s None but the
Lonely Flute containing pitch classes distinguished by register and time points
distinguished by dynamic level, respectively. Note, in Figure 4, that both the
pitch-class and time-point rows are constructed from their respective ordered
mosaics by selecting elements in a left-to-right order from each pitch-class
segment (i.e., part or lyne). For example, the two pitch classes, 7, 2, in the
pitch-class row of Figure 4(a), appear in the same order (despite intervening
pitch classes) as the pitch-class segment, 〈7, 2〉, in the ordered mosaic from
which they were constructed. Figure 5 shows the opening of Babbitt’s None
but the Lonely Flute and how the pitch-class row shown in Figure 4(a) and the
rhythmic interpretation of the time-point row shown in Figure 4(b) have been
united to form the musical surface.

A final component of the research presented in this thesis seeks to auto-
mate the process of first constructing pitch-class and time-point rows from
an all-partition array, as shown in Figure 4, and then uniting these to form a

13It is important to note that, in his thesis, the term “row" is used to refer to what music
theorists call a “realization" (Leong and McNutt, 2005). Unless otherwise stated, a “row" here
refers not to some row in a row class but to a linear sequence of pitch classes or time points
(without repetitions) from an ordered mosaic appearing on the musical surface.
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5. Previous Computational Work Related to Babbitt’s Music

(a)

(b)

Fig. 4: Opening pitch-class row in (a) and time-point row in (b) from Babbitt’s None but the
Lonely Flute (right) taken from their respective ordered mosaics (left). Note, in (a) that no time
information is specified and in (b) that no pitch information is specified.

musical surface, as shown in Figure 5. In actuality, the details of this process
prove more challenging both from a musical and computational standpoint
than might at first be expected. The successful automation of this process,
however, is the basis of the proposed model for generating novel musical
works in the style of Babbitt provided in Part II of this thesis (see Paper F).

5 Previous Computational Work Related to Bab-
bitt’s Music

Despite the unusually explicit process by which Babbitt composed much of
his music and its clear mathematical and procedural nature, almost no com-
putational work on his music has been published (Bazelow and Brickle, 1976,
1979; Sward, 1981), despite comments by some suggesting its relevance (Mor-
ris, 2010; Starr and Morris, 1977). This limited computational work on Bab-
bitt’s music can be divided into efforts to either analyze his music or generate
the structures related to those he used to compose his works—that is, not gen-
erate the music itself. It is important to note that at least one composer and
music theorist has claimed to have developed a program to assist with con-
structing and editing all-partition arrays (Morris, 2010). Unfortunately, this
program has not been made publicly available and the details of its design
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Fig. 5: Opening of Babbitt’s None but the Lonely Flute corresponding to the pitch-class and time-
point rows shown in Figure 4. Note, that the vertical dashed line in bar 5 marks the boundary
between the first and second pitch-class rows (and ordered mosaics).

have not been published.14 Of the remaining efforts to generate the struc-
tures in Babbitt’s music that have been published, these have focused on the
so-called combination matrix (CM), a distinct but closely related structure to
the all-partition array, which will be discussed below.

5.1 Analysis of Works

The only publicly available computational analysis of Babbitt’s work, prior
to that presented in this thesis, is that of Sward (1981). In her dissertation,
Sward (1981) presents analyses of excerpts from three early pieces, Three Com-
positions for Piano (1947), String Quartet No. 2 (1954) and Duet (1956). Sward
applies to encodings of these excerpts a set of early algorithms, developed by
Gross (1975), for discovering linear and vertical patterns of specified length.
Gross’ algorithms first catalogue the occurrences of pitch, duration, interval
and dynamics in a piece. Then, by grouping any combination of these fea-
tures, they search for respective matching sequences (Sward, 1981, p. 455).
In her analysis, Sward evaluates these pieces according to two measures that
she calls, unity and variety. Unity is the frequency of repetition of patterns
and variety is the occurrences of different events (Sward, 1981, p. 521). The
results of her findings largely confirm what one might suspect in a 12-tone
system of composition, namely, that occurrences of pitch and interval are
roughly uniform (Sward, 1981, p. 521). However, some interesting results
were revealed in her comparative analysis of works by Xenakis. For example,

14In addition to Morris’s (2010) algorithm, independent researchers, Ken Collins and Bob
Arning, have purportedly developed a recursive algorithm using the Smalltalk programming
language for generating 4, 6 and 12-part all-partition arrays (Ken Collins, personal email
communication, November 30, 2016). Interested readers may write to Ken Collins at “ken-
ncoll123@charter.net".
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5. Previous Computational Work Related to Babbitt’s Music

Fig. 6: A three-row combination matrix (CM) formed from transformations of a given tone row,
y. Note, that each row and column contains 12 distinct pitch classes. (From Starr and Morris,
1977, p. 18.)

non-immediate repetitions of pitch (e.g., C, D, C) occur frequently in Xenakis’
works but not at all in Babbitt’s early pieces. However, repetitions of patterns
for both pitch and duration, in general, appear more frequently in Babbitt’s
music.15 While the works Sward analyzed predate Babbitt’s creation and use
of the all-partition array, her recognition of the applicability of computational
methods to Babbitt’s music are much in line with the work presented in this
thesis.

5.2 Generation of Combination Matrices (CMs)

While not explicitly computational, work by Starr and Morris (1977, 1978)
established a systematic method for constructing structures known as com-
bination matrices (CMs). Combination matrices (CMs) are matrices of pitch
classes with n 12-tone rows and n columns of aggregates containing n2 row
segments (Starr and Morris, 1977). Figure 6 shows one example of a CM. It
is clear in Figure 6 how the columnar aggregates in a CM might prove useful
in the construction of partitions in an all-partition array. In fact, Starr and
Morris (1977, 1978) describe how different partitions in a CM can be found
by swapping pitch classes across column boundaries (Starr and Morris, 1978,
p. 58). The authors do not, however, propose a way for automating this pro-
cess of swapping, despite suggesting this as a possibility (Starr and Morris,
1978, p. 59), nor do they provide a means for ensuring that with each swap,
a different partition will be created—both crucial requirements for automat-
ically generating an all-partition array. Nevertheless, it seems that at least
parts of this process can be automated, as Kowalski (1985) has devised a set
of algorithms for generating CMs. However, these algorithms fall short of
generating an all-partition array.16

Bazelow and Brickle (1976) propose an algorithm for solving what they
call Babbitt’s “Partition Problem". They state this problem as follows: “Given
an array of four forms of an arbitrary twelve-tone set, how many ways can

15Interestingly, Babbitt’s later works contain many non-immediate repetitions. The prevalent
use of both immediate (e.g., C, C) and non-immediate pitch repetitions in these later works may
have been an explicit attempt to facilitate a listener’s ability to cognitively “chunk" his music, as
described in Section 2.2.

16(David Kowalski, personal email communication, February 5, 2017).
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Fig. 7: A solution to Babbitt’s “Partition Problem" using the algorithm proposed by Bazelow and
Brickle (1976).

the array be decomposed entirely into four-part, aggregate forming parti-
tions?" (Bazelow and Brickle, 1976, p. 282). This problem is very similar to
that of constructing a CM and can be viewed as a simplification of a central
problem addressed in this thesis, namely, the generation of an all-partition
array. However, the problem posed by Bazelow and Brickle differs from the
problem in this thesis in four important respects. First, Bazelow and Brickle
(1976) only consider partitions of exactly four parts; whereas, in a four-part
all-partition array, partitions may have four or fewer parts (see the defini-
tion of an all-partition array in Section 4.2). Second, partitions that form a
solution to their problem need not be all different. Third, the repetitions
of pitch classes that must appear in an all-partition array, as shown, for ex-
ample, in Figure 2, are not considered. Finally, any solution must uniformly
decompose its array—that is, partition it into regions that must not overlap;
whereas partitions may overlap under certain conditions in an all-partition
array. That partitions must not form regions that overlap with one another is
a crucial difference between this problem and the problem of generating an
all-partition array as posed in this thesis. Bazelow and Brickle (1976) go on to
lay the groundwork for an algorithm to solve this more simple problem and
Figure 7 shows one solution using their proposed method.

Note that, in Figure 7, each of the four regions expresses the partition,
5421. This particular solution demonstrates a sufficient but not necessary
property of a solution to their problem that they call B-constructible. The
B-constructible property of an array means that it can be uniformly decom-
posed (i.e., partitioned) into four-part, aggregate-forming partitions in which
parts in each partition can be paired into two pairs that each sum to six. For
example, each of the four partitions, 5421, shown in Figure 7, can be paired
into the two pairs, 5 + 1 = 6 and 4 + 2 = 6. As Bazelow and Brickle (1976)
note, it is precisely because this array is B-constructible that its solution splits
the array evenly into two, equally-sized halves (between columns 6 and 7).

The proposed methods for generating an all-partition array presented in
this thesis are not based on any method by either Starr and Morris (1977,
1978) or Kowalski (1985) for constructing CMs, nor are they based on the
algorithm devised by Bazelow and Brickle (1976). The following section of

24



6. Contributions

this thesis, Section 6, provides an overview of these proposed methods and
the primary contributions of each paper that appears in Part II.

6 Contributions

The contribution of this thesis is a set of computational methods for analyz-
ing Babbitt’s music and generating novel musical works in his style. A key
component of the proposed methods is their basis in the actual techniques
Babbitt himself used to compose his later works, supplemented by hypothe-
ses in the form of algorithms regarding the specific processes that he used
to apply these techniques. This thesis does not provide a means for directly
evaluating either the proposed methods or the piece of music generated using
these methods (see Paper F), either through comparisons to human output,
listener ratings or score analysis, as suggested in Section 1.3. Instead, it is
reasonable to suspect that machine-generated music that aims to be in the
style of a composer can be at least partly evaluated based on how well the
process used to create it aligns with the composer’s own. The success of this
particular methodology (and, indeed, whether or not the proposed hypothe-
ses will be supported) depends on the accuracy of the knowledge given to
the machine model. In this thesis, this knowledge is obtained through (1)
extensive readings of Babbitt’s own words regarding his compositional pro-
cess, (2) critical study of manual analyses of his works by both the author and
music theorists in the literature and (3) thorough inspection of the sketches
for his works which are, arguably, the most important source of information
regarding Babbitt’s compositional process.

In the works of most composers, it is not immediately clear how mod-
eling the compositional process would be done. As discussed in Section 4,
however, Babbitt was unusually explicit about the techniques and processes
by which he composed his works, which are inherently mathematical and
procedural in nature. In this respect, his music is therefore, perhaps, less
problematic for examination by computational methods of analysis and gen-
eration, than, for example, tonal music, where the compositional process is
less explicit. Indeed, consider the nuance of many problems in tonal music
such as part writing, where perhaps several musically “correct" answers are
possible at any given point. In contrast, the problem of generating an all-
partition array, for example, is much more well-defined mathematically. As
it turns out, this problem as well as a number of others found in Babbitt’s
compositional process are computationally difficult to solve and it is these
problems posed by the techniques found in his music, discussed in Part II,
that will be the primary focus of this thesis. It is precisely because a compu-
tational method has been adopted here (and not, for example, a traditional
music-theoretical approach) that the real difficulty in understanding Babbitt’s
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music, his compositional process and the problems therein have been made
clear.

In Part II of this thesis, Papers A and B address the problem of analyzing
Babbitt’s music. Paper A provides a method for assessing the structure of
an integral component of Babbitt’s music, the all-partition array. Paper B
presents a heuristic for predicting the time-point rows in Babbitt’s music,
which are responsible for determining the dynamic levels and in part, the
rhythms, in many of his later works. Papers C, D and E address the problem
of generating an all-partition array from a given array of 12-tone rows.
Solving this problem is computationally difficult. Furthermore, few known
solutions exist. Each of these three papers provides a different method for
generating an all-partition array. Paper F provides a model based on the
contributions of Paper B and E for generating from a complete all-partition
array, a novel musical work in the style of Babbitt.

Paper A The first paper in this thesis demonstrates that the problem of
assessing the structure of an all-partition array for its sequence of partitions,
requires solving a special-case of the exact covering problem found in computer
science. The proposed method for solving this problem is a procedural
backtracking algorithm. This algorithm runs from left to right in a given
input with unknown structure and returns a sequence of partitions if the
input is determined to satisfy the criteria of an all-partition array. The paper
concludes by using this algorithm to analyze an existing all-partition array in
Babbitt’s music (found in his work for solo guitar entitled Sheer Pluck (1984))
and its solution is a sequence of compositions (i.e., ordered partitions) which
differs from those that have been found previously in the analyses by music
theorists.

Paper B This paper provides a method for determining the exact number
of possible time-point rows from the ordered mosaics in an all-partition array
and proposes a heuristic based on Rothgeb’s order inversions measure and
Povel and Essens’ clock induction model for predicting from these possible
rows, the actual time-point rows chosen by Babbitt in two of his later works,
None but the Lonely Flute and Around the Horn. The proposed heuristic
hypothesizes that, when choosing time-point rows, Babbitt attempted to
minimize their dissimilarity with the pitch-class rows in a piece and the
amount of counter-evidence they provide against a preselected metrical
beat. Results indicate that, individually, the order inversions measure
performs better than the measure of clock induction at predicting the
time-point rows chosen by Babbitt in these pieces. However, the best overall
predictive performance is achieved by using a weighted combination of
both measures, where in some ordered mosaics, the heuristic was able
to place Babbitt’s chosen time-point row in the top 2 percent of all pos-
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sible rows. The performance of this heuristic across all ordered mosaics
in a piece is slightly better in None but the Lonely Flute than in Around the Horn.

Paper C This paper proposes a procedural backtracking algorithm
(similar to that proposed in Paper A) with two heuristics for generating
from a given 12-tone row, a particular type of all-partition array found in
many of Babbitt’s works, called a Smalley array. Satisfying all the constraints
necessary for constructing a Smalley array is difficult. The two proposed
heuristics guide the algorithm through the search space towards a solution
by selecting partitions that minimize the difference in lyne lengths as
horizontal pitch repetitions are added when constructing the all-partition
array. The proposed algorithm using these heuristics was unable to discover
a solution after 100000 backtracks. This result demonstrates that a significant
drawback to the proposed algorithm is any method of solving from left to
right will make finding the final partition extremely difficult without good
heuristics or some other means for drastically reducing the search space.

UPDATE: As of the submission of this thesis, solutions to the problem
of generating a successful sequence of ordered mosaics each represented
by a distinct partition from both a Smalley array and a non-self-contained
array (found in Babbitt’s About Time), have been found using the proposed
backtracking procedure in Paper C with the addition of hard constraints for
reducing the search space.

Paper D This paper provides an integer programming (IP) model of the
problem of generating from a given array of 12-tone rows, a complete six-part
all-partition array. A significant contribution of this paper demonstrates
that the problem of generating an all-partition array can be formulated as
a special-case of the set-covering problem (SCP) found in computer science
and operations research, by representing the horizontal pitch repetitions
required in an array as overlaps from one region to another. This fundamen-
tally changes the nature of the problem in a way that can now be expressed
as a mathematical problem of covering and not partitioning, as is commonly
thought. The proposed IP model was unable to discover a solution to this
problem, however, solutions to smaller, different-sized instances indicate that
each represents a unique problem space and that, as their size increases, the
solving time grows exponentially.

Paper E This paper provides a constraint programming (CP) model of
the problem of generating from a given array of 12-tone rows, a complete
four-part all-partition array. The focus of this paper is on Babbitt’s smaller,
four-part all-partition arrays and not the larger instances addressed in
Papers C and D. The proposed CP model discovered a solution to this
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problem after implementing a method for dividing its array into two, smaller
instances, solving these and then re-joining them to form a complete solu-
tion. The discovered solution is the first known and published all-partition
array to be generated entirely automatically by computer. Moreover, its
structure differs from those previously discovered by Babbitt and others
using presumably manual methods.

Paper F This paper proposes a method for generating from a completed
all-partition array, music in the style of Babbitt’s later works based on the
time-point system and using what have been called equal-note-value strings.
The proposed method uses the model described in Paper E to generate
an all-partition array and the heuristic presented in Paper B to construct
time-point rows that likely would have been chosen by Babbitt. From
these, the proposed model outputs a sequence of equal-note-value strings
containing pitch repetitions, rests and ties which collectively form the surface
of a generated piece of music. As this model reveals, Babbitt’s method for
constructing equal-note-value strings requires an exhaustive partition of the
pitch-class segments in an all-partition array by the collective sequence of
equal-note-value strings which appear on the musical surface. Discovering
such an exhaustive partition is a difficult computational problem and
severely constrains the equal-note-value strings possible in Babbitt’s music.
Due to this difficulty, the proposed method for solving this problem adopts
a greedy approach which relaxes the constraint for an exhaustive partition.
The paper concludes with a generated piece for string quartet and flute
that is the first-ever automatically generated music in the style of Babbitt.
The generated parameters of this piece include pitch, rhythm (onsets and
durations), voice, dynamic level, and meter.

A significant focus of this thesis is on generating an all-partition array
(see Papers C, D and E). The primary reasons for this are that (1) it is not
entirely clear how Babbitt and others (using presumably manual methods)
have managed to construct an all-partition array, (2) generating this structure
is a computationally difficult combinatorial problem, and (3) this structure
forms the basis from which a number of additional parameters in many of
his pieces are composed. Despite the significant amount of research on Bab-
bitt’s music, there has not been any attempt, beyond the construction of CMs
(described in Section 5.2) to provide an explanation for how an all-partition
array is constructed. It is likely, however, that the method proposed in Pa-
per E of first dividing an array into smaller sections and then solving these
smaller problems is how humans have approached the problem by hand.17

17David Smalley constructed his all-partition array by dividing the whole problem into smaller
sections and solved these smaller problems. (David Smalley, personal email communication,
February 25, 2015).
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7. Conclusion

The research presented in this thesis represents the first published efforts to
automatically generate an all-partition array. Despite these efforts, the prob-
lem largely remains unsolved, having found solutions to only the smallest
instances found in Babbitt’s music (i.e., a four part and six-part array) with
two of the proposed methods. It should be noted, that the proposed meth-
ods have not been used in the larger, 12-part all-partition arrays containing 77
partitions found in Babbitt’s music nor have any arrays not found in Babbitt’s
music been used as the basis for attempting to construct a new all-partition
array.

Most models of music generation undergenerate with respect to the style of
the music they are intended to output—that is, these systems are incapable
of generating one or more structures or characteristics found in the style they
are attempting to model. It is important to note that the model proposed in
this thesis, however, does not undergenerate. The set of algorithms proposed
by the model presented here collectively defines a class of all possible and
“well-formed" pieces in the style of Babbitt according to the structures and
techniques Babbitt himself used to compose his music. This model then gen-
erates as its output, members of this class—a class of which Babbitt’s own
pieces are also members. This is not to say, however, that all the pieces gen-
erated by this model are ones that Babbitt would have found to be “good".
Nonetheless, initial results obtained using this model are promising, both
from an analytical and aural perspective.

7 Conclusion

Over the years, a wide array of algorithms for the analysis and generation
of both tonal and post-tonal music have been proposed. Almost none of
these algorithms, however, have been applied to Babbitt’s music, despite a
mathematical and procedural nature to his compositional process strongly
lending itself to their use. Moreover, despite the vast amount of literature
concerning Babbitt’s works, there remain several gaps in knowledge regard-
ing his music and compositional process that this thesis hopes to fill. In
manual analyses of Babbitt’s works, it is generally sufficient to acknowledge
the type of all-partition array in a given work without exploring, for exam-
ple, how this structure was created to begin with or how severely its use
constrains Babbitt’s decisions at any one point in the compositional process
regarding the possible pitches, dynamic levels or rhythmic figures. For this
reason, there has not been a clear understanding of how an all-partition ar-
ray is actually constructed or how difficult it was for Babbitt to satisfy the
constraints needed to compose his works. In part, this thesis explores the
answer to these questions by providing a more suitable and mathematical
definition of the all-partition array which, in turn, allows for the proposal of
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computational methods for solving the problem of generating an all-partition
array. Having now a more appropriate definition and understanding of the
all-partition array allows for completing certain tasks in Babbitt’s music that
otherwise were either not previously possible or extremely difficult to com-
plete by hand, such as determining which all-partition array is used in a
given work, predicting what time points Babbitt might have chosen or dis-
covering an alternative sequence of partitions in a given array. Finally, this
thesis provides a method for automatically generating from an all-partition
array, the musical surface of entirely new works in the style of Babbitt. Gen-
erating such a musical work requires solving an altogether new and difficult
computational problem. As this thesis shows, it is remarkable that Babbitt
himself was able to manually satisfy all the constraints necessary to construct
an all-partition array and subsequently create a piece of music based on this
array.
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1. Introduction

Abstract

One aspect of analyzing Milton Babbitt’s (1916–2011) all-partition arrays requires
finding a sequence of distinct, non-overlapping aggregate regions that completely and
exactly covers an irregular matrix of pitch class integers. This is an example of the
so-called exact cover problem. Given a set, A, and a collection of distinct subsets of
this set, S, then a subset of S is an exact cover of A if it exhaustively and exclusively
partitions A. We provide a backtracking algorithm for solving this problem in an all-
partition array and compare the output of this algorithm with an analysis produced
manually.

1 Introduction

The exact cover problem is a constraint satisfaction problem known to be NP-
complete (Knuth, 2000, p. 2). It is defined as follows: given a collection of
subsets, S, of a set, A, an exact cover of A is a sub-collection, s, of S that
exhaustively and exclusively partitions A. The classic example of such a
problem was provided by Scott and Trotter in 1958 Scott (1958). They found
all ways to cover a chessboard with the 12 distinct, non-overlapping pentomi-
noes while leaving the center four squares uncovered (see Fig. A.1).

Fig. A.1: An exact covering of part of a chessboard using 12 pentominoes while leaving the
center four squares uncovered. As taken from (Knuth, 2000, p. 2)

Following our definition above, the chessboard in Fig. A.1 would be A,
the collection of 63 distinct pentominoes would be S, and the 12 distinct
pentominoes selected to cover the chessboard would be s.

The exact cover problem is typically solved using a greedy backtracking
algorithm that performs a depth-first search of the solution space (Knuth,
2000, p. 2). The backtracking process finds a complete solution to a problem
by accumulating partial solutions to a set of constraints. It selects the first
of these partial solutions until a complete solution is found, or, in the event
that the constraints are no longer satisfied by the currently selected partial
solution, it returns to the previous point and selects the next partial solution.
It continues this process until either a solution is found or it fails.
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Fig. A.2: The beginning of the WPcMatrix of Babbitt’s Sheer Pluck.

(a) Area needing to be cov-
ered.

(b) 1st aggregate region. (c) 2nd aggregate region
(dashed lines).

(d) 3rd aggregate region
(dashed lines). Area cov-
ered completely.

Fig. A.3: Process of forming a sequence of three aggregate regions in an excerpt from the WPc-
Matrix shown in Fig. A.2.

2 All-partition Array as Exact Cover

A significant number of Milton Babbitt’s (1916–2011) works are based on
the all-partition array Mead (1994), which is a sequence of distinct, non-
overlapping aggregate-forming regions that completely and exactly partition
a matrix of pitch classes called a projection. Construction of a six-part all-
partition array results in an irregular projection of six rows and 696 pitch
classes that can be partitioned into 58 aggregate regions. Figure A.2 shows
the beginning of the projection of Babbitt’s Sheer Pluck. A WPcMatrix is not
the musical surface but, rather, a framework upon which the surface is based.
Figure A.3 illustrates the process of defining the first three aggregate regions
in this projection.
Note in Figure A.3(b) that the first region contains an aggregate represented
as a collection of row segments (from top to bottom) of length 3, 2, 1, 3, 1,
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3. Solving the projection cover problem

and 2. We define an integer partition, denoted by IntPart(s1, s2, ..., sk), to be
a representation of an integer n = ∑k

i=1 si, as an unordered sum of k posi-
tive integers. For example, if n = 12 and k = 6, then one possible integer
partition is IntPart(3, 3, 2, 2, 1, 1). We define an integer composition, denoted
by IntComp(s1, s2, ..., sk), to be a representation of an integer n = ∑k

i=1 si, as
an ordered sum of k positive integers. For example, if n = 12 and k = 6,
then IntComp(3, 3, 2, 2, 1, 1) 6= IntComp(3, 2, 1, 3, 2, 1). We define a weak inte-
ger composition, WIntComp(s1, s2, ..., sk), to be a representation of an integer,
n = ∑k

i=1 si, as an ordered sum of k non-negative integers. For example, if
n = 12 and k = 6, then WIntComp(6, 6, 0, 0, 0, 0) is a weak integer compo-
sition. Thus, the first aggregate region in Sheer Pluck, shown in Fig. A.3(b),
represents the integer partition, IntPart(3, 3, 2, 2, 1, 1), and the integer compo-
sition, IntComp(3, 2, 1, 3, 1, 2). We further define two relations, partitionally
equivalent and partitionally distinct. Two integer compositions, c and d, are
partitionally equivalent if and only if [c] = [d], where [c] and [d] denote the
partitions containing the compositions. Two integer compositions, c and d,
are partitionally distinct if and only if [c] 6= [d].

Using our definitions above, the problem we pose with respect to the all-
partition array as an exact cover asks, “Given a universe of integer composi-
tions (when n = 12 and k = 6), denoted by S, and a WPcMatrix of 696 pitch
classes in six rows, denoted by A, does there exist a sequence of 58 parti-
tionally distinct, and aggregate-forming integer compositions, s, that exactly
covers A?" We call this the projection cover problem. Our efforts to answer this
question continue work started by Bazelow and Brickle (Bazelow and Brickle,
1976, pp. 282–283), that asked a similar question of all-partition arrays in four
parts. However, where their research sought to construct a WPcMatrix, this
paper begins with a completed WPcMatrix and, as a method for musical anal-
ysis, seeks to efficiently reveal its all-partition array structure by discovering
how (or if) it can be partitioned.

3 Solving the projection cover problem

Our proposed solution to the projection cover problem posed above, is the
backtracking algorithm, BacktrackingBabbitt, shown in Fig. A.4. This algo-
rithm takes a projection as input and returns a list of 58 partitionally distinct
compositions chosen as partial solutions.

The algorithm begins in line 1 by computing a 6, 188× 6 list of composi-
tions (in six parts), denoted by Compositions. Lines 2–4 initialize CList[Cnt]
to be an empty list of 58 lists, Position to be a 1× 6 vector of indices (one
for each row in WPcMatrix), and Cnt to be 1 (using 1-based indexing). Line
5 begins a while loop where Cnt is less than or equal to the number of re-
quired compositions, 58. First, it checks to see whether CList[Cnt] has been
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Fig. A.4: Pseudocode for implementation of BacktrackingBabbitt.

computed (line 6). CList contains candidate compositions at each Cnt. Can-
didate compositions are those compositions that satisfy the constraints of a
partial solution (i.e., are partitionally distinct and form a region containing
an aggregate).

