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The spatially periodic activity of grid cells in the entorhinal cortex
(EC) of the rodent, primate, and human provides a coordinate system
that, together with the hippocampus, informs an individual of its
location relative to the environment and encodes the memory of
that location. Among the most defining features of grid-cell activity
are the 60° rotational symmetry of grids and preservation of grid
scale across environments. Grid cells, however, do display a limited
degree of adaptation to environments. It remains unclear if this level
of environment invariance generalizes to human grid-cell analogs,
where the relative contribution of visual input to the multimodal
sensory input of the EC is significantly larger than in rodents. Patients
diagnosed with nontractable epilepsy who were implanted with
entorhinal cortical electrodes performing virtual navigation tasks to
memorized locations enabled us to investigate associations between
grid-like patterns and environment. Here, we report that the activity
of human entorhinal cortical neurons exhibits adaptive scaling in grid
period, grid orientation, and rotational symmetry in close association
with changes in environment size, shape, and visual cues, suggesting
scale invariance of the frequency, rather than the wavelength, of
spatially periodic activity. Our results demonstrate that neurons in
the human EC represent space with an enhanced flexibility relative
to neurons in rodents because they are endowed with adaptive
scalability and context dependency.
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Neurons in the hippocampus and entorhinal cortex (EC)
exhibiting spatially modulated activity are highly relevant in

research and medicine because they construct an agent-independent
(allocentric) metric of space for localizing and remembering
places, often referred to as the cognitive map (1–4). Beyond their
scientific relevance, the hippocampus and EC are clinically im-
plicated in Alzheimer’s disease (5, 6), where these structures
show the earliest expression of plaques and tangles and concomi-
tant progressive cell death, causing spatial disorientation and spa-
tial memory loss. Coincidentally, the two structures, as part of the
mesial temporal lobe, are highly susceptible to epileptic seizure (7).
These cells offer a glimpse into how the brain integrates multi-
modal and movement-dependent sensory inputs and converts them
into a coherent environment-referenced neuronal representation.
Among the neurons with the greatest spatial specificity are the
place cells of the hippocampus (2), head direction cells of the pre-
and postsubiculum (8), border cells in the subiculum and EC (9),
and grid cells in the medial EC (10). Although a place cell is only
activated when the animal traverses through a unique location in
its environment (2), grid-cell activity is elicited in multiple locations
that the animal visits (11), and these locations span the environ-
ment periodically as vertices of a hexagonal grid formation (10).
The two neuroanatomical subsystems are thought to complement
each other such that individual place cells represent specific spatial
locations and grid cells provide an environment-invariant metric
upon which to reference the agent’s (animal or human) location

(12). Although the adaptive flexibility of spatial tuning of neurons in
the rodent hippocampus is evident from remapping their receptive
fields when switching between environments (13–17), the association
between grid patterns of cells in the EC and the environment is less
clear (13, 18–20). Here, we focus on three main features of grid-cell
patterns: scale invariance, orientation, and rotational symmetry.
The robust grid scale invariance across differently sized (10) and

shaped (20) environments is one of the key characteristics of grid
cells in the rodent EC. It has repeatedly been shown that the
distance between grid nodes remains constant when the animal is
transferred between environments of different size (10) and shape
(20). However, past studies have demonstrated that although grid
distances are rigid, they are not completely inflexible. Barry et al.
(19) showed that manipulations to the width and length of a fa-
miliar enclosure resulted in similar transformations of the rodents’
grids: When the familiar environment was elongated, the grid
patterns elongated similarly. Also in rats, grids have been shown to
display expansion upon introduction to a novel environment and
then relax back to the original scale when the environment
becomes familiar (18). Combined, these results suggest that grid
cells might have a default scale but that the default scale could be
influenced by experience in the given environment.
Another key characteristic of grid cells is the alignment of

grids with environmental cues. For a given environment, an animal’s
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grid-cell population shares the same grid orientation, seemingly
aligned and “anchored” to a particular landmark. Rotation of a
distal visual cue, serving as a landmark, resulted in similar rota-
tions of the rodents’ grids in a feature-poor circular enclosure (10).
Meanwhile, if proximal cues, such as the edges and boundaries of
noncircular environments, are available, they may also function as
anchors to which the grids become aligned (20). Consistent with
the reliance on local cues, the orientation of grids in square-shaped
environments tends to align with the walls at an angle that mini-
mizes symmetry with respect to boundaries (21). Hence, the ori-
entation of grids seems to rely primarily on local cues, but it can be
based on distant cues when local cues are ambiguous or absent.
A third key characteristic of grids in the medial EC is their 60°

rotational symmetry (10). Accordingly, grids recorded in circular or
symmetrical enclosures tend to exhibit a narrow range of 60 ± 5°
rotational symmetry quantified from autocorrelograms (ACs) (18).
However, a comprehensive analysis of spatial periodicity evident
from cells in the presubiculum and medial EC of rats revealed that
only about 35–50% of medial EC cells exhibited canonical 60° ro-
tational symmetry (12% and 28% in the presubiculum and para-
subiculum, respectively) (11, 22), whereas a significant fraction of
medial EC neurons (43%) displayed spatially periodic activity dif-
ferent from the 60° rotational symmetry (11). Nonhexagonal grid
structures were most prevalent in enclosures with polarized geom-
etry (20). The modulation of rotational symmetry was also evident
in the two other studies that manipulated the size and geometry of
the environment (19, 20). The control of grid rotational symmetry
remains a subject of active research in rodents, although it is un-
explored in the human brain.
The task of informed spatial navigation is an evolutionary problem

posed to all animals. The study of human grid cells is especially
interesting because it might reveal specific evolutionary adaptations
beyond those adaptive features seen in lower level animals. For one
thing, humans’ visual faculties are far more advanced than rodents’
visual faculties. If grid-cell activity depends on the predominant
sensory input to the EC, we would expect this fact to be reflected in
the nature of grid formation, perhaps with increased variability in
grids according to an individual’s visual appraisal of the environment.
For instance, the rat’s reliance on active exploration for the forma-
tion of place fields in the hippocampus indicates that kinesthetic and
proximal cues are more crucial for this process in rats than visual
cues are (23, 24). Consistent with this finding, rat exploration in
virtual environments, where kinesthetic and proximal cues are ab-
sent, compromises the spatial specificity of their place cells (24). The
opposite might be true in humans, where the likely predominance of
visual input to the EC in the human brain might compensate for the
otherwise kinesthetic-deprived sensory experience during virtual
navigation. Despite the overall similarity between the anatomies of
the rat and human EC, primate data suggest that the human EC
receives a larger contribution from higher visual cortical areas (25).
In primates, behavior as restricted as eye movements over static vi-
sual displays is sufficient to elicit spatially periodic (“grid-like”) pat-
terns of neuronal activity that correlate with saccade direction (26,
27). Interspecies differences in sensory processing make the spatial
representations of place cells display marked variability. Chirop-
terans, for example, distinctly rely on spatioacoustic cues, developing
uniquely 3D place fields as opposed to the 2D place fields seen in
other animals (28, 29). In humans, then, it is plausible for a visually
presented virtual environment to elicit place cell (30) and grid-like
activity in the EC (31) without proprioceptive and kinesthetic cues.
The predominance of visual cues in spatial navigation makes human
subjects less dependent on the hippocampus and EC except when
spatial memory is involved. After mesial-temporal lobectomy, pa-
tients were still able to perform path integration (32). Studying the
grid scale invariance in humans in light of the differences in the
sensory input organization of the EC between rodents and primates
may elucidate aspects of spatial awareness that remain hidden in
rodents and are specific to our species.

Here, we investigated the influence of virtual (i.e., purely visual)
surroundings on the spatially periodic activity of neurons in humans
by exposing the same set of EC neurons to four different virtual
environments in a spatial memory task. Specifically, we addressed
how parameters of the spatially periodic activity changed in re-
sponse to independent variables of environment size, environment
length-to-width ratio, and availability of spatial environmental cues.
To understand these effects, we analyzed how these independent
variables correlated with dependent variables: grid quality (“grid-
ness”), grid scale, grid orientation, and grid rotational symmetry. If
the dependent variables (i.e., the parameters of spatially periodic
activity) show dependence on environmental features, that would
suggest that the increased reliance on visual cues in the human EC
allows for quick adaptation (or rescaling) of the neuronal co-
ordinate system to the environment, a behavior that expands
models developed based on animal studies. To ascertain the scal-
ability of neuronal representations of space in the human brain, our
goal was to quantify the environmental dependency of the spatially
periodic activity of EC cells and to test for the consistency of
environment-dependent changes of grid-like activity over time and
their consistency between subjects. To attain a relatively unbiased
estimate of spatially periodic activity, we constructed three main
neuronal datasets and two subsets within each dataset, resulting in a
total of six datasets. The largest dataset included neurons classified
as displaying significant spatially periodic activity based on spatial
spectral analysis of the single units. The other two smaller datasets
were both classified as “putative grid cells” (PGCs) based on their
conformity of gridness scores to the definition used in studies and
referred to herein as the Barry–Krupic (BK) method (11, 18). The
difference between the second and third datasets was that the third
dataset, in addition to being defined based on the BK method, was
subjected to a thorough validation against theta modulation and
directional tuning. In addition, we constructed two subsets of each
of the three main datasets that included cells maintaining significant
spatial periodicity or gridness scores in at least three of the four
environments. Because we analyzed these datasets separately and
the results were highly concordant among them, we posit that the
spatially periodic and grid cell-like activity in the human EC is
analogous to the grid cells described in rodents but with markedly
increased variations.

Results
Two male epilepsy patients, H and K (aged 33 y and 40 y, re-
spectively; SI Appendix, Table S1.2), who previously consented to
participate in the experiment and to allow publication of data and
MRI images, were implanted with microelectrode arrays in layer
2/3 of their medial EC (Fig. 1A) in preparation for surgical re-
section of epileptic foci. During their days of clinical recording in
the hospital epilepsy monitoring unit, participants H and K were
asked to perform a virtual, memory-aided navigation task on a
tablet computer in four environments each day and for 7 or
8 consecutive days, respectively. Accordingly, the dataset was or-
ganized by day (days 1–8) and environment (environments 1–4).
Electrophysiology was recorded from the EC and spike-sorted
offline. All four environment trials were recorded in single file
with maintained electrode stability, allowing us to monitor how
individual cells behaved with progression through each environ-
ment (SI Appendix, SI Experimental Procedures). In the following
sections, we compare the environmental dependency of neuronal
activity (i) within each day across game environments (/environ-
ments) (ii) and across games played in the same environment but
on different days (/days). Each game’s objective was to locate
randomly placed space aliens and return them to their spaceship
waiting at remembered locations (SI Appendix, SI Experimental
Procedures and Movie S1). We constructed realistic 3D models of
four different environments with accurate sizes relative to the
average adult eye height and modeled the first-person visual ex-
perience of walking in these environments with an average step
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size and constant walking speed. The environments consisted of a
large open space (OS) with a boundless horizon and minimal
external cues, a small open-air backyard (BY), a medium-sized
area modeled after the Louvre’s courtyard (LV), and a medium-
sized covered space modeled after the main hall of the Temple of
Luxor in Egypt (LX) (Fig. 2 A and B and SI Appendix, SI Exper-
imental Procedures, Properties of Environments and Fig. S1). These
environments were designed to differ in several salient features,
including but not limited to size (area), aspect ratio (shape),
boundaries, obstacles, and external landmarks (cues) (SI Appen-
dix, Table S1.1).
From these two patients, we recorded single-unit activity over

successive days. We isolated 397 single units (neurons) over
7 and 8 consecutive days from patients H and K, respectively
(average overall firing rates between 0.02 Hz and 1 Hz). By
keeping track of these cells’ activity across four environments, a
database of 1,588 single-unit spike trains (trials) was created,
with each trial representing a single-unit activity in one envi-
ronment. Because we sampled a different subset of electrodes
each day, we treated single units recorded from different days as
independent. Only single units obtained within the same day
were treated as being produced by the same cells in different
environments (SI Appendix, SI Experimental Procedures). Each of
the 1,588 trials associated with a navigation pathway was con-
verted to a firing rate map and AC using the BK method (11, 18).

Despite the aperiodic patterns of movement trajectories (Fig.
1C), as much as 52% of total trials (824 trials from 206 neurons)
resulted in significant spatially periodic activity patterns based on
a 2D spectral analysis (11) after validation of their spectral pe-
riodicity scores against ACs of a randomly displaced collection
of 2D Gaussian firing rate clusters (SI Appendix, Experimental
Procedures and Fig. S3H). We could rule out the possibility that
spatial periodicity was a result of spike-sorting artifact (33, 34) by
including only single units, which produced nonoverlapping
waveform clusters with an average Mahalanobis intercluster
distance of >20 (meanMahal_d = 230; SI Appendix, Figs. S2 and
S10–S28). We refer to these 824 trials from 206 neurons as
spatially periodic cells (SPCs; SI Appendix, Fig. S35 and Table
S2). Among SPCs, 92 (45%) exhibited spatial periodicity in all
three environments with architectural landmarks (BY, LX, and
LV). We refer to this subclass of cells as persistent spatially
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Fig. 1. Grid-cell expression in the human EC. (A) Position of EC electrode strip
(yellow arrow) revealed on an axial MRI section. (Inset) Electrode location in the
brain. The electrode design is magnified at the lower part of the image. Blue
circles numbered from 1 to 6 are macroelectrode contacts. Dots grouped in
square quartets and numbered from 7 to 22 are the microelectrodes. (B) Single-
unit clusters (Left) and corresponding spike waveforms (Right). The separation
of single-unit activity (SUA; red markers) from multiunit activity (MUA; black
markers) is indicated by the Mahalanobis distance (d). (C) Trajectory of the
subject’s navigation in an environment overlaid with the SUA (red circles; same
neuron as in B). Yellow and blue circles indicate the positions of spaceship
targets, and the green diamond indicates an example target location (SI Ap-
pendix, SI Experimental Procedures). (Inset) Neuron’s firing rate at different
heading directions. (D) Average firing rate map. Color scale (spike * s−1). (E)
Spatial AC of SUA computed from D. (F) Two-dimensional autoperiodogram of
the AC from E. The X and Y axes represent frequency.
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Fig. 2. Adaptive rescaling of grids in different virtual environments. Screen-
shots (A), with space alien target objects and scale layouts (B) of the four
different environments. Filled circles are space ships. Empty circles in LX are
columns. (C) Spatial ACs from the same cell across all four environments cap-
ture the spatial periodicity of spikes generated by the same cell across the four
environments. (D–F) Boxes represent the distribution of grid periods from four
datasets. (D) Environment-associated differences in grid distances derived from
four datasets: SPCs (all cells), n(trials,cells) = 824,206 (blue boxes); PGChi-confs,
n(trials,cells) = 262,65 (light-green boxes), pSPCs and pPGChi-confs active in all
three confined environments, n(trials,cells) = 276,92 (dark-green boxes) and
n(trials,cells) = 260,65 (yellow boxes), respectively. (E) Grid distances produced by
pPGCs and pPGChi-confs that were active in the BY and at least one of the large
environments (LX, LV, and OS) (n = 20) (red and yellow boxes, respectively).
(F) Comparing grid distances of pPGCs and pPGChi-confs between LX and LV
environments (n = 5) when the cells were active in both environments. The
horizontal lines in boxes are medians, and boxes contain the 25th through
75th percentiles. Whiskers cover the most extreme data points and + signs are
outliers. Grid periods were combined from both subjects during navigation in
all four environments. The daily sequence of environments was randomized.
***P < 0.001. NS, not significant.
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periodic cells (pSPCs). Among those pSPCs, 47 displayed 60 ± 10°
rotation symmetry. Moreover, to classify grid cell-like activity, we
further subjected the 206 SPCs to a quantification of their gridness
relative to their own time-shuffled spike ACs strictly following the
BK method (11, 18). To meet the definition of grid cells, we
constrained this analysis by selecting cells that displayed 60 ± 10°
rotation symmetry (10). This analysis resulted in 73 neurons from
the two subjects (nsubj-H = 40 and nsubj-K = 33) with significant
grid-like quality, 35% of the total 206 spatially periodic neurons.
We further refer to this dataset as PGCs because they shared all
attributes with grid cells classified in the rodent medial EC. All
PGCs were a subset of SPCs. Although none of the PGCs
exhibited significant gridness in all four environments (and very
few in three environments), 39 of the 73 PGCs (53%) exhibited
significant gridness in at least two environments. We refer to these
cells as persistent putative grid cells (pPGCs) (SI Appendix, Fig.
S3I, Table S2, and Movie S1).
Additionally, to reduce the chance of detecting false-positive