If CList[Cnt] is empty (line 6), it has not been previously computed
and so it calls ParseWPcMatrix, which returns CList and CurrentComp
(line 7). CurrentComp is initialized by ParseWPcMatrix to be the first
composition in CList[Cnt] if CList[Cnt] is not returned empty. If, after
ParseWPcMatrix, CList[Cnt] remains empty, there are no candidate com-
positions at this Cnt. It must then backtrack, removing the previous compo-
sition from PartialSolutions (lines 8-11). PartialSolutions is a 58× 6 list of
candidate compositions at each Cnt selected by the algorithm to be a partial
solution. If CList[Cnt] is not empty (line 12), then the algorithm has found
at least one candidate composition at this Cnt. The CurrentComp is stored
in PartialSolutions[Cnt] and both Position and Cnt are incremented (lines
13-15). Position is equivalent to counting from 1 a distance equal to the
summation of like parts from each composition in PartialSolutions from 1
to Cnt− 1. Position is incremented at each Cnt by CurrentComp. In Fig-
ure A.3(d), PartialSolutions currently holds 〈3, 2, 1, 3, 1, 2〉 and 〈3, 3, 3, 3, 0, 0〉
and so Position would be 〈7, 6, 5, 7, 2, 3〉.

If the first check for whether CList is empty (line 6) returns false,
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Fig. A.5: The ParseWPcMatrix function.

CList[Cnt] has already been computed. This means the algorithm has back-
tracked at some point (line 16). It then attempts to select the next composition
in CList[Cnt] by incrementing the index of CurrentComp (line 17). If there is
not a next composition here because this index exceeds the size of CList[Cnt]
(line 18), it must backtrack (lines 19-21). However, if there is another compo-
sition, it can proceed (lines 23-25). It continues this until it returns a complete
PartialSolutions or fails (line 26).

Figure A.5 shows pseudocode for the ParseWPcMatrix function called
in line 7 of BacktrackingBabbitt. ParseWPcMatrix begins by creating a
copy of Compositions called AllUnusedComps (line 1). Next, it removes
from AllUnusedComps compositions partitionally equivalent to those al-
ready selected as partial solutions (line 2). It then loops through the rows
and columns of AllUnusedComps (lines 4-6) and initializes MosaicPcs to be
an empty set (line 5). Next, it finds jth row segments in WPcMatrix parsed
by AllUnusedComps[i][j] using the distance measured from Position[j] to
the sum of Position[j] and AllUnusedComps[i][j]− 1. It stores these seg-
ments in MosaicPcs (lines 7–8). After removing any duplicate integers from
MosaicPcs (line 10), if MosaicPcs is complete, it has found a candidate compo-
sition and saves this composition in CList[Cnt][k] (lines 10-12). The algorithm
then assigns CurrentComp to be the first composition in CList[Cnt] and re-
turns CList and CurrentComp (lines 13–14).

We conclude this section by providing the results of analyzing one of
Babbitt’s projections from both BacktrackingBabbitt and those found by
a human analyst. Figure A.6(a) first shows the sequence of compositions
found by a human analyst to partition the projection shown in Figure A.2.
For comparison, Figure A.6(b) shows one of several sequences returned by
BacktrackingBabbitt.
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Fig. A.6: Distinct sequences of compositions that partition the WPcMatrix shown in Figure A.2
as found by a human analyst in (a) and returned by BacktrackingBabbitt in (b). Note asterisks
(*) indicate where the sequences differ.

4 Conclusion

In this paper we suggest that analyzing Milton Babbitt’s all-partition arrays
represents a special case of a constraint satisfaction problem called an exact
cover. We provide a backtracking algorithm called BacktrackingBabbitt as
a solution to this problem. This algorithm finds a sequence of 58 partition-
ally distinct and aggregate-forming integer compositions that exactly covers
a given projection of 696 pitch class integers. We believe this algorithm is
not only a more efficient way (when compared to a human analyst) to per-
form this analytical task for a work based on the all-partition array, but that
it can be used to discover alternative analyses to those offered previously by
theorists.
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1. Introduction

Abstract

Milton Babbitt (1916–2011) is credited with developing several techniques of 12-tone
composition that extend beyond pitch. One such technique, the time-point row, fig-
ures prominently in his mature rhythmic practice. In many of his works based on
the all-partition array, the available time-point rows that may appear on the musical
surface are the same as the available pitch-class rows. However, the number avail-
able is often large and his reasons for choosing one row over another are diverse and
not clearly understood. In this paper, we propose that, when constructing time-point
rows from an aggregate partition in an all-partition array, Babbitt attempted to mini-
mize both (1) their dissimilarity to the pitch-class rows on the musical surface and (2)
the amount of counter-evidence they provide against a preselected beat. We first re-
view two existing measures, Rothgeb’s dissimilarity measure using order inversions
and Povel and Essens’ clock induction model. We then present a way to determine
the exact number of possible time-point rows (and pitch-class rows) without repeti-
tions in a particular aggregate partition. Next, we introduce a novel heuristic, based
on the aforementioned measures, for predicting from the available time-point rows,
those particular rows chosen by Babbitt. We conclude by evaluating how well this
heuristic predicts the time-point rows found in two of Babbitt’s works, None but the
Lonely Flute (1991) and Around the Horn (1993).

1 Introduction

In many of Milton Babbitt’s (1916–2011) works using the time-point system
and based on the all-partition array, the available pitch-class rows and time-
point rows that may appear on the musical surface are the same, as they are
both drawn from the same underlying array and its sequence of aggregate
partitions.1 Indeed, Bernstein (2014, p. 6) notes of these works, that “the
sketches for numerous later pieces reveal that Babbitt tended to use the same
array chart to work out both time-point and pitch-class structure." The num-
ber of ways to construct a linear row of elements from an aggregate parti-
tion is theoretically infinite, as certain elements may be repeated indefinitely.
However, the number of ways to construct such a row without repetitions is
finite and computable.2 Nevertheless, this number is often very large and it
is not at all obvious why Babbitt chose the particular rows that he did.

1See Bemman and Meredith (2016) and Mead (1994) for detailed discussions on the all-
partition array.

2As a “row" in music theory necessarily contains 12 distinct elements, theorists use the term
“realization" to refer to the linear sequence of elements from an aggregate partition that appear
on the musical surface, which may or may not contain repetitions (Leong and McNutt, 2005). In
this paper, we consider only sequences containing 12 distinct elements without repetitions and
therefore use the term “row".
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Babbitt appears to have taken various factors into consideration when
choosing time-point rows, including, for example, the extent to which a time-
point row implies a particular meter or the relationship that time points may
have to the pitch classes in a work. Babbitt himself has suggested that “the
metrical signature [is] probably determined by the internal structure of the
time-point set" (Babbitt, 1962, p. 63). On the other hand, Mead (1994, pp. 48–
49) has noted that “using the same abstract interval pattern for both time
point and pitch class rows provides Babbitt with the necessary tools for pur-
suing his desired compositional ends." It would appear reasonable then, that
a similar relationship may hold between the pitch-class and time-point rows
that appear on the musical surface.

To this end, we propose that, when constructing the time-point rows from
aggregate partitions in an all-partition array, Babbitt attempted to minimize
both (1) their dissimilarity to the pitch-class rows that appear on the musi-
cal surface and (2) the amount of counter-evidence they provide against a
preselected beat. We first review two existing measures that we later use to
develop a heuristic for evaluating and selecting time-point rows. These two
measures are Rothgeb’s (1967) dissimilarity measure using order inversions
and Povel and Essens’ (1985) clock induction model. We then present a way to
determine the exact number of time-point and pitch-class rows without repe-
titions in the aggregate partitions of an all-partition array. Next, we introduce
a novel heuristic, based on the aforementioned measures, for predicting from
the possible time-point rows without repetitions, those chosen by Babbitt. We
conclude by evaluating how well this heuristic predicts the time-point rows
found in two of Babbitt’s works, None but the Lonely Flute (1991) and Around
the Horn (1993).

2 Rothgeb’s Order Inversions and Povel and Es-
sens’ Clock Induction model

2.1 Order Inversions

In some of his earliest writings, Babbitt suggested a way of understanding the
organization of pitch classes in a 12-tone row as ordered pairs, in what have
come to be called order inversions (Babbitt, 1960, 1961, 1962). If 〈p0, p1, . . . , pk〉
is a sequence of distinct numbers, then 〈i, j〉 is an inversion if and only if i < j
and pi > pj (Cormen et al., 2009, p. 41). For example, the sequence 〈2, 0, 1, 3〉
has two inversions, 〈0, 1〉 and 〈0, 2〉.3 In 1967, Rothgeb presented a method
for measuring dissimilarity between 12-tone rows based on a generalization
of these inversions (Rothgeb, 1967). He notes, however, that “the relevance

3Note that Cormen et al. (2009) define an inversion to be a pair of indices, not a pair of
elements in the sequence.
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of similarity relations evaluated on the basis of order is implicit in several
writings of Babbitt" (Rothgeb, 1967, p. 183). An ordered pair in a 12-tone
row, S = 〈s0, s1, . . . , s11〉, is a pair of pitch classes, 〈si, sj〉, such that i < j.
There are therefore 66 such ordered pairs in a 12-tone row (Rothgeb, 1967,
p. 184) and we denote by OP(S) this set of ordered pairs in some 12-tone row,
S.4 Given two 12-tone rows, A and B, the set of all order inversions, OI, in B
with respect to A can be found by

OI = OP(B) \OP(A), (B.1)

where \ denotes the complement or set difference. In other words, OI is the
set of ordered pairs that appear in B but not in A (Rothgeb, 1967, pp. 183–
184). We should note that these pairs need not be adjacent in a row, that is,
intervening pitch classes are possible.

The maximum number of order inversions in one 12-tone row with re-
spect to another is 66 (in the case that the rows are retrogrades of one another)
while the minimum number is 0 (in the case that the rows are identical).
Rothgeb’s formula measures the dissimilarity between two 12-tone rows by
determining the number of ordered pairs not shared by them. This number
is

OIdis = 66− |OP(A) ∩OP(B)| (B.2)

= |OI|,

where |.| denotes set cardinality and ∩ denotes set intersection (in this case,
the set of shared ordered pairs) (Rothgeb, 1967, p. 184).5 For example, given
a 12-tone row, B, that shares 55 ordered pairs with a 12-tone row, A, the
measure of their dissimilarity, OIdis, is 66− 55 = 11.

2.2 Clock Induction model

Povel and Essens (1985) introduced a model of beat induction in rhythmic
patterns based on what they called clocks. A clock consists of equally spaced
“ticks" set against a given rhythmic pattern. The time interval between con-
secutive ticks is called a unit and the duration of a unit can be no more than
half the duration of the rhythmic pattern.

A unit represents an arbitrary but fixed duration of time most closely cor-
responding to the time interval (i.e., duration) between two consecutive beats.
A unit’s length is expressed as an integer multiple of inter-tick subdivisions,
meaning that the time interval between two consecutive clock ticks may be
subdivided into a whole number of intervals of equal duration, called unit

4The set of ordered pairs in a 12-tone row have been called protocol pairs (Lewin, 1976, p. 252).
5Notation for Equations B.1 and B.2 adapted from both Rothgeb (1967, p. 183) and Ilomäki

(2008, p. 129).
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(a) Rhythmic pattern and clock. (b) Time-scale notation of the rhythmic pat-
tern shown in (a).

Fig. B.1: Rhythmic pattern in (a) and its time-scale notation in (b). Note that the location of the
clock is 1 and its unit length is four (see Povel and Essens, 1985, 415).

subdivisions (or just “subdivisions”) (Povel and Essens, 1985, p. 414). For ex-
ample, a unit of length 4 has four subdivisions, each with duration equal to
1/4 of the unit, in the same way as a quarter-note beat may be subdivided
into four sixteenth notes. A clock may be shifted in time by any number of
its subdivisions, however, a shift by a number of subdivisions equal to an
integer multiple of its unit length, maps a clock onto itself. It is therefore
only necessary to consider shifts by a number of subdivisions less than the
unit length, since these shifts result in distinct clocks with ticks in different
positions from the original, unshifted clock. The shifted or unshifted position
of a clock is called its location. Any rhythmic pattern, set against a grid of a
clock’s ticks and its unit subdivisions, can be represented as a sequence of
zeros and ones in time-scale notation, where a one indicates an event onset in
the rhythmic pattern and a zero indicates that there is no event onset at that
location. Figure B.1 shows an example of a rhythmic pattern with an example
clock in (a) and its time-scale notation in (b). In Figure B.1(a), events in the
rhythmic pattern have been indicated by vertical lines while locations that do
not correspond to events have been indicated with dots. Note, in particular,
that the three ticks of the clock shown above this pattern align with the first
rhythmic event and two locations where there are no events.

Povel and Essens (1985, 415) note that, in earlier work, they had found that
certain temporal events in a rhythmic pattern are perceived to be accented by
listeners. These events are as follows: (1) relatively isolated events, (2) the
second event of two adjacent events, and (3) the first and last events of a
cluster of three or more events. Figure B.2(a) shows the rhythmic pattern
from Figure B.1 with its clock’s location shifted by one. Figure B.2(b) shows
the same pattern using time-scale notation, where events predicted by these
three rules to be accented are indicated by the value 2. Povel and Essens
predict that the clock in Figure B.2(a) (with a unit equal to four and location 2)
is more strongly induced by the given rhythm than the clock in Figure B.1(a)
(with the same unit but location 1).

Povel and Essens argue that the strength with which a rhythmic pat-
tern induces a particular clock is inversely related to the amount of counter-
evidence the pattern provides against that clock. They further propose that
this amount of counter-evidence, C, can be calculated using the following
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(a) Rhythmic pattern with accents and
shifted clock.

(b) Time-scale notation of the rhythmic pat-
tern shown in (a).

Fig. B.2: Rhythmic pattern with accents in (a) and its time-scale notation in (b). Note that the
location of the clock is 2, as its first tick is shifted one unit subdivision to the right (see Povel
and Essens, 1985, p. 415).

formula:
C = Ws + u, (B.3)

where W is a constant weight parameter (which they set to 4), s is the number
of clock ticks that do not coincide with events in the rhythmic pattern (i.e.,
align with zeros in the time-scale notation), and u is the number of clock ticks
that align with unaccented events (i.e., ones in the time-scale notation) (Povel
and Essens, 1985, p. 417). For example, the amount of counter-evidence the
clock shown in Figure B.2(a) encounters in its corresponding rhythmic pat-
tern is C = 0, since, in this case, all the clock ticks align with accented events
(i.e., twos in the time-scale notation). On the other hand, the amount of
counter-evidence that the same rhythmic pattern provides against the clock
in Figure B.1(a) is 4× 2+ 1 = 9, since, over the whole rhythmic pattern, there
are 2 clock ticks aligned with locations at which no events occur (s = 2) and
one clock tick, the first, aligned with an unaccented event (u = 1).

The “best" clock for a given rhythmic pattern (i.e., the one that is most
strongly induced by the pattern) is then, according to Povel and Essens’
model, the one with the lowest value of C for that pattern. If two clocks
result in the same amount of counter-evidence, then the better of the two
is predicted to be the one whose unit evenly divides the total duration of
the pattern (ensuring that the remaining clock ticks align only with accented
events) (Povel and Essens, 1985, p. 419).

3 The number of possible rows without repeti-
tions for an aggregate partition

Since Babbitt first laid the foundations for his time-point system (Babbitt,
1962), much work has been done on discovering the time points underlying
many of his works (e.g., Bernstein, 2014; Leong and McNutt, 2005; Mead,
1987, 1994). However, less has been written about how Babbitt constructed his
time-point rows and why he chose one and not another (Johnson, 1984; Mead,
1984). An understanding of the exact number of possible ways Babbitt could
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construct time-point rows without repetitions from an aggregate partition
will be informative in answering these questions.

3.1 Constructing rows

A partition of the aggregate or mosaic, in the sense in which it is used by
Morris (2003, p. 103), is an unordered set of unordered pitch class (or time
point) sets that collectively, exhaustively and exclusively partition the aggre-
gate, e.g., {{7, 2, 6, 11, 8}, {3, 4, 5, 10}, {9, 0, 1}}.6 However, Babbitt’s desire to
maintain the order of elements in his rows when constructing time points
and pitch classes in an array means that the unordered sets in these parti-
tions become ordered. For this reason, an aggregate partition as it appears in
an all-partition array is traditionally viewed to be an unordered set of ordered
sets that we call segments, e.g., {〈7, 2, 6, 11, 8〉, 〈3, 4, 5, 10〉, 〈9, 0, 1〉}, where each
segment consists of consecutive elements in a single lyne in the array (Mead,
1994). Pitch classes or time points belonging to such a segment, however,
when realized on the musical surface, may have intervening elements from
another segment. Figure B.3 shows the opening time-point aggregate par-
tition and time-point row from Babbitt’s None but the Lonely Flute with one
possible rhythmic interpretation. As indicated in Figure B.3(a), each lyne in
this piece is associated with a distinct dynamic level. Figure B.3(a) shows the
segment of this opening partition associated with each lyne. In this case, the
smallest possible interval between adjacent time points (i.e., one) corresponds
to a sixteenth note, as can be seen, for example, between time points 6 and 7
in Figure B.3(b).

This basic interval of time is called a unit (Mead, 1987, p. 183)—note
that, perhaps confusingly, a “unit" between time points therefore corresponds
more closely to what Povel and Essens call a “subdivision” than it does to
what they call a “unit" in a clock.
We know from the time-point aggregate partition shown in Figure B.3(a),
that the left-to-right order of each segment imposes a partial order on any
corresponding row of its elements (Lewin, 1976; Starr, 1978, 1984). Such a
row is allowed to contain, for example, 〈7, 2〉, but not 〈2, 7〉. Furthermore,
〈7, 8, 2〉 is an acceptable beginning to a row, but 〈7, 3, 2〉 is not, because 3 must
occur later than 8 in the row as it follows 8 in the segment for dynamic level
mp in the aggregate partition in Figure B.3(a). On the other hand, in 〈7, 8, 2〉,
8 is simply an intervening element, as described above. In other words, the
general process of constructing a time-point row without repetitions from
an aggregate partition amounts to choosing and then removing the left-most
element of any one segment until all segments are empty.

6Our use of the term “mosaic” corresponds to that given by Morris (2003, p. 103), which
differs from the way this term is used in his earlier writings (Morris and Alegant, 1988, p. 76).
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(a) Time-point aggregate
partition containing
segments of time points
distinguished by dynamic
level.

(b) One possible time-point row and corresponding dynamic
markings with one possible rhythmic interpretation from the
time-point aggregate partition in (a).

Fig. B.3: Opening time-point aggregate partition (represented by 322212) from Babbitt’s None but
the Lonely Flute in (a) and corresponding time-point row in (b) using a unit equal to a sixteenth
note.

3.2 Computing rows

As noted by Alegant (1993, p. 61), there is a simple formula for calculating the
total number of distinct ways to partition the aggregate by a single partition,
p, of unordered segments.7 As it turns out, this number is equal to the total
number of distinct rows without repetitions from one p-partitioning of the
aggregate containing ordered segments (as described above), and so the same
formula can be used.

Let us suppose, then, that we have a p-partitioning of the aggregate, m,
with k ordered segments, s1, s2, . . . , sk (e.g., Figure B.3(a)). The total number of
distinct time-point rows without repetitions, n, for this aggregate partition m
can be found using the following formula for the multinomial coefficient:

n =
(|s1|+ |s2|+ . . . + |sk|)!
|s1|!|s2|! . . . |sk|!

, (B.4)

where |.| denotes segment length. From Equation B.4, we find that our time-
point aggregate partition from Figure B.3(a) has 12!/3!3!2!2!1!1! = 3, 324, 000
possible time-point rows without repetitions. By extension, this is the same
number of possible pitch-class rows, if this were a pitch-class aggregate par-
tition.

The multinomial coefficient is the number of distinct permutations of a
multiset. This means we can uniquely express any linear row of elements
from an aggregate partition as an ordered sequence of integers, which we call
segment numbers, each indicating the segment to which a particular element
belongs. As there are never more segments in an aggregate partition than

7It is possible that Sward (1981, p. 141) may have been the first to make this observation of
partitions with respect to music.
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there are elements in an aggregate, the resulting sequence of segment num-
bers is, in general, a multiset, in which a given segment number may occur
more than once.8 Thus, by assigning a number to each element in an aggre-
gate partition corresponding to the lyne containing the segment to which it
belongs (with lynes numbered from top to bottom), any row of elements con-
structed from such an aggregate partition has a corresponding sequence of
lyne numbers. For example, the time-point row 〈6, 7, 0, 2, 8, 1, 5, 10, 9, 11, 3, 4〉
constructed from the time-point aggregate partition in Figure B.3(a), has
the corresponding lyne number sequence 〈2, 1, 6, 1, 4, 6, 5, 5, 5, 3, 4, 4〉. This
lyne number sequence is a permutation of the elements in the multiset
{1, 1, 2, 3, 4, 4, 4, 5, 5, 5, 6, 6}.

At this point, it is important to note that an aggregate partition un-
der this view must now be an ordered set of ordered segments so that
the ordinal position of each segment in the set remains fixed to its lyne
number and thus dynamic level (in the case of a time-point aggregate)
or register (in the case of a pitch-class aggregate).9 For example, it
is clear that 〈〈7, 2, 6, 11, 8〉, 〈3, 4, 5, 10〉, 〈9, 0, 1〉, 〈〉, 〈〉, 〈〉〉 contains three non-
empty segments (from left to right) belonging to lynes 1, 2 and 3 (from top
to bottom) of a six-part all-partition array. Such a set, corresponding to a
bounded weak composition of the aggregate,10 has been called an ordered mo-
saic (Bemman and Meredith, 2016, p. 3).11 For the remainder of this paper,
we refer to aggregate partitions in an all-partition array as ordered mosaics,
as this representation retains the dynamic level and segment/lyne correspon-
dence necessary for constructing the time-point rows used by our proposed
heuristic.

Table B.1 shows the number of rows of elements without repetitions that
can be constructed from a single ordered mosaic corresponding to each of the
77 partitions of 12 into 12 or fewer parts. This number varies considerably
across the range of ordered mosaics, from 1 for partition 121 to 479,001,600 for
partition 112. Incidentally, the maximum number of rows for any one ordered
mosaic in an all-partition array corresponds to the so-called even partitions,
which have been of interest to music theorists (Morris and Alegant, 1988). For

8The only exception is in an aggregate partition represented by 112, in which each distinct
segment number occurs exactly once.

9In some of Babbitt’s all-partition arrays, lynes formed by the segments in its pitch-class
aggregates are distinguished by instrument and not register (Mead, 1994).

10A weak composition, which Bemman and Meredith (2014) denote by WIntComp(s1, s2, ..., sk),
is a representation of an integer n = ∑k

i=1 si , as an ordered sum of k non-negative integers,
(i.e., including zero). For example, if n = 12 and k = 6 (i.e., the number of segments), then
WIntComp(0, 6, 0, 6, 0, 0) is one possible weak integer composition.

11The term “composition" has been used previously by both Alegant (1993, p. 58) and Babbitt
(1961, p. 83). Babbitt writes that “...the 211 compositions of the number 12 all must be exam-
ined when the order of parts of a partition...is significant, as it is when the parts are – say –
assigned linearly to classes of timbres, registers, dynamics, etc." and it is in this context that the
terminology of “ordered mosaic" is used.
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Table B.1: The number of distinct linear rows of elements without repetitions that can be con-
structed from a single ordered mosaic corresponding to each of the 77 partitions of 12 into 12 or
fewer parts.

example, in a six-part all-partition array, the maximum number is 7, 484, 400
rows corresponding to partition 26 and the maximum in a four-part array is
369, 600 rows corresponding to partition 34. For any one time-point ordered
mosaic (hereafter abbreviated “TpOM") in an array, predicting which time-
point row without repetitions Babbitt chose out of the sometimes millions
possible, would appear to be a difficult task. In the following sections, we
will introduce a heuristic based on order inversions and beat induction using
clocks that goes some way towards predicting Babbitt’s choice of time-point
rows.

4 A heuristic based on the combined measures of
order inversions and clock induction

As mentioned above, we propose that, when constructing time-point rows,
Babbitt attempted to minimize both (1) their dissimilarity to the pitch-class
rows in a piece and (2) the amount of counter-evidence they provide against
a preselected beat—that is, a particular clock. In this section, we motivate
this view and describe how, in particular, we have used order inversions as a
measure of (1) and clock induction as a basis for measuring (2).
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4.1 Motivation

It may, perhaps, be necessary to emphasize that, by using Povel and Essens’
clock-induction model as a basis for our proposed heuristic, we are not in-
tending to suggest that Babbitt explicitly used this particular computational
model of beat perception as a basis for predicting the extent to which any
given time-point row would induce any particular beat in the mind of a
listener. What we are hypothesizing is that one of the factors that deter-
mined Babbitt’s choice of time-point rows was the extent to which a row
induced a desired beat and we have chosen to use Povel and Essens’ model
in our heuristic to predict this. We could have used some other computa-
tional model of beat induction—for example, that of Lee (1991)—but Povel
and Essens’ model is simple to implement, already provides a way of quanti-
fying the compatibility between a rhythm and a given beat, and is supported
by empirical evidence.

In implementing our heuristic, we have tried to make no analytical as-
sumptions about the pieces we will look at, other than what can be gleaned
from the score or what has been written about Babbitt’s late practice. How-
ever, we make several concessions regarding the implementation of our
heuristic for use with time points. For example, we have removed from
all rows any repetitions of time points, retaining only the first occurrence
of each of the 12 elements in each ordered mosaic. In practice, Babbitt often
repeated certain time points. Assuming otherwise, however, is necessary in
order to have both fixed clock and row lengths—i.e., minimum total temporal
durations (Babbitt, 1962, p. 64). It is also possible that Babbitt first constructed
his time-point rows without repetitions and then added repetitions using cri-
teria along the lines of those he used to add repetitions in realizations of pitch
class rows.12

By using clocks we treat a time-point row as a “rhythmic pattern," where
time points become the “events" of this pattern, subject to accenting or not,
based upon Povel and Essens’ rules (described in Section 2.2). The assump-
tion here is that, if Babbitt intended some meter to be evident from the orga-
nization of time points, then we would expect to find that time points (i.e.,
events) in a row would induce some beat. The use of clocks is well suited
for measuring beat induction in a time-point row, as unit subdivisions in a
clock, like time-point units, can represent any arbitrary (short) duration (e.g.,
a sixteenth note, 32nd note, etc.). As many of Babbitt’s later works based
on the time-point system have a unit equal to a sixteenth note (Bernstein,
2014, p. 7), so too would the unit subdivisions of their corresponding clocks.
This observation motivates the particular way in which we use clocks, as the
pieces we will look at are representative of Babbitt’s later practice.

Povel and Essens originally developed their clock-induction model to pre-

12See Bemman and Meredith (2016) for a detailed discussion of this process.
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dict which of a universe of possible beats (clocks) a particular rhythm would
be most likely to induce in the mind of a listener. In our usage of their model,
we consider only those clocks with a unit equal to four, with each tick corre-
sponding to the beat in the meter found predominantly throughout a piece
(i.e., what we have proposed to be Babbitt’s preselected beat). This means
that, for any given time-point row, the possible clocks are those with the
same unit, differing only from each other in their location (i.e., their shifted
position by unit subdivision). For example, the presence of a predominantly
simple meter would mean we would consider only a single type of clock with
a unit equal to four and its four locations, giving a total of four clocks. Of
these, we choose the clock with the best location. While clocks are general
enough to accommodate clock units and their subdivisions equal to any note
duration, we assume that both the time-point unit and duration between con-
secutive beats is unchanging in a piece, which may or may not be true. Under
these assumptions, however, a repeated time point at the level of the beat (not
meter) contributes no additional information beyond its first occurrence, as
repetitions occur at integer multiples of 12—that is, a time point which falls
on a beat can only ever fall on subsequent beats when repeated (and vice-
versa). Naturally, this is true only in cases where the number of time-point
units to a beat evenly divides 12, but under our assumptions of a piece, this
remains true. We should note, also, that in general the performance of a clock
decreases as the total temporal duration of the time-point row increases. As
repetitions generally increase the total temporal duration of a row and as we
do not currently have any means for fairly comparing rows which differ in
their number of time points, it would prove difficult to evaluate such rows
using clocks.