results brought about by nonlocal covariates in our sample, such as
theta modulation, spiking bursts, or direction tuning, we isolated a
subset of PGC activity that was tested against a combination of
theta and alpha modulations, bursting firing pattern, and di-
rectional tuning (SI Appendix, SI Experimental Procedures). Al-
though directional tuning did not covary with the environments
(SI Appendix, Fig. S33 and Tables S9.1–S9.3), to ensure the im-
munity of grids to direction tuning, we isolated a subset of spatially
modulated single units that passed the BK test against direction-
tuned and theta-modulated surrogate spike trains.
Single units with significant gridness relative to the temporally

and directionally modulated null yielded a population denoted as
high-confidence putative grid cells (PGChi-confs; n = 262, nsubj-H =
118, nsubj-K = 144). Similar to the pPGC dataset, we separated a
subset of PGC neurons, including only those PGC neurons that
displayed significant spatial modulation in at least two differently
sized environments (BY-LV or BY-LX), and denoted them as
persistent high-confidence putative grid cells (pPGChi-confs). This set
included n = 65 single units active in at least two nonequally sized
environments and n = 28 single units active in all three environ-
ments with spatial cues (BY, LV, and LX).
The purpose of the pSPC, pPGC, and pPGChi-conf datasets was to

enable us to compare grid parameters between environments using a
repeated measures design. To enhance robustness, all statistical
analyses were performed separately on six datasets: SPC, pSPC,
PGC, pPGC, PGChi-conf, and pPGChi-conf. Although all six
datasets exhibited significant spatial periodicity of firing patterns,
by definition, as quantified based on a spectral method (11), only
the PGC and pPGC subsets qualified as “canonical” grid cells de-
fined by traditional methods (10, 11, 18). PGChi-conf and pPGChi-conf
datasets further extended the BK method by applying a more
stringent null for computing gridness.
Because the clinical time constraints limited the test times to

5 min per environment, there was a concern that the stability of
grid patterns might be compromised. Therefore, the temporal
stability and stationarity of periodic patterns and grid patterns
were tested by applying a twofold cross-validation and statio-
narity analysis for all of the cells in the SPC and PGChi-conf
datasets, and both tests confirmed at the population level the
stability and stationarity of grid patterns [Wilcoxon test on two-
fold cross-validation: for the SPC dataset, P(n = 879) = 4.726e−49

and for the pSPC dataset, P(n = 285) = 1.4887e−19; SI Appendix,
Figs. S5 F and G, S36, and S37 and Table S10].

Dependence of Grid Period on Environment. Grid period is the
distance between adjacent grid nodes as determined based on
the spatial AC (SI Appendix, SI Experimental Procedures). Al-
though grid periods were uniform across all electrode positions
and neurons, they varied by environment (three-way ANOVA:
Psubj-H < 0.001, Psubj-K < 0.001; Fig. 2 and SI Appendix, Tables

S3.1 and S3.2). Studies in rodents using environmental manip-
ulations, such as partitioning and transformation (10, 13, 19),
suggest that the grid period produced by a particular grid cell is
conserved across environments and only changes after trans-
formation of a familiar environment (18, 19). To investigate what
specific feature of the environment could best explain the ob-
served variation (Fig. 2C and SI Appendix, Fig. S29), we sought
to determine whether any of the varying spatial features of the
four environments had a strong correlation with grid periods
displayed by individual neurons. To do so, we quantified the
grid’s spatial frequency from the 2D spectral density of the AC
(Fig. 1F). In contrast to rodent data (10), we observed a signif-
icant difference in average grid periods between environments in
all of our six datasets (Fig. 2 D and E), including the spatial
periods of the complete SPC dataset (Kruskal–Wallis test, P =
2.498e−134; Fig. 2D and SI Appendix, Table S3.5). The grid scale
difference was also significant when we compared the spatial
behavior of the same neurons across the four environments
within the pSPC dataset [Friedmann test, P(n = 73) = 8.4344e−32;
Fig. 2D and SI Appendix, Table S3.8]. The difference in average
grid distance in the pSPC dataset was significant when the
smallest environment was contrasted against any of the three
larger environments or all three combined [Friedman’s test,
P(n = 115) = 2.1748e−26; Fig. 2D and SI Appendix, Table S3.9], but
grid distance was no different between large environments (SI
Appendix, Table S3.11). The PGC dataset reflected the same
pattern (SI Appendix, Fig. S7). Additionally, we compared the
average grid periods of pPGCs between the small and large
environments. Because not all PGCs were active in both the
small and large environments, we compared a subset of PGCs,
including only those PGCs that were active in both. To achieve
sufficient statistical power, we selected neurons that were active
in both the smallest environment (BY) and in at least one of the
two larger environments with well-defined spatial landmarks (LV
and LX) and compared their grid periods (n = 19). The average
grid period of PGCs determined in the small environment showed a
significant expansion when probed in the larger environments
[Wilcoxon signed rank test, P(n = 19) = 1.2937e−04; Fig. 2E and SI
Appendix, Table S3.10]. No significant difference in grid periods
between the large environments (LV and LX) was found owing
to the similarity of their dimensions [Wilcoxon signed rank test,
P(n = 5) = 0.3125; Fig. 2F and SI Appendix, Table S3.11]. To
verify the validity of grid scale dependence on environment
size, we repeated the test in our PGChi-conf dataset (SI Ap-
pendix, Fig. S8). Both PGChi-conf and pPGChi-conf datasets ac-
curately reproduced the significant grid rescaling between small
and large environments seen in the other four datasets [Kruskal–
Wallis test on PGChi-conf: P

subj-H
(n = 113) = 1.0719e−14, Psubj-K(n = 85) =

3.7179e−15; Friedmann’s test on pPGChi-conf: compared across three
environments, interpolated, and combined between subjects,
P(n = 10) = 5.5560e−06; compared between the small and any of
the larger environments, P(n = 10) = 0.0016; SI Appendix, Tables
S3.9.1–S3.9.3]. Conversely, no grid rescaling was observed be-
tween the two similarly sized (LX and LV) environments [Wilcoxon
signed rank test P(n = 32) = 0.5475; SI Appendix, Table S3.9.4]. Hence,
the neurons in our sample tested against spike trains endowed with
theta modulation and directional tuning retained a significant
environment-dependent rescaling of grid distance, no less than those
neurons tested against Poisson spike time shuffling (Fig. 2 D–F).
The described grid-scale differences were consistent between

the two subjects (Fig. 3A and SI Appendix, Fig. S8 A and B and
Table S3.15) and remarkably stable over successive days (Fig. 3B).
Grid distances within a specific environment displayed substantially
less variation across different days than across environments
(Kruskal–Wallis one-way ANOVA, Psubj-H > 0.05 and Psubj-K > 0.05;
Friedman’s test, the exact P values are listed in SI Appendix, Tables
S3.6 and S3.7, respectively). Because the grid periods did not differ
between the two subjects with respect to any of the three datasets
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(P > 0.05, Wilcoxon rank-sum test), we combined the same type of
datasets from the two subjects for statistical evaluation. The effect of
the environment was consistent over all three datasets (Kruskal–
Wallis test with independent samples on the SPC dataset, P < 0.001,
SI Appendix, Table S3.5; Friedman’s test with repeated measures on
the same cells’ pSPC dataset, P < 0.001, SI Appendix, Table 3.8; and
Wilcoxon signed rank tests on the pPGC dataset, P < 0.001, SI
Appendix, Tables S3.10 and S3.11). The grids transformed in a
fashion similar to what is found when rodents are presented with a
transformed version of a familiar environment (19); the rescaling was
proportional to the edge length of the environment because it was
smallest in BY, larger in LX and LV, and largest in OS (Fig. 3B and
SI Appendix, Figs. S6A and S7C and Table S3.10). LX and LV were
not different (SI Appendix, Table S3.11). We reasoned that if grid
periods linearly scale with the size of environment (Fig. 3A and SI
Appendix, Figs. S5A, S6A, and S7A), then normalizing them to the
size of the environment should reduce the grid period differences
across environments (SI Appendix, Figs. S6B and S7B). This hy-
pothesis was confirmed because the environment size-normalized
average grid period difference either disappeared, as it did in the
SPC, pSPC, and PGC datasets [two-way ANOVA, P(df = 3,6) > 0.3,
and Kruskal–Wallis test, P(df = 3,6) = 0.0509, compare SI Appendix,

Tables S3.1 and 3.2 with SI Appendix, Tables S3.3 and S3.4; PGC
dataset: two-way ANOVA, Psubj-K = 0.4547 and Psubj-H = 0.3819, SI
Appendix, Table S3.14] or was greatly reduced in the pPGC dataset
between small and large environments when comparing the differ-
ence between before [Friedman’s test, P(BY-LV, LX, OS) = 1.2937e−04;
SI Appendix, Table S3.10] and after [P(BY-LV, LX, OS) = 0.011; SI
Appendix, Figs. S6B and S7B and Table S3.12] normalization. Nor-
malization of grid periods did not affect the similarity of grid dis-
tances between large environments [Friedman’s test, P(n = 5) = 0.91;
SI Appendix, Table S3.13]. For both subjects, correlations between
grid periods and environment sizes in both types of datasets, SPC and
pPGC, were high (SPC: Pearson’s rsubj-H = 0.877, P < 0.0001; pPGC:
Pearson’s rsubj-K = 0.879, P < 0.0001, Fig. 3A; pPGC combined:
Pearson’s r = 0.5139, P < 0.0001, SI Appendix, Figs. S6A and S7A)
and displayed an average grid period-to-environment dimension ratio
of 0.3954 [f(x)subj-H = 0.4047x-2.81] and 0.3509 [f(x)subj-K = 0.3509x-
0.6187] and 0.4108 [f(x)subj-H = 0.4108x-0.241] and 0.4153 [f(x)subj-K =
0.4153x-4.218) in the SPC (Fig. 3A) and pPGC datasets (SI Appendix,
Fig. S7A), respectively.
The variation in grid period might have also been affected by

factors such as covariance with the cells’ gridness, the firing rate
difference between environments, and the unequal coverage of en-
vironments by exploration. However, no consistent covariations of
gridness scores and environments were observed across datasets.
Although the general spatial periodicity (gsp score; Materials and
Methods and SI Appendix, Experimental Procedures) decreased with
increasing environment sizes in the large SPC dataset (P < 0.001,
ANOVA with independent measures; SI Appendix, Fig. S30 A and B
and Table S4.1), other datasets (pSPC and PGC) did not confirm
any environmental dependency of the magnitude of spatial period-
icity [pSPC: one-way ANOVA, P(n = 26)

subj-H = 0.4248 and P(n =

24)
subj-K = 0.2575; SI Appendix, Fig. S31 A and B and Table S4.2], not

even when gridness scores were determined based on the BK
method [P(n = 12)

subj-K = 0.1258 and P(n = 16)
subj-H = 0.1330; SI Ap-

pendix, Table S4.3]. The firing rate was also uniform across envi-
ronments for all datasets (SPC, pSPC, and pPGC; SI Appendix,
Tables S5.1–S5.3, respectively) across different environments (SI
Appendix, Fig. S30C).
Differences in environment coverage was inherent in the task

design because the areas of modeled environments varied between
324 m2 and 4,900 m2. This variation naturally affected the cov-
erage (SI Appendix, Tables S6.1–S6.3) because the large environ-
ments received an average of 60% of the coverage of the smallest.
To compensate for the effect of uneven coverage across envi-
ronments, in a separate analysis, we shortened the navigation
trajectories in the BY environment by 50% of their original length
(hence, the duration of navigation as well) and recomputed the
grid distances of all 1,588 segments (397 neurons). This manipu-
lation reduced the difference in path density across all environ-
ments (SI Appendix, Fig. S9A), whereas it left the average gridness

scores, ðĝÞ= 1
n

Pn

i= 1
gsp, and environmental grid scale differences

unaffected relative to the complete datasets [gridness scores:
two-sample t test, ĝsubj-Khalfpath = −0.1000, ĝsubj-K = −0.1454,
P(n = 59,8) = 0.2594; ĝsubj-Hhalfpath = −0.2064, ĝsubj-H = −0.2817,
P(n = 58,33) = 0.2165; grid distances: Kruskal–Wallis test, Psubj-H

(n = 79) = 5.8221e−14, Psubj-K(n = 164) = 4.2568e−26; SI Appendix, Fig.
S9 B–D and Table S6.4]. The average slope and y-intercept of the
regression line [f(x) = 0.4130x-3.7295] reproduced the f(x) =
0.3954 regression line observed in datasets, including the complete
navigation path. Hence, the increased coverage in the smallest
environment did not account for the smaller grid distances con-
sistently observed across all six datasets.
Altogether, the consistency of the environment-specific mag-

nitude of grid rescaling across datasets and between the two
subjects, the independence of grid scale from the variations of
firing rate and gridness scores, and the invariance of the effect of
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Fig. 3. Grid period is environment-dependent and stable over days. (A) Grid
periods are shown as a function of the size of the environment. Data were
combined over multiple days from navigation trials in the same four envi-
ronments and are displayed according to environments (BY, LX, LV, and OS)
and subjects (patients K and H) (n = 436 and n = 388 segments, respectively).
The length of the shorter axes of given environments (X) is plotted against
the grid period (Y). The sparse-dashed lines represent identity lines. The fine-
dashed lines are extrapolations of slopes. (B) Average grid periods from the
two subjects grouped according to the environments (layouts on top) and
consecutive days (days 1–8). The variation of grid periods over days was in-
significant relative to the variation across environments. Error bars represent
SEM. ***P < 0.001. NS, not significant.
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environmental coverage speaks strongly to the overall environ-
ment dependency of grid scaling in the human EC.