In general, we have found that, from one pitch-class ordered mosaic (here-
after abbreviated “PcOM") to another in an all-partition array, it is virtually
impossible to ensure that pitch-class rows (without repetitions) constructed
from each, according to the process described in Section 3, will belong to
the same row class. Even within one PcOM, it is difficult to construct two
such distinct rows that belong to the same row class. Confronted with this
difficulty, it would seem reasonable to assume that Babbitt sought additional
ways to draw meaningful connections between the pitch-class and time-point
rows he used, beyond the mere fact that they are drawn from the same or-
dered mosaics.13 Nevertheless, we suspect that the way in which he might
have drawn these connections in many of his works is by minimizing the
differences these time-point rows on the musical surface have with the pitch-
class rows from the same ordered mosaic. We are motivated here to use order
inversions and not intervallic content (as suggested by Mead (1994, pp. 48–

13With respect to the pitch-class rows taken from different PcOMs, Babbitt has used equal-
note-value-strings and array references to draw these connections (Bernstein, 2014, p. 11).
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49)) to measure the dissimilarity between the pitch-class and time-point rows
taken from the same ordered mosaic in a work, primarily because Babbitt’s
own writings reveal that he conceived of the organization of rows in dyads
(Babbitt, 1960, 1961, 1962). While a comparison with other (dis)similarity
measures would be interesting, we have not done this here. Likewise, there
have been numerous more recent models of meter (Hasty, 1999; London,
2004), beat induction and onset detection (Eck, 2001) that have been devel-
oped, however, we do not consider these.

4.2 The heuristic

Recall that, for both OIdis from Rothgeb’s order inversions measure (shown in
Equation B.2) and C from Povel and Essens’ clock induction model (shown in
Equation B.6), a lower value is better. This is therefore true of their summed
value as well. However, the possible values taken by these two measures
range over different intervals. As mentioned in Section 2.1, the values of
OIdis lie withing the range [0, 66]. The values of C, on the other hand, lie
within the range [10, 121] when using a clock unit equal to four and Povel and
Essens’ weighting parameter, W = 1. The lower and upper bounds of this
range for values of C correspond to the rows 〈0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11〉 and
〈11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1〉, respectively. Thus, in order to combine OIdis and
C, we must first scale their respective values. There are a number of methods
to scale data, normalization and standardization being most common, and
we have chosen to normalize each of the values for OIdis and C, which we
denote by ·̂.14 Our heuristic therefore consists of minimizing the sum of these
normalized values:

ÔIdis + Ĉ. (B.5)

We conclude this section by describing what steps we took at each point
in implementing our heuristic and Figure B.4 shows this procedure. For
a given piece, we first compute all distinct permutations of a multiset of
segment/lyne numbers (as described in Section 3) for a given mosaic in its
underlying array. We then do steps 1–7 in Figure B.4 for each of the permu-
tations of this multiset and for all ordered mosaics. In step 1, we generate
the time-point row from the current ordered mosaic using the current per-
mutation of segment numbers. This row may or may not be the time-point
row Babbitt chose. Next, we convert this time-point row to Povel and Essens’
time-scale notation (step 2). As this sequence of zeros and ones can be quite
long, we have shown in Figure B.4 only the first three and last three time
points of this row. In step 3, we add accents to this time-scale notation, ac-
cording to the rules described in Section 2.2. In the next step, we compute

14In this paper, we use feature scaling to normalize, given by the formula: xi−min(x)
max(x)−min(x) .
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Fig. B.4: Proposed procedure for predicting the time-point rows without repetitions in Babbitt’s
later works based on the all-partition array. We follow this procedure for every possible time-
point row in each ordered mosaic of an all-partition array.

a clock with a unit equal to four and all its locations (step 4). In step 5, we
compute the counter-evidence encountered by each of these four clocks (us-
ing Povel and Essens’ weighting parameter, W = 1, defined in Equation B.6)
in the time-scale notation (with accents) of the current time-point row. We
then select the best of these clocks—that is, the one having the least amount
of counter-evidence, as measured by the value C. We then use the pitch-
class row (on the musical surface) taken from the current ordered mosaic
and its corresponding current time-point row and compute their number of
shared ordered pairs, along with the resulting order inversions dissimilarity
measure, OIdis (step 6). Finally, we combine the normalized values of both
measures, ÔIdis and Ĉ (step 7).

65



Paper B.

5 Predicting the time-point rows without repeti-
tions in None but the Lonely Flute and Around
the Horn

In this section, we evaluate how well our heuristic, as measured by the com-
bined values of ÔIdis and Ĉ, predicts the time-point rows in Babbitt’s None
but the Lonely Flute and Part I of Around the Horn.15 We have chosen these
pieces as they are relatively short and their use of the time-point system is
relatively straightforward, allowing for a simple implementation and test of
our heuristic. Both pieces assign a consistent set of dynamic levels to each
part (lyne) of their respective arrays with None but the Lonely Flute, a six-part
array, ranging from ff to pp (with one dynamic level to a part) and Around the
Horn, a four-part array, ranging from fff to ppp (with two possible dynamic
levels to a part).

5.1 Relative impact of Order Inversions and Clock Induction

In each piece, the relative impact of the two measures we have combined in
our proposed heuristic differs both from ordered mosaic to ordered mosaic
and over the whole of the work. The relative impact of the two measures can
be expressed by weighting one or the other by a constant parameter (much
like W in Equation B.6). This weighting parameter we will call w and it
takes a value between 0 and 1. We have chosen here to use a value for w
which yields the best results across the whole of each piece, as opposed to
“fine tuning" this value for each ordered mosaic. In order to incorporate this
weighting parameter, we have used a weighted mean where, given a set of
values, x1, x2 . . . , xn, one attempts to minimize a quantity, w1x1 +w2x2 + . . .+
wnxn over the sum w1 + w2, . . . , wn. From this, we can modify our heuristic
to be weighted in the following way:

Q = wÔIdis + (1− w)Ĉ, (B.6)

where our task is to discover the value of w that minimizes the sum, Q, for all
time-point rows chosen by Babbitt in a given piece. Values of w greater than
0.5 will assign more weight to ÔIdis than Ĉ; while values of w less than 0.5
mean that Ĉ contributes more to predicting the time point rows than ÔIdis.

In order to discover the “best" weighting for each piece, we first selected
from a range of 0 to 1, 100 equally-spaced values for w. Next, for each time-
point row chosen by Babbitt, we obtained its value of Q, which we denote
by Q∗, and then normalized it over all the rows for its mosaic, producing a

15Bernstein (2014) and Leong and McNutt (2005) have analyzed None but the Lonely Flute while
Mead (1997) and Dubiel (1997) has analyzed Around the Horn.
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(a) The lowest mean, 0.26, corresponds to
w = 0.798 in None but the Lonely Flute.

(b) The lowest mean, 0.36, corresponds to
w = 0.859 in Around the Horn.

Fig. B.5: Mean of values for Q̂∗ for None but the Lonely Flute in (a) and Around the Horn in (b)
after applying 100 different, equally-spaced values between 0 and 1 for the weighting parameter,
w, to wÔIdis + (1− w)Ĉ. Note that the dashed circles indicate the lowest mean.

value that we denote by Q̂∗. Normalizing over the rows within each mosaic
ensures that we are able to fairly compare the predictive performance of our
heuristic over different mosaics, as the number of possible time-point rows
varies widely from one mosaic to another. Finally, we chose the value of w
that minimized the arithmetic mean of the values of Q̂∗ over all mosaics in a
piece. In other words, we chose the value of w that worked best on average
over all mosaics. Figure B.5 shows the mean values of Q̂∗ for None but the
Lonely Flute in (a) and Around the Horn in (b) after applying 100 different,
equally-spaced weights between 0 and 1 to wÔIdis + (1− w)Ĉ.

The results shown in the plots in Figure B.5 indicate that the lowest mean
for values of Q̂∗ in None but the Lonely Flute, 0.26, is considerably lower than
the lowest mean for values of Q̂∗ in Around the Horn, 0.36. Interestingly, the
lowest mean in each piece aligns with approximately the same weights, w =
0.798 in None but the Lonely Flute and w = 0.859 in Around the Horn. Moreover,
both curves are fairly smooth, with a single, well-defined minimum. This
suggests that the clocks measure is substantially less important than the order
inversions measure, but its relative contribution remains roughly the same
in both pieces, despite their differing means. It is clear, however, from the
upwards curves on either side of the lowest mean, that using both measures
permits more accurate prediction of the time point rows chosen by Babbitt
than is achievable by using either order inversions alone (i.e., where w = 1)
or clocks alone (i.e., where w = 0).
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5.2 Results and Evaluation

In the following discussion we will use Q̂∗ values as a primary means for
evaluating the performance of our heuristic. However, while the value of Q̂∗

indicates how well Babbitt’s chosen row for a mosaic satisfies our heuristic,
relative to the row that satisfies our heuristic best for that mosaic, it does not
tell us anything about the proportion of possible time-point rows for a given
mosaic that satisfy our heuristic at least as well as the one that Babbitt chose.
We can get a better indication of the latter by ranking each of the possible
time-point rows for a mosaic according to its value of Q, and then dividing
this rank, r, by the total number of distinct ranks, N. We choose to use
dense ranking, where equal values of Q receive the same rank and where the
next time-point row which differs in Q is assigned the immediately following
rank (e.g., if the sequence of values of Q is 〈0.01, 0.02, 0.02, 0.03〉, then the
corresponding sequence of ranks would be 〈1, 2, 2, 3〉).

Using the best weights found for each piece in Figure B.5, we now look
to how our heuristic performs in each ordered mosaic using Q̂∗ and r/N.
Tables B.2 and B.3 show the results of applying our heuristic based on
wÔIdis + (1 − w)Ĉ to predict the time-point rows found in Babbitt’s None
but the Lonely Flute and Around the Horn, respectively.16 In Tables B.2 and B.3,
ÔIdis, Ĉ, Q̂∗, r and r/N are as defined above. We evaluate the performance
of our heuristic on each piece by giving the mean values of Q̂∗ and r/N over
all mosaics for that piece.

The fact that Q̂∗ and r/N give different information for a given mosaic
is evident from, for example, the results for the first and twelfth mosaics in
Table B.2. Here, the value of r/N for the first mosaic, 0.022, is lower—i.e.,
better—than r/N for the twelfth mosaic (0.03), indicating that there are pro-
portionally fewer possible rows in the first mosaic that satisfy our heuristic
at least as well as Babbitt’s chosen row.17 Conversely, the value of Q̂∗ for
the first mosaic (0.063) is higher—i.e., worse—than that for the twelfth mosaic
(0.026), indicating that the row chosen by Babbitt in the twelfth mosaic satis-
fies our heuristic better (relative to the best row for the twelfth mosaic), than
the row he chose for the first mosaic (relative to the best row for that mosaic).

The mean value of r/N shown in Table B.2 indicates that, on average, the
time-point rows chosen by Babbitt in None but the Lonely Flute have a rank,
when evaluated using our heuristic, that lies within the top 23% of possible
ranks.

16As Babbitt has done in his sketches of Around the Horn, we use “sounding pitch" and not
“notated pitch" to denote the pitch classes and time points of this piece.

17Actually, because r is dense rank, r/N is the proportion of distinct ranks that are at least as
good as that of Babbitt’s chosen row. To find the proportion of rows for a mosaic that are at least
as good as Babbitt’s row, one should use standard competition ranking (“1224" ranking), and
then look at the rank of the next best row after the one chosen by Babbitt.
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Table B.2 also shows that the mean value of Q̂∗ over the mosaics in None
but the Lonely Flute is 0.26. These results suggest that the factors taken into
consideration by the heuristic may be among those used by Babbitt when
choosing his time-point rows in this piece. On the other hand, as we can
see by the mean of r/N in Table B.3, we achieve a significantly reduced per-
formance for Around the Horn when compared to None but the Lonely Flute,
despite selecting the best-performing value of w. While there remain several
mosaics in Around the Horn in which our heuristic performs well (e.g., or-
dered mosaics two and fourteen), it is worth noting that these are distributed
relatively widely across the whole of the work. For example, r/N values
lower than, 0.01, are found in mosaic numbers 8, 16, 20 and 22. These ob-
servations suggest either (1) the presence of entirely new metrical structures
(for which a clock with a unit equal to four is no longer appropriate) or (2)
longer periods of metrical displacement by the respective time points than in
None but the Lonely Flute.

The findings in both pieces provide some evidence to support Babbitt’s
claim that the organization of time points suggests a particular meter (Bab-
bitt, 1962, 63), insofar as beat induction can be used as a proxy for meter. To
a greater extent, our results support our hypothesis that the pitch-class and
time-point rows are generally related in some way. Noting the poor predic-
tive performance of the heuristic in some of the ordered mosaics, it is clear
that there are additional criteria we have not considered. However, even in
these mosaics in which the predictive performance is low, the results may
prove interesting from an analytical point of view. For example, the “step-
ping out of time" portion of None but the Lonely Flute, as described by Leong
and McNutt (2005), coincides with two rather poorly performing ordered
mosaics (fifteen and sixteen) which lie between two rather high performing
ordered mosaics (fourteen and seventeen) in Figure B.2. These findings ap-
pear to support the metrical displacement by the time-point rows observed
in this passage by Leong and McNutt.

The results summarized in Tables B.2 and B.3 suggest a number of pos-
sibilities worthy of further exploration. First, the relatively poor predictive
performance in some of the ordered mosaics (just described) may suggest
that a global heuristic across all mosaics of a piece is not the way forward—
as each mosaic corresponds to a musically unique point in a piece, perhaps it
would be preferable to consider it in isolation. It could be, for example, that
some factors that depend more on local context need to be taken into account,
such as which time-point rows have been used previously in the piece and
which partitions remain to be used in the array. Indeed, if we “fine tune” the
values for each measure of our heuristic in each mosaic, we already achieve
a significant improvement. In other words, the value of w that performs best
globally over a whole piece is not always the value of w that performs best
for an individual ordered mosaic.
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What this suggests is that the relative weighting of order inversions to compli-
ance with a meter may not be the same throughout a piece—that is, Babbitt
may not have applied a constant relative prioritization of these two factors
throughout a piece. However, the fact that the value of w that worked best
globally is almost identical for the two pieces considered here would seem to
suggest that he applied an approximately constant relative prioritization of
the two factors across different pieces.

It is also possible that the considerations modelled by our heuristic were
indeed important to Babbitt, but that, due to the large number of time-point
rows in some ordered mosaics, he was unable to consistently choose the best
of all possible rows at each point. Instead, we can hypothesize that he just
chose the best that he was able to find using, presumably, manual methods
of searching the space of possible rows for each mosaic. Indeed, in some
ordered mosaics with relatively few possible rows—for example, mosaic 12
in None but the Lonely Flute and mosaic 8 in Around the Horn—we achieve low
values for both Q̂∗ and r/N. However, further analysis would be required in
order to determine how significant these particular results are.

6 Conclusion

In this paper, we have introduced a heuristic based on Rothgeb’s dissimilar-
ity measure of order inversions and Povel and Essens’ clock induction model,
for predicting the time-point rows in two of Babbitt’s later works, None but
the Lonely Flute and Around the Horn. The results show that, while the per-
formance of our heuristic differs between the two pieces, the relative im-
portance of order inversions over clock induction remains the same—that is,
similar values of w in both pieces resulted in globally optimal performance.
The use of clock induction, however, did improve the overall performance
when compared to using order inversions alone. We believe that our results
serve as a validation of Babbitt’s own words that he considered meter when
constructing his time-point rows, despite the lesser importance of the clocks
measure compared to order inversions in our findings. A full exploration
of how clocks might reveal interesting aspects in Babbitt’s time-point pieces
is beyond the scope of this paper. However, it might prove interesting to
explore how these measures perform in some of Babbitt’s works based on
a more complex use of the time-point system that does not use equal-note-
value-strings and where units often vary in size (e.g., 32nd notes or sixteenth
note triplets). As presented, our use of clocks assumes an unchanging beat,
however, with little modification and some additional constraints, we believe
clocks could accommodate time-point rows containing repetitions and ac-
count for instances in Babbitt’s music where his use of the time-point system
conflicts with the notated meter.
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1. Introduction

Abstract

In most of Milton Babbitt’s (1916–2011) works written since the early 1960s, both the
pitch and rhythmic content is organised according to a highly constrained structure
known as the all-partition array. The all-partition array provides a framework that
ensures that as many different forms of a tone row as possible (generated by any
combination of transposition, inversion or reversal) are expressed “horizontally" and
that all 58 integer partitions of 12 are expressed as 58 adjacent “vertical" aggregates.
We present a greedy backtracking algorithm for generating a particular type of all-
partition array found in Babbitt’s works, known as a Smalley array. Constructing
such an array is a difficult task, and we present two heuristics for helping to generate
this type of structure. We provide the parameter values required by this algorithm
to generate the specific all-partition arrays used in three of Babbitt’s works. Finally,
we evaluate the algorithm and the heuristics in terms of how well they predict the
sequences of integer partitions used in two of Babbitt’s works. We also explore the
effect of the heuristics on the performance of the algorithm when it is used in an
attempt to generate a novel array.

1 Introduction

The all-partition array is a mathematical structure that has been used in the
composition of certain twelve-tone works by select composers, of whom Mil-
ton Babbitt (1916–2011) is the most notable. An all-partition array provides
a framework that ensures that as many different forms of a tone row as pos-
sible (generated by any combination of transposition, inversion or reversal)
are expressed “horizontally" and that all 58 integer partitions of 12 are ex-
pressed as 58 adjacent “vertical" aggregates (see Figure C.3 for an example
of an all-partition array and three of its 58 partitions). Nearly all of Babbitt’s
compositions since the early 1960s (marking the start of his second period)
use this structure. Understanding the structure of the all-partition array is
important for helping to explain aspects of both Babbitt’s compositional pro-
cess and the detailed structure of his works, as it was used to help achieve
his goal of maximal diversity.1

The purpose of this paper is to present an algorithm for generating a par-
ticular type of all-partition array found in Babbitt’s works, known as a Smalley
array (discussed in detail in sections 2 and 4). Smalley arrays were developed
by the composer and mathematician, David Smalley, while he was working
with Babbitt during the early 1980s (Mead, 1994, p. 220). These arrays are in-
teresting and worthwhile to study for several reasons. For the music theorist,

1Babbitt’s principle of maximal diversity is the presentation of as many musical parameters in
as many different possibilities as possible. See Mead (1994, pp. 33–34) and Bernstein (2014) for
discussions on the various ways Babbitt achieved maximal diversity in his works.
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analysing a piece based on a Smalley all-partition array is a challenging task.
In fact, Bemman and Meredith (2015b) have shown that it involves solving
a special case of the well-known set-covering problem which can be shown to
be NP-hard (Cormen et al., 2009). Constructing a Smalley array is also a hard
problem. However, the fact that Smalley succeeded in discovering such an
array suggests the possibility of devising a practical algorithm that can gen-
erate such an array using reasonable resources of time and space. Indeed,
other individuals have since successfully constructed arrays of various types
(discussed further in section 3). However, the process that Smalley used to
discover his array remains unclear. Furthermore, that this apparently com-
putationally complex problem was solved without the use of a computer is
of considerable interest and could potentially shed light on the mechanisms
that underlie creative processes more generally.

An algorithm for generating Smalley arrays, could serve as a hypothesis
for how such an array was constructed by Smalley himself. However, it is
possible, of course, that none, some or all of the steps taken by the algorithm
were used by Smalley in constructing his arrays by hand. Nonetheless, hav-
ing such an algorithm would provide certain benefits. For example, it would
allow us to determine whether there exist other Smalley arrays that were not
used by Babbitt. This is significant as only a handful of Smalley arrays have
been found in Babbitt’s music. Attempting to devise an algorithm for gen-
erating arrays of this type could provide valuable insight into why so few
distinct Smalley arrays are known to exist. Assuming we are able to generate
a new array, we could then study it and potentially use it as the basis for
constructing novel musical works.

In the remainder of this paper, we begin by defining the structure of the
all-partition array (section 2). Next, we review previous work relating to the
construction of all-partition arrays (section 3). Then, in section 4, we define
the sub-class of all-partition arrays known as Smalley arrays. In sections 5 and
6, we propose an algorithm for generating Smalley arrays. In section 7, we
provide the parameter values that need to be given to this algorithm in order
for it to generate the all-partition arrays for three of Babbitt’s works. Finally,
in section 8, we evaluate the algorithm and the heuristics in terms of how
well they predict the sequences of integer partitions used in two of Babbitt’s
works, Sheer Pluck (1984) and About Time (1982). We also explore the effect
of the heuristics on the performance of the algorithm when it is used in an
attempt to generate a novel array.

2 The all-partition array

The all-partition array and the many different ways in which it has been
used in practice have been written about in great detail (see, in particular,
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Mead, 1994).2 We will therefore only provide a summary here, focusing
in particular on the structures found in a specific type of all-partition array
known as a Smalley array (discussed here and in section 4). Insofar as possible,
we use existing and well-established terminology to describe the structure of
the all-partition array. However, we also introduce some new terminology
where necessary or if we feel that the existing terminology is ambiguous or
excessively overloaded.

2.1 Preliminary definitions

Before considering the all-partition array in detail, we first review some con-
cepts from pitch class set theory that will be used extensively throughout
this paper. We use the term aggregate in the sense in which it is usually used
in pitch class set theory to mean the universe of pitch classes—that is, the
set {0, 1, . . . 11}. A tone-row, A = 〈p1, p2, . . . p12〉, is then an ordered set of
pitch classes that contains each element in the aggregate exactly once—that
is,
⋃12

i=1{pi} = {0, 1, . . . 11}.3 Each tone row belongs to an equivalence class
of rows related by any combination of transposition, inversion or retrograde
(i.e., reversal). Such an equivalence class is known as a row class and the
members of such a row class are called row forms. Traditionally, each row
form is denoted by the transformation that produces it from the original or
prime form, using the abbreviations Pn, In, Rn and RIn for transposition, inver-
sion, retrograde and retrograde inversion, respectively, each combined with a
transposition by n semitones.4 The universe of tone rows can thus be strictly
partitioned into row classes, each of which is a set of 48 row forms that is
closed under the operations {P0, . . . P11, I0, . . . I11, R0, . . . R11, RI0, . . . RI11}.

Combinatoriality is a property of certain pitch class sets whereby the union
of an unordered set and one or more transformations of this set form an ag-
gregate. For example, a hexachord, H1 = {p1, p2, . . . p6}, is said to be combi-
natorial if and only if, for some transformation, T, H1 ∪ T(H1) = {0, 1, . . . 11}
(Babbitt, 1961, p. 78). A tone row constructed from combinatorial sets may
be used to construct additional tone rows having predictable properties of in-
variance and complementation with respect to these sets and their locations in
each row. If A1 = 〈p1, p2, . . . p12〉, and A2 = 〈q1, q2, . . . q12〉 are two forms of
the same tone row, then A1 and A2 are said to be hexachordally combinatorial
(henceforth hc-related), if and only if {p1, p2, . . . p6} = {q7, q8, . . . q12} (Bab-
bitt, 1961, p. 78). For example, if P0 = 〈0, 11, 6, 4, 10, 5, 8, 9, 1, 3, 2, 7〉, then this

2The origins of the all-partition array can be traced to the trichordal array, a structure that
Babbitt used in pieces such as his Composition for Four Instruments (1948). See Mead (1994) for a
thorough discussion of Babbitt’s techniques.

3We consistently use 〈·〉 for ordered sets and {·} for unordered sets (in the normal mathe-
matical sense).

4Other transformations exist for defining equivalence classes and include for example, the
M5 and M7 multiplicative transformations.
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Fig. C.1: An example of a 6 × 8 row-form array containing 24 hc-related row forms, where
P0 = 〈0, 11, 6, 4, 10, 5, 8, 9, 1, 3, 2, 7〉.

row form is hc-related to the row form I7 = 〈7, 8, 1, 3, 9, 2, 11, 10, 6, 4, 5, 0〉.
A pair of row forms are said to share the same disjunct hexachords if and
only if {p1, p2, . . . p6} = {q1, q2, . . . q6} (Babbitt, 1961, p. 74). For example,
if P0 = 〈0, 1, 3, 6, 7, 9, 2, 4, 5, 8, 10, 11〉, then it shares the same disjunct hexa-
chords with the row form P6 = 〈6, 7, 9, 0, 1, 3, 8, 10, 11, 2, 4, 5〉.

2.2 Structural definitions

When beginning the construction of a Smalley all-partition array, pairs of
hc-related row forms, called arrays, are made (Winham, 1970).5 When the
row forms in such an array are represented using the standard abbreviations
(i.e., Pn, In, Rn and RIn) the array is called a row-form array (Cuciurean, 1997,
p. 8). Row-form arrays may be concatenated with one another from left-to-
right and from top-to-bottom. Perhaps confusingly, music theorists have used
the term “row-form array" both for single row-form arrays and these larger
structures formed by concatenating single row-form arrays, distinguishing
between them on the basis of size. Adopting this traditional terminology, we
focus here on row-form arrays that contain all (and only) the 48 row forms
of a row class. Mead (1994, p. 34) refers to all-partition arrays based on row-
form arrays of this type as hyperaggregates or row-class aggregates. Figure C.1
shows an example of such a row-form array.

In Figure C.1, tone rows appear in hc-related pairs that are grouped into
8 columns called blocks (Mead, 1994, p. 18). Following traditional usage, we
refer to each row in a row-form array as a lyne (Kassler, 1963, p. 93; Kassler,
1967, p. 14; Mead, 1994, p. 18). Lynes are often expressed explicitly as a
sequence of pitch class integers and we call this in extenso representation
of a row-form array a PcMatrix. A 6 × 8 row-form array such as the one
in Figure C.1 then corresponds to a 6 × 96 matrix of pitch classes that we

5Arrays exhibiting any form of combinatoriality can be constructed and are not limited to
equal divisions of a tone row into hexachords. See Starr and Morris (1977, p. 4) for a discussion
on so-called uneven combinatoriality.
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denote by PcMatrix6,96. The row-form array and its corresponding PcMatrix
are alternative representations of the same underlying matrix of pitch classes.
The difference between the two representations is that the row-form array
indicates how the pitch classes are grouped into row forms and how these
row forms are related to the prime form of the row used in the work; whereas
the PcMatrix simply specifies, in extenso, the pitch class at each position in
the matrix.

The various possible types of all-partition array can be classified according
to the number of lynes that they contain (Mead, 1994, p. 18). In principle,
the number of lynes in an all-partition array can be any value less than or
equal to 12 (assuming 12 pitch classes per octave). However, as explained by
Mead (1994, pp. 31–32), by constraining himself to constructing arrays from
all-combinatorial hexachords, Babbitt limited himself to all-partition arrays
containing four, six or twelve lynes.