Grid Orientation.Rodent grids normally orient themselves relative
to distant or local landmarks, whichever provides the most consis-
tent spatial cue in repeated visits to an environment. Because grid
orientation was a stable feature of grid cells in rodents (10, 21), we
sought to determine if this grid orientation was preserved in hu-
mans. Aside from OS, all of our environments had two types of
spatial landmarks available: initial orientation and architectural
cues. Because each navigation session in the same environment
always started from the same location and facing the same di-
rection, thus providing unambiguous initial visual orientation cues
(SI Appendix, Fig. S1), our subjects could orient themselves in each
environment based on the initial orientation cues, except in the OS,
where those cues were lacking. The consistency of spatial references
at the start of each trial had the theoretical possibility of providing
sufficient input to the neurons in the EC to anchor their grid ori-
entation. Therefore, we calculated the principal orientation of ACs
for all recorded single units with significant spatial periodicity, in-
cluding the SPC and PGC datasets. Due to the poor orientation
cues available in the OS environment (SI Appendix, Fig. S1) and
lower gridness scores (SI Appendix, Fig. S30A), we excluded the OS
environment from this analysis. In the remaining three environ-
ments with rich visual cues, where grid orientation could be de-
termined more accurately, we found that neurons in all datasets
tended to adopt environment-specific orientations (Fig. 4 A and B).
Grid orientations in the SPC dataset displayed a predominantly 45°
alignment in the two square-shaped environments relative to the
main axes defined by the architecture (BYSubj-H: 45.24°, LXSubj-H:
46.84°, n = 311; BYSubj-K: 44.21°, LXSubj-K: 47.47°; n = 376; SI
Appendix, Fig. S32). In contrast, the only rectangular environment
(LV) generated grid orientations close to 33° (LVSubj-H: 38.28°,
LVSubj-K: 33.92°). Neither of these orientations were aligned with 60°,
the initial orientation of the avatar (SI Appendix, Fig. S1). Instead, the
average grid orientations reflected the 45° direction of corners in both
square-shaped environments (BY and LX). If grid orientation aligns
with the corners, then we expect a deviation from the 45° angle in the
rectangular environment (LV). Consistent with this hypothesis, we
observed an average 34.89° grid orientation that closely matches the
33° direction of corners in the LV environment relative to the cen-
ter and the east–west cardinal axis of the environment (Fig. 4B and
SI Appendix, Figs. S1A and S32), which also served as the axis of
the ACs. Cells maintained these orientation differences across
days of recording [two-way circular ANOVA on the SPC dataset,
P(df = 2,5)

subj-H < 0.0001 and P(df = 2,6)
subj-k < 0.0001, Fig. 4C; two-way

circular ANOVA in the pSPC dataset, P(df = 2,4)
subj-H < 0.02 and

P(df = 2,4)
subj-K < 0.02, SI Appendix, Figs. S12–S28 and Tables S7.1 and

S7.2, respectively]. Closer examination of the polar histograms
revealed that the distribution of grid orientations in the rectangular
environment (LV) was bimodal and divided between 30° and 45° (SI
Appendix, Fig. S32).
Furthermore, the grids seemed to adopt very similar grid orien-

tations between the patients [Watson–Williams test, P(n = 49) > 0.05;
SI Appendix, Tables S7.3 and S7.6 for the pSPC dataset], a possible
indication that both patients used the same landmark in each en-
vironment to anchor grids. This finding allowed us to combine both
subjects’ data and gain the necessary statistical power for the
analysis of grid orientation in the pPGC dataset as well. With the
grouped data, the average grid orientations displayed by the same
cells (pPGC dataset; SI Appendix, Table S7.5) inside the two square-
shaped environments, BY and LX, were 56° and 61°, respectively;
neither was significantly different from 60° or from one another (SI
Appendix, Table S7.7). Note that a hexagonal grid with a 60° ori-
entation is in perfect alignment with the east–west axis of both
environments and reflects the avatar’s initial orientation. However,
both of those average grid orientations were significantly different
from the 36.22° mean grid orientation displayed by the same cells in

the rectangular environment (LV) (circular ANOVA and circular
test for mean grid orientation, P < 0.05; SI Appendix, Tables S7.7,
S7.8, and S7.13 for pPGC, pSPC, and pPGChi-conf datasets, re-
spectively). These grid orientation-related differences between
square-shaped and rectangular environments were significant in all
datasets (SPC, pSPC, PGC, pPGC, PGChi-conf, and pPGChi-conf)
and stable over days when comparing them by circular ANOVA
using independent and repeated samples, respectively (days effect:
P(pSPC) > 0.05; environment effects: P(SPC) < 0.001, P(pSPC) < 0.05,
and P(pPGC) < 0.05, SI Appendix, Tables S7.1, S7.2, and S7.4;
P(PGChi-conf) < 0.01, SI Appendix, Tables S7.9 and S7.10; and
P(pPGChi-conf) < 0.05, SI Appendix, Tables S7.11–S7.13). The
specificity of grid orientation to the aspect ratio of the envi-
ronment and consistency of adopted grid orientations over days,

A

B

C

Fig. 4. Environment-dependent grid orientation. (A) ACs of two example
neurons (cells 1 and 2) with their grid orientations in each environment within
the same day of recording. The white line and corresponding α-values (in an-
gular degrees) indicate grid orientation. (B) Population plots of grid orienta-
tions from all cells of the SPC dataset color-coded according to environments
from the two subjects (Left and Center) and the same for the pPGC dataset
(Right). comb., combined. Vectors in gray-shaded quadrants represent angular
averages of the corresponding population of grid orientations, according to
environments. (C) Grid orientations from the SPC dataset grouped according to
environments (large groups) and consecutive recording days (individual filled
symbols) from the two subjects (Left and Right, n = 311 and n = 376 segments,
respectively). Error bars indicate angular dispersion. Colored lines represent
grand averages of grid orientation associated with the three environments.
Dashed lines are confidence intervals. Asterisks represent statistical significance
of differences (*P < 0.05, ***P < 0.001). [rad], radian.

Nadasdy et al. PNAS | Published online April 10, 2017 | E3521

N
EU

RO
SC

IE
N
CE

PN
A
S
PL

U
S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701352114/-/DCSupplemental/pnas.1701352114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701352114/-/DCSupplemental/pnas.1701352114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701352114/-/DCSupplemental/pnas.1701352114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701352114/-/DCSupplemental/pnas.1701352114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701352114/-/DCSupplemental/pnas.1701352114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701352114/-/DCSupplemental/pnas.1701352114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701352114/-/DCSupplemental/pnas.1701352114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701352114/-/DCSupplemental/pnas.1701352114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701352114/-/DCSupplemental/pnas.1701352114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701352114/-/DCSupplemental/pnas.1701352114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701352114/-/DCSupplemental/pnas.1701352114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701352114/-/DCSupplemental/pnas.1701352114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701352114/-/DCSupplemental/pnas.1701352114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701352114/-/DCSupplemental/pnas.1701352114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701352114/-/DCSupplemental/pnas.1701352114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701352114/-/DCSupplemental/pnas.1701352114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701352114/-/DCSupplemental/pnas.1701352114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701352114/-/DCSupplemental/pnas.1701352114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701352114/-/DCSupplemental/pnas.1701352114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701352114/-/DCSupplemental/pnas.1701352114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701352114/-/DCSupplemental/pnas.1701352114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701352114/-/DCSupplemental/pnas.1701352114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701352114/-/DCSupplemental/pnas.1701352114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701352114/-/DCSupplemental/pnas.1701352114.sapp.pdf


as well as between the two subjects, strongly suggest that grid
orientation is dependent on the geometry of the environment
(Fig. 4C). We could rule out that the consistency of grid orien-
tation with environment geometry depended on the neurons’
directional tuning, because we did not observe any difference in
directional tuning between neurons active in multiple environ-
ments [repeated measures ANOVA on resultant vectors with the
factors of /days and /environments, F(4,2) =1.2264, P(n = 74) =
0.758; SI Appendix, Fig. S32 and Tables S9.1–S9.3]. This result
further corroborates the result that grid cells align their orien-
tation to the virtual environment as opposed to the patient’s
actual orientation in the hospital or respond uniformly to dif-
ferent environments.