In this paper, we focus on all-partition arrays whose tone rows are con-
structed from the all-combinatorial hexachord known as the D-hexachord.6

Single all-partition arrays using this hexachord generally have six lynes
(Mead, 1994, p. 32). The D-hexachord is a collection of six pitch classes com-
prised of “two disjunct 3-pc chromatic clusters a tritone apart", the prime
form for which is 〈0, 1, 2, 6, 7, 8〉 (Cuciurean, 1997, p. 11). Such a hexachord
can be mapped onto both itself and its complement by transposition or inver-
sion and transposition. If S is a pitch class set, then we denote transposition
by n semitones by Tn(S) and inversion around 0 followed by transposition
by n semitones by In(S). We denote the complement of S in the aggregate
by S. Thus, if S = {0, 1, 2, 6, 7, 8}, then T3(S) = T9(S) = I11(S) = I5(S) = S
and T0(S) = T6(S) = I2(S) = I8(S) = S. For this reason, there exist only six
distinct D-hexachords. In turn, the row class of a tone row constructed from
two D-hexachords can be partitioned into six equivalence classes, each con-
taining eight tone rows that share the same disjunct hexachords (Mead, 1994,
pp. 31–32). Typically, each of the six lynes in an all-partition array built on
the D-hexachord employs the eight tone rows from one of these equivalence
classes.7

The most important constraint on the structure of an all-partition array is
that it must be possible to partition its PcMatrix into a sequence of ordered
mosaics. We define an ordered mosaic to be an ordered aggregate partitioned
into n ordered pitch class sets, each belonging to a lyne of the PcMatrix,
where n is less than or equal to the number of lynes. Our terminology here
is a refinement of Robert Morris’ concept of mosaic which he defined to be an

6See Babbitt (1955) and Martino (1961) for discussions on all six of the all-combinatorial
hexachords and their letter nomenclature.

7Notable exceptions, where the number of lynes is not equal to the number of distinct hex-
achords used in an array, can be found in Babbitt’s String Quartet no. 3 (1970), Post-Partitions
(1966) and Sextets (1966) (Mead, 1994, p. 32).
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(a) One possible ordered mosaic. (b) A second possible ordered mosaic.

Fig. C.2: Two possible ordered mosaics in an excerpt from a PcMatrix6,96 corresponding to
the first block of its row-form array (which is shown in Figure C.1). Each ordered mosaic
consists of the pitch classes on the left of the boundary marked by the ragged line. In (a)
the ordered mosaic is 〈〈11, 4, 3〉, 〈6, 7〉, 〈5〉, 〈2, 9, 10〉, 〈0〉, 〈1, 8〉〉 and in (b) the ordered mosaic is
〈〈11〉, 〈〉, 〈〉, 〈〉, 〈0, 5, 4, 6, 10〉, 〈1, 8, 9, 7, 3, 2〉〉,

unordered aggregate partitioned into unordered pitch class sets (Morris, 2003,
p. 103). Figure C.2 shows two possible ordered mosaics in an excerpt from a
PcMatrix6,96 corresponding to the first block of its array in Figure C.1.

Note in Figure C.2(a) that the region to the left of the ragged boundary
line contains an aggregate that can be represented as a collection of lyne seg-
ments with lengths (from top to bottom) of 3, 2, 1, 3, 1 and 2. As noted by
Mead (1994, p. 32), these aggregate regions are traditionally represented by
listing the segment lengths in descending order of size. For example, the
region in Figure C.2(a) would be 3, 3, 2, 2, 1, 1 (often written 322212, where
each exponent denotes the number of occurrences of segments with length
equal to its base) and its mosaic (in the sense used by Morris) might be
{{11, 4, 3}, {2, 9, 10}, {6, 7}, {1, 8}, {5}, {0}}.8 Clearly, however, these repre-
sentations of a mosaic and the lengths of its segments fail to specify the lyne
within which each segment occurs and fail to indicate the lynes that do not
contain any segments in a given mosaic. We therefore adopt a more informa-
tive representation in which the lengths of the segments in an aggregate re-
gion are listed in a vector (e.g., 〈1, 0, 0, 0, 5, 6〉 for the example in Figure C.2(b)
rather than 651) and the ordered mosaic itself is represented as an ordered
set of ordered sets (e.g., 〈〈11〉, 〈〉, 〈〉, 〈〉, 〈0, 5, 4, 6, 10〉, 〈1, 8, 9, 7, 3, 2〉〉 for the re-
gion in Figure C.2(b)). We now define some terms that allow us to use this
more informative representation.

An integer partition, which we denote by IntPart(s1, s2, ..., sk), is a repre-
sentation of an integer, n = ∑k

i=1 si, as an unordered sum of k positive inte-
gers, s1 . . . sk (Eger, 2013; Tani and Bouroubi, 2011). For example, if n = 12
and k = 6, then one possible integer partition is IntPart(3, 3, 2, 2, 1, 1). An

8It should be noted that Mead does not refer to these regions as mosaics, but as partitions.
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integer composition, which we denote by IntComp(s1, s2, ..., sk), is a repre-
sentation of an integer, n = ∑k

i=1 si, as an ordered sum of k positive inte-
gers (Eger, 2013; Page, 2013). For example, if n = 12 and k = 6, then
IntComp(3, 3, 2, 2, 1, 1) 6= IntComp(3, 2, 1, 3, 2, 1).9 A weak integer compo-
sition, which we denote by WIntComp(s1, s2, ..., sk), is a representation of
an integer n = ∑k

i=1 si, as an ordered sum of k non-negative integers, (i.e.,
including zero) (Page, 2013). For example, if n = 12 and k = 6, then
WIntComp(6, 6, 0, 0, 0, 0) is a weak integer composition.

We denote by ` the total number of distinct integer partitions possible
when n = 12 and k is the number of lynes. In those of his works based
on a single all-partition array, Babbitt ensures that each of these ` integer
partitions is represented exactly once (Mead, 1994, pp. 31–32). Indeed, it is
for this reason that the resulting structure is called an all-partition array.

If c is the integer composition, IntComp(s1, s2, ..., sk), then we define the
integer partition associated with c, denoted by [c], to be IntPart(s1, s2, ..., sk). That
is, the integer partition [c] is the unordered set containing all and only those
elements in the integer composition, c. We further define that two integer
compositions, c and d, are partitionally equivalent if and only if [c] = [d]. This
terminology is compatible with that of Morris (2003, p. 103), who refers to
all mosaics formed by the same integer partition as belonging to the same
partition class. Two integer compositions, c and d, are partitionally distinct if
and only if [c] 6= [d]. Partitional equivalence is a true equivalence relation on
the set of integer compositions that partitions them into classes, each of which
corresponds to a distinct integer partition. From these definitions, we may
say more precisely that each of the ` possible integer partitions is represented
in an all-partition array by an ordered mosaic in which the lyne segment
lengths are given by an integer composition that is partitionally distinct from
every other integer composition used in the array.

The number of pitch classes required in any single all-partition array is
equal to 12`. However, a PcMatrix of the type discussed here must con-
tain 48× 12 = 576 entries, since its array contains each of the 48 row forms
belonging to a specific row class. When the number of lynes, k, is 6, as is typ-
ically the case when the array is based on the D-hexachord, then ` = 58. This
implies that the number of pitch classes required to populate the aggregate
regions corresponding to the ` = 58 integer partitions, i.e., 12× 58 = 696, ex-
ceeds the number of entries in the PcMatrix by 696− 576 = 120. In order to
satisfy the constraint that all 58 integer partitions are represented by ordered
mosaics, Babbitt had to insert 120 additional pitch classes into these PcMatri-
ces. These additional entries are found by repeating certain pitch classes in
each lyne. In this way, Babbitt was able to preserve the order of pitch classes
in the underlying row forms (Mead, 1994, p. 32). All-partition arrays having

9Babbitt (1961, p. 83) also uses the term “composition" in this sense.
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Fig. C.3: The complete WPcMatrix for the six-lyne, self-contained and horizontally weighted all-
partition array in Sheer Pluck (1984), represented as an irregular matrix of pitch classes (note the
unequal lyne lengths). The first three of its 58 partitions have been indicated in three different
shades of grey. Outer-aggregate repeated pcs (OARPs) are indicated with circles.

these additional pitch classes are thus said to be horizontally weighted (Morris,
2010, p. 44). We name these additional pitch classes found in a horizontally
weighted all-partition array, outer-aggregate repeated pcs (OARPs).

For any horizontally weighted all-partition array, its PcMatrix with these
additional OARPs will contain 12` entries, and we call this “unpartitioned"
matrix a WPcMatrix. A WPcMatrix is always equal in size to its PcMatrix
along its first dimension (i.e., the number of lynes, k), but larger along its
second dimension due to the way OARPs must be added. Moreover, a WPc-
Matrix can be a regular matrix or an irregular matrix (i.e., with unequal lyne
lengths), depending on the distribution of its OARPs. Figure C.3 shows the
entire six-lyne WPcMatrix found in Babbitt’s Sheer Pluck, represented as an
irregular matrix of pitch class integers with its 120 OARPs indicated by cir-
cles.10 Following on from our definitions above, we define an all-partition
array to be a partitioning of a WPcMatrix into a sequence of ` ordered mo-
saics, such that the shape of each mosaic is defined by a partitionally distinct
integer composition.

3 Previous work

The earliest work on constructing all-partition arrays was carried out by Bab-
bitt himself, however, several other composers and theorists have since made
further contributions. We focus here on these more recent efforts, as they
present clear, yet contrasting, methodologies on how arrays might be con-
structed. In particular, we consider those methods presented by Starr and
Morris (1977, 1978), Bazelow and Brickle (1976, 1979) and Morris (2010). Writ-

10The OARPs in many of Babbitt’s all-partition arrays can be found similarly encircled in his
sketches (see Bernstein, 2014, p. 8).
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Fig. C.4: A three-row combination matrix (CM) formed from transformations of a given tone
row, y. Note, that each row and column contains 12 distinct pitch-classes. (From Starr and
Morris, 1977, p. 18.)

ings by Babbitt related to aspects of array construction include discussions on
set combinatoriality (Babbitt, 1955, 1961), general properties of invariance in
sets (Babbitt, 1960) and partitions of the aggregate (Babbitt, 1973).

Many of these previous efforts have focused on a lower level of construc-
tion than we present here. Early work by both Starr and Morris, for exam-
ple, examines certain combinatorial and modulo invariant properties of pitch
classes in a given set (Starr and Morris, 1977, 1978). In particular, they intro-
duce the notions of begin-set, end-set and n-clique11 (Starr and Morris, 1977,
pp. 12–14) and found that a tone row constructed from these, while satis-
fying certain constraints, will produce subsequent rows under some trans-
formations with both predictable properties and qualities desirable for the
construction of an all-partition array. Vertically concatenating such rows can
form a so-called combination matrix. Combination matrices (CMs) are matri-
ces of pitch classes with n tone rows and n columns of aggregates containing
n2 row segments (Starr and Morris, 1977, p. 8). Figure C.4 shows an exam-
ple of a three-row combination matrix constructed from a given tone-row,
y = 〈0, 1, 4, 3, 9, 2, 10, 8, 5, 7, 11, 6〉.

It is clear from Figure C.4 how the presence of such columnar aggregates
in a CM are of importance to the construction of an all-partition array. Indeed,
it is because of this property that CMs can be concatenated from left to right
and from top to bottom to form blocks in a row-form array that have a higher
chance of being partitionable than ones in which the rows have been chosen
at random.12 Starr and Morris go on to describe how suitable partitions
in such a sequence of CMs can be found by swapping pitch classes across
column boundaries. At some point in the process of performing these swaps,
however, human intervention seems inevitable as the authors do not propose
a way for automating their method, despite suggesting this as a possibility
(Starr and Morris, 1978, p. 59). Nevertheless, it seems that at least parts of
the processes proposed by Starr and Morris can be automated, since Morris
(2010) and Kowalski (1985) claim to have developed computer programs to
assist with constructing and editing arrays. Unfortunately, these programs

11See Babbitt (1961) for a discussion of n-cliques.
12Successful all-partition arrays constructed using this method can be found in Morris’ musical

works.
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have not been made publicly available and details of their design have not
been published.

Bazelow and Brickle (1976, 1979) and Morris (2010) lay the ground work
for automatically constructing arrays. Like Starr and Morris, Bazelow and
Brickle are interested in the relationship between the pitch-class content of
a tone row and how various transformations can be informative when at-
tempting to find partitions. However, these authors tackle a much simpler
problem than that which we address here, namely, what they call Babbitt’s
Partition Problem: “Given an array of four forms of an arbitrary twelve-tone
set, how many ways can the array be decomposed entirely into four-lyne,
aggregate forming partitions?" (Bazelow and Brickle, 1976, p. 283). One pos-
sible solution to this problem, they argue, “would be, roughly speaking a
step-by-step method which would examine a given area of set forms over
all the possibly four-part partitions of twelve together with their respective
permutations" (Bazelow and Brickle, 1976, p. 288). They reject such a brute
force approach on the grounds that some partitions will fail to form an ag-
gregate precisely because not all configurations of pitch-classes in a row-form
array, determined by the transformations of its tone rows, can have a solution.
Indeed, testing for such cases, if such an a priori way exists for rejecting par-
titions, may be inefficient. Nonetheless, exhaustively testing whether given
partitions are aggregate-forming at any given point in a row-form array is
computationally trivial and it is the approach we adopt here. Further differ-
ences between our methods exist and these will be discussed in more detail
below.

In his later work, Morris (2010, p. 74) notes that if one wanted to construct
a horizontally weighted array “one simply took the collection of unparti-
tioned rows and started partitioning aggregates from the left end, duplicat-
ing notes on the edges of row segments if desired, until the process finished
on the right side". He goes on to state that in 1989 he “wrote a computer
program to help manage the process". Unfortunately, this algorithm has not
been published, but it would be of considerable relevance to the work we
present here, as our model closely follows the described procedure. While
the general process is straight-forward, there remain many practical prob-
lems that need to be solved in order for this strategy to be practical. Morris
acknowledges as much, stating that “one must keep track of the types of par-
titions, which notes have been duplicated, and backtrack when there are no
aggregates to the right available" (Morris, 2010, p. 74). However, satisfying all
constraints necessary for constructing a successful all-partition array in this
manner is intractable, as the search space is enormous and the number of suc-
cessful sequences is very small. For example, given a 6× 8 row-form array
such as the one used in Babbitt’s None but the Lonely Flute (1991) along with
the corresponding configuration of 120 OARPs required to form a horizon-
tally weighted array, Bemman and Meredith (2015a) estimated that the search
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space contains ≈ 7858 possible sequences and they were unable to use this
brute-force method to find a single successful sequence even after running
the algorithm for several months (Bemman and Meredith, 2015a, p. 772).

It is not surprising, then, that most other efforts to explain the construc-
tion of arrays rely on modifying existing arrays in some way—for example, by
switching the order of blocks or by using circle-of-fifths transformations (i.e.,
M5 and M7) (Mead, 1994, p. 36). It is intriguing that, despite the difficulties
of generating all-partition arrays automatically, human composers have been
constructing such arrays for decades. This suggests that, although an exhaus-
tive search approach to finding an all-partition array would be intractable, it
may nevertheless be possible to find a set of heuristics that can be used in
conjunction with an approximation algorithm to generate all-partition arrays
using realistic time and memory resources. The work reported in the remain-
der of this paper represents an initial attempt to explore this possibility.

4 Smalley Arrays

The six-lyne all-partition arrays that Babbitt used in several of his works were
devised by the composer and mathematician, David Smalley, while he was
working with Babbitt during the early 1980s (Mead, 1994, p. 220). The ar-
rays created by Smalley differ from those created by Babbitt in terms of both
the organisation of row forms in their row-form arrays and the sequence of
integer partitions used. The arrays devised by Smalley (henceforth, Smalley
arrays) satisfy more rigorous constraints than those satisfied by Babbitt’s ar-
rays and are therefore harder to construct. For this reason, Smalley arrays
were often re-used by Babbitt. Figure C.5 shows how Smalley arrays can be
classified according to Babbitt’s most common practices.

The first constraint satisfied by a Smalley array (labelled (1) in Figure C.5)
is that the WPcMatrix and sequence of ` integer compositions must be self-
contained. This means that the all-partition array must only contain the 576
pitch-classes from the PcMatrix and the 120 outer-aggregate repeated pcs
(OARPs). This is the hardest constraint to satisfy. The requirement that any
additional pitch class must be an OARP is itself greatly constrained by the
particular sequence in which the ` = 58 integer partitions are used. This
sequence, however, is itself constrained by the arrangement of tone rows in
the row-form array.

The second constraint on a Smalley array (labelled (2) in Figure C.5) is that
a PcMatrix must contain 48 tone rows belonging to the same row class. The
third constraint (labelled (3) in Figure C.5) is that all the tone rows in a given
lyne of the PcMatrix must contain the same disjunct hexachords (which must
be distinct from the hexachords used in the other lynes of the PcMatrix). At
this point, there is more than one way to arrange the tone rows of a row-
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Fig. C.5: Classification of six-lyne, horizontally weighted arrays using D-hexachords according
to Babbitt’s most common practices. Note, in particular, the constraints satisfied by the Smalley
arrays.

form array while satisfying constraints (2) and (3) above. A Smalley array
represents one such way and we discuss this arrangement next.

4.1 Organisational constraints on the row-form array

A number of authors have discussed the various ways in which Babbitt or-
ganised the tone rows in his works (Bemman and Meredith, 2014; Lake, 1986;
Mead, 1994; Morris, 1987). We have found that in his six-lyne, horizontally
weighted all-partition arrays using the D-hexachord, two distinct organisa-
tional methods are used to construct the row-form arrays. The first of these
methods corresponds to the arrangement found in a Smalley array and ex-
amples occur in Babbitt’s Sheer Pluck (1984), Joy of More Sextets (1986), and
None but the Lonely Flute (1991). The second organisational method is found,
for example, in Babbitt’s Arie da Capo (1974) and About Time (1982). Despite
their differing arrangements, both methods satisfy constraints (2) and (3) in
Figure C.5. However, the latter method results in a WPcMatrix that is not
self-contained (constraint (1)). In this paper, we focus on Smalley row-form
arrays.

In a Smalley row-form array, pairs of tone rows are hc-related so as to
exhaust the possible 2-combinations of row operations, P, I, R and RI. More-
over, operations in horizontal groups of four hc-related pairs form 6 distinct
2× 4 Latin rectangles. Figure C.6 shows a row-form array in which the or-
ganisational constraints satisfied by a Smalley array are shown. This template
illustrates one way in which the 48 tone rows of a row class can be arranged
in order to fulfil these constraints.

In Figure C.6, arrows labelled T3 and T9 indicate relationships by transpo-
sition between pairs of consecutive tone rows in one lyne to consecutive tone

88



5. Generating a PcMatrix of the Smalley array class

Fig. C.6: A Smalley row-form array and organisational constraints. Each box contains an hc-
related pair of rows. Each horizontal sequence of four hc-related pairs forms a distinct 2× 4
Latin rectangle of operations. One of these is indicated by the rectangle drawn in the upper
right. Note that this particular arrangement of tone rows represents one of many possible ways
in which the constraints of a Smalley row-form array may be satisfied. See text for further
explanation.

rows in an adjacent lyne. The order of these transpositions, however, may be
reversed such that T9 occurs on top. Arrows below the template, labelled T6,
indicate blocks similarly related by transposition.

5 Generating a PcMatrix of the Smalley array class

In this section and the next, we present a method for generating the WPc-
Matrix of a Smalley array. Figure C.7 gives an overview of this method. In
this section, we focus on generating the PcMatrix; in the next, we describe a
method for adding OARPs to the PcMatrix in order to produce the WPcMa-
trix.

Figure C.7 shows that our method takes four pieces of information as
input, of which the first is the tone row on which the array is based. At
various points during the execution of the method, the algorithm is required
to select one from a choice of candidates. For example, at an early stage in the
execution, the algorithm must select one of the four different row operations
to omit in the first column of the row-form array (see Figure C.8). At this
stage in the process, the algorithm may choose any of the four row-form
operations to omit. However, we can specify which operation it should select
by providing this information in the input. The second to fourth items of
input information shown in Figure C.7 are simply encodings of the choices
that the algorithm should make at each point in its execution when it needs
to select from a number of options. The algorithm can also be run in a
generative mode in which it makes random selections when faced with a set
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Fig. C.7: Basic flow of constructing an all-partition array using our proposed method. Arrows
indicate one or more functions necessary for generating one structure from a previous one.

of possibilities.

5.1 Computing row operations in the PcMatrix

We generate the PcMatrix of a Smalley array using two functions that pair hc-
related tone rows according to the constraints described in Figure C.6. The
ComputeOperations function, shown in Figure C.9, organises the row form
operations in a row-form array. The second function, ComputeTransposi-
tions, shown in Figure C.11, then assigns transpositions to these operations.
Figure C.8 shows how the process of filling a row-form array with operations
unfolds in ComputeOperations. Note in Figure C.8 that, after operation
pairs in (a) and (b) have been placed, operation pairs in columns 3 and 4 in
(c) are simply the reverse of the operation pairs found in columns 1 and 2,
respectively. Figure C.8(d) repeats the process illustrated in (a), (b) and (c)
for the remaining row pairs until the row-form array is completely filled.

The ComputeOperations function, shown in Figure C.9, takes a single
input variable, Choices, which is a vector of integer values indicating the
specific choices made at each decision point in the algorithm. The range of
possible parameter values at each position in Choices is given by 〈1–4, 1–6,
1–2, 1–2, 1–2, 1–2, 1–2, 1–2〉. This implies that there are 1536 distinct arrange-
ments of row operations within a row-form array that would be acceptable
in a piece based on a Smalley all-partition array.

Figure C.9 shows pseudocode for an implementation of ComputeOpera-
tions. The pseudocode conventions that we employ in this paper are based
on those used by Meredith (2006). In this pseudocode, “←" is the assignment
operator and block structure is indicated by indentation alone. Ordered sets
are notated with angle brackets (“〈·〉") and their names are rendered in bold

90



5. Generating a PcMatrix of the Smalley array class

(a) Step 1. Place an ordered
pair of operations in rows 1–
2 of column 1 (in this case,
〈RI, I〉).

(b) Step 2. Choose an order-
ing for the other two opera-
tions and place in rows 1–2 of
column 2.

(c) Step 3. In column 3 of rows
1–2, place the same operations
as in column 1 but in reverse
order. In column 4, place the
operations in column 2 in re-
verse order.

(d) Repeat Steps 1–3 for rows
3–4 and 5–6.

Fig. C.8: Process of filling columns 1–4 of a row-form array with operations according to the
constraints shown in Figure C.6.
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font. The length of an ordered set, A, is denoted by |A|. The ith element
of an ordered set, A, is denoted by A[i]. Thus, A[1] is the first element in
A and A[|A|] is the last element in A. If each element in an ordered set,
A, is itself an ordered set, then A[i][j] denotes the jth element of the ith el-
ement of A. A[i..j] denotes the segment of the ordered set, A, containing
the ith to the jth elements in A. Similarly, A[i..j][k..`] denotes the rectan-
gular region of the two-dimensional array, A, containing the elements that
occur in both the ith to jth rows and the kth to `th columns. If A and B
are two ordered sets, then A ⊕ B is the concatenation of A and B—that is,
A⊕ B = 〈A[1], . . . A[|A|], B[1] . . . B[|B|]〉. If 〈A1, A2, . . . An〉 is a sequence of
ordered sets, then

n⊕
i=1

Ai = A1 ⊕A2 ⊕ . . .⊕An .

In Figure C.9, ComputeOperations begins by initializing an empty 6× 8
row-form array called RFA (line 1). RFA is a 2-dimensional array of nils that
will hold an operation at each position. Next, an ordered set, Operations, is
initialized, containing the four standard row operations, 〈P,I,R,RI〉 (line 2). In
line 3, three of the four row-form operations are chosen for use in the first col-
umn of the row-form array and stored in the variable, OpsMinusOne. The
decision as to which operation to omit from column 1 of RFA is specified
by the first element in Choices. For example, in Figure C.8, the operation
P is omitted from the first column and this would be indicated by setting
Choices[1] to 1, indicating that the first element in 〈P,I,R,RI〉 is to be omit-
ted. In line 4 of ComputeOperations, the Permute2Combinations func-
tion is used to compute the unordered 2-combinations of OpsMinusOne
(sorted in lexicographical order) and find all permutations of these three
2-combinations. These permutations are stored in a 6 × 3 array, called
AllTwoCombSeqPerms, in which each row contains one of these permu-
tations and the rows are sorted in reverse lexicographical order. In line
5, a single row (i.e., permutation) in AllTwoCombSeqPerms is chosen by
Choices[2] and saved in a variable called TwoCombSeq. For example, if
Choices[1] = 1, as in our previous example, and Choices[2] = 2, then
TwoCombSeq would be 〈{I,RI},{I,R},{R,RI}〉. ComputeOperations then
begins a while loop that iterates once for each pair of rows in RFA (lines 9 to
19) (that is, the loop iterates 3 times for a six-lyne all-partition array). Inside
this loop, i indexes a pair of rows in RFA while k indexes a 2-combination in
TwoCombSeq and m indexes a parameter value in Choices. In line 10, the
two permutations of the kth unordered pair of operations in TwoCombSeq
are stored in the variable Pairs and, in line 11, the value of Choices[m]
is used to select one of these ordered pairs of operations for placement at
RFA[i..i + 1][1]. m is then incremented in line 12. Figure C.8(a) illustrates
the process in lines 10–12 for i = 1. The algorithm then computes the com-
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Fig. C.9: Pseudocode for the ComputeOperations function.

plement of RFA[i..i + 1][1] in Operations (line 13), giving the two remaining
operations to be placed in column 2 of rows i and i + 1. Again, the two pos-
sible orders for this remaining pair of operations are stored in the variable
Pairs (line 13). One of these orderings is then chosen in line 14 and placed
in the row-form array. The decision as to which of these two orderings to
choose is given by the value of Choices[m]. m is then again incremented in
line 15. The process in lines 13–15 is illustrated in Figure C.8(b).

ComputeOperations needs only to choose the operations in columns one
and two, as the remaining operations are then determined. For a given pair of
rows, columns three and four are the reverse (denoted by ′) of columns 1 and
2, respectively (see lines 16–17 and Figure C.8(c),(d)). Moreover, columns
5, 6, 7 and 8 are exact repetitions of columns 3, 2, 1 and 4, respectively (see
lines 20–21 and the complete row-form array in Figure C.1).

5.2 Computing transposition levels for the row operations in
the row-form array

The ComputeTranspositions function, shown in Figure C.11, proceeds in
a similar manner to ComputeOperations, except that it finds transpositions
individually and not in pairs. Figure C.10 shows how the process of assigning
transpositions to the operations in the intermediary row-form array found by
ComputeOperations unfolds in ComputeTranspositions.

ComputeTranspositions takes three input variables: (1) the array of row-
form operations, RFA, generated by ComputeOperations; (2) a tone row,
Row, assumed to be constructed of D-hexachords; and (3) a vector of trans-
position choices, Trs. Each element of Trs encodes a selection to be made
at some point in the process of assigning transpositions to the operations in
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(a) Step 1. Place a transposition in
RFA[1][1].

(b) Steps 2 and 3. Place a trans-
position in RFA[2][1] hc-related to
RFA[1][1] and place T3 and T9 trans-
positions of these in RFA[1][3] and
RFA[2][3], respectively.

(c) Step 4. Place a transposition
in RFA[1][2], such that the row
form shares disjunct hexachords with
RFA[1][1].

(d) Steps 5 and 6. Place a trans-
position in RFA[2][2] hc-related to
RFA[1][2] and place T3 and T9 trans-
positions of these in RFA[1][4] and
RFA[2][4], respectively.

(e) Repeat steps 1–6 for remaining
rows until complete.

Fig. C.10: Process of assigning transpositions to operations in columns 1–4 in order to complete
a row-form array according to the constraints shown in Figure C.6.
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Fig. C.11: The ComputeTranspositions function.

RFA.
In Figure C.11, ComputeTranspositions begins by computing the row

class of the tone row, Row, provided as input. This row class is stored in
the variable, RowClass (line 1). The algorithm then begins a while loop that
iterates once for each pair of adjacent lynes in RFA (lines 4–33). Inside this
loop, i indexes a pair of lynes in RFA while k is an index into Trs.

The function, TranspositionsFromRowClass, called in line 5, returns
a list of the so-far-unused transposition levels from RowClass for the op-
eration given as its first argument. The transposition levels used so far for
each row form operation are tracked in RowClass. RowClass also stores a
copy of Row. In line 5, TranspositionsFromRowClass finds the available
transpositions for the operation at RFA[i][1] and saves them in the variable
OpTrans. This variable also stores the row-form operation to which its list of
transpositions apply. Trs[k] then specifies the transposition level to be chosen
from OpTrans and stores it as a property of RFA[i][1] in RFA[i][1].trans. k is
then incremented (lines 6–7, see also Figure C.10(a)).

Next, in line 8, TranspositionsFromRowClass returns a new list of un-
used transpositions, this time for the operation at RFA[i + 1][1]. In line 9,
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FindHRelation finds all those row forms whose transpositions are currently
in OpTrans that are hc-related to the row form at RFA[i][1] (for which the
transposition level has just been computed), and stores these in HexTrans.
In line 10, the transposition indicated by Trs[k] is selected and stored in
RFA[i + 1][1].trans, and then k is incremented in line 11.

In lines 12–17, the value in Trs[k] is used to select how to transform ad-
jacent rows by T3 or T9 according to the row-form array template in Fig-
ure C.6. k is then incremented again in line 18. An example of the process
in lines 12–18 is shown in Figure C.10(b). Lines 19–22 carry out the process
exemplified in Figure C.10(c), that is, selection of a transposition level for the
second row form in lyne i. In line 19, the so-far-unused transpositions for
the row-form operation at RFA[i][2] are computed using Transpositions-
FromRowClass. In line 20, the FindHexContent function returns a list of
possible transpositions for RFA[i][2] (whose operation is stored with the so-
far-unused transpositions in OpTrans) that allow the resulting row form to
share disjunct hexachords with the row form at RFA[i][1]—recall that all the
rows in a single lyne must share disjunct hexachords. In line 21, one of these
allowable transpositions is selected and stored in RFA[i][2].trans. In lines 23–
25, the algorithm uses the same procedure as in lines 8–10 to determine a
transposition level for the second row form in lyne i + 1 that is hc-related to
the second row form in lyne i (see Figure C.10(d)). In lines 27–32, the algo-
rithm then uses the same order of adjacent row transpositions (decided in
lines 12–17) to determine the transposition levels of the fourth row forms in
lynes i and i + 1 (see Figure C.10(d)).

After performing all the steps in the main while loop for each of the three
adjacent lyne pairs, the transposition levels for the first four row forms in
each lyne have been computed. The algorithm then places transpositions of
these levels in columns 5–8 according to Figure C.6 (lines 34–35) and return
the PcMatrix representation of the row-form array (line 36).

6 Generating the WPcMatrix

Generating the WPcMatrix of a Smalley array class from a PcMatrix6,96 re-
quires finding a sequence of 58 integer compositions that satisfy certain con-
straints. If we imagine determining these integer compositions in a left-to-
right manner, then we can define a candidate composition to be one that

1. forms an ordered mosaic in the PcMatrix containing a complete aggre-
gate or a sufficiently complete aggregate that can be made complete with
some combination of outer-aggregate repeated pcs (OARPs); and

2. is partitionally distinct from all other compositions found in the se-
quence before it.
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Fig. C.12: IntComp(3, 2, 1, 3, 1, 2) (indicated by the ragged solid line boundary), forming an or-
dered mosaic containing a complete aggregate, followed by WIntComp(3, 3, 3, 3, 0, 0) (indicated
by the dashed line), forming an ordered mosaic containing a sufficiently complete aggregate, in
an excerpt from a PcMatrix. Note that the sufficiently complete aggregate is missing pitch class
7 and has two occurrences of pitch class 8.

We define a sufficiently complete aggregate as an incomplete aggregate in which
the number of missing pitch classes is less than or equal to the number of
lynes in the array (in this case, six). As each ordered mosaic formed by a can-
didate composition must contain an aggregate (i.e., 12 distinct pitch classes),
a sufficiently complete aggregate missing n pcs will need to contain n OARPs.
Figure C.12 shows an example of a pair of ordered mosaics in a PcMatrix, one
containing a complete aggregate and one containing a sufficiently complete
aggregate.

In Figure C.12, the second composition forms an ordered mosaic contain-
ing an incomplete aggregate, as it is missing pitch class 7 and contains a
duplicate pitch class 8. We speak generally of the boundary between two
ordered mosaics as a mosaic boundary and, more specifically, of that part of a
mosaic boundary in a particular row of the PcMatrix as a segment boundary.
Thus, the two ordered mosaics in Figure C.12 form a mosaic boundary with
four segment boundaries (in rows 1–4).

When describing the process by which OARPs are generated, we use the
term segment boundary pc to refer to a pitch class lying directly to the left of
a segment boundary. Segment boundary pcs residing in the ordered mosaic
formed by the current composition (to the left of the dashed boundary line in
Figure C.12) we call potential pushed pcs, while those found in the previous
composition (to the left of the solid boundary line) we call potential repeated
pcs. In Figure C.12, the potential pushed pcs are 10, 8, 1 and 3, while the po-
tential repeated pcs are 3, 7, 5 and 10. Only by repeating a potential repeated
pc across a segment boundary to the first position of the current segment
and thereby “pushing" the potential pushed pc from this segment (and into
the next ordered mosaic), can one complete a sufficiently complete aggregate.
As noted by Mead (1994), this practice allowed Babbitt to preserve the order
of pitch classes in each tone row. Figure C.13(a) and (b) show two possible
solutions to completing the sufficiently complete aggregate formed by the
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(a) (b)

(c)

Fig. C.13: (a) Simple and (b) complex solutions (in bold) to completing the sufficiently complete
aggregate in the region formed by the candidate composition, WIntComp(3, 3, 3, 3, 0, 0), shown
in Figure C.12. (c) No solution exists for the sufficiently complete aggregate in the region formed
by the composition, WIntComp(3, 3, 0, 3, 3, 0). This composition is therefore not a candidate
composition.

current composition in Figure C.12. Figure C.13(c) provides an example of a
sufficiently complete aggregate that does not have a solution.

In Figure C.13(a), pitch class 7 (row 2) from the previous ordered mosaic is
repeated across its segment boundary, subsequently “pushing" the last pitch
class of the candidate segment out of consideration (pitch class 8). In this
way we have found the most simple solution to completing this sufficiently
complete aggregate. There are, however, two solutions for this candidate
composition and (b) shows the second and slightly more complex of these.
By first repeating pitch class 3 (row 1) across its segment boundary, 7 and
10 are now missing while 3 and 8 become duplicates. By then repeating
pitch class 7 (row 2), only pitch class 10 remains missing and pitch class 3
remains a duplicate as 8 has been pushed. We can complete the aggregate
by repeating the last remaining missing pitch class 10 and pushing the last
remaining duplicate, pitch class 3 (row 4). By contrast, Figure C.13(c) shows
a non-candidate composition (representing the same integer partition) whose
sufficiently complete aggregate cannot be made complete.

We should note that an integer composition, whether it forms a suffi-
ciently complete aggregate or not, defines a region similar to what Bazelow
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and Brickle (1979) have called a segmented block. Further, a proper block is
a segmented block that contains a complete aggregate. A proper block
thus qualifies as a candidate composition. However, not all candidate com-
positions are proper blocks, since neither sufficiently complete aggregates
nor ordered mosaics containing non-contiguous segments qualify as proper
blocks (Bazelow and Brickle, 1979, p. 55). The weak integer composition,
WIntComp(3, 3, 0, 3, 3, 0), shown in Figure C.13(c) is an example of an or-
dered mosaic containing non-contiguous segments that does not constitute a
proper block.

6.1 A backtracking algorithm for computing the sequence of
integer compositions

If one attempts to determine a sequence of integer compositions for an all-
partition array in an incremental fashion (i.e., “from left to right" as suggested
by Morris (2010, p. 74)), then it is possible that not every remaining unused
integer composition at a given stage in the process will be a candidate com-
position (as illustrated by the example in Figure C.13(c)). Moreover, it is
possible that, at some point in the sequence, there will be no candidate com-
positions at all. In fact, if a left-to-right, incremental approach is adopted,
both of these situations turn out to be highly likely, making it difficult to gen-
erate an entire sequence. To overcome this difficulty, we propose a solution
involving a backtracking algorithm.

Backtracking algorithms are a depth-first way of searching for all possi-
ble solutions to a set of constraints. The backtracking process finds a com-
plete solution to a problem by accumulating partial solutions to a set of con-
straints. It selects the first of these partial solutions until a complete solution
is found; or, in the event that the constraints cannot be satisfied by the cur-
rently selected partial solution, it returns to a previous point and selects the
next possible partial solution. It continues this process until either a solu-
tion is found or it fails. Figure C.14 shows pseudocode for an algorithm,
called BacktrackingBabbitt, for generating a WPcMatrix from a PcMatrix
by adding OARPs.

The algorithm begins by computing a list of integer compositions (when
n = 12 and k = 6), stored in the variable named Compositions (line 1).
Compositions is a 6188× 6 array of integers, in which each row represents a
distinct integer composition. Line 2 initializes CList to be a list of 58 empty
lists that will hold all candidate compositions and their OARP solutions at
each point in the sequence. Line 3 initializes PartialSolutions to be a 58× 6
array that will be used to hold both the final sequence of integer composi-
tions computed and the partial solution at each stage during the algorithm’s
execution. Each row in PartialSolutions stores a single integer composition
as a sequence of 6 summands. Cnt, used to store the current position being
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Fig. C.14: The BacktrackingBabbitt algorithm.

processed in CList, is initialized to 1 (using 1-based indexing) in line 4. Line
5 initializes Position to be a 6-vector that will hold the starting position in
each row in WPcMatrix of the corresponding segment in the ordered mosaic
for the composition at PartialSolutions[Cnt]. Lines 6–7 initialize C and R to
be 58-vectors in which the entries index candidate compositions in CList[Cnt]
and OARP solutions in CList[Cnt][C[Cnt]].oarps, respectively.

On each iteration of the while loop that starts in line 8, the algorithm
first checks if a list of candidate compositions has yet been computed for
the current position, Cnt. If this has not been done, then CList[Cnt] will
be empty in line 9 and ComputeCandidateCompositions will be called
in line 10, which returns CList, C and R. C[Cnt] is initialized to 1 by
ComputeCandidateCompositions while R[Cnt] is initialized to 1 if the com-
position at CList[Cnt][1] forms a sufficiently complete aggregate (otherwise,
R[Cnt] is initialized to 0). If, after ComputeCandidateCompositions has
executed, CList[Cnt] is empty in line 11, then the algorithm must backtrack
by calling Backtrack (line 12). If, on the other hand, there is at least one
candidate composition in CList[Cnt], then the algorithm can advance to the
next position in the sequence by calling Advance (line 14).

If the list of compositions at the current position in CList is not empty
in line 9, then this implies that the algorithm has backtracked at least once
to this position from some later position. In this case, the algorithm needs
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(a) Advance function called in the event that a can-
didate composition is found.

(b) Backtrack function called in the event that no
candidate compositions are found.

Fig. C.15: The (a) Advance and (b) Backtrack functions called by BacktrackingBabbitt.

to first try any remaining untried OARP solution for the current candidate
composition. R[Cnt] is therefore incremented in line 16 and line 17 checks if
we have run out of OARP solutions for this candidate composition. If there
is still a possible OARP solution, then the algorithm advances in line 28. If
no remaining OARP solution exists for the current candidate composition at
this position, then the next candidate composition for this position (if there
is one) must be tried. This is done in lines 18–26. If there is no remaining
untried candidate composition for this position (i.e., C[Cnt] > |CList[Cnt]| in
line 19), then the algorithm backtracks in line 20. Otherwise, the algorithm
must check in line 22 whether the new composition is complete or sufficiently
complete. The list of OARP solutions stored in the oarps property of the
current candidate composition, CList[Cnt][C[Cnt]], will only be empty in line
22 if this candidate composition is complete. If the current composition is
complete, then R[Cnt] is set to 0 in line 23, otherwise it is set to index the first
possible OARP solution in line 25. Either way, the algorithm then advances
in line 26.

The while loop continues to iterate until a candidate composition has
been chosen for each possible position from 1 to 58. At this point, a complete
sequence of integer compositions will be stored in PartialSolutions and all
the necessary OARPs will have been inserted into the PcMatrix, meaning
that it has been transformed into a WPcMatrix. The algorithm terminates by
returning both the sequence of integer compositions in PartialSolutions and
the WPcMatrix in the variable WPcMatrix.

Figure C.15 shows pseudocode for the Advance and Backtrack func-
tions called by the BacktrackingBabbitt algorithm. As shown in Fig-
ure C.15(a), Advance begins by adding OARPs to PcMatrix, if necessary
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(line 1). It then adds the candidate composition at CList[Cnt][C[Cnt]] to
PartialSolutions[Cnt] and increments Position by the values in this compo-
sition (lines 2–3). At any given Cnt, Position is equivalent to counting from
1 a distance equal to the summation of like parts from each composition in
PartialSolutions from 1 to Cnt− 1. Finally, it increments Cnt (line 4) and
returns a sequence containing the new values for PcMatrix, Cnt, Position
and PartialSolutions (line 5). The Backtrack function in Figure C.15(b)
begins by decrementing Cnt by 1 and then Position by the current com-
position, CList[Cnt][C[Cnt]] (lines 1–2). Next, it removes the composition
at PartialSolutions[Cnt] and resets R[Cnt] and C[Cnt] to zero (lines 3–5).
Finally, it removes OARPs from PcMatrix, if necessary (line 6), and then re-
turns a sequence containing the new values of PcMatrix, Cnt, C, R, Position
and PartialSolutions.

6.2 Computing candidate compositions and OARPs

BacktrackingBabbitt relies on two functions, ComputeCandidateCompo-
sitions and ComputeOARPs, for computing candidate compositions and
their associated OARPs (if the aggregates corresponding to the integer com-
positions are sufficiently complete). Pseudocode for these two functions is
given in Figures C.16 and C.17. ComputeCandidateCompositions finds
all integer compositions that are partitionally distinct from those that have
been previously used and that form either complete or sufficiently complete
aggregates in PcMatrix at the row positions encoded in Position. Com-
puteOARPs then takes each integer composition computed by Compute-
CandidateCompositions that forms a sufficiently complete aggregate and
determines whether or not it can be made complete with OARPs.

The ComputeCandidateCompositions algorithm, shown in Figure C.16,
begins by making a list, AllUnusedComps, of all the integer compositions
that are partitionally distinct from ones that have been used so far (line 1).
AllUnusedComps is an n × 6 matrix in which each row represents an in-
teger composition. In line 2, the variable, k, which will be used to track
the number of candidate compositions discovered, is initialized to 0. The
for loop that starts in line 3 then iterates over all the integer compositions in
AllUnusedComps and adds each composition that could potentially work at
the current position to the list of candidate compositions stored in CList[Cnt].
For each composition in AllUnusedComps, the algorithm first makes a list,
MosaicPcs, of the pcs that would occur in the ordered mosaic defined by that
composition (lines 4–12). The algorithm also notes the potential repeated and
pushed PCs, and stores these in PotRepPCs and PotPushPCs, respectively.
The aggregate region defined by an integer composition may contain dupli-
cate pcs. In line 13, the algorithm therefore computes the set of pcs (i.e., with-
out duplicates) in the ordered mosaic and stores this set in MosaicPcsNoDups.
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Fig. C.16: The ComputeCandidateCompositions algorithm.

If the current integer composition generates a complete aggregate, then it is
added to CList[Cnt] and k is incremented (lines 14–16). Alternatively, if the
set of distinct pcs in the ordered mosaic is potentially large enough to be
completed by the addition of OARPs, the function ComputeOARPs is called
in line 18 to compute all the possible OARP solutions for this sufficiently
complete aggregate. If at least one such OARP solution exists, the integer
composition is added to CList[Cnt], k is incremented and the oarps property
of the added composition is set to contain the possible OARP solutions (lines
19–22).

Once the for loop has completed and all the integer compositions in
AllUnusedComps have been checked, the algorithm ranks the discovered
candidate compositions according to heuristics that will be described in sec-
tion 6.3 (line 24). The values of C[Cnt] and R[Cnt] are then initialized to ap-
propriate values (lines 25–29 and 31) and the algorithm returns the updated
values of CList, C and R (line 32).

Figure C.17 shows pseudocode for the ComputeOARPs function, used in
line 18 of ComputeCandidateCompositions to compute all possible OARP
solutions that allow for a sufficiently complete aggregate to be completed.
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Fig. C.17: The ComputeOARPs function.

The first step in this function is to initialize an empty list, OARPs, that will
contain the OARP solutions discovered (line 1). Line 2 computes the set of
missing pitch classes, MissingPcs, from MosaicPcsNoDups. Line 3 computes
the set of duplicate pitch classes, DuplicatePcs, from MosaicPcs. The func-
tion ComputeKCombinations is called in line 4 and computes all unordered
k-combinations from PotRepPCs and PotPushPCs taken from 1 to the num-
ber of pitch classes found in each at a time. It saves those k-combinations from
PotRepPCs and PotPushPCs not containing any nil in two lexicographically
ordered lists, PotRepCombs and PotPushCombs, respectively. The for loop
that begins in line 5 then iterates over all the combinations in PotRepCombs.
For an OARP solution to be found, two conditions must be met:

1. all pitch classes that are missing (either from the ordered mosaic to
begin with or those from PotPushCombs[i] that are pushed out) are
found or replaced when all pitch classes in PotRepCombs[i] are re-
peated; and

2. all pitch classes that are duplicates (either in the ordered mosaic to be-
gin with or those from PotRepCombs[i] that are repeated) are removed
when all pitch classes in PotPushCombs[i] are pushed.

We test for these conditions on each iteration by first placing the combina-
tion at PotRepCombs[i] into a copy of MissingPcs called MissingPcsCopy
and its corresponding combination at PotPushCombs[i] into a copy of
DuplicatePcs called DuplicatePcsCopy (lines 6–7).13 If DuplicatePcsCopy
and MissingPcsCopy are equal in line 8, then PotRepCombs[i] is an OARP
solution and PotRepCombs[i] is saved in OARPs in line 9. Upon completion
of the loop, OARPs is returned (line 10).

13Note that MissingPcsCopy and DuplicatePcsCopy are sorted ordered sets of pcs that
represent multisets.
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6.3 Ranking candidate compositions

As mentioned briefly above, all candidate compositions found by
ComputeCandidateCompositions are ranked in line 24 by calling the
RankCandidates function. RankCandidates uses two heuristics for de-
termining the quality of a candidate that we call zero-gain segments and equal-
lyne-length. Candidates are then sorted from best to worst according to the
quality of each, and this new order is returned by RankCandidates.

6.3.1 Equal-lyne-length heuristic

Our equal-lyne-length heuristic is founded on the hypothesis that sequences
of candidate compositions found in a Smalley array (i.e., those that are self-
contained) are more likely to contain compositions that collectively result in
a WPcMatrix with lynes of approximately equal length. We suggest that a
straight-forward way to achieve this is to ensure that compositions progress
at approximately equal rates in each row. Let’s suppose we have a list of
candidate compositions, Ck = 〈c1, c2, ...cn〉, at position k, where 1 ≤ k ≤ `.
Ideally, if all lynes of the WPcMatrix have progressed at the same rate, then
after choosing a composition for position k, the lengths of each lyne up to
and including position k would be 12k/n, where n is the number of lynes.
Let’s suppose that the actual length of a lyne j would be li,j after choosing
ci from Ck. To measure the raggedness or degree of inequality of lyne length,
Di,k, that results from choosing ci at position k, we use the following formula,
based on city-block distance:

Di,k =
n

∑
j=1

∣∣∣∣li,j − 12k
n

∣∣∣∣ (C.1)

where |x| denotes the absolute value of x. We adopt a greedy strategy in
which, for each k, we choose the ci that minimizes the raggedness, Di,k.

Returning now to the compositions shown in Figure C.2, the raggedness
after choosing (a) is 4, while the raggedness after choosing (b) is 14. Accord-
ing to our heuristic, the composition in (a) is thus better than the composition
in (b). That is, this composition contributes to producing lynes of more sim-
ilar length at this position than the other composition. This is, indeed, also
the composition found at this position in the sequences underlying all of
Babbitt’s works based on a Smalley array.

6.3.2 Zero-gain segments heuristic

Using the equal-lyne-length heuristic in the manner just described, it is pos-
sible that two compositions will result in the same distance, Di,k, defined in
Eq. C.1. This does not mean, however, that each of their lynes will have the
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same length. We thus propose a second heuristic for further discriminating
between compositions, which we call zero-gain segments. This heuristic judges
a composition better than another based on the qualities it shares with the
composition that immediately precedes it in the sequence. Let’s suppose we
have two consecutive integer compositions, A and B, where A = 〈s1, s2, ..., sk〉
and B = 〈t1, t2, ..., tk〉 and B follows A. The weight, w, of B is given by
w = ∑k

i=1 ri, where

ri =

{
1, if (si = 0 Y ti = 0); and
0, otherwise.

(C.2)

This weight equals the number of instances where there is a zero sum-
mand in the current composition (i.e., B in this example) and a non-zero sum-
mand at the corresponding position in the preceding composition (or vice
versa). Suppose, for example, that the composition WIntComp(3,3,3,3,0,0) is
followed by the composition WIntComp(0,0,0,0,6,6). According to the zero-
gain segments heuristic, the latter composition has a weight of 6. Unlike the
equal-lyne-length heuristic, the higher the weight found by zero-gain seg-
ments heuristic, the better. In our implementation of these heuristics within
the RankCandidates function, we obtain a combined weight, W = D−w, by
subtracting the zero-gains-segment weight, w, from the raggedness, D, that
results from choosing a particular composition. At each step in the process
of choosing compositions, we then adopt the greedy strategy of minimizing
this combined weight, W.

7 Parameter values for generating the WPcMatri-
ces of three of Babbitt’s works

As presented above, BacktrackingBabbitt will perform a depth-first search
for the first successful sequence of candidate compositions for a given
PcMatrix6,96 returned by ComputeOperations and ComputeTransposi-
tions. By providing the correct parameter values for Choices and Trs, Com-
puteOperations and ComputeTranspositions will generate the PcMatrix
belonging to a specific Babbitt work based on a Smalley array. Likewise,
by further providing the correct parameter values for C and R, Backtrack-
ingBabbitt will generate the WPcMatrix of this PcMatrix’s corresponding
all-partition array. Table C.1 shows parameter values for all input variables
necessary for using our method to generate the all-partition arrays underly-
ing three of Babbitt’s works, Sheer Pluck (1984), Joy of More Sextets (1986) and
None but the Lonely Flute (1991).

Note in Table C.1 that all three pieces share very closely related parameter
values for both C and R. This is because both Sheer Pluck and Joy of More
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Table C.1: Input variables and their parameter values for generating all-partition arrays of Sheer
Pluck (1984), Joy of More Sextets (1986) and None but the Lonely Flute (1991).

Sextets use the same sequence of integer partitions while None but the Lonely
Flute differs from these by only two partitions. Although the three pieces
are based on the same tone row, each uses a different sequence of integer
compositions. This is because their PcMatrices differ, as indicated by their
parameter values for Choices and Trs.14

Given the parameter values for Sheer Pluck in Table C.1(a) as input,
BacktrackingBabbitt will return the WPcMatrix shown in Figure C.3 and
the sequence of compositions shown in Figure C.18.

8 Evaluation

In this section, we evaluate our model by measuring how well it performs on
two tasks: (1) generating WPcMatrices found in works by Babbitt from their
PcMatrices; and (2) generating novel WPcMatrices from PcMatrices used in
Babbitt’s works. In task (1), we measured how well the equal-lyne-length and
zero-gain segments heuristics predicted the sequence of integer compositions
chosen by Babbitt. In task (2), we analysed the frequencies with which back-
tracks occur at the different positions in the sequence during the generation
of a new array, with and without the proposed heuristics.

14None but the Lonely Flute has been analysed by Bernstein (2014) and Leong and McNutt
(2005). Joy of More Sextets has been analysed by Mead (1994, p. 270) and the analysis of Sheer
Pluck is our own. Note that there is an error in the OARPs in the 22nd aggregate in Mead’s
analysis, which was discovered using our algorithm.
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Fig. C.18: Sequence of compositions found in Sheer Pluck.

8.1 Task 1: Predicting the sequences of integer compositions
in Babbitt’s works

In recent years, Babbitt’s compositional sketches for many of his works have
been made publicly available by the Library of Congress in Washington,
DC.15 In many of these sketches, Babbitt included both the row-form arrays
and all-partition arrays that he used when composing his works.16 There is
therefore little debate as to the organisation of tone rows in a piece as found
in a PcMatrix, for example, or the sequence of integer compositions found
in its corresponding WPcMatrix. What is not as straight-forward, however,
is determining how such a sequence was discovered, given the large search
space of possible sequences.

We evaluated our method by measuring how well the equal-lyne-length
and zero-gain segments heuristics predict the sequences of integer composi-
tions chosen by Babbitt. By sorting all candidates according to their quality
or weight, W (as defined in section 6.3.2 above), we predicted that each in-
teger composition chosen by Babbitt would lie high up in the list of candi-
date compositions for that integer composition’s position in CList. In other

15https://lccn.loc.gov/2014565648.
16See Bernstein (2014) for excerpts from several of these sketches.
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8. Evaluation

(a) Equal-lyne-length heuristic in Sheer Pluck.

(b) Equal-lyne-length and zero-gain heuristics in Sheer Pluck.

Fig. C.19: Results of applying (a) equal-lyne-length and (b) equal-lyne-length and zero-gain
segments to select the sequence of integer compositions used in Sheer Pluck. Note (1) the less
black at each position, the better; and (2) the lower the value of the mean index, the better.
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words, the lower the values in C, the better our heuristics are predicting the
compositions used by Babbitt.

Figure C.19 shows the index of each candidate composition found in the
self-contained sequence used in Sheer Pluck after applying the equal-lyne-
length heuristic (in Figure C.19(a)) and both equal-lyne-length and zero-gain
segments (in Figure C.19(b)). We can get a measure of the overall perfor-
mance of the heuristics simply by finding the mean value of all indices for a
particular sequence. As shown in Figure C.19, by applying both heuristics,
we achieve a marginally lower value for the mean index.