The Rotation Symmetry of Grid Patterns. Despite the consistent co-
ordination of the grid orientation with the geometry of the envi-
ronment, grid angles in the square-shaped environments differed
between the two datasets, pSPC and pPGC, with a notable 12.73°
(mean βpSPC = 45.85° and βpPGC = 58.59°). Because grid geometry
(i.e., square, hexagon, pentagon) may affect grid orientation, the
variation of rotational symmetry of spatially periodic activity pat-
terns in different environments was investigated next. We focused
this analysis on the SPC dataset (Fig. 5A), because the gsp scores
[SI Appendix, SI Experimental Procedures, Quantifying “General
Spatial Periodicity” (gsp Score) and Fig. S3G] were agnostic to
rotational symmetry, thus allowing for quantification of a broader
range of 15–90° rotation symmetries, and not only 60° (±10°).
We were surprised to observe that a substantial fraction of

spatially periodic activity deviated from the hexagonal geometry
(11). In addition to a number of data segments with pre-
dominantly 60° rotational symmetry, characteristic of grid cells in
the rodent brain, we observed a significant number of non-
hexagonal grid-like patterns (Fig. 5 B and C). We classified these
cells as SPCs to discriminate them from the PGCs of our PGC
population. Many of the SPCs displayed variants of rectangular or
octagonal grid geometry with a 90° or 45° rotational symmetry,
respectively (SI Appendix, Figs. S13, S15–S20, S22, S23, and S25–
S28), which is undocumented in rodents and primates to date. The
fraction of SPCs deviating from the 60° rotational symmetry
accounted for 65% of neurons with significant spatially periodic
activity (SI Appendix, Fig. S3I). Overall, the population mean of
rotational symmetries for the complete dataset did not conform to
60° [circular one-sample test for specified mean direction, subject
H: P(n = 435) > 0.05, subject K: P(n = 387) > 0.05], and the distri-
bution was asymmetrical around the median [circular symmetry
test, subject H: P(n = 435) = 0.0078, subject K: P(n = 387) = 0.0412].
Next, we investigated whether or not an environmental de-

pendency of the rotational symmetry of the ACs may underlie the
heterogeneity of grid geometry displayed by the same or a mixed
population of neurons (pSPCs and SPCs) during navigation in
different environments (Fig. 5B). We focused the analysis on the
rotational symmetry of the ACs computed from the SPC dataset.
The comparison of rotational symmetry across environments
revealed a predominant 60° angle of rotational symmetry in the
BY, our smallest virtual environment. In contrast, a significant
decrease in the proportion of hexagonal grids was evident in the
other environments, consistent between both subjects [Fig. 5B; one-
way circular ANOVA, P(n = 213)

subj-H < 0.001 and P(n = 214)
subj-K <

0.001; SI Appendix, Tables S8.1 and S8.3]. No significant difference
between the circular means of rotational symmetry between the
two similarly sized larger environments (LV and LX) was found
[circular ANOVA, P(1,132)

subj-H = 0.8875, P(1,136)
subj-K = 0.1640; SI

Appendix, Table S8.2]. However, differences in rotational symmetry
between environments of much different sizes were significant in
both subjects’ datasets [circular ANOVA, BY and LV: P(1,102)

subj-H <
0.005 and P(1,160)

subj-K < 0.005; circular ANOVA, LX and OS:
P(1,106)

subj-H < 0.001 and P(1,92)
subj-K < 0.001]. In general, the pro-

portion of cells expressing the canonical 60° angle of rotational

symmetry negatively correlated with the dimensions of the en-
vironment (Pearson’s rsubj-H = −0.4293, P < 0.0001 and Pearson’s
rsubj-K = −0.3915, P < 0.0001; Fig. 5D and SI Appendix, Table
S8.3). The dependency of grid rotation symmetry on environ-
ments was confirmed within the pSPC dataset containing neu-
rons that displayed persistently significant spatial periodicity
in all three environments (with well-defined external cues)
during the same session (BY, LX, and LV; SI Appendix, Table
S8.4). Although the negative correlation was consistent over
days and subjects [two-factor circular ANOVA: environment
effect, P(n = 74)

subj-H < 0.01 and P(n = 71)
subj-K < 0.001; days effect:

P(n = 74)
subj-H = 0.4871 and P(n = 71)

subj-K = 0.1571; SI Appendix,
Table S8.5], factors such as the differing complexity of environ-
ments, the relative position invariance of external cues in larger
environments, or the decreasing reliance on external cues and lack
of boundaries in the OS environment, might have also played a role
separately or in combination. Other factors, such as the partial
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Fig. 5. Rotational symmetry of spatial periodicity. (A) Distribution of gsp
score per subject determined based on the spectral method. We selected
neurons with gsp scores >0.33, the 5% confidence interval of the randomized
spatial ACs (SI Appendix, SI Experimental Procedures and Fig. S3H). (B) Distri-
butions of angles of rotational symmetry from the two subjects over all en-
vironments using a 2° bin size. The n values indicate the number of data
segments. (C, Left) Box and whisker plots for grid rotational symmetries ob-
served in each environment color-coded according to environments. (C, Right)
Rotated histograms show the composition of rotation symmetries according to the
environment. Note that in addition to data segments displaying ∼60° rotational
symmetries (black bracket), comparable numbers of data segments exhibited
rotational symmetry at other angles (gray brackets). **P < 0.01, ***P < 0.001.
(D) Angle of rotational symmetry negatively correlated with environment size.
Significant differences in angles of rotational symmetry were found across
environments, except between LV and LX, consistent between both subjects (SI
Appendix, Tables S8.1–S8.5). Error bars represent angular variance (Subjects H
and K, n = 214 and n = 213 segments, respectively).
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coverage of larger environments, could have also contributed to in-
complete grid formations. Therefore, we also tested the rotational
symmetry of grids under a balanced coverage condition. Even after a
50% reduction of navigation paths in the BY environment, the 60°
rotational symmetry of cells prevailed, whereas other rotation sym-
metries predominated in the larger environments [circular ANOVA:
F(3,75) = 9.034 P(n = 78) < 0.001; F(3,134) = 23.7839, P(n = 140) < 0.001;
SI Appendix, Tables S8.6 and S8.7]. Hence, among other factors, we
can rule out that the significant deviation from 60° rotational sym-
metry in the larger environments was a result of incomplete spatial
coverage of these environments.