In this paper we have focused on the Smalley array. However, we also
explored how well our heuristics predict the sequence of compositions in
Babbitt’s About Time, a piece not based on a Smalley array, that uses a non-
self-contained sequence of compositions.17 Figure C.20 shows the index of
each candidate composition found in this piece after applying the equal-lyne-
length heuristic (in Figure C.20(a)) and both equal-lyne-length and zero-gain
segments (in Figure C.20(b)). As can be seen in Figure C.20, with this piece
we achieve substantially lower mean index values than for Sheer Pluck (cf. Fig-
ure C.19), suggesting that these heuristics better model the structure of About
Time than they do the structure of Sheer Pluck. It should be noted however,
that, whereas adding the zero-gain segments heuristic improved the model’s
performance on Sheer Pluck, it actually slightly reduced performance on About
Time. However, using the zero-gain segments heuristic alone resulted in the
worst performance on both pieces.

8.2 Task 2: Generating a new Smalley array

We also evaluated the performance of our model when attempting to gener-
ate a new WPcMatrix (and sequence of compositions) from a PcMatrix used
by Babbitt. This WPcMatrix could be a new Smalley array or, in the event
that no other array exists, the array found in one of Babbitt’s pieces. We as-
sessed the performance of our algorithm by analysing the frequency at which
backtracks occur at each position in the sequence during the generation of a
WPcMatrix. In this generation scenario, the parameter values for selecting
candidate compositions, C, and for selecting the OARP solutions for each
candidate composition, R, are set to zero. Figure C.21 shows how the first
100000 backtracks were distributed over the 58 positions in the sequence of
integer partitions for Sheer Pluck under five different conditions.

Note in Figure C.21 the locations of the horizontal line in each box indicat-
ing the median backtracking position for each condition (the horizontal line
in condition four lies at the top of the box). Each box indicates the interquar-
tile range (IQR). The whiskers indicate the lowest datum still within 1.5 IQR

17The all-partition array for About Time is given by Mead (1987, pp. 207–209).
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(a) Equal-lyne-length heuristic in About Time.

(b) Equal-lyne-length and zero-gain heuristics in About Time.

Fig. C.20: Results of applying (a) equal-lyne-length and (b) equal-lyne-length and zero-gain
segments to select the sequence of integer compositions used in About Time. Note (1) the less
black at each position, the better; and (2) the lower the value of the mean index, the better.
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Fig. C.21: Comparison of the distribution of 100000 backtracks over positions in the integer parti-
tion sequence for Sheer Pluck under five conditions. The horizontal line in each box indicates the
median backtracking position for that condition. The median for the “Both heuristics" condition
co-incides with the top of the box. See text for details.

of the lower quartile, and the highest datum still within 1.5 IQR of the upper
quartile. This means that, for each condition, about 99% of the backtracks
lie within the range indicated by the whiskers and 50% of the backtracks
lie within the range indicated by the box. Outliers are indicated by crosses.
Without knowing where the set of all solutions lie within the search space
of all possible sequences of compositions, it is difficult to properly evaluate
these findings. However, if we assume a higher median position suggests
a stronger likelihood of reaching position 58 and generating a complete so-
lution, then the best performing condition is the equal-lyne-length heuristic
alone. Contrary to our findings on the first evaluation task reported above,
the results in Figure C.21 suggest that using no heuristics is preferable to
using both heuristics or zero-gain-segments alone. It is noticeable that us-
ing both heuristics appears to decrease the spread in the positions at which
backtracks occur, relative to using no heuristics or zero-gain-segments alone.

9 Conclusion

In this paper, we have proposed an algorithm for generating all-partition ar-
rays of the type used in several of Milton Babbitt’s works and shown how it
can be used to generate the arrays underlying three of Babbitt’s works (Sheer
Pluck (1984), Joy of More Sextets (1986) and None but the Lonely Flute (1991)).
The arrays found in these pieces belong to a class of six-lyne, horizontally
weighted and self-contained all-partition arrays called Smalley arrays. Our
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proposed method for generating Smalley arrays relies on constructing two
intermediary structures we have called the PcMatrix and WPcMatrix. In par-
ticular, the functions, ComputeOperations and ComputeTranspositions,
encode the decisions required to generate the PcMatrices of a Smalley array
while our algorithm BacktrackingBabbitt is designed to take as input a
PcMatrix and find in it a compatible sequence of compositions that form a
WPcMatrix. As the process of forming a successful WPcMatrix (containing
120 OARPs) is a difficult task, we introduced two heuristics called equal-
lyne-length and zero-gain segments for selecting compositions we suggest
are more likely to be found in a Smalley array. Our algorithm could, if given
enough time, generate all Smalley arrays. However, we have not yet suc-
ceeded in using it to generate any all-partition arrays from scratch. This sug-
gests that Smalley likely used some heuristics or techniques for constructing
his arrays that are not implemented by our proposed algorithm. Neverthe-
less, we believe that the work reported here represents a significant first step
towards developing a fully specified computational model of the process that
Smalley used to construct his arrays. In future research we intend to improve
upon this design using better heuristics for guiding the search and by explor-
ing alternative methods for finding a solution in a more reasonable time. We
hope to use these improvements to generate new arrays not found in Bab-
bitt’s music and explore the possibility of using these novel arrays to create
interesting new musical works.
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1. Introduction

Abstract

Milton Babbitt (1916–2011) was a composer of twelve-tone serial music noted for
creating the all-partition array. The problem of generating an all-partition array
involves finding a rectangular array of pitch-class integers that can be partitioned
into regions, each of which represents a distinct integer partition of 12. Integer
programming (IP) has proven to be effective for solving such combinatorial problems,
however, it has never before been applied to the problem addressed in this paper.
We introduce a new way of viewing this problem as one in which restricted overlaps
between integer partition regions are allowed. This permits us to describe the problem
using a set of linear constraints necessary for IP. In particular, we show that this
problem can be defined as a special case of the well-known problem of set-covering
(SCP), modified with additional constraints. Due to the difficulty of the problem, we
have yet to discover a solution. However, we assess the potential practicality of our
method by running it on smaller similar problems.

1 Introduction

Milton Babbitt (1916–2011) was a composer of twelve-tone serial music noted
for developing complex and highly constrained music. The structures of
many of his pieces are governed by a structure known as the all-partition array,
which consists of a rectangular array of pitch-class integers, partitioned into
regions of distinct “shapes”, each corresponding to a distinct integer partition
of 12. This structure helped Babbitt to achieve maximal diversity in his works,
that is, the presentation of as many musical parameters in as many different
variants as possible (Mead, 1994).

In this paper, we formalize the problem of generating an all-partition ar-
ray using an integer programming paradigm in which a solution requires
solving a special case of the set-covering problem (SCP), where the subsets in
the cover are allowed a restricted number of overlaps with one another and
where the ways in which these overlaps can occur is constrained. It turns
out that this is a hard combinatorial problem. That this problem was solved
by Babbitt and one of his students, David Smalley, without the use of a com-
puter is therefore interesting in itself. Moreover, it suggests that there exists
an effective procedure for solving the problem.

Construction of an all-partition array begins with an I × J matrix, A, of
pitch-classes, 0, 1, . . . , 11, where each row contains J/12 twelve-tone rows. In
this paper, we only consider matrices where I = 6 and J = 96, as matrices
of this size figure prominently in Babbitt’s music (Mead, 1994). This results
in a 6× 96 matrix of pitch classes, containing 48 twelve-tone rows. In other
words, A will contain an approximately uniform distribution of 48 occur-
rences of each of the integers from 0 to 11. On the musical surface, rows
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Fig. D.1: A 6 × 12 excerpt from a 6 × 96 pitch-class matrix with the integer composition,
IntComp12(3, 2, 1, 3, 1, 2) (in dark gray), containing each pitch class exactly once.

of this matrix become expressed as “musical voices", typically distinguished
from one another by instrumental register (Mead, 1994). A complete all-
partition array is a matrix, A, partitioned into K regions, each of which must
contain each of the 12 pitch classes exactly once. Moreover, each of these re-
gions must have a distinct “shape", determined by a distinct integer partition
of 12 (e.g., 2 + 2 + 2 + 3 + 3 or 1 + 2 + 3 + 1 + 2 + 3) that contains I or fewer
summands greater than zero (Bemman and Meredith, 2015a). We denote an
integer partition of an integer, L, by IntPartL(s1, s2, . . . , sI) and define it to be
an ordered set of non-negative integers, 〈s1, s2, . . . , sI〉, where L = ∑I

i=1 si and
s1 ≥ s2 ≥ · · · ≥ sI . For example, possible integer partitions of 12 when I = 6,
include IntPart12(3, 3, 2, 2, 1, 1) and IntPart12(3, 3, 3, 3, 0, 0). We define an in-
teger composition of a positive integer, L, denoted by IntCompL(s1, s2, . . . , sI),
to also be an ordered set of I non-negative integers, 〈s1, s2, . . . , sI〉, where
L = ∑I

i=1 si, however, unlike an integer partition, the summands are not
constrained to being in descending order of size. For example, if L = 12 and
I = 6, then IntComp12(3, 3, 3, 3, 0, 0) and IntComp12(3, 0, 3, 3, 3, 0) are two dis-
tinct integer compositions of 12 defining the same integer partition, namely
IntPart12(3, 3, 3, 3, 0, 0).

Figure D.1 shows a 6× 12 excerpt from a 6× 96 pitch-class matrix, A, and
a region determined by the integer composition, IntComp12(3, 2, 1, 3, 1, 2),
containing each possible pitch class exactly once. Note, in Figure D.1, that
each summand (from left to right) in IntComp12(3, 2, 1, 3, 1, 2), gives the num-
ber of elements in the corresponding row of the matrix (from top to bottom)
in the region determined by the integer composition. We call this part of
a region in a given row of the matrix a summand segment. For example, in
Figure D.1, the summand segment in the first row for the indicated inte-
ger partition region contains the pitch classes 11, 4 and 3. On the musi-
cal surface, the distinct shape of each integer composition helps contribute
to a progression of “musical voices" that vary in textural density, allowing
for relatively thick textures in, for example, IntComp12(2, 2, 2, 2, 2, 2) (with
six participating parts) and comparatively sparse textures in, for example,
IntComp12(11, 0, 1, 0, 0, 0) (with two participating parts).
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Fig. D.2: A 6× 12 excerpt from a 6× 96 pitch-class matrix with a region whose shape is deter-
mined by the integer composition, IntComp12(3, 3, 3, 3, 0, 0) (in light gray), where three elements
(in bold) are horizontal insertions of pitch classes from the previous integer partition region.
Note that the two indicated regions represent distinct integer partitions.

There exist a total of 58 distinct integer partitions of 12 into 6 or fewer
non-zero summands (Mead, 1994). An all-partition array with six rows will
thus contain K = 58 regions, each containing every pitch class exactly once
and each with a distinct shape determined by an integer composition rep-
resenting a distinct integer partition. However, the number of pitch-class
integers required to satisfy this constraint, 58× 12 = 696, exceeds the size of
a 6× 96 matrix containing 576 elements, by 120. In order to satisfy this con-
straint, additional pitch-classes therefore have to be inserted into the matrix,
with the added constraint that only horizontal insertions of at most one pitch
class in each row are allowed for each of the 58 integer partition regions.
Each inserted pitch class is identical to its immediate neighbor to the left, this
being the right-most element of a summand segment belonging to a previous
integer partition region. This constraint ensures that the order of pitch classes
in the twelve-tone rows of a given row of A is not altered (Mead, 1994). Fig-
ure D.2 shows a second integer partition region, IntComp12(3, 3, 3, 3, 0, 0), in
the matrix shown in Figure D.1 (indicated in light gray), where three of its
elements result from horizontal insertions of pitch classes from the previous
integer partition region. Note, in Figure D.2, the three horizontal insertions
of pitch-class integers, 3 (in row 1), 7 (in row 2), and 10 (in row 4), required to
have each pitch class occur exactly once in the second integer partition region.
Not all of the 58 integer partitions must contain one or more of these inser-
tions, however, the total number of insertions must equal the 120 additional
pitch classes required to satisfy the constraint that all 58 integer partitions
are represented. Note that, in order for each of the resulting integer partition
regions to contain every pitch class exactly once, ten occurrences of each of
the 12 pitch classes must be inserted into the matrix. This typically results in
the resulting matrix being irregular (i.e., “ragged” along its right side).

In this paper, we address the problem of generating an all-partition array
by formulating it as a set of linear constraints using the integer programming
(IP) paradigm. In section 2, we review previous work on general IP prob-
lems and their use in the generation of musical structures. We also review
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previous work on the problem of generating all-partition arrays. In section 3,
we introduce a way of viewing insertions of elements into the all-partition
array as fixed locations in which overlaps occur between contiguous integer
partition regions. In this way, our matrix remains regular and we can define
the problem as a special case of the well-known IP problem of set-covering
(SCP), modified so that certain overlaps are allowed between the subsets. In
sections 4 and 5, we present our IP formulation of this problem as a set of lin-
ear constraints. Due to the difficulty of the problem, we have yet to discover
a solution using our formulation. Nevertheless, in section 6, we present the
results of using our implementation to find solutions to smaller versions of
the problem and in this way explore the practicality of our proposed method.
We conclude in section 7 by mentioning possible extensions to our formula-
tion that could potentially allow it to solve the complete all-partition array
generation problem.

2 Previous work

Babbitt himself laid the foundations for the construction of what would be-
come the all-partition array during the 1960s, and he would continue to use
the structure in nearly all of his later works (Babbitt, 1960, 1961, 1962, 1973).
Subsequent composers made use of the all-partition array in their own mu-
sic and further developed ways in which its structure could be formed and
used (Bazelow and Brickle, 1976, 1979; Kowalski, 1985, 1987; Morris, 1987,
2010; Starr and Morris, 1977, 1978; Winham, 1970). Most of these methods
focus on the organization of pitch classes in a twelve-tone row and how their
arrangement can make the construction of an all-partition array more likely.
We propose here a more general purpose solution that will take any matrix
and attempt to generate a successful structure. Furthermore, many of these
previous methods were music-theoretical in nature and not explicitly com-
putational. Work by Bazelow and Brickle is one notable exception (Bazelow
and Brickle, 1976, 1979). We agree here with their assessment that “partition
problems in twelve-tone theory properly belong to the study of combinatorial
algorithms" (Bazelow and Brickle, 1979). However, we differ considerably in
our approach and how we conceive of the structure of the all-partition array.

More recent efforts to automatically analyze and generate all-partition ar-
rays have been based on backtracking algorithms.(Bemman and Meredith,
2015a,b, 2016a). True to the structure of the all-partition array (as it appears
on the musical surface) and the way in which Babbitt and other music theo-
rists conceive of its structure, these attempts to generate an all-partition array
form regions of pitch classes according to the process described in section 1,
where horizontal repetitions of pitch-classes are added, resulting in an ir-
regular matrix. While these existing methods have further proposed various
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heuristics to limit the solution space or allow for incomplete solutions, they
were unable to generate a complete all-partition array (Bemman and Mered-
ith, 2015a,b, 2016a).

In general, for difficult combinatorial problems, more efficient solving
strategies than backtracking exist. One such example is integer programming
(IP). IP is a computationally efficient and practical paradigm for dealing with
typically NP-hard problems, such as the traveling salesman, set-covering and
set-partitioning problems, where these are expressed using only linear con-
straints (i.e., equations and inequalities) and a linear objective function (Cor-
men et al., 2009; Orman, 2006). One benefit of using IP, is that it allows for
the separation of the formulation of a problem by users and the develop-
ment by specialists of an algorithm for solving it. Many of these powerful
solvers dedicated to IP problems have been developed and used particularly
in the field of operations research. Compared to approximate computational
strategies, such as genetic algorithms, IP formulations and their solvers are
suitable for searching for solutions that strictly satisfy necessary constraints.
For this reason, we expect that the IP paradigm could provide an appropriate
method for approaching the problem of generating all-partition arrays.

In recent work, IP has been applied to problems of analysis and genera-
tion of music (Tanaka, 2014, 2015). This is of importance to the research pre-
sented here as it demonstrates the relevance of these traditional optimization
problems of set-covering (SCP) and set-partitioning (SPP), to general prob-
lems found in computational musicology, where SPP has been used in the
segmentation of melodic motifs and IP has been used in describing global
form. In the next section, we address the set-covering problem (SCP) in
greater detail and show how it is related to the problem of generating all-
partition arrays.

3 Set-covering problem formulation of all-
partition array generation

The set-covering (SCP) problem is a well-known problem in computer science
and operations research that can be shown to be NP-hard (Cormen et al.,
2009). Let E be a set whose elements are {E1, E2, · · · , E#E} (where #E denotes
the number of elements in E), F be a family of subsets of E, {F1, F2, · · · , F#F},
and S be a subset of F. By assigning a constant cost, cs, to each Fs, the
objective of the set-covering problem (SCP) is to

Minimize
S⊂F

∑
Fs∈S

cs

subject to
⋃

Fs∈S
Fs = E.
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Fig. D.3: A 6 × 12 excerpt from a 6 × 96 pitch-class matrix with two integer compositions,
IntComp12(3, 2, 1, 3, 1, 2) (in dark gray and outlined) and IntComp12(3, 3, 3, 3, 0, 0) (in light gray),
that form distinct integer partition regions. Note, that the second composition overlaps three
fixed locations in the first.

In other words, a solution S is a cover of E that allows for the same elements
to appear in more than one subset, Fs. In this section, we suggest that our
problem can be viewed as an SCP with additional constraints.

3.1 All-partition array generation as a set-covering problem
(SCP) with additional constraints

When viewing the all-partition array in the context of
⋃

Fs∈S Fs = E above, E
is the set that consists of all locations (i, j) in the matrix, A, and Fs are the sets
of locations (i, j) that correspond to the “shapes" of integer compositions. We
call each Fs a candidate set. A candidate set Fs is characterized by two condi-
tions that we call containment and consecutiveness. Containment means that
the elements (i.e., locations (i, j)) of Fs correspond to twelve distinct integers,
0, 1, . . . , 11, in A. Consecutiveness means that each of its elements belonging
to the same row in A are consecutive. In this sense, F includes all sets found
in A that satisfy the conditions of consecutiveness and containment.

As the expression
⋃

Fs∈S Fs = E implies, a candidate set is allowed to
share elements with another candidate set. Similarly, the pitch classes in A
(i.e., corresponding to elements in E) that become insertions in the original
problem can be instead regarded as shared elements or overlaps between con-
tiguous integer composition regions, with the result that the matrix remains
regular. Figure D.3 shows how these overlaps would occur in the two integer
composition regions shown in Figure D.2.

Viewed in this way, a solution to the problem of generating an all-partition
array thus satisfies the basic criterion of an SCP, namely, the condition for set-
covering,

⋃
Fs∈S Fs = E. However, this criterion alone fails to account for the

unique constraints under which such a covering is formed in an all-partition
array. In the original SCP, there are no constraints on the order of subsets, the
order of their elements or the number of overlaps and the ways in which they
can occur. On the other hand, an all-partition array must satisfy such addi-
tional conditions. We denote the constraints for satisfying such additional
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conditions by Add. Conditions.
Add. Conditions includes the conditions in the all-partition array govern-

ing (1) the left-to-right order of contiguous candidate sets, (2) permissible
overlaps between such sets, and (3) the distinctness of sets in S. This last con-
dition of distinctness ensures that the integer compositions used in a cover,
S, define every possible integer partition once and only once. On the other
hand, the conditions for set-covering,

⋃
Fs∈S Fs = E, are conditions of (1) can-

didate sets (which satisfy containment and consecutiveness) and (2) covering,
meaning that each element in E is covered no less than once.

We can now state that our problem of generating an all-partition array is
to

Minimize
S⊂F

∑
Fs∈S

cs

subject to
⋃

Fs∈S
Fs = E,

Add. Conditions.

where the associated cost, cs, of each Fs, can be interpreted as a preference for
one integer composition or another. It is likely that, in the interest of musical
expression, Babbitt may have preferred the shapes of some integer partition
regions over others (Mead, 1994). However, as his preference is unknown, we
can regard these costs to have the same value for each Fs.

Due to the condition of distinctness (just described), |S| can be fixed at
58. This feature, combined with the equal costs of each Fs, means that the
objective function, ∑Fs∈S cs, for this problem, is constant. For these reasons,
the above formulation is a constraint satisfaction problem. This motivates our
discussions in sections 6 and 7 on possible alternative objective functions.

In the next two sections, we implement the constraint satisfaction prob-
lem defined above using integer programming (IP). In particular, section 4
addresses the conditions for set-covering,

⋃
Fs∈S Fs = E, and section 5 ad-

dresses those in Add. Conditions. It is because of our new way of viewing
this problem, with a regular matrix and overlaps, that we are able to intro-
duce variables for use in IP to describe these conditions.

4 IP implementation of conditions for set-covering
in all-partition array generation

In this section, we introduce our set of linear constraints for satisfying the
general conditions for set-covering,

⋃
Fs∈S Fs = E, in the generation of an all-

partition array. Before we introduce these constraints, we define the necessary
variables and constants used in our implementation of the conditions for set-
covering. We begin with a given matrix found in one of Babbitt’s works based
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on the all-partition array. Examples of the matrices used in this paper can be
found in Babbitt’s Arie da Capo (1974) and None but the Lonely Flute (1991),
among others. Let (Ai,j) be a (6, 96)-matrix whose elements are the pitch-
class integers, 0, 1, . . . , 11. We denote the number of rows and columns by I
and J, respectively.

Let xi,j,k (1 ≤ i ≤ I, 1 ≤ j ≤ J) be a binary variable corresponding to
each location (i, j) in A and a subset (i.e., integer partition) identified by the
integer k, where 1 ≤ k ≤ K and K = 58. Here, we consider the case where
I = 6 and J = 96, so there are 58 sets of 576 such variables. Each of these
variables will indicate whether or not a location (i, j) belongs to a candidate
set for the kth position in the sequence of 58 integer partition regions. We
denote the set of locations (i, j) whose corresponding value for xi,j,k is 1, to
be Ck. Subject to conditions for consecutiveness and containment, Ck will be
a candidate set.

Let (Bp
i,j) (0 ≤ p ≤ 11) be constant matrices, equal in size to A, where

Bp
i,j = 1 if and only if Ai,j = p and Bp

i,j = 0 otherwise. The locations (i, j)

whose values of Bp
i,j equal 1, correspond to the locations of pitch-class p in A.

4.1 Conditions for Ck to contain twelve distinct integers in A
(condition of containment)

A condition for Ck to satisfy the condition of containment is that its number
of elements is 12 and each corresponds to a distinct pitch-class in A. These
conditions are expressed by the following two equations:

∀k ∈ [1, K],
I

∑
i=1

J

∑
j=1

xi,j,k = 12, (D.1)

∀p ∈ [0, 11], ∀k ∈ [1, K],
I

∑
i=1

J

∑
j=1

Bp
i,j · xi,j,k = 1. (D.2)

Because xi,j,k equals 1 if (i, j) is included in Ck and 0 if it is not, Equation D.1
means that there are 12 elements in Ck. In Equation D.2, we ensure that each
corresponding pitch-class integer p for the elements in Ck, appears once and
only once.

4.2 Conditions for Ck to be integer compositions in A (condi-
tion of consecutiveness)

Let Ck,i be the ith-row part of Ck (i.e., the summand segment of composition
k for row i). Let si,k be an integer variable corresponding to the x-coordinate
of a “starting point", which lies at the left side of the leftmost component

126



4. IP implementation of conditions for set-covering in all-partition array generation

(a) Ck,i contains pitch classes 11, 4, 3 (j =
1, 2, 3) and satisfies consecutiveness.

(b) Ck,i contains pitch classes 11, 4, 5 (j =
1, 2, 4) and does not satisfy consecutive-
ness.

Fig. D.4: Two Ck,i and corresponding si,k and ei,k from Figure D.3 when k = 1 and i = 1. Shaded
elements indicate xi,j,k = 0 and unshaded elements indicate xi,j,k = 1.

of Ck,i. The value of si,k is then equal to the column number of the leftmost
component of Ck,i, minus 1. The origin point of this coordinate lies along the
left hand side of the matrix A, and we set the width of each location (i, j) to be
1. Similarly, let ei,k be an integer variable corresponding to the x-coordinate
of an “ending point", which lies at the right side of the rightmost component
belonging to Ck,i. The value of ei,k is then equal to the column number of the
rightmost component of Ck,i. Figure D.4 shows an example of two possible
Ck,i from Figure D.3. If there is no component in Ck,i (k ≥ 2), we define si,k to
be ei,k−1 and ei,k to be si,k. If there is no component in C1,i, we define si,k and
ei,k to be 0. Then, si,k and ei,k are subject to the following constraint of range:

∀i ∈ [1, I], ∀k ∈ [1, K], 0 ≤ si,k ≤ ei,k ≤ J. (D.3)

The condition under which Ck (k ∈ [1, K]) forms an integer composition—
that is, satisfies the condition of consecutiveness, is expressed by the follow-
ing three constraints:

∀i ∈ [1, I], ∀j ∈ [1, J], ∀k ∈ [1, K], (D.4)

j · xi,j,k ≤ ei,k,

∀i ∈ [1, I], ∀j ∈ [1, J], ∀k ∈ [1, K], (D.5)

J − si,k ≥ (J + 1− j) · xi,j,k,

∀i ∈ [1, I], ∀k ∈ [1, K],
J

∑
j=1

xi,j,k = ei,k − si,k. (D.6)

In Equation D.4, each element of Ck,i must be located at column ei,k or to
the left of column ei,k. Equation D.5 states that each element of Ck,i must
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be located at column si,k + 1 or to the right of column si,k + 1. Equation D.6,
combined with the previous two constraints, states that the length of Ck,i must
be equal to ei,k − si,k, implying that the column numbers j of the elements
in Ck,i are consecutive from si,k + 1 to ei,k, where Ck,i contains at least one
element.

4.3 Condition for covering A

As every location (i, j) in A (i.e., E in our SCP) must be covered at least once,
we pose the following condition of covering:

∀i ∈ [1, I], ∀j ∈ [1, J],
K

∑
k=1

xi,j,k ≥ 1. (D.7)

Equation D.1 states that for all K = 58 integer partitions, there are 12 ·K = 696
variables, xi,j,k, that will equal 1. A successful cover of A by Equation D.7,
however, states that all of I · J = 576 places (i, j) in A, are covered once
or more than once. Collectively, these imply that there are 120 or less than
120 places (i.e., combinations of (i, j)) that are covered twice or more than
twice. These 120 overlaps correspond to the 120 insertions of pitch-class
integers used when constructing an all-partition array in its original form.
By satisfying all of the constraints above, each Ck forms a candidate set (i.e.,
a member of F in our SCP) and the condition for set-covering,

⋃
Fs∈S Fs = E,

is satisfied.

5 IP implementation of additional conditions in
all-partition array generation

In this section, we introduce our set of additional linear constraints beyond
those required for satisfying the condition of set-covering in the SCP.

5.1 Left-to-right order of Ck and permissible overlaps

Ck must be located immediately to the right of Ck−1. This is expressed by

∀i ∈ [1, I], ∀k ∈ [2, K], ei,k−1 ≤ ei,k, (D.8)

Ck−1,i and Ck,i may overlap by no more than one element. This is expressed
by the following inequality:

∀i ∈ [1, I], ∀k ∈ [2, K], ei,k−1 − 1 ≤ si,k ≤ ei,k−1, (D.9)

meaning that si,k will be equal to ei,k−1 if there is no overlap and si,k will be
equal to ei,k−1 − 1 if there is an overlap.
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5.2 Conditions for Ck to be integer compositions defining dis-
tinct integer partitions (condition of distinctness)

Let yi,k,l be a binary variable that indicates whether or not the length of Ck,i
is greater than or equal to l (1 ≤ l ≤ L, L = 12), by introducing the following
constraints:

∀i ∈ [1, I], ∀k ∈ [1, K], ei,k − si,k =
L

∑
l=1

yi,k,l , (D.10)

∀i ∈ [1, I], ∀k ∈ [1, K], ∀l ∈ [2, L], (D.11)

yi,k,l−1 ≥ yi,k,l .

Equation D.10 states that the sum of all elements in 〈yi,k,1, yi,k,2, . . . , yi,k,L〉
is equal to the length of Ck,i, while Equation D.11 states that its ele-
ments equal to 1 begin in the first position and are consecutive (e.g.,
〈1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0〉, when the length of Ck,i is 3.)

The number of the lengths of Ck,i (1 ≤ i ≤ I) that are greater than or
equal to l is given by ∑I

i=1 yi,k,l . The twelve values of ∑I
i=1 yi,k,l (1 ≤ l ≤ L)

then, will precisely represent the type of partition. For example, if Ck is
IntComp12(3, 2, 1, 3, 1, 2), then yi,k,l (∀i ∈ [1, I], ∀l ∈ [1, L]) would be

1,1,1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0,0,0
1,1,1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0,0,0

and ∑I
i=1 yi,k,l would be [6, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0].

We denote the number of all integer partitions by N (N = K = 58) and
denote a single integer partition n (1 ≤ n ≤ N) by Pn. We can express Pn as
[Pn,1, Pn,2, . . . , Pn,L] (1 ≤ n ≤ N), where Pn,l corresponds to the twelve values
∑I

i=1 yi,k,l (1 ≤ l ≤ L) described above.
Then, by implementing the following expression:

∀k ∈ [1, K], ∀n ∈ [1, N], ∀l ∈ [1, L], (D.12)

Pn,l · zk,n ≤
I

∑
i=1

yi,k,l .

we can express whether Ck defines the integer partition n or not by the binary
variable zk,n. For example, if zk,n = 0, the value of Pn,l · zk,n = 0 constrains
nothing, and thus Ck cannot be the integer partition n (because of the next
equation). On the other hand, if zk,n = 1, Ck must be the integer partition n.

129



Paper D.

Accordingly, zk,n will equal 1 only if the twelve values ∑I
i=1 yi,k,l correspond to

Pn. From this, determining whether or not all different partitions are present
can be expressed by the following equation:

∀n ∈ [1, N],
K

∑
k=1

zk,n = 1. (D.13)

6 Experiments

In order to determine whether or not our formulation works as intended,
we implemented the constraints described in sections 4 and 5 and supplied
these to an IP solver based on branch-and-bound (Gurobi Optimizer). As
the objective function in our formulation amounts to a constant-cost function
(described in section 3), we replaced it with a non-constant objective func-
tion, ∑i,j,k ci,j,k · xi,j,k, where ci,j,k assumes a randomly generated integer for
promoting this process of branch and bound. When the first feasible solution
is found, we stop the search.

Although we first attempted to find a complete all-partition array, we were
unable to discover a solution after one day of calculation. This highlights the
difficulty of the problem and reinforces those findings by previous methods
that were similarly unable to find a complete all-partition array (Bemman
and Meredith, 2015a). As the target of our current formulation is only solu-
tions which strictly satisfy all constraints, we opted to try finding complete
solutions to smaller-sized problems, using the first j columns of the original
matrix. Because we cannot use all 58 integer partitions in the case K < N, a
slight modification to Equation D.13 was needed for this change. Its equality
was replaced by ≤ and an additional constraint, ∀k ∈ [1, K], ∑N

n=1 zk,n = 1,
for allocating one partition to each Ck, was added.

Figure D.5 shows the duration (vertical axis) of time spent on finding a
solution in matrices of varying size. The number of integer compositions,
K, was set to (J + 2)/2, where J is an even number. This ensures that a
given solution will always contain 12 overlaps. These findings suggest that
the necessary computational time in finding a solution tends to dramatically
increase with an increase in J. However, this increase fluctuates, suggesting
that each small matrix represents a unique problem space with different sets
of difficulties (e.g., the case J = 14 was unfeasible). For this reason, finding a
solution in a complete matrix (6,96) within a realistic limitation of time would
be difficult for our current method, even using a fast IP solver. This strongly
motivates future improvements as well as the possibility of an altogether
different strategy.
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Fig. D.5: Duration of time spent on finding the first solution for each small matrix, whose
column length is J(12 ≤ J ≤ 24, J ∈ 2N). K is set to (J + 2)/2, resulting in 12 overlaps. Note,
that no feasible solution exists when J = 14.

7 Conclusion and future work

In this paper, we have introduced a novel integer-programming-based per-
spective on the problem of generating Milton Babbitt’s all-partition arrays.
We have shown that insertions and the irregular matrix that results can be re-
placed with restricted overlaps, leaving the regular matrix unchanged. This
view allows us to formulate the problem as a set-covering problem (SCP)
with additional constraints and then implement it using integer program-
ming. Due to the difficulty of the problem, we have so far been unable to
find a solution. However, we have been able to produce solutions in a prac-
tical running time (< 2500 seconds) when the matrix is reduced in size to 24
columns or less. These results motivate possible extensions to our formula-
tion. First, a relaxation of the problem is possible, for example, by using an
objective function that measures the degree of incompleteness of a solution.
This could allow for approximate solutions to be discovered, such as those
found in previous work (Bemman and Meredith, 2015a). Second, it may be
the case that a solution to the full problem may be achievable by combin-
ing solutions to smaller subproblems that we have shown to be solvable in a
practical running time.
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1. Introduction

Abstract

Milton Babbitt (1916–2011) was a composer of twelve-tone serial music noted for
creating the all-partition array. One part of the problem in generating an all-partition
array requires finding a covering of a pitch-class matrix by a collection of sets, each
forming a region containing 12 distinct elements and corresponding to a distinct
integer partition of 12. Constraint programming (CP) is a tool for solving such
combinatorial and constraint satisfaction problems. In this paper, we use CP for
the first time to formalize this problem in generating an all-partition array. Solving
the whole of this problem is difficult and few known solutions exist. Therefore, we
propose solving two sub-problems and joining these to form a complete solution. We
conclude by presenting a solution found using this method. Our solution is the first
we are aware of to be discovered automatically using a computer and differs from
those found by composers.

1 Introduction

Milton Babbitt (1916–2011) was a composer of twelve-tone serial music noted
for developing highly constrained and often complex musical structures.
Many of his pieces are organized according to one such structure known
as the all-partition array (Babbitt, 1973). An all-partition array is a covering of
a matrix of pitch-class integers by a collection of sets, each of which forms
a region in this matrix containing 12 distinct pitch classes from consecutive
elements in its rows and that corresponds to a distinct integer partition of
12 (to be clarified in the next section). This unique structure imposes a strict
organization on the pitch classes in his works, and it serves as both a method
of musical composition and musical form. Moreover, the all-partition array
allowed Babbitt one of many ways to achieve maximal diversity in his music.1

In this paper, we formulate one part of the problem in generating an all-
partition array, beginning from a given matrix of pitch-class integers, using
constraint programming (CP) and with a particular focus on its mathematical
aspects. Using our model and a method for dividing this matrix into smaller,
sub-problems, we obtained a solution, which, we believe, is the first to be
discovered automatically using a computer and differs from those found by
composers. CP is a programming paradigm that has been successfully ap-
plied to the solving of various constraint satisfaction problems in music (An-
ders et al., 2005; Carpentier et al., 2010; Chemillier and Truchet, 2001; Laurson
and Kuuskankare, 2001; Puget and Régin, 2007). It seems natural then, that
CP could be used in the problem we address here. Moreover, having such

1Maximal diversity is the presentation of as many musical parameters in as many different
ways as possible (Mead, 1994).
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Fig. E.1: A 4× 12 excerpt from a 4× 96 pitch-class matrix with two distinct integer partition
regions represented precisely by the integer compositions, IntComp12(4, 4, 4, 0) (in dark gray)
and IntComp12(0, 6, 3, 3) (in light gray), each containing every pitch class exactly once.

a model could, for example, be used as a basis for generating new musical
works.

1.1 The structure of an all-partition array

In this section, we describe the structure of an all-partition array in a way
that assumes the reader has a basic understanding of pitch class set theory.
Constructing an all-partition array begins with the construction of an I × J
matrix, A, whose elements are pitch-class integers, 0, 1, . . . , 11, where each
row contains J/12 twelve-tone rows. The dimensions of this matrix constrain
the most important requirement of the structure of an all-partition array, how-
ever, Babbitt generally limited himself to sizes of 4× 96, 6× 96, and 12× 72
(Mead, 1994).

In this paper, we consider only matrices where I = 4 and J = 96, as
matrices of this size figure prominently in Babbitt’s music (Mead, 1994). This
results in a 4× 96 matrix of pitch classes, containing 32 twelve-tone rows from
the possible 48 related by any combination of transposition, inversion and
retrograde (i.e., reversal). In other words, A will contain an approximately
uniform distribution of 32 occurrences of each of the integers from 0 to 11.2

On the musical surface, rows of this matrix become expressed as “musical
voices", typically distinguished from one another by instrumental register
(Mead, 1994).

A complete all-partition array is a covering of matrix, A, by K sets, each
of which is itself a partition of the set {0, 1, . . . , 11} whose parts (1) con-
tain consecutive row elements from A and (2) have cardinalities equal to the
summands in one of the K distinct integer partitions of 12 (e.g., 6 + 6 or
5 + 4 + 2 + 1) containing I or fewer summands greater than zero.3 Figure E.1
shows a 4 × 12 excerpt from a 4 × 96 pitch-class matrix, A, and two such
sets forming regions in A each containing every pitch class exactly once and
corresponding to two distinct integer partitions, whose exact “shapes" are

2For a more detailed description of the constraints governing the organization of matrices in
Babbitt’s music, see Bemman and Meredith (2016); Mead (1994).

3We denote an integer partition of an integer, L, by IntPartL(s1, s2, . . . , sI) and define it to be
an ordered set of non-negative integers, 〈s1, s2, . . . , sI〉, where L = ∑I

i=1 si and s1 ≥ s2 ≥ · · · ≥ sI .
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Fig. E.2: A 4 × 12 excerpt from a 4 × 96 pitch-class matrix with a third integer composition,
IntComp12(5, 1, 0, 6) (in medium gray), sharing one pitch class from each of the two previous
regions.

more precisely represented as the integer compositions, IntComp12(4, 4, 4, 0)
and IntComp12(0, 6, 3, 3).4 Note, in Figure E.1, that each summand (from
left to right) in IntComp12(4, 4, 4, 0), gives the number of elements in the
corresponding row of the matrix (from top to bottom) in this region. Un-
like common tiling problems using, for example, polyominoes, these regions
need not have connected interiors, as demonstrated by the second region
in Figure E.1 between rows 3 and 4. On the musical surface, the distinct
shape of each region helps contribute to a progression of “musical voices"
that vary in textural density, allowing for relatively thick textures in, e.g.,
IntComp12(3, 3, 3, 3) (with four participating parts) and comparatively sparse
textures in, e.g., IntComp12(11, 0, 1, 0) (with two participating parts).

There exist a total of 34 distinct integer partitions of 12 into 4 or fewer
non-zero summands (Mead, 1994). An all-partition array with four rows
will thus contain K = 34 regions, each containing every pitch class exactly
once and each with a distinct “shape" determined by an integer composition
defining a distinct integer partition. However, the number of pitch classes
required to satisfy this constraint, 34× 12 = 408, exceeds the size of a 4× 96
matrix containing 384 elements, by 24. In order to satisfy this constraint,
contiguous regions may share pitch classes, with the added constraint that
only horizontal overlaps of at most one pitch class in each row are allowed for
each of the 34 integer partition regions.

Figure E.2 shows a third region, IntComp12(5, 1, 0, 6) (in medium gray),
in the matrix shown in Figure E.1, where two of its elements result from
overlapped pitch classes from previous regions. Note, in Figure E.2, the two
horizontal overlaps of pitch class, 7 (in row 1 and belonging to the first region)
and 8 (in row 4 and belonging to the second region), required to have each
pitch class occur exactly once in the third integer partition region. This means
that while contiguous regions may share pitch classes, such regions need not
be necessarily adjacent in sequence.

Composers have primarily relied on constructing all-partition arrays by
hand and at least some of their methods have been published (Babbitt, 1973;

4We define an integer composition of a positive integer, L, denoted by IntCompL(s1, s2, . . . , sI),
to also be an ordered set of I non-negative integers, 〈s1, s2, . . . , sI〉, where L = ∑I

i=1 si .
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Starr and Morris, 1977, 1978). Algorithms for automating this task have also
been proposed (Bazelow and Brickle, 1979; Bemman and Meredith, 2016).
However, generating an all-partition array is a large combinatorial problem
and satisfying the constraints of its structure is difficult. To date, none of
these algorithms have been able to solve this problem automatically. This
observation motivates our decision here to look for alternative programming
paradigms and methods for possibly better addressing this problem. In sec-
tion 2, we present our CP constraints for implementing the problem of gen-
erating an all-partition array from a given matrix. As solving for the entire
matrix directly is difficult, in section 3, we present a method of dividing this
matrix into two smaller matrices, choosing integer partitions based on how
frequently they appear in solutions to one of these smaller matrices, and re-
joining them to form a complete solution. We conclude here with a solution
discovered using this method.

2 CP constraints for the problem of generating an
all-partition array from a given matrix

We begin the discussion of our CP constraints for generating an all-partition
array, with a given matrix found in one of Babbitt’s works based on the all-
partition array.5

Let (Ai,j) be this (4, 96)-matrix whose elements are the pitch-class inte-
gers, 0, 1, . . . , 11. We denote the number of rows and columns by I and J,
respectively. Let xi,j,k (1 ≤ i ≤ I, 1 ≤ j ≤ J) be a binary variable correspond-
ing to each location (i, j) in A and a subset (i.e., a region) identified by the
integer k, where 1 ≤ k ≤ K and K = 34. There are then 34 sets of 384 such
variables. Each of these variables will indicate whether or not a location (i, j)
belongs to a candidate set, which we denote, Ck, for the kth position in the
sequence of 34 regions.

For Ck to be a candidate set, it must form a region in A (as described
in section 1), by satisfying two conditions, consecutiveness and containment,
which we will introduce below. Having satisfied these conditions, Ck will be
a candidate set in a possible solution to our problem, in which its elements
correspond to 12 distinct pitch classes in A and whose “shape” is defined
by an integer composition. Additional constraints e.g., ensuring that each of
these candidate sets is then a distinct integer partition and that their overlaps
do not exceed one in each row, will then complete our formulation of this
problem.

5Examples of this matrix can be found in Babbitt’s My Ends are My Beginnings (1978) and
Beaten Paths (1988), among others.
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matrix

2.1 Consecutiveness

The condition of consecutiveness states that pitch classes belonging to the
same region and row in A must lie adjacent to one another with no gaps
between. We ensure this is the case by placing constraints on the strings of
0’s and 1’s that are allowed in the rows formed by 〈xi,1,k, xi,2,k, . . . , xi,J,k〉 for
each (i, k). If, for example, the string 〈. . . , 0, 1, . . .〉 appears in the ith row for
some k, then there can be no 1 occurring before 0. This is expressed by the
following:

∀i ∈ [1, I], ∀j ∈ [3, J], ∀k ∈ [1, K],

(xi,j−1,k = 0 ∧ xi,j,k = 1) =⇒
j−2
∧

j′=1
(xi,j′ ,k = 0). (E.1)

On the other hand, if 〈. . . , 1, 0, . . .〉 appears in this row, then there can be no
1 after 0. This is expressed by the following:

∀i ∈ [1, I], ∀j ∈ [1, J − 2], ∀k ∈ [1, K],

(xi,j,k = 1 ∧ xi,j+1,k = 0) =⇒
J
∧

j′=j+2
(xi,j′ ,k = 0). (E.2)

In other words, all 1’s in 〈xi,1,k, xi,2,k, . . . , xi,J,k〉 for each (i, k) must be consec-
utive, with any 0’s lying to the left or right end points of this string.

2.2 Containment

The condition of containment states that regions in A must contain 12 distinct
pitch classes. Let Bp (0 ≤ p ≤ 11) be the set of all locations (i, j) of pitch class
p in matrix A. From this, we can express the condition of containment by the
following:

∀p ∈ [0, 11], ∀k ∈ [1, K], ∑
(i,j)∈Bp

xi,j,k = 1, (E.3)

where for each k, xi,j,k is equal to 1 at one and only one location (i, j) whose
pitch class is p in A. When this is the case, Ck will contain one of each pitch
class.

2.3 Covering all (i, j) in A

A solution to our problem requires that every one element in A is covered by
at least one of the regions, Ck. We can express this condition by the following
constraint:

∀i ∈ [1, I], ∀j ∈ [1, J],
K
∨

k=1
(xi,j,k = 1). (E.4)
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2.4 Restrictions on the left-to-right order of candidate sets
and their overlaps

As discussed in section 1, adjacent regions need not be contiguous in each
row in A, however, there are restrictions on their left-to-right order and al-
lowed overlaps. The number of overlaps in each row between these regions
must not exceed 1. We can express this restriction by the following constraint:

∀i ∈ [1, I], ∀j ∈ [2, J], ∀k ∈ [1, K− 1],

(xi,j,k = 1) =⇒
K
∧

k′=k+1
(xi,j−1,k′ = 0). (E.5)

When combined with the constraint of consecutiveness, constraint E.5 means
that if xi,j,k is equal to 1, the ith row of Ck′ , whose k′ is greater than k, is either
(1) located at the right-hand side of (i, j) without overlapping the ith row of
Ck or (2) has only one overlap at the right-most element of the ith row of Ck.

2.5 Candidate sets as all different integer partitions

In order to determine that the integer composition “shape” of Ck is a distinct
integer partition, we introduce two variables, yi,k,l and zk,l . Let yi,k,l be a
binary variable that indicates whether or not the length of the ith row of Ck
is greater than or equal to l (1 ≤ l ≤ L, L = 12), by introducing the following
two constraints:

∀i ∈ [1, I], ∀k ∈ [1, K],
J

∑
j=1

xi,j,k =
L

∑
l=1

yi,k,l (E.6)

∀i ∈ [1, I], ∀k ∈ [1, K], ∀l ∈ [2, L], (yi,k,l = 1) =⇒ (yi,k,l−1 = 1). (E.7)

Equation E.6 states that the sum of all elements in 〈yi,k,1, yi,k,2, . . . , yi,k,L〉 is
equal to the length of the ith row of Ck while Equation E.7 states that its
elements equal to 1 begin in the first position and are consecutive. For ex-
ample, when the length of the ith row of Ck is 3, 〈yi,k,1, yi,k,2, . . . , yi,k,L〉 is
〈1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0〉. The total number of rows in Ck whose lengths are
greater than or equal to l is given by ∑I

i=1 yi,k,l . Let zk,l (0 ≤ zk,l ≤ I) be
an integer variable that is equal to ∑I

i=1 yi,k,l (1 ≤ l ≤ L) with the following
constraint:

∀k ∈ [1, K], ∀l ∈ [1, L], zk,l =
I

∑
i=1

yi,k,l . (E.8)

The ordered set of twelve values zk,l (1 ≤ l ≤ L) will then identify the
type of integer partition corresponding to Ck. For example, when zk,l is
〈4, 4, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0〉, Ck is IntPart12(5, 3, 2, 2). We denote this set zk,l
corresponding to an integer partition n by Pn = 〈Pn,1, Pn,2, . . . Pn,L〉 (1 ≤ n ≤
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N, N = 34), where integer partitions appear in reverse lexicographical order,
meaning that those containing the fewest parts and largest part lengths ap-
pear first. For example, P1 is IntPart12(12, 0, 0, 0) and P34 is IntPart12(3, 3, 3, 3).
From this, we determine the integer composition shape of Ck to be the integer
partition n by the following constraint:

∀k ∈ [1, K], ∀n ∈ [1, N], (wk = n)⇐⇒
L
∧

l=1
(zk,l = Pn,l), (E.9)

where wk (1 ≤ wk ≤ N) is an integer variable that indicates to which Pn Ck
corresponds. We can now express the condition that all integer partitions are
distinct by the constraint, AllDifferent(w1, w2, . . . , wK).

3 Solution

In order to confirm that our formulation of this problem is accurate, we im-
plemented our constraints described in section 2 and supplied these to a CP
solver (Sugar v2-1-0 Tamura and Banbara, 2008). We first tried to solve for
the whole matrix directly, however, we were unable to obtain a solution af-
ter a day of calculation. We decided instead, to divide the matrix into two,
equally-sized halves and try solving for each in such a way that their re-
joining would form a complete solution to the original problem. We made
this division of the original matrix at [1, I] × [1, J/2]. Columns 1 to (J/2)
then correspond to the first smaller matrix we denote by A1 and columns
(J/2) + 1 to J correspond to the second smaller matrix we denote by A2. We
allocated 34/2 = 17 integer partitions to be found in each.

With little modification, our constraints can be adapted to the solving of
these sub-problems. These changes include modifying Bp (in equation E.3) to
contain only the locations of pitch classes in either A1 or A2, setting K to be
the new number of partitions in each (i.e., 17) and J to be their new column
lengths 96/2 = 48. Solutions to A1 and A2 in which no integer partition is
used more than once and contains only pitch classes from one or the other
matrix (but not both), collectively form a solution to the original problem.
Due to its smaller size, we were able to find solutions beginning with A1
over the course of a day, in which 506 were found. Naturally, solving for
A1 makes finding a solution in A2 more difficult as the number of available
partitions is now fewer, and in fact, all 506 solutions to A1 made A2 unsatis-
fiable. We noticed, however, that certain partitions in these 506 solutions e.g.,
IntPart12(3, 3, 3, 3) and IntPart12(4, 3, 3, 2) occurred far less frequently than
others. It would be reasonable then to conclude that solutions in A1 which
contain the greatest number of these less frequently occurring partitions will
make solving for A2 more likely, as the fewer available partitions in A2 now
consist of a proportionally greater number of frequently occurring partitions.
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Therefore, we solved again for A1, this time by arbitrarily restricting the do-
main of wk to exclude the top 6 most frequently occurring partitions and
include the top 5 least frequently occurring partitions.

If we denote the subset of integers from [1, 34] corresponding to the par-
titions found in this solution to A1, S, then the domain of wk for possible
solutions to A2 becomes [1, 34] \ S. We then tried solving for A2, under the
assumption that its proportionally greater number of more frequently occur-
ring partitions would make finding a solution easier. While this means we
exclude possible solutions e.g., ones in which a rarely occurring partition oc-
curs in A2 or where a partition contains pitch classes from both A1 and A2,
we were able to generate a complete solution in this way. Solving for A1 took
approx. 4 minutes while solving for A2 took approx. 28 minutes. Table E.1
shows the complete solution found using this method of re-joining A1 and
A2.

Table E.1: A generated all-partition array corresponding to a complete solution to our problem,
represented in the way used by music theorists (Mead, 1994). Each column contains the ele-
ments in A belonging to Ck , where a dash indicates those that overlap. Note, that partitions are
denoted using a shorthand notation, e.g., 43, where the base indicates the length of a part and
the exponent denotes its number of occurrences. For clarity, the integers 10 and 11 have been
replaced by the letters t and e, respectively.

4 Conclusion

In this paper, we have introduced a novel formulation of one part of the prob-
lem of generating an all-partition array, beginning from a given matrix, using
constraint programming (CP). Solving for the whole of this matrix directly
proved too difficult using our constraints. Therefore, we introduced a method
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of dividing the matrix into two halves, solving for each and then re-joining
them to form a complete solution. Using this method, we were able to dis-
cover a solution. This solution is the first we are aware of to be automatically
generated by a computer. Moreover, it is an all-together new all-partition
array from those previously discovered by Babbitt and other composers. In
future work, we hope to examine in more detail how to make finding solu-
tions in larger matrices possible and without excluding potential solutions.
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1. Introduction

Abstract

Milton Babbitt (1916–2011) was a composer of twelve-tone and serial music whose
works and theoretical writings had a profound impact on the composition of modern
academic music. In this paper, we first review in detail his compositional process
and the techniques he developed, focusing in particular on the all-partition array,
time-point rows, and the equal-note-value-strings found in his later works. Next,
we describe our proposed procedure for automating his compositional process using
these techniques. We conclude by using our procedure to automatically generate an
entirely new musical work that we argue is in the style of Babbitt.

1 Introduction

Milton Babbitt (1916–2011) was a composer of twelve-tone and serial music
whose works and theoretical writings had a profound impact on modern
academic music. Beginning in the 1950s and over the course of two decades,
Babbitt formalized the 12-tone system and established techniques, such as
the time-point row and the all-partition array (Babbitt, 1955, 1960, 1961, 1962,
1973). Many of these techniques remain of interest to composition and mu-
sic research today (Bemman and Meredith, 2015a,b; Bernstein, 2014). Indeed,
music theorists have written at length on these techniques and the highly
constrained and often complex structures in Babbitt’s music that result (Bem-
man and Meredith, 2016; Mead, 1994). In recent years, the sketches for many
of his works have been made publicly available by the Library of Congress
in Washington, DC.1 Researchers are now able to examine Babbitt’s compo-
sitional process in much greater detail than before.

In this paper, we describe the process Babbitt devised in composing his
later works (approx. 1980–2011), focusing in particular on the all-partition ar-
ray, time-point row, and equal-note-value string. The constraints under which
he composed his music at this time are strict and his application of these
techniques follows an often well-defined procedure. For this reason, we sug-
gest that Babbitt’s compositional process is inherently algorithmic in nature
and that, therefore, many of these techniques can be modeled by machine.
This line of reasoning follows years of research in the field of computational
music analysis and generation, with similar efforts having been made to, for
example, harmonize chorales in the style of Bach (Ebcioğlu, 1987) and more
recently, generate the structures found in Babbitt’s own music (Bemman and
Meredith, 2016; Tanaka et al., 2016a,b).

In the remainder of this paper, we present our proposed procedure for
automating Babbitt’s compositional process in his later works. First, we in-
troduce a method for generating the time-point and pitch-class rows of a

1https://lccn.loc.gov/2014565648. Last accessed 2016-11-15.
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Fig. F.1: Excerpt containing three ordered mosaics from the all-partition array found in Babbitt’s
None but the Lonely Flute.

piece from its all-partition array. Then, we show how this same method can
be used to generate pitch-class rows containing repetitions. Next, we describe
a method for determining the rhythms in a piece as well as the placement of
rests and ties. We conclude by using this procedure to automatically generate
a novel musical work that we believe to be in the style of Babbitt.