Discussion
Context-dependent spatial representations in the hippocampus of
various species have been widely documented. Neurons in CA1 and
CA3 remap their place fields upon changes made in the environment,
as demonstrated in rodents (13–17), Chiroptera (35), and primates
(36). Because the adaptive remapping of hippocampal place fields is a
relatively fast and EC-dependent process (13, 37), it is plausible to
assume that neurons in the EC are endowed with some degree of
flexibility. Contrary to this hypothesis, initial reports on grid cells
based on rodent experiments suggested a universal metric for path
integration-type navigation (10, 12). This metric appeared to be scale-
invariant with respect to the geometry and size of the environment,
despite having been challenged by a number of rodent studies (18–
20). One such challenge involved moving the walls of the enclosure,
which induced temporary elastic changes of the grid geometry (19). In
a more common scenario, mere environment novelty elicited ex-
panded grids (18), while neither novelty nor stretching affected bor-
der cell activity (9). Likewise, grid cells in rats exploring polarized
asymmetrically shaped (trapezoidal) enclosures develop heteroge-
neous gridness of activity between different parts of the enclosure in
contrast to the homogeneous gridness typical in symmetrical enclo-
sures (e.g., square, rectangle). Nevertheless, grid distances in trape-
zoid enclosures remained uniform (20). Although the grid scale
invariance might be robust across species of the rodent order, com-
paring it with the human analog might reveal aspects of neuronal
representation of space that are specific to the human brain.
We obtained stable recordings of different neurons in the human

EC across spatial navigation trials in multiple virtual environments
(Fig. 2) over successive days. More than half of the neurons dis-
played spatially periodic activity (a fraction of those neurons spe-
cifically displayed grid-like activity), and they did so consistently
and specifically for given environmental features, independent of
the order of presentation of the environments and day of recording
(SI Appendix, Figs. S2 and S5). Convincingly, these effects of the
environment were consistent between the two subjects.
The observed proportion of neurons with spatial tuning is

consistent with data from the rat EC (11), but larger than ob-
served in the primate EC during visual tasks (35) and in the
human EC during other virtual navigation tasks (31). Because
our electrodes were nonmoveable, selective sampling could not
bias this ratio. The relatively high ratio of neurons displaying
spatially periodic activity has two implications. First, consistent
with earlier results (31), neurons in the human EC are able to
form neural representations of space in a virtual reality envi-
ronment induced by a small, handheld display (25.6 cm diagonal
and ∼23° horizontal visual field) in the absence of proprioceptive
and kinesthetic cues. Second, these neural representations, re-
lying mainly on visual cues, showed adaptive scaling.
The spatial periodicity of neuronal activity was not uniform

across all four studied environments. Instead, spatial periodicity
systematically decreased with the increasing size of the envi-
ronments (SI Appendix, Fig. S30 A and B). However, this finding
was not confirmed by the gridness of PGCs (SI Appendix, Fig.
S31 A and B). Although we could rule out partial coverage as a
potentially confounding factor contributing to cells in the OS
environment showing less spatial periodicity than in any other

environment, other factors, such as the lack of orienting spatial
cues or the lack of polarity of the environment (20), might have
played a role. We remark that in the absence of orienting distal
cues, the grids were less consistently aligned.
Besides gridness, a key factor regarding the effect of the envi-

ronments on grids is the parameter of grid scale. Although the
original report of grid cells in rodents documented scale in-
dependence of grids (10), other studies have found an experience-
dependent rescaling of grid cells under special conditions, such as in
response to distortion of the aspect ratio of a familiar environment
(19, 20) and transient rescaling during exposure to a novel envi-
ronment (18). Similar to the grid transformations brought about by
adjusting environments, we observed elastic transformations of grids
across environments (Figs. 2 and 3). The EC neurons in both
patients investigated over multiple days showed a consistent
environment-dependent preservation of grid geometry and orienta-
tion over days with small variance, suggesting that each grid type was
optimal for the environment it was applied to. We can rule out both
effects: the distortion effect, because our subjects were fully aware of
the switch between the environments, and the novelty effect, because
none of the investigated grid parameters changed over time. How-
ever, we cannot rule out the contribution of proprioceptive cues to
the scale invariance of grids observed in rodents and the effect of
eliminating those cues in the virtual navigation condition.
The second key feature of the observed grids was the preserved

orientation of the main grid axis across repeated trials in an envi-
ronment. These data suggest that, as in rats, human grids utilize
cues, such as environment geometry, to anchor grid orientation
(20). However, in our virtual navigation task, there were three in-
dependent but consistent orienting cues available. The first was the
starting orientation of the avatar relative to the walls (SI Appendix,
Fig. S1A), the second was the constant presence of architectural
cues (except in the OS environment), and the third was the memory
of the environment. The starting orientation of the avatar was the
same relative to the X–Y axes in all environments (SI Appendix, Fig.
S1A), which may have predisposed the grids toward assuming a
similar orientation within each environment. In contrast, compari-
sons between the three enclosed environments showed that average
grid orientation in LV differed significantly from average grid ori-
entation in BY and LX (Fig. 4 and SI Appendix, Fig. S32). Although
grids of SPCs in square-shaped environments aligned with the angle
of a 45° orientation, they tended to align at an angle of 33° in a
rectangular environment relative to the same cardinal axes (SI
Appendix, Fig. S1A). Because both angles represent the direction
toward the corner of the actual environment from the starting po-
sition, the difference suggests that the geometry of the environment
determines grid orientation rather than the avatar’s starting orien-
tation or architectural cues. The environmental dependency of grid
orientation is in agreement with studies on rodents showing that
grid orientation is aligned with the boundaries of the enclosure (20,
21); however, in contrast to the findings of rodent EC, which
minimizes the symmetry of grid angles relative to the walls (21),
human EC grids tend to align with the corners of environments.
The third key grid feature we investigated was the rotational

symmetry of grids. Studies in rodent EC have described neurons
with firing fields organized in periodic bands (11), in addition to
cells with canonical hexagonal grids. We quantified the distribu-
tion of grid rotational symmetry for neurons from human EC and
observed a wide range of symmetries (Fig. 5 B and C), with a
strong negative correlation between the angle of symmetry and
environment size (Fig. 5D). With a post hoc analysis of balanced
environmental coverage, we were able to rule out that the higher
prevalence of hexagonal grids in the smallest environment (BY)
was only due to the more complete coverage relative to the larger
areas of the other environments. Nevertheless, the incomplete
coverage might have compromised the interpretation of these
factors. Whether the relatively large proportion of noncanonical
symmetry observed in our human grid cells compared with the
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rodent’s grid cells reflects an adaptation to a predominantly
Cartesian organization of our human-made environments, or if it
is constrained by other physiological mechanisms, is beyond the
scope of this study.
On several occasions, we omitted one trial to double the time

spent in another environment, which helped to affirm that none
of the rescaling effect was due to the limited sampling time and
poor spatial coverage. To compensate for the poor spatial cov-
erage and increase our confidence in the sparse sampling of grid-
cell activity, one can combine spikes of neurons from the same
electrode (SI Appendix, Fig. S10) and confirm the hexagonal
tessellation on the firing rate maps consistent with rodent, pri-
mate, and human studies (10, 26, 31, 38).
Contrary to rats, in which grid fields initially expanded in novel

environments (18), all three monitored grid features were stable
across 7–8 d and showed no systematic variation over time (Fig. 3
and 4 and SI Appendix, Figs. S7C and S8B). Nodes of spatial
periodicity (putative grid vertices) were also stable over time
within the same environment during the same session, as illus-
trated by individual examples of spatial mapping of single-unit
activity between the first and fourth segments of a 20-min re-
cording session (SI Appendix, Fig. S5 A–E). Moreover, the stabil-
ity and stationarity of grids in the firing rate maps were confirmed
at a population level by cross-validation and stationarity analysis
that included both SPC and PGChi-conf datasets (SI Appendix, Fig.
S5 F and G). Consistent with the stability of grid nodes, the
environment-dependent scaling and rescaling in our human data-
sets were instantaneous. We observed no gradual adaptation within
each day (SI Appendix, Fig. S5) or across days of recordings (Fig.
3B and SI Appendix, Tables S3.6 and S3.7). The rapid adaptation to
environmental parameters suggests a dynamic reconfiguration of
neuronal activity consistent with attractor switching (39–41) or
oscillatory interference (42–44) models.
The advantage of a visual system in spatial navigation is mul-

tifold. First, endowed with a larger visual information-processing
capacity with which to assess an environment, humans are able to
form a cognitive map or a “survey representation” of their envi-
ronment without the need for visiting all parts, and adapt grids
based on visual spatial cues accordingly. Second, the dimensions of
the environments can be ascertained by a few saccadic eye
movements prior to physical exploration. Third, considering the
complexity and scalability of human environments, humans might
rely on extracting information from optic flow more efficiently
than rats do, given that there is theoretically sufficient information
available from optic flow for grid formation (45). The pre-
dominance of visual input in the human brain allows detection and
mapping of spatial cues more quickly and may influence grid
parameters to a greater degree than is possible in the rat brain
(35–37). It might also allow the human hippocampus and EC to
perform more naturally in virtual navigation tasks, where pro-
prioceptive and kinesthetic cues are absent (30, 31, 46, 47).
Nevertheless, our results corroborate evidence that a visually

cued, active navigation task in a virtual reality environment
provides sufficient input to the human EC to elicit spatially co-
herent localized activity, similar to the spatially coherent local-
ized activity found before in humans (31) and rodents (10, 38,
48). This discovery is intriguing because it occurs despite the
conflict between the patient’s simulated self-motion and natural
vestibular and proprioceptive signals, as well as an awareness of
the patient’s true location relative to the hospital. As initial ev-
idence of sufficient stimulation, we observed that the baseline
activity of EC neurons substantially increased when the pa-
tients began playing the game.
Despite the common cellular mechanisms in rodent and hu-

man brains, spatial navigation and spatial memory may involve
slightly different networks in the human brain. For instance,
human subjects are able to perform path integration without the
hippocampus and EC (32), except when the navigation involves

memory recall of places like in our task. The human EC may also
contribute to the formation of declarative/semantic memories or
abstract conceptual representations (49) as a part of the mesial
temporal lobe that cannot be studied adequately in the rodent
brain. With the help of virtual reality (30, 46), our experimental
paradigm establishes a common ground to compare neural
mechanisms of representing space across different species and to
study the evolution of spatial navigation in the mesial temporal
lobe in relation to memory and perception of locations and more
abstract visual spaces (26). Furthermore, with instructed naviga-
tion in virtual reality environments, we will be able to investigate
the relationship between memory and anticipation experimentally
(50), which is currently unattainable by neuroimaging techniques.
We argue that with these experiments, the virtual reality paradigm
is not only well-suited for investigating the complex environmental
determinants of neuronal representations, including grid forma-
tion, but that these complex environmental determinants may also
help us to understand the neural representation of spatial, epi-
sodic, and semantic memory, which are fundamental aspects of
our internal model of reality.

Materials and Methods
Subjects. One female and three male patients with epilepsy (ages: 33–41 y, av-
erage age of 38.5 y; SI Appendix, Table S1.2), who had previously provided in-
formed consent, were implanted with microelectrode arrays in their EC (Fig. 1A)
in preparation for surgical resection of epileptic foci. All surgical and experi-
mental procedures were approved by the Seton Institutional Review Board. From
two patients (subjects H and K), we could record well-isolated single-unit activity
throughout a 7-d period and an 8-d period in the hospital’s epilepsy monitoring
unit while they performed a virtual navigation task on a tablet computer.

Tasks. The subjects’ task was to play a computer game on a tablet they held on
their lap. The game’s objective was to locate space aliens and return them to
their spaceship parking at memorized locations (SI Appendix, SI Experimental
Procedures). Four different virtual environments were modeled: BY, LV, LX, and
OS (Fig. 2 A and B and SI Appendix, Fig. S1). These environments differed in
several features, including scenery, size, aspect ratio, and presence of obstacles or
boundaries (SI Appendix, SI Experimental Procedures, Table S1.1, and Movie S1).

Recordings. Single-unit activity was obtained from five microelectrodes
implanted in layers II and III of the medial EC in the right hemisphere. Mi-
croelectrodeswere integrated or plug-in components of amacroelectrode strip
made by Ad-TechMedical and PMT. The electrode strip was placed and secured
by the neurosurgeon at the surface of the EC such that only the blunt tip of
microelectrodes penetrated the pia. The wide-band signal was recorded at a
sampling frequency of 24 kHz and bandpass-filtered between 300 and 6,000Hz.
Spike sorting was done off-line on the continuous recording (including all
environments) using WaveClus software (51) on MATLAB (MathWorks), and
spike trains were segmented according to environments later. Only single units
with Mahalanobis distances of >20 separations were included.

Analysis of Grid Parameters. Firing rate maps, spatial ACs, and autoperiodo-
grams were computed using standard methods (11). We quantified the grid-
ness scores, grid orientation, and grid rotational symmetry (52, 53) by precisely
following the method outlined by Barry et al. (18), Sargolini et al. (54), and
Krupic et al. (11) (SI Appendix, SI Experimental Procedures and Fig. S3 A–F).
Grid distance was determined based on the autoperidogram and manually
cross-validated with the ACs. To compute confidence intervals for statistical
significance of gridness scores, we applied a standard Poisson bootstrap
method and shuffled spike times 1,000 times (SI Appendix, Fig. S3G), as well as
theta, alpha, and direction-modulated surrogate spike trains. Validation of
spatial periodicity against the by-chance was done using a Monte Carlo
method by comparing the spectral modulation depth (gsp scores; SI Appendix,
SI Experimental Procedures) of each AC against the distribution of gsp scores
of 1,000 randomized ACs generated from mixtures of 2D Gaussians.

If X and Y are the coordinates of the largest peak near the center in the
autoperiodogram, the grid distance is defined as the Euclidean distance of
the peak from the center: λ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 +Y2

p
. After λ was computed, it was and

manually cross-validated with the ACs.
Grid orientations were computed from the autoperiodograms (SI Appen-

dix, SI Experimental Procedures and Fig. 1F). Given X and Y as the coordinates of
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the largest peak on the 2D autoperidogram, the principal orientation (β) is
defined as β= arctan

�
X
Y

�
.

The angle of rotational symmetrywas defined by the angle (γ) of rotation that
maximized the Pearson’s correlation between the original and rotated AC [SI
Appendix, SI Experimental Procedures, Quantifying “Gridness” (Gridness Score)].

Datasets and Statistical Methods. Based on the spatial spectral analysis,
gridness scores, and persistence of single-unit activity in different environ-
ments, we constructed six datasets: SPC, pSPC, PGC, pPGC, PGChi-conf, and
pPGChi-conf (SI Appendix, Table S2). To compare gridness scores and grid
periods across environments for the SPC, PGC, and PGChi-conf datasets, the
general linear model ANOVA and its nonparametric version, the Kruskal–
Wallis test (MATLAB), were applied. The main factor was the environment

(BY, LV, LX, and OS), and the dependent variables were gridness and grid
period. For the pSPC, pPGC, and pPGChi-conf datasets, ANOVA with repeated
measures or its nonparametric version, the Friedman test, was used. To
compare grid orientations and grid symmetry between environments, we
applied circular ANOVA (Watson–Williams test) on von Mises distributions
(53) or the Wheeler–Watson test as an alternative when von Mises distri-
butions did not qualify (55). We performed Rayleigh tests for testing non-
uniformity of circular data and Watson’s goodness-of-fit test for testing
conformity with the von Mises distribution (MATLAB Circular Statistics
Toolbox) (53) (SI Appendix, SI Experimental Procedures).
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