1.1 All-partition array

Both the pitch and rhythmic content in Babbitt’s later works are organized ac-
cording to a structure known as the all-partition array (Bemman and Meredith,
2016; Mead, 1994). In an all-partition array, Babbitt constructed aggregates
(i.e., collections of the 12 musical pitch classes) so that each was a distinct
set of partitioned pitch-class segments called an ordered mosaic. For example,
〈〈2, 0, 1, 3〉, 〈5, 4, 6, 7〉, 〈8, 9, 11, 10〉〉 is one ordered mosaic made up of three
pitch-class segments of length four.2 A second ordered mosaic might con-
tain three pitch-class segments in which two are of length five and one is of
length two, e.g., 〈〈6, 1, 11, 4, 2〉, 〈5, 7〉, 〈0, 9, 8, 3, 10〉〉. Each pitch-class segment
in an ordered mosaic is then assigned to a “voice" on the musical surface,
forming what is known as a lyne (Mead, 1994). Collectively, these pitch-class
segments in each lyne for all ordered mosaics form a concatenation of 12-tone
rows that may or may not contain repetitions. Figure F.1 shows an excerpt
from the all-partition array in Babbitt’s None but the Lonely Flute with six such
lynes and the first three of its ordered mosaics.

Note, in Figure F.1, that the pitch-class segments in the first ordered mo-
saic are distributed across each of the six possible lynes but that in the third
ordered mosaic, these pitch-class segments appear in only three lynes, 1, 2
and 5. In the third ordered mosaic, the first pitch class in each segment is
a repetition from the previous ordered mosaics: pitch-classes 2 and 6 from
the first ordered mosaic and pitch-class 4 from the second ordered mosaic.
An all-partition array must contain a number of ordered mosaics equal to

2We denote ordered sets using angle brackets, 〈.〉, and unordered sets with braces, {.}.
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(a)

(b)

Fig. F.2: Members of a time-point row in (a) set against a grid of sixteenth-note units and one
possible rhythmic interpretation of this row in (b) where duration is equal to inter-onset interval.

the number of distinct ways in which 12 can be partitioned into k parts (i.e.,
lynes) or fewer, with each of these partitions represented by a distinct or-
dered mosaic. Babbitt used 4, 6, and 12-part all-partition arrays, containing,
respectively, 34, 58, and 77 ordered mosaics.

1.2 Time-point row

Babbitt himself laid the foundations for his time-point system and outlined
general principles for applying it to composition (Babbitt, 1962). In a time-
point row, Babbitt sought to derive a correspondence between the 12-tone
row and time. By replacing the interval of a half-step in a 12-tone row with
a fixed period of time called a unit, the time-point intervals (analogous to
directed pitch-class intervals) between adjacent members become lengths of
time measured in units rather than pitch intervals measured in semitones. In
his later works, Babbitt typically used a sixteenth note as the unit (Bernstein,
2014). Figure F.2 shows an example of a time-point row using a sixteenth
note as the unit and one possible rhythmic representation.

Note, in Figure F.2, how time points in a row denote onsets in time cor-
responding to new rhythmic events. In Figure F.2(b), these rhythmic events
have a duration equal to the inter-onset intervals of each time point. How-
ever, Babbitt often sought less straight-forward rhythmic interpretations for
his time-point rows than that shown in Figure F.2(b), and in the following sec-
tions we will see in greater detail how his use of additional techniques gave
his later works their characteristically varied and often complex rhythms.

2 Babbitt’s compositional process in his later
works

In this section, we describe in detail Babbitt’s compositional process as found
in his later works. Many of the techniques he used in this process have
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(a) (b)

Fig. F.3: Pitch-class ordered mosaic (PcOM) distinguished by register in (a) and time-point or-
dered mosaic (TpOM) distinguished by dynamic level in (b).

been described elsewhere (Bernstein, 2014; Mead, 1994), however, a thorough
understanding of how exactly this process comes to form the musical surface
of his works is essential in explaining how we have automated this process.

2.1 Rows from ordered mosaics

In many of Babbitt’s later works based on the all-partition array, the avail-
able time-point rows are the same as the available pitch-class rows because
they are constructed from the same ordered mosaics. Typically, Babbitt used
register to distinguish pitch-class segments and dynamic level to distinguish
time-point segments. Figure F.3 shows a pitch-class ordered mosaic (here-
after abbreviated “PcOM") in (a) and a time-point ordered mosaic (hereafter
abbreviated “TpOM") in (b) from an all-partition array. An ordered mosaic
places constraints on the possible rows that can be constructed from it. Each
segment in a mosaic is ordered, meaning that elements, when “linearized"
to form a row, e.g., in Figure F.2(b), must remain in the left-to-right order in
which they occur in their segment. For example, in Figure F.3, possible rows
from both mosaics may begin with 〈7, 2, . . .〉 but not 〈2, 7, . . .〉. Similarly, ele-
ments from other segments may intervene, so long as their left-to-right order
is not violated. For example, 〈7, 8, 2, 3 . . .〉 is allowed but not 〈7, 3, 2, 8 . . .〉.
Figure F.4 shows a possible pitch-class row, (a), and a possible time-point
row, (b) taken from the ordered mosaics in Figure F.3(a) and (b), respectively.

Note, in Figure F.4(a), how segments of pitch classes are distinguished
from each other by pitch-register and in (b), how the changes in dynamic
level in a time-point row mark the arrival of a time point belonging to a
different segment. Perceptually, these new time points act as both tempo-
ral boundaries of local events and reminders of a global stream of temporal
events unfolding in each time-point segment, made clear by differing dy-
namic levels.
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(a)

(b)

Fig. F.4: Opening pitch-class row in (a) and time-point row in (b) from Babbitt’s None but the
Lonely Flute (right) taken from their respective ordered mosaics (left). Note, in (a) that no time
information is specified and in (b) that no pitch information is specified.

The musical surface of Babbitt’s later works is formed by uniting the pitch
information specified by a row constructed from a PcOM with the timing
information specified by some rhythmic interpretation of a row constructed
from a TpOM. Figure F.5 shows the opening of Babbitt’s None but the Lonely
Flute and how the pitch-class row shown in Figure F.4(a) and the time-point
row shown in Figure F.4(b) have been united to form the musical surface.
Note, in Figure F.5, that on the musical surface, depending on the chosen
rhythmic interpretation of its time-point row, pitch classes in a row generally
proceed faster than the time points in a row (Mead, 1994). For example, at
time point 2 there are four corresponding pitch classes, 8, 6, 2, and 1. How-
ever, Babbitt is often careful to ensure that time points are allowed to “catch
up" as, for example, at time points 8, 1 and 5 where there is only a single
pitch class, 1. Indeed, Mead has noted that Babbitt has had a “longtime
predilection for manifesting similar sorts of distributions of events in differ-
ent domains over different spans of time" (Mead, 1994, p. 49). It is clear then
that the chosen rhythmic interpretation of a time-point row, as shown, for ex-
ample, in Figure F.2(b), is crucial to maintaining such a uniform distribution
of pitch and time events.

2.2 Equal-note-value strings and rhythm

A rhythmic interpretation of a time-point row, as shown, for example in Fig-
ure F.2(b), is determined by Babbitt’s choice of equal-note-value strings taken
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Fig. F.5: Opening of Babbitt’s None but the Lonely Flute corresponding to the pitch-class and time-
point rows shown in Figure F.4. Note, that the vertical dashed line in bar 5 marks the boundary
between the first and second pitch-class rows.

from a PcOM to form a pitch-class row. An equal-note-value string is a string
of n pitch classes that subdivide a time-point interval into n equal durations
(i.e., note values) (Bernstein, 2014; Mead, 1994). Figure F.6 provides examples
of Babbitt’s use of equal-note-value strings from the opening of None but the
Lonely Flute.

As shown by the dotted line in Figure F.6, an equal-note-value string con-
taining the pitch classes 8, 6, 2 and 1 equally subdivides the time-point in-
terval of 6, occurring between time points 2 and 8. Because the unit in this
time-point row is equal to a sixteenth note, this time-point interval of 6 is
equal to a dotted quarter note. This interval has then been equally divided
by each of its equal-note-value string’s four pitch classes into four durations
equal to a dotted sixteenth note. In fact, each time-point interval in the ex-
ample shown in Figure F.6 contains an equal-note-value string. For example,
there is an equal-note-value string of length 1 between time points 0 and 2
(pitch-class 7) and between time points 7 and 0 (pitch-class 0). Between time
points 6 and 7 there is an equal-note-value string of length 2 in which one
member is a rest. We will see in the following sections, in our discussion of
automating Babbitt’s compositional process, how exactly Babbitt determined
the rests, ties and repetitions of pitch classes that appear frequently in his
music.

3 Generating rows from ordered mosaics

In this section, we begin the discussion of our proposed procedure for mod-
eling Babbitt’s compositional process described above. In computer science,
a stack is an abstract data type that stores a collection of elements using a
“last-in-first-out" protocol (Cormen et al., 2009, pp. 232–236). A stack has two
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Fig. F.6: Equal-note-value strings in an excerpt from the opening of Babbitt’s None but the
Lonely Flute shown in Figure F.5.

associated operations, pop() and push(), that, respectively, remove its top
element and insert an element at the top of the stack. By representing each
segment of an ordered mosaic as a stack, such that the left-most element lies
on the top of each stack, we can account for the left-to-right order in which
elements in a time-point or pitch-class row must be taken from each segment.
Figure F.7 shows how a time-point or pitch-class row can be generated from
an ordered mosaic represented as a sequence of stacks.

Note, in Figure F.7, that at each step from (a) to (c), the top element of each
indicated stack is popped and stored from left-to-right to form the sequence
of elements above. As this process unfolds, the stack number is simultane-
ously stored below its corresponding element. In (d), this process concludes
with the completed time-point row from Figure F.4(b) and an empty sequence
of stacks. Because only the top element of each stack after every chosen ele-
ment is a possible next choice, the sequence of stack numbers shown in Fig-
ure F.7, 〈2, 1, 6, 1, 4, 6, 5, 5, 5, 3, 4, 4〉, uniquely encodes its corresponding row
above. Computing all distinct permutations of such a sequence of stack num-
bers then corresponds to all possible rows that can be generated from a given
ordered mosaic.

3.1 Pitch-class repetitions in rows containing equal-note-
value strings

That there are pitch-class repetitions in Babbitt’s music distinguishes it from
the works of several other 12-tone composers. In looking at Babbitt’s later
works, we find two sorts of repetition, those in which a pitch class is immedi-
ately repeated, e.g., 〈6, 6〉, and those in which the most recently chosen pitch
class from a stack is repeated, e.g., 〈6, 7, 6〉 in the ordered mosaics shown
in Figure F.3. When and where these repetitions occur in a pitch-class row
are determined, in part, by the equal-note-value strings used to construct
the row. Figure F.8 shows the process of constructing a pitch-class row with
repetitions, this time, by grouping pitch classes from its PcOM into equal-
note-value strings.

Note, in Figure F.8, that pitch classes in a PcOM can be in any one of three
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(a) (b)

(c) (d)

Fig. F.7: Process of selecting elements from stacks (a–c), numbered 1–6, in an ordered mosaic to
generate a pitch-class or time-point row until all stacks are empty (d). Note that the generated
row corresponds to the time-point row shown in Figure F.4(b).

states in the process of constructing a pitch-class row: (1) unused (indicated
by the white boxes), (2) repeatable (indicated by the shaded boxes) or (3) used
(indicated by their removal from a stack). In Figure F.8(a), after the first equal-
note-value string is generated, the repeatable pitch classes are 6 and 2, but not
7, as 2 and 7 belong to the same segment and 7 is not the most recent pitch
class to be taken from this segment. In Figure F.8(b), this equal-note-value
string contains two repeatable pitch classes, one of which is an immediate
repetition, 6 (from Figure F.8(a)). In Figure F.8(c), this equal-note-value string
contains only a single repeatable pitch class, 0, that is not immediate. In
Figure F.8(d), we have a completed pitch-class row containing four equal-
note-value strings and 16 total pitch classes due to its four repetitions.

3.2 When and where pitch-class repetitions occur

The problem of determining where exactly pitch-class repetitions may occur
in Babbitt’s music is addressed by Babbitt himself, who states that “pitch
repetition is not a pitch procedure, but a temporal procedure, independent
of the considerations of the pitch system, and, if a time-point system is as-
sumed, the temporal placements of such pitch repetitions are determined by
the time-point structure, not by pitch considerations" (Babbitt, 1962, p. 65). It
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(a) (b)

(c) (d)

Fig. F.8: Process of generating a pitch-class row of equal-note-value strings containing repeti-
tions from stacks (a–d), numbered 1–6, in a PcOM. Shaded boxes indicate pitch classes that are
repeatable while white boxes indicate unused pitch classes.

is likely that Babbitt used repetitions to articulate any number of temporal
events, including beat, meter and syncopation, among others. In our model,
however, immediate repetitions are those that occur predominantly on the
beat while all other repeatable pitch classes will primarily occur off the beat.

Let’s suppose in a piece we have a sequence of time points, P =
〈p1, p2, . . . , pn〉. The time-point intervals of n time points form the sequence,
T = 〈t1, t2, . . . , tn−1〉, where ti = pi+1 − pi (mod 12). Whether or not a time
point, pi, falls on the beat in an implied meter, is determined by the prefix
sum of time-point interval, ti−1, modulo the number of time-point units, u,
between consecutive beats. We therefore define oi to be 1 if and only if pi
falls on a beat, as follows:

oi =

1, if
i−1

∑
j=1

tj ≡ 0 (mod u); and

0, otherwise.

(F.1)

In Equation F.1, when oi = 1, the equal-note-value string at time point, pi, for
time-point interval, ti−1, falls on the beat. For example, in a common-time
meter with four sixteenth note units to the beat and where ∑i−1

j=1 tj = 4, a
time-point interval, ti−1, modulo 4 would equal 0, and thus its time point pi
falls on the beat.

As shown in Figure F.8, possible pitch-class events in an equal note-value
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Table F.1: Probabilities of pitch-class events occurring in the music generated by our model.

string are (1) an immediate repetition (ir), (2) some other repetition (or), and
(3) a new pitch class (np). In order to promote a variety of musically in-
teresting events in the music generated by our model, we assign varying
probabilities to these possible events at each given time-point interval. We
have chosen these probabilities based on observations in Babbitt’s music of
the approximate number of times these musical events occur. These proba-
bilities are summarized in Table F.1. In the case that the chosen pitch-class
event is either some other repetition or a new pitch class and there is more
than one available in an ordered mosaic (as there is, for example, in Fig-
ure F.8(b)), we ensure that each available pitch class has an equal probability
of being chosen. Naturally, there is only ever one available repetition that can
be immediate. In Babbitt’s later works, all the pitch classes in a given equal-
note-value string must be distinct, implying that only the first pitch class in
such a string can be an immediate repeat. The remaining pitch classes in
such a string can be either other repeats or new pitch classes.

In general, however, Babbitt constructed strings containing typically only
two repetitions. We suspect this ensured that the lengths of pitch-class rows
on the musical surface do not grow exceedingly long with repetitions. Ac-
cordingly, the strings generated by our model are constrained to contain only
two repetitions.

3.3 Maximum length of an equal-note-value string

As illustrated by the opening of Babbitt’s None but the Lonely flute, shown
in Figure F.5, the juxtaposition of different length equal-note-value strings
and time-point intervals contribute to making a musically interesting result
in which the distributions of time points and pitch classes can remain ap-
proximately uniform. It seems, however, that Babbitt did not consider all
combinations of string length and time-point intervals to be musically mean-
ingful and, indeed, avoided certain combinations altogether. Consider, for
example, how difficult it might be for a human to perform a 12-note tuplet in
the time of a sixteenth note at even a moderate tempo. To avoid such prob-
lems, for any given time-point interval we constrain the maximum length of
its corresponding equal-note-value string.

The maximum allowable length for a given equal-note-value string cannot
(1) exceed the number of unused pitch classes in its PcOM at any given point
in constructing a pitch-class row (i.e., the white boxes shown in the process
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described in Figure F.8) and (2) result in subdivisions with a duration smaller
than some fixed note value. The maximum length of an equal-note-value
string, si, for a time-point interval, ti, is given by

|si|max = min(r, tid)

tp unit d
32nd note 1

sixteenth note 2
eighth note 4

(F.2)

where d is the length of the time-point unit in 32nd notes and r is the number
of unused time points in the TpOM before constructing si. For example, when
the unit in a time-point row is equal to a sixteenth note, meaning d = 2, and
the current time-point interval is 3, then an equal-note-value string of length
3 · 2 = 6 is acceptable in a PcOM with 6 or more unused pitch classes. Each
of the durations in this equal-note-value string would then be equal to a 32nd
note.

4 Generating rests and ties using equal-note-value
strings

As illustrated in Figure F.1, pitch classes in a lyne and, by extension, their
corresponding segments from all PcOMs in an all-partition array are ordered
as a result of the 12-tone rows to which they belong. However, in Figure F.8,
we saw how equal-note-value strings generated from a PcOM can contain
pitch classes not necessarily belonging to a single segment or lyne. It is
therefore possible that such strings may contain an ordering of pitch classes
not found in any of the 12-tone rows in the lynes of an all-partition array.
Generally speaking, Babbitt found this undesirable as it violates an essential
principle of 12-tone composition—namely, that pitch classes from a 12-tone
row appear in their given order.

In Babbitt’s later works, he ensured that the ordering of pitch classes in an
equal-note-value string corresponds to the orderings found in these 12-tone
rows by checking that either the string in its entirety or its substrings belong
to one or more segments from other PcOMs in its all-partition array. In this
way, Babbitt was able to use equal-note-value strings to create a dense net-
work of motivic ideas across a piece by linking different ordered mosaics in
an all-partition array (Bernstein, 2014; Mead, 1994). This process of construct-
ing equal-note-value strings that can also be constructed from other PcOMs
has been called referenced array segments (Bernstein, 2014; Mead, 1994).

The array segments of an all-partition array are the pitch-class segments
found in all the PcOMs in an all-partition array. For example, the excerpt
from Figure F.1 contains one pitch-class segment of length 6, one segment
of length 4, six segments of length 3, three segments of length 2 and two
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Fig. F.9: An equal-note-value string, 〈6, 11〉 constructed from two segments in the first PcOM
that references a single segment, 〈6, 11, 10, 0〉, belonging to the third PcOM.

segments of length 1. A complete all-partition array, containing 34, 58 or
77 ordered mosaics, will have many more segments. An equal-note-value
string, s, is said to reference an array segment, a, (typically in another PcOM)
if a substring of s is a substring of a.

For example, Figure F.9 shows the excerpt from the all-partition array
shown in Figure F.1 with an equal-note-value string constructed from two
segments in its first PcOM that references a segment in its third PcOM. Note,
in Figure F.9, how the referenced array segment, 〈6, 11, 10, 0〉 in the third
PcOM contains a substring equal to the equal-note-value string, 〈6, 11〉, con-
structed from the first PcOM. Moreover, in both PcOMs, the process of select-
ing elements (shown in Figure F.7) to form this substring is not violated.

When constructing an equal-note-value string in this way, we argue Bab-
bitt sought to minimize the number of referenced array segments required
to account for all its pitch classes. More formally, we propose that Babbitt
desired a minimum cardinality set, C, of substrings from an equal-note-value
string, s, that (1) covers s and (2) whose members, ci, are substrings of array
segments other than those used to construct s. If we return again to Fig-
ure F.9, the 6 in our equal-note-value string, 〈6, 11〉, could have referred to
the segment, 〈6, 11, 10, 0〉 in the third PcOM and the 11 could have referred
to the segment, 〈11, 3, 4〉, in the second. However, this would require a set,
C = 〈〈6〉, 〈11〉〉, having a cardinality of 2, which would therefore be consid-
ered less optimal than our original reference to 〈6, 11, 10, 0〉.

4.1 Rests and ties

It is possible that many equal-note-value strings may not have a minimum
cardinality set. It is also possible that a referenced array segment may contain
more pitch classes than its equal-note-value string (as shown in Figure F.9)
whether it has a minimum cardinality set or not. It is in these cases that rests
and ties arise. As Bernstein (2014) has noted, Babbitt indicated in his sketches
the ordinal positions of pitch classes from a string in their referenced array
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4. Generating rests and ties using equal-note-value strings

segments. Because each reference must be a substring, numbers belonging to
the same array segment must be sequential in ascending order. For example,
an equal-note value string, 〈6, 11, 7〉, would have the ordinal positions 1, 2, 3
in a reference to a single array segment 〈〈6, 11, 7〉〉 or 1, 2, 1 in a reference to
two array segments, e.g., 〈〈6, 11〉, 〈7, 9, 2, 10〉〉. Babbitt indicated the lengths
of each referenced array segment by noting their final ordinal positions with
either an underscore or parentheses (Bernstein, 2014). In the example using
two array segments just provided, these lengths could be indicated by the
following: 1,2,(1).

As Bernstein (2014) notes, an underscore indicates that this final pitch
class of an array segment should sound on the musical surface while paren-
theses indicate that this pitch class should not. We take this to mean that
parentheses indicate rests and underscores, in general, indicate ties. We’ve
observed that Babbitt does not typically embed rests in the middle of an
equal-note-value string in his later works, opting instead to append or
prepend them to a string. On the other hand, while ties do appear at the
ends of equal-note-value strings, we only permit them to appear inside a
string in our model. For example, an equal-note-value string, 〈6, 11〉, that
references the array segment, 〈6, 11, 2〉, would contain a rest in its final posi-
tion. This then transforms the original string of length 2 into one of length
3, 〈6, 11, rest〉. On the other hand, a tie in our model can only occur from
a referenced array segment containing more pitch classes than the substring
from its equal-note-value string. For example, an equal-note-value string,
〈6, 11〉, that references the two array segments, 〈6, 7〉, 〈11〉 would contain a tie
in its second position, 〈6, rest, 11〉. Table F.2 shows various referenced array
segments and the musical output for a given input of a string, 〈6, 7, 0〉, and a
time-point interval equal to 3 sixteenth notes.

Note, in Table F.2, how the minimum cardinality set, 〈〈6, 7, 0〉〉, for the
referenced array segment, 〈6, 7, 0〉, in the first row, is optimal and its cor-
responding musical output contains no rests or ties. In the second row, its
referenced array segment, while forming a minimum cardinality set, nonethe-
less contains more pitch classes than its equal-note-value string. As such, the
corresponding output contains a single rest at the end and we consider this
slightly less optimal. In the sixth row, note how the presence of pitch-class 4
in the referenced array segment causes a tie to appear in the output. We be-
lieve this is least optimal. Finally, note that the reference in the eighth row is
not possible, as it does not contain substrings that belong to this equal-note-
value string. In our model, the covers 〈〈6, 7〉, 〈0〉〉 and 〈〈6〉, 〈7, 0〉〉 would be
considered equally good.

It is important to note that equal-note-value strings in our model differ
slightly from those in Babbitt’s practice. In Babbitt’s later works, he ensured
that the referenced array segments in a piece form an exhaustive partition
of all array segments found in its all-partition array, with no one substring
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Table F.2: Various referenced array segments and the musical output for a given input equal-
note-value string, s = 〈6, 7, 0〉, and time-point interval equal to 3 (unit equal to a sixteenth note).
Note that an optimal cover is the minimum cardinality set of substrings that covers s.

of pitch classes in a segment referenced more than once. Finding such a
partition of an all-partition array by equal-note-value strings is a difficult
problem. Presently, we do not have a method for solving this problem. For
this reason, we have adopted a greedy approach in which equal-note-value
strings are constructed according to the first possible reference and where a
single array segment may be referenced more than once.

5 Automating Babbitt’s compositional process in
his later works

Our proposed procedure for automating Babbitt’s compositional process in
his later works is shown in Figure F.10. We begin with an all-partition array
as input. For each of the n ordered mosaics in this array, we first generate a
time-point row. The result is a string of n× 12 time points. For each of the
(n × 12) − 1 time-point intervals, we then compute from its corresponding
PcOM, a pseudo-random equal-note-value string (abbreviated in Figure F.10
as “ENVS") according to the probabilities of immediate repeats, other repeats
and new pitch classes (described in Table F.1) and ensuring its maximum
length is not exceeded (as described in Equation F.2). If this equal-note-
value string has a referenced array segment, we adopt a “greedy" approach in
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5. Automating Babbitt’s compositional process in his later works

Fig. F.10: Proposed procedure for modeling Babbitt’s compositional process in his late practice
pieces based on the all-partition array and time-point system.

which we select the one which produces a minimum cardinality set cover (or
as optimal as possible, as shown in Table F.2), retaining the appropriate rests
and ties. If this particular equal-note-value string does not have a reference,
we generate a new string containing the same number of pitch classes and
try again to find a reference. As references can be difficult to find for larger
lengths, attempting this process more than once ensures that smaller lengths
are not favored and that a variety of string lengths will occur in the music.
If still no reference is found after 5 attempts, we choose a new length and
string of pitch classes, repeating this entire process of attempting to find a
referenced array segment.
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6 Generated piece

In this section, we present a novel piece automatically generated using the
procedure proposed in this paper. The piece, shown in Figure F.11, is a work
for flute and string quartet where each instrument contains an all-partition
array of 34 ordered mosaics in four lynes. In the flute part, its all-partition
array has four voices distributed across two registers from C4–B5. In the
quartet, each instrument similarly contains four voices distributed across two
registers with the cello from C2–B2, the viola from C3–B4, violin II from
G3–F#4, and violin I from C4–B5. Both the flute and quartet use the same
sequence of time points so that each change in dynamic level aligns for every
instrument. For the sake of length, we have chosen here to present only
the first 17 of this all-partition array’s 34 ordered mosaics. It is important
to note of this piece, however, that pitch, onset, duration, voice, dynamic
level and meter have all been automatically generated. Meters have been
chosen by dividing the prefix sum of time-point intervals by the number of
units to a beat, from left-to-right until this value lies between 2 and 6 beats,
inclusive. The fractional meters that result are more common in Babbitt’s
earlier practice, however, they do appear in his later works. To ensure that
not all instruments play together at all times, we have randomly chosen for
a given time-point interval whether or not an equal-note-value string will
occur for each instrument. Similarly, we have randomly chosen whether or
not simultaneities will occur in an equal-note-value string of the stringed
instruments. Such simultaneities are constrained to not exceed 2 and must
belong to the same voice, features which we have also found in Babbitt’s own
works.
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Fig. F.11: Excerpt from a novel piece automatically generated in the style of Babbitt for flute and
string quartet.
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Fig. F.11 (cont.): Excerpt from a novel piece automatically generated in the style of Babbitt for
flute and string quartet.
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Fig. F.11 (cont.): Excerpt from a novel piece automatically generated in the style of Babbitt for
flute and string quartet.
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Fig. F.11 (cont.): Excerpt from a novel piece automatically generated in the style of Babbitt for
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7. Conclusion

7 Conclusion

In this paper, we have proposed a procedure for automating Milton Bab-
bitt’s compositional process in his later works. This process includes his use
of techniques such as the all-partition array, time-point row and equal-note-
value strings. As our generated piece has demonstrated, these techniques
alone are sufficient for generating a number of musical parameters that ap-
pear on the musical surface, including pitch, onset, duration, voice, and dy-
namic level. Additional parameters, such as articulation, phrase markings,
tempo indication, and form, have not been included in our procedure. How-
ever, we are confident that further analysis of his sketches could reveal simi-
larly algorithmic techniques for determining these additional parameters.
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